STUDIES ON THE STRUCTURE AND REACTIVITY OF

-26

BICYCLIC SYSTEMS

A Thesis presented for the Degree of

Doctor of Philosophy

in

The University of Stirling

Ъy

Robert Charles Glen

December 1981

Gorolustin: June 1982

IMAGING SERVICES NORTH

Boston Spa, Wetherby West Yorkshire, LS23 7BQ www.bl.uk

BEST COPY AVAILABLE.

TEXT IN ORIGINAL IS CLOSE TO THE EDGE OF THE PAGE

DEDICATION

To my Father and Mother

ACKNOWLEDGEMENTS

I am indebted to all the research and technical staff who have contributed to this work.

At Glaxo Group Research, Ware, Hertfordshire, I would like to thank the staff of the analytical research department. In particular, Dr. Trevor Cholerton (for running and interpretation of n.m.r. spectra) and Leslie Larkins (for running the g.l.c. experiments). My special thanks go to Dr. Derek Reynolds for his instruction and advice in Organic chemistry and Dr. R. F. Newton, my industrial supervisor, for stimulating discussions.

At Stirling University, I would like to thank Dr. F. G. Riddell for running the ¹³C n.m.r. spectra, Mr. Don Dance for running the mass spectra, and Chris Lilley for synthesising (29). This work would not have been possible without the instruction, advice and encouragement of my principal supervisor, Dr. Peter Murray-Rust. For all his efforts, I thank him sincerely.

I am grateful to Mrs. Joan Weber for typing the manuscript. I am indebted to the Science and Engineering Research Council and Glaxo Group Research, Ware, Ltd. for a C.A.S.E. award.

ABSTRACT

Factors controlling the regio- and stereoselectivity in small polycyclic molecules have been investigated by X-ray diffraction, reactions of model compounds and molecularmechanics calculations.

The bicyclo[3.2.0]heptene system was investigated in detail. The products on addition of HOBr were isolated and characterised. Similarly, the analogous <u>exo-</u> and <u>endo-</u>epoxides were synthesised and reacted with hydrobromic acid. Product ratios were determined by g.l.c. and confirmed by isolated yields.

The compounds displaying high selectivity have the possibility of a transannular 0...C=O interaction which could stabilise the transition state leading to the major product. Investigations of these interactions showed them to be a consequence of the molecular conformation. The energies involved are not sufficient to affect the product ratios.

One compound which displayed an enhanced 0...C=O interaction due to the presence of two chlorines vicinal to the carbonyl crystallised as a 1:1 mixture of ring and chain forms in a single crystal. This is the first example of ring-chain tautomers (or reactant and product of a chemical reaction) being isolated in a crystal lattice.

The ground state structures of seven compounds were determined by X-ray diffraction and the transition states were modelled by molecular-mechanics calculations.

The stereoselectivity was explained by steric congestion around the double bond.

Regioselectivity depends on the preferred conformation. From the available data (n.m.r., X-ray structures, molecular-mechanics) the <u>endo</u>-envelope conformer of the bicyclo[3.2.0] heptane system is preferred to the <u>exo</u>-twist conformer. Assuming an antiperiplanar arrangement of the reacting species, this preferred conformation explains the observed regioselectivity.

The <u>exo</u>-bromonium ions and epoxides display higher selectivity than their <u>endo</u> analogues. This has been explained by conformational and steric factors.

ii.

CONTENTS

			Page
<u>Chap</u>	ter l		
		Introduction	1
		References	13
Chap	ter 2	Synthesis and reactions of bicyclo[3.2.0]heptane derivatives	15
	2.1	Introduction	16
	2.2	The formation and reactivity of the bromonium ion	18
	2.3	The formation and reactivity of epoxides	21
	2.4	Synthesis of compounds of interest	28
	2.5	The reactions of synthetic intermediates and products	30
	2.6	Conformational analysis of bicyclo[3.2.0]heptan-6-one derivatives by n.m.r.	36
	2.7	Summary of results	41
	2.8	Experimental	43
	2.9	References	57
<u>Chapter 3</u>		X-Ray crystallography	60
	3.1	Introduction	62
	3.2	The geometry and conformation of compounds studied by X-ray diffraction	63
	3.2.2	L 2-(S)- <u>exo</u> -bromo-3-(S)- <u>endo-</u> hydroxybicyclo[3.2.0] heptan-6-one	63
	3.2.2	<pre>? 7,8-endo-epoxy-2-oxatricyclo- [3.3.0.04,9octan-3-one</pre>	67
	3.2.3	<pre>3 2,3-endo-epoxybicyclo[3.2.0] - heptan-6-one-p-nitrophenylhydrazone</pre>	70
	3.2.4	<pre>3-exo-methoxy-6,7-endo-epoxybicyclo- [3.2.0]octane</pre>	73
	3.2.5	<pre>5 spiro{5-exo-hydroxy-3-oxatricyclo- [5.1.1.0^{4,9}]nonan-8-one-2-1'(4',5'- exo-epoxybicyclo[3.2.0]heptane)}</pre>	77

