Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.

260 × 147321/83 LOONRY JHH Colard Plates " Computer Pullent , Chart Back Pocket 260

466

CHEMICAL AND ECOLOGICAL STUDIES ON PLANTS AND SOILS OF ULTRABASIC AND OTHER AREAS ON THE ISLAND OF RHUM, SCOTLAND.

A thesis submitted for the degree of

Doctor of Philosophy

in the

University of Stirling

by

JOHN HENRY H. LOONEY

7/83

Department of Biological Science University of Stirling November, 1982. The contents of this thesis are the result of my own work, and have not been submitted in any form for a degree from any other University.

John Henry H. Leomay

"... but the Remainder , by far the greatest part, may be judged wholly irreclaimable, consisting of steep Mountains, deep Mosses and Tracks of Land overspread with Rocks ... It has once been well wooded, and in some of the steep Gullies, inaccessible to cattle, the Oak, the Birch, the Holly and Rowan Tree, are still to be observed growing vigorously.

... from this Place, I made a Journey to the highest of these Mountains named Ascheval. From the shore we ascended through deep Mosses, whose surface would scarcely carry us,... The rest of the Ascent, was clambering amidst broken Rocks and falls of water; but among these Rocks, and among the straggling Junipers, I found such a Variety of rare Alpine Plants, as amply requited the Fatigue of the Journey. Some of them, the Inhabitants of the highest Alps in Switzerland, and others of Lapland and Spitsberg."

> from the Rev. Dr. John Walker's Report on the Hebrides of 1764 and 1771.

> > (McKay 1980).

"... but the Remainder , by far the greatest part, may be judged wholly irreclaimable, consisting of steep Mountains, deep Mosses and Tracks of Land overspread with Rocks ... It has once been well wooded, and in some of the steep Gullies, inaccessible to cattle, the Oak, the Birch, the Holly and Rowan Tree, are still to be observed growing vigorously.

... from this Place, I made a Journey to the highest of these Mountains named Ascheval. From the shore we ascended through deep Mosses, whose surface would scarcely carry us,... The rest of the Ascent, was clambering amidst broken Rocks and falls of water; but among these Rocks, and among the straggling Junipers, I found such a Variety of rare Alpine Plants, as amply requited the Fatigue of the Journey. Some of them, the Inhabitants of the highest Alps in Switzerland, and others of Lapland and Spitsberg."

> from the Rev. Dr. John Walker's Report on the <u>Hebrides of 1764</u> and 1771.

> > (McKay 1980).

STATISTIC FALLER

. . .

TABLE OF CONTEN	ITS	PAGE
ABSTRACT		
ACKNOWLEDGMENTS	3	
CHAPTER ONE	INTRODUCTION	
1.1	The Island of Rhum	1
1.2	The aims of the research	5
CHAPTER TWO	JEGETATION DESCRIPTION, CLASSIFICATION AND ORDINATION	
2.1	Introduction	6
2.1.1	Transect location and vegetation description	6
2.1.2	Multivariate techniques	8
2.2	Classification by TWINSPAN	9
2.2.1	Introduction	9
2.2.2	Results	11
2.2.3	Discussion	13
2.3	Ordination by DECORANA	14
2.3.1	Introduction	14
2.3.2	Results	15
2.3.3	Discussion	15
2.4	The relationships of the TWINSPAN classes to the DECORANA ordination axes	15
2.4.1	The relationships for all quadrats	15
2.4.2	The relationships between vegetation classes using median values	17
2.4.3	Discussion	17
CHAPTER THREE	SOIL ANALYSES	
3.1	Introduction	19
3.2	Materials and methods	19
3.2.1	General	19
3.2.2	Soil preparation	19
3.2.3	Methods of soil analyses	20

			PAGE
CHAPTER	THREE	(cont.)	
	3.2.4	Chemical analyses	21
	3.3	Results and discussion	22
	3.3.1	Introduction	22
	3.3.2	pH and loss-on-ignition	22
	3.3.3	Exchangeable bases	23
	3.3.4	Total analyses	25
	3.4	Multivariate analysis of the soil variables	27
	3.4.1	Introduction	27
	3.4.2	Results	28
	3.4.3	Discussion	29
CHAPTER	FOUR	RELATIONSHIPS BETWEEN THE VEGETATION CLASSES AND THE SOIL VARIABLES	
	4.1	Introduction	31
	4.2	Interpretation and discussion of vegetation classes	32
CHAPTER	FIVE	PLANT ANALYSES	
	5.1	Introduction	36
	5.1.1	Introduction and sample collection	36
	5.1.2	Methods and materials of plant analysis	36
	5.2	Results	37
	5.3	Discussion of correlations with the soil analyses	40
CHAPTER	SIX	SOIL SOLUTION ANALYSES	
	6.1	Introduction	43
	6.2	Materials and methods	43
	6.3	Results and discussion	44
	6.4	Relationships between soil solution and exchangeable bases	45

a sent sententes

*

-

CHAPTER	SEVEN	GROWTH OF SERPENTINE AND NON-SERPENTINE RACES OF <u>AGROSTIS</u> <u>CANINA</u> IN SOLUTION-CULTURE MEDIA SIMULATING SOIL SOLUTIONS ON RHUM.	
	7.1	Introduction	48
	7.2	Methods	49
	7.2.1	Preparation and analysis of plants	49
	7.2.2	Solution culture techniques	51
	7.2.3	Experiments 1 and 2	52
	7.3	Results	53
	7.3.1	Relative growth rates	53
	7.3.2	Concentration of elements in the shoots	55
	7.4	Discussion	56
	7.4.1	Aspects of the design and results of the experiments	56
	7.4.2	General implications of the results of these experiments for work on plant metal toxicity	60
	7.4.3	Conclusions	61
CHAPTER	EIGHT	FIELD EXPERIMENTS AND OBSERVATIONS	
	8.1	Introduction	63
	8.2	Major-nutrient addition	63
	8.2.1	Methods	63
	8.2.2	Results	64
	8.2.3	Discussion	65
	8.3	Permanent quadrats	65
	8.4	Discussion	66
CHAPTER	NINE	FINAL DISCUSSION	68
REFEREN	CES		72-78
APPENDI	CES		
I	Results	of the vegetation description.	
II	Species	names and numbers.	
III	Results	of the soil analyses.	

PAGE

ĩ

*

-

APPENDICES (cont.)

- IV The DECORANA ordination scores for the quadrats and their TWINSPAN class numbers.
- V Means and variance of the soil data by transect.
- VI Means and variance of the soil data by TWINSPAN classes.
- VII The results of the plant analysis.
- VIII The dry weights of the clones of <u>Agrostis canina</u> from the growth experiments.
- IX The results of the chemical analysis of the clones of Agrostis canina from the growth experiments.
- X The species x stands table from the TWINSPAN vegetation classification.
- XI The plot of the quadrats on the first two axes of the DECORANA vegetation ordination, by their class number.

ABSTRACT

The climate, geology and vegetation history of the Island of Rhum are briefly described. Rhum has a large area of ultrabasic rock, mainly over 350m, which has distinctive soils and vegetation.

The vegetation of selected sites on several rock types was described from 32 transects with a total of 285 lxlm quadrats. At each quadrat a soil sample was taken and analysed chemically. The vegetation and soil data were ordinated (by DECORANA) and classified (by TWINSPAN). Twelve vegetation classes emerged which were related to previously described communities. The soil factors which were significantly correlated (r_s) with the ultrabasic classes were: total nickel, chromium and cobalt, pH and exchangeable nickel and calcium. There is a wide range of soils on the ultrabasic and most are unusual for this type since they have low Mg/Ca quotients and a sandy texture.

The above-ground parts of six species were analysed chemically and samples from the ultrabasic soils had fairly high concentrations of Ni and in some cases high Fe. Correlation coefficients for soil-soil, soil-plant and plant-plant elements provided some insight into selectivity and possible mechanisms of adaptation to the ultrabasic soils.

Soil solutions were extracted from 21 samples using a centrifugation technique and analysed chemically. Four of these analyses from contrasting soils were used as a basis for culture media for experiments to test the importance for plant growth of certain ions $(Ca^{2+}, Mg^{2+}, Ni^{2+}, H_2PO_4^{-})$ and Zn^{2+} RGR's were measured in culture media with several ions varied in a factorial manner and there were two harvests (after 3 and 6 weeks). Ni²⁺ (0.2 mg 1⁻¹) was mildly toxic to a non-ultrabasic race at Harvest 1 but there was no effect at Harvest 2. The implications of this are discussed. The non-ultrabasic race had a reduced RGR in the higher Ca and Mg concentrations (combined) in the solutions simulating those in the Abstract (cont.)

ultrabasic soils, but grew best of all the races in the solutions simulating those from its site of collection. The plants grown in the culture media were analysed chemically and compared with the same species which occurred in the field. The experimental plants had lower concentrations of Fe, and higher of K, but in other respects were similar to the field plants.

-

341

ŧ,

2.10

Field experiments and observations were made on the effects of added major nutrients to barren areas and erosion. Unfortunately most of the nutrient addition experiments were lost, but earlier work was confirmed that nutrient-addition causes an increase in plant cover on exposed barren ultrabasic areas. Erosion is still rapidly occurring in some places.

No single factor can explain the distinctive vegetation of the ultrabasic areas on Rhum, but the following singly and in combination are probably important: high Ni (with its greatest effect in dry spells); fairly high soil pH (for Rhum); low major nutrients; soil physical factors, particularly its sandy texture, frost-heaving and erosion (probably resulting from past-burning and grazing). The effect of a high Mg/Ca quotient seems not to be important on Rhum.

ACKNOWLEDGMENTS

I would like to thank Professors W.R.A. Muntz and H. Meidner for the use of the facilities of the Department of Biological Science at the University of Stirling. I appreciate the permission of the Nature Conservancy Council allowing me to work on Rhum, and the support and facilities they provided for me, especially the help from Mr. Laughton Johnston and Mr. Angus MacIntosh. Thanks to Mr. Johannes Volker for many hours of friendship and discussion whilst on Rhum, for advice on geological matters and for the picture on the frontispiece. Dr. D. McC. Newbery is thanked for his helpful discussions, especially on statistics. Thanks also to Mrs. Ina Mack for typing this thesis in record time. I am indebted to my supervisor, Dr. J. Proctor, for his eternal enthusiasm and encouragement, and his unrelenting standards. are.

A

٠

A. C. C.

2. *

1.1.1.1.

and a

.

14

Finally, I would like to thank my parents for their support throughout this thesis, and special appreciation is extended to my wife Hilary, for her love, help and understanding. CHAPTER ONE

1

17 21

i,

INTRODUCTION

1.1 The Island of Rhum

Vegetation on serpentine and ultrabasic outcrops throughout the world is very variable, but it is often quite barren, or at least contrasts with surrounding vegetation (Proctor & Woodell 1975, see below). Throughout this thesis the term serpentine is usually used in the biological (or broader sense) to describe a group of ultrabasic (ultramafic) rocks not on Rhum, the soils derived from them, and the vegetation that is associated with them. I have used the narrower geological meaning of ultrabasic when referring to the rocks on Rhum, (however in Chapter 7 the different races of grass used from Rhum are referred to as serpentine or non-serpentine).

The Island of Rhum (latitude 57°3'N, longitude 6°27'W; Inner Hebrides, Scotland; National Grid Reference NM 37 98; Fig. 2.1.1:1) has the largest ultrabasic outcrop in Britain. It is almost devoid of plants in places and has a vegetation distinct from that found on the other rock types on the Island. This has been appreciated for some time: The New Statistical Account (of 1828) (MacLean 1845) notes a difference between the strong heather on the east and the grass on the west of the Island. It was with the acquisition of the Island in 1957 by the Nature Conservancy Council that the differences were described in detail in relation to the geology (McVean & Ratcliffe 1962; Ferreira 1970, 1974). The four main vegetation regions correspond generally with the chief geological formations: the Torridonian sandstones in the north and east; the gabbro and ultrabasic rocks of the centre; the basalt and limestone to the north west; and the granophyre on the south west (Nature Conservancy Council 1974). This thesis concerns the vegetation on the ultrabasic complex of the Island.

The composition of the ultrabasic complex on Rhum is variable with important effects for the soils and vegetation. The types of ultrabasic rocks range from dunite (>90% olivine) and peridotite (>50% olivine with the rest a 3:1 ratio of plagioclase: pyroxene) through several intermediates, to nearly pure forms of the calcic plagioclase rock, hallivalite (>50% plagioclase, 5-10% pyroxene, the rest olivine). In general, the composition of olivine is represented as (Mg Fe)₂ Si₂0₄, with the Mg: Fe ratio (for Rhum) about 4:1; while plagioclase is represented as Ca Al₂ Si₂ O₈ and Na Al Si₃ O₈ with a Ca: Na ratio of 4:1 on Rhum. (J. Volker, personal communication). Many accessory minerals are found in ultrabasic rocks. Of particular interest on Rhum are chromite and magnetite. The content of these minerals can vary appreciably within ultrabasic rocks and on Rhum, chromite is highest in the Ruinsival series (J. Volker, personal communication), while magnetite is more variable across the Island. In one restricted area on Rhum the peridotite and dunite have been hydrothermally altered to the mineral serpentine (J. Volker, personal communication). This area, near the Ruinsival Bealach is the site of Transect 26 (Figure 1.1:1 and Section 2.1.1). (Emeleus & Forster 1979, have given more information on the igneous petrology of Rhum).

1. . . ·

4

•

There is some uncertainty about the post-glacial vegetation of Rhum. Skye once had woodland, sometimes extensive (Birks 1973), but the former extent of the woodland on Rhum is less well known. Walker's <u>Report on the Hebrides of 1764 & 1771</u> (McKay 1980, see frontispiece) mentions the island as having been well wooded and Dean Munro in 1549 (R.W. Munro 1961) mentions a forest on the island. In <u>The</u> (Old) <u>Statistical Account of Scotland</u> (McLean 1796) in reference to the number of deer on Rhum refers to

"... a copse of wood that afforded cover ... while the wood throve the deer also throve; now that the wood is totally destroyed the deer are extirpated." (Nature Conservancy Council 1974).

The composition of the ultrabasic complex on Rhum is variable with important effects for the soils and vegetation. The types of ultrabasic rocks range from dunite (>90% olivine) and peridotite (>50% olivine with the rest a 3:1 ratio of plagioclase: pyroxene) through several intermediates, to nearly pure forms of the calcic plagioclase rock, hallivalite (>50% plagioclase, 5-10% pyroxene, the rest olivine). In general, the composition of olivine is represented as (Mg Fe)₂ Si_2O_4 , with the Mg: Fe ratio (for Rhum) about 4:1; while plagioclase is represented as Ca Al $_2$ Si $_2$ O $_8$ and Na Al Si $_3$ O $_8$ with a Ca: Na ratio of 4:1 on Rhum. (J. Volker, personal communication). Many accessory minerals are found in ultrabasic rocks. Of particular interest on Rhum are chromite and magnetite. The content of these minerals can vary appreciably within ultrabasic rocks and on Rhum, chromite is highest in the Ruinsival series (J. Volker, personal communication), while magnetite is more variable across the Island. In one restricted area on Rhum the peridotite and dunite have been hydrothermally altered to the mineral serpentine (J. Volker, personal communication). This area, near the Ruinsival Bealach is the site of Transect 26 (Figure 1.1:1 and Section 2.1.1). (Emeleus & Forster 1979, have given more information on the igneous petrology of Rhum).

2

There is some uncertainty about the post-glacial vegetation of Rhum. Skye once had woodland, sometimes extensive (Birks 1973), but the former extent of the woodland on Rhum is less well known. Walker's <u>Report on the Hebrides of 1764 & 1771</u> (McKay 1980, see frontispiece) mentions the island as having been well wooded and Dean Munro in 1549 (R.W. Munro 1961) mentions a forest on the island. In <u>The</u> (Old) <u>Statistical Account of Scotland</u> (McLean 1796) in reference to the number of deer on Rhum refers to

"... a copse of wood that afforded cover ... while the wood throve the deer also throve; now that the wood is totally destroyed the deer are extirpated." (Nature Conservancy Council 1974).

C. Caller a mainter and and and and the state

2. Al a dismon formation for an the appropriation of the source of the matrix formation of the source of the so

16. 1. 1910 ----

行行通知

It seems that the increase of man and grazing animals throughout the eighteenth century at least coincided with the disappearance of woodland. Heather burning was practised on Rhum and from the 1870s at least, it was not controlled and there is evidence of burning on Cnapan Breaca above 360m. (Nature Conservancy Council 1974).

3

The present vegetation on the ultrabasic soils is quite different from that of the surrounding soils on different parent materials. Often the change in vegetation at a geological boundary is very sharp and apparent at a distance of several km. (See Figs. 1.1:1 and 1.1:2). Several study areas were chosen with transects located on both sides of several of these boundaries. Lichens are often sensitive indicators of ecological conditions, and on Rhum generally do not grow as well as on ultrabasic rocks (Figure 1.1:3).

Experimental work on the soils and vegetation on Rhum since 1957 has shown that erosion and nutrient deficiency are important factors. Ragg & Ball (1964), in a survey of the soils on the ultrabasic area of Rhum found thin (5-10cm depth) immature surface soils overlying well-developed soils which, they concluded, could not have formed under the present sparse vegetation. Wormell (Nature Conservancy Council 1974) found that wind action was moving rocks both up and down slopes, and Ferreira & Wormell (1971) found a substantial (5-60%) increase in vegetation cover upon the addition of nitrogenphosphorous-potassium fertilizer with calcium. Unfortunately their experiment had only one trial plot, and separation of the importance of the factors is not possible (see Chapter 8). Work in conducting irrigation water with relatively high calcium to magnesium-rich soils showed a marginal change in the vegetation over two years. Production studies related to deer grazing on herb-rich grasslands have found indications that both exposure and the nitrogen content of the soil

Fig. 1.1:2. Examples of vegetation contrasts between non-ultrabasic and ultrabasic soils.

Top: looking east across Coire Dubh, non-ultrabasic on left with ultrabasic (Hallivalite and Peridotite) on right. Bottom: 'Sandy Coire' (NM 370 947), non-ultrabasic (T14) in foreground, ultrabasic (T13) centre, basic gabbro (T15) in left distance.

N. Tra

🐘 – Militanidama Alexa , and en alfa tata anno inda

if the first of a set up, first light of the set of a set of a set up, first of the first of a set of MM set of the set of the first up, if the set of the set of the first up, if the set of the set of the first up, if the set of the set of the first up, if the set of the set of the set of the first up, if the set of the set of the set of the set of the first up of the set of the set of the set of the set of the first up of the set of the set of the set of the set of the first up of the set of the first up of the set o

明

件

1

1

-

Fig. 1.1:3. Lichens growing on a boulder of two rock types. The centre is gabbro (basic) and it is flanked by peridotite which has few epiphytes.

*

Fig. 1.1:3. Lichens growing on a boulder of two rock types. The centre is gabbro (basic) and it is flanked by peridotite which has few epiphytes.

10

 Lonens growing in a builder of two rock cynes.
The centre is short busic and it is flamked or peridorite which has faw epiphytes.

may be critical limiting factors. (Nature Conservancy Council 1974).

Indications that other factors may be important are shown by Proctor (1971a,b), who found that a race of <u>Agrostis canina</u> from Hallival had nickel but not magnesium tolerance. However, in growth experiments with oats, he found that soils from the Hallival-Barkeval Bealach were not acutely nickel-toxic and the plants showed a significant response to fertilization. Research measuring the change in the vegetation cover from the removal of sheep grazing pressure from 1957 has shown a change in the community structure and competitive balance between species (Ball 1974).

The oceanic effect on the climate, which is apparent from other Hebridean recording stations, is not so strong for Kinloch (Fig. 2.1.1:1). Results of selected climatological measurements from Kinloch, from 1958-1968, are in Table 1.1:1. While the values are not representative of the variation across the island they give some indication of the island's weather. To supplement these data, a temperature-recording station was established on the Barkeval Bealach (NM 385 971, 490 m) from April 1981-January 1982. Temperatures reported are: air temperature, soil temperature at 1-cm depth under bare soil, and soil temperature at 1-cm depth under about 6cm mixed vegetation cover (including heather, grasses and herbs). The results are not complete because of equipment failure (Fig. 1.1:4). These results support the cool, wet, windy and cloudy reputation of western Scotland. The west of the island, (most often the windward side during wet weather) is noticeably drier, but the tops of the mountains are probably much wetter than the values for Coire Dubh indicate (Nature Conservancy Council 1974). Rhum lies in the area of western Scotland where the overall mean monthly evaporation potential does not exceed the mean monthly precipitation, (although it may for shorter spells, Nature Conservancy Council 1974).

2	
-	
a a	
2	-
4	1
5	
0	1
+	
-	1
÷	
12	-
-	1
•	
æ	-
-	à
-	1
	1
-	
ä	
-	
-	1
Y	;
-	
ō	
-	1
-	1
S	-
-	
a	
a	•
5	1
š	-
10	-
ž	1
	\$
6	-
u	-
	-
0	1
5	-
+	0
Ξ	
	0
5	0
	•
5	0
ō	v
1	-
9	1
2	
-	
-	
-	
le	
-	
10	

1958-1968. Rainfall records for Harris and Coire Dubh are also given. (Nature Conservancy Council 1924) See Fig. 2.1.1.1.

Tenn	Max n	Nean Min Tenn. C	Average	No. Kain Dave	No. Uet	No. Days	No. Days	Rean Wind	Average	Rainfall Coise Tubl
			(***)	•	**	frost	frost	(s/u)	(uu)	(
an. 6.	8	1.7	249	22.1	18.5	9.4	21.5	5.5	140	285
eb. 7.	5	2.0	147	17.9	14.6	8.7	17.2	5.0	78	137
ar. 8.	8	3.1	189	20.3	17.3	5.2	14.3	5.0	101	236
pr. 11.	2	4.0	142	18.6	15.4	4.3	12.0	4.2	82	171
ay 13.	6	6.9	135	17.1	14.8	1.0	6.9	4.8	74	061
un. 16.	5	9.1	157	17.9	14.7	9.9	1.6	4.2	53	289
ul. 16.	9	10.0	165	18.9	16.9	9.9	6.7	3.8	168	232
.91 .eu	8	8.9	193	19.5	16.4	9.9	1.2	4.1	196	271
ep. 15.	9	9.5	237	. 20.8	18.1	0.0	1.7	4.1	147	322
ct. 12.	6	7.5	263	22.8	20.5	0.2	5.2	4.8	156	362
ov. 9.	2	4.0	227	21.7	18.7	4.4	15.0	4.4	130	249
ec. 7.	-	2.1	270	23.8	21.8	5.9	20.5	5.9	159	297
ear 11.	6	5.7	2373	241.4	206.8	1.14	116.3	4.6	1374	2969
		- /								

1. . .

1

The second

and the second second

ALL ALL ALL

うちのないので、「ない」の「ない」の「ない」の「ない」の「ない」の「ない」ので、

...

•

1.2 The aims of the research

The main aim of the research was to investigate and identify the possible causes of the poor vegetation cover and the distinctive flora on the ultrabasic mountains of Rhum. Several approaches to this problem were made.

.

5

1

*

12

.

The first requirement was for an adequate description of the vegetation, with measurement of the soil variables, for a range of areas. Previous work (Proctor & Woodell 1971, Spence 1970) had been restricted to small parts of the Island. To support this study, plant analyses were made and correlation coefficients between plant and soil metal concentrations calculated. Water culture experiments (with media based on soil solution composition) were made to test the response of the native races of <u>Agrostis canina</u> (a widespread plant on many soils on Rhum). Finally, preliminary field experiments were made but there were many difficulties with these (discussed in Chapter 8), and their contribution was less important.

CHAPTER TWO

Vegetation Description, Classification and Ordination.

2.1 INTRODUCTION

2.1.1 Transect location and vegetation description

A comprehensive survey of the ultrabasic formation was not possible as this rock-type covers a large part of Rhum (Fig. 2.1.1:1). Sampling areas were therefore selected subjectively which appeared to be representative of three major vegetation types, evident to myself on the island and recorded by previous workers (Ragg & Ball 1964, Proctor & Woodell 1971, Proctor 1971a, Ferreira 1974). These earlier studies proved a useful but insufficient basis for a detailed sampling programme in any one area of the ultrabasic. Ferreira's (1974) work was thorough across the island, but largely omitted the barren areas on the ultrabasic.

6

12.5

15

The three vegetation types sampled were: sparse vegetation on the ultrabasic soils, closed vegetation on the ultrabasic soils, and closed vegetation on the non-ultrabasic soils. No sparse vegetation on non-ultrabasic areas was found except on rocky slopes where vegetation developed (with virtually no soil) in mats overlying the rocks or in pockets. (Transect 17 is the only transect located on an area resembling these rocky slopes described here, but had more soil present and closed vegetation). The summit vegetation on the tallest mountain on the ultrabasic formation is markedly different from the summit vegetation on the tallest mountain on the non-ultrabasic, yet both have soils present (Fig. 2.1.1:2).

Transects were located in homogeneous areas of vegetation and on ground with a slope of 30° or less. Each transect was usually 100m in length (50m in some cases) and sample positions were taken at 10m intervals from a randomly selected starting point. Regular samples were taken to facilitate the relocation of the positions, since the occurrence of a pattern in the vegetation or periodicity in environmental Fig. 2.1.1:1 Map showing the area of Rhum included in this study. The ultrabasic section of the Island is mainly within the boundary drawn. Location 1 is the Harris rain gauge, Location 2 the Barkeval Bealach temperature recording station, Location 3 the Coire Dubh rain gauge, and Location 4 the Kinloch recording station. The numbers along the margins are National Grid co-ordinates (reproduced from the Ordnance Survey Map with the permission of the Controller of Her Majesty's Stationery Office, Crown copyright reserved). 1.1

1. 2 m

*

and the second second

and and

* + + +

1000

and a second

AND AND AND AND A DECEMBER OF A

1

•

ł

Fig. 2.1.1:2. The contrasting vegetation of the summits of the highest mountains on the ultrabasic (Askival, 812m), (Upper photograph) and the highest on the non-ultrabasic (Ainshval, 781m).

factors was considered unlikely to occur at the 10m scale across so many and such diverse areas. At each position on the transect, a soil sample (10x10x10cm) was taken, after removing surface vegetation and loose surface stones, and the vegetation was described using a 1x1m quadrat. The 1x1m quadrats were located along the transect with the soil sample in the top left corner. Each individual soil and vegetation sample is henceforth referred to by its quadrat number. Table 2.1.1:1 summarises the major features of each transect together with the intensity of sampling. Transects 1 to 4 were established in October, 1979 and the others in May-August 1980. Transects 2, 12, 19 and 29 have soils which possibly developed from more than one parent material, whilst transect 13 is located on glacial till which is derived mainly from periodotite and other ultrabasic rocks.

7

· ···

Kershaw (1973) and Mueller-Dombois & Ellenberg (1974) emphasise that the method of vegetation description chosen must be one that best (Table 2.1.12) suits the objectives of the research. For this study, the Domin Scale, of cover abundance was adopted because it enables easy comparisons between different areas, conveys more quantitative information than the simple presence/absence method and is not as likely to overlook species with low cover/abundance, or is as time-consuming, as the point quadrat approach. This last consideration is important in view of the remote working conditions of Rhum. (All data were recorded by myself so any personal bias in assessing cover abundance will be consistent).

A lxlm quadrat was chosen for the vegetation description so that whilst it was near the minimal area recommended for grasslands and heaths (Mueller-Dombois & Ellenberg 1974) it would be most representative of the local soil sample. A larger quadrat would be too laborious to record and more than one soil value would be needed to cater for the increased soil heterogeneity. Species identification and Domin numbers for every quadrat were checked twice, once by J. Proctor, after the first

Transect No.	Quadrat No.	National Grid Reference (All NM)	Underlying Parent Rock*	Altitude (Meters)	Overall Slope (Degrees)	Overall Aspect
1	1-10	394959	H	595	5	u
2	11-29	401962	H?P	375	5	SE
3	21-30	379972	G	579	5	E
4	31-49	387971	P	479	5	SE .NU*
5	41-50	397953	P	570	ø	E
6	51-60	388974	P	350	20	NE
7	61-70	361939	••• P	449	5	E
8	71-80	356940	P	529	5	S
9	81-90	354947	UB	215	10	N
10	91-100	368959	D	299	ø	ÿ
11	191-119	341972	Р	250	15	SU
12	111-129	361945	P?D	240	29	N
13	121-130	369948	GT	330	10	SW
14	131-140	372946	L	365	15	NU
15	141-150	367949	G	335	5	S
16	151-169	383953	G	529	10	S
17	161-179	378932	F	780	10	SU
18	171-189	369936	L	610	12	SU
19	181-190	371942	F7L	430	10	S
29	191-200	372954	P	619	5	жu
21	201-205	369953	P	520	19	ม
22	211-215	378948	P	505	20	S
23	221-225	378941	F	745	5	S
24	231-249	382978	P	380	19	NE
25	241-250	386781	F	365	5	NU
26	251-260	360935	S	380	20	S
27	261-265	365932	Р	428	25	U I
28	271-28#	361938	UB	425	5	\$E
29	281-285	369972	P?UB	300	5	u –
30	291-295	352967	P	299	5	S
31	301-310	372959	UB	299	10	U U
32	311-315	378948	G	505	20	ų
* H=H: D=D:	allivalite unite GT=	P=Peridotite Glacial Till L	G=Gabbro U .=Lewisian Gn	B=Ultrabas eiss F=Fe	ic Brecci lsite	3

Table 2.1.1:1 The number of quadrats, the location, and some features of the transects

.

i n

1

*

Sec. 1

-

1 2 .

ないで、ないないない

....

S=Serpentinized Peridotite and Dunite ? = Uncertain ** Transect crossed depression and aspect changed Table 2.1.1:2

The Domin scale and its transformation (Bannister 1966)

1 5 10

......

4 .

and and .

....

÷.

÷ -٠

1

3

. 13 . ···

-

1 1.15

.

.

	Domin scale	Transformed value
COVER about 1992	10	8.4
COVER 75-95%	9	7.4
COVER 50-75%	8	5.9
CDVER 33-5#2	7	4.6
COVER 25-332	6	3.9
ABUNDANT , COVER about 29%	5	3.5
ABUNDANT , COVER about 5%	4	2.6
SCATTERED , COVER SMALL	3	8 .9
VERY SCATTERED , COVER SHALL	2	8.4
SCARCE , COVER SHALL	1	5. 2
ONE INDIVIDUAL , COVER SHALL	+	5.54

recording between April and August 1980 and May and September 1981. Some difficult identifications were confirmed on glasshouse grown material.

The nomenclature for higher plants follows Clapham, Tutin & Warburg (1962); for bryophytes, Watson (1968); and for lichens, Hawksworth, James and Coppins (1980).

2.1.2 Multivariate techniques

The large amount of data from the vegetation description was analysed by multivariate statistical methods. Greig-Smith (1980) argues that, especially for poorly known vegetation, these approaches reduce the complexity of the data to a manageable form, from which important inter-relationships can be highlighted. Gauch (1982) points out that they summarise the data and allow for an objective interpretation.

Gauch (1982); Hill & Gauch (1980); Clymo (1980), Gauch & Whittaker (1981), Gauch, Whittaker & Singer (1981), and Prentice (1977) have discussed the relative merits of different multivariate methods. The most satisfactory methods for this research, and those I have used, are the polythetic divisive method, TWINSPAN (Hill 1979a) for classification, and the improved reciprocal averaging, DECORANA (Hill 1979b) for ordination. The two techniques are similar, as TWINSPAN is based on two-way ordination space partitioning repeated at each level of the hierarchy on the basis of a fresh ordination axis.

While ordination was the primary multivariate technique for the analysis, to highlight the important inter-relationships, classification was used to identify vegetation classes. Vegetation data are often amenable to either method, but more recently Gauch & Whittaker (1981) recommend an integrated approach, which benefits from both techniques and aims at arranging classes along gradients. Classification is discussed first because the classes are later related to the ordination and the edaphic factors.

TWINSPAN (Two-way Indicator Species Analysis) is an improvement of the indicator species analysis proposed by Hill, Bunce & Shaw (1975). It differs in its approach, in that the indicator analysis in TWINSPAN is supplementary to the classification (two-way ordination space partitioning), and is not the major classification.TWINSPAN has been shown to be generally superior to most other classification techniques (Gauch & Whittaker 1981). It is flexible in its implementation, robust to data editing, random variation and outliers, and effective in extracting relationships. The classes were not determined to be interpreted as true vegetation classes in the sense of Braun-Blanquet (Poore 1955, 1956; Moore 1962); but to help clarify relationships between the vegetation distribution and the edaphic variables.

9

DECORANA (Detrended Correspondence Analysis) is an improvement of the reciprocal averaging method of ordination (Hill 1973) that corrects two major faults in the original method of Hill (1973). These are the arch effect and the compression of the ends of the ordination axes. DECORANA's superiority over reciprocal averaging, principal components analysis and non-metric multi-dimensional scaling has been discussed by Hill and Gauch (1980), Gauch (1982) and Gauch <u>et al.</u> (1981). The ordination axes were used to interpret the relationships between the vegetation classes and the edaphic and environmental variables.

2.2 Classification by TWINSPAN

2.2.1 Introduction

The exact form of analyses by TWINSPAN is controlled by several input parameters to the program. Those recommended by Hill (1979a) were followed with slight operating modifications.

The data were stored as couplets of species numbers and transformed Domin values (Table 2.1.1:2). (TWINSPAN did not require this transformation as it is flexible for input, but as the same data matrix was utilized in the ordination this facilitated computing). All the vegetation data from the 283 quadrats (285 quadrats were sampled, but one had no vegetation and another became a footpath) are recorded in Appendices I and II. The Domin scale expressed species abundance and cover on a "logarithmic-type" scale, which are expressed in a linear relationship by the use of Bannister's transformed values (1966). The transformation combined with the pseudospecies cut levels of TWINSPAN (see below) allowed the data to be classified with emphasis on presence and absence, but incorporating some quantitative information.

Five cut levels of pseudospecies were used, as recommended, but the numbers defining each level were changed. Hill's (1979a) recommended values are for percent cover (0.00,0.02,0.05,0.10,0.20) and I chose values from the transformed Domin range (0.0, 0.4,0.9,2.6,3.0) to correspond to these recommended values. Pseudospecies cut levels allow the amount of a particular species in a quadrat to be used semi-quantitatively in the classification, by creating pseudospecies at the cut levels, and then qualititatively classifying the stands on the presence and absence of the pseudospecies. Hill (1979a), uses an example to help clarify this: Stand 1 has species A at 25% cover and Stand 2 has species A at 15% cover; therefore with pseudospecies cut levels of 0 and 20%, Stand 1 has Species A*1 and Species A*2 while Stand 2 only has Species A*1; a qualitative difference expressing quantitative information). As Hill (1979a) recommended, these levels were chosen to "reflect typical values of abundance, present, a little, a lot, and more or less dominant".

The other input parameters were set to the normal values, three of which need further explanation. All the pseudospecies cut levels were given equal weighting so that dominant species were not overemphasised nor were rare species given more than their normal downweighting. All the pseudospecies cut levels were given equal potential as indicator species, which allows pseudospecies to be used as indicators in addition

to real species. Finally no species was prevented from potentially being an indicator in the classification.

2.2.2 Results

The classes in TWINSPAN's hierarchical classification are formed by the successive objective division of refined polarized ordinations. There is no fully objective criterion for deciding at which level in the hierarchy to stop the classification dichotomy, and therefore this must be done by interpreting the classes formed. The classes I accepted are at different levels of the classification for the two main branches, (Fig. 2.2.2:1 and Table 2.2.2:1) reflecting the unevenness of the division at the first level. It is noteworthy that so many of the non-ultrabasic quadrats were separated from the ultrabasic quadrats in one branch at the first level.

The classes were accepted upon criteria discussed below, which were also supported by the ordination results (sections 2.3 and 2.4). The species by stands two-way table, produced by the classification, is shown in Appendix X.

The large number of quadrats and the possible number of classes produced after six levels (maximum possible is sixty-four), made the decision of which classes to accept complex. The criteria used to select the classes were: class size; whether the class could be split successfully; preference (mine) to stay within a classification level; the number of classes; the indicator and preferential species for each class; and an assessment of the stands in each class from field experience. The species classification was also used in the class selection, but its information was largely included in the preferential species.

The smallest class TWINSPAN will create is set to five stands (or species). Classes 2 and 4 have n = 8 and are the smallest classes accepted. Connected with the acceptance of a class by its size is whether

11

5.00

Table	2.2.2:1	TWINSPAN vegetation classes and quadrats.
Class	No. (n)	Quadrats*
1	(19)	152-160,164 166 168 169 170,198,211-214
2	(8)	2 7 10,311-315
3	(14)	28,171-177,184,221-225
4	(8)	161-163 165 167,178-180
5	(29)	4 6,17,22 30,32 34 40.58,151,191-197 199 200, 201-205,215,231 234 236,279
6	(21)	5,31 33 35-39,41-50,271 274 276
7	(45)	3,11 12 14,26,61 62 64-66 68-70,71-73 77-80,85 86,125 127 129,239 240,251 254-260,261-265,272 273 275 277 280
8	(28)	13 15 16 18-20,55,88 90,91 92 94-97 99 100,121- 123 126 130,141,252 253,278,301 308
9	(12)	101-110.285,295
19	(28)	9,21 23 27,52,67,74-76,111-120,140,237 238,281 282,291-294
11	(28)	25,51 56 57 59 60,63,87 89,93 98,124 128,144 148 149,232 233 235,248,302-307 309 310
12	(43)	8,24,53 54,81-84,131-139,142 143 145-147 15#, 181-183 185-199,241-247 249 250,283 284
		* spaces separate quadrats in the same transect, commas separate quadrats in different transects.

8W

....

and the state of the state of the state

A 14 44. 4

)

it could be divided successfully. When a class is divided, if it produces a new class that is "unsuccessful" (n<5), then preference would be to accept the original class before division. This results, as mentioned above, in the accepted levels of classification differing for the two main branches. While, initially, one level was preferred for all classes, the two branches were interpreted at different levels because of the uneven division at the first level (n = 234 and n = 49). The number of classes was initially expected to be about sixteen (i.e. up to level 5 of the classification), but the final arrangement is intermediate to levels 4 and 5 of the classification.

The interpretation of the classes by their indicator and preferential species, and the stands in each class is both more involved and more subjective than implementing the other criteria. The species classification may be considered with the indicator and preferential species, and these are discussed in Section 2.2.3.

The assessment of the classes by the quadrats in them was used only to confirm how consistently neighbouring quadrats were classified together. The quadrats in the same transect fell into the same class (Table 2.2.2:1); with the transects being broken into subsets of several quadrats more often than single quadrats.

The first run of the DECORANA ordination showed no outlying quadrats (in the sense of Gauch 1982) though several were located at relatively large distances from the median position of their class. The omission of these quadrats from the data did not alter the classification down to the fourth level (Sections 2.3 and 2.4), nor did it alter the accepted groups at the fifth level, nor did it change the ordination significantly.

Whilst running TWINSPAN on the vegetation data set, several minor programming operating errors were discovered in the version loaded at Stirling. The results are, however, reported from this analysis. Later,

it was possible to reanalyse the data set on another implementation of the TWINSPAN package at the Manchester Regional Computing Centre. The results for the two analyses were very similar with 14 quadrats changing classes in the 12 classes accepted. It is significant that every one of the 14 quadrats were reported by the program as either "mis-classified" or "borderline". Of slightly more importance was a change in the order of the species classification and several of the indicator species for the classes. However, since preferential species were used in the interpretation of the classes the results were exactly the same. Because the two analyses were so similar, with no important differences, the first analysis, from Stirling, is reported here.

2.2.3 Discussion

The 12 classes from the TWINSPAN classification were compared with described plant Associations and communities (Ferreira 1970, 1974; McVean & Ratcliffe 1962; Birks 1973; and Spence 1970). With the exception of the very barren Class 6, all other classes fit fairly well into accepted communities. (Table 2.2.3: 3). Class 8 is intermediate between several communities.

The indicator species (Fig. 2.2.2:1) and the 'preferential' species (>57% frequency, Table 2.2.3:1, equivalent to Constancy Classes IV and V), with reference to the general geological origin of the soil, were used to characterise each class and to identify the plant-communities. Further characteristics of the vegetation classes were used in the comparisons between the plant communities (Table 2.2.3:2).

The species classification was of additional use in determining which species were consistently represented in a class. However, the classes formed by the species classification were ordered by TWINSPAN to fit the species and stands two-way table (Appendix X), and did not always pertain to the stand (quadrat) class with the same number. This

