Change in the distribution of a member of the strand line community: the seaweed fly (Diptera: Coelopidae)

DOMINIC A. EDWARD 1, JENNIFER E. BLYTH 2, RODERICK MCKEE 1 and ANDRÉ SIMON GILBURN 1
1 School of Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, U.K. and 2 Environmental and Marine Biology, Åbo Akademi University, Turku, Finland

Abstract. 1. Coastal organisms are predicted to be particularly susceptible to the impact of global warming. In this study the distribution and relative abundance of two coastal invertebrates, Coelopa frigida (Fabricius) and C. pilipes are investigated.

2. Coelopa pilipes has a more southerly distribution than C. frigida, and prefers a warmer climate. Coelopa pilipes is less resistant to sub-zero temperatures than C. frigida and its northerly distribution is probably limited by cold winter days.

3. The most recent distribution map of C. frigida and C. pilipes in northern Europe was published a decade ago and showed the northerly extent of the distribution of C. pilipes reaching the north coast of mainland Scotland but its complete absence from the Western and Northern Isles.

4. C. pilipes has now spread throughout the Western Isles and the Orkney Islands but is still absent from Shetland. There has also been an increase in the relative frequency of C. pilipes at sites harbouring coelopids on the British mainland. A similar pattern of distribution change along the west coast of Sweden is reported.

5. It is proposed that these changes have occurred primarily as a result of global warming and in particular due to the recent increase in winter temperatures. A number of other indirect effects may have also contributed to these changes, including a probable change in macroalgae distribution. The implications of these changes for the wrack bed ecosystem and at higher trophic levels are considered.

Key words. Climate change, Coelopidae, competition, distribution change, global warming, seaweed fly.

Introduction

Global temperatures have increased by approximately 0.6 °C over the past century (Jones et al., 1999; IPCC, 2001). In Central England, the 1990s were approximately 0.5 °C warmer than the 1961–1990 average; with the greatest increase in temperature being experienced during the winter months (Hulme et al., 2002; Watkinson et al., 2004). It is now increasingly apparent that climatic change will not only contribute to ecological changes in the future, but that change is occurring in the present (Hughes, 2000; Root et al., 2003). One widely predicted outcome is that the ranges of many species will shift either poleward or to higher altitudes (Barry et al., 1995; Parmesan, 1996; Hughes, 2000). Poleward range shifts have since attracted empirical support on a global scale (Walther et al., 2002; Parmesan & Yohe, 2003; Hickling et al., 2005, 2006; Mieszkowska et al., 2006) and models show that these changes can be associated with a changing climate (Walther et al., 2005).

Coastal organisms may be particularly susceptible to the impacts of global warming resulting from increases in both sea temperature and rising sea levels (Lawrence & Soame, 2004; Watkinson et al., 2004). Correspondingly, a number of intertidal organisms found on rocky shores around Britain have undergone poleward range shifts associated with climate change (Mieszkowska et al., 2006). Among the organisms most likely to be affected are the coastal invertebrates (Beukema et al., 2001; Lawrence & Soame, 2004; Kendall et al., 2004). Changes to coastal invertebrate communities may be expected to have a subsequent effect upon other species, particularly avifauna, that depend upon them as a food source (Kendall et al., 2004; Lawrence & Soame, 2004).
One particularly understudied coastal ecosystem is the strand line community (Kendall et al., 2004), which is founded primarily upon marine macroalgae deposited on beaches by storms and tides. Seaweed flies (Diptera: Coelopidae) inhabit deep algal deposits, known as wrack beds, deposited on the strand line close to rocky shores (Dobson, 1974). Coelopid larvae are entirely dependent upon algae for their development and adults mate and feed within deposits, using them as places of shelter. Both the larval and adult life stages play an important functional role; accelerating decomposition and recycling of nutrients (Harrison, 1977; Robertson & Mann, 1980; Koop & Griffiths, 1982; Cullen et al., 1987) and providing a food source for coastal bird species (Feare & Summers, 1985).