3	.2.6	6- <u>endo</u> -methoxy-8- <u>trans</u> -N-methyl-N- p-toluenesulphonamide-2-oxabicyclo- [3.2.1] octan-2-one	81
3	8.2.7	2- <u>exo</u> -bromo-3- <u>endo</u> -hydroxy-7,7-dichloro- bicyclo[3.2.0]heptan-6-one	84
3	8.3	X-ray crystallography experimental	102
. 3	3.4	Appendix	
, ,		(A) Structure solution by the heavy atom method	118
		(B) Direct methods of phase determination	121
		(C) Anomalous dispersion	129
3	8.5	References	132
Chapte	<u>er 4</u>	An investigation of regio-chemical control by transannular 0C=O interactions	135
4	1.1	Introduction	136
4	1.2	Review	139
ц	1.3	Survey of 0C=O interactions involving 4-,5- and 6-membered rings	145
ц	. 4	Discussion	151
ц	∔.5	References	162
Chapte	er 5	Conformation and stereochemistry in bicyclo[3.2.0]heptane derivatives	16 ⁴
5	5.1	Introduction	16 <u>4</u>
5	5.2	The conformation of bicyclo- [3.2.0]heptanes	164
È	5.3	Stereo-selectivity	174
5	5.4	Regio-selectivity	178
A	Appen	dix A. Molecular Mechanics	186
· E	5.5	References	194

...

Appendix 1 X-ray Structural Data

Tables: bond lengths, bond angles, torsion angles, isotropic temperature factors, anisotropic temperature factors, structure factors.

197

INTRODUCTION

This project has been aimed at gaining a deeper understanding of the factors involved in the promotion of regio- and stereoselectivity in small polycyclic compounds.

Bicyclic and tricyclic ring systems have been investigated in which the conformation and substitution pattern in one ring can profoundly influence the chemical reactivity of neighbouring rings. Transannular interactions in these coupled ring systems offer unique opportunities in the control of reaction stereochemistry. The bicyclo[3.2.0]heptane ring system is particularly noteworthy in this respect.¹ The flexibility in stereochemical control is not seen in larger ring systems which are more flexible or in smaller ring systems which have more rigid conformations. Regio- and stereochemical control is especially important in natural product chemistry. The investigations undertaken here are particularly relevant to prostaglandin synthesis^{4-16,21,22}.

The natural prostaglandins are a family of hormone-like substances nominally described as oxidised derivatives of prostanoic acid characterised by a 5-membered ring with two side chains. In general they contain twenty carbon atoms in total^{2,3}. The wide range of biological activity and high potency exhibited by these compounds depends critically on their stereochemistry and this has stimulated pharmaceutical research into the synthesis of natural and analogous compounds⁴ using novel reactions with high stereochemical control.

A recent series of syntheses of prostaglandins

employing bicyclic and tricyclic intermediates utilises the inherent locked stereochemistry of such systems to define the regio- and stereospecificity of the syntheses $^{5-16,21,22}$. Central to this scheme is the regio- and stereochemical outcome of attack by various nucleophiles and electrophiles on derivatives of bicyclo[3.2.0]heptane $^{5-17}$.(1).

In particular, the addition of the elements HOBr to (1) gives the bromohydrin (2), a key synthon, in high yield via a regio- and stereoselective $process^{6,23}$.

The enantiomeric bromohydrins (3) and (4) may be obtained via a novel route involving yeast enzymes¹⁰. The enantiomer (3) can be converted to natural prostaglandins via the tricyclic ketone (5). The enantiomer (4) also gives natural prostaglandins via the epoxide (6) which is attacked regioselectivity by nucleophiles at C(2) <u>exo</u> to the cyclopentane ring.

The regio- and stereoselectivity of (1) is in direct contrast to that of (7), which, under similar reaction conditions, gives an isomeric mixture of products⁶.

Analogous non-selective opening of the lactone (8) proved to be a serious flaw in an otherwise useful route to prostaglandins¹⁸.

Several mechanisms have been invoked to explain the isomer ratios obtained in reactions of the type outlined above. In particular, the factors influencing the regio- and stereoselectivity observed on addition of the elements HOBr to (1) and its derivatives²⁰ in contrast to the non-selective reactions of (8) and analogous compounds under similar conditions have been investigated in detail and are reviewed below.

The initial step in bromohydrin formation from (1) is thought to be bromonium ion formation. It has been shown that in brominations in protic solvents involving N-bromoacetamide (NBA), bromonium ion formation is reversible and defines specificity¹⁹. Thus, formation of the <u>endo</u>-bromonium ion would appear to be a sterically disfavoured process due to the close proximity of the cyclobutane ring.