TABLE 2.2.3:1 Percent Frequency of all Species with Frequency > 572 (502 for n < 9) in the Twelve TWINSPAN Vegetation Classes.

~~~~~	***************************************

2.

*

.....

.....

12

A

1

1000

		(Us	ing a	bbrev	viatio	ns of	the	speci	es na	ines i	in App	endi;	(II)
Spec	ies					Cla	ss Nu	nber					
		1	2	3	4	5	6	7	8	9	19	11	12
Agro	spp	199	100	93	100	69	98	89	68	75	199	71	79
Alch	alpi	79	75	-	-	-	•	-	-	• -	-	-	
Ante	dioi	-	-	-	-	-	-	-	61	-	-	82	-
Anth	odor	-	75	-	-	-	-	-	-	199	82	-	-
Call	vulg	68	-	-	-	199	-	62	89	75	100	96	100
Care	bige	-	-	86	100	-	-	-	-	-	-	-	-
с.	demi	-	75	-	-	-	-	93	68	-	-	61	-
С.	flac	-	88	-	63	-	-	67	-	92	82	-	88
с.	pilu	84	-	57	63	-	-	-	-	-	-	-	-
с.	puli	-	-	-	-	-	-	-	-	100	82	-	-
Desc	cesp	-	63	-	-	-	-	-	-	-	-	-	-
D.	flex	100	-	-	50	93	-	-	-	-	-	-	-
Eric	cine	-	-	-	-	-	-	-	-	-	-	75	67
Ε.	tetr	-	-	-	-	-	-	-	-	58	-	64	-
Euph	SPP	-	75	-	-	-	-	-	-	-	57	-	-
Fest	SPD	199	199	71	199	97	100	93	82	67	93	61	-
Galı	saxa	-	-	93	100	-	-	-	_	_	-	_	-
Holc	lana	-	-	-	-	-	-	-	-	75	_	-	_
Luzu	Cano	-	-	-	50	-	-	-	-	_	-	-	-
L.	svlv	-	-	57	-	-	-	-	-	_	-	-	-
Moli	caer	-	-	-	-	-	-	67	100	188	84	93	91
Nard	stri	-	50	79	-	-	-	-	-	58	71	-	88
Nart	ossi	_	-	-	-	-	-	-	64	-		75	54
Pedi	sulu	-	-	-	-	-	-	-	-	75	_	_	-
Plan	lanc	-	-	-	-	-	-	_	-	58	-	-	_
P.	mari	-	-	_	-	-	04	RA	75	-	_	-	
Pote	erer	74	184	97	144	-	-	-		164	144		00
Sela	sela	-	-	-	-	-		58	-	-	57	71	
Succ	orat	-	-	-	-	-	-	-	-	144	71	71	84
Thum	deue	95	144	-	-	50	84	84	50	-	94	80	
Tric	CASD	_	-	-	-	-	-	-		-		48	144
Varr	evrt	48	188	20	144	-	-	-	-	2	-	-	-
Viol	rivi	84	199	-	-	83	-	-	-	92	199	68	-
Andr	spp	-	-	-	-	62	-	-	-	-	-	-	-
Dipl	albi	-	-	57	-	-	-	-	-	-	-	-	-
Hylo	sple	-	50	-	-	-	-	-	-	92	79	-	-
Hypn	cupr	58	199	79	88	-	-	-	-	92	199	-	79
Poly	COMM	-	-	64	-	-	-	-	-	-	-	-	-
Ρ.	pili	58	59	-	59	-	-	-	-	-	-	-	-
Rhac	lanu	199	100	93	100	93	86	73	86	-	79	100	98
Rhyt	squa	-	*	-	-		-	-	-	83	-	-	-
Clad	unci	79	-	-	88	-	-	-	-	-	-	-	-

	quadrai	i for the two	Dive THINSPAN	vegetation cla			• •
E1255	Slape (degrees)	Aspect 8 (degrees;	Altitude (metres) s	No. Species n each Quadrat	(A)	(3)	
1	é.1	288 ***	564	17.5	31.9 +	2.5	
(n=19)	(1.8.8.9)		(4.3,8.1)	(2.9.8.2)	(5.7,8.8)	(#.4)	
2	8.4	188 **	539	20.0	29.7	1.7 .	
(n=8)	(2.2,4.9)		(16.5)	(0.5)	(3.4,#.2)	(9.8,8.7)	
3	4.1	245 ***	648	1 é - 9	20.8	4.2.4	
(n=14)	(1.4.8.5)	-	(20.1)	(1.5)	(3.1)	(0.5,1.0)	
4	18.8	775 ###	666	14.4	12.2	4.1.+	
(n=8)	(1.9)		(14.5)	(9.5)	(2.2)	(#.4,#.4)	
5	3.6	42 •	522	11.5	11.5 +	4.1	
(n=29)	(1.3,#.7)		(16.2)	(2.4,8.4)	(3.4,1.1)	(0.3)	
6	1.9	18	514	A. 8	4.1	<b>4</b> .8	
(n=21)	(8.2)		(6.2,4.1)	(4.5)	(0.8)	(0.3)	
7	4.2	281 **	428	13.7	9.2 +	A.7	
(n=45)	(1.4,1.#)		(11.4)	(0.8)	(3.0,1.2)	(4.3)	
8	3.1	223 85	299	14.2	9.1	7.1	
(n=28)	(1.1.#.7)		(14.8)	(0.7)	(#.9)	(#.3)	
,	8.2	227 •••	250	20.1	20.2	0.0	
(n=12)	(2.1,8.6)		(6.2)	(1.2)	(3.3,0.2)	(9.9)	
1.0	5.7 +	78 •	318	24.6	32.3	1.8	
(n=28)	(2.4, 0.7)		(5.8,8.4)	(8.8)	(1.2)	(0.4)	
11	5.4	113 **	316	19.4	23.1	4.2	
(n=28)	(1.4,8.9)	-	(5.8,4.2)	(4.9)	(1.4)	(0.4)	
12	7.3	158 ++	357 +	12.1	30.8	8.6 +	
in=431	(9.3)		(18.9,1.9)	(2.8,8.2)	(1.0)	(8.8.8.7)	

Table 2.2.3:2 The class means (with transformed standard deviations or standard errors) for the slope , aspect , altitude , no. of species in each quadrat , sum of the transformed donin no.s (A) for all species in each quadrat , and the transformed donin no. (B) for bare ground in each

2

1.1

*

1.1.1 -----

*

. 1 - 8. •

> 10 30 1

Ge . 33

· · · · 1

.

------The type of mean given depends on the normality of the data. Arithmetic means are given with a single value in parenthesis for standard error. Geometric means arising from log (base e) and square root transformations (the latter indicated by +) are given values with in parenthesis for the transformed mean followed by the transformed standard deviation.

W For Aspect near is determined after Gaile et al. (1980). * p(0.05), ** p(0.01), *** p(0.001) significance levels for the near values. Rs = not significant

Convention used : East = 0 , North = 90 . West = 100 , South = 270 .

Class No.	Ferreira (1974)	HcVean & Ratcliffe (1962)	Birks (1973)	Spence (197∦)
1	Herb-rich <u>Vaccinium-Calluna</u> heath (1)	<u>Vaccineto-Calli hepaticos</u>	unetum um	-
2	<u>Nardus</u> grassland (2)	Low alpine <u>Nardus</u> - <u>Pleuroziun</u> nodum & <u>Nardus-Rhacomitrium</u> provisional nodum (2)	<u>Cariceto</u> - R <u>hacomitre</u> l <u>anuginosi</u> ) <u>typicum</u> (2	- )
3	<u>Nardus</u> Juncus squarrosus Bog (3)	<u>Juncus squarrosus</u> Bog (J)	<u>Nardo-</u> Juncetum squarrosi	(3)
4	Rhacomitrium- Festuca-Vaccinium grassland	F <u>estuceto-Vaccinetum</u> Rhacomitrosum &/or Cariceto-Rhaco- mitretum lanuginosi (4)	A <u>lchemilla</u> al <u>dina-</u> V <u>accinium</u> m <u>yrtillus</u> nodum	
5	-		-	Festuca vivipara Juncus trifidus L. open sociation (5)
6 (6)	-	-	-	-
7				Arenaria norvegica Gunn. Cardaminopsi petraea (L.) Hiit. sociation (7)
8 (8)	-	-		-
9	Species-rich <u>Agrostis-Festuca</u> grassland (9)	Agrosto-Fest	ucetum (9)	÷
19	Herb-rich <u>Calluna</u> heath facies on Ng- rich soils (10)	Herb-rich facies of <u>Callunetun ga</u> vulgaris (10) d <u>e</u>	Calluna vu ris Siegling cumbens assi	<u>1</u> gia oc.(10)
11	Calluna-Tri- cophorun- Molinia Reath (11)	Trichophoreto- Callunetum & H <u>olineto-Call</u> - unetium_	<u>Molinieto-</u> Callunetum	-
12	Rhacomitrium- Calluna Heath (11)	T <u>richophoreto</u> - C <u>allunetum</u> & Molineto-Call-	<u>Rhaconitret</u> <u>Callunetum</u>	<u>to</u>

## Table 2.2.3:3 Flant communities, from several authors, which most closely corr-espond to the twelve TWINSPAN vegetation classes.

- 10 - 14

1. . . .

1

-----

..... 1

20. 3. 15

44.

..

.

いた ちょうかい 近い

時間に

No.

For footnotes see next page.

### Table 2.2.3:3 .Footnotes

- (1) My class lacks Empe. spp.
- (2) My class lacks Care. bige. and Tric. cesp.
- (3) Hy class has a frequency of only 50% for Junc. squa.
- (4) My class is intermediate to the two communities.
- (5) Spence (1970) notes that on Hallival (on Rhum) Desc. flex. is more common then Fest. vivi.(spp.), which is true for my class.

.....

1.

.

..

.....

•.....

.

2

: "

- (6) Class 6 is barren and is not a recognized community; Call. vulg., Plan. mari., Thym. druc., Rhac. lanu., Agro. spp., and Fest. spp. are the only frequent species.
- (7) Hy class did not have Card. petr. in the quadrats, but it was nearby. Also Desc. flex. was less frequent for my class and Care. demi. and Care. flac. were more frequent.
- (8) Class 8 is intermediate between Classes 5 to 7 and 9 to 12.
- (9) My class has less frequent Sieg. decu. and more frequent Moli. caer. and Holc. lana.
- (10) My class has Sieg. decu. less frequently.
- (11) Classes 11 & 12 are intermediate between the two communities, but are listed by the community to which they are most similar.

was probably due to the presence of more than one apparent gradient in the data (Section 2.4), with the result that the structure of the table was shifted to the right, thereby affecting the class numbers (species). TWINSPAN orders the body of the table on the diagonal from top left to bottom right, but in this data set the diagonal clearly does not include Classes 5-8. Further, in TWINSPAN, species that obviously show a poor relationship to the classification are termed unfaithful (Hill 1979a), and species classified with these can also be interpreted as showing a poor relationship to the classification.

Differences between the 12 TWINSPAN classes and the plant communities from the above authors could be partially attributed to: (i) difference in emphasis in sampling the vegetation; (ii) different quadrat sizes; and (iii) the use of objective instead of subjective methods.

Classes 5 to 8 were not included in the plant communities in Ferreira (1974), McVean & Ratcliffe (1962) and Birks (1973), as they were very barren, although Classes 5 and 7 do generally match those of Spence (1970). These and other discrepancies between my Classes and the described plant communities are in Table 2.2.3:3.

#### 2.3 Ordination by DECORANA

2.3.1 Introduction

Ordination reduces the dimensionality of complex field data into a few dimensions often representing community patterns or environmental gradients that can be interpreted. The vegetation data were the same as those used for the TWINSPAN classification (n=283, Appendix I). All the input parameters of DECORANA were set to the default (standard) analysis.

2.3.2 Results

The eigen values for the ordination axes were: Axis I, 0.408; Axis II, 0.271; Axis III, 0.232; Axis IV, 0.169. Only Axes I-III were used in the interpretation because the eigen value for Axis IV was lower than the other axes. (Gauch 1982). The ordination scores of the quadrats for their first three ordination axes are given in Appendix IV. The ordination of the species for the first three axes are not included since their information is contained in the ordination of the quadrats (by reciprocal averaging, Hill 1973, 1979b). Also the information concerning the species distribution from the species ordination agreed well with the TWINSPAN species classification.

#### 2.3.3 Discussion

The interpretation of the three axes for the ordination of the 283 quadrats was too difficult. Correlation coefficients between the axes and environmental parameters are useful, but with a large number of pairs of values it is a weak statistic. The groups from the TWINSPAN classification were therefore used to reduce the complexity further in a way suggested by Gauch (1982) (Section 2.4).

Overall, Axis I gave the clearest separation of the non-ultrabasic from the ultrabasic quadrats (Appendix XI).

2.4 The relationships of the TWINSPAN Classes to the DECORANA ordination axes.

2.4.1 The relationships for all quadrats.

All quadrats (n=283) were plotted on pairs of the three DECORANA ordination axes and each point was identified by the number of its TWINSPAN class. The classes separated well on the three axes. (Axes I and II are shown with the quadrats plotted by their class numbers in Appendix XI). One axis of the ordination considered alone may appear to illustrate a separation corresponding to a dichotomy found in the classification. However, when the points are located in the three-dimensional space (defined by Axes I-III) a fuller interpretation is possible, especially if there are interactions, between major gradients, which are represented as classes.

There was good agreement between DECORANA and TWINSPAN in the ordering of the quadrats. This was to be expected since the techniques are similar, especially for the calculation of the first axis of the ordination and the first division of the classification. (The small differences that do occur are due to the second polarized ordination performed by the TWINSPAN classification program which reorders the quadrats).

Further agreement is found between the techniques (which is axis separation corresponding to lower dichotomies in the classification). This confirms class similarity of quadrats and between-class differences. This is because while the second and third axes of the DECORANA ordination are orthogonal to the first axis and to each other, in TWINSPAN the successive dichotomies are fresh ordinations on subsets of the original data.

Level 2 in the Classification separates classes 5 to 12 from Classes 1 to 4, and as expected, this is expressed by Axis I of the ordination (Fig. 2.2.2:1 and Appendix XI). Level 3 of the classification further separates Classes 5 to 8 from Classes 9 to 12 and Classes 1 and 2 from Classes 3 and 4, which are primarily expressed by Axis II of the ordination, but improved by Axis I considered simultaneously. It is possible to continue in this manner and determine which of the three axes of the ordination best expresses the dichotomies of the classification but this is too detailed to pursue here.

For several of the classes there were outlying quadrats that

distorted the classes' location. These were found to be quadrats with distinct vegetation, that may have been mis-classified.(Hill 1979a). Repetition of the analyses without these quadrats did not alter the ordination or the classification so they were retained. In the demarcation of the classes in Appendix XI they were not included in the classes' 'outline', but are individually ringed. (The outline is a line enclosing all the points of a class).

### 2.4.2 The relationships between vegetation classes using median values.

As the classes were clearly separated on Axes I to III, median values of each class can be used to express their most typical location on the axes (Table 2.4.2:1). Medians were used rather than means, because while the quadrats in each outlined class (Appendix XI) were approximately normally distributed, there were the few outlying quadrats to consider. Expressing the classes' location as their median value on each of the three axes (Fig. 2.4.2:1) allows the classes' attributes to be more readily interpreted, and is a considerable aid in understanding the data.

#### 2.4.3 Discussion

TWINSPAN produced classes which could be interpreted in terms of plant Associations and communities already described. These classes were shown to be clearly distinct on the first three DECORANA ordination axes, and to be similarly related to each other by the two techniques.

To investigate the relationships between the general environmental parameters mentioned so far and the ordering of the classes along the ordination axes, Spearman's rank correlation coefficient  $(r_g)$  was computed (n=12) for the following variables taken in pairs: the axes with slope, altitude, the number of species per quadrat, the sum of the transformed Domin numbers for all species in each quadrat, and the

#### Table 2.4.2:1

The median values of the co-ordinate

positions for Axes I-III for the

twelve TWINSPAN vegetation classes.

----

The second se

....

1:17

2

-----

.....

.....

.

÷ . .

•

NA -74

and the second second

The second

.

.

•

Class	Axis	Axis	Axis	
No.	I	11	II	
1	203	296	146	
2	203	156	96	
3	273	81	158	
4	271	165	139	
5	155	228	167	
6	184	258	88	
7	113	237	91	
8	76	299	168	
9	29	68	60	
10	86	133	194	
11	66	171	196	
12	90	196	195	



transformed Domin number for bare ground in each quadrat (Table 2.4.3:1). While strictly speaking significance tests are not valid in the interpretation of results from multivariate analyses (Gauch 1982), because the classes are not independent; it is more acceptable to use rank-order correlation to determine relationships between axes and other variables. By using a non-parametric correlation it is not attempted to show that the classes are significantly different from each other, but that the order for a variable corresponds significantly or not, to the classes' order on an axis.

Axis I is correlated positively (p<0.001) with altitude. This correlation reflects the fact that Classes 1 to 4 all had an upland distribution (Fig. 2.4.2:1). While these classes are also the non-ultrabasic classes, Class 12, also a non-ultrabasic class, is not as highly ranked on Axis I.

Axis II is correlated negatively with slope, the number of species per quadrat and the sum of the transformed Domin numbers, and positively with bare ground (p<0.001). The higher ranked classes should have gentler slopes, fewer species, less total cover and more bare ground. This corresponds well with classes 5 to 8 which are the least vegetated and are entirely located on the ultrabasic areas.

Axis III had no significant correlations with the variables discussed here.

median coordinate positions on each of the axes TUINSFAN vegetation classification classes, of species in each quadrat , sum of the in each quadrat , and the transformed Domin no. (B)	2.2.3:2) ( * P(8.05 , ** P(8.01 , *** P(9.001 ) (n=12)
Table 2.4.3:1 Spearwan's correlation coefficients between of the DECORANA ordination , for the tw and the means for the slope , altitude transformed Domin no.s (A) for all spec	for bare ground in each quadrat. (see I

	Axis 11	Axis III	Slope	Altitude	No. Species in each Quadrat	(A)	(B)	
Axis I	9.8896	-8.6946	9.8946	<b>6.</b> 9772 ***	-0.3713	9.2662	-8.1868	
Axis 11		-0.0289	-9.6814	8.8989	-8.7273	-8.6154	<b>6</b> .8616 ***	
Axis 111			-0.1698	-0.0350	-8.8288	9.9629	0.2207	

------

· · ·

#### Soil Analyses

3.1 INTRODUCTION

Exchangeable ions and total quantities of nickel, chromium and cobalt have been determined by many workers on serpentines, and I analysed these soil parameters on Rhum to provide a basis for comparison. The relevance of these analyses to plant-available quantities is dependent upon many variables and conditions (Nye & Tinker 1977), and will be discussed later. Also reported here are total analyses of nitrogen and phosphorus, for which the determination of plant-available fractions are particularly complex (Bartlett & James 1980, Batten 1978, Briggs 1974).

#### 3.2 Materials and methods

3.2.1 General

The analytical methods used in this study follow those of Allen et al.(1974), except where noted. Analar (Analytical) Grade chemicals were used throughout. All glassware was rinsed in a chromic acid solution before the first use; and for subsequent uses all glass and plastic-ware was soaked in a dilute acetic acid bath for at least one hour and rinsed four times with deionized water.

#### 3.2.2 Soil preparation

Soil samples were collected from each of the 285 quadrats in October 1979 for Transects 1-4, the rest from May to July 1980. Aboveground vegetation and larger stones (>1cm) were removed, and the soil sampled with a 10 x 10 x 10cm corer. The samples were stored, for up to three weeks, in sealed polythene bags before drying at about  $35^{\circ}$ C (Molloy & Lockman 1979). After drying the samples were lightly ground

to pass a 2mm sieve and stored in sealed polythene bags.

The analyses were completed within fifteen months of air drying. Analyses were carried out on air-dry samples but the results are expressed on an oven-dry (105[°]C) basis.

From Transects 1-4 an additional sample was collected from 10-20cm depth. Analytical results for these deeper samples were not significantly different from those for the upper samples, and they were not continued.

#### 3.2.3 Methods of soil analyses

pH was determined on a suspension of 10g soil in 10ml (20ml in about thirty, highly organic samples) deionized water. The suspension was stirred and left for 1h and the pH determined using a Corning-EEL Model 7 pH meter. Loss-on-ignition was measured by heating the soils to 450°C for about 2h.

Exchangeable cations were extracted by gently shaking a 5.00g subsample for 12h in 75ml of M ammonium acetate adjusted to pH 7.0. The suspension was filtered through Whatman's No. 40 filter paper and made up to 100.0 ml with the ammonium acetate solution. One drop of toluene was added to each sample and blank to prevent growth of micro-organisms, and the samples were stored at  $5^{\circ}$ C until analysis (within 6 weeks of the extraction).

Total nickel, chromium and cobalt were determined by digesting 0.500g of soil with 15ml of concentrated nitric acid for 6h. After this time the acid was clear and a small white residue (assumed to be silicon compounds) remained. The solution was filtered through Whatman's No.40 filter paper and made up to 100.0 ml with deionized water.

Total nitrogen and phosphorus were determined by digesting 0.500g of soil for 8h (until clear) in a sulphuric acid digestion mixture (Table 3.2.3:1). The solutions were made up to 100.0ml with deionized water and filtered through Whatman's No.40 filter paper.

Table 3.2.3:1 Sulphuric Acid digestion procedure.

#### Materials

**302** hydrogen peroxide concentrated sulphuric acid with 0.1% weight/ volume selenium

#### Preparation

Sulphuric acid was heated until clear on a hotplate with 0.1% weight/volume selenium metal added; a 3.0m sodium hydroxide gas tap was fitted.

#### Procedure

The soil (about 0.5g) or plant (about 0.15g) material was weigh ed into the digestion flask and 3.0ml of the sulphuric acid mixture was added. 0.75ml of hydrogen peroxide was added, and when frothing stopped, another 0.75ml of hydrogen peroxide was added. The digestion flask was rotated to wash down material adhering to its side and the sample was digested at 330°C for 8h (until clear).

#### 3.2.4 Chemical analyses

Lanthanum chloride (to obtain a concentration of lanthanum greater than 800mg  $l^{-1}$  in solution) was added to all samples and standards for the determination of magnesium and calcium, to prevent interference from other elements. Other ions and metals were determined in solutions without this addition.

All cations were analysed by atomic absorption spectrophotometry on a Perkin-Elmer 373 instrument (Perkin Elmer 1976, Walsh 1971).

Nitrogen and phosphorus were determined colorimetrically on a Technicon auto-analyser; nitrogen by the sodium phenate/hypochlorite method and phosphorus by the vanadomolybdate method (O'Neill & Webb, 1970).

#### 3.3 Results and Discussion.

3.3.1 Introduction

The results of all the soil analyses are in Appendix III and are summarised in Table 3.3.1:1. Although the quadrats were spaced at 10m intervals along each transect, it is unlikely that this coincided with any environmental or vegetation pattern. Therefore mean values were used to summarise the soil variables for each transect, and an analysis of variance was computed. The between-transect variance was highly significant (p<0.001) for all fifteen soil variables (Appendix V). For each transect the data were checked for normality. Some needed no transformation but others were normalised by either square root or logarithmic (base e) transformations (Table 3.3.1:1, Appendix V). If the original distribution was used, the arithmetic mean is given, otherwise the geometric, (back-transformed) mean is reported.

22

#### 3.3.2 pH and loss-on-ignition

The mean pH values for the transects (Table 3.3.1:1) differ between the ultrabasic areas (range 4.9 to 6.2, mean 5.6) and the nonultrabasic areas (range 4.0 to 5.1, mean 4.6). Although the Rhum ultrabasic soil pH values are relatively high, they are still generally lower than those that are usually found on serpentines (Shewry & Peterson 1976). pH is important because of its effect on ion solubility, ionic states and the availability of nutrients and metals to plants (Nye & Tinker 1977). (Also nickel toxicity is more likely to occur on serpentines at lower pH values, Proctor & Woodell, 1975).

The loss-on-ignition values (Table 3.3.1:1) were used to estimate the organic matter present in the soil. These values have been used by Jeffrey (1970) and Harrison & Bocock(1981) to determine the bulk density of soils, but Harrison & Bocock (1981) conclude that a

e neans	Mg/Ca	1.12	0.95	1.05	1.50	1.37	9.74	9.80	.95	9.54	1.34	1.56	86.0	0.56	0.59	9.65	0.83	1.34	0.78	86.0	1.58	1.57	1.7.1	1.10	9.72	0.79	1.52	1.30	1.08	9.80	1.13	0.72	1.04	
on th	Exch Zn +	,	•	•.	•	9.9	9.1	0.0		4.9	0.0	9.8		0.0	0.0		6.3	0.3	9.4	9.9	0.0	0.0	9.2	0.3	0.0	0.7	9.9	0.0	0.0	1.9	9.8	9.1	6.0	
iation	Exch Ni *	9.5	1.6	0.7	6.7	9.9	1.8	2.1	2.3	3.4	3.0	22.0	8.6	2.9	0.0	0.0	8.9	0.0	0.0	0.0	1.4	9.9	0.0	0.0	1.0	0.0	6.8	4.8	9.9	2.8	3.2	0.0	0.0	
inform	otal Ni * .	580	2229	1220	2179	2190	2010	1410	2180	969	2740	1560	1499	062	20	210	428				2620	2599	360	8	2240	20	2728	2998	2140	480	1419	1830	9	
V for	Exch T Fe *	4.4	2.2	3.2	1.9	1.2	2.1	9.4	2.9	4.5	9.1	2.7	3.5	9.8	2.8	19.3	3.8	6.3	8.6	8.6	1.0	1.2	2.1	13.0	2.0	11.8	0.0	2.8	8.9	14.3	8.6	1.9	4.4	
App.	Total Cr *	48	80	86	69	20	20	199	140	180	20	88	120	120	20	88	20	0	0	20	69	199	189	20	88	30	120	86	88	120	199	69	99	
. (See	Total Co *	69	140	199	110	110	100	120	150	119	169	130	168	20	20	30	20				150	149	20	0	130	8	150	140	140	86	180	120	8	1
transect	Exch Mg *	63.3	119.6	169.8	11.6	10.8	91.5	251.0	342.1	195.4	64.4	2100	843.7	74.7	192.2	128.3	58.2	75.1	89.7	92.3	9.6	10.7	36.4	2.99	44.3	102.2	794.0	117.4	82.3	557.9	783.7	33.5	8.98	eterwine
or each	Exch Ca *	67.5	75.6	136.7	9.5	8.0	146.9	312.4	354.4	455.4	48.2	1340	812.2	139.2	178.7	195.8	63.7	58.3	117.6	102.7	6.1	6.7	38.4	95.2	50.3	127.8	551.4	135.2	1.11	700.5	692.1	48.7	86.4	= not d s (<0.1
data f	Exch Na *	19.6	12.1	16.3	4.9	5.0	18.3	45.3	73.7	235.1	8.7	484.6	298.7	17.9	147.8	240.9	26.0	45.8	95.7	129.3	1.2	6.9	14.5	52.1	28.1	213.8	73.4	23.2	14.8	257.8	207.0	6.5	41.6	ouadrat
the soil	Exch * K	7.97	22.0	41.1	13.1	11.8	31.6	38.0	68.4	82.9	8.9	382.5	154.3	15.4	198.2	209.0	70.5	150.7	224.2	229.0	7.8	9.9	46.5	244.1	12.8	308.6	52.6	19.8	14.9	369.7	197.3	17.3	113.6	ug g-1 of the
ns for	Total P *	498	478	430	468	180	220	250	1230	1280	930	1579	1798	530	1118	1939	8.8	930	1410	888	298	269	200	1120	498	840	948	478	619	918	1380	748	250	in anv
The sea	Total N *	3800	2050	2700	1230	1070	1689	1340	4130	6498	1580	11799	7670	1650	9269	8940	3520	3940	2590	9640	886	696	2480	5840	1798	6719	2919	1999	1280	8940	8619	2410	3650	gnition r or Cu
1:1	101	15.2	4.4	19.0	2.6	4.2	4.9	5.1	13.8	23.6	2.8	54.4	29.5	3.9	49.2	42.8	14.2	17.1	32.8	43.6	3.0	3.1	8.3	27.9	4.8	46.1	1.3	2.2	2.7	20.4	30.4	4.4	12.1	s-on-I able C
e 3.3	Ħ	5.0	5.7	5.7	5.1	9.5	1.5	6.1	5.5	5.1	6.2	6.2	6.9	6.1	4.8	9.5	5.1	4.5	4.3	4.5	2.3	5.6	5.2	4.0	2.3	4.8	6.2	6.1	6.9	4.9	2.5	2.3	9.5	= Los
Tabl	Tran sect	-	2	•		5	•	2	8	6	1.	11	12	13	-	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	L01 No d
different equation is necessary for each soil type, making application of their equations inappropriate in this study. However, exchangeable, total and soil solution ions are only estimates of the fraction of the ions in the soil that are available to plants in any case, whether expressed on a weight or volume basis. Also, while organic matter is part of the exchange complex, the quantity and mechanisms of exchange are unknown and can again only be estimated (Nye & Tinker, 1977). Water loss from clay particle decomposition at 450°C was not expected to cause significant error in the organic matter estimation by loss-on-ignition, because of the sandy nature of many of the soils on Rhum. The ranges for loss-on-ignition for the ultrabasic transects (2.2-54.4%) and non-ultrabasic transects (14.2-49.2%) overlap, but the mean value for the ultrabasic transects is lower (13.9 compared to 30.8%).

3.3.3 Exchangeable bases

Bohn <u>et al.(1979)</u> suggested that the sum of exchangeable bases can vary from 1-60m-equiv.  $100g^{-1}$  from coarse to fine textured soils, and that in productive soils, the proportions of cations generally are Ca⁺⁺>Mg⁺⁺>K⁺⁼Na⁺.

The sum of the exchangeable bases varies from 0.143 to 26.8m-equiv.  $100g^{-1}$  (mean =4.30) on the ultrabasic transects and from 1.10 to 3.24m-equiv.  $100g^{-1}$  (mean 2.18) on the non-ultrabasic transects (Table 3.3.3:1). The lowest exchangeable bases sums found were from four barren ultrabasic transects, (T4,5,20 and 21, < 0.250 m-equiv. $100g^{-1}$ ). However, other barren ultrabasic transects (T13,26 27 and 28) have sums of exchangeable bases equal to or higher than several transects with closed vegetation. Therefore low total exchangeable bases are not invariably associated with barrenness. Also, on Rhum, the proportion of the bases are usually ranked Mg>Ca>K>Na, with Fe and Ni in less proportion, on both the ultrabasic and non-ultrabasic transects (Table 3.3.3:2).

Tran-	Exch	Exch	Exch	Exch	Exch	Exch	Total
Sect	R d	л •	la +	ng	re	N1	
	• 	• • • • • • • • • •	•	•	• 	• 	*
1	9.985	0.196	9.337	0.521	9.316	9.992	1.16
2	0.053	8.056	9.377	0.984	8.008	8.396	1.48
3	0.071	9.195	0.682	1.32	9.912	0.002	2.20
4	0.021	9.934	8.947	0.095	9.004	8.992	1.20
5	0.022	0.030	8.848	0.089	0.004	0.000	<b>9.</b> 19
6	0.080	0.981	<b>J.733</b>	0.753	9.998	0.006	1.66
7	0.197	0.097	1.56	2.07	0.001	8.007	3.93
8	0.321	9.175	1.77	2.82	9.919	0.025	5.12
9	1.02	9.220	2.27	1.61	0.016	0.012	5.15
10	0.038	0.023	9.241	0.530	0.000	9.919	9.84
11	1.76	<b>J.978</b>	6.71	17.3	0.010	0.075	26.8
12	1.30	0.395	4.95	6.94	0.013	0.029	12.7
13	0.078	0.039	9.695	0.615	9.903	9.007	1.44
14	<b>J.643</b>	0.507	8.892	₫.823	9.928	0.000	2.89
15	1.05	0.535	8.977	1.06	0.037	9.999	3.65
16	Ø.113	0.180	0.318	9.479	9.914	8.000	1.10
17	Ø.199	0.385	9.291	9.618	9.923	9.998	1.52
18	9.416	0.573	0.587	0.738	9.031	9.000	2.35
19	₿.562	₹.586	9.512	9.763	9.931	9.000	2.45
20	8.005	0.929	0.030	0.079	9.004	9.905	9.14
21	0.026	₿.923	0.033	Ø.#88	9.994	9.000	<b>J.</b> 17
22	0.063	0.119	8.192	0.300	9.998	3.339	\$.68
23	0.227	0.624	0.475	₫.821	9.947	9.000	2.17
24	0.122	0.033	0.251	0.365	9.997	8.093	0.78
25	9.939	9.789	0.638	9.841	9.942	0.000	3.24
26	9.319	0.135	2.75	6.54	9.999	0.023	9.76
27	9.101	0.951	0.675	. 9.966	0.007	9.914	1.81
28	0.064	0.038	0.385	9.677	9.993	0.000	1.17
29	1.12	0.946	3.50	4.60	0.051	0.010	10.2
30	9.999	9.595	3.45	6.45	9.931	0.011	11.3
31	8.841	8.844	0.243	9.276	9.997	9.999	1.61
32	0.181	0.291	9.431	0.739	0.023	9.999	1.67

# Table 3.3.3:1 Mean exchangeable cation concentrations (m-equiv 199g-1 calculated from Table 3.3.1:1 and their sum for each transect.

7.7

.....

2

2

.

ie.

and the second second

-

-

Most of the bases and metals analysed correlated  $(r_s)_s$ significantly with loss-on-ignition; the correlations were positive for nitrogen, phorphorus, potassium, sodium, calcium, magnesium, iron and zinc and negative for total cobalt and nickel (Table 3.3.3:3). This is in part attributable to the higher cation exchange capacity (c.e.c.) of soils with high organic matter. Also, the nitrogen and phosphorus would be high in soils with high organic matter because they are important constituents of it.

Ten of the ultrabasic transects have exchangeable potassium below 20  $\mu$ g g⁻¹ (Table 3.3.1:1), which is below the range given in Allen <u>et al</u>.(Table 3.3.3:3), and it is possible that low potassium is a limiting factor for the vegetation. Allen's values (Table 3.3.3:3) are used as an indication of the ranges of soil parameters. Low exchangeable potassium possibly results from low concentrations in the parent materials as the ultrabasic transects do have significantly less potassium than the non-ultrabasic (Table 3.3.3:3). Also, low organic matter and the high leaching rate under the high rainfall could contribute to the low potassium concentration. The importance of major nutrients seems to vary from site to site (Proctor & Woodell 1975).

Six of the ultrabasic transects have exchangeable sodium below 10.0  $\mu$ g g⁻¹ (Table 3.3.1:1), again with this value below Allen's (Table 3.3.3:3). However sodium is not known to be an essential element for non-haloptytic plants. For Transects 14, 15, 19 and 25 though, sodium exceeds twenty per-cent of the sum of the bases (Table 3.3.3:2), and could be influencing the vegetation. None of these transects are probably near enough to the sea to be affected by spray, and the sodium is probably supplied from the parent rock.

The proportion of calcium in the sum of the bases is lower than Bohn <u>et al.</u> (1979) suggest and it is generally exceeded on Rhum by magnesium (Table 3.3.3:2). However the calcium-rich plagioclase in

24

1 .....

-

Tran-	Exch	Exch	Exch	Exch	Exch	Exch	Total
sect	Na	К	Ca	Ng	Fe	Ni	
No.	z	z	z	z	z	r	z
	7.3	16.9	 79 t	A5 A	 1 Å	<b>4</b> 7	00 0
2	3.6	3.8	25 4	40.0	4 5	8 A	144 4
3	3.2	4.8	31.1	44 3	4 5	4 1	100.9
Ă	10.3	16.7	23.2	46 8	2 4	1 4	104 4
5	11.9	16.2	21.6	48.1	2.2	a a	106 6
Å	4.8	4.9	44.1	45.3	3 5	a a	100 4
7	5.0	2.5	39.7	52.6	a a	4.2	143 0
8	6.3	3.4	34.6	55.1	4 C	4 5	140.1
9	19.9	4.3	44.1	31.2	a 3	4 2	144 4
10	4.5	2.7	28.6	62.9	0.0	1.2	99.9
11	6.6	3.7	25.0	64.4	0.0	9.3	198.4
12	10.2	3.1	31.8	54.5	ə.1	8 2	99 9
13	5.4	2.7	48.4	42.8	4.2	A 5	104 4
14	22.2	17.5	34.8	28.4	1.4	a a	99 9
15	28.7	14.6	26.7	28.9	1.4	a a	99 9
16	10.2	16.3	28.8	43.4	1.3	a. a	163 3
17	13.1	25.4	19.2	44.8	1.5	8.4	140 0
18	17.7	24.4	25.0	31.5	1.3	4.4	99.9
19	22.9	23.9	20.9	31.0	1.3	4.4	144.4
29	3.5	14.0	21.0	55.2	2.8	3.5	104.4
21	14.9	13.2	19.0	50.6	2.3	0.0	198.4
22	9.2	17.4	28.2	44.0	1.2	a.a	169.9
23	10.3	28.4	21.6	37.4	2.1	0.0	99.8
24	15.6	4.2	32.1	46.7	8.9	9.4	99.9
25	28.7	24.4	19.7	26.0	1.3	4.6	149.1
26	3.3	1.4	28.2	66.9	6.8	8.2	104.4
27	5.6	2.8	37.2	53.3	0.4	0.8	194.1
28	5.5	3.3	33.0	58.6	0.3	8.6	104.1
29	11.0	9.3	34.2	44.9	0.5	0.1	109.0
30	7.9	4.4	30.4	56.8	0.3	0.1	99.9
31	6.7	7.2	39.8	45.2	1.1	0.0	100.0
32	10.9	17.5	25.9	44.4	- 1.4	9.9	199.1

# Table 3.3.3:2 Mean exchangeable cation concentrations expressed as a percentage of the sum of exchangeable cations (from Table 3.3.3:1) for each transect.

1 · ·

1.50

1 1 1

12

-

4

A NAME AND A DAY OF A

Table 3.3.3:3 The mean concentrations (with ranges below) of elements in soils from the ultrabasic (UB) and non-ultrabasic (Non) transects; the level of significance of the F ratio for the differences for each element between the UB and Non transects; and the correlation coefficients (Spearman's) between soil loss-on-ignition and elements (for the UB and Non transects combined). The element concentration ranges expected in 'Typical' soils (Allen et al. 1974) are given in the first column. ------

11

*

4

3

4 . 5

. 2

-----

3

3.00

State of the second

L. M.

62 .

......

Element	Type of Analysis	'Typical' Soils	UB (n=24)	Non (n=8)	F-ratio	LDI Correlation Coefficient ()
N	Total	1999-15999	3640 980-11700	6329 3529-19269	*	<b>9.</b> 953 ***
Ρ	Total	100-2990	729 180-1799	989 759-1419	ns	Ø.658 ***
К	Exch	50-500	79 7.8-382.5	192 70.5-308.6	•	<b>\$.</b> 936 ***
Na	Exch	29-299	85 1.2-404.6	94 26.∂-213.8	ns	Ø.841 ***
Ca	Exch	199-2999	267 6.1-1340	1 <b>94</b> 58.3-192.2	ns	Ø.558 ***
Иg	Exch	40-500	288 9.6-2199	88 58.2-1∌2.2	n s	Ø.516 ***
Co	Total	1-69 Hin. 9.2-1 Org.	129 30-180	19 8-58	***	-#.514 ***
Cr	Total	10-200	9 <del>9</del> 49-189	39 9-59	***	-Ø.164 ns
Fe	Exch	59-1999	3.1 Ø-14.3	8.3 3.8-13.9	***	Ø.861 ***
Ni	Total	5-500	1700 210-2990	69 9-429	***	- <b>#</b> .747 ***
Ni	Exch	not given	3.0 0-22.0	0.0	ns	-9.998 ns
Zn	Exch	1-40	Ø.28 Ø-1.9	9.33 9-9.7	ns	\$.8Ø3 ***

* P<0.05 *** P<0.001

hallivalite results in some of the ultrabasic soils having a very low (for serpentines) magnesium/calcium quotient. The quotients are lower than nearly all previously reported for serpentine soils (Proctor & Woodell 1975). Calcium varies widely in serpentime soils (Proctor & Woodell 1975), and is probably a major factor in accounting for intra-and inter-site differences in vegetation.

Exchangeable magnesium in the ultrabasic transects, (Table 3.3.1:1) is generally lower than the concentrations from other serpentine areas in Proctor & Woodell (1975), and in some cases below those in Shewry & Peterson (1975).

None of the transects attained the lower value of Allen (Table 3.3.3:3) for exchangeable iron. This indicates the complexity of determining iron in solution (Nye & Tinker 1977), as the iron concentrations in plants analysed from Rhum are very high (see below).

Nickel is important in many serpentines (Proctor & Woodell 1975, Shewry & Peterson 1976) and has been shown to be toxic at a concentration as low as 0.1-0.18 mg  $1^{-1}$  in solution (Wong & Bradshaw 1982). However the states of nickel in the soil are complex as nickel is often strongly bound to sites on soil particles and organic matter (Russell 1973, Nye & Tinker 1977), which renders the problem more difficult. In barren ultrabasic transects (T4, 10,20 and 27) nickel ranged from 0.8-3.5% of the total exchangeable bases (Table 3.3.3:2). This is a relatively high proportion and might suggest a possible influence of nickel in those soils.

Exchangeable zinc is a low proportion of total bases in the soil samples where it was determined (n=245), however it may be important and is discussed later.

3.3.4 Total analyses

Total nitrogen is highly correlated with loss-on-ignition (Table 3.3.3:3), which is to be expected because of the importance of

Nitrogen in organic compounds. While total nitrogen is near Allen's values (Table 3.3.3:3) this gives no indication of its availability to plants or the status of nitrogen in the soil. Nutrient deficiency has often been considered as an important factor in the ecology of serpentine soils (Proctor & Woodell 1975).

Phosphate is most readily available to plants at pH 6-7 (Bohn et al. 1979). Because of the relatively high soil pH's, combined with the amounts of phosphate present (Tables 3.3.1:1 and 3.3.3:3), of which over one half will be in organic compounds (Allen et al. 1974), it is possible that phosphorus is not acting as a limiting factor at most transects. However, it is impossible to predict phosphate in solution from total phosphorus (Nye & Tinker 1977).

Total cobalt (Table 3.3.1:1) correlated negatively with loss-onignition (Table 3.3.3:3), probably indicating the lower organic matter present on the ultrabasic transects, however cobalt has been shown to be toxic to plants (Austenfeld 1979). The concentrations found in the ultrabasic soils are similar to those in Proctor & Woodell (1975).

The concentrations for total chromium elsewhere (Proctor & Woodell 1975, Shewry & Peterson 1976) are generally much higher for other serpentine locations than those from Rhum (Tables 3.3.1:1 and 3.3.3:3). However chromium is variable in ultrabasic rocks and is known to be at relatively low concentrations in Rhum rocks (J. Volker, personal communication).

Total nickel (Table 3.3.1:1) was negatively correlated with losson-ignition (Table 3.3.3:3), with less organic matter present in the transects with higher total nickel. The total nickel concentrations are similar to many other British serpentine areas (Proctor & Woodell 1975 and Shewry & Peterson 1976), but do not reach the high nickel concentrations that are found on some foreign serpentine soils.

#### 3.4 Multivariate analysis of the soil variables.

3.4.1 Introduction

As noted in the last chapter, multivariate analysis is an efficient method of summarising data and determining relationships within them (Gauch 1982). The vegetation classes will be discussed in relation to the soil variables in chapter four.

Multivariate analysis is also useful to investigate interrelationships between the different soils. Webster (1977) discussed the application of multivariate techniques to soil classification and survey (generally using principal components analysis). However, DECORANA has been shown to be a superior ordination technique, and was used to ordinate the soil data. TWINSPAN was used to classify the soil data and while true classes may not exist, classification helps define groups on the ordination.

The mean values for the soil variables measured (Table 3.3.1:1) were used in the multivariate analyses after rescaling. The values for exchangeable zinc were not included in the analysis since it was not determined for all transects, and the magnesium quotient was not included since it is a derived quantity (Webster 1977). Mean transect values, rather than those for individual quadrats, were used for the analyses to reduce the complexity (After Gauch 1980, 1982). Each variable was rescaled(from 0-1), transforming all the variables to the same scale, so that the different ranges for the variables did not affect the amalyses (Gauch 1982).

For both DECORANA (Hill 1979b) and TWINSPAN (Hill 1979a) all the operating parameters were set to the recommended values, except for the pseudo species cut levels in TWINSPAN. These new cut levels (0.0, 0.2, 0.4,0.6,0.8), were set to divide the range of values (0-1) into five equal classes, since all parameters had been rescaled to this range.

#### 3.4.2 Results

The two multivariate techniques used to analyse the soil data produced results that agreed well. Most of the information in the soil data was expressed in the first axis of the ordination (eigen value = 0.36368). The second axis, while having a much lower eigen value (0.03364), further separated the transects and contributes to the interpretation. Further axes had very low eigen values and did not contribute new information.

The ordination scores for each transect for the first two axes (Table 3.4.2:1) are plotted in Figure 3.4.2:1. Also marked on the figure are the groups from the TWINSPAN classification. The larger Groups 1 and 5, are clearly shown with intermediate Groups 2-4.

Group 1 consists mainly of the transects that are located on the non-ultrabasic soils, clearly separating the ultrabasic from the nonultrabasic transects. Transect 15 (on gabbro, a basic rock) is included in the non-ultrabasic group.

Group 5 consists entirely of the more-or-less barren transects on soils from a range of ultrabasic rocks (dunite, peridotite, and hallivalite).

Groups 2 and 3 both consist of transects located on wellvegetated ultrabasic soils, while Group 4 consists of transects (1, 16, 22) that are located in Bealachs (Gaelic for col, saddle between two mountains), and Transect 8, which is at the same altitude though not in a Bealach.

It is noteworthy that the "species" (soil variable) ordination scores (Table 3.4.2:2) for nickel, cobalt and chromium are distantly located from loss-on-ignition and major nutrients. This is discernible from an appraisal of the transects in the groups and their location on the ordination plot (Figure 3.4.2:1).

Table 3.4.	2:1 The tr scores	ransect ordination s for Axes 1 & 2 from
	the DE	CURANA ordination of
	the so	oil data by transect
	Heans.	
Transect No.	Axis I	Axis II
1	169	20
2	187	29
3	152	19
4	208	31
5	215	24
6	182	38
7	177	37
8	143	54
9	199	44
1.6	291	41
11	83	194
12	195	73
13	170	3
14	28	38
15	49	34
16	101	14
17	20	29
18	9	41
19	7	39
20	221	34
21	214	15
22	137	
23	9	22
24	191	29
25	11	36
26	167	67
27	198	38
28	198	24
29	50	50
30	96	58
31	176	25
32	56	5

To make The State of the State of the State of the State

.

•

+ + +

「「「「「「「」」」

٠

.

81



Table 3.	4.2:2	The order and ordination scores for the soil variables in the soil data ordination by DECORANA, for Axis I of the 'species ordination'.
Soil	Varia	ble Ordination Score
Tot	al Ni	288
Tot	al Co	237
рH		189
Tot	al Cr	168
Exc	h Ni	140
Exc	h Ng	1#3
Exc	h Ca	101
Tot	al P	85
Exc	h Na	26
Tot	alN	-4
Exc	h Fe	-14
Los	s-on-i	gnition -51
Exc	h K	- 65

2.

*

10 m

3.1.10

.....

.

-

1944

and the second of the

----

and a set

Exch = Exchangeable

Axis II separated the transects with higher milliequivalent cation totals from the transects with lower totals, especially Groups 2 and 3.

3.4.3 Discussion

While the soil ordination and classification results help the interpretation of the vegetation distribution, care must be taken in interpreting causality from correlations. Spearman's correlation coefficients  $(r_s)$  were calculated between Axes I and II of the ordination and the soil variables (Table 3.4.3:1). Additionally, Spearman's correlation coefficients were calculated between Axes I and II and the arithmetic means for each transect for: the number of species in each quadrat, the sum of the transformed Domin numbers for all species in each quadrat, and the transformed Domin number for bare ground in each quadrat (Table 3.4.3:1).

As would be expected, the soil variable data which were ordinated correlated strongly with the axes and a strong agreement exists between the order of the ordination of the soil variables (Table 3.4.2:2) and the order and magnitude of their correlation coefficients.