The relative distribution and abundance of two northern European coelopids, Coelopa frigida (Fabricius) and Coelopa pilipes (Halliday), has been studied on a number of previous occasions (Egglishaw, 1960; Dobson, 1974; Butlin, 1983; Phillips et al., 1995b; see Fig. 1). Coelopa frigida occupies higher latitudes ranging from the north coast of France as far north as Iceland and Spitzbergen. In contrast, the range of C. pilipes extends farther south down the Atlantic coastline of France yet north only so far as the northern coast of the Scottish mainland. C. pilipes is notably absent from the Western and Northern Isles of Scotland. While both species occur sympatrically throughout much of their range, within British wrack beds C. frigida has been described as the most abundant of the large Diptera (Egglishaw, 1960). On mainland Europe C. pilipes has been recorded as far north as the west coast of Sweden though only very rarely at greater abundances than C. frigida.

While various factors may play a part in determining the relative abundances of C. frigida and C. pilipes the most important is almost certainly temperature (Phillips et al., 1995b). This is reflected in a greater abundance of C. pilipes during the summer months (Remmert, 1965; Phillips et al., 1995b) and a greater susceptibility of this species to the effects of freezing temperatures. In addition, the larvae of C. frigida are found to prefer cooler microhabitats within wrack beds (Phillips et al., 1995b). Data on the relative abundance of northern European populations of Coelopids going back nearly 40 years provide an excellent opportunity to consider the impacts of climate change upon the strand line community. The aim of this study is therefore to assess the relative responses of C. frigida and C. pilipes to climate change.

Materials and methods

Experimental procedure

Historical data were collated from previous collections made between February 1967 and October 1990 (Butlin, 1983; Gilburn, 1992; Phillips et al., 1995; Day & Gilburn, unpubl. data). The same areas as for the historical collections were re-sampled between August 2004 and December 2005, returning to the same beach and at the same time of year where possible. If no wrack bed could be found at a site then we located and sampled from the nearest wrack bed to the original site. In some regions no information was available on the exact location of past collections, for example Norway and the Scottish Islands. In these cases, a number of sampling sites were identified to give a comprehensive description of coelopid populations.

The same two collection techniques were adopted as used to collect the historical data. If sufficient adult flies were present at a site then they were collected by mouth pooter and transported back to Stirling, where the relative abundance of the two species was calculated. At sites lacking large numbers of adults, collections of larvae were made from various locations and depths within the wrack bed and placed in large plastic tanks. Larvae were transported back to Stirling and allowed to develop within the seaweed in which they were collected. Any

![Fig. 1. Distribution maps of C. frigida and C. pilipes, past and present. The map on the left shows the historical distribution, adapted from Phillips et al. (1995b), while on the right data from the current study are shown. Filled circles represent populations of C. frigida (C. pilipes rare if present), empty circles populations of C. pilipes (C. frigida rare if present) and half filled circles mixed populations.](image-url)
collections at high larval density were given additional seaweed to reduce the effects of larval competition. The relative number of C. frigida and C. pilipes adults eclosing from these cages was then determined.

Statistical analysis

All analyses were carried out using R 2.0.1 (R Development Core Team, 2005). A quasibinomial model of the proportion of C. pilipes flies at each location, using year and latitude as the independent variables, was used as the data set was overdispersed.

Results

Change in relative frequency of C. frigida and C. pilipes in mainland Britain

Some limited historical data were available for the south coast of Britain. During the summer of 1981 all of the populations sampled at each site (Rustington, Portland, and Beer) were comprised of at least 90% C. frigida (Butlin, 1983). In August 2005 only one site, Beer, still contained C. frigida. The populations at Rustington and Osmington (a site close to Portland) were comprised entirely of C. pilipes. A considerable amount of historical data exists for the east coast of England. In samples made between 1967 and 1981 the average proportion of C. pilipes found on east coast sites was 34% (SE 6%). This had increased to 55% (SE 6%) in 2005. Precise historical data for C. pilipes populations in Scotland are not available, although limited records suggest that C. pilipes was relatively rare compared with C. frigida. Samples taken from around the Forth Estuary during 2004 and 2005 revealed that the mean proportion of C. pilipes was 81.7% (SE 7.1%) with all sites containing a majority of C. pilipes.

A quasibinomial model showed that the proportion of C. pilipes within British mainland populations has increased over the last four decades ($F_{1,66} = 15.2, P < 0.001$; parameter estimate $= +0.0641, SE = 0.0153$). In both 2004 and 2005 more C. pilipes were collected than C. frigida (Fig. 2). Latitude was not found to affect the proportion of C. pilipes within British mainland populations ($F_{1,66} = 0.06, P = NS$).