The marked preference for the formation of the <u>exo</u>rather than the <u>endo</u>-bromonium ions is illustrated by silver tetrafluoroborate-promoted conversion of (11) to (12) in 70% yield¹⁷. The unreactivity of the more accessible bromine atom in the 2-<u>exo</u> position of the ketone is due to the inability of the neighbouring bromine atom in the 3-<u>endo</u> position to form an <u>endo</u>-bromonium ion.

A number of possible transition states have been compared in a qualitative manner to explain the stereoselective bromonium ion opening of (10) and the analogous opening of the protonated epoxide of $(6)^{17,20}$. The cyclopentane ring was thought to exist preferentially in the <u>endo</u>-envelope conformation with the incipient 2-<u>exo</u> and 3-<u>endo</u> substituents <u>trans</u> orientated and coaxially disposed hence favouring the 2-<u>exo</u>-bromo-3-<u>endo</u>hydroxy product (the nucleophile being OH⁻ in this case). Nucleophilic attack occurs at C(3) on the <u>exo</u>-bromonium ion (10) and at C(2) on the protonated epoxide (13).

5.

In contrast, molecular models suggested that the lactone (7) was more flexible and could more easily flip from the <u>endo-</u> to the <u>exo-</u>conformations thus promoting formation of <u>endo-</u> and <u>exo-</u>bromonium ions in more equal proportions. Hence formation of the <u>exo-</u>bromonium ion followed by selective attack at C(7) via the transition state (14) would give rise to the lactone (15).

Similarly, the lactone (17) may be formed from the <u>endo</u>-bromonium ion via the transition state (16) in which nonbonded interactions are minimised (from models). The <u>endo</u>bromonium ion can also give rise to the minor product (19) via the transition state (18). This transition state has an unfavourable transannular interaction between the bromine atom and H-4<u>endo</u>.

The influence of substituents on the conformation and reactivity of the bicyclo[3.3.0] octanone system has been investigated. The <u>endo</u>-bromonium ions and protonated <u>exo</u>-epoxides derived from (7) are attacked by nucleophiles at C(6) and C(7). The regioselectivity of attack is dictated to some extent by the nature and configuration of substituents at C(4) (e.g. bromine)⁶. These substituents influence the stereochemical outcome of the reaction by raising the energy of some of the possible transition states. Unfavourable transannular steric interactions and the alignment of dipoles (C-Br and C=0) appear to be the major destabilising factors.

Similarly, electrophilic brominations of (1) and several derivatives of (1) have revealed (utilising coupling constant data from nuclear magnetic resonance studies) that substituents on C(2) and C(7) can exert control over the conformation of the system¹⁷. The analysis of these data appeared to show that 7,7-dichloro substituted bicyclo[3.2.0]hept-2-ene-6-one derivatives have a twist in the cyclobutane ring of ca. 20° , while the 2-bromobicyclo[3.2.0]heptan-6-ones have an essentially planar cyclobutane ring. Also, the sole or major contributing conformation of the bicyclic system in such derivatives appeared to be the <u>endo</u>-envelope conformation (20) in preference to the <u>exo</u>-envelope conformer (21)¹⁷. In this conformation, the bulky groups at C(2) and C(7) (in the series of derivatives of bicyclo[3.2.0]heptane considered here¹⁷) are <u>trans</u> diaxial and eclipsing of bonds is minimised.

However, in the 2,3-dibromo-7,7-dimethylbicyclo-[3.2.0]heptan-6-one derivative (23), transannular steric interactions appear to push the cyclopentane ring into the <u>exo</u>envelope conformation (23). Here, the steric factors present in less substituted rings are outweighed by the transannular interaction between the bulky <u>endo</u>-methyl substituent on C(7) and Br(3)endo (22).

The <u>endo</u>-envelope conformation (20) may be further stabilised under favourable conditions by intramolecular hydrogen-bonding²⁴.

The ketal (24), a key intermediate in prostaglandin synthesis²⁴ reacts stereospecifically with organocuprate reagents preferentially forming the 3-<u>endo</u>-hydroxy product: 2-<u>exo</u>-hydroxy product in the ratio of 4:1.

The hydroxy group at C(3) is intramolecularly hydrogen-bonded to the <u>endo</u>-ketal oxygen (from infra-red measurements; $\nu_{max} = 3500 \mp 30 \text{ cm}^{-1}$, independent of concentration)²⁴. This supports the limiting <u>endo</u>-conformation and subsequent <u>exo</u> nucleophilic attack at C(2). In the alternative <u>exo</u>-envelope (26), intramolecular hydrogen-bonding is geometrically impossible.

The alternative 2-<u>endo</u>-hydroxy product (27), exhibits no intramolecular hydrogen-bonding (free OH at $v = 3590-3620 \text{ cm}^{-1})^{24}$ indicating that the substituents at C(2) and C(3) are pseudoequatorial with the cyclopentane ring in the <u>endo</u>-conformation. The absence of intramolecular hydrogen-bonding implies the absence of the <u>exo</u>-conformation, which could conceivably display hydrogen-bonding between OH(2)<u>endo</u> and the <u>endo</u>-ketal oxygen (0...0 from models is ca. 2.4Å).