The correlation between Axis I and the different measurements are useful in describing the separation between the ultrabasic and non-ultrabasic transects (Table 3.4.3:1). Total cobalt and nickel, pH and bare ground are highly positively correlated with Axis I. Loss-on-ignition, total nitrogen and phosphorus, exchangeable potassium, sodium and iron, the number of species in each quadrat and the sum of their transformed Domin numbers all have high negative correlations with Axis I. The soil variable ordination further supports the separation of ultrabasic and nonultrabsasic transects (Table 3.4.2:2). From this one can see the strong relationship between the vegetation and the

Table	3.4.3:1	The Spear between data or (Table and the quadrat Domin n quadrat (B) for	man's corr the first dination a 3.3.1:1) f mean numb , the sum o.s (A) fo , and the bare grou	elation two a ond the oer of o of the transf ind in	on coefficients axes of the soil e transect means e soil variables; species in each he transformed species in each formed Domin no. each quadrat.
	Variabl	e	Axis I		Axis II
	рН		9.6194	***	9.1979 ns
	Loss-on-i	gnition	-9.8989	***	9.3495 *
	Total	Ň	-0.8929	***	Ø.4519 **
	Total	P	-#.6829	***	Ø.5754 ****
	Exch	к	-0.9412	***	0.3715 *
	Exch	Na	-9.7747	***	9.6119 ***
	Exch	Ca	-0.4634	**	8.6642 ***
	Exch	Hg	-0.4385	**	0.6763 ***
	Total	Co	9.6911	***	9.3929 *
	Total	Cr	9.2960	*	0.2004 ns
	Exch	Fe	-#.8658	***	0.1297 ns
	Total	Ni	9.8813	***	9.1895 ns
	Exch	N1	9.2443	ns	Ø.6652 ***
	No. Spe	cies	-9.4991	**	Ø.3236 *
	(A)		-9.7173		0.1197 ns
	(B)		₫.8287	***	-Ø.1724 ns

后面的方式分开

111

1

and the second

the second s

Contraction of the

ns not significant , * P<0.05 , ** P<0.01 , *** P<0.001

different soil measurements.

Axis II helps separate Group 1 from Groups 2 and 3, separating the non-ultrabasic vegetated transects from the ultrabasic vegetated transects. While many of the soil variables that correlated negatively with Axis I are positively correlated with Axis II (Table 3.4.3:1) exchangeable magnesium, calcium and nickel correlate more strongly with Axis II than Axis I. Exchangeable nickel however, is the variable that best separates Group 1 from Groups 2 and 3 by considering the correlations. It is noteworthy that the number of species in each quadrat also correlates positively with Axis II, supporting the observation that ultrabasic areas (when vegetated), often have a richer species composition (Proctor & Woodell 1975).

#### CHAPTER FOUR

Relationships Between the Vegetation Classes and the Soil Variables. 4.1 Introduction

31

The twelve vegetation classes (Section 2.2) are related to the vegetation ordination (Section 2.3) by using the class mean values for each of the soil variables (Table 4.1:1). This method of integrated analysis is similar to that recommended by Gauch & Whittaker (1981) and Gauch (1982).

It has been argued in Chapter two that the vegetation classes cannot be tested statistically. This probably applies to the soil parameters associated with each class and hence no tests of probability are attempted between the soils. Spearman's  $(r_s)$  correlation coefficients (Table 4.1:2), were calculated (it was determined there were no effects from spurious points by plotting) between the mean soil values for each class (Table 4.1:1), and the median coordinate positions for each class on Axes I-III of the vegetation ordination (Table 2.4.2:1). These correlations help the judgment of possible causality of vegetation by soil factors but they must be used with caution.

Additionally, Pearson's (r) correlation coefficients were calculated between all quadrats (n=283), and the soil variables, to determine if the use of the classes had reduced the variability of the data and affected the results. There was strong agreement between the Spearman's correlation coefficients (Table 4.1:2) and the Pearson's correlation coefficients. Between the three axes, the axis where Pearson's correlation was the highest (for a soil variable) was usually the same axis as was significantly correlated by Spearman's (e.g. Pearson's correlation coefficients for pH were: Axis I, -0.482; Axis II, 0.327; Axis III, -0.393; and Spearman's correlation was also highest with Axis I). The only differences between the two correlations (Table 4.1:2 for Spearman's) were: exchangeable calcium

-	
5	
Ê'n	
İn	
5955	
c l a:	
0 0	
at	
aĉa	
> 'u	· · ·
spa	uea
nin	E au
E T	hes
el v	-
Ĭ	0
the	tio.
5	E C
ĩ	a foi
jat:	-
-	for
501	17
e.	11 X
-	end
2	App
sue au	(See
Ę	
F	
-	
-	
ble	
Ta	

Group	Hg	101	Total	Total	Exch	Exch	Exch	Exch	Total	Total	Exch	Total	Exch	Exch	Hg/Ca
ND.		1	<b>z</b> +	2. #	¥ *	æ .	: • ۳ ته •	6 +	0 + L	÷ ت	е 	N *	* N =	Zn +	
-	5.0	14.8	3410	768	72.4	25.0	46.3	54.2	20	<b>9</b> 9	3.9	298	0.0	9.17	1.1
7	5.1	16.7	4258	758	186.7	33.9	98.2	105.0	4 8	50	6.4	96	0.0	0.10	1.16
м	£.4	31.1	6150	1210	224.9	66.8	111.2	98.0	9 1	91	9.2	3	8.9	0.33	0.88
•	4.4	18.5	4618	996	186.9	69.9	77.9	78.2	6	6	7.3	•	9.9	0.37	1.12
ŝ	5.3	3.8	1280	350	12.4	3.2	11.5	12.9	120	82	1.5	2848	6.1	6.0.0	1.13
9	5.1	3.3	1150	280	12.3	6.9	11.0	14.9	110	69	<b>6</b> .6	2130	6.9	0.01	1.39
~	9.9	5.4	2688	969	31.1	32.1	238.3	231.8	130	110	9.6	2648	3.8	0.01	0.97
80	5.8	3.9	1768	648	13.9	13.7	77.2	67.7	120	88	1	2060	2.2	91.1	9.88
•	<b>6.</b> 8	53.1	11886	1629	369.0	382.4	1273.3	1870.5	148	188	3.5	1348	18.8		1.47
	5.6	28.7	2986	926	133.6	150.4	488.8	493.3	140	86	+	1558	3.7	0.24	99.6
=	5.4	9.3	2740	639	33.8	32.8	122.6	84.8	199	20	3	1590	9.6		17.0
12	4.8	45.7	8148	101	257.2	224.3	168.4	125.8	1 9	50	10.8	69	1.1	11.1	6.74
L 01 =	Loss	-00-I	guition		1-6 6	1 1 1 1 1 1 1	 	6 1 1 1 1 1	1 1 1 1						

- Dentrate

and the second

----

-

÷

Table 4.1:2	Spearman's c median coord vegetation c ordination , variables. (	orrelation coeffi inate postions fo lasses , on each and the mean val See Table 4.1:1)	cients between the r the twelve TWINSPAN of the axes of the ues for the soil (n=12)
Soil Variable	Axis I	Axis II	Axis III
pH	-9.7891 **	• Ø.2211	-0.3018
LOI	-0.0525	-0.9580 ***	-9.9629
Total N	-0.0525	-9.9580 ***	-0.0629
Total P	9.9896	-#.8881 ***	-0.1329
Exch K	-0.0035	-8.9441 ***	-9.9539
Exch Na	-0.1856	-#.8881 ***	-2.1399
Exch Ca	-0.5009 *	-0.6434 +	-#.1678
Exch Mg	-0.3888	-0.6573 **	-0.3287
Total Co	-0.7321 **	<b>J.</b> 1748	-0.3916
Total Cr	-0.7916 **	* <b>0.</b> 2238	-0.2517
Exch Fe	9.3783	-9.7902 ***	Ø.2587
Total Ni	-0.4842 +	0.7426 ***	-0.0981
Exch Ni	-8.8644 **	* -0.1233	-8.1015
Exch Zn	-8.9799	-8.8194 ***	ð.\$218
Mg / Ca	0.1684	9.9896	-8.7916 ***

.....

***

Tall Local

10.00

.....

14

LOI = % Loss-on Ignition + P<0.055 , * P<0.05 , ** P<0.01 , *** P<0.001 All other correlations not significant.

(Pearson's negatively with Axis III), exchangeable magnesium (Pearson's negatively with Axis III), and exchangeable nickel (Pearson's positively with Axis III).

4.2 Interpretation and discussion of vegetation classes.

Several relationships between the vegetation classes are clearly represented by their positions on the ordination axes (Fig. 2.4.2:1), and are related to soil differences.

Axis I separates most of the non-ultrabasic from the ultrabasic vegetation classes, and is significantly negatively correlated with the soil pH, exchangeable nickel, total chromium and cobalt, and less significantly negatively correlated with exchangeable calcium and total nickel (Table 4.1:2). However, in interpreting the correlation it is necessary to consider if it is due mainly to the soil's effect on the vegetation or the vegetation's effect on the soil.

The difference of one pH unit between the ultrabasic and nonultrabasic classes is important (Etherington 1975), though hearthy vegetation can reduce soil pH (Grubb & Suter1971). However, it seems likely that the primary effect is due to the higher base supply from the ultrabasic rocks (Proctor & Woodell 1975). High total chromium, cobalt and total and exchangeable nickel are well known constituents of serpentine rocks (Proctor & Woodell 1975, Shewry & Peterson 1975). It is possible that the contrast in vegetation between the non-ultrabasic and ultrabasic classes, along Axis I, is primarily due to soil differences for these heavy metals and pH. The other soil variables measured were not related to the change in the vegetation along this axis. The vegetation is not likely to concentrate toxic metals in the soil, more likely effects on metal concentrations (expressed on a weight basis), would be a 'dilution' by the vegetation contributing organic matter, which would usually contain a lower total concentration of the metals

than mineral soils. Total nickel is probably more important in the interpretation of this axis than its correlation coefficient (Table 4.1:2) indicates. Correlation coefficients are more useful for gradients than abrupt changes, such as occur for nickel along Axis I (Table 4.1:1). The negative correlation with exchangeable calcium is less readily interpretable, but probably indicates the lower calcium concentrations present on the non-ultrabasic soils.

It is of interest to consider the metal concentrations on a unit volume basis. Initially, I intended to use Jeffrey's (1970) equation but a paper published after my soil work had finished (Harrison & Bocock 1981), has indicated the necessity of using equations determined for each soil. However, a general indication of the bulk density can be obtained by using Jeffrey's equation in Harrison & Bocock (1981): Bulk density ( $g ml^{-1}$ ) = 1.562 - 0.727 log₁₀ loss-on-ignition(%). Expressing total nickel on a  $\mu g ml^{-1}$  basis slightly reduces the difference between the non-ultrabasic (1-4) and vegetated ultrabasic (9-11) classes, but increases the differences between the non-ultrabasic, (1-4) and the barren ultrabasic (5-8) classes. (Class 12 is somewhat intermediate between ultrabasic and non-ultrabasic).

Axis II primarily separates the more barren ultrabasic classes (5-8) from the vegetated ultrabasic classes (9-12), but also further separates the non-ultrabasic classes (1-4)(Fig. 2.42:1). Axis II is significantly negatively correlated with loss-on-ignition, total nitrogen and phosphorus, exchangeable potassium, sodium, calcium, magnesium, iron and zinc, and positively with total nickel (Table 4.1:2). While many of these variables are plant nutrients and would therefore be expected to be strongly associated with the amount of vegetation and organic matter present (because of plant interactions with the soil), the opposite significant correlation with total nickel is important. As above, this potentially toxic metal is unlikely to be affected by the vegetation

(as a total measurement), except by 'dilution' with organic matter. It is possible therefore that total nickel is in some way involved in the barrenness of these sites (through a plant-available form).

34

Of additional importance is the fact that total cobalt and chromium and exchangeable nickel are not correlated with the barrenness of the ultrabasic sites, indicating the relative unimportance of cobalt and chromium, and that exchangeable nickel is an inappropriate measure of the fraction of nickel that may be affecting the vegetation. Nickel is known to bind with various sites, particularly in organic soils (Nye & Tinker 1977).

It is possible that the importance of total nickel in the barrenness of ultrabasic Classes 5-8 is not as clear as these correlations might indicate. The 'dilution' effect of organic matter on the concentration of metals in the soil (mentioned above), must be considered for the vegetated ultrabasic Classes 9-11. It is possible that these soils had higher concentrations of metals, particularly nickel, in their mineral states, and that the higher organic matter is 'diluting' the nickel (Table 4.2:1). However, when considered on a bulk-density basis, ( $\mu$ g ml⁻¹) the difference between the barren ultrabasic classes (5-8) and the vegetated ultrabasic classes (9-11) are even more extreme.

Axis III correlates significantly negatively with the derived magnesium/calcium quotient, but is not readily interpreted from the classes.

Exchangeable zinc is related to the vegetation classes and the ordination axes. The probable higher cation exchange capacity of the vegetated classes may explain the higher zinc concentrations for these classes, when compared to the barren classes. However, zinc is of interest because of its similar ionic radius to that of nickel and the possibility of its competing with nickel for binding sites in the soil and activation sites on plants (Chapin 1980). Zinc is discussed more fully in Chapter 7.

.

2

ċ

CHAPTER FIVE

#### Plant Analyses

#### 5.1 Introduction

5.1.1 Introduction and sample collection

The concentrations of nutrient ions and heavy metals, in plants growing on serpentine soils, can be useful in determining relationships between the soil factors and the vegetation (Lyon <u>et al</u>. 1971, Johnston & Proctor, 1979, Proctor <u>et al</u>. 1980). Five species were chosen and collected for analysis and correlation with the soil analyses to investigate these relationships. <u>Agrostis canina</u>, <u>Calluna vulgaris</u>, <u>Festuca vivipara</u>, <u>Plantago maritima</u>, and <u>Rhacomitrium lanuginosum</u> were collected from eight transects (T 1, 2, 4, 7, 16, 18, 22 and 32) in July 1980. These transects were chosen from field observations from the descriptive work to represent a range of sites and plants within 1 m² of a randomly chosen quadrat were sampled.

<u>Arenaria norvegica</u> ssp. <u>norvegica</u> was collected from transect 7 and analysed because of its restricted distribution on Rhum and preference for ultrabasic localities.

5.1.2 Methods and materials of plant analysis.

After collection the plant material was washed four times in deionised water and dried at  $60^{\circ}$ C for 3d. It was then stored in sealed polythene bags until February 1982 when it was re-dried at  $60^{\circ}$ C for 3d and stored in a desiccator.

Two digestion methods were used. For the determination of the metals each plant sample was subsampled and about 0.3-0.5g was wet ashed with three replicates (four for <u>Rhacomitrium lanuginosum</u>) in 7.5ml of concentrated nitric acid at  $120^{\circ}$ C, for 3h or until clear. For the

determination of nitrogen, three replicates of the plant samples (except for <u>Festuca vivipara</u> from Quadrats 151 and 171 and <u>Agrostis canina</u> from Quadrat 11, which had insufficient material remaining for analysis) were wet ashed in a sulphuric acid digestion mixture (Allen <u>et al</u>. 1974, Table 3.2.3:1) at 330°C until clear (for at least 8h). All digests were made up to 100ml with deionised water and filtered through Whatman's No. 42 filter paper.

Chemical analyses of these solutions followed the methods described for the soil analyses (Section 3.2.4).

#### 5.2 Results

The typical concentrations of elements in plant material from non-metalliferous soils are shown in Table 5.2:1. Previous work on serpentine sites has included some plant analyses of the same genera (and often species) as analysed from Rhum (Table 5.2:2). The results of all the plant analyses for the Rhum plant samples are in Appendix VII and are summarised in Tables 5.2: 3-8.

#### Agrostis canina.

The concentrations for all the metals measured for <u>Agrostis</u> <u>canina</u> varied significantly between the different samples. The concentration of nitrogen and potassium all fall within the typical range (except for Quadrat 61 for potassium, which is slightly below the lower limit). The concentrations of calcium are much lower than the value in Allen (1974) Table 5.2:1) but are higher than the values from other analyses from serpentine sites (Table 5.2:2). The concentrations of magnesium for two of the samples (Q.31 and Q.61) are higher than Allen's range and are similar to the other serpentine values. It is noteworthy that the concentration of iron in most of the samples is much higher than Allen and even higher than the values from the other serpentine sites.

Total 1. The typical elements concentrations of some elements as plant asberiat. (From Allen et al. 1974)         Image: Concentration (ug gri)         Image: Concentratio	blanker og en			
Tale 5.2:1       The typical elemental concentrations of some elements is plant material.         Image: Concentration (or ge1)       Image: Concentration (or ge1)         Image: Concentration (or ge1)				
Table 5.21 The typical elemental concentration of some elements in plant material.         Chronic material.         Concentration (ug g-1)         N       19 666 - 39 696         N       3 666 - 25 696         N       3 666 - 25 696         N       3 666 - 25 696         Co       6.1 - 6.3         So       3 666 - 25 696         Co       6.3 - 6.3         So       3 666 - 25 696         Co       6.3 - 6.3         So       3 666 - 25 606         Co       6.3 - 6.3         So       3 666 - 25 606         Co       6.3 - 6.3         So       3 666 - 25 606         Co       6.3 - 6.3         So       3 666 - 25 606         Co       6.3 - 6.3         So       3 66 - 25 606         So       3 606       3 606 <td></td> <td></td> <td></td> <td></td>				
Element         Concentration (ug g-1)           N         19.000 - 33.000           N         19.000 - 32.000           N         19.000           N         19.000           N         19.000           N         19.000		Table 5.2:1 The typical el plant mate	emental concentrations of some elem rial. (From Allen et al. 1974)	ents in
N 10 000 - 30 000 K 5 000 - 30 000 Co 3 000 - 25 000 No 1 000 - 25 000 No 0 000 - 0.5 Fe 0 0 - 5 0.5 Fe 0 0 - 5 0.5 To - 100 No 0 - 5 0 - 3 Zn - 15 - 100		Element	Concentration (ug g-1)	
		N K Na Ca Mg Co Cr Fe Ni Zn	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
				The second se
A First				

Table 5.2:2 The metal concentrations (ug g-1) and Mg/EA quotients is above-ground parts of selected species from British serpentines.

. .

•....

1:1

105

*

2. 20

Sardian . 1.

. 

14

...

** ÷

Species -	K	Na	Ea	Ng	C٥	Cr.	Fe	Ni	Zn	Hg/Ca	Location
Aerostis		_	1544	****		_			_		6
A Conse	-	-	1788	4488	-	-	-	-		2 7	Townseef 1
A. Canina		-	1544	7464	-	-	_	-	-	2.7	foular of built 1
A. Canina		-	1944	8744			-	-	-	23	Helleyes of Hulle (
M. Canina			1788	2444	-	-	-	-	-		Marilyar 1
M. Canina			1200	2400			-	-	-	2.9	HEIKIE KIITASHOCH I I
H. SLD-	-	-		•	•	-	•	-	•	2.1	HAMAF SUMMIT 2
Innitera	-	-					-		-	1.3	Hamar Slope 2
A. Canina	-	-	388	3/30	78	83	2/00	131	-	17.1	ureennili j
A. Canina	-	-	1000	6245	17	45	7288	130	-	6.2	Iowarreef 3
A. Canina	4488	240	288	4284	15	89	249	29	19	19.0	Neikle Kilransoch I 4
Calluna											
vulgaris	3500	•	2294	7888	38	72	4488	150	•	1.3	Greenhill 5
C. vulgari	5 3688	-	54##	3784	12	28	1200	94	•	0.7	Towanreef 5
C. vulgarı	5 -	-	•	•	-	•	-	-	-	1.1	Hamar summit 2
C. vulgarı	<u>1</u> -	•	-	-	-	-	•	-	•	<b>8.</b> 7	Balepark 2
<u>C. vulgarı</u>	5 -	-	•	-	-	-	•	-	-	1.8	Greenhill 2
C. vulgari	5 7478	1678	1944	5320	25	58	2384	125	•	2.7 +	Greenhill ó
C. vulgari	5 5466	245	1370	7800	46	76	4344	171	-	5.7 +	Towanreef 6
C. vulgari	5 4130	1588	386 <b>4</b>	1598	4	19	260	14	-	8.4 +	Lizard, Cornwall 7
C. vulqarı	21966	-	17884	6488	11	68	488	73	16	4.4	Line Hill B
Festura											
vivipara	-	•	-	-	-	-	•	-	-	1.5	Hamar summat 2
F. rubra	-	-	-	-	-	-	-	-	• 10	4.8	Hawar slope 2
F. rubra	-	-	-	-	-	-	-	-	•	1.0	Dalepark 2
F. ovina	-	-	-	-	-	-	•	-	-	1.6	Greenhill 2
F. rubra	-	-	788	4788	12	49	2130	91	-	5.2	Towanreef 3
F. rubra	42888	168	45#	7288	12	76	160	63	12	16.4	Heikle Kilransoch 1 4
F. rubra	27888	15#	53#	6578	10	\$3	21#	52	12	12.4	Heakle Kilrannech II 4
Plantago											
maritima	-	-	-	-	-	-	-	-	-	Ø.7 +	Hanar summit 2
P. maritim	a -	-	4748	14374	-	6	-	58	-	2.2	Hanar 9
F.lanceola	La 35000	-	27588	29999	21	70	260	84	-	0.7	Line Hill 8
Rhaconstra	un										
Januqinos	un 1388	-	230	22868	89	120	21000	478	-	96.0	Greenhill 5
A. Lanu.	754	-	334	5844	24	224	6444	169	-	18.0	Towanteef 5
E. Lanu.	15664	174	144	13444	7.	134	3144	134	63	130.0	Neikle Kalrannech 1 14
S. Janu	15444	144	70	12444	17		2544	11.	4.9	154 6	Heatle Kilrananch 11 14
R. lany	744		154	544			240		-	37 4	Rhun 11
F lang	15444		434	1444			454	17		3.7 *	
T. Vend	13848		438	1499		43	6.14	33		3.3	6198 1844 IF

1 Proctor (1969) 2 Shewry & Peterson (1975) 3 Johnston & Proctor (1977) 4 Johnston & Proctor (1988) 5 Johnston (1974) 6 Marrs (1977) 7 Marrs & Proctor (1978) 8 Johnston & Proctor (1979) 9 P.R. Shewry (unpublished) 18 Johnston (1976) 11 Bates (1978) + my calculation - net reperied

Table 5.2:3 The metal concentration (ug g-1 dry weight) of elements in the upper parts of <u>Agrostis canina</u>.

1.0

		He	ans wit	th Stand	lard Er	rors b	elow.	( u=3 )				
Quad	z	×	R Z	Ca	6¥	°3	5	e.	ž	Ĩ	Zn	Mg/Ca
2	13668	6938	286	1010	1588	<0.1	<0.1	366	154	<0.1	123	1.6
=	'	488	336	1038	1010 40	<0.1	<0.1	348	83	(1.8)	68	1.0
31	13166	6789 329	418	1120	7310	1.6	1.9	4466	155	88	E9 *	6.6 6.6
19	368	4528	316	1118	6386	16	16	5350	208	86 29	2 2	3.8
121	11789	6869 679	216	1190	1916	16	= 9	2050	280	<.8.1	991	1.6
211	19899 369	6826	280	1480	1770	16	15	1430	182 26	<0.1	126	1.2
115	11685	7568	328	1080 50	1199	<b>N</b> N	9 5	3698	216	<0.1	124	1.0
						-						

1000 ML 1000 米拉亚洲洲的

- not determined

The second

......

luad 'at	И	K	Na	Ca	Ħg	Co	Cr	Fe	Ni	Zn	Ng∕Ca
2	13900	5830	630	2250	1580	<9.1	<0.1	450	<9.1	32	J.7
	39	66	27	t 0 0	90			12		1	0.0
11	11709	3740	799	2750	2129	<9.1	<9.1	460	5	23	Ø.8
	260	310	119	169	46			98	5	. 4	0.0
31	13100	5010	669	2940	4940	<9.1	16	2500	48	46	1.7
	199	29	43	48	570		9.3	489	19	16	1.2
61	13000	4020	1919	2869	2890	<9.1	<0.1	1189	16	59	1.0
	520	140	119	110	189			260	0.5	7	9.1
151	12500	612∰	75 <b>9</b>	2679	2790	16	16	2359	<9.1	44	1.0
	269	83	29	79	42	0.3	0.3	250		.7	0.0
211	13000	6429	550	3210	1780	<0.1	<0.1	1270	<9.1	35	0.6
	230	250	64	29	110			260		1	0.0

Table 5.2:4 The metal concentration (ug g-1 dry weight) of elements in the upper parts of <u>Calluna vulgaris</u>.

+

. .

÷

8

-

11.

· · · · · · · · · · · · ·

. ....

. . .

and the second .

k

「「「「「「」」」」」

!` The metal concentration (ug g-1 dry weight) of elements in the Zn Mg/Ca 1.2 upper parts of <u>festuca vivipara</u>. Means with Standard Errors below. (n=3 except 0171:n=2) 9.2 0.9 3.2 -----1.6 2.6 9.4 0.2 -0.0 2.1 0.1 9.6 : E EM -848 <9.1 240 <0.1 <0.1 <0.1 <0.1 <0.1 NI . Fe 950 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 1.070 <0.1 <0.1 528 <8.1 <8.1 28 C .... 9.2 8.3 5 50 BH Ca SE Na -9 BEE -× - not deternined 96E 8E • Table 5.2:5 z -----Duad rat = E 

		Mean	ans with	Standar	d Error	s bel		n=3)			
Quad	z	¥	Ra	Ca	6¥	Co	5	Fe		Zn	Ng/Ca
2	11200	5269	2999	3126	9850	11	16	6428	84	110	3.2
=	99111	5930	1830	4678	99121	28	5.	8698	246	2	2.8

the		
in		
elenents		
of		
weight)		( n=3)
dry	Lina	elon
1-6	Mari	rs b
611)	06e	Erro
tion	Plant	dard
tra	0 f	tan
cen	ts	h S
000	par	wit
metal	upper	Means
The		
2:6		
5		
ble		
-		

的人們能能力是希望的

.

2	11200	5269	2900	3128	9820	13	16	6428	84	110	3.2
	330	200	39.0	140	1578	~	~	1120	12	•	9.6
=	11100	5930	1830	4678	13196	28	15	8698	240	94	2.8
	420	320	110	169	189.0	9.4	m	1650	34	~	5.9
31	11999	6548	5169	4228	28400	22	25	19409	240	55	6.7
	640	629	878	130	4619	m	2	1820	48	~	
19	0006	4980	1550	4960	29300	28	38	15199	350	25	6.1
	430	430	289	279	8290	5	s	4478	82	רע	2.0
151	11999	9530	4510	3266	5500	18	17	3340	27	131	1.7
	1650	1679	468	188	619		m	989	m	15	-
211	12590	5278	3330	3918	12200	16	Ŧ	19299	83		3.0
	820	769	630	318	3340	•	=	2930	23	11	1.1
311	12100	9678	4260	4369	4950	~	13	2330	45	16	1.1
	2999	258	180	28	150	m	~	818	26	=	

是是他的思想。我们的问题,我们可能

			upper Means	parts of with Sta	r Rhacon	itrium rrors b	lanugi elow.	(n=4 ex	cept Ni	troge	(E=u:u.
Quad	z	×	R	Ca	6¥	Co	c	Fe	Ni	Zn	Mg/Ca
2	6598 268	988	246 38	1640 269	6150 2060	1.0		5770	54 22	30	3.8
=	6499 589	916	230	1128	4978	12 2.5	5.8	4729 2689	47.	27	+
F	7200	888	298	1510	24689	20	28	15589	250	8	16.1
19	6388	598	278	2860 320	12288	15 2.9	2.0	16899	168		11
12	7700	930	380	1968	18500	22	37	3916	160	42	8.9
12	6269	1199	326	668 68	670	9.9	(1.0)	818	49.1	36	1.8
Ξ	8689	1269	276	1319	. 4280		28	8888 249	35	- m	3.3
Ξ	7866	928	98	700	910 58	8 2.5	16 6.6	2989	48.1	22	1.3

**Marke** 

÷

I

) of elevents in the	norvegica (from 073).	; except Flower, n=1)	
concentration (ug g-1 dry weight	parts of Arenaria norvegica ssp.	with Standard Errors below. (n=3	
Table 5.2:8 The metal	npper	Means	

								everte			
Part	×	Na	Ca	βŅ	Co	Cr	Fe	Ni	Zn	Mg/Ca	
Shoot	13299	879 92	369	9580 630	56	25	5968	215	20	27.8 •.8	
Flower	6186	1779	1030	8530	147		2940	147	69	8.3	

1

-----

----

----------

-----

State of the state of the 1 . C. ٠. 

I,

.....

Also noteworthy are the higher concentrations of cobalt and chromium in Quadrats 31, 61 and 151 and nickel in Quadrats 31 and 61. While these are higher than the values in Allen they do not attain the high levels found in analyses from the other serpentine sites.

#### Calluna vulgaris.

For <u>Calluna vulgaris</u> the concentrations for the elements varied significantly between the samples except for zinc. Nitrogen and potassium concentrations were within the range given by Allen, except for Quadrats 11 and 61 for potassium. For these, potassium was lower but agreed with values from other serpentine areas. The calcium concentrations were generally below Allen's range and were intermediate for the values from other serpentine areas. The magnesium concentrations in <u>C.vulgaris</u> were within the range in Allen and were generally lower than values from other serpentine areas. Again the concentration of iron and heavy metals are quite high compared to Allen, but not as high as other values from serpentine areas.

## Festuca vivipara.

For <u>Festuca vivipara</u> the variance between the samples was significant for all the elements analysed except for nitrogen and zinc. For nitrogen the range of values was generally below the range in Allen, while zinc was within Allen's range. The concentrations for both potassium and sodium were in the low end of Allen's ranges and for potassium the concentration was below the values found for <u>F.rubra</u> from Johnston & Proctor (1980). Again, the concentration of calcium was below the range given in Allen and is generally higher than values from other serpentine areas. The concentration of magnesium varied widely between the different quadrats with the non-ultrabasic quadrats (Q.171, Q.311) below Allen's range, with one ultrabasic quadrat (Q.31) far above it. The other ultrabasic quadrats had magnesium concentrations that were low a.

when compared to other serpentine areas. The concentration of iron was high for the ultrabasic quadrats but was within Allen's range for the non-ultrabasic quadrats. Quadrats 31 and 61 had iron concentrations higher than the other serpentine areas. The heavy metal concentrations for cobalt, chromium and nickel were higher for several of the ultrabasic quadrats than Allen's values and were similar to other serpentine areas.

## Plantago maritima.

The concentrations of the elements analysed in <u>Plantago maritima</u> varied significantly between the samples except for nitrogen. (The material analysed was the upper part of <u>P.maritima</u> but included the 'woody' stock of the plant). For nitrogen the concentrations for the samples fell within the low end of Allen's range except for Q.61. The concentration of sodium was much higher for <u>P.maritima</u> than the other species analysed, exceeding the range in Allen in several quadrats (Q.31, 151, 311).

The concentrations of calcium were much higher as well, with the sample concentrations all within Allen's range. Magnesium concentrations were correspondingly high, all exceeding the range given by Allen. The resulting Mg/Ca quotients are higher than the few others reported from serpentine areas. Iron again is much higher, with all sample concentrations much higher than Allen's values, and the heavy metal concentrations in the samples are all higher than Allen. The sodium concentrations for <u>Plantago maritima</u> are noteworthy, since a maritime species is accumulating high concentrations, even when distantly removed from the sea, as previously found by Johnston & Proctor (1980).

#### Rhacomitrium lanuginosum.

For <u>Rhacomitrium</u> lanuginosum all the metals analysed varied significantly between the samples. The potassium concentration for all

39

1 10

.

•.

1° 11

the quadrats on Rhum are generally below the range of values reported from other serpentine areas, while the concentrations of sodium in the quadrats are generally higher than the reported sodium values. The concentration of calcium is higher than most of the other serpentine areas, with magnesium for the ultrabasic quadrats quite high compared to other serpentine areas. The concentration of iron again is quite high compared to other serpentine sites while the heavy metals concentrations from the quadrats are generally lower than other serpentine areas.

The metal concentration of <u>Arenaria norvegica ssp.norvegica</u> is noteworthy. The shoot levels of potassium sodium and zinc correspond well with Allen's ranges while calcium is very low and magnesium, iron, cobalt, chromium and nickel are all very high. Also noteworthy are the different concentrations between the shoot of the plant and the flowers for these metals. Calcium is much higher in the flowers resulting in a lower magnesium/calcium quotient and there is less iron, chromium and nickel. There is also less potassium though more sodium and cobalt. The mechanisms here are best compared to the results in Proctor & Woodell (1975) for <u>Centaurea paniculata</u> and <u>Alyssum bertolonii</u> to realise the complexity of the problem.

It is noteworthy that the concentrations of the metals in the species often were significantly different between the ultrabasic and non-ultrabasic quadrats.

5.3 Discussion of correlations with the soil analyses.

Correlation coefficients (r) were calculated between the metal concentrations within each species, within the soils at the site of occurrence for each species, and between these plants and soils (Proctor et al. 1980). Only the coefficients where P<0.01 have been reported (chance significant correlations would be expected at a lower level of

40

probability), and are discussed by species. (It is emphasised that the analyses and correlations are for shoots only). The representation of plant-available quantities by soil total nitrogen, cobalt, chromium and nickel and exchangeable cations must be considered in the interpretation of the correlations. All correlations for exchangeable nickel were not significant and the soil nickel correlations reported are for total nickel.

While some of the correlations for <u>Agrostis canina</u> (Table 5.3:1) are attributable to differences between ultrabasic and non-ultrabasic quadrats (e.g. high soil cobalt and high soil nickel on the ultrabasic; soil potassium and soil sodium; plant cobalt and plant chromium), several indicate possible preferential or selective ion absorption or translocation by the plant. It is noteworthy that nickel, magnesium and iron are highly correlated within plants of <u>A.canina</u> but not within the soils nor between the plants and soils. Also noteworthy are the correlations for the magnesium/calcium quotient with nickel and with magnesium but not with calcium; even though there is a correlation between magnesium and calcium in the soil. These results tend to support a selective absorption of magnesium (and possibly iron) with increasing plant nickel (Proctor & Woodell 1975). The negative correlations between plant zinc and soil nickel and cobalt might indicate competitive absorption or translocation between these ions.

For <u>Calluna vulgaris</u> several of the correlations again can be attributed to differences between ultrabasic and non-ultrabasic quadrats (Table 5.3:2). Also magnesium is again correlated with nickel as is the magnesium/calcium quotient, possibly suggesting an increased magnesium absorption or translocation.

There were many more significant correlations for Festuca vivipara
Jable 5.3:1	Correlation concentr soils at these pl	coefficients ations : with sites of occ ants and soil	(Pearson's) ( in plants of A urence of this s. ( Soil Ni c	P(Ø.Ø1) between m <u>grostis canina</u> ; species ; and be corr. are for Tota	etal within tween 1 Ni ).
Plants	``	Soils		Plants-Soils	
N - Ca -Ø.	883 **	K - Na	0.803 **	Co - N -0.91	4 ***
Mg - Ni Ø.	988 ***	Na - Ca	0.813 **	Cr - N -0.90	6 ***
Co - Cr Ø.	929 ***	Ca - Mg	0.863 **	Zn - Co -0.82	9 **
Fe-Ni Ø.	819 **	Co - Ni	9.898 ***	Zn - Ni -9.97	2 ***
Mg-Fe Ø.	792 +				
Mg/Ca - Mg	9.954 ***				
Mg/Ca - Ni	0.920 ***				

+ the value of 0.798 corresponds to P=0.01 , ** P<0.01 , *** P<0.001

	s t	oncentra oils at hese pla	sites ants	5 : 5 0	wit f oc soi	hin plan curence ls.(Soil	of thi Ni co	<u>Callu</u> s spec orr. at	na ci re	vul es ; for	<u>garis</u> ; w and betw Total Ni	ithi leen ).
Plants			So	ils				P1:	an	ts-S	oils	
tg - Ni	8.949	***	N	-	K	0.843	**	к	-	Mg	-0.845	**
Cr - Fe	0.920	**	Na	-	Ca	9.886	**	K	-	Co	-8.913	**
1g/Ca - Mg	9.981	***	Ca	-	Ng	0.845	**	Zn	-	Fe	-9.936	***
Ma/Ca - Ni	0.938	***	Co	-	Ni	9.881	**					

· hand a

than for the other species analysed, with again many attributable to the differences between ultrabasic and non-ultrabasic quadrats (Table 5.3:3). It is noteworthy that iron, magnesium and the heavy metals cobalt, chromium and nickel are all highly correlated in the plants, and that they are correlated with the magnesium/calcium quotient. Of particular interest is the correlation between calcium and magnesium, cobalt, iron and nickel, which indicates a possible preferential absorption and ameliorative effect of calcium. Calcium has often been considered as ameliorating the effects of heavy metals (Proctor & Woodell 1975) and these results support this idea. Again a possible ameliorative effect of magnesium needs to be considered (Proctor & McGowan 1976). Also of interest is that zinc in the plant correlates positively with soil nitrogen while negatively with soil nickel, and that the plant magnesium/calcium quotient is positively correlated with soil nickel.

The correlation coefficients for <u>Plantago maritima</u> (Table 5.3:4) must be interpreted considering the plant analysed included the 'woody' stock, part of which is root. <u>P.maritima</u> is the only species analysed where the plant and soil concentrations of cobalt, chromium and nickel were correlated. Also plant magnesium, iron and nickel were correlated, and the magnesium/calcium quotient correlated with nickel, again suggesting a possible amelioration for nickel. The zinc concentration is negatively correlated with both plant and soil nickel again indicating a possible competitive interaction.

For <u>Rhacomitrium lanuginosum</u> (Table 5.3:5) the plant is not actually growing in the soil. Again, in the plant material magnesium, iron and nickel are all correlated and the magnesium/calcium quotient is correlated with nickel, indicating possible preferential absorption or translocation for these elements.

lants			50	ils			Plants-Soils	
Ca - Ng	0.897	***	N	- K	0.782	**	Ca - N -0.81	7 **
Ca - Co	9.845	**	K	- Na	0.922	***	Fe - Ni 0.78	5 **
Ca-Fe	9.912	***	K	- Co	-9.839	**	Zn - N Ø.86	1 **
Ca - Ni	8.999	***	Na	- Ca	0.785	**	Zn - Ni -0.76	3 +
Ca-Zn	-9.766	**	Ca	- Ng	0.820	**	Mg/Ca - Ni 0.77	9 **
ig - Co	<b>9.833</b>	**	Co	- Ni	0.901	***		
ig – Cr	9.871	**						
ig - Fe	0.963	***						
1g - Ni	0.988	***						
Ca - Cr	9.785	**						
Co - Fe	9.935	***						
Co - Ni	0.857	**						
Cr - Fe	9.893	***						
Cr - Ni	0.818	**						
Fe - Ni	0.951	***						
Mg/Ca - (	a Ø.88	4 ***	<b>k</b>					
Mg/Ca - H	19 0.79	6 ***	E					
Mg/Ca - (	o Ø.85	ð **						
Mg/Ca - (	r 0.89	4 ***	k i i i i i i i i i i i i i i i i i i i					
Mg/Ca - A	e Ø.97	7 ***						
Mg/Ca - H	li 0.97	4 ***						

Table 5.3:3 Correlation coefficients (Pearson's) (P(Ø.ØI) between metal concentrations : within plants of <u>Festuca</u> vivipara ; within soils at sites of occurence of this species ; and between these plants and soils.(Soil Ni corr. are for Total Ni). - ...

State State State State

Plants		Soils			P1;	ants-S	oils	
K - Fe -∯.871	**	К -	Na Ø.	303 **	Co	- Co	0.957	***
Mg - Fe Ø.878	**	Na -	Ca Ø.	813 **	Co	- Ni	0.854	**
Mg - Ni 0.890	**	Ca -	Ng Ø.	363 **	Cr	- Cr	8.807	**
Co - Cr 0.844	**	Co -	Ni Ø.	787 ***	Ni	- Co	0.835	**
Co - Ni 0.938	***				Ni	- Ni	9.827	#:#
Co - Zn -9.891	**				Zn	- Ni	-9.827	#1#
Fe - Ni Ø.859	**							
Ni - Zn -0.798	**							
Na/Ca - Ha 0.97	7 ***							
Mg/Ca - Fe 0.83	3 **							
Mg/Ca - Ni 0.81	3 **							

1000

*

Table	5.3:5	Correlation coefficients (Pearson's) (P(0.01) between metal
		concentrations : within plants of <u>Rhacomitrium lanualnosum</u> :
		within soils at sites of occurence of this species ; and
		between these plants and soils. (Soil Ni corr. are for Total Ni)

Plants			Soi	ils			Plants-Se	pils	
Na - Zn	<b>Ø.</b> 849	**	N	- K	Ø.782	**	Ca - Fe	-9.897	***
Mg - Co	0.938	***	K	- Na	0.922	***	Fe - Ng	-9.773	**
Mg - Fe	0.882	***	ĸ	- Co	-0.839	**	Cr - Mg	-0.763	+
Mg - Ni	0.980	***	Na	- Ca	0.785	**	•		
Co - Cr	₽.783	**	Ca	- Ha	9.829	**			
Co - Fe	0.936	***	Co	- Ni	8.981	***			
Co - Ni	0.895	***							
Cr - Fe	8.946	***							
Fe - Ni	9.821	**							
Mg/Ca -	Hg 0.949	***							
Mg/Ca -	Co 0.840	**							
Mg/Ca -	Ni 0.910	***							

+ the value of 0.765 corresponds to P=0.01 , ** P<0.01 , *** P<0.001

Soil solution Analyses.

6.1 Introduction

A useful estimate of plant-available ions and nutrients is obtained using soil solutions (Nye & Tinker 1977). Previous work using soil solution estimates have reproduced tissue metal concentrations and symptoms broadly resembling those from field grown plants or grown on soil from serpentine sites (Anderson <u>et al.1973, 1979;</u> Johnston & Proctor 1981). Soil solutions were determined for comparison with other workers and are used as a basis for growth experiments (Chapter 7). Soil solutions were measured on soils that were determined both by reference to exchangeable analyses and soil multivariate analysis (Chapter 3), and then randomly within a transect.

Adams <u>et al</u>.(1980) found centrifugation and column-displacement methods produced similar results for soil solution, but soil-solution concentrations can vary with the wetness of the soil analysed (Nye & Tinker 1977). Russell (1973) points out that nitrate, chloride and sodium behave as if they are all in solution at all times, and therefore vary inversely with moisture changes, while potassium concentration is relatively unaffected by these changes. Calcium and magnesium behave similarly to nitrate, chloride and sodium (Nye & Tinker 1977). Russell (1973) finds phosphate independent of soil solution concentration, and Nye & Tinker (1977) stress the relationship between labile phosphate and phosphate in solution cannot be predicted. However, the relationships for these ions are complex and affected by many factors.

#### 6.2 Materials and Methods

Soil solutions were extracted by the method of Anderson <u>et al.</u>(1973). Air-dried soil was brought to field capacity (see below), with deionised water and maintained moist for 3d. The soil was then centrifuged at 12000g for 1h at 0°C, the supernatant collected and filtered through Whatman's No. 42 filter paper. The solution was stored ag-20°C until

43

1. 1. 1

.

analysed.

Field capacity was used since on Rhum, soils are most often at this degree of saturation because of high rainfall and low potential evapotranspiration (Ragg & Ball 1964, Pomeroy 1974, Nature Conservancy Council 1974). The term field capacity, as used in this work (in the lab.), means the soil was moistened with deionised water until it drained into a dish below the pot containing the soil. The soil was then kept thus moistened with water for 3d, with the dish below kept so that it was just moist.

Exchangeable cations were determined as for the other soil measurements (Section 3.2.4). Chloride was determined in the soil solution extracts by a silver chloride titration on a Buckler-Cotlove Chloridometer Automatic Titrator (Cotlove <u>et al</u>.1958). Phosphate was determined in the soil solution extracts colorimetrically, after Allen <u>et al</u>.(1974) on a Cecil Instruments CE272 UV Spectrophotometer.

## 6.3 Results and discussion.

The soil solutions reported (Table 6.3:1) can be regarded as representing most of the ions at their most diluted state, and that for drier soil conditions, the concentrations would be higher. This is especially important for the magnesium and nickel levels because of their possible effects on vegetation. Further analyses could not be made because of insufficient quantities of solution.

A wide range of ionic concentrations have been reported from soil solutions (Epstein 1972; Bohn 1979, Russell 1973 and Nye & Tinker 1977). The soil solutions from Rhum tend to have high values for phosphate, iron and zinc and a low value for calcium.

Comparisons with soil solution values from other serpentine sites (Proctor <u>et al</u>.1981), showed several differences for the Rhum

rat	Hd	Phos- phate	×	R	ت ٩	6 M	13	Cu	نه ب	i	μz	Ng/Ca
IE	5.4	E.1	3.6	9.1	1.2	3.3	16.8	9.1	0.7	9.1	9.84	2.8
45	5.2	2.3	8.1	11.0	1.2	4.5	21.1	9.1	9.9	9.9	9.93	3.8
32	4.5	1.3	4 · E	7.4	1.2	5.1	14.8	6.1	9.1	0.1	0.06	4.2
38	4.9	9.9	8.4	1.11	2.0	7.3	19.9	9.1	<b>6</b> . 6	0.0	9.08	3.7
62	6.1	2.B	1.1	18.4	2.3	7.8	28.7	9.9	9.9	9.9	0.07	3.0
64	6.1	0.0	1.5	14.7	1.9	7.4	19.9	8.8	<b>9</b> .2	9.1	9.04	3.9
65	6.2	9.5	1.3	18.2	3.8	9.6	21.1	8.8	9.2	9.9	9.99	3.2
68	5.6	2.2	2.2	20.5	2.8	8.5	26.9	8.8	9.1	0.1	9.02	3.0
92	5.7	0.0	1.8	7.9	1.0	3.4	11.7	0 · 0	2.6	0.1	9.94	3. <b>4</b>
53	5.1	9.8	5.7	6.9	9.9	3.2	16.5	9.1	0.2	9.9	0.05	3.6
97	6.1	2.5	3.1	7.6	1.9	4.9	11.7		1). G	0 · 0	0.08	1.9
98	6.4		3.1	15.6	1.9	8.8	18.5	9.1	1.4	9.2	9.47	4.6
121	4.9	<b>9.</b> 2	2.8	4.5	6°2	1.2	11.7	9.9		9.9	8.00	2.4
153	4.6	9.4	6.7	10.6	9.9	1.5	29.6	•	e	9.9	•	1.7
55	4.9	2.3	5.6	3.4	6.7	2.8	15.5	0.0	9.1	9.9	0.02	2.9
72	4.6	<b>0</b> .6	16.5	19.6	2.7	7.9	24.6	9.1	4.1	9.9	8.16	2.9
92	4.8		3.4	5.1	9.8	4.5	14.6	0.0	0.7	9.9	9.04	5.6
26	4.8	2.2	5.9	5.0	9.9	4.6	12.1	9.9	0.7	8.8	9.02	0.1
196	4.5	1.9	8.5	5.4	1.5	7.5	11.7	9.2	4.9	<b>9</b> .2	0.16	5.0
861	5.9	9.9	5.4	5.3	1.9	3.5	11.9	9.9	6.9	9.9	59.93	3.5
215	4.5	2.2	1.5	6.9	1.5	2.7	13.6	9.9	0.1	9.9	9.62	1.8

31 1818

Table 6.3:1 Soil solution values for pH , phosphate , polassium , sodium , calcium ,

.....

.

11-

analyses. The magnesium/calcium quotients were lower on Rhum than for other Scottish serpentines, while the chloride concentrations were higher (with the exception of the Keen of Hamar in Shetland). This almost certainly reflects the site's proximity to the sea. The value for nickel was near the detection limit of the instrument  $(0.1 \text{ mg l}^{-1})$ , and the higher values recorded were 0.2 mg l⁻¹ in two samples, five had 0.1 mg l⁻¹, the rest fell below this. Other British serpentine sites (except Meikle Kilrannoch) show a similar range of nickel concentration. Soil solution potassium and sodium are higher on Rhum than most of the other serpentine sites, with the Keen of Hamar having higher values (again possibly reflecting oceanic effects), while the soil solutions from Meikle Kilrannoch have values similar to those from Rhum. Phosphate values are generally similar and relatively high in serpentine sites and the Rhum soils are no exception to this.