Scottish Island populations of Coelopids

Phillips et al. (1995b) reported the absence of C. pilipes from the Western and the Northern Isles of Scotland. We collected coelopids from populations on seven islands within the Western Isles in August 2004, and five islands in the Orkney Isles in June 2005 and nine sites in Mainland Shetland in August 2005.

C. pilipes was found on all seven islands (Vatersay, Barra, South Uist, Benbecula, North Uist, Harris, and Lewis) within the Western Isles that hosted wrack bed communities. C. frigida was only found on six (absent from the one wrack bed investigated on Benbecula). C. pilipes was found on all five islands on which we sampled wrack beds within the Orkneys (Mainland, Burra, South Ronaldsay, Westray, and Sanday). Of the 15 wrack beds sampled in Orkney, five contained only C. frigida and three contained only C. pilipes. Nine wrack beds were found to contain C. frigida on the Shetland mainland. All of the sites lacked C. pilipes.

West and south coasts of Sweden

Collections of coelopids were carried out on an annual basis on the west and south coasts of Sweden from 1986 to 1995 (Phillips et al., 1995b; Day & Gilburn, unpubl. results). C. pilipes was usually found to be the commonest coelopid at Mølle, but was usually absent from other sites (Fig. 3). It was occasionally found at Torekov, Bua, and Steninge, also on the west coast, but never as the more common coelopid at these sites. C. pilipes was never found at any of the six sites on the south coast that were regularly found to harbour populations of C. frigida.

We found C. pilipes to be absent from the two wrack beds harbouring C. frigida populations on the south coast in September 2005. We found six wrack beds harbouring coelopid populations on the west coast of Sweden in September 2005. Of these, one consisted only of C. frigida, three consisted only of C. pilipes and two were mixed populations, one of which was

![Fig. 2](image_url) The proportion of individuals of the two common British coelopid species collected across mainland British populations in 1967, 1968, 1981, 2004, and 2005.

© 2007 The Authors
Journal compilation © 2007 The Royal Entomological Society, Ecological Entomology, 32, 1–6
99% *C. pilipes* (Fig. 3). Two of the three wrack beds lacking *C. frigida* were sites not previously known to host *C. pilipes*, including the wrack bed at Tråslövsläge, which has previously always hosted a huge and well studied population of *C. frigida* (Gilburn et al., 1993). The wrack bed at Viken with 99% *C. pilipes* also has previously lacked *C. pilipes*. Thus, there has been a substantial shift towards *C. pilipes* as the predominant coelopid on the west coast of Sweden.

Discussion

The results of this study suggest a shift in the distribution of coelopid species in northern Europe commensurate with predictions of poleward range expansions resulting from climate change. Wrack beds are a highly stochastic resource, dependent upon weather and tidal patterns. Persistence of a wrack bed may vary from just a few days to a month or more. Their transient nature is known to influence the density of coelopid populations that may vary substantially from week to week (Dobson, 1974; Hodge & Arthur, 1997). This incurs difficulties when visiting sites in finding suitable strand line deposits comparable with those of previous years. Though care was taken to visit sites at a similar time of year and to collect flies in a consistent manner, few conclusions can be drawn about changes occurring at specific locations. Nevertheless, due to the numerous and wide distribution of sites studied, and considering in particular the apparent invasion of *C. pilipes* at previously unrecorded locations, these results clearly demonstrate a change in coelopid distribution.

While Norway and the Orkney Isles now appear to be the new northern limit of *C. pilipes* range, this may be determined as much by physical as ecological constraints. *C. frigida* and *C. pilipes* have been reported to migrate in large numbers and over long distances; however, it is predicted that the direction of migrations should follow coastlines in the direction of fresh wrack beds (Olkroyd, 1954; Egglishaw, 1961). The Western Isles of Scotland and the Orkney Isles can be reached by traversing far shorter stretches of open water than would be required to reach the Shetland Isles. While not an absolute barrier to colonisation such distances would certainly be expected to slow the rate of range expansion. The southern coastline of Norway was found to be lacking in wrack beds suitable for the maintenance of coelopid populations due to topography. A reduced frequency of suitable habitat along this portion of coast may be limiting the rate of *C. pilipes* range expansion. Consequently the potential effect of climate change upon *C. pilipes* range may be easily underestimated. The continuing absence of *C. pilipes* from the South coast of Sweden is likely to be due to the low percentage of brown algae within wrack beds along this coastline. The predominant component of wrack beds along this coast is eel grass, *Zostera marina*, which may limit the decomposition of brown algae so that these wrack beds remain relatively cold, thus favouring *C. frigida*.