(28)

⁽²⁷⁾

The possible role that transannular electronic effects could play in the stabilisation of particular reaction products was intimated by the observation of ring-chain tautomerism in derivatives of (1). In (30), the substitution of hydrogen at C(7) by chlorine increases the electropositive nature of the carbonyl carbon C(6). This effect, coupled with the close proximity of a hydroxyl group on C(3) results in transannular nucleophilic attack by the hydroxyl group, directed upon C(6)¹⁷.

In carbon tetrachloride solution, a tautomeric mixture of (30a):(30b) is observed in the ratio of 4:1. Disubstitution at C(7) by chlorine to give (29) further increases the electrophilic nature of C(6), the ratio of chain to ring forms being reduced to 1.1:1 ((29a):(29b)) in carbon tetrachloride.

The ring chain tautomerism observed in (29) indicated the possibility of an additional factor in the conformational stability of similar compounds. This is the non-bonded interaction of the type described by Bürgi, Dunitz and Shefter²⁶. This type of interaction has previously been observed in the lactone $(8)^{27}$. X-ray structure analysis showed a close transannular 0...C=0 contact of 2.992(2)Å. The observed endo-twist conformation of the cyclopentane ring could conceivably be stabilised by this interaction.(...)

Many of the compounds described above have the possibility of such transannular interactions e.g. (4), and their observed stereoselective formation could be in part a consequence of the added stability conferred on the transition state and final product.

Three major approaches have been employed in the investigation of the regio- and stereochemical properties in compounds of the type described above.

Compounds of interest belonging to the bicyclo[3.2.0] heptane system have been synthesised and their reactions with various nucleophilic reagents have been accurately quantified. The major reaction steps have been simulated by model systems specifically designed to elucidate the major processes controlling the reactions overall.

X-ray structure analysis has been used extensively to obtain accurate information on the ground state geometries, conformation and flexibility of model compounds and by inference, the transition state geometries and their energies in reactions of interest. In particular, the role of transannular nucleophilic attack in regio- and stereoselective formation of particular products and subsequent stabilisation of their observed conformations has been investigated.

Molecular force-field calculations²⁸ have been employed to estimate the energies and conformations involved in the reaction pathways of interest. In these calculations it was hoped that information inaccessible by experimental methods would be available e.g. the energy and conformation of transition states.

REFERENCES

- 1. Ali, Mubarik S., Lee, T.V., Roberts, S.M., Synthesis, 1977, p.155.
- 2. Chemical Society Reviews, 1977, Vol.6, No. 4, p.489.
- 3. The Radiochemical Centre, Amersham, Technical Bulletin 76/5.
- 4. Caton, M.P., Tetrahedron, 1979, Vol.35, p.2705.
- Newton, R.F., Roberts, S.M., Tetrahedron Report, 1980, No. 90.
- 6. Ali, Mubarik S., Crossland, N.M., Lee, T.V., Roberts, S.M., Newton, R.F., J.Chem.Soc.Perkin 1, 1979, p.122.
- 7. Grieco, P.A., J.Org.Chem., 1972, 37, p.2363.
- Dimsdale, M.J., Newton, R.F., Rainey, D.K., Webb, C.F., Lee, T.V., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1977, p.716.
- Newton, R.F., Howard, C.C., Reynolds, D.P., Wadsworth, A.H., Crossland, N.M., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1978, p.662.
- Newton, R.F., Paton, J., Reynolds, D.P., Young, S., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1979, p.908.
- 11. Reynolds, D.P., Newton, R.F., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1979, p.1150.
- 12. Crossland, N.M., Roberts, S.M., Newton, R.F., J.Chem.Soc.Perkin 1, 1979, p.2397.
- Chapleo, C.B., Finch, M.A.W., Lee, T.V., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.676.
- 14. Finch, M.A.W., Lee, T.V., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.677.
- 15. Ali, Mubarik, S., Finch, M.A.W., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.679.

- 16. Chapleo, C.B., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.680.
- 17. Grudzinski, Z., Roberts, S.M., J.Chem.Soc., Perkin 1, 1975, p.1767.
- Corey, E.J., Nicolaou, K.C., Beames, D.J., Tetrahedron Letters, 1974, p.2439.
- 19. Ansselemi, C., Berti, G., Catelani, G., Lecce, L., Monti, L., Tetrahedron Letters, 1975, p.1215.
- 20. Berge, J.M., Roberts, S.M., Suschitzky, H., Kemp, J.E.G., J.Chem.Soc.Perkin 1, 1980, p.690.
- 21. Lee, T.V., Roberts, S.M., Dimsdale, M.J., Newton, R.F., Rainey, D.K., Webb, C.F., J.Chem.Soc.Perkin 1, 1978, p.1176.
- 22. Crossland, N.M., Roberts, S.M., Newton, R.F., Webb, C.F., J.Chem.Soc.Chem.Commun., 1978, p.660.
- 23. Roberts, S.M., J.Chem.Soc.Chem.Commun., 1974, p.948.
- 24. Cave, R.J., Howard, C.C., Klinkert, G., Newton, R.F., Reynolds, D.P., Wadsworth, A.H., Roberts, S.M., J.Chem.Soc.Perkin 1, 1979, p.2954.
- 25. Jackman, L.M., Sternhell, S., 'Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry', Pergamon, Oxford, 1979.
- 26. Bürgi, H.B., Dunitz, J.D., Shefter, E., Acta Cryst., 1974, B30, p.1517.
- 27. Murraý-Rust, P., Murray-Rust, J., Newton, R.F., Acta Cryst., 1979, B35, p.1918.
- Allinger, N.L., Advances in Physical Organic Chemistry, p.1976, 13, p.1.