The bases in the soil solutions were also considered in m-equiv. 1⁻¹ (not reported) and as a proportion of the sum of their total (Table 6.3:2). The total bases in m-equiv. 1⁻¹ were far below the values given in the above literature for normal solutions, an expected result since the soil solutions were measured at their wettest (most dilute) condition. However, the proportion of nickel in these dilute soil solutions is noteworthy, ranging from 0.2-0.6% in six of the soil solution of solutions from quadrats from ultrabasic areas. Also the proportion of sodium and magnesium in the soil solution is high, with the proportion of calcium generally low (<10%).

6.4 Relationships between soil solution and exchangeable bases.

Correlation coefficients (r) were determined for each cation between the soil solution values and the exchangeable values for the 21 quadrats where both were measured. Additionally, correlation

		U .	r une ca	tions (T	ron labi	e 3.3.3	5:1
		1	n m. equ	1v 1-1)	for each	quadra	at.
Quad-	к	Na	Ca	Нg	Fe	Ni	Total
rat	r	z	z	ž	z	z	z
31	10.8	46.7	7.1	32.1	2.9	9.4	100.0
34	18.0	41.7	5.2	32.3	2.8	9.9	199.9
35	9.7	35.9	6.7	46.9	0.4	0.3	99.9
38	15.1	34.0	7.0	42.3	1.5	0.0	99.9
62	1.8	52.7	7.6	37.9	9.9	9.0	109.0
64	2.7	45.9	6.8	43.8	0.5	0.2	79.9
65	1.9	44.7	8.5	44.6	0.4	0.0	100.1
68	3.1	49.7	7.8	39.0	0.2	0.2	110.0
92	5.6	42.2	6.1	34.3	11.4	0.4	100.0
93	29.2	36.1	6.2	36.4	1.0	9.9	99.9
97	9.0	37.6	5.7	45.7	2.0	3.0	100.0
199	4.8	41.6	5.8	44.3	3.1	8.4	101.0
151	18.2	49.5	6.3	25.0	1.#	9.9	100.0
153	21.1	56.8	5.5	15.2	1.4	9.3	100.0
155	28.9	29.9	7.1	33.3	9.8	0.0	199.9
172	19.1	38.6	6.1	29.5	6.7	6.9	149.9
192	11.7	29.8	5.4	49.7	3.4	0.0	100.0
193	18.5	26.6	5.5	46.4	3.1	8.0	199.1
196	18.6	20.2	6.4	53.0	1.2	9.6	100.0
198	18.7	31.3	6.8	39.0	4.3	8.9	100.1
215	6.3	43.5	12.5	37.0	0.7	9.9	198.8

Table 6.3:2 Nean soil solution cation concentrations expressed as a percentage of the sum of the cations (from Table 3.3.5:1 in m. equiv 1-1) for each quadrat.



-

and a state of the set

----

coefficients (r) were determined for each cation (when expressed as a proportion of the total bases as m-equiv.  $1^{-1}$ ), between soil solution and exchangeable values (Table 6.4:1). The correlation between soil solution pH and the pH for each soil was also determined.

Expressing the cations as a proportion of the total for each quadrat improved the correlation between soil solution and exchangeable cations for magnesium and potassium (Table 6.4:1). For the other cations the correlation was reduced, often to a non-significant value. This relationship was investigated to determine if the relationship between exchangeable and soil solution cations could be improved by this expression. However, since it was not, this relationship is not considered further.

Magnesium, calcium and sodium correlated well between the two measurements, with the relationship between soil solution and exchangeable analyses apparently showing a saturation curve (Fig. 6.4:1). While the factors affecting these two measurements are complex and varied (Nye & Tinker 1977), the results support a relationship between them. While one cannot predict soil solution values from exchangeable, for these cations there seems to be a relationship for the soils measured. The magnesium/calcium quotients correlated well (r = 0.783, p<0.001), supporting this.

Potassium and iron also correlated highly between the soil solution and exchangeable values, but this is due to the location of a few extreme points (Fig. 6.4:1). With the removal of these points the correlation between the soil solution and exchangeable levels for both of these cations is no longer significant. (However a relationship may exist and not be illustrated by these data). Potassium was noted above not to vary inversely with the water concentration in the soil solution, so with the low exchangeable potassium values in the data (except one point), it is possible that the information is insufficient to define a

46

....

il

		and	exchangeable	cations. ( n=21 )	
Cation	Soil	solution	(ng 1-1) and	Both expressed as perce	nt
	e	xchangeabl	e (ug g-1)	composition in	
		cations		m-equiv. 1-1	
К (	1)	4.537	**	<b>#</b> .794 ***	
Na		6.893	***	Ø.307 ns	
Ca		€.778	***	9.539 **	
Ng		6.645	***	6.747 ***	
Fe (	1)	9.716	***	0.056 ns	
Ni (	2)	8.454	*	<b>9.345</b> ns	
Zn		0.353	ns	-#_124 ns	

Table 6.4:1 Correlation coefficients (r) between soil solution

-

.....

•

ns not significant , * P<0.05 , ** P<0.01 , *** P<0.001 (1) For potassium and iron the correlation coefficients were

influenced by a few points (see Fig 6.4:1) and are not significant if these are removed.

(2) For nickel the values for the soil solution are near the detection limit. (see Fig 6.4:1)



relationship. Iron's status in the soil is too poorly understood to examine a relationship.

Nickel correlated significantly between soil solution and exchangeable values, but since the levels measured are so near the detection limit of 0.1 mg  $1^{-1}$  this relationship is possibly invalid. Nickel has been shown to be toxic at the levels in the soil solution (Wong & Bradshaw 1982), and from Fig. 6.4:1 one can see that if nickel was present in the soil solution it was also present in the exchangeable fraction. Again however the situation is complex; with ions in low concentrations, such as toxic ions, often having binding sites in the soil with high affinities (Nye & Tinker 1977).

Zinc was not discussed because it did not correlate significantly between soil solution and exchangeable, again probably due to low concentrations of both measurements.

pH correlated well (r=0.784, p<0.001) between the determinations as described in the Section 3.2.3 and the pH of the soil solutions (Fig. 6.4:1).

#### CHAPTER SEVEN

Growth of serpentine and non-serpentine races of Agrostis canina in solution-culture media simulating soil solutions on Rhum.

# 7.1 Introduction

Two experiments were designed using solution-culture techniques to investigate some of the plant adaptations and important chemical factors suggested by the ordinations and chemical analyses described earlier.

Many of the previous experiments which have been made on serpentine plants and soils are open to serious criticism. Crop plants, particularly oats, (Avena sativa) have often been investigated because of their well-documented nickel-toxicity symptoms (Hunter & Vergnano 1953, Spence & Millar 1963, Proctor 1971a, Proctor & McGowan 1976). Although these are useful for pointing to acute toxicities, explanations of adaptations to serpentine soils must involve native plants. But even work with native plants has often been of limited value. For example, in experiments with serpentine soils and races (Proctor 1971a, Hart 1977, 1980) the plant-available ions causing the symptoms are unknown. In culture solution work conventional full nutrient media have often been used and these have a very different composition from those likely to be found in the soils in nature (Madhok & Walker 1969, Main 1974, Marrs & Proctor 1976). In other experiments, the plant response measured has been for a single characteristic (usually growth in length of a single adventitious root) for a few days in single salt (+calcium nitrate) solutions (Wilkins 1957, Wong & Bradshaw 1982).

Reasons for using indigenous races of <u>Agrostis canina</u> from both ultrabasic and non-ultrabasic sites include: the material investigated is directly related to the problem and tests if adapted races are present; the races will be adapted to similar environmental conditions;

48

. . . .

. . . . .

1.1.

1.1

12-1-1

*

..

1. . . .

· · 4

2.

.

and no problems of validity or comparison arise as when using crop species. There is sufficient work recorded in the serpentine and heavy-metal ecological literature to accept that a toxicity problem is quite often present, especially for crop species (Antonovics, Bradshaw & Turner 1971, Proctor & Woodell 1975). However, several species, particularly grasses, have been shown to be able to develop tolerant races and grow with some success on potentially toxic soils (Cox & Hutchinson 1980, Johnston & Proctor 1981). It is necessary therefore to use experimental material from the area involved.

Problems with the difficulties of solution work have been recognised.Clymo (1962) used actual soil solutions, and solutions made to simulate these, from the areas he studied as culture media, in his work on the calcicole/ calcifuge problem with <u>Carex demissa</u> and <u>C. lepidocarpa</u>. Johnston & Proctor (1981) in their investigation of a serpentine race of <u>Festuca rubra</u>, successfully used culture media which simulated soil solutions (extracted by a centrifugation method). Their methods were used as the basis for the experiments reported here, I modified their techniques by using relative growth rates from two harvests rather than final dry weight as a measure of plant response (Hunt 1978).

I made two experiments to test the effect of different concentrations of nickel, magnesium and calcium (which the ordination and analyses had suggested were important distinguishing features between the Rhum ultrabasic and non-ultrabasic soils), on tillers of <u>Agrostis</u> <u>canina</u> collected from both types of soil. It was hoped that the experiments would help explain the causes of the vegetative differences between ultrabasic and non-ultrabasic soils.

7.2 Methods

7.2.1 Preparation and analysis of plants.

49

*

•

...

5

ŝ

<u>Agrostis canina</u> was collected in July 1980 from two ultrabasic areas (clone Sl from Quadrat 61, S2 from Quadrat 31) and from a nonultrabasic area (clone NS from Quadrat 151). These locations were chosen initially from field observation as representative of a range of sites and from their chemical analyses, and allow comparison with the analysis of field grown <u>A. canina.</u>

50

The clones were grown for over a year in John Innes No. 2 compost (this soil has a low concentration of heavy metals and an exchangeable magnesium/calcium quotient of 0.16, Johnston 1976) in a glasshouse. They were re-potted in fresh potting compost at regular intervals and in November 1981 weretransferred to a growth room with a 16h day and temperature of 12-16°C until tillers were cut in February 1982. The plants were split into single tillers by cutting below the first node from the apex, and were supported in glass sleeves and rooted in a solution of 0.1 g  $1^{-1}$  calcium nitrate (25 mg  $1^{-1}$  $(Ca^{+2})$  in a growth room with a 16h day and a temperature of  $16^{\circ}C$ . This Ca concentration was used because pretreatment concentrations can be important in the interpretation of results (Rorison 1969). Johnston & Proctor (1981), showed 0.2 g 1⁻¹ calcium nitrate to be beneficial in root development, but I decided to use a lower concentration in view of the very low calcium concentrations in the Rhum soils. The tillers were slow to root and had to be kept in solution for 3 weeks (the solution level was maintained with deionised water), before they were ready. Just before the experiments, rooted tillers of the three clones of uniform size were selected and thoroughly rinsed in deionised water. Six randomly chosen tillers of each race were then dried, weighed and analysed to give initial weight and chemical composition values.

All chemical analyses were carried out as described in Chapter

5, except the plants were rinsed twice (rather than four times) in deionised water. Root analyses were not made because Johnston & Proctor (1981) had found that shoot analyses enabled the most important conclusions to be drawn. Moreover, in my experiment, the roots occasionally had negative relative growth rates (see below, Fig. 7.3.1:3) indicating root sloughing, and their small weights would have necessitated combining replicates and hence losing tests of significance.

Relative growth rates (RGR) were calculated to express the plants' response (Hunt 1978). RGR's have the advantage of removing the effect of initial differences in size by using a rate equation. (Since the stage of its life cycle that a plant is in can affect its growth rate, the different clones were tillered at the same time to increase the probability that they would be at a similar stage).

To interpret the results, an analysis of variance was calculated, using the GENSTAT ANOVA programs, for the RGR's and the elemental concentrations of the shoots. Significant differences were tested using the restricted Least Significant Difference.

7.2.2 Solution culture techniques.

Solutions simulating the soil solutions from the clones' sites of collection (Section 7.2.3) were used in the experiment. The culture solutions were contained in 600-ml beakers wrapped in aluminium foil. Each beaker had one plant tiller, in a glass sleeve, in a hardboard cover, suspended in the solution. The solutions were freshly made up and changed weekly and topped up daily with deionised water. The pH for each solution was measured at the beginning and end of every week. It was hoped to make the experiments at temperatures resembling those on Rhum, but because of the slow rooting time of the tillers and the slow growth of the clones in soil culture, it was decided to use 20°C. Both experiments were conducted for six weeks with an intermediate harvest at three weeks for Experiment 1. At each harvest the plants harvested 141

*

......

-----

int.

were washed twice in deionised water, oven-dried at 60°C, their weights recorded and the shoots analysed.

7.2.3 Experiments 1 and 2

Experiment 1 was a factorial combination of the three races of <u>A. canina</u>, with two concentrations each of nickel, magnesium and calcium, replicated three times for two harvests (3x2x2x2x3x2 = 144 pots). In the following account: +Ni means added nickel, ONi not added; magnesium and calcium are denoted by suffixes Mg_H and Ca_H (high) and Mg_L Ca_L(low).

The experimental solutions were based on the soil solutions from Quadrats 62 and 64 for ultrabasic areas, and Quadrats 151 and 153 for the non-ultrabasic (Table 6.3:1 and Table 7.2.3:1). Insufficient solution had been available for complete analysis of the soil solutions. For the nutrients (which had been determined) the mean concentration from the four quadrats were used in the culture solutions; for  $Mg_H$  and  $Ca_H$ the mean was for Quadrats 62 and 64, while  $Mg_L$  and  $Ca_L$  the mean was for Quadrats 151 and 153. For nickel it was decided to use the highest value found in the soil solutions measured (0.2 mgl⁻¹, Quadrats 100 and 196, Table 6.3:1), because nickel was low in the ultrabasic Quadrats 62 and 64, and I was anxious to establish the likelihood of nickel toxicity. Thus if the highest recorded soil-solution concentration had no effect, then nickel toxicity was unlikely in the Rhum soils.

Ammonium, nitrate and sulphate were not determined in the soil solutions and were initially estimated by comparison to the soil solution values from Meikle Kilrannoch (Johnston & Proctor 1981). This was done using ratios based on the phosphate determinations of the two sites. For ammonium and sulphate this estimate was followed, but the final concentration of nitrate in the solution was the quantity necessary to balance the magnesium and calcium ions (the quantity used was very near the estimate). When magnesium and calcium were varied below the high concentrations, .

Tor	n,
fron 53)	f th
5 -	0 5
IS1	tion
solu	entra
lios	Conc
f the	enent
0 0	el
(1-1)	the
Ew)	and
ions	:suc
trat	utio
r ul	sol
fon	(uo)
ent 64)	2
elen 52 å	Jasi
an ts	trat
ara	1
The	non
3:1	
7.2.	
ole	
Tal	

	culture	solutions used	in Experiments 1 and 2.		•
Element	Soil UB	Solution Non	Culture Solution Exp. 1	Culture Exp	Solution . 2
				RB .	Non
N (as NH4+)		pu	9.16	9.26	9.96
(-EON se)		pu	37.0	36.7	36.7
+ d	1.1	6.3	6.87	1.40	9.30
K	1.3	4.8	3.13	1.97	5.28
Na	16.6	7.6	12.2,13.9,23.8,25.4 #	17.0	21.8
Ca	2.1	6.7	0.7,2.1	2.1	0.7
Mg.	7.2	1.3	1.2,7.3	7.2	1.2
		pu	9.271	9.268	0.268
C1	24.3	28.7	21.27	27.52	17.65
Cu	<0.1	(8.1	0.002	9.982	9.992
Fe	9.1	9.2	0.150	8.895	9.291
Mn		pu	9.650	9.849	9.949
No		pu	8.6678	9.9877	6.6977
Ni	9.1	6.9	9.9,9.2	9.9.9.2	9.0.0.2
S (as \$04)		pu	0.598	9.665	0.592
Zn	9.95	0.00	0.0050	9.9548	0.0049
ad not deter					

ма поцистеганиси • P as PO4 in soil solution , as H2PO4 in culture solution • Where the concentrations were altered in an experiment all concentrations are given.

sodium nitrate was used to maintain the nitrate concentration. This resulted in higher sodium concentrations inversely with lower magnesium and calcium in solution, but Johnston & Proctor (1981) found this to be unimportant in similar work. For the micronutrients B? Cu. Mn, Mo and Zn, one-tenth of the Hoagland & Arnon (1950) concentrations were used, after Johnston & Proctor (1981). While zinc was considered to be possibly important (it is experimentally altered in Experiment 2), it was felt necessary to use the lower concentration of one-tenth Hoagland & Arnon's value instead of the value measured from Rhum, to be able to separate any possible zinc response from calcium or magnesium responses between the two experiments. The soil solution and culture-solution values used are in Table 7.2.3:1 and the chemicals used in the different culture media are in Table 7.2.3:2.

Experiment 2 was designed to test the importance of further differences of the two soil-solution types (ultrabasic and non-ultrabasic) by altering the concentrations of phosphate, potassium, chloride, iron, and zinc to simulate the chemical composition of the two solution types. Ammonium and sulphate were also altered since they are the paired ions of two of those altered (Tables 7.2.3:1 and 2). Experiment 2 was a factorial combination of two races of A.canina, with two concentrations of nickel, in the two solution types (UB and Non) replicated three times with one harvest (2x2x2x3x1 = 24 pots). Difficulties obtaining sufficient allowed tillers prevented the use of race \$2 in this experiment and unfortunately, only one harvest. Analysis of the results and shoots were as for Experiment 1.

# 7.3 Results

7.3.1 Relative Growth Rates

The abbreviations used for the different relative growth rates in the two experiments are summarised in Table 7.3.1:1. For RGR calculations

53

*

in.

4

*

	Experiment 1	Experime	nt 2
Chemical		UB	Non-UB
NaC1	520	726	362
KC1	80	50.4	135
Na2SO4	5.205	5.153	5.153
NH ₄ H ₂ PO ₄	9.0	14.4	3.1
NaFeEDTA	2.69	1.70	3.60
I3BO3	4.6	4.55	4.55
CuSO ₄ .SH ₂ O	0.032	0.032	0.032
inS04.4H20	0.91	0.90	0.90
(NH ₄ ) ₆ MO ₇ O ₂₄ .4H ₂ O	0.0074	0.0073	0.0073
2nSO ₄ .7H ₂ 0	0.076	0.839	0.075
1g(NO ₃ ) ₂ .6H ₂ 0	50,300	297	50
$Ca(NO_3)_2.4H_2O$	17.5,52.5	52.5	17.5
IaNO3	70,500,570	-	564
li (NO,),6H,0	0,3.4	0.3.4	0,3.4

 $\begin{array}{c} \underline{ Table \ 7.2.3:2} \\ \hline \\ Experiments \ 1 \ and \ 2. \ (\mu \ moles \ 1^{-1}). \end{array}$ 

-

Ser.

*

.....

# Table 7.3.1:1 The abbreviations used for Relative Growth Rates in Experiments 1 and 2.

RGR	Relative Growth Rate
RGRWØ2 RGRVØ1 RGRV12	RGR Whole plant from initial to Harvest 2. RGR Whole plant from initial to Harvest 1.

34-

and the state of the

RGRS refers to the corresponding values for shoots, RGRR for roots. For experiment 2 there was only one harvest. Figs. 7.3.1:1-3 The mean RGR's (harvest 1 shaded) for the different treatments and harvests in Experiment 1. In each group of histograms the order for the clone type is NS (non-serpentine for Quadrat 151), S1 (ultrabasic from Quadrat 61), and S2 (ultrabasic from Quadrat 31). Abbreviations for RGR's and plant parameters are in Table 7.3.1:1. Plant dry weights are in Appendix VIII. 2.1

.





-



....

The second

.

and the second

......

1 2 2



Fig.7.3.1:3

Fig. 7.3.1:4 The mean RGR's for the different treatments in Experiment 2. In each group of histograms the order for the clone type is NS (non-serpentine from Quadrat 151), and S1 (ultrabasic from Quadrat 61). Abbreviations for RGR's and plant parameters are in Table 7.3.1:1. Plant dry weights are in Appendix VIII.



		Hg	Race	Ca Race	Ca Ni	Ni Race	Ng Ca Race	Ca Ni Race
RGR	WØ2	-++	***				**	
RGR	WØ1		***			**		
RGR	¥12	-***		**			**	
RGR	502		***				*	
RGR	SØ1		***			•		
RGR	S12	-***		**			14	
RGR	RØ2		***	*				**
RGR	<b>RØ</b> 1		***			**		
R 6R	R12	-*		**	* .			***

Table 7.3.1:2 The significant sources of variation of RGR in Experiment 1. (See Fig. 7.3.1:1-3, Tab. 7.3.1:3)

P<0.05 , ** P<0.01 , P<0.001</li>
for Ng implies that the higher magnesium concentration resulted in a lower RGR.



*

.....

# Table 7.3.1:3The significant levels of the significant variation<br/>(Table 7.3.1:2) in Experiment 1, determined by using<br/>Least Significant Differences, see Fig. 7.3.1:1-3 (the<br/>variation for the magnesium treatment, considered<br/>singularly is not reported in this table, as it can be<br/>inferred from Table 7.3.1:2).

100

*

RGR	Treatment	Level
RGRWO2	Race	NS>S1
	<b>X A B</b>	NS>S2
	Mg-Ca-Race	NS, Mg _{L&gt;H} Ca _H
		NS,Mg _H Ca _{L&gt;H}
		NS>S2,Mg _H Ca
		NS>S1, Mg, Cau
		NS>S2, Mg, Ca,,
		NS>S2. Mg. Ca.
		SI Ma Ca
		SI, MEHCEH>L
		SI, MgL>HCaL
RGRWO1	Race	NS>S1
		NS>S2
	Ni -Race	SI>SZ NS ONi>+Ni
		NS>S1, ONI
		NS>S2,ONi
		\$1>\$2,0Ni
RGRW12	Ca-Race	NS,Ca _{L&gt;H}
		NS>S1,Ca,
		NS>S2, Ca.
		S2>NS, Ca,
	Mg-Ca-Race	NS, MguCar Su
		NS, Mg,Ca.,
		NS>S2.Mg.Ca
		S1_Mg Ca
		SING MA CA
		S2>NS, MgHCaH
RGRSO2	Race	NS>S1
	N. 0. 7	NS>S2
	Mg-Ca-Race	NS, MgL>H H
		NS, Mg _H Ca _{L&gt;H}
		S1, Mg, _uCa,

# Table 7.3.1:3 (contd.)

÷.

RGR	Treatment	Level
RGRSO1	Race	NS>S1 NS>S2 S1>S2
	Ni-Race	NS, ONI>+NI NS>S1,ONI NS>S2,ONI S1>S2,ONI
RGRS12	Ca-Race	NS,CA _{L&gt;H} NS>S1,Ca _L NS>S2,Ca _L S2>NS,Ca _H
	Mg-Ca-Race	NS,Mg _H Ca _{L&gt;H} S1,Mg _H Ca _{L&gt;L} S1,Mg _L Ca _{L&gt;H}
RGRRO2	Race	NS>S1
	Ca-Race	NS>S2 NS>S1. Ca.
		NS>S2. Ca.
		NS>S2.Ca.
		S1>S2.Ca
		S2. Ca
	Ca-Ni-Race	NS>S1. Ca ONi
		NS>S2,Ca,ONi NSONi>S2∓Ni,Ca _u
		S10Ni>S2+Ni,Ca _u
		S2Ca _u ONi>+Ni
		NSONi>S1+NiCa,
		NSONi>S2+NiCa
		S1,Ca _{H&gt;I} +Ni
		S2,Ca _{L&gt;H} +Ni
		S2,Ca _L +Ni>ONi
RGRRO1	Race	NS>S1 NS>S2 S1>S2
	Ni-Race	NS>S2,+Ni NS>S2,ONi S1>S2,ONi S2,+Ni>ONi

* ......

U.

# Table 7.3.1:3 (cont.)

RGR	Treatment	Le ve 1		
RGRR12	Ca-Ni	Ca _H ONi>+Ni		
		Ca _L +Ni>Oni		
	Ca-Race	NS>CaL>H		
		NS>S1, Ca		
	Ca-Ni-Race	NS>S1,Ca _L +Ni		
		S1>S2,Ca _H +Ni		
		SlOMi>S2+Ni,Ca _H		
		S2,Ca _{L&gt;H} +Ni		
		S2, Ca _{H&gt;I} ONi		
		S2, Ca _H ONi>+Ni		

.....

			Туре	
	Type	Race	Ni	
RGR W	*	*		
RGR S	•			
RGR R	*	*	*	
₹GR R	•	*	*	

# Table 7.3.1:4The significant sources of variation of RGR in<br/>Experiment 2. (See Fig. 7.3.1:4)

物研究的研究的研究

-

The significant levels of the above significant variation determined by using Least Significant Differences.

1.01.00

RGR	Treatments	Level
RGR W	Туре	UB>Non
	Race	N5>51
RGR S	Туре	UB>Non
RGR R	Туре	UB>Non
	Race	NS>S1
	Type-Ni	UB>Non, +Ni
		Non. ØNi>+Ni
		UB ØNi>Non +Ni

Type = Solution type : UB = Ultrabasic , Non = Non-ultrabasic Ni = Nickel level : ØNi = Ø.Ø mg/l Ni , +Ni = Ø.2 mg/l Ni Race = Race of <u>Agrostis canina</u> : NS = Non-serpentine . S1 = Serpentine race 1 involving the initial weights (the three clones' initial weights were not significantly different), means for each tiller were used, and for calculations from Harvest 1 to Harvest 2 (in Experiment 1), means for each treatment for each tiller were used for the Harvest 1 weights. The results for all plant dry weights for both experiments are in Appendix VIII. The means for the different RGR's were calculated for each treatment and are plotted as histograms in Figs. 7.3.1: 1-4. The variance that was significant for these results are given in Tables 7.3.1:2-4.

## Experiment 1.

The different results obtained for the RGR for the first and second 3-week intervals and the entire 6-week period are of importance.

The NS clone had its best growth, for the whole plant for the entire 6-week period, in the  $Mg_H Ca_L ONi$  or the  $Mg_L Ca_H ONi$  solutions (Fig. 7.3.1:1), the growth in both solutions is very similar. The growth on the  $Mg_H Ca_H ONi$  solution was significantly lower (Tables 7.3.1: 2 & 3) than both these solutions, however nickel did not have a significant effect for the entire growth period in any solution. (Nickel did have a significant deleterious effect for the first 3-week period on the NS clone in all solutions). It is noteworthy that while calcium often ameliorates magnesium toxicity, in this case  $Ca_H$  when combined with  $Mg_H$ significantly reduced the NS clone's growth.

The Sl clone grew best (the whole plant for the entire 6-week period) in the  $Mg_L Ca_H$  +Ni solution. Again it grew almost as well in other solutions ( $Mg_H Ca_H$  +Ni,  $Mg_L Ca_L$  ONi,  $Mg_L Ca_L$  Oni). It grew significantly better with  $Ca_H$  when in  $Mg_H$  solutions, while with  $Ca_L$  it grew significantly better with  $Mg_L$ , indicating interaction between these ions for this clone. Its worst growth was in the  $Mg_H Ca_L$  +Ni solution.

For the S2 clone the best growth (whole plant for the entire

6-week period), was in the  $Mg_L Ca_L + Ni$  solution. It grew almost as well in other solutions ( $Mg_H Ca_H + Ni$ ,  $Mg_L Ca_H + Ni$ ,  $Mg_L Ca_L ONi$ ). Of considerable interest is the different growth rates for the first and second 3-week periods for this clone (Fig. 7.3.1:1). The lowest RGR for the entire 6-week period was in the  $Mg_H Ca_L ONi$  solution.

# Experiment 2.

The NS clone grew best (for the whole plant) in the UB + Ni solution and its worst in the NON + Ni solution (Table 7.3.1:4 and Fig. 7.3.1:4). The Sl clone's best growth for the whole plant, was in the UB ONi solution with its worst in the Non +Ni solution.

## 7.3.2 Concentrations of elements in the shoots.

Of the metal concentrations for the three clones at the beginning of the experiment, only manganese and potassium were slightly but significantlydifferent for the different clones (p<0.05) (Table 7.3.2:1). The importance of these differences is not clear, but significant variance statistically does not always imply a significant difference biologically.

The shoots were analysed for their metal concentrations at each harvest. These are reported in Appendix IX, and the means for each treatment for the different metals are plotted as histograms in Figs. 7.3.2: 1-8. The variance of each metal concentration, for the treatments, (Tab.7.3.2:24)was determined on log_e transformed data and then as for the RGR._A As found in other work, the concentration of the metal ions in the shoot generally increased with higher solution concentrations.

The contents of all metals (i.e. weights per shoot) for both harvests in Experiment 1 and the single harvest in Experiment 2 increased throughout the experiment compared with the initial content of the shoots (Table 7.3.2:1). The content of the shoots for each metal was compared to the solution quantites available during growth. Although

Metal	NS (n=3)		Race S1 (n=3)		\$2 (n=2)		
К	189	14999	240	16995	259	18000	
Na	8.3	640	5.6	380	11.5	84Ø	
Ca	94	7270	75	5999	86	6249	
Ng	8.7	679	7.4	500	11.0	83Ø	
Fe	4.9	306	3.2	229	2.4	172	
Ħп	5.7	443	4.9	279	3.2	230	
Ni	<9.6	<50	<9.7	<5ø	(8.7	<5Ø	
Zn	1.0	81	ø.7	51	9.8	55	

Table 7.3.2:1 The initial mean metal content (ug plant-1) and concentrations (ug g-1 oven dry weight) of the tillers of <u>Agrostis canina</u> used in Experiments 1 # 2.

いたの

. . . .

. . . .

.....

à

ŝ
Figs. 7.3.2:1-4. The mean shoot element concentrations (per dry weight) (harvest 1 shaded) for the different clones and treatments at each harvest in Experiment 1. Other conventions as Figs. 7.3.1: 1-3. The results for all analyses are in Appendix IX. 1

*

Fig. 7.3.2:1





1.0



3. 4

ñ.





Figs. 7.3.2:5-8. The mean shoot elemental concentrations (per dry weight) for the different clones and treatments in Experiment 2. Other conventions as Fig. 7.3.1:4. The results for all analyses are in Appendix IX. 74-

*

.....









									Ma	Na	Ca
						Ng	Ca	Ni	Ca	Ca	Ni
4etal	Harvest	Ħg	Ca 	Ni 	Race	Ca	Race	Race	Ni	Race	Race
K	1					*					
	2										
Na	1	-*									
	2	-*						**			
Ca	1				*						
	2	-***	***		**						
Ng	1	***	-*	-*	**						
	2	***	-***	-**	***						
Fe	1	**									
	2				***	**		*			: <b>F</b>
Ħn	1				***						
	2				***						
Ni	1				***			#	#		#
	2	-***	-**	H			*	Ħ	W		Ħ
Zn	1			-*							
	2	***		-***							

Table 7.3.2:2The significant sources of variation of the concentrations of the<br/>different metals analyzed (loge transformed) from Experiment 1. ( See Figures 7.3.2:1-4 for the mean concentrations of each metal,

٠

- 24 . .

* P<0.05 , ** P<0.01 , *** P<0.001

# For Ni these components were not possible in the variance analysis. - implies that the concentration of the metal was negatively related to the concentration of the treatment.

Table 7.3.2:3 The significant levels of the significant variation (Table 7.3.2:2), in Experiment 1, for the log (base e) transformed concentrations of the different metals analysed, using Least Significant Differences, see Fig. 7.3.2:1-4. (The variation for the Mg, Ca and Ni treatments considered singularly are not reported in this table, as they can be inferred from Table 7.3.2:2.

Metal	Harve	st l	Harv	vest 2
к	Treatment Mg-Ca	Level ^{Mg} L ^{Ca} L>H	Treatment Mg-Ca-Race	Level NS, $Mg_HCa_L>H$ NS>S1, $Mg_HCa_L$ S1, $Mg_HCa_H>L$
				S1, ^{Mg} L>H ^{Ca} L S1>NS,Mg _H Ca _H
Na			Ni-Race	NS,+Ni>ONi S1>NS,ONi S2>NS,ONi S2,ONi +Ni
Ca	Race	NS>S1 S2>S1	Race	NS>S1 S2>S1
Mg	Race	NS>S1 NS>S2	Race	NS>S1 NS>S2
Fe	Mg-Ca	Mg _{H&gt;L} Ca _H	Race	S1>NS
		$Mg_{H}Ca_{H}>Mg_{L}Ca_{L}$	Race	S2>NS S2>S1
			Mg-Ca	Mg _{L&gt;H} Ca _H
			*	^{Mg} H>L ^{Ca} L Mg _L Ca _{H&gt;L}
			Ni-Race	S2>S1,0Ni
				S2>NS,ONi S2,ONi>+Ni
			Ca-Ni-Race	S2>S1,Ca _H +Ni S2>NS,Ca _H ONi S2>S1,Ca _H ONi S2.Ca.,+Ni
				S2,Ca_ONi>+Ni
Mn	Race	NS>S1 NS>S2	Race	NS>S1 NS>S2
Ni	Race	NS>S2 NS>S2	Ca-Race	\$1,Ca _{L&gt;H} *

/cont.

*

# Table 7.3.2:3 (contd.)

Metal	Harvest	1	Harvest 2	2
Zn	Treatment Race	Level S2>NS S2>S1	Treatment	Le ve l
	Mg-Ca:	^{Mg} H>L ^{Ca} L ^{Mg} L ^{Ca} H>L Mg _L Ca _H >L		
	Mg-Ca-Ni:	Mg _{H&gt;L} Ca _L +Ni Mg _L Ca _{H&gt;L} +Ni Mg _L Ca _H ONi>Ca _L +Ni Mg _L Ca _L ONi>+Ni	** L	

*

Symbols explained in text

- * For Ni Harvest 2. Significance was only for unlog-transformed date.
- ** i.e. With  $Mg_L Ca_L + Ni$  there is less Zn in the shoot.

		conce	ntratio 	ins or (			
				Type	Tyne	Type Ni	
ietal	Type	Nī	Race	Ni	Race	Race	
ĸ			*				
Na				*			
Ca			**				
Ng	***		***		**	**	
Fe Mu			*				
ตก มเ	***		**		**		
Zn	***	**	*				
* P<0.	.05 , **	P<Ø.Ø1	, ***	P<9.99			
ne s varia Diffe	lgnifica tion det rence.	ant leve Cermined	is of t by usi	ing the	ve signi Least S	ricant, ignificant	
ňetal	f	Relation	ship	Con	oonent		
Na	1	(ype-N1		UB,	JNi>+Ni		
Ca	F	ace		NS>	51		
Нg		Гуре		UB>	lon		
	F	Race		NS>	51		
	1	lype-Rac	e	NS,	JB>Non		
				S1,	JB>Non		
				NS>	S1,Non		
		lype-N1-	Kace	N5,	JB>Non +	N1	
				NC.	3821400 97 St 1132 ∓X		
				NSS	51,00 +n 51.Non +	Ni	
				NS>	S1.Non Ø	Ni	
				S1,	JB>Non +	Ni	
				S1,	JB>Non Ø	Ni	
	I	Race		S1>	₹5		
Fe		Type		Non	UB		
Fe Mn	1	Race		NS>	51		
Fe Xn		Type-Rac	e	NS,	Non>UB		
Fe Mn				NS>	S1,Non		
Fe Xn				51,	Non>UB		
Fe Mn				Non	>UB		
Fe Mn Ni		Type					
Fe Mn Ni Zn		Type Type		UB>	Non		
Fe Mn Ni Zn		Type Type Ni		UB> Øni:	Non >+Ni		

***

Ser.

*

roots were not analysed it seems unlikely that the culture solutions were seriously depleted. This is including consideration of a high root:shoot ratio for several of the metals particularly nickel (Johnston & Proctor 1981). One further point from this is that there was differential accumulation of the metals in the shoots, indicating that a selective absorption was taking place and implying that the roots were functional.

The metal concentrations of the different clones (in the solution most closely resembling the soil solution at their sites of collection), were compared to the values in field-collected plants (Table 7.3.2:5). The differences, particularly for iron and to a lesser extent, sodium and potassium must be considered in interpreting the results. Iron may be included in interactions with nickel (Khalid & Tinsley 1980), and the higher concentrations of potassium could be important.

#### 7.4 Discussion

7.4.1 Aspects of the design and results of the experiments.

The different results for the two harvests in Experiment 1 has wider implications for work of this kind.

The solution cultures were designed to test the different ions at their concentrations on Rhum. While the nickel concentration of  $0.2 \text{ mg l}^{-1}$  has not proved to be very toxic to any of the three clones, in the first 3-week period of Experiment 1 there is evidence of a deleterious nickel effect on the NS clone. That this effect is not carried into the second 3-week period is important if puzzling. Either the nickel is not as toxic to older plants, or the toxicity has been gisl. ameliorated or tolerated (Fitter & Hay 1981). Dijkshoorn_A (1979) has shown nickel in grasses to be inhibitory to 50% of test plants when a shoot concentration of 100 µg g⁻¹ is reached. This level is reached in the NS and S1 clones in the first 3-week period of Experiment 1 and

	-0									
Clone Type or Field	Experiment & Harvest	Culture Solution	×	e X	Ca	6W	Fe	H	NI	1n
NS	Exp.1 1	Mg Ca ØNI	23800	3360	4890	2488	16	566		94
	2		22500	2299	3899	2988	56	500	0	99
	Exp.2	Non BNi	25000	1500	4250	3150	76	922	•	72
Field			69989	210	1198	1918	2050	289		100
51	Exp.1 1	Mg Ca +Ni	24500	3260	4689	3289	144	320	96	29
	2		27300	2800	3400	4999	92	350	64	20
	Exp.2	UB +Ni	26300	2500	3350	3869	116	348	20	18
Field			4528	310	1619	6389	2350	210	86	12
52	Exp.1 1	Ng Ca +Ni	28899	5688	5850	3866	316	330	0	181
	2		24500	3269	3300	3269	130	318	74	99
Field			6789	448	1120	7310	4488	168	88	29

公理性的问题思

12月6日建設計

.

The mean elemental concentrations in the shoots of the three Rhum clones of <u>Agrostis canina</u> grown in culture solutions most resembling the soil solution Table 7.3.2:5

is of interest when the RGRWOI's for these clones are considered (Fig.7.3.1:1 and 7.32:4), with nickel significantly reducing the RGR for the NS clone, but not for the S1 clone. The S2 clone has a positive but not significant response to nickel in the culture solutions, even though its shoot concentrations are low. (The S2 nickel concentration is significantly lower than the NS concentration at Harvest 1). One other possibility is that by the second 3-week period the NS clone has adapted to the nickel concentrations and that its RGR is even enhanced by nickel. Grime & Hodgson (1969) found low concentrations of toxic ions could increase response, possibly by liberating iron.

Also of importance is the high calcium concentration in the ultrabasic soil solution compared to the non-ultrabasic soil solution on Rhum. The magnesium/calcium quotients for Rhum are below those found on most other serpentine sites (Chapter 6), and Experiment 1 suggests calcium is unimportant in ameliorating nickel toxicity for any of the clones, including NS in the first 3-week period. Turitzin (1982) has also found that calcium is not a universal explanation of serpentine toxicity amelioration. The NS clone actually responds negatively to high calcium, particularly at the Mg_H treatments (Fig. 7.3.1:1-3). Although the NS clone has a significantly better RGR at  $Mg_1$  (with  $Ca_1$ ), at  $Mg_4$ (with Ca,) it has a significantly better RGR than the S2 clone. The SI clone had a significantly better RGRW at  $Ca_{\mu}$ , (with  $Mg_{\mu}$ ), but in general, it seems unlikely that magnesium is acutely toxic in these soils. (This supports earlier conclusions of Proctor 1971a). The S1 clone, which was collected from a soil with relatively high soil solution calcium, grew better when the concentrations of magnesium and calcium were both high or low; it may be that a balance of the two ions is better for this race.

57

ie.

Overall, growth was significantly better at  $Mg_L$ , suggesting that there may be some slight toxic effect of this element even at the low concentrations in this experiment. (In this case the possibly more important effect is its proportion of the total cations).

58

12

.

ų.

The results of Experiment 2 generally support the conclusions of Experiment 1, (for the 6-weeks). Two major points emerge from Experiment 2: (i) after 6-weeks, the NS clone's RGR is not reduced by nickel in the UB solution (as also found in Experiment 1), and (ii) nickel in the Non solution significantly reduces the RGR of both clones. The growth reduction is only significant for roots (possibly because the large mean square for error in Experiment 2). This effect is not present in Experiment 1 where only magnesium and calcium are varied (with sodium inversely), in addition to nickel, but in Experiment 2 there were more differences between the UB and Non solutions (Table 7.23:1), with the largest differences being those of phosphate and zinc, these two also the more important physiologically (Clarkson & Hanson 1980).

Zinc and other micronutrients have been considered as possibly important as toxic or ameliorative factors in serpentine toxicity (Proctor & Woodell 1975). In Experiment 2 the nickel concentration in the shoot is significantly higher in the Non solution than in the UB solution. Also the zinc concentrations have several significant interactions with solution type and nickel concentration (Table 7.3.1:4). Zinc may be competing or interfering with nickel through its uptake or translocation (Fig.7.3.2:8). There is significantly less nickel in the shoots grown in the UB solution (with high zinc) then in the shoots grown in the Non solution (with low zinc). Also, there is significantly less zinc in the shoots in either the UB or Non solution, when nickel is included in the culture solution. However, since there is a much larger increase in nickel uptake at low zinc, than there is a zinc uptake at low nickel (Fig.7.3.2:8), it seems that zinc is affecting the uptake of nickel more than nickel is affecting that of zinc. However, the precise nature of the effect is not known and interpretations are confounded because the solutions differed in other ways beside their concentrations of nickel and zinc.

A comparison with Experiment 1 allows the importance of the effect of magnesium and calcium  $\int_{A}^{O}$  nickel uptake to be discounted however, further supporting the zinc effect. The NS clone would be expected to grow better (or as well as) in the Non solution than in the UB solution (from Exp. 1 results, and its collection site), and it does without nickel, but with nickel its RGR is significantly reduced. However, where the NS clone in the UB+Ni solution may have been expected to have a lower RGR than UBONi, in fact in UB+Ni it grows as well as in the NonOni solution (also shown in Exp. 1). Since magnesium and calcium are not affecting nickel uptake or its effect on growth, and zinc (or phosphate) is the next important difference between the solutions, it seems that zinc is responsible for the effect. Phosphate could be having some influence, as it does differ between the solutions, but even at its lower concentration in the Non solution (Table 7.2.3:1) it is still high compared to other soil solutions (Allen 1974, Nye & Tinker 1977).

As there is less manganese in the shoots grown in the UB than the Non solutions (in Experiment 2), there is a possible inhibitive interaction with magnesium or zinc affecting manganese uptake, but the nickel solution concentration did not affect it.

A number of other considerations of the design and results of the experiments must be made. As noted above, the potassium concentration of the shoots in the culture solutions were much higher than the concentrations found in the Rhum plants from the field (Table 7.3.2:5). Fitter & Hay (1981) note that there is an inhibitory effect on potassium -

.....

ii.

uptake by organic ions in soil solution, which are absent from solution cultures changed weekly though they would also be low in skeletal soils. They also note that there is a direct relationship between potassium transport to the shoots and RGR. Since the clones under investigation were grown under favourable light and temperature conditions, it is likely the RGR's exceed those present in the field, and therefore potassium translocation and absorption would be higher. Also the comparison of young plants in solution to older plants in the field must be considered, as they may have different responses and mechanisms, even though by July field-grown plants would be largely new growth, they could have older roots.

In both experiments the NS clone had the highest magnesium concentration. This is possibly evidence of luxury consumption by the NS clone, again possibly related to RGR (Chapin 1980), or non-selective absorption (Johnston & Proctor 1981).

The iron concentrations of shoots grown in solution culture were far below those from the field. This probably resulted from the difficulties of estimating soil solution iron (Nye & Tinker 1977). However even with the low iron the nickel/iron quotients are less than those reported to cause nickel toxicity in <u>Lolium perenne</u> (Khalid & Tinsley 1980). The NS clone always had more manganese than the Sl or S2 clones (in fieldgrown plants, the initial shoots and shoots from the harvests in Exp. 1 and 2), which suggests a higher affinity for this ion (Clarkson & Hanson 1980).

7.4.2 General implications of the results of these experiments for work on plant metal toxicity.

These experiments have shown the complex nature of ion interactions in solution culture, and their importance in interpreting the results and that time can have an effect. The different results for the two harvests

60

ようであ ~~~~

12

. .

***

.

12 and

of Experiment 1 have important implications for investigations of metal tolerance in plants. Tolerance index measured over a few days of an adventitious root in a single salt solution (plus  $Ca(NO_3)_2$ ) cannot reveal much concerning the situation for the entire plant growing for long periods in solutions of varying composition.

The soil solutions investigated here are dilute, but probably represent those which pertain to the Rhum soils for most of the year.

The pretreatment for the clones can be quite important. In Experiment 1 the calcium concentrations of the shoots decreased over time, while the shoot calcium content increased slightly. These shoots were exposed to a  $0.\log 1^{-1} Ca(NO_3)_2$  pretreatment solution, which possibly increased their shoot concentrations of calcium; while in other work, pretreatment levels of 0.5-1.0 mg  $1^{-1} Ca(NO_3)_2$  are often used with little reference in the discussion. It is also possible that the higher calcium concentrations are due to the growth in John Innes No. 2 compost.

#### 7.4.3 Conclusions.

The results from the two experiments throw some light on the causes of the ultrabasic vegetation and barrenness on Rhum.