Phillips et al. (1995b) proposal that temperature is the most important factor determining the relative abundance and distribution of *C. frigida* and *C. pilipes* predicts that any changes in climate affecting temperature are likely to alter the relative abundance and distribution of these species in northern Europe. The rise in temperatures observed in Britain over the past decade (Paltridge & Phillips, 1996; England et al., 1998a) and the rise in temperatures observed in Bergen over the past 50 years (Lotter, 1977) means that they will always be able to find suitable habitat for their maintenance along the west coast of Sweden. Thus, the results of this study suggest that any rapid range expansion of these species (Phillips et al., 1995b) from their present northern limit is not likely to occur.
30 years have been much more pronounced in winter, increasing by 1.1 °C, compared with only a 0.2 °C rise in summer temperatures (Watkinson et al., 2004). Furthermore, there has been a substantial reduction in the number of winter days below 0 °C (Watkinson et al., 2004). The seasonal pattern of C. frigida prevalence may easily have extended during recent mild winters. It has also been shown that at increased temperatures C. pilipes are better able to develop when in competition with C. frigida (Phillips et al., 1995b). Thus a small change in temperature could exhibit a greater ecological effect as the balance of competition falls in favour of C. pilipes.

Accompanying the increase in air temperature has also been a global increase in sea water temperatures (Levitus et al., 2000; Hulme et al., 2002). Around the British Isles an increase of about 0.5 °C has been experienced over the last 70–100 years, with the greatest increase being during the past 20 years (Hulme et al., 2002). A number of warm water benthic species are now beginning to appear around the coast of Britain while cold water species are in decline (Hiscock et al., 2004). The distribution of the primary constituent of wrack beds harbouring coelopids, brown algae, is also determined by sea temperatures (Breeman, 1988; van den Hoek et al., 1990). It has been suggested that brown algae genera such as Laminaria may currently be in decline (Breeman, 1990; Barry et al., 1995; Schiel et al., 2004) and that Fucus is predicted to decline in the future (Kendall et al., 2004) around the British Isles. It is suggested that C. frigida and C. pilipes have preferences for different species of seaweed (Dobson, 1974; Phillips et al., 1995a; Edward & Gilburn, in press) and that the level of competitive interaction between coelopids can be dependent on the rate of wrack bed decomposition (Leggett et al., 1996; Hodge & Arthur, 1997). A change in macroalgae distribution associated with climate change represents an additional indirect mechanism by which climate change may have influenced coelopid distribution.

It has already become much harder to find C. frigida on beaches of mainland Britain, something that has been of concern as this species has been established as an important model organism for the study of sexual conflict and sexual selection (Gilburn & Day, 1997; Shuker & Day, 2001; Dunn et al., 2002; Blyth & Gilburn, 2005). Perhaps more importantly, a change in coelopid distribution may be indicative of wider ecological impacts of climate change on our beaches. The importance of the strand line ecosystem has recently been demonstrated where beaches are mechanically cleared for aesthetic purposes; resulting in a loss of biodiversity and negative effects on bird populations (Llewellyn & Shackley, 1997; Dugan et al., 2003). Decomposed wrack material can support the establishment of terrestrial plants that act as the precursors for sand dunes and a wide variety of coastal bird species feed upon wrack macrofauna and nematodes in the organically rich subsurface (Pienkowski, 1982; Fear & Summers, 1985; Llewellyn & Shackley, 1997; Dugan et al., 2003). It is not clear what direct effect the changes in relative abundance of C. frigida and C. pilipes will have on strand line communities. The loss of C. frigida may be particularly important as this is usually the first large dipteran to lay eggs in freshly deposited algae. C. pilipes has been observed to colonise wrack beds up to 3 days after deposition, considerably later than C. frigida, and mating behaviour is also known to be delayed (Edward & Gilburn, in press). As wrack beds are commonly a short-lived resource this represents a substantial delay to the decomposition process that could have subsequent effects on other members of the wrack bed community as well as the recycling of nutrients.