CHAPTER 2

Contents

- 2.1 Introduction
- 2.2 The formation and reactivity of the bromonium ion
- 2.3 The formation and reactivity of epoxides
- 2.4 Synthesis of compounds of interest
- 2.5 The reactions of synthetic intermediates and products
- 2.6 Conformational analysis of bicyclo[3.2.0]heptan-6-one derivatives by n.m.r.
- 2.7 Summary of results
- 2.8 Experimental
- 2.9 References

2.1 Introduction

A number of recent syntheses of prostaglandins have made use of the regio- and stereo-selectivity inherent in the reactions of some small polycyclic molecules.^{1,14} In particular, the addition of the elements HOBr to (1) gives the bromohydrin (2) in high yield. Similarly opening of the epoxide (6) by nucleophile gives predominately the bromohydrin (2).

Previously, only those products of synthetic interest have been investigated.

A synthetic scheme has been devised to isolate and characterise those bromohydrins (32,33,34) not previously isolated from these reactions. The product ratios should indicate the ease of formation of each bromohydrin isomer and this can be correlated with subsequent molecular-mechanics calculations and X-ray structure determinations of relevant molecules.

Similarly, the synthesis and reactions of <u>exo</u>- and <u>endo</u>-epoxide derivatives of the bicyclo[3.2.0] system have not previously been investigated in detail. Here, a number of these have been synthesised and the product ratios obtained when these compounds are reacted with various nucleophiles have been quantified.

Also, to further elucidate the nature of the bromonium ion intermediates (9,10) formed prior to nucleophilic attack, comparisons have been made with the mechanistically similar reaction of epoxide formation. Since nucleophilic attack on the bromonium ion and the protonated epoxide proceed by similar mechanisms, the opening of epoxides by nucleophiles can model nucleophilic attack on the bromonium ion intermediates.

Since much of this chapter is concerned with the formation and reactions of the epoxide and the bromonium ion, these aspects are reviewed briefly (Chapters 2.2, 2.3). The syntheses of compounds of interest are described (Chapter 2.4) as well as their reactions with various nucleophilic reagents (Chapter 2.5) in a series of solvents at various temperatures. The conformational properties of a number of bicyclo[3.2.0]heptan-6-one derivatives isolated from these reactions have been investigated by n.m.r. (Chapter 2.6). Experimental details are given in Chapter 2.8.

These reactions have provided a necessary experimental basis for subsequent theoretical discussion as well as compounds of use in later analyses.

The results and their significance are discussed in

Chapter 2.7 and Chapter 5.

2.2 The Formation and Reactivity of the Bromonium Ion

The majority of electrophilic additions to olefins are believed to occur by the so-called AdE₂ mechanism (addition, electrophilic, bimolecular) (using the notation of Ingold¹⁷), i.e. a cationic intermediate is formed¹⁵. The initial approach of the bromonium species is in general governed by steric factors, approach being along the path of least steric resistance. Two possible arrangements are generally assumed to describe the intermediate ionic species. The first is the formation of a negative halide ion and a positively charged organic ion (35).

Free rotation about the C-C bond is not to be expected as one of the C⁺ orbitals is empty and the Br atom has three orbitals occupied by pairs of electrons. The arrangement is such that a coordinate link will almost certainly be formed by the sharing of one of the pairs of the electrons of the halogen and the unnoccupied orbital of the carbon¹⁵. Another possible structure of the ion intermediate is the bridged form (36) with the positive charge on bromine, i.e. it should have a structure similar to that of ethylene oxide¹⁵.

In bromination reactions involving simple olefins, there is a tendency for the predominant involvement of bridged ions¹⁶. This type of bromonium ion seems well established, and in special cases has been observed spectroscopically (n.m.r. studies of Olah and Bollinger)¹⁸; however, it does seem that both open and closed forms do contribute in varying degrees depending on the chemical environment¹⁹. The bridged description can be reformulated as a π -complex (Dewar)²⁰. This approach considers the problem in terms of molecular orbital theory. The intermediate ion can be represented as a dative π -complex (37) formed by an olefin acting as a π -donor, and the ion X^+ acting as an acceptor through its empty atomic orbital. Dewar²⁰ considers that reactions involving primary attack by Br⁺ seem almost invariably to involve π -complex intermediates and to give trans adducts exclusively.