The apparent nickel-toxicity for the NS clone in the first 3-week period of Experiment 1 is important. This suggests that this clone was not able to respond quickly to increased nickel concentrations in the solution bathing its roots. While the fact that it was able to adjust in the second 3-week period indicates that 0.2 mg  $1^{-1}$  nickel (in simulated soil solutions) is not very toxic. However, it is probable that on Rhum, in spite of the wet climate, drier spells do occur (these do exist), and because of the free draining sandy soils on the ultrabasics, the soil solutions could become much more concentrated. If half the water in the soil solution is removed the concentration of magnesium

61

246 -

格作用的公式和空观和空气的

will roughly double (Nye & Tinker 1977), and nickel will probably respond similarly (being divalent). A temporary increase of nickel concentration in the soil solution could have similar or greater toxic effects on plants than the 0.2 mg 1⁻¹ nickel did on the NS clone in the first 3-week period of Experiment 1. Also, the NS clone was shown in Experiment 1 to have a significantly lower RGR in the  $Mg_HCa_H$  solutions. Higher calcium and magnesium concentrations are a feature of the Rhum solutions on ultrabasic soil, and again with drying out of the soil solution this could have an important effect.

62

1

a set of the set

Section 2

-

Experiment 2 suggests that a factor (other than magnesium and calcium by comparison to Experiment 1) in the ultrabasic soil solution may ameliorate nickel toxicity for both the NS and S1 clones. This is possibly zinc or perhaps phosphate (or an interaction).

# Field Experiments and Observations.

#### 8.1 Introduction

The field experiments were designed to investigate the effects of nutrient addition on the vegetation on the ultrabasic soils on Rhum. Field observations were made and recorded to examine the effects of erosion. Previous work on Rhum had suggested the importance of these factors on the vegetation (Ferreira & Wormell 1971, Nature Conservancy Council 1974, Ragg & Ball 1964, Ball 1974), but many details needed further investigation.

A fertilizer addition experiment on the slopes of Hallival (NM 393964) by Ferreira & Wormell (1971), was started in August 1965, with the addition of nitrogen, phosphorus and potassium fertilizers to a single 10 x 10m plot. By September 1966, they noted an increase in vegetation cover from 5-10% to 15%, which by September 1969 was 60% (Fig. 8.1:1). In April 1967 and April 1968 there were additional applications of fertilizer, which included calcium, making it impossible to distinguish between toxicity amelioration and nutrient deficiency. They expected complete cover to be achieved within four years from 1969. The site was visited by myself in June 1982 and it was noted that it had nearly 100% cover and was still sharply distinct from the surrounding vegetation (Fig. 8.1:1). The site was described in June 1982 by J. Proctor (unpublished), and it seems that the bryophytes Ferreira & Wormell thought might decline, have become established as an important part of the community, which has become more species rich. It is remarkable that the site has persisted since it is in a very wet, highly leached area. It indicates that once a vegetation is established, it can maintain itself for several years at least.

8.2 Major-nutrient addition

8.2.1 Methods

63

٠

......

and the second

# Field Experiments and Observations.

#### 8.1 Introduction

The field experiments were designed to investigate the effects of nutrient addition on the vegetation on the ultrabasic soils on Rhum. Field observations were made and recorded to examine the effects of erosion. Previous work on Rhum had suggested the importance of these factors on the vegetation (Ferreira & Wormell 1971, Nature Conservancy Council 1974, Ragg & Ball 1964, Ball 1974), but many details needed further investigation.

A fertilizer addition experiment on the slopes of Hallival (NM 393964) by Ferreira & Wormell (1971), was started in August 1965, with the addition of nitrogen, phosphorus and potassium fertilizers to a single 10 x 10m plot. By September 1966, they noted an increase in vegetation cover from 5-10% to 15%, which by September 1969 was 60% (Fig. 8.1:1). In April 1967 and April 1968 there were additional applications of fertilizer, which included calcium, making it impossible to distinguish between toxicity amelioration and nutrient deficiency. They expected complete cover to be achieved within four years from 1969. The site was visited by myself in June 1982 and it was noted that it had nearly 100% cover and was still sharply distinct from the surrounding vegetation (Fig. 8.1:1). The site was described in June 1982 by J. Proctor (unpublished), and it seems that the bryophytes Ferreira & Wormell thought might decline, have become established as an important part of the community, which has become more species rich. It is remarkable that the site has persisted since it is in a very wet, highly leached area. It indicates that once a vegetation is established, it can maintain itself for several years at least.

8.2 Major-nutrient addition

8.2.1 Methods





Fig. 8.1:1. The increased vegetation after fertilization of a site on Hallival (NM 393964). The upper photograph was taken in 1969 by P.Wormell after fertilization in 1965, 1967, 1968; the lower was taken by myself in 1982. There was no fertilization after 1968.



Fig. 8.1:1. The increased vegetation after fertilization of a site on Hallival (NM 393964). The upper photograph was taken in 1969 by P.Wormell after fertilization in 1965, 1967, 1968; the lower was taken by myself in 1982. There was no fertilization after 1968.



An experiment was set up on April 14-16, 1981 in three separate areas of the ultrabasic complex near Transects 7, 9 and 13. The experiments were a factorial randomized-block design for nitrogen, phosphorus and potassium with three replicates at each area. The rates of application were: nitrogen, 10.0g N m⁻² (as NH₄NO₃); phosphorus, 5.0 g P m⁻² (as NaH₂ PO₄ .2H₂O); and potassium, 10.0 g K m⁻² (as KC1); after Spence & Millar (1963) and Proctor (unpublished). The chemicals were added to each quadrat after dilution with 125ml of water from a nearby stream (with 125ml of water added to the controls).

The lxlm quadrats were laid out in three rows by eight, with a lm strip between rows and lm between each quadrat along a row. Each treatment was randomly located once along each row (which were treated as blocks). One hundred points from a point quadrat were used to record species in each lxlm quadrat.

Unfortunately, two of the three areas were washed away after starting the experiment. The area near Transect 9 survived, and plant cover was recorded again on May 19, 1981 and July 22, 1981.

# 8.22 Results

The total species cover for each quadrat is given in Table 8.2.2:1. There were insufficient data for analysis of individual species changes and hence the change in total vegetation cover was used to interpret the effect of the fertilizer treatments. Also, because of the importance of the response of grasses to fertilization (Rorison 1971, Jeffrey 1971), these were separately analysed.

The variance of the data were analysed using the percent change for each plot from April to July (May did not show a significant change) using the GENSTAT ANOVA programs. Prior to this the April, May and July data were analysed separately for variance and all were

		qua	adrat () urteen-i	determind Week peri	ed with	n all s I à poin Vestigat	t quadra ed.	at) for the
reatme	nt							
NK	N	К	-	NP	P	FK	NPK	
NP	-	Ρ	PK	N -	NPK	К	NK	
РК	к	NK	N	NP	-	NPK	P	
I Cove	r Ap	ril 16.	1981					
31	29	13	30	51	35	69	44	
28	18	57	26	1.9	14	22	29	
29	24	32	15	19	21	8	51	
I Cove	r Ma	y 19, 19	781					
21	27	28	31	44	39	60	50	
32	15	71	30	24	19	15	17	
26	25	31	22	15	15	10	49	
: Cove	r Ju	ly 22.	1981					
29	32	22	39	86	46	54	69	
44	21	95	39	29	46	17	33	
31	20	38	36	32	25	19	57	

Table 8.2.2:1 The treatments of the fertilization addition experiment,

•

N = Nitrogen , P = Phosphorus , K = Potassium , - = Control See Text for chemicals and quantities used.

found to be not significantly different between the treatments. For the period, April to July, only nitrogen separately and the three treatments combined showed a significant response (Table 8.2.2:2). The variation for grass species only, were analysed between treatments using percent change, and was not significant for any treatment. The data for the grasses only was highly variable, probably masking any response, possibly due to the deer grazing.

### 8.2.3 Discussion

The results of the fertilizer addition experiment, especially when combined with the results of Ferreira & Wormell (1971), show the importance of low nutrients as a limiting factor to the vegetation on the ultrabasic soils on Rhum. The importance of this factor is quite variable on serpentines (Proctor & Woodell 1975). The short-term experiment discussed here has shown a positive response to nitrogen fertilization as well as to total fertilizer with nitrogen, phosphorus and potassium. Combined with the fact that the experimental plot of Ferreira & Wormell (1971) is stilldistinct after 14 years, since the last treatment, it seems certain that nutrients are a limiting factor for the vegetation on the Rhum ultrabasics.

The apparent grazing on the grasses <u>Molinia caerulea</u> and <u>Nardus stricta</u> in my experiment is important. Grazing preference differs between species (Harper 1977), the red deer selects younger grasses. The effect of this on the experiment is not known, but the quadrats with most improved growth were grazed.

# 8.3 Permanent Quadrats

Three permanent quadrats of 1x1m were established near Quadrats 62, 94 and 199 in July 1980. They were mapped in detail on a grid of 20-cm squares and photographed. The quadrats were revisited

Table 8.2.2:2	The significant w in cover due to 1981 in the fer For the total t levels were det icant Differenc	ariation of t treatments f tilization ad reatment (NPK ermined using e.	ne perce rom Apri dition e ), the s the Lea	nt change l to July, xperiment. ignificant st Signif-
Treatment		Level		
N *				
NPK +		NPK > contr	ol **	
		NPK > K	**	
		NPK > P	*	-
		NPK > PK	**	
		NPK > NK	A-4	

in September 1981 and June 1982 and only very slight changes were noticed (small increases in a few grasses).

A further five permanent quadrats of 1x1m were located on apparently eroding edges of vegetation or fixed edges in more open ground, and were photographed on the Bealach near Ruinsival(near Transects 7 and 28), on September 3, 1980. These were revisited and re-photographed in September 1981 and June 1982. The edges that had appeared to be eroding were in fact doing so at a rate of about 10cm per year. (Fig. 8.3:1), while the edges that had appeared more stable showed no changes during the 2-year period (not shown).

This evidence does indicate some stability, but the eroding edges (Fig. 8.3:1) were on what would be assumed to be fixed closed vegetation. Earlier work on the island supports that erosion could be an important problem (Ragg & Ball 1964, Ball 1965). They found in examining soil profiles on the ultrabasics, that often beneath a surface of immature ranker is a more mature profile, which they suggest could not have formed under the present vegetation. Further evidence they cite are the deposits and partial formations of several A horizons in the Coire nan Grund soils (near Transect 2), suggesting short stable periods between erosion. Beneath these there is a thick peaty podzol which they say could only have formed during long stable periods. They conclude that the erosion now dominant could be the result of climatic change or of overgrazing and burning in the earlier centuries.

# 8.4 Discussion

It is unfortunate that field experiments are so difficult to establish and monitor on Rhum and that more time was not available. Field experiments on the ultrabasic areas of Rhum are difficult because of the inaccessibility of the sites and the possibility of disturbance by the large population (about 1500 animals) of red deer (<u>Cervus elaphus</u>)












6



Fig. 8.3:1. (continued)

(Ball 1974). Deer fences would be difficult to transport and would affect the micro-climate at any rate. Measurement of erosion rates from more areas on the island, and more fertilization addition experiments on a wide selection of ultrabasic and non-ultrabasic soils could be important. Additionally, further work examining soil horizons under the vegetated ultrabasic and from different areas of the barren ultrabasic soils would be useful. However, from the field experiments that were carried out, combined with the results from earlier researchers, erosion and nutrient deficiency can be considered important factors influencing the vegetation on the ultrabasics.

14.1

The addition of calcium to their fertilization plot on Hallival (Ferreira & Wormell 1971), is probably not as important as it might have been. Calcium was shown not to have an effect on the nickel toxicity of the NS clone, nor were the S1 or S2 clones showing toxicity symptoms in the first 3-week period of Experiment 1 (Chapter 7). Additionally, both this growth Experiment and Proctor (1971a) have shown the soils and plants from this area of Rhum not to be particularly magnesium toxic, another serpentine toxicity factor often ameliorated by calcium. While it is possible calcium made an important difference, the vegetation had previously shown a positive response to fertilization without calcium, which is further substantiated by the fertilization experiment described in this work.

The possible climatic change and burning effect on the erosion on Rhum (mentioned by Ragg & Ball 1964) could be very important and are discussed below.

67

* ...

and a second

......

4 . 2

and the second s

### CHAPTER NINE

# Final Discussion

The twelve classes from the vegetation classification are useful in interpreting the vegetation, its relationships to the soil variables, and possible causal factors. The interpretation of these relationships, and the evidence from the other aspects investigated, suggests that the typical serpentine problems of heavy metal toxicity and low nutrients are at least of some importance on Rhum.

68

.

· · ·

1

「「「」」」」」「「「」」」」」」」

-

Heavy metal toxicity, especially nickel, is related, if not partly causal, to the distinct ultrabasic vegetation and barrenness. Total soil nickel is the best correlated of all soil variables, with the barren classes in both the vegetation and soil ordinations. Exchangeable nickel in contrast, was not significantly correlated with the barren classes, but was significantly higher in the vegetated ultrabasic classes. It may be that exchangeable nickel is high because of the relatively higher cation exchange capacities of vegetated soils and that in this case, total nickel is giving a better indication of a nickel effect. Further, total soil nickel (but not exchangeable), correlated with plant nickel concentrations. Nickel was present (up to 0.2 mg  $1^{-1}$ ) in some of the ultrabasic soil solutions, and was toxic in solution culture to the NS clone (for the first part of the experiment). The possible physiological mechanisms related to uptake, translocation, enzyme activation, growth and respiration that nickel could affect in the plant are numerous (Clarkson & Hanson 1980). Being similar in size to several divalent micronutrients and magnesium, it could disrupt or enhance physiological activities in the plant and thereby negatively affect it. However, nickel tolerance has been shown to be developed in plants (Chapter 7, S1 and S2 clones; Johnston & Proctor 1981). Also, mechanisms of tolerance are known (Wainwright & Woolhouse 1975) and

grasses can be used to reclaim toxic spoils of other heavy metals (Smith & Bradshaw 1974). Slingsby & Brown (1977) found nickel in British serpentines to be relatively high but often relatively unavailable to plants (oats), yet on Rhum it is high and available to native plants. The ultrabasics on Rhum also have some cobalt and chromium, which while not correlated with barrenness in the vegetation ordination do correlate with the vegetated ultrabasics and are in the plant material.

Low nutrients are also a factor as shown by the nutrient addition experiment and that of Ferreira & Wormell (1971). Also, a magnesium, calcium effect is shown on the NS clone in solution culture, as it has a lower RGR in the high magnesium and calcium solutions, but not at a result of a high magnesium/calcium quotient. The ultrabasics on Rhum are often barren (as are other serpentines in Britain, Proctor & Woodell 1975), yet on Rhum the soil is not extraordinary chemically or apparently particularly toxic. It is therefore either an undetermined factor affecting the vegetation, or an interaction of different factors that maintain the barren ultrabasic soils and distinct vegetation.

Grime (1974) suggests that there are three major determinants of vegetation, competition, stress and disturbance; and that each has a different effect, whereby stress and disturbance together prevent the "resolution of competition". He claims

> "At moderate intensities this intervention has the effect of creating spatial or temporal niches; at their most severe both stress and disturbance may so suppress plant development that individual plants scarcely impinge on each other and competition is occluded. The difference between stress and disturbance lies in the fact that whilst both inhibit the development of a longer standing crop, the former does so by restricting primary production, the latter by damage to the vegetation. Whereas stress is usually imposed by the physical environment (shortages of light, water, mineral nutrients, suboptimal temperatures, soil and toxins), disturbance arises from the activities of grazing animals, pathogens, man (trampling, mowing and ploughing) and from physical phenomena such as soil erosion".

It seems probable therefore that an interaction of stress and

۲

-

「ちーち」

-

-

disturbance on the ultrabasic soils on Rhum are responsible for the barren sites; and the distinct closed vegetation is due to a reduced effect of stress or disturbance or both, combined with general soil differences.

The barren classes (5-8) may be subject to several of the stress factors listed above, particularly nutrient deficiency, and soil toxins. Nutrient deficiency is suggested by the measures of the soil nutrients (Table 4.1:1 and Appendix VI), and the possible response to nutrient addition (Ferreira & Wormell 1971, Section 8.2). Soil toxins are present as nickel (discussed above), with nickel probably at much higher and potentially more toxic concentrations during drier spells, when the soil water volume would decrease. Nickel was shown to reduce growth to native non-serpentine races in solution culture work at dilute concentrations (Chapter 7). The stress effect could be increased by an irregular (or possibly periodic) drying out of the soils. April and May are, on average, the driest months on Rhum (Table 1.1:1), and in May 1980 I was on Rhum during a prolonged dry spell when the ground in the wet flushes was cracked and dried out. During such times, and particularly when new growth is starting in the spring, toxicity could have an important influence on the vegetation.

Disturbance factors include heather burning, grazing, soil erosion and frost heaving, but these factors are difficult to quantify. Heather burning up onto the ridges has been recorded (Nature Conservancy Council 1974) and may have several deleterious effects. These include: soil loss after burning, loss of nutrients from the soil, and on the ultrabasic soils and possible release of soluble chromium (and possibly nickel, see below). The increased soil erosion from burning compounds *

-----

うちん シント ちちい と ひち

the normal erosion and losses of topsoil, particularly on leached ridges with high rainfall. Nitrogen and phosphorus are known to be lost to the nutrient cycle after burning (Gimingham 1972), and this would increase the nutrient deficiency. Hafez, Reisenauer & Stout (1979) reported a flush of soluble chromium after heating serpentine soils to 300°C (soil temperatures up to 600°C have been incurred in heather burns, Gimingham 1972), and nickel would probably have a similar response. Therefore, in the regrowth period immediately following a burn, the new vegetation would have to survive increased stress from higher than usual concentrations of chromium and nickel. Additionally, ground frost is frequent in Kinloch in April (on average, Table 1.1:1), and is shown to occur on the Barkeval Bealach (Fig. 1.1:4) as well, with frost-heaving on the barren soils, which I have observed This could be contributed to by the sandy nature as stone stripes. of the soils on the ultrabasics. Finally, grazing has been prevalent on Rhum for the last few centuries, with large herds of sheep previously (up to 6000 animals, Nature Conservancy Council 1974), and red deer.

It is probable therefore, that a combination of the above factors is influencing the vegetation on the ultrabasic soils and producing the barrenness. Where closed vegetation exists on the ultrabasics it is generally in less exposed areas.

71

*

1111

1000

and the second second second

二十二十二

# REFERENCES

- Adams, F., Burmester, C., Hue, N.V. & Long, F.L. (1980). A comparison of column-displacement and centrifugation methods for obtaining soil solution. <u>Soil Science Society of America</u> <u>Journal</u>, 44, 733-735.
- Allan, S.E., Grimshaw, H.M., Parkinson, J.A. & Quarmby, C. (1974). <u>Chemical Analysis of Ecological Materials</u>. Blackwell Scientific <u>Publications</u>, Oxford.
- Anderson, A.J., Meyer, D.R. & Mayer, F.K. (1973). Heavy metal toxicities: levels of nickel, cobalt and chromium in the soil and plants associated with symptoms and variation in growth of an oat crop. <u>Australian Journal of Agricultural</u> <u>Research</u>, 24, 557-571.
- Anderson, A.J., Meyer, D.R., & Mayer, F.K., (1979). Effects of the environment on the symptom pattern of nickel toxicity in the oat plant. Annals of Botany, 43, 271-283.
- Antonovics, J., Bradshaw, A.D. & Turner, R.G. (1971). Heavy metal tolerance in plants. Advances in Ecological Research, 7, 1-85.
- Austenfeld, F.A. (1979). Phytotoxicity of nickel and cobalt on <u>Phasedus vulgaris</u> cultivar saxa grown in solution culture. <u>Zeitschrift fur Pflanzenerahrung und Bodenkunde</u>, 142, 786-791.
- Ball, D.F., (1965). Field Meeting, British Society of Soil Science, Island of Rhum, May 17th-22nd, 1965, Nature Conservancy Council Office, Isle of Rhum.
- Ball, M.E. (1974). Floristic changes on grasslands and heaths on the Isle of Rhum after a reduction or exclusion of grazing. Journal of Environmental Management, 2, 299-318.
- Bannister, P. (1966). The use of subjective estimates of coverabundance as the basis for ordination. <u>Journal of</u> Ecology, 54, 665-674.
- Bartlett, R. & James, B. (1980). Studying dried, stored soil samples some pitfalls. <u>Soil Science Society of America Journal</u>, 44, 721-724.
- Bates, J.H. (1978). The influence of metal availability on the bryophyte and macrolichen vegetation of four rock types on Skye and Rhum. Journal of Ecology, 66, 457-482.
- Batten, G.D. (1978). Some factors affecting the extraction of soil available phosphate. <u>Australian Journal of Soil Research</u>, 16, 355-357.
- Birks, H.J.B. (1978). Past and Present Vegetation of the Isle of Skye. A Palaeoecological Study. Cambridge University Press, England.
- Bohn, H., McNeal, B., & O'Connor, G. (1979). <u>Soil Chemistry</u>. Wiley, New York.

Briggs, K.G., (1974). Soil sampling and soil uniforming for N, P and K in a small plot area. <u>Canadian Journal of Soil Science</u>, 51, 115-117. *

.

1

- A - A - A

法公司 计存在规则 计算法 建合物 化二磷酸 化二磷酸

- Chapin, F.S. III (1980). The mineral nutrition of wild plants. <u>Annual</u> <u>Review of Ecology and Systematics</u>, 11, 233-260.
- Clapham, A.R., Tutin, T.G. & Warburg, E.F. (1962). Flora of the British Isles. Cambridge University Press, England.
- Clarkson, D.T. & Hanson, J.B. (1980). The mineral nutrition of higher plants. <u>Annual Review of Plant Physiology</u>, 31, 239-298.
- Clymo, R.S. (1962). An experimental approach to part of the calcicole problem. Journal of Ecology, 50, 707-731.
- Clymo, R.S. (1980). Preliminary survey of the peat bog Hummell Knowe Moss using various numerical methods. <u>Vegetatio</u>, 42, 129-148.
- Cotlove, E. Trantham, H.V., & Bowman, R.L. (1958). An instrument for and method for automatic, rapid, accurate, and sensitive titration of chloride in biological samples. Journal of Laboratory and Clinical Medicine, 5, 461-468.
- Cox, R.M. & Hutchinson, T.C. (1980). Multiple metal tolerances in the glass <u>Deschampsia cespitosa</u> (L.) Beauv. from the Sudberg smelting area. New Phytologist, 84, 631-648.
- Dijkshoorn, V.W., van Broekhoven L.W. & Lampe, J.E.M. (1979). Phytotoxicity of Zinc, nickel, cadmium, lead, copper and chromium in the pasture plant species supplied with graduated amounts from the soil. <u>Netherlands Journal of Agricultural</u> <u>Science</u>, 27, 241-253.
- Emeleus, G.H. & Forster, R.M. (1979). <u>Field Guide to the Tertiary</u> <u>Igneous Rocks of Rhum, Inner Hebrides</u>. Geology and Physiography Section, Nature Conservancy Council, Edinburgh.
- Epstein, E. (1972). <u>Mineral Nutrition of Plants: Principles and</u> Perspectives. Wiley, New York.

Etherington, J.R. (1975). Environment and Plant Ecology. Wiley, London.

- Ferreira, R.E.C. (1970). <u>A Vegetation Map of the Isle of Rhum</u>. Nature Conservancy Council, Edinburgh.
- Ferreira, R.E.C. (1974). Vegetation, vegetation classification. <u>Isle of Rhum National Nature Reserve</u>, 17-20 and Appendix 3, Nature Conservancy Council, Edinburgh.
- Ferreira, R.E.C. & Wormell, P. (1971). Fertiliser response of vegetation on ultrabasic terraces on Rhum. <u>Botanical society of Edinburgh</u> <u>Transactions</u>. 41, 149-154.
- Fitter, A.H. & Hay, R.K.M. (1981). Environmental Physiology of Plants. Academic Press, London.
- Gaile, G.L. & Burt, J.E. (1980). Directional statistics. <u>Concepts and</u> Techniques in Modern Geography, 25, 3-36.
- Gauch, H.G., Jr. (1980). Rapid initial clustering of large data sets. Vegetatio , 42, 103-111.

Contraction of the second second

and the second

Gauch, H.G., Jr. (1982). Multivariate Analysis in Community Ecology. Cambridge University Press, England.

Gauch, H.G., Jr. & Whittaker, R.H. (1981). Hierarchical classification of community data. Journal of Ecology, 69, 537-558.

Gauch, H.G., Jr., Whittaker, R.H. and Singer, S.B. (1981). A comparative study of non-metric ordinations. <u>Journal of</u> <u>Ecology</u>, 69, 135-152.

GENSTAT (1977). A general statistical program. Rothamsted Experimental Station, England.

Gimingham, C.H. (1972). Ecology of Heathlands. Chapman and Hall, London.

- Greig-Smith, P. (1980). The development of numerical classification and ordination. Vegetatio, 42, 1-9.
- Grime, J.P. (1974). Vegetation classification by reference to strategies. Nature, London, 250, 26-31.
- Grime, J.P. & Hodgson, J.G. (1969). An investigation of the ecological significance of lime-chlorosis by means of large-scale comparative experiments. Ecological Aspects of the Mineral <u>Nutrition of Plants</u>. (Ed. by I.H. Rorison), pp. 67-100. Blackwell,Oxford.
- Grubb, P. J. & Suter, M.B. (1971). The mechanism of acidification of soil by <u>Calluna</u> and <u>Ulex</u> and the significance for conservation. <u>The Scientific Management of Animal and Plant Communities for</u> <u>Conservation</u>, (Ed. by E. Duffey and A.S. Watt), pp. 115-135. Blackwell, Oxford.
- Hafez, A.A.R., Reisen aver, H.M. & Stout, P.R. (1979). The solubility and plant uptake of chromium from heated soils. <u>Communications</u> in soil science and Plant Analysis, 10, 1261-1270.
- Harper, J.L. (1977). <u>Population Biology of Plants</u>. Academic Press, London.
- Harrison, A.F. & Bocock, K.L. (1981). Estimation of soil bulk-density from loss-on-ignition values. Journal of Applied Ecology, 18, 919-927.
- Hart, R. (1977). An ecological, morphological and chemical comparison of weeds and natives on serpentine barrens of southeastern Pennsylvania. Ph.D. thesis, <u>University of Pennsylvania</u>.
- Hart, R. (1980). The coexistence of weeds and restricted native plants on serpentine barrens in southeastern Pennsylvania. <u>Ecology</u>, 61, 688-701.
- Hawksworth, D.L., James, P.W. & Coppins, B.J. (1980). Checklist of British lichen-forming lichenicolons and allied fungi. <u>Lichenologist</u>, 12, 1-115.
- Hill, M.O. (1973). Reciprocal averaging: an eigenvector method of ordination. Journal of Ecology, 61, 237-250.

Hill, M.O. (1979a). TWINSPAN - A Fortran Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of the Individuals and Attributes. Cornell University, Ithaca, New York. *

....

The second second second

10.00

and the second

- Hill, M.O. (1979b). <u>DECORANA A Fortran Program for Detrended</u> <u>Correspondence Analysis and Reciprocal Averaging.</u> Cornell University, Ithaca, New York.
- Hill, M.O., Bunce, R.G.H. & Shaw, M.W. (1975). Indicator species analysis, a divisive polythetic method of classification, and its application to a survey of native pinewoods in Scotland. Journal of Ecology, 63, 597-613.
- Hill, M.O. & Gauch, H.G. Jr. (1980). Detrended correspondence analysis, an improved ordination technique. <u>Vegetatio</u>, 42, 47-58.
- Hoagland, D.R. & Arnan, D.I. (1950). The water-culture method for growing plants without soil. <u>Californian Agricultural Station</u> <u>Circular</u>, 347.

### Hunt, R. (1978). Plant Growth Analysis. Arnold, London.

- Hunter, J.G. & Vergnano, O. (1953). Trace-element toxicities in oat plants. Annals of Applied Biology, 40, 761-777.
- Jeffrey, D.W. (1970). A note on the use of ignition loss as a means for the approximate estimation of soil bulk density. Journal of Ecology, 58, 297-299.
- Jeffrey, D.W. (1971). The experimental alteration of a <u>Kobresia</u>-rich sward in Upper Teesdale. <u>The Scientific Management of Animal</u> and Plant Communities for <u>Conservation</u>. (Ed. by E.Duffey & A.S. Watt), pp. 79-89. Blackwell, Oxford.
- Johnston, W.R. (1974). Mineral uptake by plants of serpentine and lead mine soils. B.A. (Hons.) thesis, University of Stirling.
- Johnston, W.R. (1976). Studies in the plant ecology of two Scottish serpentine areas. <u>M.Sc</u>. thesis, <u>University of Stirling</u>.
- Johnston, W.R. & Proctor, J. (1977). Metal concentrations in plants and soils from two British serpentine sites. Plant and Soil, 46, 275-278.
- Johnston, W.R. & Proctor, J. (1979). Ecological studies on the lime hill serpentine, Scotland. <u>Transactions</u>, 43, 145-150.
- Johnston, W.R. & Proctor, J. (1980). Ecological studies on Meikle Kilrannoch serpentine. <u>Botanical Society of Edinburgh Transactions</u>, 43, 207-215.
- Johnston, W.R. & Proctor, J. (1981). Growth of serpentine and non-serpentine races of Festuca rubra in solutions simulating the chemical conditions in a toxic serpentine soil. Journal of Ecology, 69, 855-869.
- Kershaw, K.A. (1973). Quantitative and Dynamic Plant Ecology. Arnold, London.
- Khalid, B.Y. & Tinsley, J. (1980). Some effects of nickel toxicity on rye grass. Plant and Soil, 55, 139-144.

Lyon, G.L., Peterson, P.J., Brooks, R.R. & Butler, G.W. (1971). Calcium, magnesium and trace elements in a New Zealand serpentine flora. Journal of Ecology, 59, 421-429. A THE PARTY OF THE

and the second

计同志和时间通知中心方法以及多数分子 网络林门

McKay, M.M. (1980). Rev.Dr. John Walker's Report on the Hebrides of 1764 and 1771. John Donald, Edinburgh.

McLean, D. (1796). The Statistical Account of Scotland. Edinburgh.

MacLean, D. (1845). The New Statistical Account of Scotland. Edinburgh.

- McVean, D.N. & Ratcliffe, D.A. (1962). Plant Communities of the Scottish Highlands. Her Majesty's Stationery Office, London.
- Madhok, O.P. & Walker, R.B. (1969). Magnesium nutrition of two species of sunflower. <u>Plant Physiology</u>, Lancaster, 44, 1016-1022.

Main, J.L. (1974). Differential responses to magnesium and calcium by native populations of <u>Agropyron spicatum</u>. <u>American Journal of</u> Botany, 61, 931-937.

- Marrs, R.H. (1977). Ecological aspects of the mineral nutrition of several members of the <u>Ericaceae</u>. <u>Ph.D.</u> Thesis, <u>University</u> of Stirling.
- Marrs, R.H. & Proctor, J. (1976). The response of serpentine and nonserpentine Agrostis stolonifera L. to magnesium and calcium. Journal of Ecology, 64, 953-964.
- Marrs, R.H. & Proctor, J. (1978). Chemical and ecological studies of heath plants and soils of the Lizard peninsula, Cornwall. Journal of Ecology, 66, 417-432.
- Molloy, M.G. & Lockman, R.B., (1979). Soil analysis as affected by drying temperature. <u>Communications in Soil Science and</u> <u>Plant Analysis</u>, 10, 545-550.
- Moore, J.J. (1962). The Braun-Blanquet system: A reassessment. Journal of Ecology, 50, 761-769.
- Mueller-Dombois, D. & Ellenberg, H. (1974). Aims and Methods of Vegetation Ecology. Wiley, New York.
- Munro, R.W. (1961). <u>Munro's Western Isles of Scotland & Geneologies</u> of the Clans 1549. Oliver & Boyd, Edinburgh.
- Nature Conservancy Council. (1974). Isle of Rhum National Nature Reserve. Nature Conservancy Council, Edinburgh.
- Nye, P.H. & Tinker, P.B. (1977). Solute Movement in the Soil Root System. Blackwell, Oxford.
- O'Neill, J.V. & Webb, R.A. (1970). Simultaneous determination of nitrogen, phosphorus and potassium in plant material by automatic methods. Journal of the Science of Food and Agriculture, 21, 217-219.
- Perkin Elmer, (1976) Analytical Methods for Atomic Absorption Spectrophotometry. Norwalk, Connecticut.
- Pomeroy, D.E. (1974). Biological studies on a peaty podzol I. The physical environment. <u>Pedobiologia</u>, 14, 419-428.
- Poore, M.E.D. (1955). The use of phytosociological methods in ecological investigation. The Braun-Blanquet system. Journal of Ecology, 43, 226-244.

*

-----

*

A Post of the second

State of the state

-

100

Poore, M.E.D. (1956). The use of phytosociological methods in ecological investigations. General discussion of phytosociological problems. Journal of Ecology, 44, 28-50.

- Proctor, J. (1969). Studies in serpentine plant ecology. D.Phil. thesis, University of Oxford.
- Proctor, J. (1971a). The plant ecology of serpentine.II.Plant response to serpentine soils. Journal of Ecology, 59, 397-410.
- Proctor, J. (1971b). The plant ecology of serpentine.III. The influence of a high Mg/Ca ratio and high nickel and chromium levels in some British and Swedish serpentine soils. <u>Journal</u> of Ecology, 59, 827-842.
- Proctor, J., Burrow, J. & Craig, G.C. (1980). Plant and soil chemical analyses from a range of Zimbabwean serpentine sites. <u>Kirkia</u>, 12, 127-139.
- Proctor, J., Johnston, W.R., Cottam, D.A. & Wilson, A.B. (1981). Field-capacity water extracts from serpentine soils. <u>Nature</u>, London. 294, 245-246.
- Proctor, J. & McGowan, I.D. (1976). Influence of magnesium on nickel toxicity. <u>Nature</u>, London, 260,134.
- Proctor, J. & Woodell, S.R.J. (1971). The plant ecology of serpentine I. Serpentine vegetation of England and Scotland. Journal of Ecology, 59, 375-395.
- Proctor, J. & Woodell, S.R.J. (1975). The ecology of serpentine soils. Advances in Ecological Research, 9, 255-366.
- Ragg, J.M. & Ball, D.F. (1964). Soils of the ultrabasic rocks of the island of Rhum. Journal of Soil Science, 15, 124-133.
- Rorison, I.H. (1969). Ecological inferences from laboratory experiments on mineral nutrition. Ecological Aspects of the Mineral Nutrition of Plants. (Ed. by I.H. Rorison), pp.155-175. Blackwell, Oxford.
- Rorison, I.H. (1971). The use of nutrients in the control of the floristic composition of grassland. <u>The Scientific Management</u> of Animal & Plant Communities for Conservation. (Ed. by E. Duffey and A.S. Watt), pp. 65-77. Blackwell, Oxford.
- Russell, E.W. (1973). Soil Conditions and Plant Growth. Longman, London.
- Shewry, P.R. & Peterson, P.J. (1975). Calcium and magnesium in plants and soil from a serpentine area on Unst, Shetland. <u>The Journal</u> of Applied Ecology, 12, 381-391.
- Shewry, P.R. & Peterson, P.J. (1976). Distribution of chromium and nickel in plants and soils from serpentine and other sites. <u>Journal of</u> <u>Ecology</u>, 64, 195-212.

٠

......

and the supervised in the second

非体的的第三人称形式的 化物化物的

Prentice, I.C. (1977). Non-metric ordinations in ecology. Journal of Ecology, 65, 85-94.

Slingsby, D.R. & Brown, D.H. (1977). Nickel in British serpentine soils. Journal of Ecology, 65, 597-615.

Smith, R.A.H. & Bradshaw, A.D. (1979). The use of metal tolerant plant populations for the reclamation of metalliferous wastes. Journal of Applied Ecology, 16, 595-612.

Spence, D.H.N. (1970). Scottish serpentine vegetation. Oikos, 21,22-31.

Spence, D.H.N. & Millar, E.A. (1963). An experimental study of the infertility of Shetland serpentine soil. <u>Journal of Ecology</u>, 51, 333-343.

Turitzin, S.N. (1982). Nutrient limitations to plant growth in a California serpentine grassland. <u>The American Midland</u> <u>Naturalist</u>, 107, 95-99.

- Wainwright, S.J. & Woolhouse, H.W. (1975). Physiological mechanisms of heavy metal tolerance in plants. <u>The Ecology of Resource</u> <u>Degradation and Renewal</u>. (Ed. by M.J. Chadwick and G.T. <u>Goodman</u>) pp.231-257. Blackwell, Oxford.
- Walsh, L.M. (1971). Instrumental Methods for Analysis of Soils and <u>Plant Tissue</u>. Soil Science Society of America Incorporated, <u>Madison</u>, Wisconsin.
- Watson, E.V. (1968). British Mosses and Liverworts. Cambridge University Press, England.
- Webster, R. (1977). Quantitative and Numerical Methods in Soil Classification and Survey Monographs on Soil Survey. Clarendon Press, Oxford.
- Wilkins, D.A. (1957). A technique for the measurement of lead tolerance in plants. <u>Nature</u>, <u>London</u>, 180, 37-38.

Wong, M.H. & Bradshaw, A.P. (1982). A comparison of the toxicity of metals, using root elongation of rye grass, <u>Lolium perenne</u>. New Phytologist, 91, 255-261. .

-

.....

and the second second

and the second

Slingsby, D.R. & Brown, D.H. (1977). Nickel in British serpentine soils. Journal of Ecology, 65, 597-615.

Smith, R.A.H. & Bradshaw, A.D. (1979). The use of metal tolerant plant populations for the reclamation of metalliferous wastes. Journal of Applied Ecology, 16, 595-612.

Spence, D.H.N. (1970). Scottish serpentine vegetation. Oikos, 21,22-31.

- Spence, D.H.N. & Millar, E.A. (1963). An experimental study of the infertility of Shetland serpentine soil. Journal of Ecology, 51, 333-343.
- Turitzin, S.N. (1982). Nutrient limitations to plant growth in a California serpentine grassland. <u>The American Midland</u> <u>Naturalist</u>, 107, 95-99.
- Wainwright, S.J. & Woolhouse, H.W. (1975). Physiological mechanisms of heavy metal tolerance in plants. <u>The Ecology of Resource</u> <u>Degradation and Renewal</u>. (Ed. by M.J. Chadwick and G.T. <u>Goodman</u>) pp.231-257. Blackwell, Oxford.
- Walsh, L.M. (1971). Instrumental Methods for Analysis of Soils and <u>Plant Tissue</u>. Soil Science Society of America Incorporated, <u>Madison</u>, Wisconsin.
- Watson, E.V. (1968). British Mosses and Liverworts. Cambridge University Press, England.
- Webster, R. (1977). <u>Quantitative and Numerical Methods in Soil</u> <u>Classification and Survey Monographs on Soil Survey.</u> <u>Clarendon Press, Oxford.</u>
- Wilkins, D.A. (1957). A technique for the measurement of lead colerance in plants. Nature, London, 180, 37-38.
- Wong, M.H. & Bradshaw, A.P. (1982). A comparison of the toxicity of metals, using root elongation of rye grass, <u>Lolium perenne</u>. <u>New Phytologist</u>, 91, 255-261.

2.13 的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的现分的第三人称单数的第三人称单数的第三人称单数的现分的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单数的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的第三人称单子的的

Appendix 1

Vegetation Classification Data

Quadrat Then 8 couplets per line of species no. and transformed Domin no. (See Appendix II for species names and no.s) 12 0.40 31 0.90 47 2.60 50 0.40 53 0.90 54 0.90 57 0.40 58 2.60 2 2 61 3.00 65 0.20 68 0.90 80 0.20 87 0.20 95 0.20100 0.20102 0.90 2 115 9.40117 5.90118 0.40129 0.20 2 9.99 28 8.98 31 2.68 47 8.98 54 2.68 57 8.98 58 8.98 61 8.98 3 65 9.99 79 3.99 89 9.99114 9.29115 0.29117 2.69 3 1 0.20 2 0.90 7 3.00 31 2.60 47 3.00 53 0.20 54 2.60 57 0.40 58 2.60 61 2.60 65 0.90 68 0.40 80 0.04 94 0.04 95 0.04 97 0.04 4 4 102 0.20105 0.20108 0.04111 0.04114 0.20117 3.00119 0.04128 0.04 4 129 9.40130 0.20 5 28 9.49 31 9.99 47 9.99 53 9.29 54 2.60 58 9.99 61 9.29 65 9.99 79 9.90 80 9.40 94 9.04117 3.00132 9.20 5 6 2 2.60 7 4.60 23 0.20 31 0.90 47 2.60 54 2.60 57 0.90 58 0.90 6 65 9.49 94 9.98 95 6.29 97 8.84102 9.40188 8.04111 8.84117 2.68 6 129 0.40134 0.20 7 0.90 12 0.20 23 0.20 31 0.40 47 0.40 50 0.90 53 0.20 54 2.60 7 55 0.90 58 2.60 61 5.90 65 2.60 68 2.60 70 0.90100 0.20102 3.00 7 7 108 0.20117 0.90119 0.40 2 9.49 7 4.60 12 9.49 15 9.29 28 9.29 31 9.99 47 2.60 53 9.90 8 54 0.40 58 0.40 61 4.60 65 0.40 68 2.60 79 0.40 80 0.40 94 0.20 8 8 102 0.40117 2.60129 0.20 9 7 0.40 31 0.90 47 3.00 53 0.90 54 2.60 55 0.40 57 0.40 58 2.60 9 61 3.00 65 0.90 68 2.60 80 0.40 87 0.20 94 0.20102 0.40115 0.20 9 117 3.00 19 1 0.40 2 0.90 15 0.20 28 0.20 31 0.90 41 0.04 47 3.00 50 2.60 10 53 9.49 54 2.69 58 2.69 61 3.99 65 9.29 68 2.69 88 9.40 94 8.29 102 0.20115 0.40117 5.90119 0.20129 0.20 10 2 9.29 5 9.99 7 9.94 28 2.69 31 9.94 41 9.29 47 0.90 53 9.29 11 54 0.90 58 0.40 61 2.60 62 0.40 65 2.60 68 2.60 79 2.60 80 0.04 11 97 0.04115 0.90116 0.20117 2.60 11 7 8.48 28 8.84 28 8.98 31 8.48 41 8.28 47 8.98 53 8.28 54 2.68 12 58 2.60 60 9.20 65 2.60 68 2.60 79 9.40 80 0.04 81 0.04117 0.20 12 12 137 9.94 7 2.60 17 0.40 24 0.40 28 0.40 31 0.40 43 0.04 47 0.90 53 0.20 13 54 0.40 58 0.90 60 0.40 65 0.40 68 0.90 70 2.60 79 0.40 80 0.04 13 13 87 9.29192 0.04 2 0.20 17 0.04 28 0.20 47 0.20 54 0.04 57 0.20 58 0.90 60 0.20 14 14 65 0.40 68 0.40117 0.20 7 8.48 28 8.48 41 8.84 47 8.29 54 8.84 58 8.98 68 8.98 65 8.48 15 79 8.29 87 8.84 95 8.84182 8.28117 2.68128 8.84 15 7 9.99 13 9.49 14 9.49 18 9.99 24 2.69 26 8.29 43 8.84 47 8.48 16 54 0.40 60 0.90 65 0.40 79 0.40 80 0.04 95 0.04102 0.04117 3.00 16 7 3.60 15 0.04 24 0.04 58 0.04 61 0.04 62 0.04 70 0.04 99 0.04 17 17 142 0.04 2 8.29 7 3.00 13 2.60 24 2.60 28 8.20 31 8.40 41 8.20 47 8.90 18 53 9.29 54 9.49 58 9.49 68 9.99 62 9.48 65 9.94117 8.98 18 2 9.40 7 3.00 15 0.20 24 2.60 28 0.20 30 0.04 31 0.20 41 0.20 19 19 47 9.49 53 8.28 54 8.28 58 8.28 68 8.48 62 8.28 65 8.48 87 8.84 19 117 2.60 20 2 9.20 7 3.00 10 0.20 13 2.60 15 0.20 17 0.20 24 0.90 28 0.20

-

2

.....

-

110 mm

....