This study demonstrates that the relative abundance of coelopids in northern Europe has changed in recent decades. The likely cause of these observations is the recent change in climate that may have affected coelopids species directly, the interaction between coelopid species or composition of their habitat. We suggest that further work need not necessarily be focused upon coelopids, but should consider the wider implications of climate change on the strand line ecosystem.

Acknowledgements

This work was supported by a studentship (to D.A.E.) from the Natural Environment Research Council. We are also extremely grateful to the Carnegie Trust who provided funding for collections in the Western and Northern Isles.

References

Accepted XX XXXXXX 2007
Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper’s edge. Please remember that illegible mark-ups may delay publication. Many thanks for your assistance.

<table>
<thead>
<tr>
<th>Query No.</th>
<th>Query</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Au: Please note that the reference ‘Edward & Gilburn (in press)’ is not listed. Please add it to the list or delete the citation.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Au: Please note that the reference ‘Gilburn & Day (1997)’ is not listed. Please add it to the list or delete the citation.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Au: Edward & Gilburn, in press = Still in press—any more details yet?</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Au: Please provide all the editors’ names and also publisher name and location in the reference Breeman (1990).</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Au: Please provide all the editors’ names and also publisher name and location in the reference van den Hoek et al. (1990).</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Au: Please note that the reference ‘Jiang & Morin (2004)’ is not cited in the text. Please cite it in text or delete from the list.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Au: Please note that the reference ‘Luning (1990)’ is not cited in the text. Please cite it in text or delete from the list.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Au: Please note that the reference ‘Mann (1973)’ is not cited in the text. Please cite it in text or delete from the list.</td>
<td></td>
</tr>
</tbody>
</table>
11 Au: Please note that the reference ‘Paine (1992)’ is not cited in the text. Please cite it in text or delete from the list.

12 Au: Please provide the editor names (if any), publisher name and location and page range in the reference Remmert (1965).

13 Au: Please note that the reference ‘Sanford (1999)’ is not cited in the text. Please cite it in text or delete from the list.

14 Au: Please note that the reference ‘Wootton (1993)’ is not cited in the text. Please cite it in text or delete from the list.

15 Ed: Accepted XX XXXXX 2007—please provide the accepted date.

16 All figures are in poor quality. Please re-supply the figure to ensure good reproduction. For more information about supplying electronic artwork, please see the journal webpage or our electronic artwork guidelines at http://www.blackwellpublishing.com/authors/digill.asp
Please correct and return this set

Please use the proof correction marks shown below for all alterations and corrections. If you wish to return your proof by fax you should ensure that all amendments are written clearly in dark ink and are made well within the page margins.

<table>
<thead>
<tr>
<th>Instruction to printer</th>
<th>Textual mark</th>
<th>Marginal mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leave unchanged</td>
<td>• • • under matter to remain</td>
<td></td>
</tr>
<tr>
<td>Insert in text the matter indicated in the margin</td>
<td>/ through single character, rule or underline or / through letter or / through characters</td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>= = under matter to be deleted</td>
<td></td>
</tr>
<tr>
<td>Substitute character or substitute part of one or more word(s)</td>
<td>/ through letter or / through characters</td>
<td></td>
</tr>
<tr>
<td>Change to italics</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to capitals</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to small capitals</td>
<td>— under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to bold type</td>
<td>▼ ▼ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to bold italic</td>
<td>▼ ▼ under matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change to lower case</td>
<td>Encircle matter to be changed</td>
<td></td>
</tr>
<tr>
<td>Change italic to upright type</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Change bold to non-bold type</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert ‘superior’ character</td>
<td>/ through character or / where required</td>
<td></td>
</tr>
<tr>
<td>Insert ‘inferior’ character</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert full stop</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert comma</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert single quotation marks</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert double quotation marks</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Insert hyphen</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Start new paragraph</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>No new paragraph</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Transpose</td>
<td>(As above)</td>
<td></td>
</tr>
<tr>
<td>Close up</td>
<td>linking □ □ characters</td>
<td></td>
</tr>
<tr>
<td>Insert or substitute space between characters or words</td>
<td>/ through character or / where required</td>
<td></td>
</tr>
<tr>
<td>Reduce space between characters or words</td>
<td>between characters or words affected</td>
<td></td>
</tr>
</tbody>
</table>