Thus, an important consequence of the AdE₂ mechanism for bromination of conformationally biased unconjugated olefins is that the diaxial adduct is obtained^{17,21}, e.g. in the formation of (2) from (1), presumably because of stereo-electronic

constraints on the opening of the bromonium ion¹⁶. The new atom or group is thought to approach one of the carbon atoms from the side opposite from the halogen already present. A bond to the carbon will be formed while the original C-Br bond is broken, with simultaneous neutralisation of the charges. This process will always lead to trans addition.

The stereo-selectivity of bromonium ion opening appears to depend mainly on substituents attached to the double bond, solvent, and the magnitude of the rate constant¹⁶. It is general that as the substituents at the double bond become more capable of stabilising the developing positive charge, without the assistance of bridging, then the lower is the stereo-selectivity of addition. More ionising solvents lead to lower stereoselectivity and, in some cases, the solvent may compete for the intermediate ionic species (e.g. in bromohydrin formation from an aqueous solvent with N-bromosuccinamide, the products are formed by solvolysis of the cationic intermediate). If product formation is slow, then bridging is encouraged and stereo-selectivity is governed by subsequent nucleophilic attack¹⁶. In bicyclic compounds of the type studied here, there are the additional complications of transannular effects of an electronic and steric nature.

2.3 The Formation and Reactions of Oxiranes

Probably the most widely used method for epoxide synthesis is the peroxy acid oxidation of alkenes. The high stereo-selectivity of addition indicates a cyclic transition state such as (38)^{16,21}.

This is consistent with the view that peracids form intermolecular hydrogen-bonds and also that epoxidation is slower in ether solvent (which can form intermolecular hydrogen-bonds with the peracid) than in a hydrocarbon solvent where intramolecular hydrogen-bonding remains intact, i.e. the transition state is more polar than the reactants. The direction of attack by the peracid on the double bond may be influenced by hydrogen-bonding²¹, e.g. in the cyclohexene derivative with a

3-methoxy or 3-acetoxy substituent (39) attack is directed <u>trans</u> to give predominately (40), while in cyclohex-2-ene-ol (41), attack is directed <u>cis</u> to give (42).

In compounds devoid of polar groups steric effects are very important, e.g. the epoxidation of norbornene (43) gives mainly the <u>exo</u>-epoxide (44) (<u>exo</u>:<u>endo</u> 94:6)²².

One view is that the <u>endo</u>-hydrogens at C(5) and C(6) hinder <u>endo</u>-attack. Substitution at C(7) by a gem-dimethyl group (45) provides even greater hindrance to <u>exo</u>-attack, here endo-formation predominates giving mainly (46)²¹.

The specificity of epoxidation in sesquinorbornene (and similar strained compounds) has recently been interpreted in terms of double bond deformation³⁴. For example, in (47)³¹

a 'normal planar' double bond length is observed (ca. 1.326Å) and the interplanar angle around the double bond is ca. 180⁰.

However, in (48) the interplanar angle of 163.6° indicates a significant departure from planarity. This indicates that there is a shift in π -electron density to the region above the plane of the double bond. Unfortunately, deformation electron density studies of sufficient accuracy have not yet been performed on these systems and so quantitative data on the degree of electron density deformation is not available. In terms of reaction stereo-specificity, epoxidation, as described above, would be directed towards the side of a deformed double bond with greatest π -electron density. The reaction of (47) and (48) with m-chloro-peroxybenzoic acid (MCPBA) indicates that the <u>syn-exo</u> anhydride is about a hundred times more reactive (towards MCPBA) than the <u>anti-endo</u> anhydride.

Polar substituents (even when removed by several rings) can also direct epoxidation; the effect is solvent dependent, being more pronounced in non-polar media²¹. In flexible cyclic molecules able to take up a number of different conformations, the product ratios may be rationalised in terms of the conformational populations of the ground state. Flexible cyclic molecules like cyclohexane derivatives are particularly well described by this treatment¹⁶.

The role of conformational control, 'dynamic stereochemistry', is an important factor in reaction stereo-specificity of 4, 5 and 6-membered rings²⁸. The application of the torsion angle notation²⁹ can predict the stereo-chemical course of a number of reactions where conformational factors predominate. The essence of this method is embodied in the concepts of least conformational change and the maintenance of orbital overlap during the course of a reaction (which leads to the axial orientation of the reactive species at a double bond in the transition state).

Briefly, the torsion angle notation is applied as follows. A number of conformations may be assigned to the reactant and product. The reaction is thought to follow the path of least conformational change. The stepwise <u>cis</u>-addition to the double bond of a low energy conformer is assumed to proceed via perpendicular addition to one of the trigonal atoms. The important point is that there is only one direction of approach to the double bond which satisfies the torsion angle sign sequence and hence the torsion angle sign sequence can predict the direction of addition.