30 0.20 31 0.40 41 0.20 43 0.04 47 2.60 53 0.40 54 0.40 58 0.40. 20 20 60 0.40 62 0.40 87 0.04 95 0.20117 2.60 21 2 0.90 7 3.90 12 2.60 15 0.40 17 0.20 23 0.04 29 0.20 31 0.40 21 41 2.60 44 0.20 46 0.40 47 4.60 53 0.90 54 0.90 57 0.40 58 2.60 21 62 5.54 65 5.99 79 2.68 83 5.28 94 5.28168 3.48162 2.63188 5.45 110 0.40117 0.90129 0.40 21 2 2.69 7 5.99 12 2.69 15 9.29 29 9.29 39 9.28 31 2.68 41 8.99 22 46 9.49 47 4.68 53 8.48 54 2.68 57 2.68 58 3.88 65 8.48 68 8.98 22 22 79 9.29 87 9.29 95 9.29192 2.60111 9.94117 9.99121 9.94126 9.20 22 129 9.99 23 2 9.49 7 5.90 28 9.29 31 2.69 41 9.29 46 2.69 47 9.99 53 9.29 54 3.00 55 0.20 58 2.60 61 2.60 65 0.90 70 0.90 83 0.20 94 0.20 23 23 95 9.94109 9.90102 9.90108 9.04117 3.90121 9.29129 9.29 24 7 5.90 24 2.60 31 2.60 44 0.20 46 0.90 47 0.90 53 0.40 54 0.90 24 55 0.20 61 3.90 65 0.90 68 2.60 74 0.40 79 3.90 63 0.20 94 0.90 24 95 0.40102 2.60117 0.90 25 7 2.60 15 0.04 24 0.20 28 3.00 31 0.40 41 0.90 43 0.20 44 0.20 47 0.40 53 0.20 54 0.90 58 0.90 61 2.60 65 0.90 68 0.90 70 0.90 25 25 89 0.04102 0.90117 2.60 26 2 0.20 28 3.00 31 0.20 41 0.90 47 2.60 54 3.00 58 2.60 61 0.90 65 0.20 68 4.60 70 2.60 80 0.20 81 0.04 83 0.20 95 0.90 97 0.90 26 26 102 0.90117 0.90 27 2 2.60 7 2.60 15 0.20 31 2.60 41 0.90 43 0.40 47 2.60 53 0.40 54 2.60 57 0.90 58 2.60 61 2.60 65 0.40 68 0.40 80 0.20 83 0.70 27 27 94 9.29 97 0.29100 0.20102 0.90117 4.60129 0.40 94 0.20 28 30 7 3.00 28 2.60 31 0.40 41 0.40 47 0.90 53 0.20 54 2.60 57 0.90 58 2.60 87 0.20114 0.04115 0.40117 3.00129 0.40134 2.60 30 28 2.60 31 0.40 47 0.90 54 0.90 57 0.40 58 0.90117 0.04119 0.04 31 32 7 3.00 28 2.60 31 0.20 47 2.60 53 0.04 54 2.60 57 2.60 58 0.40 32 62 0.20 87 0.40 95 0.20117 0.04 33 7 9.49 28 8.48 47 8.48 54 8.98 57 8.98 58 8.48 95 8.84117 8.84 34 7 2.60 54 0.90 57 0.90 58 0.90 87 0.20117 0.04 35 7 2.69 28 8.98 47 8.48 54 8.48 57 8.98 58 8.98 87 8.98117 8.28 36 28 8.29 31 8.84 47 8.48 53 8.84 54 8.48 57 8.48 58 8.98117 8.84 37 7 0.20 28 0.90 47 0.20 54 0.90 57 0.40 58 0.40117 0.04 38 7 8.98 28 8.98 31 8.84 47 8.29 54 8.48 58 8.48117 8.48 39 7 3.09 28 2.69 47 9.99 54 2.69 57 2.69 58 9.49 87 9.29117 9.49 128 0.40129 0.40 39 7 3.00 28 0.20 47 0.90 53 0.20 54 0.40 57 0.40 58 0.40 87 0.20 40 117 0.90 40 7 9.99 28 9.99 47 2.69 54 2.69 58 2.69114 9.94117 9.49 41 42 28 2.60 47 2.69 54 2.69 58 0.90117 0.04 43 7 2.60 28 0.90 47 2.60 54 0.90 58 0.90117 0.04 44 28 2.60 47 2.60 53 0.04 54 0.40 58 0.40117 0.20 45 7 0.94 20 0.04 28 2.60 47 3.00 54 0.90 58 2.60117 2.60129 0.04 7 2.69 28 9.99 31 9.49 43 9.94 47 9.99 54 9.49 58 2.69 87 9.94 46 46 117 9.94 28 2.69 47 9.99 54 9.49 58 2.69 89 9.94 47 28 0.40 47 2.60 54 0.40 58 2.60117 0.40 **4**B 49 28 2.60 31 0.90 47 0.90 54 0.40 58 0.40117 0.20 28 9.99 59 9.99 54 0.20 58 0.90117 0.90 50 7 3.88 17 8.48 24 8.98 26 8.84 28 8.98 31 2.68 41 8.98 43 8.48 51 51 44 8.29 47 8.98 53 8.28 54 8.98 58 2.68 68 3.98 61 8.48 65 8.98 51 68 9.49 79 3.99 81 9.20102 9.20117 3.99

and the second

*

52 7 4.60 24 0.90 29 0.40 31 2.60 41 0.40 44 0.90 46 0.40 47 0.70 53 2.60 54 4.60 55 2.60 58 2.60 60 7.40 67 0.90 70 0.40 71 0.90 52 79 3.00 83 0.20 95 2.60100 0.90102 0.90122 4.60129 0.20 52 53 2 0.20 7 4.60 13 0.90 17 0.40 23 0.20 24 2.60 25 1.40 29 1.90 53 31 3.00 41 0.40 44 2.60 46 2.60 47 0.90 53 0.90 55 0.20 60 5.90 53 61 3.90 68 3.00 70 0.40 79 2.60 83 0.20 95 2.60102 2.60117 2.60 53 122 3.99129 9.29 54 7 3.00 13 3.00 15 0.20 24 3.00 25 0.40 26 0.20 28 0.40 31 2.60 54 41 8.28 44 8.48 53 8.48 54 8.98 55 8.98 57 8.48 58 8.48 68 3.98 54 61 3.00 65 0.40 68 2.60 70 0.90 79 2.60 83 0.40 88 0.90 95 3.00 54 107 0.40115 0.40117 3.90122 0.20125 0.20 55 2 9.49 7 2.69 17 9.40 24 9.90 26 9.29 28 9.40 31 9.99 41 9.29 55 43 9.90 44 9.20 47 9.90 53 0.20 54 2.60 57 9.40 58 9.40 68 9.90 55 65 9.49192 9.29117 9.49 56 2 0.90 7 2.60 13 2.60 14 0.40 17 0.20 23 0.04 24 2.60 30 0.20 31 2.60 41 0.20 43 0.90 44 0.20 47 2.60 53 0.40 54 0.40 57 0.40 56 56 58 9.49 69 2.69 95 9.29197 9.49117 3.99129 9.94 57 2 0.90 7 3.00 15 0.20 17 0.20 24 2.60 26 0.20 28 2.60 31 2.60 57 41 0.20 43 0.40 44 0.40 47 2.60 53 0.90 54 0.90 55 0.20 57 0.40 57 58 0.90 60 3.00 61 0.90 62 0.20 68 0.90 70 2.60 79 2.60 80 0.20 57 95 0.40107 4.60117 3.90129 0.04 58 7 3.00 24 0.40 28 2.60 31 0.20 47 0.90 53 0.20 54 0.20 57 2.60 58 58 0.20 80 0.40 87 0.40104 0.20107 0.40117 0.20 2 0.90 7 3.00 13 0.40 17 0.40 23 0.20 24 3.00 28 0.40 31 2.60 59 41 8.28 44 8.98 47 2.68 53 8.98 54 8.48 55 8.28 57 8.48 58 2.68 59 59 60 2.60 68 0.90 70 0.90 79 2.60 80 0.20 95 0.20100 0.20102 0.04 59 107 0.90117 3.90122 0.40129 0.20 60 2 9.49 7 5.99 19 9.94 13 2.69 17 9.49 23 9.49 24 9.99 29 9.49 31 2.60 41 0.20 44 2.60 47 0.90 53 2.60 54 0.90 55 0.90 57 0.90 69 58 2.60 60 3.00 68 2.60 70 0.90 95 0.40102 0.40117 3.00119 0.04 69 129 0.20 60 2 0.40 5 2.60 7 2.60 15 0.20 28 0.90 41 0.20 47 0.40 54 0.40 61 58 9.29 69 9.99 62 9.49 65 9.99 68 9.99 79 9.99116 9.94117 9.49 61 62 4 0.29 5 2.69 7 0.99 28 0.49 41 9.29 46 0.29 47 9.29 54 9.29 58 0.90 65 0.20 79 0.20 80 0.04102 0.20117 0.20 62 2 9.49 5 9.29 7 9.49 26 9.99 28 9.94 31 9.20 41 9.49 43 9.99 63 44 0.20 47 0.20 48 0.20 53 0.04 54 0.40 55 0.40 58 0.90 60 2.60 63 63 61 0.90 62 0.20 65 0.20 68 2.60 79 3.00 81 0.04117 2.60129 0.04 4 0.04 5 0.04 46 0.20 53 0.04 54 0.90 58 0.20 65 0.40 75 0.20 64 65 4 0.04 5 2.60 7 0.40 26 0.20 28 2.60 39 0.20 41 0.20 43 0.40 46 0.04 47 0.40 53 0.20 54 2.60 55 0.40 58 0.40 60 0.40 65 0.90 65 68 2.69 81 0.20111 0.20117 2.60 65 4 0.04 5 0.04 28 2.60 41 0.04 42 0.04 46 0.20 94 0.40 58 0.40 66 65 0.90100 0.04117 0.04 66 7 9.40 31 3.80 41 9.40 44 9.90 46 3.90 47 8.98 53 8.98 54 3.80 67 55 2.69 58 2.69 60 2.69 61 4.69 65 9.29 68 3.99 79 9.98 94 0.49 67 67 100 0.90102 3.90117 0.90118 0.90 4 8.28 5 8.98 28 8.84 28 8.48 47 8.48 54 8.98 58 8.98 65 2.68 68 68 68 0.20117 0.04 4 9.29 47 9.29 54 9.49 58 0.40 65 9.20 83 9.94 69 4 8.28 7 2.68 28 8.98 41 8.28 47 8.98 53 8.48 54 8.46 58 8.98 70 70 65 0.40 68 0.90117 0.40 8.98 19 8.98 28 2.68 41 8.28 54 8.98 65 8.98 66 8.98 68 3.98 71 5 79 3.99 88 8.48 95 8.84118 8.49114 9.49117 8.49 71 2 9.84 4 9.94 5 9.99 7 2.69 15 9.28 19 9.49 23 9.29 28 9.98 72

-

N. S. S.

2

-----

Con Martin

72	31	8.28 41	8.48 43	8.28 47	8.98 54	9.40 58	0.70 65	0.90 68 3.00
72	79	2.68 80	9.99114	0.90117	2.60129	0.20		
73	4	9.94 5	9.29 7	9.94 8	0.20 15	9.29 26	9.94 28	2.60 41 9.40
73	47	0.40 54	0.20 58	9.49 65	9.99 68	0.40 79	9.29 89	0.40 87 0.20
73	115	9.90117	9.20				_	
74	7	9.20 31	2.60 46	8.98 47	0.40 53	0.90 54	2.69 55	9.99 58 2.60
74	60	2.60 61	5.99 68	3.09 79	2.69199	2.60102	4.69117	4.69
/3	2	0.20 5	9.29 /	2.60 15	9.29 28	2.60 31	0.90 41	0.20 43 0.90
70	47	9.99 33	9.99 54	9.99 58	9.99 69	9.99 61	2.69 62	0.20 65 2.60
73	20	2.09 /9	7 43 15	3 24 24	0.90117 4 44 97	0.70127	9.20	D /A A1 A DA
76	47	0.20 / 0.74 AA	3 70 AL	0.20 20 0 00 A7	0.09 23	0.04 20	4 04 57	2.00 41 9.70
76	43	2.64 62	A. AA 48	2 92 72	7 22122	A 44117	3 04170	4 74 JO 8.40
77	2	2.68 5	8.48 7	3.88 15	8.20 23	8.98 24	3 24 28	90 31 2 40
77	41	6.26 44	0.90 47	0.90 53	0.40 54	8.98 58	0.90 KA	A.44 47 4 94
77	65	9.29 68	3.90 70	0.40 79	4.69114	6.40117	3.90129	6.26
78	2	9.90 5	0.40 7	3.00 15	0.20 20	8.84 23	0.40 26	1.20 28 2.60
78	31	2.69 43	8.48 44	0.40 47	0.90 53	8.48 54	8.49 58	8.48 68 9.78
78	62	9.29 68	3.00 79	3.00 80	0.20117	0.90129	0.04	
79	2	0.90 7	3.00 15	0.20 28	2.60 31	0.90 41	8.48 43	1.49 44 9.40
79	47	2.60 53	8.48 54	9.90 58	2.60 62	9.49 65	9.29 68	8.98 79 2.68
79	8∌	8.40117	2.60129	8.43				
80	2	0.90 3	9.49 7	2.60 15	0.20 20	0.20 28	0.90 31	8.48 41 8.48
89	43	9.49 44	9.29 47	0.90 53	0.40 54	0.90 58	2.69 62	0.40 65 0.90
80	68	2.69 79	3.00 80	0.20117	2.60129	9.29		
81	7	3.00 10	0.40 13	3.90 14	3.09 17	9.49 24	2.60 25	Ø.40 28 Ø.20
81	31	2.63 44	9.99 46	9.49 52	0.20 53	9.49 57	9.49 58	8.48 68 7.48
81	68	0.20 70	0.90 79	9.99 83	0.40 95	9.40192	3.00117	0.90
82		3.99 13	2.69 14	2.60 24	2.60 25	9.49 28	9.29 31	2.69 44 0.49
82	46	2.69 32	9.29 33	9.79 69	8.49 08	9.49 /9	2.60 /8	2.00 /9 9.20
02	83	2 44 14	3.99117	2.09	2 44 15	a 24 24	4 44 75	A 43 71 7 43
03		2.00 19	4 44 50	4.00 19	7 44 49	9.29 24 9 14 74	4 04 70	7 44136 4 04
97	1.82	7 44117	8 AA	9.29 09	/. 40 00	2.09 /9	9.79 77	3.99109 9.79
84	7	3.94 10	0.40 13	0.90 14	8.98 17	9.94 23	6.20 24	2.60 25 0.40
84	29	8.29 31	2.69 44	8.48 47	8.28 52	8.28 53	9.49 69	7.40 68 2.60
84	70	0.40 79	6.94 83	9.49100	9.40102	2.60107	2.60117	2.60129 0.04
85	7	0.44 28	8.98 54	0.20 57	9.29 69	8.28 65	9.40 68	3.00 80 0.20
85	96	9.49133	0.40					
86	2	9.94 7	9.49 28	0.90 31	8.29 41	9.29 47	0.20 54	0.20 58 0.20
86	60	9.49 65	9.29 68	9.99 78	0.40 79	9.49 87	0.20117	8.48
87	2	9.49 7	3.00 13	2.69 14	0.20 17	0.40 24	3.00 25	0.04 28 0.40
87	29	0.40 31	2.60 44	9.99 47	2.60 52	0.40 53	0.40 54	9.49 69 4.69
87	65	0.20 68	0.40 70	9.28 79	0.90117	3.00129	0.20	
88	2	9.99 7	3.00 13	9.40 14	9.49 24	0.20 28	0.40 31	1.20 43 1.40
88	47	0.40 53	9.49 34	9.49 38	9.29 69	9.49 65	9.49 68	0.40 79 0.90
88	114	D.2011/	0.70 7 44 17	2 45 14	4 04 74	2 44 71		
07	47	0.70 / A AA 57	4 24 14	3 44 14	0.70 24 3 33 40	4 04 70	2 44 70	A 94114 4 44
87	117	3.94120	4.74	J. MA C)	00 87.4	9.79 /0	2.00 /7	V. / VII 4 V. 4V
94	2	6.64 7	3.00 14	0.04 13	2.60 17	9.24 28	4.94 29	1.34 44 3.64
90	47	0.40 53	0.20 54	8.40 58	8.49 68	8.48 79	0.20114	0.20117 0.40
90	129	8.29						
91	2	9.84 5	8.84 7	2.60 14	2.60 15	9.29 29	9.94 26	9.20 28 0.04
91	31	9.49 41	9.99 43	9.20 47	0.40 53	9.29 60	2.60 70	9.29 78 5.99

动物和不同的利用的不同的人们的

.....

14 · +

the second se

91	95	0.04117	3.00						
02	2	A 74 7	4 34 7	3 03 17	3 45 14	a 35 54	4 24 25	a 24 21	a a.
02	7.3	0.20 J	A 20 47	0.70 IJ	0.90 19	0.20 29	9.29 23	0.20 20	0.04
72	30	8.84 41 A AALLT	9.29 9/	8.78 34	9.29 09	9.49 05	0.40 /8	2.00 80	8.84
72	2	3 74 7	0.90 A A A 7			1 04 15			
73		0.20 3	9.04 /	9.49 13	2.09 14	8.99 15	9.94 24	0.90 26	9.94
93	30	9.94 41	9.29 4/	9.49 53	9.49 69	0.40 78	3.99 87	0.40117	2.60
94	2	0.49 5	9.94 7	9.99 13	9.40 14	9.29 24	0.40 28	0.49 47	9.49
94	58	9.49 69	9.49 62	8.48 65	9.29 89	9.29117	₹.29		
95	3	9.40 7	0.40 13	9.29 24	9.94 28	9.49 47	9.49 54	1.49 58	Ø.2Ø
95	60	9.20 65	0.20117	9.29					
96	2	9.29 3	9.49 7	3.00 13	2.69 14	Ø.9Ø 28	9.49 47	9.49 53	Ø.2Ø
96	54	2.69 58	9.29 69	0.90 65	9.29 78	0.90 81	0.20 87	0.20117	0.40
97	2	9.49 3	0.40 5	0.04 7	0.90 13	2.69 14	2.60 15	0.20 17	1.20
97	24	9.99 28	9.40 41	0.40 43	0.20 47	0.40 58	9.29 69	2.60 62	0.04
97	117	2.69118	Ø.2₽						
98	2	9.49 7	0.90 13	2.60 14	9.49 41	8.48 43	0.49 47	0.90 53	0.20
98	58	9.29 69	2.60 61	0.04 65	0.40 78	9.99 81	0.20 97	0.20102	0.20
98	117	2.69							
99	2	9.49 3	0.40 7	2.60 13	0.90 15	0.20 23	0.20 41	<b>ð.</b> 2 <b>ð</b> 47	8.40
99	53	0.20 54	0.20 58	9.94 69	8.48 62	8.84117	9.99		
100	2	8.48 3	0.20 7	2.60 13	8.49 15	9.29 28	8.29 41	0.29 47	0.90
100	58	0.20 60	8.98 65	0.20117	8.99				
101	14	2.60 25	0.40 27	0.90 31	8.99 34	8.29 44	0.40 53	2.69 54	5.90
191	55	2.60 58	2.60 59	3.00 60	5.99 61	₽.99 67	9.49 68	8.98 78	3.45
101	71	<b>∂</b> .2 <b>∂</b> 83	8.98 94	0.90100	0.90102	2.69119	0.90		
102	14	0.40 25	ð.9ø 31	2.60 34	8.98 44	0.40 53	9.94 54	0.20 55	2.60
192	59	2.60 60	7.40 61	0.99 67	9.49 68	2.60 70	9.99 71	8.98180	0.70
192	192	9.99119	2.60					-	
103	7	9.29 14	8.48 38	0.04 31	2.60 34	8.98 41	8.84 44	8.48 53	3.28
193	55	8.48 59	2.68 68	7.40 68	2.69 79	0.90 71	0.90 73	8.40100	3.90
103	102	0.90119	0.99						
164	7	2.60 13	2.60 15	0.90 17	0.04 21	9.29 25	8.48 27	8.98 31	2.61
184	33	0.04 44	9.49 47	2.68 49	0.20 53	8.48 54	0.40 55	0.90 58	4.90
184	60	5.90 68	2.69 79	8.98188	8.98182	6.90119	8.98		
105	7	0.90 13	2.60 14	8.46 17	8.64 24	8.98 27	2.64 29	0.20 31	1.90
105	34	8.28 44	8.98 47	0.90 53	0.40 55	2.60 58	0.40 59	2.60 60	5.94
105	61	3.00 68	2.69 78	0.40 71	8.96 95	8.84188	0.40102	8.98119	0.46
104	7	0.40 14	0.90 21	2.60 25	8.48 27	8.48 31	6.98 44	8.40 47	8.48
106	49	0.90 53	8.98 54	0.90 55	2.60 58	0.40 59	2.60 60	5.90 61	4.60
106	68	2.60 70	8.98 94	0.90 95	8.84188	3.90102	8.98188	0.90	
167	7	0.90 25	6.26 27	0.40 28	6.26 29	0.04 30	8.98 31	4.99 34	6.93
107	44	8.48 47	2.69.54	0.20 55	8.98 58	8.48 68	5.90 61	2.64.68	6.90
167	74	6.96166	8.46162	0.90112	8.46119	0.20			
140	7	3 94 14	2 44 25	A. A.A. 27	3 23 31	A 94 37		1 23 A9	6 9.3
148	57	A 44 54	3 44 55	3 44 58	4.74 59	3 44 44	A. 60 61	2 44 48	3 93
148	74	A AA 71	A 94 73	2.44 94	A. 40130	4 94142	4.94119	3.49	
140	24	2.44.25	6.44 31	2.64 44	0.94 57	8.44 SA	6.44 55	0.40 50	
140	10	7 44 41	2 44 49	6.94 74	A. 44 71	A 94 71	4 94 70	A 90143	2.44
140	142	4 04110	A A4		W. TV / I	0.10 13	<i></i>		2.09
11/7	7	4 7 9 1 1 7 4 7 4 7 5 1 1 7	4 44 27	4 44 71	4 94 72	4 94 77	4 44 74	4 44 44	3 24
114	17	4 94 57	A 74 54	4 A4 55	4 74 52	2 44 50	4 44 40	A 94 13	7 34
114	40	2 44 74	A A4 71	4.44 79	4.94 04	A AA144	8.94142	A.94112	1.24
114	110	2.07 /V	9.90 /3	P. 49 /0	8178 74		9.79192	8.07.811.6	
111	117	A 44 15	A 24 17	4 24 19	4 24 27	4 44 29	73	4 74 11	3 34
111	12	4.00 13	8. 4A A7	6.94 A7	4.44 52	4.24 51	2.64 54	2.64 55	0.94
	34		LF FWAW						

和國家的構成了自然

A CAR A CAR AND

----

....

いたちの

and the second se

.....

11

A MANAGE AND A

Į

111 58 2.60 60 3.00 61 2.60 68 0.40 70 2.60 82 3.00 83 0.40100 3.90 111 102 3.00112 0.04129 0.04 112 2 8.28 7 2.68 9 8.84 15 8.48 19 8.48 28 8.28 27 8.48 28 2.68 112 30 9.04 31 2.60 32 9.40 41 9.04 43 9.49 44 8.40 47 8.98 52 8.20 53 9.40 54 9.40 55 9.90 58 8.99 60 4.60 65 9.84 68 3.99 70 9.90 112 112 79 2.60 83 8.40 95 9.94182 8.49112 8.84117 2.69118 8.48129 8.94 113 7 3.99 9 9.94 13 9.29 15 9.29 17 9.94 29 9.29 27 8.99 38 9.29 113 31 3,00 32 0.90 43 0.90 44 0.40 47 2.60 53 0.90 54 3.80 55 0.90 113 57 0.40 58 0.90 60 5.90 64 0.40 65 0.20 68 2.60 70 3.00 83 0.90 199 9.99102 0.99112 0.20117 2.60 113 7 8.98 9 8.29 15 8.29 19 8.98 24 8.28 27 8.28 31 3.88 32 8.48 114 114 43 8.98 47 8.48 52 8.28 53 8.98 54 3.88 55 8.98 58 8.98 68 7.48 114 64 9.99 68 2.69 78 3.99 79 8.99 86 8.48 94 8.48188 8.48182 8.98 114 112 3.00118 0.40 115 2 0.04 7 5.90 9 0.20 15 0.04 17 0.40 19 0.20 27 2.60 29 0.40 115 31 2.60 32 0.20 43 0.40 44 0.90 47 0.90 52 0.20 53 0.90 54 0.90 115 55 2.60 58 2.60 60 4.60 61 0.90 65 0.20 68 0.90 70 2.60 83 0.40 115 94 0.40 95 0.20100 0.90102 0.90117 0.40118 0.90 116 2 0.20 7 3.90 9 0.20 13 2.60 15 0.40 17 0.04 19 2.60 27 2.60 116 28 9.04 29 9.29 31 2.60 33 0.40 41 0.40 44 0.40 47 0.90 53 0.90 54 8.98 55 2.68 57 8.28 68 3.88 61 8.48 65 8.98 68 2.68 78 3.98 116 116 88 8.40 82 9.40 83 8.20100 8.40102 8.40112 8.20115 8.40117 8.90 2 0.40 7 3.00 9 0.20 13 2.60 15 0.40 19 0.40 25 0.20 27 0.20 117 117 31 2.60 32 0.90 41 0.40 43 0.40 44 0.40 47 0.90 52 0.20 53 0.90 54 8.48 55 8.98 57 3.98 58 8.28 68 3.98 61 2.68 68 2.68 70 2.68 117 117 79 0.40100 0.20101 0.40102 0.40112 0.20115 0.20117 2.60 7 3.90 13 2.60 17 0.40 31 3.00 32 0.90 43 0.90 44 0.20 47 0.20 118 118 53 0.40 54 0.90 55 0.40 58 0.20 60 3.90 61 0.90 64 0.20 70 2.60 118 79 8.48 94 8.48 95 8.28188 8.48181 8.28182 8.48118 8.48123 8.28 118 129 0.20 7 3.00 9 0.04 15 0.40 17 0.90 28 2.60 30 0.20 31 3.00 32 0.90 119 41 8.48 43 8.28 44 8.98 45 8.28 47 8.98 53 8.48 54 2.68 55 2.68 119 58 2.60 60 3.90 61 2.60 62 0.40 64 0.40 68 0.40 70 3.00 83 0.90 119 100 0.90102 0.40112 0.40117 0.20 119 120 7 5.98 29 9.48 27 9.49 28 9.49 39 9.29 31 3.69 41 9.29 44 9.29 120 47 0.90 52 0.20 53 0.90 54 0.40 55 2.60 58 0.90 60 3.90 61 0.90 64 9.49 68 9.99 79 2.69 89 9.29 83 9.49199 9.49192 9.99115 8.49 120 120 117 8.29 7 8.98 24 8.48 28 8.48 31 8.84 47 8.48 58 8.48 68 8.48 65 8.48 121 66 9.49 88 9.29 98 9.49117 9.84 121 5 0.90 7 2.60 14 0.04 24 0.90 26 0.20 41 0.40 47 0.40 54 0.40 122 122 58 0.40 60 3.00 65 0.90 66 0.40 68 0.90 79 0.20117 0.04 123 5 0.90 7 2.60 24 0.90 26 0.04 28 0.20 31 0.04 41 0.20 54 0.40 123 58 0.40 60 2.60 65 0.40 66 0.40117 0.90 124 2 0.40 7 3.00 14 2.60 15 0.90 17 0.04 19 0.20 24 0.40 25 0.40 124 26 8.28 31 8.98 41 8.48 44 8.28 47 8.98 53 8.48 54 8.48 58 2.68 124 69 3.09 61 9.99 65 9.99 66 9.29 68 9.99 73 9.49 79 3.99 81 9.94 124 117 2.69 5 9.94 7 9.94 24 9.84 28 2.68 54 8.49 58 2.68 69 9.98 65 8.48 125 66 2.69 81 9.49 125 7 8.28 24 8.49 28 8.48 47 8.84 58 8.28 68 8.28 81 8.84117 8.84 126 7 8.46 26 8.94 28 8.48 47 8.84 54 8.48 58 8.48 68 8.28 65 8.48 127 66 9.49 81 9.20117 9.94 127 5 0.20 7 2.60 11 0.90 13 0.90 14 2.60 24 2.60 25 0.40 26 0.20 128 28 8.28 31 8.98 41 8.48 44 8.98 47 8.48 58 8.48 68 3.88 61 8.98 128

			_					
128	ó5	0.90 óó	0.40 ó8	0.90 79	9.90 81	8.48 97	0.04117	3.00
129	5	9.29 7	2.60 19	0.20 24	9.99 28	0.20 31	8.84 41	0.20 43 0.04
129	47	0.20 58	9.49 69	2.60 61	9.99 65	0.92 00	0.40 79	8.20117 8.20
130	5	0.20 7	2.60 24	9.40 26	9.94 28	0.40 47	0.90 58	8.49 60 8.49
130	114	0.40117	0.20					
131	7	2.69 13	2.60 25	0.20 29	0.04 31	3.90 54	0.20 55	Ø.4Ø 58 Ø.90
131	69	3.99 61	3.00 64	9.49 68	2.63 74	2.60 79	4.68 95	8.20102 3.74
131	117	3.,99118	2.60					-
132	25	0.20 29	0.40 30	9.29 31	2.69 44	0.20 54	9.49 55	9.49 69 3.99
132	61	3.00 62	0.40 64	0.90 68	2.60 79	4.60 83	9.49 87	8.48 91 8.84
132	95	0.20102	9.29117	8.99122	3.00			
133	7	2.60 13	0.90 25	0.20 29	8.48 31	2.60 41	0.04 44	2.69 54 2.69
133	55	0.20 58	9.49 ó9	3.00 61	4.69 64	0.70 65	0.20 68	2.60 79 3.00
133	87	2.60 95	0.40102	9.991#7	0.40117	4.60122	0.40	
134	7	3.00 13	0.90 14	0.90 24	3.99 29	0.20 31	2.68 44	0.20 54 0.90
134	58	9.49 69	2.60 61	2.60 64	9.49 68	8.99 79	3.90 83	9.29 88 9.40
134	95	9.49197	9.20117	4.60129	0.90			
135	7	2.69 10	0.90 13	8.20 24	0.40 25	0.90 29	9.49 31	3.00 44 0.90
135	50	0.90 53	0.04 54	0.40 58	0.40 ó0	3.99 61	2.60 63	8.48 68 3.08
135	79	4.60 83	0.90 94	8.98188	0.40102	0.90117	3.00	
136	7	2.69 19	9.40 24	4.69 25	0.04 29	0.40 31	2.68 41	1.49 44 1.29
136	54	0.20 60	2.60 61	2.69 64	0.40 65	0.90 67	0.20 68	8.98 74 3.98
136	79	2.60 88	0.90102	9.99187	9.29117	4.69118	0.20122	5.90
137	6	8.90 7	4.60 10	9.04 13	9.49 17	0.20 29	0.20 31	2.60 44 0.90
137	54	3.00 57	0.90 58	2.68 68	3.99 61	2.60 64	9.99 68	8.98 79 2.60
137	80	0.90 95	0.40102	2.60103	2.60117	3.00135	2.60	
138	7	3.90 10	8.48 24	3.90 25	0.40 31	2.60 44	8.98 54	1.99 58 J.20
138	60	2.60 61	4.60 68	0.20 79	3.00102	2.60117	3.90	
139	7	4.60 25	0.40 26	0.40 31	3.00 44	8.48 58	0.90 53	8.90 54 2.60
139	58	2.69 69	3.00 61	3.90 65	0.90 67	9.29 68	0.90 72	0.20 79 3.00
139	83	2.60 93	0.40102	3.90122	2.60			
140	7	4.60 19	9.04 25	0.90 31	2.60 44	2.60 53	0.90 54	3.00 55 0.40
140	58	2.69 69	3.99 61	2.60 64	0.20 68	2.60 70	9.49 79	3.00 95 0.90
140	100	9.49192	0.90106	9.29117	2.60118	2.60		
141	2	9.99 7	2.60 13	3.99 24	9.04 28	9.29 31	9.49 44	0.20 47 0.90
141	54	0.40 57	0.20 60	9.99 65	0.20 68	8.84 79	<b>3.93</b> 87	9.29116 0.29
141	117	0.90						
142	7	5.90 10	0.40 13	3.90 24	2.60 29	0.40 31	2.68 44	9.04 47 2.69
142	53	0.40 54	0.40 60	3.90 68	2.60 79	3.00102	9.29116	0.20117 3.00
143	7	4.69 13	4.60 24	0.40 29	0.20 31	2.69 44	0.90 47	0.40 53 0.98
143	54	0.40 58	9.99 69	3.00 61	0.90 68	2.60 79	3.90102	0.20117 4.60
144	2	2.60 7	4.60 13	4.60 24	0.04 28	3.00 31	2.69 44	8.84 47 8.48
144	54	0.90 58	0.90 60	<b>Ø.</b> 9 <b>Ø</b> 61	0.40 68	0.90 79	3.00 80	0.20 95 0.04
144	1₿2	0.90117	3.90129	2.60				
145	7	2.60 10	0.20 13	3.00 14	₫.90 24	0.20 25	0.20 29	0.90 31 2.60
145	44	9.29 47	0.20 53	0.40 54	9.99 58	2.60 60	4.69 61	3.00 62 0.40
145	65	0.90 79	2.60 94	0.90 95	0.20102	2.60117	0.40	
146	7	3.90 13	8.49 14	2.60 23	0.04 25	0.90 29	0.90 31	2.60 44 0.40
146	53	9.49 69	3.99 61	2.60 68	0.90 79	7.40117	7.40	
147	7	4.60 13	2.60 14	2.69 24	2.60 29	9.90 31	2.60 44	8.40 54 8.84
147	60	4.60 68	9.99 79	4.60117	4.60			
148	2	9.29 7	3.90 10	8.48 13	3.89 14	2.69 18	2.69 24	3.00 25 0.20
148	29	0.40 31	2.69 44	0.40 47	0.04 53	9.90 58	0.20 60	3.99 61 9.99
148	65	9.20 68	9.49 79	5.90 80	0.20117	3.99129	9.99	
149	7	3.00 13	3.00 14	9.49 17	9.94 28	0.90 29	9.94 31	0.40 44 1.40

A. ....

Jan -

A state of the sta

16 .....

- - --

the second se

١.

140	47	4 44 57	3 34 54		8 43 43	- 1A 15	6 43 10	1 24 30	a / a
147		D. 40 JJ	9.29 34	2.47 JO	0.49 09	2.09 03	9.90 00	1.28 /9	2.00
147	5/	9.4011/	3.99						
159		3.79 13	3.99 14	5.00 25	0.90 27	0.90 31	2.69 44	9.79 53	9.99
159	64	3.78 61	3.99 68	0.20 79	4.69192	9.94117	5.90		
151	7	4.60 28	9.99 31	0.90 47	3.00 53	8.48 54	3.00 57	2.60 58	9.49
151	87	2.60 95	9.40102	9.90115	0.40117	3.00			
152	1	2.6≇ 2	9.49 7	5.99 28	Ø.90 31	2.60 47	3.90 51	6.90 53	3.00
152	54	4.60 57	2.69 58	3.90 69	9.94 98	0.40102	9.99111	0.40115	1.20
152	117	5.90							
153	1	2.60 7	7.49 21	0.40 28	9.94 29	0.29 31	3.90 41	8.28 47	3.00
153	50	2.60 51	2.60 53	2.60 54	3.00 55	0.20 57	3.00 58	4.69 69	0.20
153	102	8.98117	5.90129	8.84					
154	1	2.60 2	2.60 7	3.00 28	2.60 31	3.00 38	3.00 41	4 94 43	a 24
154	47	3.44 54	6.96 51	4.94 53	2.68 54	3 44 55	4 24 57	2 44 59	7 64
154	46	4 03 40	7 33137	7 04111	5 24117	7 44170	3 44	2.09 30	3.79
155	1	a 0 a 7	7 44 7	5 04 20	5 LA 71	7 44 70	2 14 17	7 04 57	4 34
155	5.4	A 0.5 SE	3.99 7	3.70 20 3.4 ED	4 05 10	3.99 30	2.00 4/	3.79 33	.29
100	117	7 04100	0.04 J/	2.00 30	<b>D.70</b> 07	0.20 09	0.79111	9.29115	8.70
100	117	3.70127	0.04						
136	1	9.49 2	2.60 /	4.69 19	9.94 31	3.90 38	2.60 41	9.29 43	0.20
156	47	3.00 50	0.40 51	0.90 53	2.60 54	4.60 55	0.40 57	3.99 58	3.00
15á	61	2.60 68	9.94 69	3.00102	2.60117	5.90119	9.94129	0.20	
157	2	2.60 7	4.60 29	0.40 31	3.00 38	2.60 41	9.49 44	0.04 47	3.00
157	50	2.69 51	0.90 53	0.90 54	3.90 57	2.69 58	3.00 69	3.99192	0.20
157	117	4.60129	0.04						
158	1	ð.2ð 2	2.60 7	5.90 29	ð.2ð 31	2.60 43	0.20 44	8.84 47	4.60
158	53	0.94 54	4.60 55	0.20 57	3.90 58	3.00 61	8.49 69	3.00102	4.40
158	117	5.90129	0.40						
159	1	8.84 2	2.60 7	3.90 31	3.00 38	2.69 41	0.04 43	8.29 44	1.20
159	47	3.99 50	3.00 51	9.99 53	8.48 54	4.68 55	0.20 57	3. 20 58	3.90
159	69	2.69 87	0.20 95	9.94192	0.40110	0.20117	3.99129	0.20	
160	1	2.68 31	2.68 47	3.44 54	3.00 51	2.68 53	8.48 54	4.60 57	2 40
160	58	3.00 69	8.84 88	8.28182	4.44111	8.48115	2.69117	5.94129	a 2a
141	1.4	2 44 31	2 44 54	7 44 54	4 44 55	4 24 59	3 44 17	3 44 74	3 44
141	142	5 04111	3 44117	8 44119	A 74174	3 24129	a 14	3.22 / 0	V
147	14	4 04 71	5 10 SA	0 40 TA	7 04 57	4 34 50	1 44 11	7 84 49	2 4 3
142	74	4 74142	2.09 39	4 04117	0 4 J	9.29 JO	3.99 03	J. M. GO	2.02
147	14	7 44 71	2.00111 a 0.a «a	D. 70(1/	C 04 CO	5 04 17	7 54 10	A AA 40	4 0/3
103	74	3.99 31 4 43147	7 04117	0 #4100	J.79 JO	J.70 0J	3.99 00	9.40 07	9.792
103	10	0.10102	3.7911/	0.49127	0.70				
104		9.79 10	2.00 31	8.78 43	9.99 9/	9.79 39	9.79 33	9.29 34	4.09
104	5/	9.79 38	3.99 63	0.20 07	9.79 87	9.49111	9.79117	5.90129	9.79
165	16	3.00 31	3.09 50	3.00 52	0.90 54	7.49 58	3.00 63	3.99 69	9.49
165	76	0.90 94	0.90102	3.90111	3.00117	7.40129	0.40		
166	1	2.60 16	2.60 23	0.40 43	9.99 44	9.29 47	3.00 34	3.90 57	.20
166	58	3.00 63	<b>9.</b> 90 76	0.90 80	9.40111	0.90117	4.60129	9.99	
167	16	0.90 31	8.98 47	0.20 50	9.90 54	4.60 57	0.40 58	3.10 63	●.9∅
167	69	9.99 80	9.29 89	0.20111	2.60117	4.69129	0.40		
168	1	3.90 16	0.40 47	9.99 51	8.98 54	2.60 57	9.20 58	3.01 63	9.20
168	80	9.40111	0.90116	9.49117	3.00129	0.40			
169	1	2.69 16	2.60 43	0.40 44	9.04 47	9.99 50	2.69 51	2.60 53	9.94
169	54	9.99 57	2.60 58	8.48 69	9.49 89	0.40 87	8.49111	8.98116	9.29
169	117	7.40129	₿.2₿						
170	1	9.99 16	8.98 43	8.84 44	8.28 58	3.00 51	8.98 54	4.60 57	0.90
179	58	2.69 69	9.49 88	0.20 87	8.84 95	8.20115	0.04117	4.60129	0.20
171	16	3.49 19	0.04 23	2.68 31	3.99 35	0.04 40	8.84 58	2.60 52	2.60
171	54	3.00 41	5.90 43	0.40 AR	2.68 74	7.40 87	4.94 95	8.48188	4.40

δhi

for an

the state of

and the second s

and the second se

I

171 102 3.00105 0.20108 2.60110 3.90117 3.90119 2.60140 0.40 172 16 8.98 31 3.88 58 2.68 51 2.68 54 2.68 58 3.88 61 3.88 63 2.68 172 68 2.69 69 8.20 74 3.98 77 8.28 95 8.84182 8.48118 3.88117 7.48 172 119 9.20129.0.20 173 16 2.60 31 3.00 50 2.60 54 3.00 57 0.40 58 0.40 61 5.90 63 0.40 173 74 2.60 77 3.00 95 0.20102 2.60108 0.20110 2.60117 0.90 174 16 2.60 19 0.20 31 3.00 50 2.60 52 0.20 54 0.90 61 5.90 63 2.60 174 74 7.40 95 0.40102 0.40106 0.04110 3.00117 3.00121 0.04122 0.20 174 129 0.04 175 12 3.00 16 0.90 31 3.00 43 0.20 50 2.60 51 0.90 54 2.60 61 5.90 175 63 2 60 68 2 60 74 2 60 79 3 90 95 9 20100 0 20102 9 40110 0 40 175 117 3.00119 0.20129 0.20 176 16 2.60 31 2.60 50 3.00 51 0.40 54 3.00 56 2.60 58 3.00 61 3.90 176 63 3.00 68 0.90 69 0.20 74 0.90 77 0.90 94 0.20 95 0.20102 0.40 176 110 0.90117 2.60119 0.40 177 16 3.00 22 0.90 31 3.00 38 0.20 44 0.04 50 2.60 51 2.60 52 0.20 177 54 3.00 57 0.40 58 3.90 63 0.90 68 0.90 69 0.20 74 3.00 76 0.20 177 77 0.99 94 0.20 95 0.20102 0.90108 0.20110 0.90117 2.60118 0.20 177 124 0.20129 0.20 178 16 2.60 31 2.60 50 2.60 51 0.90 54 2.60 57 0.40 58 5.90 63 0.90 178 68 0.90 69 0.40102 0.20110 0.90114 0.40117 7.40124 0.40129 0.20 179 16 3.00 31 2.60 47 3.00 50 0.90 51 3.00 54 0.40 57 0.40 58 4.60 179 63 0.20 68 0.90 77 0.20102 3.90110 0.40117 7.40129 0.40 189 16 3.00 22 4.60 31 3.00 50 3.00 51 2.60 54 2.60 58 5.70 63 3.00 180 68 0.40 69 0.40 77 0.40102 2.60110 0.20117 3.90129 0.40 181 7 4.60 13 2.60 24 2.60 29 0.40 31 2.60 54 0.90 60 3.90 61 2.60 68 2.60 79 3.90 80 0.20 94 0.40102 0.40117 2.60 181 182 7 3.00 24 3.00 29 0.20 31 0.90 54 0.90 57 0.90 60 2.60 61 3.00 182 68 2.60 69 2.60 74 0.40 79 2.60 94 0.90117 2.60122 0.20129 2.60 183 7 2.60 22 0.90 24 2.60 29 0.20 31 2.60 44 0.40 54 0.90 60 0.40 183 61 4.60 68 2.60 69 2.60 74 0.40 79 3.00102 2.60117 2.60 184 7 3.90 13 0.20 16 0.40 31 2.60 50 0.90 54 2.60 57 0.90 58 2.60 184 60 2.60 65 0.90 68 2.60 79 0.90 80 0.20 95 0.20102 0.90110 2.60 184 117 2.60129 0.40 185 7 2.60 13 0.90 31 2.60 44 0.40 60 0.90 61 2.60 62 0.20 68 2.60 185 79 4.60117 2.60129 0.20 7 5.90 13 2.60 15 0.20 29 0.20 31 2.60 50 0.90 54 2.60 57 0.90 186 186 58 8.28 61 8.98 64 8.98 68 2.68 79 2.68 88 8.48182 2.68117 8.98 7 2.60 13 2.60 29 0.20 50 0.40 54 0.90 60 0.40 61 2.60 68 0.90 187 187 79 5.90 88 0.40102 0.40117 0.90122 2.60 188 7 9.99 24 2.69 31 2.69 44 9.29 54 9.99 69 2.69 61 2.69 62 9.49 188 65 0.40 68 2.60 79 3.00102 0.40117 2.60129 0.90 189 7 9.99 31 9.49 44 9.49 54 9.99 57 9.29 68 9.79 61 9.99 65 9.49 189 68 0.90 79 0.90 80 2.60 88 2.60117 0.90 190 7 3.90 16 0.40 29 0.40 31 2.60 44 0.40 54 2.60 57 0.40 58 2.60 69 9.49 61 2.69 64 2.69 68 2.69 79 9.98182 8.48117 2.68129 9.48 190 7 2.60 18 0.90 37 0.90 47 2.60 53 0.20 57 2.60 58 0.40 62 0.90 191 191 80 9.20 87 9.40117 0.90129 0.20 192 7 2.60 47 0.90 53 0.40 54 0.90 57 2.60 58 0.90 62 0.04 60 0.04 192 94 8.84192 8.29117 8.98119 8.84129 8.28 193 7 2.60 37 0.40 47 0.90 53 0.20 57 2.60 58 0.40 80 0.04117 0.20 194 7 9.99 47 9.49 57 9.49 58 9.49 89 9.84117 9.84 195 7 3.90 37 0.90 47 2.60 53 0.40 54 0.90 57 2.60 58 0.20 62 2.60 89 8.29 87 8.84182 8.20117 2.60129 8.84 195 7 2.69 37 9.99 47 9.99 53 9.49 54 0.49 57 2.60 58 0.48 80 0.40 196

196 81 0.40117 2.60 197 7 2.69 47 9.99 53 9.94 57 9.99 58 9.29 89 9.94 87 9.49117 9.49 197 129 0.04 198 7 2.60 23 0.20 38 0.20 47 2.60 50 0.40 53 0.90 54 2.60 57 2.60 198 58 2.68 62 0.04 80 0.20 87 2.60 95 0.20102 0.40117 3.00 7 2.60 38 0.40 47 0.90 53 0.40 54 0.90 57 0.90 58 0.90 95 0.20 199 199 117 0.90138 0.40 7 2.60 37 0.90 47 2.60 53 0.20 54 0.20 57 2.60 58 0.40 62 0.20 200 95 8.20182 8.84185 8.26117 8.98129 8.84 200 7 3.90 18 2.60 28 0.90 29 0.40 37 0.90 47 3.00 53 0.90 54 3.90 201 57 9.49 58 2.69 62 9.49 88 9.29 83 9.49 94 8.48189 8.84182 8.98 201 201 115 0.40117 2.60129 0.40131 0.04 202 7 2.60 18 0.20 23 0.04 37 0.90 47 2.60 53 0.90 54 2.60 57 2.60 202 58 8.48 88 8.28 94 8.84 97 8.98115 8.48117 2.68 7 9.49 37 2.69 47 9.99 53 9.29 57 2.69 58 9.29 88 9.29 87 9.49 203 203 117 0.40 7 3.00 15 0.04 37 0.90 47 2.60 53 0.90 54 0.90 57 0.90 58 0.90 204 62 0.20 80 0.20 87 0.40115 0.20117 3.00119 0.04129 0.20 264 7 2.60 30 8.28 37 8.98 47 8.98 53 8.48 54 8.48 57 8.98 58 8.48 205 205 62 0.40 80 0.20 87 0.20117 0.90 2 9.49 7 5.99 15 9.20 28 2.60 31 2.69 41 9.20 47 4.60 50 9.20 211 211 52 0.20 53 0.90 54 3.00 57 2.60 58 2.60 69 0.40 68 0.04111 0.20 117 0.90129 0.04 211 2 0.40 7 5.90 28 2.60 31 2.60 47 2.60 53 0.90 54 3.00 57 2.60 212 58 2.60 67 0.40102 0.90111 0.40115 0.40117 2.60 212 1 0.90 2 2.60 7 5.90 15 0.20 28 0.20 31 2.60 44 0.40 47 3.00 213 50 0.40 53 0.90 54 3.00 57 2.60 58 3.00 61 0.40 62 0.90 68 0.20 213 213 69 2.60 80 0.40 87 0.40 94 0.20102 0.90117 3.00129 0.20 1 2.60 7 2.60 28 0.20 31 2.60 47 3.90 50 2.60 53 2.60 54 3.00 214 214 57 3.00 58 2:60 69 0.40 80 0.20111 0.40115 0.90117 3.00 215 7 2.60 47 2.60 53 0.20 57 0.90 58 0.20 80 0.20117 0.20 221 16 3.99 31 2.69 59 3.99 54 4.69 57 9.49 58 2.69 61 5.99 63 3.99 221 69 9.20102 3.00110 0.40117 2.60118 0.90 16 0.90 22 0.20 31 3.00 50 2.60 51 0.20 54 0.90 55 0.20 58 2.60 222 222 61 5.99 63 3.99 69 9.29 77 9.99 94 9.49192 9.99117 9.29118 9.99 223 16 2.69 22 0.49 31 2.69 50 2.69 51 0.20 54 0.90 55 0.40 58 0.90 61 4.69 63 2.69 69 9.40 77 0.20 79 2.60 92 0.90117 0.90118 0.20 223 16 2.69 22 8.48 31 2.68 58 8.98 54 8.98 55 8.98 58 8.98 61 5.98 224 224 63 3.90 69 0.20 77 0.20 94 0.20100 0.20108 0.20112 0.04117 0.04 224 118 0.20 225 16 3.00 22 0.20 31 2.60 50 2.60 51 0.20 54 0.40 55 0.90 57 0.40 225 58 2.60 61 4.60 63 3.00 69 0.20 77 2.60 94 0.20102 0.40108 0.20 225 117 0.04118 0.40 7 9.29 24 9.29 47 9.94 57 9.29 80 9.94116 9.29117 0.20 231 2 0.90 7 3.90 10 0.04 13 3.00 14 0.90 17 0.40 24 0.40 28 2.60 232 232 29 8.28 34 2.68 41 8.28 44 8.98 47 3.98 53 2.68 54 3.88 55 8.28 232 57 2.60 58 0.90 60 0.20 61 0.40 62 0.20 80 0.04 95 0.40102 0.20 232 117 2.60129 0.40 2 9.90 7 3.90 13 2.60 15 8.40 17 8.48 24 2.68 25 8.84 28 8.98 233 233 29 8.48 31 2.68 41 8.48 44 8.28 47 2.68 53 8.98 54 3.88 55 2.68 233 58 0.90 60 3.00 65 0.04 79 2.60 87 0.20 95 0.20115 0.20117 3.00 233 129 9.94 2 8.48 7 3.99 28 8.98 29 8.28 41 8.28 47 8.98 53 8.48 54 8.98 234 234 57 2.60 58 0.40 61 0.40 80 0.20 87 0.90 95 0.40117 2.60 2 8.48 7 3.88 13 2.68 17 8.28 28 2.68 29 8.48 31 8.98 41 8.28 235

1.

235	43	8.48 44	8.04 4ó	0.04 47	2.60 53	0.90 54	1.99 57	2.60 58 2.60
235	69	2.60 61	0.90 83	9.94 87	8.48 98	9.29 95	0.40117	2.60129 0.40
236	7	2.60 13	2.60 28	2.69 44	0.20 47	0.90 53	0.20 54	3.00 57 0.90
236	58	9.40 80	9.20 87	0.40 90	0.20 95	0.20117	8.49	
237	7	3.99 13	2.60 17	0.20 28	2.60 31	8.98 41	8.28 44	1.48 47 2.68
237	53	9.48 54	3.00 57	2.60 58	9.99 69	Ø.40 61	9.99 87	8.28 98 8.20
237	95	9.49192	0.90115	0.40117	8.98 -			
238	5	3.00 7	3.00 15	0.40 19	2.60 20	8.48 24	0.90 25	8.90 26 8.84
238	29	0.04 31	0.90 41	0.40 43	8.48 44	0.40 47	0.40 48	0.20 53 0.90
238	54	3.00 55	0.40 58	0.90 60	2.60 61	3.00 65	9.99 66	0.40 68 0.90
238	74	0.40 83	0.20 85	8.46 95	8.48182	2.68139	8.48	
239	5	4.60 7	0.40 15	8.48 17	8.28 19	0.40-20	6.28 24	6.90 26 8.40
239	28	2.60 31	0.20 41	0.40 47	0.90 48	0.40 53	0.40 54	3 44 57 4 94
220	58	2 44 44	A AA 42	A 94 45	2 48 44	4 94 49	4 04 70	7 48 87 8 44
239	84	A. 24 84	a 96114	A 4A	2105 00			2.00 00 0.49
746	5	2.68 7	2.64 24	A AA 74	6.48.24	A AA 28	a 94 31	A 90 A1 A 40
244	47	4 44 49	4 44 57	A A3 54	4 94 57	A 94 44	A 04 45	A AA AA 7 40
240	24	4 24 01	4 94	רע ער א	V./V J/	0.70 00	0.70 05	V. 40 00 2.00
249	2	2 3 X X	5 16 7	7 04 17	2 44 27	3 94 71	5 44 44	6 +6 13 3 1A
241	4	7 . 4 . 5	3 43 19	3.64 70	2.08 23	5 34 05	2.09 11	5.75 OV 2.00
241	115	2.00 03	9.49 00	9.79 /7	3.79 8/	0.20 75	0.20102	9.2919/ 9.49
241	113	9.29117	3.79127	9.40				
242		3.00 23	9.79 28	2.69 31	0.70 44	9.49 34	0.70 38	9.40 69 8.90
242	61	9.99 63	9.79 08	2.60 /9	3.88 68	9.94 8/	0.40102	0.7010/ 0.70
242	117	3.90129	9.94					
243		4.69 19	0.04 23	2.60 24	2.09 31	5.99 44	0.20 60	4.69 61 4.69
243	- 79	5.99 88	0.20 94	0.20 95	3.00102	9.29197	3.99117	3.00122 0.40
243	129	9.29						
244	24	4.60 31	2.60 44	9.29 69	3.99 61	4.69 65	0.04 74	2.60 79 0.90
244	87	5.99197	0.90117	2.69122	4.60			
245	7	3.90 10	9.04 13	0.04 23	2.60 24	0.90 31	3.00 44	0.90 54 0.20
245	69	2.60 61	4.69 68	2.69 69	9.29 79	5.90 95	0.20102	9.4019/ 9.49
245	112	9.20117	3.00127	0.20				
246	7	4.60 10	0.20 13	2.60 23	2.60 24	2.69 31	3.99 44	0.20 54 0.20
246	69	3.00 61	3.99 68	2.69 79	5.99 91	0.49 95	2.60102	9.99117 3.99
246	122	9.49129	0.20					
247	7	3.00 13	0.20 23	0.20 31	3.00 44	9.49 55	0.20 58	0.90 60 3.90
247	61	3.00 79	3.99 94	0.40 95	0.49102	2.60112	9.29117	5.90
248	2	9.49 7	3.00 23	0.20 28	0.04 31	0.90 44	9.79 54	2.60 58 0.90
248	69	2.60 65	9.49 68	0.90 69	0.20 79	2.60 80	0.20 95	0.20102 0.40
248	111	9.29116	9.20117	3.00				
249	7	5.90 10	9.90 13	0.40 23	0.20 31	3.00 43	0.40 54	0.91 58 0.41
249	69	3.00 61	3.00 65	0.40 79	2.60 95	3.00102	2.60117	3.90122 2.60
250	7	3.00 13	<b>9.</b> 29 23	0.90 31	2.69 44	8.98 54	0.90 37	0.20 58 0.20
250	60	0.40 61	3.00 65	9.49 68	0.40 79	3.00 80	0.40 95	0.40117 3.00
250	122	2.60129	0.20					
251	28	2.60 43	0.40 47	0.90 54	0.40 58	9.49 69	9.49 68	0.99117 0.94
251	119	9.29						
252	2	9.94 3	9.40 20	0.04 43	0.20 47	0.90 54	0.20 58	0.20 60 0.40
252	65	9.94 68	0.20					
253	28	9.48 43	0.04 47	0.90 58	9.49 69	9.49141	9.29	
254	43	9.49 47	2.69 53	8.28 54	0.40 58	0.49 69	2.68 65	0.90 68 0.40
254	115	0.20117	0.94					
255	7	9.49 43	0.04 47	9.99 53	9.29 58	9.49 68	9.99 65	9.49 68 9.49
255	117	0.20						
256	28	9.29 43	9.29 47	2.60 54	0.20 58	0.40 69	9.29 65	9.20 68 0.90

ないろう

and the state of the

and the second se

100

and and

257	2	9.49	4	8.84 7	0.20 28	2.60	31	0.40 43	0.40 4	7 2.60 58 4.90
257	69	6.98	65	9.49 68	8.78 81	8.84	117	9.99		
258	8	8.49	28	0.04 47	8.48 54	8.48	58	0.90 60	a. 9a 4	5 4 44 45 4 94
259	2	0.20	8	0.90 39	8.48 41	0.04	43	0.20 54	3 94 5	B A 94 44 4 94
259	65	3.46	68	6.96117	0.20					
260	2	9.44	3	4 94 7	2 44 28	4 74	70	3 24 41		7 4 04 51 4 04
248	58	4 94	44	3 03 15	A AA 10	2 4 3	114	0.49 91 0.04117	0.40 1	/ 9.79 34 9.79
244	7	0. / U	0.0	8 . 7 9 0J	2 3 1 D	2.09		0.01.11	9.40	
201	5.	0.40	- 0	9.49 13	9.94 20	9.94	20	9.29 41	9.49 4	3 1.94 47 1.40
201	54	9.49	58	9.49 69	2.69 65	9.20	68	0.70 81	9.49 9	7 0.04117 0.20
202		9.79	8	0.90 25	0.04 28	9.29	41	0.20 43	9.49 4	7 0.90 53 0.40
262	34	9.49	28	9.49 69	0.40 65	9.49	68	9.43 79	2.60 8	1 0.20117 0.20
263	3	0.40	7	2.69 8	0.20 26	0.20	28	9.49 31	0.90 4	1 9.49 43 9.49
263	47	2.60	54	0.40 58	9.98 68	3.90	65	0.40 68	8.49 7	9 9.99 81 9.20
263	117	0.40								
264	7	2.60	28	0.90 29	0.04 41	9.49	43	8.48 47	2.60 5	4 8.98 58 8.48
264	óø	9.99	65	9.29 68	0.40117	0.20				
265	8	0.20	28	8.48 43	9.29 47	9.49	54	0.40 58	0.20 6	0 0.90 65 0.04
271	5	0.04	54	0.20 58	9.94					
272	2	8.84	7	8.40 8	0.04 28	6.84	41	9.94 47	2.60 5	3 8.94 58 9.44
272	60	9.49	65	9.29 81	9.94199	9.94	117	9.29		
273	4	0.20	5	0.04 8	0.20 28	8.28	43	9.84 47	a 4a 5	R A 44 44 A 74
273	65	3.34	81	9.94						
274	58	a a4	٠.							
275	50	3 73	57	4 44 54	4 44 50	a 74	25	3 74		
275	7	3 74	20	5 AG AT	0.07 JO	<b>V</b> • 2 <b>V</b>	60	U. 40 3 A3 / A	a 0411	7 8 0.4
2/0	, ,	0 . L D	20	3 33 0	3 14 20	0.70	10	0.90 00 3 74 47	9.2911. 4.04 F	/ 9.79
277	4	0.04		9.49 0	9.49 28	2.09	41	0.29 47	0.20 5	4 9.99 58 9.29
277	017	9.79		9-9411/	0.70127	0.04				
2/8		9.49		2.69 8	0.20 12	2.69	14	9.94 28	2.69 3	1 9.29 41 9.94
2/8	43	9.94	4/	0.90 54	9.49 58	9.49	09	0.90 65	9.29	
279	7	7.49	28	0.04 41	0.04 47	9.29	53	9.94 58	0.20	
280	4	0.40	5	9.40 8	0.40 47	9.94	54	0.70 58	9.49 6	3 9.49 65 9.94
289	81	0.04	83	0.04112	9.94					
281	2	9.40	7	4.69 13	2.60 15	9.94	17	<b>8.90</b> 21	2.60 2	7 1.40 28 1.90
281	30	0.90	31	2.69 41	0.20 43	₫.2₿	44	0.90 47	3.90 5	3 8.90 54 0.90
281	55	8.99	58	0.90 60	3.00 61	9.99	62	9.99 68	8.99 7	8 8.29 89 9.29
281	83	0.40	94	0.40100	8.40102	2.69	117	3.00		
282	2	9.29	7	3.90 10	8.94 13	4.60	17	0.90 21	0.40 2	4 0.20 27 0.20
282	28	8.49	30	0.40 31	2.60 43	8.04	44	8.28 47	2.69 5	3 8.98 54 8.48
282	55	2.60	57	0.90 58	8.48 69	3.00	61	2.60 68	0.90 7	9.49 94 9.40
282	186	0.20	102	0.90117	3.00127	9.29				
283	7	2.69	13	2.60 14	2.6# 24	2.60	31	2.68 44	0.90 4	7 8.40 53 8.40
283	55	0.40	60	7.40 61	8.98 68	6.93	79	3.00102	8.9011	7 0.90
284	7	3.00	1.0	0.04 13	3.00 20	8.84	29	0.20 31	2.60 4	A A A A 53 A 94
284	54	8.44	55	8.98 44	7.40 41	2.44	68	8.94 70	2.6414	A A A4132 4 93
284	117	4.24				2105			210010	
285	7	8.94	14	2.64 24	8.64 31	a . 9a	32	8.28 AT	8.74 A.	A 94 44 3 44
285	57	2 44	55	A 44 57	A 74 14	7 44	40	A QA 74	4 0414	
200	2	A 24	7	7 84 17	7 24 15	A 74	17	4 94 74	a 24 2	
271	74	N . 2 N	71	2 12 13	3 44 47	7 03	10	3 4 87	0.20 Z	8.28 20 2.09 A 3 94 55 7 24
271	50	4 04	21	7 23 11	9 44 49	3.75	17	7 04 74	9.79 3	7 8 48443 8 04
271	140	2.70	20	3.00 0I	2.00 02	2.00	00	3.70 /9	2.00 9.	9.40190 9.29
271	192	0.70	17	Ø.20 4 04 01		4 04	7.	7 85 44		
292		2.00	17	9.29 24	0.40 27	9.99	51	3.99 41	9.29 4	0.70 4/ 0.90
292	53	2.60	54	2.69 35	2.00 58	2.60	00	5.99 62	2.60 6	5 3.99 /9 9.20
292	83	2.60	199	2.60102	2.60					
293	2	0.20	7	3.90 13	2.60 17	6.90	20	0.20 21	6.94 2	7 0.24 28 0.94

S all

ş

and the second second

----

.

.

德国加盟和法律规则

293	30	9.40 31	2.69 44	6.48 47	2.60	53	8.78 54	1.40 55	0.90 60	2.60
293	62	Ø.4Ø 68	3.00 70	9.49 81	0.40	97	9.99192	0.90117	8.20	
274	2	0.90 7	3.99 13	2.60 15	9.20	17	8.48 27	0.40 28	1.99 31	8.90
294	36	0.20 47	2.60 53	0.90 54	9.40	55	0.40 55	0.40 60	2.60 61	9.49
294	62	0.40 68	8.98 78	0.40 81	0.20	97	2.60100	9.29192	0.20107	0.40
294	117	0.40129	0.40							
295	7	3.00 16	9.40 17	0.20 24	₿.4₿	25	9.99 31	8.48 44	9.29 53	Ø.20
295	54	0.20 55	2.60 58	0.40 59	₹.48	62	7.40 62	9.40 79	9.99 33	9.99
295	94	0.90100	0.90117	ð.9ð						
301	14	8.29 24	8.98 47	0.20 54	9.99	58	8.98 68	2.69 65	8.90110	<b>J</b> . <b>J</b> 4
301	113	8.04117	9.29							
302	2	0.40 7	3.00 13	2.69 14	2.60	15	8.48 24	0.90 26	0.20 31	0.90
302	41	9.40 43	0.20 44	8.48 47	9.49	54	9.49 59	2.60 65	9.99 79	2.60
302	80	0.20117	2.68							
303	7	9.49 5	9.94 13	8.20 14	0.40	15	₹.29 24	3.00 31	9.29 43	3.94
393	47	9.94 69	0.40 65	8.48 79	ð.9ð	87	8.28 94	9.20117	2.69119	9.94
394	2	0.20 7	2.69 13	8.98 14	2.60	24	2.69 31	9.94 47	9.94 69	9.40
364	79	2.60 80	9.20 87	0.90117	2.69					
305	2	9.99 7	2.69 13	9.99 14	2.60	15	8.40 28	0.40 31	9.49 41	0.40
305	43	9.29 44	9.99 47	0.90 53	9.94	54	8.98 57	0.20 60	2.60 65	0.90
305	79	2.60114	8.48117	8.99						
306	2	0.20 13	2.60 14	3.99 15	9.94	24	8.48 26	0.04 31	9.29 41	1.20
306	47	9.49 54	0.40 57	9.34 63	2.60	61	0.04 79	2.60117	2.69	
3ø7	2	0.90 7	3.00 14	2.69 15	0.20	24	<b>0.90</b> 26	9.40 28	1.20 31	9.40
307	41	9.49 47	0.20 54	9.29 69	9.40	65	0.20 78	3.00 79	0.40 87	Ø.2Ø
307	102	9.49117	9.99							
308	2	9.94 7	0.40 43	9.49 69	Ø.9Ø	87	9.40117	0.90136	0.20	
309	2	0.20 7	2.60 13	9.49 14	0.90	23	₫.₫4 24	0.40 31	1.90 43	8.04
399	89	0.04 87	0.20117	ð.4ð						
31₿	2	Ø.9Ø 7	3.90 13	9.99 14	3.00	15	0.20 31	0.90 41	9.48 43	Ø.20
310	44	2.60 53	0.40 54	0.40 60	2.60	62	0.04 65	9.29117	4.60	
311	1	0.90 15	2.60 16	2.60 31	ð.9ð	41	<b>ð.2</b> 9 46	9.49 47	3.99 50	Ø.9#
311	53	2.60 54	8.49 55	2.60 56	0.40	58	2.60 61	3.00 62	9.99 65	2.69
311	68	2.60100	3.49192	2.69111	9.49	117	2.69118	9.90		
312	1	0.90 15	0.20 31	2.62 43	0.20	47	2.60 50	<b>Ø.</b> 9 <b>Ø</b> 53	1.90 54	3.90
312	55	0.90 56	9.99 58	3.99 65	9.99	68	2.69 80	0.04102	2.60108	9.20
312	111	0.90117	2.60129	0.20						
313	1	0.90 15	0.40 31	2.60 44	0.90	47	2.60 46	0.04 50	2.60 53	<b>8.</b> 4Ø
313	54	4.60 55	2.60 56	0.90 58	2.69	64	0.20 65	2.69 9	2.60 88	8.94
313	100	0.20102	3.90111	0.99117	3.00	118	0.20			
314	1	0.90 15	9.40 16	0.90 31	2.60	38	0.04 47	2.60 50	0.90 52	0.20
314	53	0.40 54	3.90 55	0.90 56	0.90	58	3.90 68	2.69 69	9.99 76	1.40
314	94	0.93182	2.69199	8.90117	3.00			•	_	
315	1	2.60 15	0.90 16	9.90 29	9.49	31	2.69 41	0.90 47	3.00 50	0.90
315	53	9.99 54	3.90 55	2.60 56	2.60	58	3.00 68	2.60 69	2.69192	3.94
315	111	0.90117	2.60							

Care and

したい 一般のない いた 「「「」」の「」」

and the second se

Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Contra Co

# APPENDIX II

Species Recorded in Quadrats and Species Number

是一些,并且在自己的问题。 化合成分析 化合成分子 化合成

ちょう

60

Alchemilla alpina 1 Antennaria dioica 2 3 Anthyllis vulneraria 4 Arenaria norvegica ssp. norvegica 5 Armeria maritima 6 Blechnum spicant Calluna vulgaris Cherleria sedoides Cochlearia spp. 7 8 9 10 Dactylorhiza maculata var.ericetorum 11 Drosera rotundifolia 12 Empetrum spp. 13 Erica cinerea 14 E. tetralix 15 Euphrasia spp. Galium saxatile 16 Hypericum pulchrum 17 Juniperus communis ssp. nana Leontodon autumnalis 18 19 20 Linum catharticum 21 Lotus corniculatus 22 Lycopodium alpinum 23 L. selago Narthecium ossifragum 24 25 Pedicularis sylvatica 26 Pinguicula vulgaris Plantago lanceolata 27 P. maritima 28 Polygala serpyllifolia 29 30 P. vulgaris 31 Potentilla erecta 32 Primula vulgaris 33 Prunella vulgaris Ranunculus acris 34 35 Ranunculus flammula ssp. flammula Rhinanthus minor 36 Rubus fruticosus agg. Salix herbacea 37 38 39 Saxifraga oppositifolia S. stellaris 40 41 Selaginella selaginoides 42 Silene acaulis 43 Solidago virgaurea 44 Succisa pratensis Taraxacum spp. Thalictrum alpinum 45 46 Thymus drucei 47 48 Tofieldia pusilla 49 Trifolium repens 50 Vaccinium myrtillus 51 V. vitis-idaea 52 Viola palustris 53 V. riviniana 54 Agrostis spp.

# APPENDIX II (cont)

55	Anthoxanthum	odoratum
	THE WEEK CLEAR CALL	odoracum

56 Deschampsia cespitosa 的形式 动物的 合同的 网络马斯西部

they are

5

-

- 57 D. flexuosa
- 58 Festuca spp.
- Holcus lanatus 59
- 60 Molinia caerulea
- 61 Nardus stricta
- 62 Sieglingia decumbens
- 63 Carex bigelowii
- C. binervis 64
- C. demissa 65
- 66 C. dioica
- 67 C. echinata
- 68 C. flacca/panicea
- 69 C. pilulifera
- 70 C. pulicaris
- 71 Eriophorum angustifolium
- 72 E. vaginatum
- 73 Juncus acutiflorus
- J. squarrosus 74
- J. triglumis 75
- 76 Luzula campestris/multiflora
- 77 L. sylvatica
- Schoenus nigricans 78
- 79 Trichophorum cespitosum
- 80

Andreaea spp. 81 Blindia acuta 25 Brachythecium rivulare Breutelia chrysocoma 83 84 Bryum pallens 85 B. pseudotriquetrum 86 Campylium stellatum 87 Campylopus atrovirens C. flexuosus 88 C. pyriformis 89 90 Cephaloziella sp. 91 Ctenidium molluscum 92 Dicranella heteromalla Dicranum majus 93 94 D. scoparium 95 Diplophyllum albicans 96 Drepanocladus revolvens 97 Frullania tamarisci Grimmia apocarpa 98 99 G. trichophylla 100 Hylocomium splendens 101 Hyocomium flagellare 102 Hymnum cupressiforme 103 Isothecium myosuroides 104 Nardia compressa 105 N. scalaris 106 Plagiothecium denticulatum Pleurozia purpurea 107 108 Pleurozium schreberi 109 Polytrichum alpinum 110 P. commune 111 P. piliferum

APPENDIX II (cont)

112 Pseudoscleropodium purum

...

- Rha.comitrium aciculare 113

- 114 R. ellipticum 115 R. fasciculare 116 R. heterostichum
- 117 R. lanuginosum
- 118 Rhytidiadelphus loreus
- 119 R. squarrosus
- 120 Riccardia pinguis
- 121 Scapania ornithopodioides
- 122 Sphagnum spp.
- 123 Ulota hutchinsiae

124 Cetraria islandica

- 125 Cladonia arbuscula
- 126 C. crispata var. cetrariiformis
- 127 C. portentosa
- 128 C. subcervicornis 129 C. uncialis ssp. biuncialis
- 130 Coelocaulon aculeatum
- 131 Peltigera praetextata
- 132 Stereocaulon vesuvianum
- 133 Eleocharis sp.
- 134 Anthelia julacea
- 135 Herbert aduna
- 136 137 Marsupella sp.
- Pohlia wahlenbergii
- 138 Oligotrichum hercynicum
- 139 Scapania undulata
- Splachnum sphaericum 140
- 141 Tortella tortuosa
- 142 Rhacomitrium canescens

Higher plant names are after Clapham et al. (1962); bryophytes after Watson (1968); and lichens after Hawksworth et al. (1980).

STATISTICS AND A CONTRACTOR

-

APPENDIX II (cont)

112 Pseudoscleropodium purum

1.4

- 113 Rha comitrium aciculare
- 114 R. ellipticum 115 R. fasciculare 114
- 116 R. heterostichum
- 117 R. lanuginosum
- 118 Rhytidiadelphus loreus
- 119 R. squarrosus
- 120 Riccardia pinguis
- 121 Scapania ornithopodioides
- Sphagnum spp. 122
- 123 Ulota hutchinsiae
- 124 Cetraria islandica
- 125 Cladonia arbuscula
- 126 C. crispata var. cetrariiformis
- 127 C. portentosa
- 128 C. subcervicornis
- 129 C. uncialis ssp. biuncialis
- 130 Coelocaulon aculeatum
- Peltigera praetextata 131
- 132 Stereocaulon vesuvianum
- 133 Eleocharis sp.
- 134 Anthelia julacea
- 135 Herbertzaduna
- 136 Marsupella sp.
- Pohlia wahlenbergii 137
- 138 Oligotrichum hercynicum
- 139 Scapania undulata
- 140 Splachnum sphaericum
- 141 Tortella tortuosa
- 142 Rhacomitrium canescens

Higher plant names are after Clapham et al. (1962); bryophytes after Watson (1968); and lichens after Hawksworth et al. (1980).

# REPRODUCED FROM THE BEST AVAILABLE COPY

### APPENDIA 111

REBULTS OF SOIL ABALTSES , ASPECT AND SLOPE FOR ALL BUASMATS"