For <u>syn</u> addition to a double bond on a ring, a torsion angle sequence of +0- on the double bond favours addition above the mean plane of the ring while a sequence of -0+ favours addition below the mean plane, e.g. the epoxidation of (30)

proceeds from the preferred conformation with the substituent equatorial via addition of the epoxide below the plane of the ring (torsion angle sequence -0+)²⁸.

These ideas follow closely the epoxidation of 4-methylcyclopentene³⁰. The general principles of conformational control of epoxide formation are also applicable to bromonium ion formation.

Another important method for production of epoxides is a 1,3-elimination of an alcohol possessing a leaving group in the alpha position. The stereo-electronic requirement for such a reaction is that the 4 centres involved can take up an anti-coplanar arrangement. The halohydrin route is used here in a number of synthetic steps (2.4, 2.5), e.g. the conversion of (2) to (6).

The opening of epoxide rings can be complicated. However, the epoxides of most alkenes open in a stereo-specific <u>trans</u> fashion analogous to opening of the cyclic bromonium ion¹⁵.

Steric, polar and resonance effects can influence the direction of opening in unsymmetrically substituted epoxides¹⁶. Under basic or neutral conditions, the oxygen of the epoxide is unprotonated (49), and nucleophilic attack occurs at the least substituted carbon so here steric factors are of greatest importance. The reaction may be regarded as having essentially SN_2 character, although bond breaking assumes greater importance than usual due to strain in the 3-membered ring.

Under acidic conditions, kinetic data and product ratios indicate nucleophilic attack predominantly takes place on the protonated epoxide^{23,24} (50 and 51). In the transition states for attack, bond breaking has progressed to a greater extent resulting in a partial carbenium character for the carbon at the reaction centre. Thus, an increase in nucleo-

philicity of the nucleophile (which would tend to direct attack to the carbon with the greatest charge) and stabilising factors for the positive carbenium charge e.g. substituent alkyl groups (which would effectively reduce accumulation of charge on a carbon, and hence reduce the probability of nucleophilic attack at that carbon) will affect the product ratio.

The stereo-chemistry of reactions of epoxides on rings is constrained by the properties of the ring system. However, the course of these reactions may be understood in terms of the requirement for anti-parallel attack by the nucleophile along the axial direction, and on the relative energies of the transition states of the various ring opening possibilities¹⁶, e.g. one way of rationalising the product ratios on attack of the epoxide (6) by nucleophile is to consider the relative stability of the <u>exo-</u> and <u>endo-envelope</u> conformers (52) and (53) which undergo nucleophilic attack to give the bromohydrins (2) and (32).

The epoxide (6) was formed from the bromohydrin (2) on treatment with sodium hydroxide in methanol (79% yield)⁵.

Scheme 2

Bicyclo[3.2.0]hept-2-ene-6-one (1) was refluxed with ethylene glycol in benzene with the addition of toluene-4sulphonic acid as catalyst to give the ketal (54) in 92% yield.

Synthetic scheme leading to the exo-epoxide (59).

Oxidation with m-chloro-peroxybenzoic acid buffered with potassium carbonate gave a mixture of the epoxy-ketals (55) and (56) (combined yield 91%) in the ratio of 91:9 (exo (55): endo (56)) by g.l.c. Separation of the components by flash column chromatography (F.C.)²⁵ gave products in the ratio of 92:8 (exo (55):endo (56)). The isolated exo-epoxyketal (55) was treated with hydrobromic acid in an acetonitrile/water mixture giving the bromohydrins (33) and (34) (combined yield of 83%) obtained in the ratio of 95:5 (2-exo-3-endo (33):2-endo-3-exo (34)) by g.l.c. and separation of components by F.C. gave the bromohydrins (33) (2-exo-3-endo) and (34) (2-endo-3-exo) in the ratio of 91:9 ((33):(34)). The isolated bromohydrin (33) in methanol, on addition of an equivalent amount of sodium hydroxide in methanol gave the exo-epoxyketone (59) with a yield of 93%. It was important to avoid the addition of excess sodium hydroxide as under these conditions the aldol condensation product (58) is also formed.

Deprotection of the ketal (55) to give the ketone (59) using aqueous sulphuric acid was unsuccessful as this reaction resulted in a mixture with no useful yield of the desired product.

Direct epoxidation of (1) using hydrogen peroxide in benzonitrile²⁶ resulted in the Bayer-Villiger product (7).

2.5 The Reactions of Synthetic Intermediates and Products

The following abbreviations have been used: 'isolated' refers to the mass of a single component in a mixture expressed as a percentage of the total mass of all the components isolated from a mixture.

'g.l.c.' refers to the ratio of isomers in a mixture expressed

as a percentage of the total of isomers detected by gas-liquid chromatography.