6440	<b>pil</b>	2 1855	181 AL	181AL	EXCH	LICH	EICH	EXCH	101AL	1014	EXCH	TETAL	EXCH	EICP	ASPEC	1 BL 041E
Be.		84		+	R.	ka	£.	hg	La	۲3	Fe	Ra -	41	2.		
		1621110	•	•	•	•	•	•	•	•	•	•	•	٠	••	(deșreu)
1	4.5	9.4	3328	374	41.5	25.4	126.1	•	42	42	2.1	374	8.2	-		-
2	4.6	22.7	4586	885	\$7.a	23.7	79.3	76.5	73	49	2.4	São	4.2	•	135	5.
3	4.9	13.7	3814	354	45.8	4.6	32.4	30.3	62	42	4-2	484	8.4	•	186	۹.
4	4.8	14.9	3898	494	41.B	11.4	41.5	31.1	41	41	4.2	433	8.2	-	188	۱.
5	5.6	11.0	2734	374	47.9	18.4	32.6	25.4	42	42	4.2	683	8.4	-	180	1.
4	5.4	11.9	2677	283	78.8	17.8	54.3	47.1	28	48	4.8	283		-	180	2.
,	5.1	22.2	7232	814	122.5	35.7	154.4	363.7	48	45	4.8	542	1.8	•	315	4.
- 1	s.;	15.7	3344	534	184.8	28.4	185.1	198.8	82	41	4.1	453	1.0	•	225	4.
•	5.3	22.8	4845	592	118.3	36.8	44.3	191.9	82	41	4,1	734	8.6	-	160	۹.
10	s.:	1 15.4	3535	584	74.7	16.4	24.2	188.4		48	2.8	747	1.1	•	180	4.
11	s.,	y 3.8	4223	1451	20.6	12.8	183.8	158.8	144	42	4.1	2472	2.5	•	315	2.
12	5.	14.2	4827	1118	48.8	34.2	388.9	348.1	155	81	8.9	1774	2.7	•	315	2.
13	5.3	7.1	2548	<b>642</b>	36.4	18.8	218.1	226.5	158	167	2.1	2148	2.4	•	315	2.
14	4.	18.1	2573	489	31.5	23.7	402.2	374.3	148	1#5	4.2	1484	3.2	-		1.
15	<b>6</b> -	2 18.1	2987	494	35.a	35.8	345.3	587.4	124	82	2.1	2868	2.9	-		۱.
14	5.	3 2.9	1313	323	4.8	1.0	20.4	15.8	141	81	.8.8	2424	0.8	•		5.
17	5.	s 1.8	1111	242	6.1	1.8	11.3	11.3	121	41	4.1	2424	1.8	•	315	ι.
18	5.	6 2.9	1162	283	8.1	4.9	18.1	18.1	121	81	2.0	2424	8.4	. •	315	۹.
	<b>71 1</b>	-1 dry	we z gk	•	++ EASI	-# 10	81x-98	NEE1-10	<b>5 8 8 8</b>	14-274				6		

A second s

South States and States and

- -----

100

TEXCH OF AND EXCH CO HERE BELON THE DETECTION LINIT FOR ALL BUADRATS

.....

2000	pill	1 1065	TOTAL	TETAL	EICH	8368	E1C#	[10	781 AL	TOTAL	EICH	10144	EICH	EIO	ASPEC	T SLOPE
łe.		-			T	86	Ca .	84	E.	6,	Fe		85	2=	largen	es)
	1	681718	• •	•	•	•	•	•	•	•	•	•	•	•	-	
19		2.0	13+4	343	22.2	4.2	52.0	45.3	121	<b>61</b>	2.6	2424	1.0		315	۰.
28	5.2	3.2	1414	283	18.2	11.3	18.1	11.3	121	<b>é1</b>	4.8	2424	1.8	•	315	۹.
21	5.3	18.7	5849	454	124.4	37.9	482.9	\$12.7	189	87	4.4	1199	1.7	•	78	2.
22	5.4	8.7	1648	286	88.4	14.1	113.1	110.8	183	82	2.1	1892	8.4	•	315	3.
23	5.7	5.4	1442	288	18.5	8.9	\$7.7	46.1	163	183	1.1	2968	8.4	-		۱.
24	5.5	24.3		786	103.8	36.3	167.7	449.3	94	94	7.1	882	2.8	•		4.
25	5.0	21.4	5448	777	111.3	39.5	237.0	329.3	126	185	4.3	848	8.8	-		3.
20	6.2	11.0	5728	499	47.6	28.8	268.9	279.4	125	83	4.2	1144	8.4	-		2.
27	4.8	5.1	1414	243	28.2	8.5	72.4	<b>61.</b> I	1#1	n	2.8	2828	0.4		45	18.
26	<b>•-2</b>	5.5	1377	347	18.4	13.3	155.4	139.4	182	<b>61</b>	2.8	2848	1.4	-		2.
29	5.7	8.8	2891	326	22.4	14.1	75.4	66.3	82	82	2.8	134	9.2		-	
34	5.8	7.8	2848	498	14.3	4.1	13.7	9.1	82	82	2.8	877	0.2	-	189	2.
n	5.5	2.4	859	242	14.1	7.7	18.1	18.1	121		2.#	2828	8.ú	-	45	2.
32	5.1	3.8	2424	1353	22.2	.8.9	11.3	13.4	1#1	<b>é</b> 1	4.8	2828	4.2		315	3.
33	4.9	5.1	1313	343	18.1	3.2	4.5	4.8	1#1	<b>é1</b>	2.8	2828		-	•	3
34	5.2	2.4		763	28.2	7.9	13.4	18.1	161	48	2.8	2828	1.1	-	315	3.
35	4.9	1.4	458	200	10.0	2.8	4.5	11.2	128		1.1	2400	8.4			3.
26	4.8	1-6	750	299	2.6	2.4	4.5	6.7	128	48	4.9	2488	8.8	•	16	ι.
37	4.9	2.2	1458	948	18.8	1.0	4.5	1.8	188		4.4	1488	6.8	-	45	1.
38	5.2	3.4	1111	484	24.2	4.1	11.3	18.1	121	61	2.0	2828	1.2	-	135	2.
39	4.9	2.8	2858	1188	18.8	3.4	4.5	9.4	188	48	8.8	2488	,1.4	-	45	۱.
48	5.1	2.4	1958	788	12.6	3.2	17.9	13.4	129	48	2.8	2000	8.4	•	135	2.
41	5.5	4.8	1244	184	13.5	8.5	6.1	9.4	182	82	2.0	2848	8.6	F.1		2.
42	5.4	4.8	1848	184	7.8	8.8	ā.1	7.1	122	61		2448	9.8	6.6		1.
43	5.4	3.7	785	182	18.1	3.2	á.1	9.7	121	- 41	2.6	2424	1.1	4.6	45	1.
44	5.1	4.8	1838	282	17.2	4.7	12.1	14.8	121	41	2.0	2424	8.8			2.
45	4.7	4.8	188	141	9.7	4.2	8.1	12.9	121	61	2.0	2828	1.1			3.
44	4.6	3.7	1397	143	19.2	18.8	18.2	12.4	182	82	2.0	2848	4.8	1.1		2.

10.0

* · · · · · ·

atta of

•

and the second se

•

CAN	-	I LOSS	101.4	TOTAL	EXCH	LICA	110	EXCH	TOTAL	TOTAL	EICH	TOTAL			ASPEC	
80.			•	•			C	*1	6.	Er	F.			2.	(degre	
	1		••	•	•	•	•	•	•	•	•	•	•	•		(degrees)
47	4.7	4.8	1142	184	11.4	4.7	1.2	11.2	182	.1		2848	1.1	0.0		١.
48	4.8	3.5	+38	184	10.2	7.1	12.2	18.8	182			2848	1.1			۱.
49	4.7	4.9	1193	143	14.1	4.3	6.2	12.2	122		2.0	2448		1.1	45	2.
50	4.8	3.0	778	182	9.1	7.9	4.1	9.5	181			2829	1.1	1.1		2.
51	5.4	3.1	834	184	21.2	25.9	297.8	143.2	182	41		2946	8.2	1.1		15.
52	5.5	18.3	5851	424		+8.7	415.5	453.7	184		2.1	1494	8.5	1.2	45	۰.
53	5.7	2.1	929	182	11.9	10.7	137.4	163.6	181	41		2925	4.8	1.1	45	10.
54	5.8	2.4	778	222	3.8	4.7	52.5	53.9	181	.1		2828	2.0	1.1	135	10.
55	5.5	3.7	+24	182	24.1	11.7	107.1		181		2.0	2424	1.1	1.1		
54	5.2	5.8	1452	245	29.2	8.4	34.7	31.8	102	41	2.0	2848	1.1	1.1	45	4.
57	5.2	29.3	2544	227	42.2	30.5	193	119.5	183	+2	2.1	2940	2.1	1.2		8.
50	5.2		1397	224	20.1	+.2	30.4	22.0	182	41	2.0	2946				16.
59	5.4	12.3	3557	187	51.4	43.3	282.9	149.8	184	42	2.1	1664	2.1	.2	98	15.
	5.3	8.2	2594	185	48.2	41.8	148.1		183	41	2.1	28.0	2.1	1.2		23.
.1		3.2	1848	182	25.3	32.4	284.8	120.5	122	82		2848	1.1		225	7.
+2	+.3	4.2	1851	. 185	33.8	43.7	329.4	245.7	144	124		2948	2.1		315	
+3	4.1		1772	185	37.7	47.0	379.8	251.3	124	82		2848	2.1	6.8	315	16.
		3.2	834	265	24.5	28.4	257.0	283.4	122	182		2848	2.8		45	2.
45		5.4	1154	145	45.7	. 47.4	494.4	436.7	183	144		1.48	4.1		315	1.
		5.3	1154	248	34.0	40.0	354.3	290.5	82	183		1871	2.1		45	۰.
67	5.4	14.8	5841	525 *	121.8	281.4	382.2	451.5	185	185	4.2	798	·3		315	5.
	5.7		1875	309	37.5	42.4	300.8	199.8	183	103	1.1	1892	2.1		45	2.
	5.1	3.2		386	28.4	24.5	232.4	177.5	143	82		1.081				4.
78	4.1	4.0	***	433	35.8	33.4	288.4	203.9	124	163		1872			315	2.
71	5.3	23.3	6485	1428	92.4	200.7	537.4	455.2	126	315	2.1	1685	8.4		1 100	2.
72	5.1		4017	1401	\$1.5	41.6	317.2	438.5	144	227	1.1	2040	12.4		315	4.
73			3811	1524	44.1	39.4	350.2	401.7	185	185		2472	18.3	i.,	135	2.
74		24.8	7298	1848	159.4	347.5	548.2		148	189		1480	18.5		270	1.
										-						

**教授的**和1993

and the second se

the second
-	-	I LOSS	TOTAL	TOTAL	EICH	EICH	EXCH	EXCH	TOTAL	TOTAL	EXCH	TOTAL	EICH	EXCH	-	-
80.				•			C.	-	C.		F.			2.	-	***
			••	•	•	•	•	•	•	•	•	•	•	•	••	(degrees)
75	5.5	1.3	2550		57.3	51.4	336.5	241.1	143	+1	2.0	2448	4.1	1.1	270	•.
76	5.3	8.4	2452	836	51.4	38.4	159.1	102.0	122	82	4.1	2448	2.0		135	
77	5.5	34.8	5564	1444	61.2	41.4	414.5	434.7	14.	1	2.1	2000	6.3		276	1.
78	5.1	15.4	4275	948	13.7	72.9	137.8	267.8	144	183	4.2	2848	2.1	1.4	315	2.
79	5.2	10.5	3040		46.1	44.5	214.2	148.9	143	182	2.0	2448	4.1		315	4.
	5.2	14.8	4128		84.9	74.2	376.8	304.9	144	183	4.1	2472	4.2	0.2		5.
	4.8	37.2	8587	1284	301.7	418.7		419.4	187	214	1.4	535		1.5	45	۱.
82	5.2	45.3	9612	1339	414.7	438.5	1244.2	124.5	100	151	4.5	410	2.2	1.3	45	4.
\$3	4.7	41.2		1443	241.9	345.0	518.4	321.8	100	194	15.1	324	4.3	1.1	45	12.
	4.4	48.0	9.12	1642	373.7	385.8	546.0	142.0	188	194	30.2	382	4.3			2.
85	5.5	18.4	5250	1476	42.0	248.8	831.4	347.5	185	336			4.3		45	۱.
	5.4	23.7	7579	1950	55.5	311.0	784.2	430.4	85	551	2.1	788	4.2			2.
87	5.6	19.7	5384	936	78.1	82.6	357.8	145.4	83	140	4.2		2.1			2.
	5.1	11.7	3485	845	28.8	48.2	193.4	72.1	183	124	2.1		1.1	.2	**	2.
.,	5.	5.9	2871	747	14.4	18.8		+2.+	121	181		1414	2.0	6.4	98	۱.
**	5.1		2401		24.5	18.4	34.7	38.4	122	82	2.0	1632		6.2	45	۰.
*1	4.3	7.4	2934	1277	24.9	28.2	251.3	276.0	144	62	2.1	2945	+.2		180	2.
*2		4.4	2397	1224	1.2	14.5	79.4	49.4	143	82		2448	4.1	0.2	180	2.
*3		3.2	1976	1050	11.5	6.1	22.2	22.4	162	48	4.0	2424	1.1		135	7.
.4		2.2	1566	129	4.5	5.9	54.5	58.8	182	41	1.1	2424	2.6		98	۱.
+5		1.1	1616	978	7.3	4.3	50.5	\$7.5	182	41		3232	4.0			2.
	٠.	1.8	1344	828	4.5	9.5	34.4	45.5	141	40		2828	2.0		135	3.
97	٠.	21.5	750	***	5.4	5.4	28.8	51.2	160			4995	2.6			5.
*6	5.	. 2.0	1465		14.8	1.5	56.4	15.6	162	**	1.1	2424	4.5		45	5.
**	5.	1.5	1350		4.8	4.8	20.5	44.8	186	40	1.1	2866	2.6		135	1.
100	5.		1050	748	7.4	12.2	54.6	72.0	140	**		3266	4.0	•.•	135	5.
101			12018	1413	425.1	444.7	1384.5	2485.2	131	44	2.2	2186	26.2	0.2	270	18.
182		3 84.1	17000	1926	718.1	548.8	1444.4	3071.2	**	22	2.2	2240	47.0	1.3	270	1.

Trans and

A the second second of the second second

.

...

DEAD	-	1 LOSS	TETAL	TOTAL	EIO	E1C1	E1C1	E3C3	TOTAL	TOTAL	6300	181AL	6100	()	ASPECT	ROM
Ba.				•	۰.	a.	Ea -	Ay	Ca	6+	Fe	<b>Ø</b> 1	81	28	-	•••
	1	641118		•	•	•	•	•	•	•	٠	•	•	•	-	(4097981.)
183	<b>4</b> -2	86.1	14483	1467	912.4	515.0	1988.3	2175.0	133	1	15.5	.44	24.4	4.1	315	6.
1#4	5.6	32.8	<b>9222</b>	1788	231.1	347.7	1221.1	1462.8	233	233	2.1	1494	27.4	8.4	278	6.
185		34.9	8631	1549	279.8	349.8	1174.5	1717.2	127	146	2.1	1476	17.8	8.6	276	4.
184	á. I	69.2	14178	1748	584.8	488.4	1716.8	2484.8	44	44	2.2	1854	19.8	1.5	278	3.
187	é.2	18.4	4821	1367	85.9	49.8	457.4	767.8	284	182	9.9	2850	12.2	8.8	278	25.
188	é.:	2 74.9	13484	977	359.4	499.5	1429.5	2397.4	22	22	2.2	866	24.4	ø.7	315	5.
189	á.1	44.7	12243	1417	449,1	448.4	1334.2	2267.2	131	153	4.4	1744	21.8	1.3	278	15.
118	4.1	37.2	9436	1424	203.3	342.4	958.7	1647.8	150	214	2.1	1284	15.8	8.ā	270	28.
111		2 28.9	4551	1334	152.4	239.4	495.4	101.0	148	.184	2.1	21 28	17.8	9.4	10	۶.
112		3 38.4	<b>915</b> 6	1788	289.3	303.0	1822.5	1454.8	189	174	4.4	478	2.2	1.1	+4	3.
113	۰.	32.8	7862	2435	153.4	289.4	1118.9	1121.0	214	151	2.2	1728	13.6	8.2	<b>5</b> 8	5.
114	é.	8 34-8	1117	2354	196.4	338.5	1832.5	1149.1	214	151	4.3	1886	17.3	.,	16	۹.
115	۰.	a 32.1	685	2138	211.7	117.5	495.5	842.4	173	130	4.3	1858	8.4	1.1	16	3.
11.	5.	a 32.8	757	2554	171.8	346.8	1146.1	987.4	181	113	4.5	1842	11.3	6.7		2.
117	5.	é 57.4	885	1485	211.7	382.4	¥#2.9	892.1	151	84	6.5	972	8.4	1.9		12.
118	٤.	8 23.3	5 <b>636</b>	7 1519	183.4	239.7	a43.4	418.5	158	107	4.3	1712	8-4	4.4	98	10.
119	4.	8 18.	456	5 1430	48.3	\$7.2	343.2	281.4	154	110	4.6	2286	4.4		135	15.
129	s.	9 18	1 379	4 1144	72.2	775.8	528.0	416.8	146	83	2.1	2496	4.2	4.4	14	۹.
121	5.	7 1.5	5 126	3 <b>56</b> 5	4.5	8.1	50.5	35.8		<b>8</b> 1	Ø.(	949	8.8	6.1	180	2.
122	5.	7 3.	5 153	. 447	7.4	18.8	100.8	78.8	61	82		432	2.6	÷.(	225	3.
123	s.		133	4 388	11.4	23.3	296.1	49.0	41	224	ø.,	499	2.6		225	2.
124	5.		2 278	1 534	54.9	32.4	185.4	187.1	41	227	4.3	35	2.1		225	s.
125		.2 4.	<b>8</b> 141	4 <b>HI</b>	· •.5	14.8	145.4	64.6	4	182	<b>1.</b>	544	4.0	<b>.</b>	225	2.
124			4 141	4 465	6.7	9.9	64.6	42.2	41	101		0 828	2.9	<b>9.</b>	225	1.
127		.4 2.	4 132	4 428	12.3	15.9	151.8	49.0	82	122	6.	1 11	2.8	8.4	223	2.
120			7 262	7 431	54.6	27.4	185.1	118.4	62	144	4.	1 431	2.1	6.4	315	2.
12		.5 2.	1 121	7 484	14.1	10.0	18528	DE	181	<b>8</b> 1	ø.	0 202	2.4	1.	223	4.
13		.2 4.	5 172	4 55	34.9	25.1	195.8	87.	1#2		<b>.</b>	8 1433	2.4		27	2.

A sure of the second

2

and the second of the second second

.

DWAD	pli	1 1961	1014	181 <i>A</i> L	EXCH	E3CH	EICH	E X CH	181AL	TOTAL	£IC.	1874	£3CH	EICH	ASPECT	BLOPE
ie.				•		84	Ca .	81	Ce .	£r	Fe	81		Za	ldegrei	P6)
	1	681738	• •	•	•	•	•	•	•	•	•	•	•	•	••	Lingrees
131	5.4	47.8	13414	1188	307.2	488.4	298.4	174.8	,	44	8.8	22	1.1	1.1	135	11.
132	4.8	42.7	9388	1246	216.4	278.4	124.5	48-8	21	42	12.5	•2		8.8	168	18.
133	4.9	35.3	4581	1849	113.4	54-3	141.2	+3.5	21	1#7	6.4	21	1.1	8.8	135	s.
134	4.7	43.2	8918	1688	144.7	78.4	77.8	59.2		43	18.8	•	8.8	1.5	135	14.
135	4.6	57.5	14958	1695	194.4	275.7	149.2	118.5	23	45	11.3	23	1.1	8.9	135	s.
13+	5.4	83.7	137+7	752	364.8	45+.8	223.4	182.6	23		4.6	23	1.1	8.8	135	16.
137	4.7	44.2	8453	1006	115.5	47.8	140.8	<b>64</b> -1	42	42	4.3	21	8.8		76	15.
138	4.3	34.6	18324	1134	181.9	73.8	184.9	63.3	21	43	8.4	21	8.8	6.6	16	۹.
139	4.5	64.1	13984	1421	315.2	452.9	1134.4	339.7	22	22	6.7		1.1		45	7.
146	4.1	16.7	a134	832	143.5	58.5	298.8	72.8	21	62	4.2	21	0.0		78	16.
141	s.;	18.1	2295	412	15.9	18.4	32.0	14.5	<b>6</b> 1	182	2.8	412	1.1	+.4	225	2.
142	5.0	58.	18734	1881	-271.4	318.0	258.4	154.8	42	64	18.4	191	1.1	1.1	180	۶.
143	s.:	2 53.4	10335	1145	343.2	286.2	287.8	144.2	42	44	12.7	191	8.8	1.3	225	۹.
144	· s.	1 33.5	6248	811	199.7	339.4	257.9	147.7	42	62	0.3	374	1.1	1.3	194	۹.
145	4.	4 57.	14318	1549	354.4	. 389.5	258.2	150.9	•	85	21.2	85	1.1	1.1	135	2.
144	4.	6 17.	11925	1881	218.4	245.8	139.9	188.1	4	85	19.1	1 27	1.1	ø. 4	180	3.
147	\$.	a 33.:	2 6448	***	112.3	58.8	168.2	77.6	21	184	18.4	288	8.8	ø.:	276	12.
148	۹.	9 41.	7455	945	143.8	264.6	186.4	195.6	21	185	8.4	231		8.8	1 276	2.
149	s.	<b>a</b> 47.	1 7843	1878	224.7	278.2	363.8	237.5	- 43	84	<b>6.</b>	257	2.1	1.1	1 276	· .
150	4.	8 51.	2 11834	1891	226.8	200.3	158.4	137.4	21	64	19.7	150	8.8	Ø.,	279	3.
151	s.	5 4.	8 1924	642	17.1	9.8	18.7	5.1	- 44	64	2.	943	1.1			18.
152	۰.	3 8.	4 2671	752	29.2	1.4	20.5	14.6	46	48	4.	547	1.1		225	i 3.
153	5.	2 8.	1 2373	478	47.2	13.4	34.2	30.1	48	48	4.3	5 723	5.6		2 315	7.
154	s.	2 19.	. 484	148	181.2	38.9	78.4	75.0	44	44	4.	462			2 278	• •.
155	5.	1 14.	2 3312	, 899	30.8	9.2	15.8	9.0	43	43	2.	449		<b>.</b>	315	4.
154	5.	3 14.	8 466	2 955	100.8	37.1	182.1	182.0	44	67	4.	333			7 276	) á.
157	5.	2 37.	4 337	728	113.4	48.4	11954	92.5	43	64	4.3	3 274		i.	3 276	2.
158	5.	2 15.	5 387	3 750	78.3	35.3	85.0		34	75	5.	30	1.1	4.	5 99	2.

*

· ...

-

	-	I LOSS	TOTAL	TOTAL	EICH	EXCH	EXCH	EICH	TOTAL	TOTAL	EICH	TOTAL	EXCH	EXCH	ASPEC	-
Ro.				,			C.	**	£.	*				2.	(degre	**)
		1881710	••	•	•	•	. •	•	•	•	•	•	•	•	••	(degrees)
159	5.2	18.5	4778	*12	112.4	34.9	110.2	114.1	42	**	4.2	318		8.0	270	1.
140	5.0	13.2	3441	799	82.4	23.5	71.0	58	**	47	2.2	222	1.1 .	1.4		10.
141	4.2	14.8	3914		177.2	44.5	43.9	77.0			4.2			1.2	225	15.
162	4.7	27.2	4399	1039	184.4	43.4	78.4				4.4	21			225	14.
163	4.4	29.4	5885	1228	288.9	384.8	128.4	85.0			1.4		1.1		225	14.
144	4.4	22.9	4834	853	218.1		110.2	114.3			4.2	21			225	16.
165	4.5	11.2	3399	845	164.8	52.7	76.2	74.8			4.1			1.2	225	12.
166	4.4	14.4		1848	110.2	28.5	29.1	4.1	21		4.2	21		1.1	225	
167	4.4	14.2	3245	721	142.1	34.8	\$9.7	77.9	21		1.2		1.1	1.2	225	10.
146	4.3	13.3	3516	1050	34.3	13.0	12.4	98.7	21	21	2.1	21	1.1		225	5.
169	4.5	13.5	2964	832	.4.3	23.7	22.9	27.0			+.2			1.2	225	18.
170	4.	17.2	3952	874	126.9	43.5	54.2	42.2			1.3			1.4	225	28.
171	4.	48.3	7452	1858	306.9	289.4	275	144.7			4.3		1.1		225	6.
172	4.	5 15.5	3952	1.082		38.5	10.1			21	18.7		1.0		225	5.
173	4.	47.2	12182	2158	353.2	305.2	130.8	+5.1			8.7			1.7	225	4.
174	4.	4 44.3	12394	2182	304.7	291.4	129.4	79.9					1.1		225	4.
175	4.	2 24.3	\$728	1197	210.0		102.9	107.6			8.4		1.0	1.4	225	5.
174	4.	4 33.2	7432	1505	245.5		114.5	70.0			1.5				225	5.
177	4.	4 43.3	5400	1176	172.2	48.5	100.8	14.0		21	10.5			1.1	225	1.
178	4.	. 31.2	1523	1391	173.3		78.6	85.8		21	12.8		1.1	1.4	225	12.
179	4.	2 30.7	8321	1334	294.7	248.8	178.1	13.3	21		1.5				225	2.
180	4.	3 7.6	2295	245	67.5	23.1	34.7	40.4		28	4.1				225	1.
181	4.	1 47.8	12207		334.0	386.6	244.6	147.0		21	4.3	21		1.1	225	10.
182	4.	4 51.4	11370	1182	282.0	335.4	203.5	125.1		21	4.4	21	2.1	1.1	225	18.
183	4.	. 71.8	15795	1264	238.7	285.5	74.9			23	11.7	23	2.3	1.7	225	10.
184	4.	5 24.8	4120	439	127.7	39.4	41.8	82.4		21	12.4	21	2.1	1.2	225	10.
185		3 32.0	7950	434	184.4	41.1	70.0	103.5		21	10.4	21		1.2	225	10.
184		3 34.3	5511	792	244-1	273.9	179.8			21	10.7	21	2.1		225	10.

-----

A second of the second of

and the second se

•

CHAD	PH	1 LOSS	TOTAL	TETAL	EXCH	EXCH	EXCH	EICH	TOTAL	TOTAL	EICH	TOTAL	EICH	EXCH	ASPEC	-
-		16#1110			:									2.	(degre	(damaan
				<u>'</u>												
187			18265	1177	204.5		53.3	77.0		22	4.4	22			225	10.
188	4.6	28.1	5145	567	174.3	53.1	71.4	85.9		21	4.3	21	2.1	8.2	225	10.
187	4.5	41.7	<b>979</b> 1	813	325.3	274.1	111.3	<b>66.3</b>		21	4.4	21		1.4	225	i <b>š.</b>
190	4.4	41.5	8232	1210	210.4	71.5		67.2		67	11.2	45		1.5	225	18.
191	5.3	3.3	1212	323	1.5	2.4	8.1	8.9	141	41	2.0	3232	2.0		276	12.
192	5.4	3.4	1818	283	8.1	1.1	4.1	10.7	141	41	1.1	2828	1.1	1.5	135	2.
193	5.3	2.9	1818	283	18.9		4.1	9.7	141	*1	2.0	2424	2.0		225	۱.
194	5.5	3.4		384	7.1	2.4	4.1	1.7	162		1.1	2825	2.6		135	۰.
195	5.	2.3		344	8.9	1.1	4.1	12.3	162	.1		2828	2.0	1.1	135	5.
194	5.	2.2		303	8.7	1.1	4.5	16.7	162	48	2.9	2424	2.6		150	3.
197	5.	3 22.0	858	320	7.8	3.6	4.8	8.4	140		1.1	2866	2.0		186	2.
198	5.	3 2.5	758	222	. 1.1	2.0	10.1	11.5	141	41	2.0	2424	2.6		135	2.
199	5.	1 1.9	850	246	4.2		4.0	5	140		2.8	2960	1.1		98	1.
286	5.	. 1.5	500	220	3.0	1.4	1.1	1.1	129		1.1	2488	1.1	1.1	135	1.
291	5.	\$ 2.3	1838	343	9.1	5.9	4.1	12.3	121	. 81	2.0	-2424	1.1		135	16.
282	5.	7 3.4	1.881	242	14.0	5.1	8.1	13.1	141	101	2.5	2424		1.1	180	6.
203	5.	7 2.2	828	242	4.9	5.7	4.5	4.9	141	181	1.1	2424	1.1		196	2.
204	5.		1838	242	16.4	7.9	10.1	15.4	121	121	2.5	2424			225	15.
201	5.	2 3.2	828	222	5.3	5.9	4.1	5.7	142	181		2828	1.1		225	3.
211	5.	5 4.4	2100	525	25.0	7.1	23.1	17.4	84	147	2.1	525			180	18.
213	5.	4 11.3	2987		43.6	25.1	78.8	44.5	82	124	2.1	536			180	15.
213	5.	1 18.9	3833	525	148.7	59.4	239.4	117.4	63		4.2	294		1.1	225	24.
21.	5.		2472	453	48.2	13.2	35.0	24.4	62	82	2.1	307			225	1é.
21	5.	1 3.5	1828	304	5.5	1.1	4.1	3.9	41	82	1.1	245	1.1	1.0	180	6.
22	4.	. 39.4	5408	1848	172.4	34.1	44.5	94.2	21	21	31.2		1.1		270	ä.
22	. 4.	1 17.1	5156	1630	148.9	43.3	78.8		21	21	14.4		1.1	1.2	315	2.
22		1 39.3	7579	1272	419.8	79.7	148.4	101.0	21	21	4.4				225	2.
22	. 1	. 27.4	4195	1854	287.8	45.1	130.2	92.4	21	21			1.1		270	5.

a server of the server of

1

•

-	-	1 LOSS	-	TOTAL	EICH	EXCH	EXCH	EXCH	TOTAL	TOTAL	EXCH	TOTAL	-	EICH	ASPEC	T SLOPE
			•				C.	**	C.	Cr			=1	2.	largre	
		16#1718	••	•	•	•	•	•	•	•	•	•	•	•	•	(degrees)
225	4.1	22.8	5170	1199	244.2			117.3	22	22	15.3		1.1	1.2	270	•.
231	5.0	5.0	1428	388	7.8	1.1	12.2	7.6	182	82	2.5	1432			186	2.
232	5.6	5.4	2889	453	14.1		14.5	1.7	144	62	2.1	2472			45	۱.
233	5.1	18.2	2499	388	4.9	20.8	228.3	100.0	143	*1	4.1	2448	2.6	1.4	45	۴.
234	5.1	4.4	3570	488	10.2		14.3	9.4	143	82	2.0	2448			45	•.
235	5.1	11.8	2524	412	41.2	14.2		55.4	124	82	4.1	2472	2.1	4.2		1.
234	5.1	5.8	1887	449	22.4	1.1	34.7	31.6	143	41	4.1	2448	1.1	1.1		2.
237	5.0	2.2	••••	323	5.1	1.1	24.2	24.9	141		1.1	2424				5.
230	5.4	2.7		323	14.1	4.4	183.5	16.2	121		1.1	2424	2.8		98	1.
239	5.6	5.1	1957	330	19.4	18.1	251.3	167.1	124	82	2.1	2940	4.1		186	5.
246	4.6	2.2	1162	545	10.3	3.4	105.0	92.1	121	181		1414			45	5.
241	4.4	44.5	5350	784	343.5	284.4	175.5	94.2		21	17.1	21	1.1	1.9	315	۰.
242	4.6	35.1	7330	442	177.0	48.2	87.7			43	6	++		1.2	**	2.
243	4.1	45.0		1037	315.4	70.5		75.4		43	15.1	43		1.4		•-
244	4.3	75.1	9853	11.09	505.0	418.0	254.9	177.0		24	14.2	.47	2.4	1.4	135	3.
245	4.	50.2	7821		323.3	321.0	13	110.9		47	23	145		1.7		3.
244	4.5	45.2	\$777	454	289.9	268.1	201.6	143.9		22	17.4	44		2.0	135	••
247	4.		7844	1243	479.5	352.2	201.3	134.2		38	8.9	59			135	•.
246	5.	34.8	4039	781	253.8	\$1.5	83.0	114.9		24	7.3	49		.2	135	10.
249	4.	52.1	6922	894	346.1	318.3	91.4	78.5		22	1.7	22			135	8.
25#	4.	12.7	3966		37.3	4.8	28.4	22.5		41	4.1	62	2.1		135	1.
251	5.	3 3.8	2695	924	13.5	376.2	2226.4	2332.0	198	110	1.1	3080	8.8		270	10.
252	٠.	2 4.3	2349	824	7.8	255.4	795.2	1155.7	124	144		2472	8.2	1.1	276	12.
253		2 4.4	3445	1882	74.5	248.3	1855.4	1435.2	125	184		2496	4.2		270	20.
254	٠.	3 7.8	2678	845	71.1	54.4	576.8		144	144	1.1	2884	•.2		270	10.
255	۰.	3 4.2	2884	863	45.3	58.7	516.9	183.7	185	144	1.1	3294	8.2		276	12.
254	٠.	. 1.2	2865	179	58.4	47.4	424.3		143	143	1.1	2854	8.2	1.1	276	10.
257	4.	4 3.8	3519	1304	34.5	37.1	293.8	422.2	184	143	1.1	2854	4.1		270	18.

and the second of the second sec

-

the second s

.

and a

ų

QUAD	pi	I LOSS	TOTAL	TOTAL	EXCH	EXCH	EXCH	EXCH	TOTAL	-		TOTAL	EXCH	EICH	ASPEC	-
							C.	-	<b>Lo</b>	Cr.	F.	=		2.	Idegree	
		1881710	••	•	•	•	•	•	•	•	•	•	•	•	-	(degrees)
258	•.•	2.3	2879	1172	21.6	15.0	141.4	369.1	142	121		2825	4.1		276	۰.
259		3.7	1976	828	34.7	41.2	266.6	474.7	121	181		2424	4.1		270	3.
248		1.2.	3672	734	92.6	54.1	571.2	501.0	182	82	1.1	2848	4.1	1.1	225	8.
261		3 1.4		343	19.2	23.8	121.2	202.0	141	81	2.0	3232	8.1	1.1	188	25.
262		2 3.0	1344	545	24.4	23.8	145.4	181.5	141		2.0	2828	4.0	1.1	180	25.
263	5.	. 3			24.9	25.3	153.5	193.9	141		2.8	2828	4.8	1.1	186	25.
264		2.3	1818	484	17.4	22.4	125.2	153.5	141	101	2.0	2828	4.5	1.5	186	25.
245	٠.	3 1.4	1861	485	11.1	20.8	117.2	155.5	141		2.0	3232	2.8	1.1	184	<b>z.</b>
271		4 1.9		525	15.4	14.5	78.7	18.2	121		1.1	2828	1.1	1.1	315	2.
272		. 2.4	1841	444	14.5	15.4	97.0	105.7	141	61	2.9	2828	1.1	1.1	270	10.
273		. 2.5	1162	505	14.1	14.1	82.8	•1.5	141	61		2424	1.1	1.1	270	2.
274		. 1.8	1414		18.5	14.8	74.7	16.6	121		2.0	2424	1.1	1.1	315	<b>i</b> .
275	۰.	2 2.0	1344	667	12.3	13.1	+8.7	74.6	141		2.6	2820	1.1		315	i.
276	5.	9 2.5	1414	747	17.4	17.4	97.9	42.4	121	+1	1.1	2828	1.1	1.1	315	3.
277	5.		1976	847	11.5	11.9		85.2	141	81	1.1	2828		••	315	3.
278		. 2.0	1313	646	13.5	15.8	72.7		162		2.0	2424		1.1	315	5.
279	5.	. 2.5	1313		16.4	13.7	52.5	45.0	141		1.1	2828	6.6	1.1	315	\$.
289	5	. 2.1		484	15.8	15.0	113.1	76.8	141-		1.1	2828	1.1	1.1	315	۰.
281	5	1 33.7		424	299.5	266.2	424.5	582.4	83	184	8.3	811	2.1	1.3		2.
282	5	. 48.4	5717	. 418	175.1	98.1	418.5	\$19.1	183	163	14.4	768	2.1	1.4	•	7.
283		.9 54.6	9246	1892	382.2	268.4	361.2	249.9	63	147	23.1	147	2.1	1.3	225	10.
284		.5 58.5	18257	154	548.2	273.5	907.4		85	85	19.1	297	2.1	. 4.7	271	۰.
285	5	.2 54.4	12886	1534	423.4	391.6	1334.9	1192.3	130	173	4.5	432	8.4	2.4	180	8.
291	5	. 25.8	8490	1195	173.0	226.6	500.7	748.1	144	41	6.2	1648	2.1	6.6	315	5.
292	5	.5 42.8	1047	2142	247.8	243.4	915.4	932.4	231	189	8.4	493	4.2		270	10.
293	5	.4 26.5	6791		191.4	179.2	\$74.5	764.3	144	82	18.3	2960	2.1	. 1.	315	2.
294	5	.7 24.6	592	1 1871	177.2	232.8	447.4	164.3	144	+2	4.2	2868	2.1		225	۰.
295		.4 34.4	1137	2247	205.4	152.6	544.3	557.4	254	297	12.7	\$72	8.5		1 100	5.

的影响。这种公司,这些学校的问题,这些学校的影响。

• •

k

----

. ....

.....

.....

. . . .

and the second second

		I LOSS	TOTAL	TOTAL	EXCH	EICH	EXCH	EXCH	TOTAL	TOTAL	EXCH	TOTAL	EXCH	EXCH	ASPEC	SLOPE
Be.							C.	89	C.	Cr	Fe	=	-	2=	(degre	
		15#1710	••	•	•	•	•	•	•	•	•	•	•	•	••	(degree
301	5.5	4.4	2020	586	13.1	6.1	32.3	20.2	101	41	2.0	1616	6.8	1.1	270	2.
302	5.5	11.0	3009	473	50.4	18.4	118.2	96.1	182	41	2.5	1632	1.1	6.2	135	10.
3#3	5.5	4.5	1544	424	15.0	8.3	34.3	21.8	121		2.8	2020	1.1		180	15.
384	5.1	5.5	2172		9.7	2.4	6.1	3.4	121	41	2.0	2929	1.1		135	15.
345	5.3	12.7	3264	796	47.5	18.8	183.4	71.4	182	61	2.0	1632	1.1	8.4	135	5.
30.	5.7	3.9	2273	848	7.3	5.5	46.5	29.7	121	41		1414	1.1	1.2	135	5.
367	5.3	1.8	3244	877	24.1	11.6	45.3	44.1	122	.1	2.6	1632	1.1	1.2	180	۰.
305	4.5	11.3	3519		36.1	14.9	28.4	34.7	182	82	é.1	1432	1.1	1.1	120	3.
309	5.6	2.8	1970	788	7	4.3	8.1	1.5	141	.1	2.0	2828	1.1		180	5.
31.0	5.3	4.3	1869	626	11.7	10.7	74.7	51.7	141	.1	2.0	2929	1.1	4.2	135	5.
311	4.1	15.4	3708	783	154.5	44.9	144.2	154.8	21	42	4.2	42	1.1		180	3.
312	5.3	18.8	4197	428	143.9	47.6	184.4	113.1	22	45	4.5	22	1.1		180	29.
313	5.	14.4	3018	430	92.2	48.1	77.7	74.6	21	63	4.3	21			130	20.
314	5.	13.7	3726	821	93.7	27.8		63.1	22	43	4.5	. 22		1.1	184	15.
315	5.	. 14.0	3498	788		31.4.	47.8	79.9	21		4.4	21			184	20.

0

and the second second

the second se

100

-		I LOSS	TOTAL	TOTAL	EXCH	EXCH	EXCH	EXCH	TOTAL	TOTAL	EXCH	TOTAL	EICH	EXCH	ASPEC	
He.							C.	-	C.	C.	Fe		=1	2.	(degre	
		15#1710	••	•	•	•	•	•	•	•	•	•	•	•	••	(degree
301	5.5	4.4	2020	584	13.1	6.1	32.3	20.2	101		2.0	1414	1.1	1.1	270	2.
302	5.5	11.0	3009	473	50.4	18.4	118.2		182	61	2.6	1432	1.1	1.2	135	10.
3#3	5.5	4.5	1544	424	15	8.3	34.3	21.8	121		2.8	2828	1.1		180	15.
384	5.1	5.5	2172		1.7	2.4		3.4	121	+1	2.8	2828	1.1	1.1	135	15.
345	5.3	12.7	3264	796	47.5	18.8	183.4	71.4	182	61	2.0	1632	1.1	1.4	135	5.
30.	5.7	3.9	2273	848	7.3	5.5	46.5	29.7	121	+1	1.1	1410	1.1		135	5.
367	5.3	1.8	3244	877	24.1	11.6	45.3	44.1	122	.1	2.8	1632	1.1	1.2	180	۰.
385	4.5	11.3	3519	938	34.1	14.9	28.4	36.7	182	82	é.1	1432			180	3.
369	5.6	2.8	1970	788	4.7	4.3	8.1	1.5	141	*1	2.0	2828	1.1		180	5.
310	5.3	4.3	1847	+2+	11.7	10.7	74.7	51.7	141	+1	2.0	2929		1.2	135	5.
311	4.1	15.4	3700	783	154.5	44.7	144.2	154.8	21	42	4.2	42	1.1		180	3.
312	s.:	18.8	4197	428	143.9	47.6	184.4	113.1	22	45	4.5	22	1.1		180	20.
313	5.	14.4	3018	430	\$2.2	48.1	77.7	74.6	21	63	4.3	21	1.1		130	20.
314	5.	13.7	3726	821	13.7	27.8		43.1	22	43	4.5.	. 22	1.1		184	15.
315	5.	. 14.0	3498	700		31.4.	47.8	78.8	21		4.4	21	1.1		184	20.

## Appendix IV

Ordina	ation s	cores f	or all	283 01120	irats
incl	luded i	n the D	ECORANA	and TW	INSPAN
vege	etation	analys	es for	Axes I -	- 111.
and	the TW	INSPAN	classif	ication	group
nuet	per. (Q	uadrats	1 and	29 omit	ted.)
					- <b></b>
beug	AXIS	AX15	Ax15	TUINSP	AN
rat	1	11	111	Group	NO.
2	197	155	153	2	
3	158	186	182	7	
4	176	181	155	5	
5	184	293	161	6	
6	155	297	164	5	
7	179	116	119	2	
8	137	146	163	12	
9	176	169	125	19	
tø	296	169	146	2	
11	124	247	140	7	
12	149	232	87	7	
13	79	164	96	8	
14	157	249	93	7	
15	149	194	155	8	
16	75	179	248	8	
17	51	296	21#	5	
18	53	186	211	8	
19	87	199	218	8	
29	94	199	186	8	
21	137	184	194	19	
22	161	195	137	5	
23	138	143	142	10	
24	199	195	186	12	
25	132	188	136	11	
26	129	191	74	7	
27	164	185	153	19	
28	119	4		3	
39	186	254	129	5	
31	168	285	69	6	
32	156	255	127	5	
33	197	258	117	6	
34	154	222	167	5	
35	138	227	175	6	
36	223	269	84	6	
37	189	277	87	6	
38	144	257	125	6	
39	166	260	135	6	
4#	128	229	176	5	
41	198	256	88	6	
42	181	285	64	6	
43	139	257	116	6	
44	146	306	63	6	
45	187	266	103	6	

Quad	Axis	Axis	Axis	TWINSPAN
rat	I	II	III	Group No.
447895123456789512345666689512345678951234588888889512345678951234567895123456789512345678951234567895123456789512345678951234567895123456789512345678951234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678951123456789511234567895112345678895112345	156 1847 149 98 65 98 65 97 15 77 24 88 19 19 12 27 15 79 29 42 95 87 46 49 117 27 12 27 12 27 49 117 27 12 27 12 27 49 81 19 95 94 28 74 64 97 57 57 57 57 57 57 57 57 57 57 57 57 57	241 299 267 273 227 179 86 74 111 257 145 259 318 3159 248 259 318 317 248 259 318 317 248 259 318 317 222 215 384 196 322 215 384 196 218 219 212 212 214 259 214 259 215 217 212 215 217 217 217 217 217 217 217 217 217 217	116 59 77 126 139 187 194 139 187 194 139 187 199 173 161 178 168 99 70 199 164 168 99 70 199 164 168 99 70 119 164 168 173 164 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 165 173 175 175 175 175 175 175 175 175 175 175	6 6 6 11 19 12 12 8 11 11 5 11 17 7 7 7 7 7 7 7 7 7 7 7 7 7



# Appendix IV

incl	uded in	n the DE	CORANA	and TWINSPAN	Quad	Axis	Axi
vege	tation	analyse	is for	Axes I - Ill,	rat	I	II
and numb	the lui per. (Qu	ladrats	1 and	29 omitted.)			
					46	156	241
Quad	Axis	AXIS	AX15	INTERAL	47	184	299
rat	1	11			48	297	267
	107	155	153	2	47	146	2/3
2	17/	186	182	7	51	249	176
3	176	181	155	5	52	70 40	179
-	184	293	161	6	53	65	74
נ ג	155	297	164	5	54	79	111
7	179	116	119	2	55	115	297
8	137	146	163	12	56	78	172
9	176	169	125	10	57	77	148
19	296	169	146	2	58	124	259
11	124	297	140	7	59	92	151
12	149	232	87	7	69	87	145
13	70	164	76	8	61	64	26₽
14	157	249	73	2	62	89	313
15	149	174	133	0	63	81	139
16	/3	744	240	5	64 45	1 1 0	248
17	51	186	211	8	65	119	237
18	87	194	218	8	67	125	81
19	96	199	186	8	68	127	318
29	137	184	194	19	69	191	276
21	161	195	137	5	70	115	237
23	138	143	142	10	71	73	222
24	199	195	186	12	72	99	215
25	132	188	136	11	73	125	303
26	129	191	74	7	74	139	84
27	164	189	153	19	75	114	196
28	119	9	9	5 F	76	82	163
39	186	204	127	J	77	199	166
31	168	283	177	5	78	85	178
32	107	255	117	6	24	117	210
33	154	222	167	5	99 91	74	122
34	138	227	175	6	82	26	125
33	223	260	84	6	83	34	111
30	189	277	87	6	84	49	194
38	144	257	125	6	85	74	213
39	166	260	135	6	86	84	214
44	128	229	176	5	87	65	154
41	198	256	88	6	88	79	296
42	181	285	64	6	89	35	197
43	139	257	116	6	9#	62	212
44	146	396	63	0	91		252
45	187	200	183	a	92	10	286
					73	75	235
					74	107	230
					96	64	224
					97	36	194
					98	52	295
					99	74	206
					144	84	217

126 8 8 8 

Axis TWINSPAN

5

11,

8 

Group No. ---

III

161

1#2

187 267

17≇

296 217

8

Quad	Axis	Axis	Axis	TWINSPAN	Quad	Axis	AX15	AX15	IWINSPHN
rat 	1			oroup No.	rat				Group NO.
					154	1 9 0	174	148	1
	79	9.4		0	157	214	197	177	1
271 (47)	27	17	21	9	158	188	784	148	1
92 47	23	7.8	24	9	159	217	199	143	1
83 84	54	114	85	9	160	256	221	132	1
45	26	52	63	9	161	273	151	137	Å
86	52	32	36	9	162	246	153	144	4
47	62	89	68	9	163	269	163	140	4
ØB	7	16	29	9	164	266	201	144	1
69	27	49	98	9	165	278	154	136	4
10	43	95	57	9	166	261	224	123	1
11	92	94	51	10	167	277	282	137	4
12	78	144	111	19	168	279	248	114	1
13	82	127	77	19	169	283	212	167	1
14	63	193	52	10	170	276	198	159	1
15	73	193	71	19	171	257	17	219	3
116	48	139	66	19	172	275	195	189	3
17	91	134	124	10	173	292	51	182	3
118	53	115	113	10	174	297	28	235	3
119	87	124	68	19	175	230	81	182	3
120	79	116	91	19	176	288	99	145	3
121	78	256	159	8	177	301	131	153	3
122	40	2Ø8	137	8	178	268	171	158	4
23	52	299	152	8	179	250	179	142	4
124	75	172	172	11	180	309	167	115	4
25	185	331	88	7	181	69	117	293	12
26	68	223	154	8	182	125	117	294	12
27	195	299	119	7	183	146	96	198	12
28	42	178	219	11	184	179	145	162	3
129	5#	183	156	7	185	79	196	219	12
130	78	237	166	8	186	117	137	181	12
131	129	74	181	12	187	69	86	252	12
132	67	48	191	12	188	42	197	193	12
133	198	94	195	12	189	199	13/	229	12
134	84	118	229	12	170	1.47	122	104	12
135	99	88	169	12	171	177	244	157	5
136	193	69	249	12	172	154	22/	177	5
137	119	98	188	12	173	149	24/	154	5
138	191	9/	299	12	105	151	243	157	5
137	110	75	102	14	194	147	237	198	5
149	112	192	. 142	8	197	125	237	197	5
141	00	179	107	12	100	185	199	174	1
142	75	170	100	12	199	1.65	217	145	5
143	10	107	170	11	244	164	241	172	5
177	00	110	145	12	261	158	218	151	5
143	77	121	234	12	202	172	237	151	5
147	17	179	231	12	203	291	264	213	5
148	51	145	244	11	244	163	223	170	5
149	43	168	244	11	295	142	228	175	5
154	42	126	223	12	211	161	228	131	1
151	1.41	198	175	5	212	167	219	138	1
152	193	215	136	1	213	177	199	137	1
153	201	199	143	1	214	215	213	127	1
154	203	200	146	1	215	128	246	151	5
155	145	230	165	1					

Duad rat	Axis I	Axis II	Axis III	TWINSPAN Group No.	Quad rat	Axis I	Axis II	Axis	Group No
21	279	1#2	148	3	291	77	151	84	19
222	276	74	142	3	292	/8	111	33	19
223	259	82	173	3	293	27	100	1173	14
224	279	62	142	3	274	02	188	1197	9
225	296	89	134	3	293	38	80	127	9
231	149	239	234	5	740	17	170	122	11
232	197	299	134	11	302	42	170	222	11
233	86	159	164	11	3973 738	44	144	230	11
234	149	299	192	5	745	45	194	194	11
235	123	294	150	11	741	73	144	248	11
236	129	236	155	5	300	17	243	274	11
237	138	212	145	10	348	82	158	187	8
238	93	185	98	10	349	54	179	244	11
239	94	287	97	7	310	62	170	295	11
249	69	599	135	12	311	171	152	88	2
241	86	121	218	12	312	292	172	91	2
242	190	134	183	12	313	295	151	86	2
293	147	73	240	12	314	218	156	98	2
299	04	37	207	12	315	214	156	93	2
243	7.	91	210	12					
290 787	119	144	186	12					
248	115	154	175	11					
240	98	89	213	12					
250	109	86	235	12					
251	113	269	47	7					
252	1.01	247	77	8					
253	127	267	47	8					
254	90	211	72	7					
255	94	291	94	7					
256	134	246	67	7					
257	122	253	88	7					
258	113	219	55	7					
259	115	235	48	7					
269	94	214	117	7					
261	55	195	91	7					
262	71	207	148	7					
263	73	197	126	7					
264	197	249	114	7					
265	74	22/	24						
271	171	230	01	7					
272	122	297	¥7	7					
273	749	254	AR	6					
275	122	325	58	7					
276	159	241	134	6					
277	118	266	90	7					
278	129	229	194	8					
279	58	211	207	5					
289	128	279	39	7					
281	87	149	1#6	19					
282	85	132	137	10					
283	27	125	192	12					
	50	97	158	12					
284									
284 285	17	112	1#5	9					

#### APPENDIX V

The means and F-ratios for the soil data from each transect. All total and exchangeable values in  $\mu$ g g-1; these values and those for % loss-on-ignition are expressed for soil oven dried at  $105^{\circ}$ C. The type of mean given depends on the normality of the data. Arithmetic means are given with a single value in parenthesis for standard error. Geometric means arising from log_e and square root transformations (the latter indicated by +) are given with values in parentheses for the transformed mean followed by the transformed standard deviation. n = 10 except for transects 21-23, 27, 29, 30 and 32 where n = 5.

#### APPENDIX V

The means and F-ratios for the soil data from each transect. All total and exchangeable values in  $\mu$ g g-1; these values and those for % loss-on-ignition are expressed for soil oven dried at  $105^{\circ}$ C. The type of mean given depends on the normality of the data. Arithmetic means are given with a single value in parenthesis for standard error. Geometric means arising from log and square root transformations (the latter indicated by +) are given with values in parentheses for the transformed mean followed by the transformed standard deviation. n = 10 except for transects 21-23, 27, 29, 30 and 32 where n = 5.

(2.5,0.4) 10.8 91.5 (4.5,0.9) 251.0 64.4 (4.2.0.6) 2069.6 (12.7,6.6) (5.5.0.4) (4.6,0.5) 128.3 (1.1.1.) (10.9, 7.5)(2.4,0.2) (18.5,5.1) (0.1, 5.3) (29.0.6.9) 119.6+ 160.8+ (1.8) (18:5) (213.8) 843.7+ 58.2 (12.9) 75.1 342.1 195.4 100.0 Excit 11.6 74.7 (8.3) 63.3 Mg  $(4.3,1.5) \\ -136.7+ \\ (11.7,4.8) \\ 9.5 \\ (1.8) \\ 8.0$ (2.1,0.3) 146.9+ (12.1,5.0) 312.4 (5.7,0.3) 354.4 (36.7) 455.4+ (21.3,9.1) 48.2 (3.9,0.7) 1344.4 (4.2,0.5) (6.7,0.5) 139.2 (17.8) 178.7 (5.2,0.8) 195.8 (134.1) 812.2 (29.5) 63.7 (12.8) 58.3+ (7.6,2.5) 67.5 Exch 75.6 Ca . (3.5,1.8) 16.3 5.0 (1.0) 18.3 (2.9,0.9) 45.3 (3.8.0.7) 73.7 (4.3,0.8) 235.1 (55.0) 8.7 (2.2,0.5) 404.6 (43.9) 298.7+ (17.3, 4.9) 17.9+ (4.2,10) 147.8 (5.0,10) 240.9 (35.4) 26.0 (4.7) 45.8 (2.8, 0.8)(1.6, 0.5)19.6 (3.0) 12.1+ (3.8.0.8) Exch 4.9 Na (2 2,0 5) 382.5+ (19.6.6.1) 154.3 (18.2) 15.4 (4.3,0.3) 22.0+ (2.5,0.3) 31.6+ (5.6,2.2) 38.0 (4.2,0.4) 85.9 (4.5,1.2) (3.7,0.9) 13.1 (2.7.0.8) 198.2 (5 3 0 5) 209 0 (3.6,0.4) (4.7,1.9) (30.4) 70.5 (11.7) 150.7 (2.0) 11.8 8.9 Exch 7.97 41.1 (0.23.0) 68.4 ¥ (32.1,3.8) 800 (6.2,0.4) 470 (5.5,0.5) 1230 (7.5,0.3) 530 (6.3,0.2) 1110 (6.1, 0.6)(6.1.0.4) (5.4,0.3) (6.7,0.1) 930 (6.1,0.8) (6.8,0.2) (2.0,0.3) (6.8.0.2) (10) 220 (120) (0130) 1570 (90) 1790 Total 460 250 1030+ 430 180 1280 930 490 ۵. (7.9,0.7) 1230 (7.1,0.5) 1070 (8.3,0.4) 6490 (1000) 1580 (7.4,0.3) 11700 (1200) 7670 (7.6,0.5) 2700 (7.4,0.7) 1340 (7.2,0.5) 4130 (7.4,0.3) 10260 (9.2,0.3) 8940 (1120) 3520 8.2,0.4) 8.3.0.2) Total N (830) 1650 (320) 3940 2050 (60) 1680 3800 (2.6,0.5) 23.6+ (4.9,1.6) 2.8 (1.0, 1.0)54.4 (1.9.0.9) 5.1 (7.8) 29.5 (4.4) 3.9 (1.4,0.6) 49.2 Ignition (2.7, 0.3)(1.5.0.9)(2.3,0.6) (1.0,0.4) (1.6.0.5) 2.7,0.5) 2.8,0.3) Z Loss 13.8 2.6 4.2 (6.0) 42.8 (4.5) 14.2 4.4 10.0 (0.3) 6.4 15.2 17.1 uo 5.0 5.7 5.7 5.7 (0.1) 5.1 (0.1) 5.2 (0.1) 5.5 (0.1) (0.1) (0.1) (0.1) 5.5 (0.1) 5.1 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0.1) 5.5 (0) 5.5)(0) 5.5 (0) 5.5)(0) 5.5)(0) 5. (0.1) 4.8 (0.1) 5.0 (0.1) (0.1) 5.1 4.5 Hd Transect No. 13 10 1 21 14 15 16 11

 $(1.9) \\ 36.4+ \\ (6.0, 3.5) \\ 99.7$ 44.3+ (6.7,3.2) 102.2 (6.7,0.6) 117,4 (22.1) 82.3 (4.9) 557.9 (6.3.0.6) 783.7 (4.5,0.3) (4.6,0.1) Exch (14.0) (66.6) 33.5+ (5.8.2.4) (4.5,0.4) (8.5) 92.3 36.19 (0.6) 9.6 8.68 а Ж 89.7 *** (2.6,0.4) 38.4 (3.6,1.4) 95.2 (4.6,0.4) 50.3 (3.9,1.1) 127.8+ (6.3,0.8) 135.2 (4.9,0.2) 77.1 (4.3,0.2) 700.5 (9.0.9.4) (2.5,0.4) (6.6,0.5) (7.0,3.4) (10.8,2.8) (11.3,3.6) (6.5,0.3) (4.5,0.4) 6.1+ 6.7+ 48.7+ 551.4 19.28 117.6+ 102.7 692.1 86.4 Exch Ca (4.6,1.0) 129.3 (3.8,2.9) 52.1 (4.0,0.3) 28.1+ (1.5,1.8) 213.8 (47.4) 73.4 73.4 (4.3,1.0) 23.2 (0.8) 14.8 (0.5) 257.8 (46.5) 257.0 (17.5) 9.5+ (6.0.6.7) (1.8, 0.2)(3.1,0.9) (0.4) 6.0 14.5+ (3.7.0.4) 13.65 95.7 1.2 41.6 Exch Na (6.8,3.5) 244.1 (5.5, 0.4) 12.8 (2.5, 0.6) 308.6 (43, 0) 52.6 (9, 3) 19.8 (2.8) 14.9 (0, 7) 369.7 (65.3) 197.3 17.3 (2.8,0.8) (2.2,0.6) (15.1,2.2) 224.2 (30.7) (5.3,0.1) (4.7,0.3) 18.32 46.5+ 229.0+ 7.8 (0.7) 9.0 Exch 113.6  $\mathbf{z}$ (6.0,0.2) 840 940 (6.8,0.2) 470 (40) 610 (5.5,0.2) 500 (6.8,0.4) 1380 (6.8,0.3) (6.7,0.3) (6.4,0.2) (20) 260 (7.2,0.5) Total (180) (60) (20) 400 910 1410 880 290 740 750 (40) 22.09 (8.7,0.2) 1790 (7.5,0.4) 6710 (500) 2910 (180) 1000 (120) 1280 (7.2,0.2) 8940 (7.8,0.3) 8610 23.90 (50) 2480 (470) 5840 (1290) 9040 (1140) 900 (60) 960 (180) Total 7590 2410 3650 ***  $\mathbf{z}$ Ignition (2.1.0.6) 27.9 (3.3,0.4) 4.8 (1.5,0.4) 2.2 (0.8,0.4) 2.7 30.4 (3.4,0.2) 3.0 (1.1 0.8) 3.1 (1.1,0.3) 8.3 23.29 *** Z Loss (1.6,0.6) (1.0,0.1) (1.9,0.5) (3.8,0.4) 46.1 (5.4) 4.3 (2.7,0.1) 50.4 43.6 (0.4) 32.8 (6.3) 6.4 15.1 UO 40.38 5.0 Hd Transect F ratio No. 18 30 28 29 32 19 20 22 23 24 25 26 27 31 21

*** P<0.001

2. 他们们们的"有人"中的

Transect	Total	Total	Exch	Total	Exch.	Exch.	
No.	co	Cr	Fe	Nİ	Ni	Zn	Mg/Ca
1	99	40	4.4	580	0.5	•	1.12+
	(1)	(3.8,0.1)	(0.6)	(09)	(-0.6.0.8)		(1.06.0.39)
2	140	80	2.2+	2220	1.6+	•	0.95
	(9)	(9)	(1.5,0.9)	(06)	(1.3.0.4)		(-0.05.0.22)
3	100	90	3.2	1220	0.7	•	1.05
	(2)	(4)	(0.7)	(1.1,0.4)	(-0.4.0-)		(0.05,0.36)
4	110	60	1.0	2170	0.7	1	1.50+
	(3)	(4)	(0.3)	(110)	(0.1)		(1.22,0.21)
5	110	70	1.2	2190	0	0	1.37
	(3)	(3)	(0.3)	(10)	(0)	(0)	(0.08)
9	100	50	2.1	2010	1.8+	0.1	0.74
	(4,6,1.6)	(4.0,0.3)	(0.1,0.0)	(10)	(1.4,1.1)	(0.0)	(-0.30, 0.25)
1	120	100	0.4	14.0	2.1	0	0.80
	(9)	(4.6,0.2)	(0.4)	(1.3,0.4)	(0.6)	(0)	(-0.22,0.22)
8	150	140	2.9	2180	7.3	+0	0.95
	(2.0,0.1)	(4.9,0.5)	(0.7)	(100)	(1.1)	(0.2,0.3)	(-0.06,0.27)
6	110	180	4.5+	069	3.4	++*0	0.54
	(4)	(5.2,0.6)	(2.1,1.7)	(6.5,0.6)	(6.0)	(0.1,0.4)	(-0.62,0.38)
10	160	50	0.1+	2740	3.0	0	1.34
	(2)	(3.9,0.3)	(0.3,0.7)	(7.9,0.2)	(0.5)	(0.0)	(0.29,0.31)
11	130	80+	2.7+	1560+	22.0	0.8+	1.56
	(1)	(8.7,5.0)	(1.6,1.0)	(39.5,8.7)	(3.1,0.4)	(0.9,1.4)	(0.08)
12	160	120	3.5	1400	8.6+	++*0	0.98
	(5.1, 0.2)	(4.8,0.2)	(9.0)	(1.2,0.4)	(2.9,0.9)	(0.6,0.4)	(-0.02,0.16)
13	+02	120	0.8	190	2.0	0	0.56
	(8.1,1.4)	(4.8,0.4)	(0.5)	(6.7,0.5)	(0.3)	(0)	(-0.58,0.33)
14	20	50	7.8+	20+	0	0	0.59
	(4)	(6)	(2.8,0.5)	(4.1,2.4)	(0)	(0)	(0.05)
15	30	80	10.3+	210	0	0.8	0.65
	(9)	(9)	(3.2,0.9)	(2.4,0.6)	(0)	(0.2)	(0.04)
16	50	70	3.8	420	0	0.3+	0.83
	(3.9,0.2)	(3)	(0.3)	(6.0,0.5)	(0)	(0.5,0.4)	(0.06)
17	0	0	6.3	0	0	0.3	1.34
	(0)	(0)	(9.0)	(0)	(0)	(0.1)	(0.29,0.65)
-	ot determined						

Transect	Total	Total	Exch	Total	Exch	Exch	
No.	Co.	Cr	Fe	Nİ	Ni	Zn	Mg/Ca
18	0	0	8.6	0	0	0.4	0 78
	(0)	(0)	(2.2.0.4)	(0)	(0)	(0.1)	(-0.25.0.31)
19	0	20	8.6	0	0	0.6	0.98
	(0)	(3.2,0.4)	(6.0)	(0)	(0)	(0.1)	(0.13)
20	150	60	1.0	2620	1.4	0	1.58
	(4)	(3)	(0.3)	(110)	(0.3)	(0)	(0.46.0.30)
21	140	100	1.2	2500	0	0	1.57
	(8)	(9)	(0.5)	(80)	(0)	(0)	(0.18)
22	70	100	2.1	360	0	0.2	0.71
	(4.2,0.2)	(4.6,0.3)	(0.7)	(5.9,0.4)	(0)	(0.2)	(0.0)
23	0	20	13.0	0	0	0.3	1.10
	(0)	(3.0,0.0)	(2.6,0.6)	(0)	(0)	(0.1)	(0.17)
24	130	80	2.0	2240	1.0	+0	0.72
	(2)	(4)	(0.5)	(110)	(0.5)	(0.2.0.4)	(0.07)
25	0	30	11.8+	50	0	0.7+	0.79
	(0)	(3.4,0.3)	(3.4,0.9)	(3.9,0.6)	(0)	(0.8.0.4)	(-0.23.0.30)
26	150	120	0	2720	6.8	0	1.52
	(10)	(1)	(0)	(120)	(0.5)	(0)	(0.16)
27	140	06	2.0	2990	4.0	0	1.30
	(0)	(4)	(0)	(100)	(1.4,0.5)	(0)	(0.26.0.15)
28	140	80	0.8	2140	0	0	1.08
	(4)	(3)	(0.3)	(09)	(0)	(0)	(60.0)
56	90	120	14.3	480+	2.8	1.9	0.80
	(4.5,0.3)	(4.8,0.3)	(3.1)	(21.9,7.9)	(1.0,0.6)	(0.6,0.6)	(0.05)
30	180	100	8.6+	1410	3.2	0.8+	1.13
	(24)	(4.6,0.8)	(2.9,0.5)	(330)	(1.0,0.6)	(0.8,0.2)	(60.0)
31	120	60	1.9+	1830	0	0.1	0.72
	(4.8,0.1)	(4.2,0.1)	(1.4,0.6)	(7.5,0.2)	(0)	(0.1)	(-0.33,0.35)
32	0	+09	6.4	0	0	0	1.04
	(0)	(1.7,0.6)	(0.0)	(0)	(0)	(0)	(0.02)
F ratio	63.89	10.59	12.34	67.87	31.46	8.37	4.12
	***	***	***	***	***	***	***

New York

.....

*** P<0.001

### APPENDIX VI

The means for the soil data for the 12 TWINSPAN vegetation classification groups in  $\mu g g^{-1}$ ; these values and those for % loss-on-ignition are expressed for soil oven dried at  $105^{\circ}$ C. The type of mean given depends on the normality of the data. Arithmetic means are given with a single value in parenthesis for standard error. Geometric means arising from log_e and square root transformations (the latter indicated by +) are given with values in parentheses for the transformed mean followed by the transformed standard deviation.

		4	Total	Total	Exch	Exch	Exch	Exch
class	hd	101	z	ď	К	Na	Са	Mg
1	5.0	14.0+	3410	760	72.4+	25.0+	46.3	54.2+
	(0.4)	(3.75,0.97)	(1060)	(010)	(8.51,2.84)	(5.00,1.85)	(3.84,0.88)	(7.36.2.69)
2	5.1	16.7	4250	750	106.7	33.9	90.2	105.0
	(0.2)	(2.81,0.20)	(8.35,0.31)	(6)	(4.67,0.25)	(3.52,0.44)	(4.50,0.35)	(4.65,0.53)
	4.3	31.1	6150+	1210+	224.9	66.8	111.2	98.0
	(11.47,0.11)	(13.2)	(78.43,18.80)	(34.84,7.54)	(011)	(4.20,0.91)	(4.71,0.39)	(4.58,0.21)
4	4.4	18.5	4610	960	186.9	60.9	9.77	78.2
	(0.2)	(2.92,0.54)	(8.44,0.49)	(380)	(12)	(4.25,0.92)	(4.36,0.48)	(16.4)
5	5.3	3.8	1280	350	12.4	3.2+	11.5	12.9
	(1.67,0.05)	(1.34,0.71)	(7.15,0.46)	(5.86,0.44)	(2.51,0.82)	(1.77,1.35)	(2.44,0.88)	(2.56,0.76)
9	5.1	3.3	1150	280	12.3	6.9	11.0	14.9
	(1.63,0.09)	(1.20,0.49)	(7.05,0.34)	(5.64,0.65)	(2.51,0.58)	(6.9)	(2.40,0.98)	(2.70.0.80)
1	6.0	5.4	2080	+069	31.1	32.1	238.3	231.8
	(0.4)	(1.68,0.83)	(7.64,0.66)	(26,17,8.00)	(3.44,0.66)	(3.47,0.97)	(5.47,0.78)	(5.45,0.85)
80	5.8	3°9	1760	+079	13.9	13.7	77.2	67.7
	(0.5)	(1.37,0.78)	(7.47,0.41)	(25.37,5.78)	(2.63,0.78)	(2.62,1.13)	(4.35,1.19)	(4.21,1.18)
6	6.0	53.1	11800	1620	369.0+	382.4	1273.3	1870.5
	(0.4)	(23.0)	(3460)	(320)	(19.21,5.75)	(145)	(424)	(180)
10	5.6	20.7+	5 900	950	133.6	150.4+	488.8+	493.3+
	(0.4)	(4.55,1.58)	(2940)	(6.85,0.70)	()()	(12.26,6.66)	(22.11,9.20)	(22.21,9.50)
11	5.4	<b>6</b> •3	2740	630	33.8	32.8+	122.6+	84.0+
	(1.68,0.06)	(2.22,0.87)	(7.92,0.53)	(290)	(3.52,1.06)	(5.73,4.47)	(11.07,5.07)	(9.16.3.97)
12	4.8	45.7	8940	1010	257.2	224.3	168.4	125.0
	(1.57,0.08)	(17.8)	(3550)	(340)	(130)	(147)	(5.13,0.84)	(4.83,0.70)

l

	Total	Total	Exch	Total	Exch	Exch	
Class	Co	Cr	Fe	Nİ	Ni	Zn	Mg/Ca
1	50	60	3.9+	290+	0.0	0.17+	1.01
	(34)	(07)	(1.97,0.46)	(16.93,11.40)	(0)	(0.41,0.40)	(0.0079,0.554)
2	40	50	6.4	06	0.0	0.00	1.16
	(28)	(3.97,0.20)	(0.2)	(4.49,1.72)	(0)	(0)	(0.15,0.25)
e	10+	10+	9.2	0	0.0	0.33	0.88
	(2.36, 3.15)	(3.18,2.60)	(2.22,0.66)	. (0)	(0)	(0.23)	(-0.13.0.34)
4	0	0	7.5	0	0.0	0.37	1.02
	(0)	(0)	(1.98,0.34)	(0)	(0.0)	(0.27)	(0.28)
5	120	+01	1.5	2040	0.1	0.00	1.13
	(37)	(8.18,1.28)	(1.5)	(812)	(-1.67,1.26)	(0)	(0.12,0.44)
9	110	60	+9.0	2130	0.0	0.00	1.39+
	(15)	(12)	(0.80,0.81)	(144)	(0)	(0)	(1.18,0.18)
1	130	110	+9.0	2040	3.8	0.00	0.97
	(32)	(4.70,0.47)	(0.74,0.93)	(676)	(3.3)	(-11.06,2.14)	(-0.03,0.42)
8	120	80	1.4+	2060	2.2+	0.00	0.88
	(38)	(4.33,0.40)	(0.72,0.82)	(866)	(1.10,0.92)	(0)	(-0.13,0.46)
6	140	100+	3.5+	1340+	18.8	0.83+	1.47
	(99)	(9.80,5.22)	(1.87,1.06)	(36.65,10.30)	(2.94,0.50)	(0.91,0.57)	(0.31)
10	140	60	4.4	1550	3.7+	0.24+	66.0
	(42)	(4.55,0.39)	(3.3)	(663)	(1.92,1.23)	(0.49.0.47)	(-0.13,0.34)
11	100	70	3.1	1590	+9.0	0.14+	0.71
	(42)	(4.23,0.45)	(2.5)	(819)	(0.74,0.85)	(0.37,0.39)	(-0.35.0.37)
12	10+	50+	10.8	09	0.4+	0.41+	0.74
	(3.59,4.09)	(1.33, 3.01)	(6.3)	(4.06,1.95)	(0.62,0.85)	(0.64.0.53)	(-0.30,0.40)

Section and a section of

#### Appendix VII

...

The elemental concentrations of the plant species analyzed. Replicates listed one on each line for each quadrat, and are for the same subsample except for nitrogen. All values ug g-1 dry weight.

### <u>Agrostis canina</u>

Quad rat	И	к	Na	Ca	Ħg	Co	Cr	Fe	Mn	Ni	Zn
2	12700	5500	211	1070	1050	Ø.Ø	Ø.9	 76Ø	179	8.0	134.7
	13200	7770	260	1010	2479	9.9	9.9	1570	148	8.9	150.9
	13200	7520	377	950	1230	9.9	9.9	619	144	0.0	81.9
11	-	6019	293	1169	1090	8.3	9.9	590	77	9.9	66.8
	-	5640	362	1979	990	8.8	8.9	199	82	9.9	77.0
	-	72 <b>4</b> 0	346	879	940	9.9	0.0	25∌	91	9.9	59.4
31	12600	6150	367	1179	8899	16.7	16.7	5780	145	199.5	63.3
	13400	7919	458	1919	6830	16.3	16.3	4040	163	81.7	68.6
	13400	7179	507	1189	6310	16.3	16.3	3380	157	81.7	55.6
61	10800	4149	349	1630	7180	16.6	16.6	5930	191	99.7	81.4
	9988	4780	279	1410	2660	15.5	15.5	1819	206	31.0	69.7
	9699	465₽	289	1899	9290	16.1	16.1	8310	227	128.6	62.7
151	11999	5619	233	1100	2000	16.7	16.7	2280	347	8.9	118.0
	12500	7920	210	1380	1669	15.0	9.9	1450	235	0.0	82.3
	11700	7969	197	1109	2969	16.5	16.5	2429	257	9.0	198.6
211	10300	7780	245	1220	1330	15.3	15.3	1969	131	4.1	125.4
	10600	6230	381	1520	2070	15.2	15.2	1970	294	9.9	118.9
	11500	6440	226	1690	1999	16.1	16.1	1270	211	Ø.9	133.9
311	12000	7170	287	1189	1479	16.0	16.0	6370	217	9.0	123.0
- / /	11600	7840	418	1848	920	0.0	0.0	3160	299	9.9	143.8
	11300	7680	246	1030	89#	9.9	15.4	1520	221	Ø.Ø	106.1

- not determined

# Arenaria norvegica ssp. norvegica - Collected from 073

Part	N	К	Na	Ca	Ng	Co	Cr	Fe	Ħn	Ni	Zn
Shoot	-	14200	975	375	13899	25	50	6500	100	250	68
	-	11479	686	343	8726	25	49	5880	98	196	44
	-	13950	950	350	9288	25	50	5500	185	200	38
Flower	-	6189	1765	1030	8530	147	ð	2940	118	1 47	59
- not	det	ermined			******					******	

# Calluna vulgaris

Quad rat	N	к	Na	Ca	Мg	Co	Cr	Fe	Ħn	Ni	Zn
2	13900	5890	667	2050	1419	ə.ə	0.0	429	468		34.8
	13900	5799	637	2348	1679	9.9	9.9	460	374	9.9	32.7
	13800	5910	576	2350	1669	ð.ð	9.9	469	373	8.9	29.6
11	11300	4300	482	2569	2110	Ø.J	ð.ð	630	149	9.3	16.6
	11600	3660	798	3070	2200	8.0	9.9	450	343	16.0	28.7
	12200	3250	817	2610	2949	9.9	3.8	290	332	0.0	24.5
31	13290	4989	583	2930	5950	9.9	16.7	3470	245	66.7	38.3
	12900	4978	654	3428	4899	9.9	15.6	1998	260	46.7	23.4
	13299	5969	730	2860	3970	9.9	15.9	2939	221	31.7	76.2
61	13000	4159	1000	2730	3250	9.9	ə.ə	1630	142	16.7	51.7
	12199	3740	828	3989	2640	9.9	9.9	750	88	15.6	34.4
	13900	4179	1194	2780	2799	ð.Ø	9.9	1170	293	14.9	29.9
151	12699	6999	759	2569	2780	15.8	15.8	2820	443	1.1	44.3
	12900	6399	775	2829	2660	16.5	16.5	1959	419	9.9	56.1
	12000	6280	712	2620	2650	16.6	16.6	2290	436	9.0	31.5
211	13498	6290	473	3150	1780	9.9	8.9	920	341	8.8	33.1
	12600	6870	493	3240	2140	8.3	9.9	1780	345	9.9	34.6
	12900	6890	674	3240	2010	9.9	8.0	1120	411	0.0	36.2

luad rat	N	К	Na	Ca	'ng	Co	Cr	Fe	Ħn	Ni	Zr
2	11200	3170	182	850	940	9.9	8.9	680	1#9	9.0	87.
	9800	3610	205	730	1020	9.9	9.9	550	125	9.9	39.
	19299	4159	167	780	880	9.9	0.0	520	197	0.0	115.
11	88##	5949	193	730	97₿	Ø.9	9.9	459	48	9.0	55.
	7800	7130	171	950	1820	9.9	9.0	1230	65	0.0	35.
	7500	4639	180	999	1650	8.9	0.0	1939	72	Ø.Ø	28.
31	19899	3210	306	1669	15320	16.1	32.3	8370	299	161.3	41
	10700	3370	371	1989	8249	16.1	9.9	3699	134	64.5	27
	19899	4650	317	1350	8050	16.7	16.7	3829	142	66.7	33
61	7300	332∌	242	1580	5790	15.1	15.1	438Ø	123	68.6	34
	10300	2790	234	1919	3610	15.6	9.9	3260	123	31.2	32
	9999	2979	233	899	1869	16.1	9.9	1819	71	16.6	26
51	-	678Ø	272	850	1839	15.1	15.1	1899	97	9.0	48
	-	5790	258	840	2000	9.9	8.9	1760	113	9.9	56
	-	4729	319	950	1729	9.9	16.3	1629	114	9.9	45
71	-	5810	291	710	470	0.0	ð.Ø	130	113	0.0	193
	-	2800	182	800	480	9.0	0.9	159	126	0.0	34
11	8200	6319	237	1969	1270	9.0	9.9	1090	89	1.1	57
	19499	7130	276	930	1100	9.0	9.9	800	74	0.0	43
	10399	6139	307	990	849	9.9	9.9	630	76	ð.Ø	34
11	8700	5910	296	950	489	9.9	9.9	210	133	0.0	36
	7400	4360	234	970	559	9.9	9.9	280	150	8.9	56
	19599	5990	317	920	529	9.9	9.9	220	135	9.9	85

少國在京高級加密總公司當個物理學的推測

# <u>Plantago</u> <u>maritina</u>

Quad rat	N	<кК	Na	Ca	#9	Co	Cr	Fe	Ħn	Ni	Zn
2	11700	5390	2450	3370	6880	10.0	10.0	4370	135	69.0	124.0
	19699	4855	2579	3065	19499	19.5	19.5	8240	165	97.3	115.8
	11400	5524	3673	2919	12190	9.5	19.1	6650	136	95.4	93.5
11	11600	6284	1879	4779	13020	28.6	18.2	8999	193	191.5	35.6
	11500	5286	1626	4859	16420	27.4	18.6	11680	247	306.6	59.5
	19399	6228	2005	4357	9879	27.9	8.9	6939	243	231.7	43.7
31	19999	5337	5569	4464	30630	17.8	26.7	11820	193	276.2	58.8
	12100	7428	3492	4145	35080	27.2	27.2	12679	293	281.2	50.8
	9999	6849	6411	4946	19560	19.9	19.9	6830	142	159.0	54.7
61	8200	4512	1972	5294	14899	19.2	28.9	6990	150	198.8	83.7
	9000	3224	1933	4418	43620	35.9	44.9	22420	344	475.9	68.2
	9700	4499	1659	527₽	29289	30.0	49.9	15970	288	399.0	72.0
151	11000	8306	4306	3376	6710	9.9	19.8	4430	147	29.7	101.0
	8100	7460	3835	3187	4960	19.9	19.9	326₽	156	29.9	149.4
	13800	12834	5385	3043	4829	9.9	9.9	2340	124	19.8	142.3
211	18988	5565	4450	4068	16899	19.6	48.9	13570	197	117.4	91.9
	13890	6412	2287	3318	5720	9.8	19.5	4350	123	38.9	144.0
	12899	3821	3258	4359	14129	18.2	54.7	12650	157	91.2	93.0
311	13400	9496	4165	4479	5270	9.8	19.6	2529	83	19.6	82.3
	14899	19167	4594	4229	482Đ	9.9	19.8	3630	121	19.8	89.9
	8299	9351	4005	4371	4849	9.9	9.0	840	62	96.9	118.7

## Rhaconitrium lanuginosum

Quad	H N	K	Na	Ca	Ňэ	Со	Cr	Fe	Иn	Ni	Zn
ra.											
2	6199	663	253	1657	12189	9.7	9.7	829#	93	117.0	33.1
	7888	774	347	2361	535₿	9.9	9.9	5650	58	49.6	24.8
	6500	978	179	1228	3880	19.0	18.0	5990	57	29.9	34.5
	-	1192	_ 186	1331	3189	9.3	9.9	3170	39	18.6	27.0
11	7500	869	313	1260	2430	9.8	8.9	2150	31	19.5	23.4
	5500	1153	215	1133	2480	9.8	9.8	2150	39	19.5	37.1
	6300	864	216	1218	12170	19.6	19.6	12770	167	127.7	30.4
	-	750	164	856	2810	9.6	9.9	1830	28	19.2	17.3
31	7300	843	287	1456	22220	19.2	19.2	14370	132	229.9	44.1
	7200	1153	313	1426	17779	19.5	19.5	10550	117	195.4	25.4
	7990	858	292	1628	32160	19.5	19.5	21450	167	302.2	25.3
	-	672	257	1541	26279	19.8	19.8	15610	143	256.9	26.7
61	6699	568	274	3126	11550	9.8	19.6	9210	115	147.0	42.1
	6999	452	285	3592	15640	19.7	19.7	12990	173	196.8	47.2
	6300	589	230	2610	19979	19.9	20.0	9500	102	130.0	43.0
	-	775	298	2097	11520	19.9	19.9	11330	198	149.1	27.8
151	8000	1235	299	1496	19510	19.3	28.9	15340	164	196.1	28.9
	7100	768	482	2490	26750	29.5	49.2	29420	275	226.3	49.2
	7900	754	474	2543	28239	29.0	38.7	28910	278	222.4	44.5
	-	<b>78</b> Ø	25₿	1299	8499	10.0	30.0	15900	147	99.9	47.0
171	6300	1067	207	543	619	9.9	8.8	1280	27	9.9	46.4
	6500	1477	529	798	779	19.9	9.8	699	51	0.0	46.9
	5900	1254	343	568	689	9.8	9.0	580	43	ð.Ø	23.5
	•	966	187	739	629	9.9	0.0	689	35	8.0	25.6
211	8199	1275	299	1384	3330	10.0	19.9	7570	78	29.9	30.9
	9000	1173	288	1153	4710	9.9	19.9	795Ø	71	39.8	33.8
	8699	1163	286	1282	4180	9.9	19.7	8090	71	29.6	28.4
	-	1168	198	1496	4900	9.9	19.8	8710	94	39.0	31.7
311	7600	968	79	613	820	9.9	9.9	2969	25	1.1	21.7
	8200	974	89	656	870	9.9	9.9	2889	24	9.9	21.9
	7500	974	99	795	1050	9.9	9.9	3480	32	1.1	23.9
	-	778	190	748	910	10.0	19.9	2699	27	₹.Ø	20.0

- not determined

Race	Experie	ment 1	Exper	iment 2
	Whole	Shoot	Whole	Shoot
	Plant		Plant	
1	<b>#.#</b> 136	9.9111	9.0263	9.9295
	9.9126	9.0199	9.9117	9.9192
	0.9152	9.9195	9.9169	9.0145
	9.9199	*		
	5.9189			
	0.0232	*		
2	8.9175	9.9119	<b>#.#</b> 213	9.9167
	8.0139	0.0097	9.9216	Ø.#188
	9.8247	<b>6.#</b> 195	0.0380	8.9396
	1.1166	9.0124		
	<b>\$.\$</b> 175	9.9149		
	9.9398	9.9245		
3	4.4489	9.9978		
	9.9168	9.9142		
	0.0199	9.9122		
	9.9119	9.9992		
	<b>1.1</b> 195	6.0148		
	8.8349	0.0242		

Appendix VIII The initial dry weights (g) of <u>Agrostis</u> <u>canina</u> used in experiments 1 & 2.

Race	Experim	ent 1	Exper:	iment 2
	Whole	Shoot	Whole	Shoot
	Plant		Plant	
1	9.9136	0.0111	9.9263	9.9295
	0.0126	9.0109	9.9117	9.9192
	0.0152	0.0105	₽.9169	9.0145
	9.9199	*		
	9.9180			
	0.0232			
2	9.9175	0.9119	9.0213	0.0167
	9.0139	6.9997	0.0216	<b>#.</b> #188
	4.4247		0.0380	8.0306
	<b>9.91</b> 66	9.9124		
	<b>1.</b> 175	9.9140		
	9.9398	9.0245		
3	4.4489	9.9978		
	9.9168	9.9142		
	6.0199	9.9122		
	9.9119	9.9992		
	<b>9.9</b> 195	<b>9.9</b> 148		
		9.9242		

Appendix VIII The initial dry weights (g) of <u>Agrostis</u> <u>canina</u> used in experiments 1 & 2.

Dry weights (g) of Agrostig casing from Growth Experiments 1

See Cha Experi

TEVEIS OF NO		and races of	1							
		Uhali	e plant	harves	1 1	Uhol	e plant	harves	1 2	
Level	Level	Replicate	-	2	ra	Replicate	-	3	-	
5	IN	Race				Race				
1	-	1	++29-9	0.6582	E114.	-	1586	0.0830	0.0285	
		2	6.0213	1450.0	0.0412	2	9889.	0.4505	10472	
		m	5619.0	0.0312	6.0213	-	- 353	5444.4	1628.4	
	2	-	0.0766	0.0282	0.0356	-	1274	0.0557	0.0528	
		2	0.0375	0.0264	ı	2	1190	0.0328	1.1454	
		m	6.0144	6116.0	ı	F	721	25	9.9214	
2	-	-	0.0185	0.0206	0.0214	-	10/1	.654	0.0163	
		2	0.0315	9.9262	1010.0	2	1267	E6E0.0	0.0219	
		2	0.0245	0.6329	8418.0	F	572	5990-0	0.1415	
	2	-	7750.0	1150.0	0.0341	-	1481	5620	0.1132	
		2	4020.0	9.9321		2	1614	- 574	9449	
		m	0.0129	61145	0.0274	2	9010-0	0259	0.0210	
-	-	-	9.0142	9.0397	0.0179	-	1766	1212	9.0309	
		2	9210.0	9.9348	.0372	2	6E60 .	6986	0.0553	
		m	1111-0	E110"0	EE 10.0	~	9410.4	0356	0.0508	
	2	-	00E4.0	9929.0	6. 8472	-	1654	0.087.6	11/1-0	
		2	6.0343	6.0195	2450.0	2	0960.0		0.0427	
		m	4210.0	0.0233	1611.0	-	482	19482	0.0390	
2	-	-	0.0328	0.0231	.1213	-	1464.4	- 276	1584.4	
		2	0.0189	1816.4	1260.0	2	2680	. 578	9.9412	
•		m	0.024B	0.0245	1244	M (	0359	1384	6.8924	
	2	-	1020-0	0.0277	0.0253	-	.2029	5498-8	1170.0	
		2	0.0288	0.0395	8485	2 (	9229	181.4	0.0012	
		M	0.0200	0.0213	•	m	8448			

- replicate died

(

加快的问题是一些问题

-----

的现在分词 化合同 化合同 化合同 化合同

 
 2
 0.741
 0.447

 3
 0.322
 0.647

 4
 0.246
 0.489

 5
 0.515
 0.294

 6
 0.515
 0.294

 6
 0.515
 0.294

 6
 0.515
 0.294

 6
 0.515
 0.294

 6
 0.515
 0.229

 9
 0.647
 0.229

 9
 0.635
 0.375

 9
 0.1227
 0.511

 9
 0.353
 0.499

 9
 0.341
 0.238

 9
 0.353
 0.499

 9
 0.353
 0.499

 9
 0.341
 0.238

 9
 0.353
 0.499

 9
 0.353
 0.499

 9
 0.353
 0.499

 9
 0.353
 0.499

 9
 0.351
 0.769

 9
 0.357
 0.752

 9
 0.357
 0.752

 9
 0.357
 0.752
...... 0.0476 6.1664 0.0520 ..... ..... Replicate Race .0182 .0275 .0275 .0276 .0276 .0319 .0335 1150.0 . 0468 .0345 m ..... ..... 9.0152 0.0205 9.0309 .0120 .0281 .0212 .6284 0.0324 0.0391 .0187 .0177 0.0367 0.0310 0.0226 9110-1 .0169 0.0195 .6223 .0279 .0279 ..... .0305 .0323 .0205 8918-.0246 .0249 .0321 2 4110-1 .0268 9.9468 1110.0 .0177 E619.0 1210. .0283 +2+0.0 .0232 4210.0 Replicate Race Level Ĩ Level -Level ¥.

. 8773

.19202

24E0. .0473 .......

...25

1120.0

N

-

Shoot harvest 2

Shoot harvest 1

Experiment 1

- replicate died ..............

Experiment 2			Uhole	e plant	weight		Sheo	t veigh	
Solution	Level	Replicate	-	2	m	Replicate	-	~	
Type	IN	Race				Race			
-	-	-	0.1568	.1336	9.9460	-	6.1288	0.1079	0.049
		2	0.0552	0.0775	9.1242	2	9.9485	1890-0	1.141
	2	-		0.0435	0.1834	-	0.6399	0.0375	9.155
		2	0.1188	0.0739	0.0832	2	6.9977	0.0617	9.949
2	-	-	9.6316	9.9484	•	-	6.0293	1540.0	
		2	0.0512	0.0575	0.0385	2	9.0447	0.0522	0.0354
	2	-	0.9936	0.0578	9.9846	-	0.0759	1240.0	673
	•	2	0.0598		1.1504	2	0.0525	0.0555	0.044

.

-----

Race	Exp.No.	к	Na	Ca	Ħg	Fe	Нn	Ni	Za
1	1	13799	984	8499	643	322	5#5	<50	 92
	1	15100	483	691	898	263	-449	<59	94
	2	13300	445	6525	574	334	367	<b>&lt;5</b>	61
2	1	16699	364	5770	584	146	25#	<5₽	52
	1	16599	355	4629	514	166	332	<50	47
	2	15466	424	4894	485	347	235	<58	54
3	t	166##	1221	6944	1070	189	289	<50	45
	1	18699	466	5540	699	163	163	<59	64

Appendix IX The initial metal concentrations (ug g-1) of the tillers of <u>Agrostis</u> <u>canina</u> used in experiments 1 & 2. See Chapter 7 for races of <u>A. canina</u>.

Metal concentrations (ug g-1) in <u>Agrostis</u> canina from Browth

Experiments 1.

- replicate died

6N			Papilinata			-	Replaces	-	2	
	5	NI	Race	•	4	•	Race		•	
-	-	1	-	4582	1282	2961	-	1828	5289	4999
			2	4942	1362	3387	2	2595	3237	2427
		÷	F	5628	9359	1830	F	3229	4323	2165
		2	-	2192	3152	4845	-	2642	2146	2010
			2	2778	5269	•	2	2764	5276	1744
			m	2070	1974	•	F	2801	5678	ESE
	2	-	-	3464	1738	1993	-	1724	2810	3295
			2	2337	2876	1448	2	1596	5876	9285
			m	2142	6003	1721		2843	3517	1922
		2	-	2108	<b>EE 6</b>	3219	-	679	2592	1950
			2	5564	1702	1411	2	6169	2886	4240
			••	3099	9889	3454	1	10115	3255	5220
2	-	-	-	4269	1617	543	-	3276	3625	11484
			2	6112	3198	3581	2	5711	4257	4246
			m	1316	6894	2846	m	1376	7547	2543
		2	-	2982	4644	5640	-	3898	2324	3148
			2	5242	6072	5075	2	9226	9715	3438
			E	1676	619	4687	m	4716	8637	9720
	2	-	-	3772	3776	5672	-	8418	5140	3310
			2	3648	1255	1005	2	2686	10373	6725
			••	2613	3454	2830	F	2152	E969	2341
		7	-	2938	2811	4287	-	2719	1844	2911
			2	3234	2259	8997	2	6225	4254	2071
			m	3449	9194	•	F	1231	2797	9261

- replicate died
| I WHAT IAd |   |    | Renticate | I 1  | C uots | I 1sav | Replicate |      | 2    |       |
|------------|---|----|-----------|------|--------|--------|-----------|------|------|-------|
| Mg         | 5 | IN | Race      | •    | •      | •      | Race      | • •  |      |       |
| -          | - | -  | -         | 6622 | E664   | 6662   | -         | 6744 | 3837 | 5471  |
|            |   |    | 2         | 5577 | 4192   | 4058   | 2         | 3875 | 2962 | 3419  |
|            |   |    | F         | 6286 | 9166   | 2135   | m         | 4554 | 2741 | 2616  |
|            |   | 2  | -         | 4145 | 6667   | 5461   | -         | 5283 | 4395 | 4549  |
|            |   |    | 2         | 3681 | 5549   |        | 2         | 2841 | 3995 | 358   |
|            |   |    | m         | 4694 | 6230   |        | 8         | 3167 | 6443 | 4581  |
|            | 2 | -  | -         | 6762 | 6752   | 5669   | -         | 2847 | 2985 | 3359  |
|            |   |    | 2         | 4231 | 3926   | 3636   | 2         | 2341 | 3135 | 2724  |
|            |   |    | F         | 6477 | 5962   | 4799   | m         | 2275 | 1688 | 2634  |
|            |   | 2  | -         | 4786 | 4969   | 4023   | -         | 3040 | 3619 | 3250  |
|            |   |    | 2         | 3253 | 4256   | 4273   | 2         | 2124 | 2254 | 3300  |
|            |   |    | P         | 6921 | 5292   | 4928   | m         | 4251 | 4410 | 1709  |
| 2          | - | -  | -         | 8437 | 5549   | 1795   | -         | 5187 | 6521 | 6716  |
|            |   |    | 2         | 4723 | 4961   | 1513   | 2         | 4679 | 3819 | 3829  |
|            |   |    | F         | 6862 | 4418   | 1371   | m         | 3369 | 3026 | 57.08 |
|            |   | 2  | -         | 5756 | 5147   | 4935   | -         | 6564 | 4499 | 4744  |
|            |   |    | 2         | 4727 | 5295   | 4821   | 2         | 2011 | 4613 | 3405  |
|            |   |    | m         | 1191 | 1747   | 4980   | m         | 6716 | 5465 | 2062  |
|            | 2 | -  | -         | 3977 | 5664   | 4705   | -         | 4365 | 3747 | 3492  |
|            |   |    | 2         | 5410 | 6169   | 5384   | 2         | 3196 | 3374 | 3199  |
|            |   |    | F         | 4828 | 5829   | 5129   | -         | 5329 | 4655 | 3557  |
|            |   | 2  | -         | 4464 | 4999   | 6864   | -         | 3824 | 4245 | 3627  |
|            |   |    | 2         | 3827 | 3622   | 3807   | 2         | 3188 | 3802 | 2685  |
|            |   |    | P         | 5101 | 5633   |        | •         | 3222 | 4478 | 4139  |

I

			unisauges	Concent		I TRAA.INI					1
			Replicate	-	2	F	Replicate	-	2	-	
Ma	Ca	NI	Race				Race				
	-	-	-	3415	3524	2632	-	4521	3802	6057	
			2	4377	2198	4242	2	4752	3966	3378	
			m	4437	5641	1586	F	3892	3435	2297	
		2	-	4737	3786	5258	-	4166	4863	4867	
			2	2770	5269		2	3886	4505	3856	
			m	3025	1974		m	3898	5569	4712	
	2	-	-	3464	2005	3552	-	4652	1961	4234	
			2	2660	4203	2520	~	3405	4336	5942	
			F	2856	4749	2383		5273	5253	3845	
		2	-	4669	4105	5506	-	2665	6504	6710	
			2	4884	2778	2195 .	2	5098	5260	2700	
			<b>F</b>	3396	6980	3454	F	1109	3675	3642	
2	-	-	-	1830	1470	1415	-	1729	2423	2619	• •
			2	926	1230	1194	2	1659	1641	1516	•
			m	946	1077	1916	•	1815	196	1758	
		2	-	1778	2554	6121	-	2913	1743	2648	
			2	1685	1836	1160	2	1874	2168	1935	
			F	416	1220	976		2179	1916	2211	
	2	-	-	2050	2213	1865	-	2924	2878	2499	
			2	1524	1042	1424	2	2379	1538	1602	
			m	1363	1727	1768		2021	1796	2110	
		2	-	2765	2510	1837	-	2934	3382	2379	
			2	1617	1324	1846	2	2083	2831	2264	
			P	2135	1554		-	2441	2566	2663	

I

			Iron concent	tration	harvest	-	Iron conces	tration	harvest	
			Replicate	-	2	m	Replicate	-	2	2
	5	IN	Race				Race			
-	-	-	-	167	160	493	-	96	10	86
			2	141	162	128	2	135	56	2
			m		256	244	m	83	116	128
		2	-	153	315	162	-	102	15	23
			2	219	224		2	26	83	92
			m	159	219	•	•	18	1.69	131
	2	-	-	121	134	273	-		88	16
			2	191	221	72	2	106	133	124
			M	204	179	137	-	201	44	12
		2	-	131	53	339	-	19	44	23
			2	189	86	2.	2	142	100	121
			••	207	225	102	•	220	105	243
~	-	-	-	602	220		-	23	54	611
			2	•	82	23	2	99	26	193
			•	•	215	203	F	205	142	108
		2	-	46	11		-	131	99	99
			2	44	11	72	2	26	122	86
			•	76	122	195	F	179		194
	7	-	-	82	130	129	-		72	33
			2	152	149	178	2	61	183	53
			m	227	305	118	m	103	23	12
		2	-	28		122	-	62	-	44
			2	108	82	11	2		67	91
				144	259	•	1	130	142	154

..

•

- replicate died

i

Hg Ca Ni Replicate Race 1 Race 23 24 2 24 2 24 2 24 2 24 2 24 2 24 2 2	-	M	Replicate	-	2	m
Hg Ca Ni Race						
4 3 3 3 3 3 7 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Race			
47.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	425 539	427	-	592	451	528
4 3 3 3 3 3 4 4 5 5 7 4 4 5 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	353 351	243	2	418	318	313
2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	444 32(	232	F	414	243	281
22 23 24 24 24 24 24 24 24 24 24 24 24 24 24	634 35	639	-	345	521	209
2 1 3 25 37 37 38 38 39 39 39 39 39 39 39 39 39 39 39 39 39	241 38	•	2	378	382	494
2 1 51 32 37 32 33 37 33 34 34 34 34 34 34 34 34 34 34 34 34	255 37:	•	F	284	181	484
2 22	512 49:	382	-	469	125	614
2 23 3 49	379 33:	389	2	184	253	297
2 1 51 27 3 49	286 22	278		331	249	370
3 49	512 53:	644	-	622	822	297
3 49	273 34	361	2	382	586	474
	496 40	345	F	368	462	6iZ,
2 1 1 1 61	610 45	519	-	510	575	271
2 35	352 32	216	2	326	39.0	432
3 16	169 19	427	•	264 1	221	411
2 1 46	468 73	356	-	206	438	484
2 38	384 431	478	2	375	177	392
3 22	229 391	195	m	1 472	366	374
2 1 1 35	353 35:	177	-	484	210	157
2 36	305 38	326	2	166 1	248	=
3 43	432 34	307	m	1 577	447	367
2 1 68	685 41	380	-	301	772	151
2 39	366 35	392	2	192 1	210	153
3 38	388 28	•	M	319	450	132

!

I THANTIACK			ULLAS LONG	110.110.0		- 153	RICKel CONC	centratio	A harv	est 2
			Replicate	-	2	•	Replicate	-	2	-
6#	c	IN	Race				Race			
-	-	-	-	83	5	164	-	96	20	86
			2	111	81	44	2	101	26	42
			m	•	•	•	m	83	11	19
		2	-	•	•	-	-	•	•	•
			2	-	•	•	2			•
			m	•	•	•	-	•	-	-
	2	-	-	•	134	137	-		88	67
			2	18	==	72	2	196	133	124
			m	•		•	F	103	46	142
		2	-	•	•	•	-	•	•	
			2	•	•	•	2	•	•	•
			m	-	•	•	F	•		
2	-	-	-	203	147	•	-	1.99	118	209
			2	•	82	22	2	120	65	-
			m	•	•	•		137	142	1.68
		3	-	•	•	•	-	•		•
			2	•	•	•	2	•	•	
			•	•	•	•	•	•	•	
	2	-	-	82	130	129	-	240	181	145
			~	-	•	68	2	364	92	187
			m	•	102	-	•	157	147	134
		3	-	•	-	-	-		•	•
			2	•	-	-	2	•		•
			•	-	•		•	•	•	•

eriment 1			Replicat	centration e 1	harvest 2	- "	Zinc concer Replicate	ntration 1	harvest	
¥9	5	IN	Rac				Race			
-	-	-		1 83	53	66	-	8	44	~
				2 85	23	11	2	12	-	-
				101 2	128	23	F	83	58	5
		2		1 73	105	18	-	112	41	69
				2 66			~	89	102	19
				111 8			F	5	76	92
	2	-		1 136		82	-	52	++	52
				2 81	166	65	2	14	23	62
				3 112	125	29	F	4	52	12
		2		1 98	84	63	-	12	84	72
				2 66	63	5	2	5	.,	66
				3 83	113	142	m	66	46	
2	-	-		1 122	23	29	-	=	55	64
				2 74	57	12	2	39	42	36
				3 132	1.68	112	m	TE		Eŧ
		2		1 103	11	22	-		.,	49
				2 122	83	38	2	69	67	56
				3 167	61	117	F	-	51	64
	2	-		1 49	78	11	-	8	36	36
				2 46	••	8	2	33	44	17
				3 45		33	m	42	15	1
		2		1 81		=	-	44	89	65
				2 86	62	11	2	23	14	9
				3 72	117			-	42	

- replicate died

Experiment 2 The metal concentrations in Agrostis canina (ug g-1).

See Chapter 7 for the levels of the variables and the races of <u>A</u>. <u>canina</u>.

Solution Type L	Ni evel	Race	Repli cate	K	Na	Ca	Яg	Fe	Ħn	Ni	Zn
1	1	1	1	39799	134#	3170	5334	58	371	78	114
			2	31444	924	3479	4568	69	556	92	111
			3	18699	2230	4779	3630	124	353	124	74
		2	1	22199	3240	2940	3845	193	273	1#3	72
			2	24699	2319	3980	3654	147	364	73	81
			3	32299	1920	4989	3850	98	374	74	98
	2	1	1	23299	1250	3510	3479	188	294	9	88
			2	16999	4340	5600	4570	299	267	1	195
			3	25400	9340	396	4586	64	443		126
		2	1	31799	2289	3715	4379	1#2	397		128
			2	30000	2750	3440	4499	121	4#1	9	121
			3	24855	2779	3280	3884	144	331		96
2	1	1	1	34744	2640	4446	3114	85	623	254	51
	-		2	27300	1680	4994	3100	58	754	464	76
			3	-	-		-		-	-	-
		2	1	28566	3676	3366	2326	168	434	274	45
		-	2	30200	3690	4128	2428	144	493	335	43
			3	24844	4310	2824	2224	141	445	212	47
	2	1	1	26899	1280	4318	3848	99	451	a	43
	-	•	,	23344	1594	4614	3144	53	949	å	85
			3	25644	1568	3784	3324	74	724		74
		2	1	21466	2944	3716	1794	95	433	a	57
		-	,	29744	2664	3294	2454	94	477	4	54
			7	25444	2944	2944	1954	171	172	a	57

- replicate died

## APPENDIX X.

The TWINSPAN species x stands vegetation classification table (which includes the 100 most common species) is in the back pocket of the thesis. The species names are abbreviations of those in Appendix II.

## APPENDIX XI

The plot of the quadrats (n=283) on the first two axes of the DECORANA vegetation ordination, by their class numbers, is in the back pocket of the thesis. Axis I is the horizontal axis, Axis II the vertical.

The vegetation classes are outlined to help show their location (with a few outlying points in some classes not included in the outlines, but individually ringed). See Chapter 2.





Appendix X

Class:	<b>5</b> 2 111111122222222 122 17334500000000000000000000000000000000000	6	<b>7</b> 22 11122222222222222 22	<b>8</b>	<b>9</b> 11223 211111211111 12	<b>10</b>
	792408123456790234551601144	6235678961123457891465	poo/01//22233333333666666///66/834 11 #695#4#357914567891234523728159#312	266///788811523 522291128999999 615278906035560 312318908045679	945/919999999999999999999999999999999999	2671111111291188999 22773 3741234589026712134917563
30 POLY VULG 27 PLAN LANC 32 PRIM VULG 33 PRUM VULG 34 RANU ACRI 49 TRIF REPE 59 HOLC LANA	1	1		11	1 3 3 21 342 21 3 1 133 13 33 1 254445 4 23	111 11 3222 22314 234121112 2232133 3 1 2 1
70 CARE PULI 70 CARE PULI 71 ERIO ANGU 73 JUNC ACUT 82 BRAC RIVU	1	1		4 2 41	22 3 1 32333233232222 2 1 33 3 3 3 2 4 3	3 44355445415412422 4 15
25 PEDI SYLV 64 CARE BINE 83 BREU CHRY 10 DACT MACU	2		1 2	1 1 1	1323 22 2 122 33 1 33 1 11	1 23 122 1 223 2 3241 2 13 1
107 PLEU PURP 122 SPHA SPP 21 LOTU CORN 44 SUCC PRAT	2			3221 1 1	4 1	2 42 3 3 22 31313223112 1 15
100 HYLO SPLE 112 PSEU PURU	1		1 1	5221	333333 3224332 3	3345 323232421211 1 211
13 ERIC CINE 14 ERIC TETR 24 NART OSSI 26 PING VULG 28 SCH0 NICP	1 2 1		1 3 32 1 1 1 1 21	4 42421443 1 1 2 1 34 2 322 23334431 21 3 1 11 1 1	25         2         44           1         241         422344         2           1         4         12         3         4         3         3           1         1         1         1         1         1         1	1 4 4445544 4 1 2 1
79 TRIC CESP 17 HYPE PULC 60 HOLI CAER 26 LINU CATH		3 1	1 1 43 1 5 4 542 1 1 21 314243133342533213 123 1 1 11 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} -54 & 33 \\ 3 & 2 & 55 \\ 1 & 11 \\ 332333425555555555555555555555555555555$	3 4 3 2 2 1 1 223 11 33332 1 1 44555555555555544 342 11 2 11 1
3 ANTH VULN 4 AREN NORV 5 ARNE NARI 8 CHER SEDO	3 1	i	1 1 2 111 2 11 1 1 11 11 12 11 1 1 433 54 3 2 1 23231 1112	3 2 3 12222 11 44322 1 33 1	1 2 1 5	234 1
39 SAXI OPPO 48 TOFI PUSI 66 CARE DIOI 86 CAMP STEL 81 BLIN ACUT	2		$\begin{array}{c} 2 \\ 422 \\ 1 \\ 21 \\ 1 \\ 211 \\ 1 \\ 211 \\ 1 \\ 211 \\ 1 \\ $	1 1 222	1 2	2
18 JUNI COMM 37 RUBU SAXA 134 ANTH JULA 23 LYCU SELA	3 1 4 3 2 33 33433 3 4			132	3	21
29 POLY SERP 95 DIPL ALBI 19 LEON AUTU 46 THAL ALPI 68 CARE ELAC	1 11 1 2 21 1 11 1 2 21	1		3 1 1 2 1	11 2 1 11 1 1 4321 14 2 2 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
7 CALL VULG 41 SELA SELA 43 SOLI VIRG	2 55545544435444425441455555 1 2 1	5 24 1354 3 4 1 1 3 1 1	232         32233333222         1553         44           41124         2         1         2344         2         23         224         12           1         12         1         12122         1         1         1         22         11           122112         112221         1         1         22         11	33433333         3         2           4245554242414         344         5555325344           31121         2212         11         21         111         211           21         222         13         1         12         1	11         34443344334         43           44         423435         1233433         15555           1         31         1         2         21           11211         1         2         2         1	5525443 23544335534 245 5215453555544555555555554445 2 1 211221 43131 3233231 211 231

88 CAMP FLEX

Appendix X

Class:	5	6	7		8	9	10	11	12
	2 1111111122222222 122 17334599999999999999991333593 2 29246912345(20022455)(411444)2	222 23333334344444444777 5	22 1112222222222222222 5666781772225555555666666777	22 667834 112667777886	11 21113 11 11523 5222911289999999	1223 211111211111 12 45791999999989999154326	1111111121122222 2 571111111291188999 22773	3333 13333 1222 111 999998929991555684333256244	1111111 11111111111 112 1122222222111122 2333333 4488888888945533444444544458888
34 POLY UILG	//2400/23430//923433100114402	030/070112343/871403 <b>8</b>	107394933/71436/891234523/	2815793126152789962	35568 31231899894367991	128861251236854579129837	/41234589026712134917567	33479988256867987823551344918	341245789 35123567899734361234569926793412
27 PLAN LANC						3 21 342	111         11         3222           22314         234121112	1 1	Contraction of the
33 PRUN VULG						21	2232133 3 1 2		1 1 2 1 1 2 2
49 TRIF REPE						133 13 1 33 1	1	4	- Contract - Proved
59 HOLC LANA 67 CARE ECHI						254445 4 23			1
70 CARE PULI 71 ERIO ANGU	1 1			4 2	41	1 32333233232222 3	44355445415412422 4 15	4331 3	23 34
73 JUNC ACUT 82 BRAC RIVI						2 4 31		2	and the second second
25 PEDI SYLV			1			1323 22 2 122 33	5 2 1	2 11 1 2	11 3 22 1 2211 3 3 22
83 BREU CHRY	2		1.1	2 1		33 1 11	23 122 223 2 3241 2 13	1	232 3 3 4 32 1 213 4 12 23
103 ISOT NYOS					1 1		1	1 21	312 1 1 113 2 12 4
122 SPHA SPP	2					5	2	253 2	1 22123532 5 4 1 4 5125 25 244
44 SUCC PRAT	1			3221	1 1 1	4 1	42 3 22 31313223112 1 12	323 41234323111111123	1 113332 31 22 12224241221131 312233232
100 HYLO SPLE 112 PSEU PURU	1		1 1			333333 3224332 33	45 323232421211 1 211	1	2 1 1
13 ERIC CINE 14 ERIC TETR	4				4 4242144325	2 2 44	1 4 4445544 4	413 244343434 2445544 55 3244332444552 143 4 2	4 312 554 344 1353 4 142152454555
24 NART OSSI 26 PING VULG	1 2 1		13	32	2 322 23334431 21 3 1	4 12 3 4 3 3	1 2 1	354324 43 2 44535524 13 21	4 52 5 21454 4 45 5 4534 4 4 4 4
78 SCHO NIGR 79 TRIC CESP		3	1 1 43	2	3	- 54 33		5 5 43	
17 HYPE PULC			1			1 11	1 1 223 11 33332 1 1	342 3 3444 44 35 4 5555442 11222 221 2 1 1	1 2 2 2
20 LINU CATH	7	1	21 314243133342333213	1 11 1 1 1	23312 22544322222134233	1 1 1 2	45555555555555544 342 11 2 11 1	2222 5454444454555154 545344	5545545 555423 243255554435545525555555
3 ANTH VULN			2	1 3 2 3	122221	2 1	234 1	11	
5 ARME MARI		1	11 12 11 1 1	1 11 133 54 3 44322	1 33 1	1 5	1	1 1 1	Participant and participant of
39 SAXI OPPO			2 1 23231 1112 2	1 1		1			
66 CARE DIOI			422	22 3 34	222	1 2		2 1	
BE CAMP STEL BI BLIN ACUT	2		1 21 1 211 11	3 3 11 1	1 1	3	2 21	12 111	
18 JUNI COMM 37 Rubu Saxa	3 1 4 3 2 33 33433 3					3			
34 ANTH JULA 23 LYCO SELA	4 1			132			1.1	1 1 12	11 224 4312 1
29 POLY SERP 95 BIPL ALBI	21 1 1 11 1 2 2111	1	1	1 3	1 1	11 1 1 4321	2 1 1	222122 1	12121 13211 11 2 3 22 2333 1 2112 2 1 2452 1 5 1452 2
19 LEON AUTU 46 THAL ALPI	2		1	32 2		2 2 45	12 31 42	1	2 3 4 20
48 CARE FLAC 7 CALL VULG	2 3	24 1354 3 4 1 1	232 32233333222 41124 2 1 2344 2 23	1553 4453455534343	3 3 2 1 12414 344 555553253444	1 34443344334 43 5	525443 23544335534 245	3 3 33422 32433134	44435313 4 444443434 544334 44 24331331
41 SELA SELA 43 SOLI VIRG	1 2 1 3	1	1 12 1 12122 1 11	1 22 1131121 2212	11 21 111 211	1 31 1 2 212	1 211221 43131		2112 2
88 CAMP FLEX	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		122112 112221 1	21 222	1 12 1		3233231 211 231	1 122 11 132 2123	24 12 1

<b>7</b> 1112222222222222222222222222222222222	<b>8 9</b> 11 21113 11223 21111121 3211523 5222\$1128999999\$457\$1999\$\$\$\$ 523556\$ 3123189\$\$	<b>10</b> 1111 12 111111121122222 2 ###15432671111111291188999 227739 5791 2#83741234589#267121349175673	<b>11</b> 3333 13333 1222 111: 000089200015556843332562444 347998825606790782355134496	<b>12</b> 1111111         1111111111111         1122222222111122         1           23333333         44888888888945533444444544458888888666         1         1           841245789         351235678997343612345699267934123464         1         1	<b>1 2</b> 11111111222111112 33333 66795556111555551 11111 89Ø82350124467983227024513	<b>34</b> 1111111122222 111111111 17778777722222277866666 1454236712345889 <b>9</b> 23715
	11 1 1 3 21 3 21 1 133 3 1	3     111     11     3222       42     22314     234121112       2232133     3       1     2	1	1	-	
4 2	41 1 254445 22 32333233 133 3 2 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4331 3 2	1 1 23 1 3432	3	
1 2 1	1 323 22 2 33	122 33 1 1 23 122 1 11 223 2 3241 2 13 1	2 11 1 2 1 1 21	11     3     22     1     2211     3     3     2222       232     3     3     4     32     3     1     1       1     213     4     12     23     2     2       312     1     1     113     2     12     12       4     1     1     113     2     12     12		1 9 9 9
3221	4 1 1 1 1 1222132 333333 3	2 5 42 3 3232342 3 22 31313223112 1 12 224332 3345 323232421211 1 211 2 1 1115 2 11	253 2 323 41234323111111123 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 11 1112 11 2	
1 3 32 1 1 1 1 21 1 11 1 1 43 1 5 4 542 7 455457	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 4 4445544 44 2 3 4 3 3 1 2 1 3 1 3 3 5	13         244343434         2445544         55           244332444552         143         4         2           54324         43         2         44535524         13         21           2         11         1         131         5         43	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 9 9 9 9 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 1 1 1 1 323312 225443222221342332333425555555 1 1 1 3 122221 2 1	55 3 4 3 2 2 1 1 223 11 33332 1 1 555: 554 445555555555555554 3422 2 11 2 11 1 234 1	342 3 3444 44 35 4 555544 11222 221 2 1 1 222 54544444545555154 545344 11	25555455 5454554554555455555555 1 2 2 1 5545545 555423 24325555443554552555555555 1 1		4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 33 1 1	5 1	1 I I I	2		
422 3 34 3 21 1 211 11 3 11 1		2 2 21	2 1 12 111 4			
1 1 3 1 3 2 2		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 12 222122 1 1212 212 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22111111
12         32233333222         1553         445345553434           11124         2         1         23         224         12         424535424           12         1         2122         1         11         22         11121         221           12         1         12122         1         11         1         22         1131121         221           122112         112221         1         21         22         21         21         22	43         3         2         11         3444334           412414         344         555553253444         423435         12334           2         11         21         11         31         1           3         1         12         1         121         1           1         1         1         1         1         1	133         43         5525443         23544335534         245           33         1555521545355555555555555555555555555555	3 3 33422 3243313 245443454 5455555555555555 2 12222121111 1213322 1 122 11 132 2123	44435313 4 444443434 544334 44 24331331244 54 54555 5455445433555544555 5555555555	31 13444444 4555 554555555 3 1 1 3121 1 31 21 11 11 1	4 444 33 33242 5 1

48 TOFI PUSI		22				
66 CARE DIOI 86 CAMP STEL		422 3 34	222	2 2	2 1	
B1 BLIN ACUT 18 JUNI COMM	3 1 4	1 21 1 211 11 3 11 1	1 1 3	21	12 111	)
37 RUBU SAXA 134 ANTH JULA	3 2 33 33433 3			1 - 1 - 1		
23 LYCO SELA 29 POLY SERP	1 1 1 21 1	1 132	. 1	11 2 1 2 1 1	1 1 12 222122 1 12121	11 <b>334 4413 1</b> 13211 11 2 3 22 2333
95 DIPL ALDI 19 LEON AUTU	1 11 1 2 2111	1 3 2 2	1 1 11	1 1 4321 1 11 14 12 31 42	1212 212 1 1 2112 2	1 2452 1 5 1452 2
46 THAL ALPI 68 CARE FLAC	2 2 3	11 1 1 232 32233333222 1553 445345553434	3 3 2 11	2 2 453 2 1 34443344334 43 5525443 23544335534 245	1 3 3 3 33422 3243313444435313 4	4   444443434 544334 44 243313
7 CALL VULG 41 SELA SELA	5554554443544442544145555555524 1354 3 4 1 1 1 2 1 3	41124         2         1         2344         2         23         224         12         424555424           1         12         1         12122         1         11         1         22         1131121         2212	<b>4</b> 2414 344 555553253444 42343 2 11 21 111 211 1 31	5 1233433 155552154535555455555555525444 1 2 212 1 211221 4313	52245443454 54555555555452555555452555 11 2 12222121111 1213322	5455445433555544555 55555554 2112
43 SOLI VIRG 88 CAMP FLEX	1 1	122112 112221 1 21 222	<b>3</b> 1 12 1 11211 1	1 2 3233231 211 231	1 122 11 132 2123	2 4 3 3 1 2
61 NARD STRI 94 DICR SCOP	1 24 1 1 1 2 13 1	3 34 3		33         54         544         454554         3343         24344         25         44           33         32         12         222         22         111	3 13 1 3 32 342332 555544455 1 13 3	3545543443455555443555555 4 53 323 2 1
9 COCH SPP 15 EUPH SPP	1 1 1	1 1 2 1 11111	11 111 1	1111 † 11           3         2         12111 2         221 1 1 2111	11 1 2211 1 2 1 3 1	1 1
53 VIOL RIVI 55 ANTH ODOR	11 11121 2212131321 112321 2 1 1 1			141132422 2143313342333223433333333333233 44424523432142214333334244443344322	22 11 1 22334234331112 1 32 1 3 113 14 2 122	32 32 22 32 1131 2
28 PLAN HARI 65 CARE DENI	14 14 44333 2313343434344424 22 322 3 01100 1 0 001 011 01	3 4 1344214 141 112321142243433435343344331 23111223223 3212221221111 14324234413331 1312	122222     22     1     11     1232222     11     4     1       2222     232312     2     111     1111     2	1 1 24 42 1 32433 44 331 11 1 3 3324	4 1 1 2 42 2 434531 5311 2 1 22333 1 11 1 3313 2223 3	2 4 3 22 21323 1 22
87 CAMP ATRO 114 RHAC ELLI					121311 12 2 2 2	4 12 5
47 THYN DRUC	2344 14 33433243334434341335535452221133344445343 33	1 1132 11343442 2344242112 323334223334313	<b>3</b> 31313 322 13242222223333 223	2 434 33 2332234231333335454455433	1 13132 2313333221332 224 12 12111 232232 444341544231322 43	21 3 4 2
80 ANDR SPP	21111121 111111 111 1 2	2 1 21 13111 3 121			1 1 1 1 1 1 2 3	2 1 2 1 2 4 1 2
108 PLEU SCHR	11			3 1 2	2	
119 RHYT SQUA		1 1 2 7 174121 144721		343 2132123		I 1111111 10188111198188811111
102 HYPN CUPR	1 1 1 33 124	1 3		4333333333333334355523332234224333124322	3 2 1 12 1 31 3 22451 3445	142 4 422 244 33131 234 1 133
129 CLAD UNCI	<u>11 1 1 1 1 2 2 223 2 1</u> <u>1131331144233425311255445431111221121114 21 35</u>	1 11121 1 121 1111 3 11121 1 3112 4413244534452	1 2 4211 1131344321124333 355		1 111113212 1 4 1 3	4 1 3 2 1 211 11 1 1244443343454555555555555555555555555555
54 AGRO SPP 58 FEST SPP	4321 3 32 314 32 54553444 32232423443232221 4 11232123221213221321 2424243523322243433244421123	13221312122 22 1 2322232 31331534345242323313 1221233242222232 31331534345242323313 31221233242222223332232122133 4 3244123324413	3214 22321222 24 1 212 2 1 3217 2222321212211111 12	151 32 2 122555554425533424323232243433 24 21 322 244344433341434 1323 244432		23333 43334 341 3 11332 1 3 34 1 43 22 2 21
12 ENPE SPP 115 RHAC FASC	4	3 1 13	4	4 2 21 1		2 1
116 RHAC HETE 57 Desc Flex	1 4324444244334443331334242343322 4 2	1 1	2 1	2 15 3 223 2		3 3 12 2 1
98 GRIN APOC 16 GALI SAXA			2	2		2
50 VACC NYRT 76 Luzu Camp		3	*		3 3	32
63 CARE BIGE 77 LUZU SYLV					2	
106 PLAG DENT 110 POLY CONN		2	1	1 2		
124 CETR ISLA 22 LYCO ALPI						3
51 VACC VITI 56 DESC CESP						No. of the second second
69 CARE PILU 111 POLY PILI	111	1			1	44
38 SALI HERB	2	100				
				19000000000000000000000000000000000000		
						······································

B

								yr 10					Sec. 2	C. F.C.						
48 TOFI 66 CARE	PUSI DIOI			42	2	22 3 34		Ι	222			1 2			2	1				
86 CAMP 81 BLIN	STEL	2		1 21	1 211	3 11 3 11	1	1		1	Z		2	21	12	111				
18 JUNI 37 RUBU	COMM	3 1 4 3 2 33 33433 3								3						4				
134 ANTH	JULA	1 4 1				·····	132			1				1 1	1 1	2			11 374	AA17 1
29 POLY 95 DIPL	SERP	21 1			1	1 3		1	· 1	11	11	2 1	2 1 1 11	1	12	222122 1 2 212 1	12121	13211_11	2 3 22	2333
19 LEON	AUTU			11	1	32	2				2	14	12 31 42	2 1		1	7		2432 1 3	1132
68 CARE	FLAC	23	3 2 4 1 7 5 4 7 4 1 1	232	322333333222	1553 445	345553434	43	3 2	11 53444 4734	3444334433	4 43 55	25443 23544 54575555455	335534 245	3 3 3	422 324331	3 3444435313	4 444443	434 544334	44 243313
41 SELA	SELA	1 2 1 3	3	1 12	1 12122	1 11 1 22 113	1121 2212	2 11	21 111	211 1 31	1 1	2 212	1 21122	43131	1 2 122221211	1 1213322	3004 04000	34334434	2112	333333334
43 SULI 88 CAMP	FLEX				-	1	21 222	3	1	1 11211		2	3233231 2	11 231	1 122 11 132	2123	2	2	2 4 3 3 1	2
61 NARD 94 DICR	STRI	1 24 1 2 13	1		3	34 3					33 54 544 33 32	45455	4 3343 24 222	344 25 44 3 22 111	13 1 3	32 342332	555544455 13 3	35455434 323	143455554435 2 1	55555 4 53
9 COCH 15 EUPH	SPP SPP	1 1 1		1	1	2	11111		11	111 1	3	2	1111 1 11 12111 2 22	1 1 2111	11 1 2211 1	213	1	1	1	
53 VIOL 55 ANTH	RIVI ODOR	11 11121 2212131321 112321 2	2 1 1 1	1 1 2	11 2	1 22 11	1 2222 2	1 1	11221	11 1	141132422 2 44424523432	1433133 1422143	42333223433 33334244443:	33333332332 344322	2 11 1 223;	4234331112 1 3 14 2	32 1 3 122	32	32 1131	22 32 2
28 PLAN 65 CARE	MARI DENI	14 14 44333 322	2313343434344424 223	3 4 13442 2311122322	14 141 11232 3 32122212211	1142243433435	343344331	122222	22 1 111232	222 11 4 1 11 1111 2 2	2 1	331	24 42 1 ; 11 1 3	3324	1 1 2 42	2 434531 53	11 223 3	3	2 4	1 22
87 CAMP 114 RHAC	ATRO Elli	21122 1 2 221 214 3 1	3 11	1		1 2 2 1	1 32	11 2	11	1 1 2				1 1	21311	12 2	2		4 12	5
2 ANTE 47 THYN	DIDI	2344	4 50221133344445343 33	1	2 1 1343442 23442	1 1 31 1	2 1433312	2 2	121312	12223121 11	1 2 434	2 2332	1 1 122	21113 3411	1 13132 231333	221332 224	222	21	1 1	
62 SIEG	DECU	1 1 31 4 1 12 2	1 2	2		3 2	2 3122		212 2	11	2		2 4	422 1 12		1 1	2	2 1	2	
52 VIOL	PALU	11	1 2	2		1 21 13111	3 121	ľ			7		11 11 1 1	21		2	2 3	1 2	• 1	
118 RHYT	LORE									1	3	4 3	2 232	2			4		1	
31 POTE	EREC	1 1 23 434	1 1 2 2 3 3		1 2 3	134121	144321	2 3	1 1 2121	2 1 2	343 213212 23443334334	3443454	5455455555444	4443324343	1 11232 33213444	<u>1</u> 444 43241342	3345445445	4443444	42455444435	4555444444
102 HYPN 74 JUNC	CUPR Squa	1 1 1 33 124	4			1 3		111		1	4333333333	3334355	523332234224	3331243223	2 1	2 1 31 3	22451 3445 24	142 4 42	22 244 33131 5	234 1 133 4
129 CLAD 117 RHAC	UNCI LANU	<u>11 1 1 1 1 2 2 223</u> 113133114423342531125544543	3 <u>2</u> 1 31111221121114 21 35:	3 1 121 1	1111 3 11121	1 1 3112 4413	11121 244534423	2 4211	1131344321	124333 3552	23	4 535	11 1 44 2 11 345	2 2211	1 111 444325454345555	113212 1 4 555454454455	3 343535555	4 1	<u>3 2 1 211</u> 343454555555	11 1 45555555531
54 AGRO 58 Fest	SPP SPP	4321 3 32 314 32 54553444 11232123221213221321 2424243	432232423443232221 4 523322243433244421123	13221312122 31221233242	22 1 2322232 2222233322321	31331534345 22133 4 3244	242323313 123324413	3214 333212	22321222 : 22223212122	24 1 212 2 1 11111 12	1151 32 2 12 24 21 322	2555554 2443444	25533424323 433341434 13	2322434335	1 2322232	32 553332232 4 1334343432	4231232534 32 3 22414	23333 43 34 1	<b>3334 341 3</b> <b>43 22 2</b>	11 <b>33</b> 2 1 2 21
12 EMPE 115 RHAC	SPP Fasc	2 1 222	4	3	1	13				4			2 21	4	0	1	2		2 1	
116 RHAC 57 DESC	HETE FLEX	1 432444424433444333133424234	43322 4 2	1		1	1	2		1	1	4	2 15	3 223 24	11 223	3 4 4	1 7	3 3	12 2	1 .
98 GRIM 16 GALI	APOC							-	2		2						3			
50 VACC	NYRT			3							ſ						3 3	3:	2	
63 CARE	BIGE																2			
196 PLAG	DENT											1								
124 CETR	ISLA					2								2						
51 VACC	VITI																	3		
56 DESC 69 CARE	PILU																1	44		1
111 POLY 1 ALCH	PILI ALPI	11	1				1										1			
38 SALI	HERB	2	a survey and																	
		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<b>.</b>			***********		0000	00000000000000000000000000000000000000		<b>1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6</b>	11111111	19996999999999999999999999999999999999	00000000000000000000000000000000000000	88888888888888888888888888888888888888				**********	11111111111111
		••••••••••••••••••••••••••••••••••••••	99999999999999999999999999999999999999	011111111111 10000000000	111111111111111 0000000000000000		111111111		111111111111				1111111111111	09000000000		111111111111		1111111		
		66666666666666666666666666666666666666	1 <b>6</b> 99999999999999999999991	000000000000		9991111111111 11199999991111	111111111	30000 80000	99999111111 91111999999		0111111111111 0000001111	10000000		1111111111	8989999999999999111 8989911111111444	1111111111111	00000000	******		J#####1111111
																******				

B1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1
			1
			-
3			
132 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 2	4	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1	22111111	1
	21 17444444	1	77040
4 2 1 2344 2 23 224 12 42455542442414 344 555553253444 423435 1233433 155552154535555555544452245443454 5455555555555	554555555 3	5	55242 i
122112       12222       1       12       1       1211       1       2       323231       211       231       1       12211       132       2123       2       32       32       21       32       32       21       32       32       21       32       32       21       32       32       21       32       32       21       32       32       21       32       32       32       21       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32	11 11 1	1	Í
3 34 3 33 54 544 454554 3343 24344 25 44 3 13 1 3 32 342332 555544455 3545543443455555443555554 534	4 22555 5	555 555 55555	í – í
	1 11274	4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23344432133123234	2	
14       14       11       12       12       13       14       1       2       4       1       2       4       1       2       4       1       2       4       1       1       2       4       1       1       2       4       1       1       2       4       1       1       2       4       1       1       2       4       1       1       2       4       1       3       3       3       3       1       1       2       4       1       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3<	4414 1 1	4 1233	1
	1 21	3	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 444444 3		5 1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 3		
	1 1	41 1 11	3
1 4 3 2 232 4 1	2 3	1 133112	( ) ( )
1 2 3 134121 144321 2 3 1 1 2121 2 1 2 23443334344345454555554444443324343 11232 33213444444 432413423545445445 4443444 424554444354555554444444444	44445555443234443	45554554545444 55223242353 2	44543345
2     24     22     54       1     11121     1     111113212     14     1     3     4     1     2     1     11	11 2111211 11	554 5435	122 3222
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	534555555555354544	55554534441311	55555555
222223332232122133 4 324412332441333212 2222321212211111 12 24 21 322 244344433341434 1323 2444323 12 2344 13343434343232 3 22414 34 1 43 22 2 21 2 1 5552445535	54445555554445554/ 21	4 4525544334 5	55555555
1 13 2 21 1 2 1 1 34 1 1 1 1 1 1 21	4 23 2 2		1
1333 2 1 1 4 2 15 3 223 24 11 2223 4 4 3 3 3 12 2 1 2 1314344544 2	44454545542	3 2 22 2	22 1 2 1
2 44243 3 3 32 3 452 4 1	334 51 43245 22343333	5432344553445 44443445454434	45535345 43523345
2 311	2	1 244 425355455	12 23 1 31555355
1		1533 3114 41	12 1
2 1 2	1	552454332	321 1 2 1
3 343 34	4 3333	3 1221 3 4 24 11 1	5 354
1 44 1 3 22 3111	33423 1222555454 34	<b>5 4 1 1 1 1 1 1 1 1 1 1</b>	2 2 33 2
1 3333 2 12 43543 4434	21221 3 323 4 442 113 23343	5	3 455 1
1 4	5444 1	1	i
	***********	11111111111111	1111111
		11111111111111	11111111
	88888888888888888888888888888888888888	1111111111111111111 1000099999999999999	11111111 11111111 00011111

Attention is drawn to the fact that the copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis and no information derived from it may be published without the author's prior written consent.