The epoxidation of (54) was carried out at 25° C with m-chloroperoxybenzoic acid²⁷ in dichloromethane (buffered with potassium carbonate to remove benzoic acid produced during the course of the reaction) to give the epoxy ketals (55) and (56) in the ratios shown in Table 2.1.

TABLE 2.1Isomer ratio on treatment of (54) with m-chloro-
peroxybenzoic acid at 25°C

Treatment of the epoxy-ketals (55) and (56) with hydrobromic acid in an acetonitrile/water mixture afforded the bromohydrins (2), (32), (33), (34), in the ratios shown in Table 2.2.

Table 2.2 (continued)

The <u>endo-</u> and <u>exo-epoxy-ketones</u> (6) and (59) were treated with hydrobromic acid at $0^{\circ}C$ and $25^{\circ}C$ in a series of solvents of varying polarity.

The <u>endo</u>-epoxy ketone (6) afforded the bromohydrins (2) and (32) in the ratios shown in Table 2.3.

The reaction of (6) in carbon tetrachloride at 25° C was carried out by addition of a dry saturated solution of hydrogen bromide in carbon tetrachloride.

The <u>exo</u>-epoxy-ketone (59) afforded the bromohydrins (33) and (34) in the ratios shown in Table 2.4.

On treating the <u>endo</u>-epoxide (6) with hydrobromic acid in tetra-hydrofuran (T.H.F.), one isomer appears as the T.H.F. derivative (57), Table 2.5.

The treatment of the bicycloheptenone (1) with 1,3dibromo-5,5-dimethylhydantoin in acetone at 0° C and 25° C gave rise to 4 bromohydrin isomers (2), (32), (33) and (34) in the ratios given in Table 2.6. Two of the isomers, (32) and (34) have identical Rf values on silica and were isolated as a mixture. TABLE 2.3

3	Isomer r	ratios	on treatment	of 2,3-e	ndo-epoxy-
	bicyclo[3.2.0]	heptan-6-one	with hyd	lrobromic
	acid at	0°C ar	nd 25°C		

$$T = 0^{\circ}C$$

	Solvent	•		
g.l.c.	CCl ₄	74	:	26
g.l.c.	CH ₂ Cl ₂	83	•	17
g.l.c.	Acetonitrile	84	:	16
g.l.c.	D.M.F. (dimethylformamide)	85	•	15
isolated components	CH ₂ Cl ₂	76	:	24
$T = 25^{\circ}C$				
g.l.c.	CCl ₄ (dry)	84	•	16
g.l.c.	CH ₂ Cl ₂	83	:	17
g.l.c.	Acetonitrile	77	:	23
g.l.c.	D.M.F.	82	:	18

TABLE 2.4	Isomer ratios on treatment of 2,3-exo-epoxy-						
	acid at 0°C and 25°C	one wit	n nyar	robromic			
$T = 0^{\circ}C$							
	$(59) \qquad \qquad$	(33)	,0 + HO -	(34)			
	OH Solvent			Br			
g.l.c.	CCl ₄	98	:	2			
g.l.c.	CH ₂ Cl ₂	98	:	2			
g.l.c.	Acetonitrile	98	:	2			
g.l.c.	D.M.F. (dimethylforma- mide)	98	:	2			
isolated components	CH2C12	99	:	1			
$T = 25^{\circ}C$							
g.l.c.	cci ₄	98	:	2			
g.l.c.	CH ₂ Cl ₂	98	:	2			
g.l.c.	Acetonitrile	97	:	3			
g.l.c.	D.M.F.	97	:	3			

$T = O^{O}C$				
g.l.c.	90	1	4	5
isolated	87	8		5
$T = 25^{\circ}C$				
g.l.c.	90	1	4	5
isolated	91	5		4

2.6 <u>Conformational Analysis of Bicyclo[3.2.0]heptan-6-one</u> <u>derivatives by n.m.r</u>.

A number of derivatives of the bicyclo[3.2.0] heptan-6-one system in CCl_4 solution have been analysed by ¹H nuclear magnetic resonance spectroscopy (n.m.r.) to determine the approximate preferred conformations of these compounds in solution.

This bicyclic system can essentially take up two conformations between the limiting <u>exo-</u> and <u>endo-</u>envelopes.

The products of anti-periplanar addition (to C(2) and C(3)) can take up 4 limiting conformations:

- 1(a) with X and Y pseudoaxial
- 1(b) with X and Y pseudoequatorial
- 2(a) with X and Y pseudoequatorial
- 2(b) with X and Y pseudoaxial

The magnitudes of the coupling constants depend principally, in this case, on the dihedral angle between coupled protons. The measurement of these couplings can lead, via the Karplus relationships (1) and (2)³², to an estimate of the dihedral angle between coupled protons.

(1)	Jab = JO cos ² 0	(0-90 ⁰)
(2)	$Jab = J180 \cos^2 \theta$	(90-180 ⁰)

The angle θ° is the dihedral angle between two vicinal protons and JO and J180 are constants chosen by comparison with similar compounds of known stereochemistry. The values assumed here are JO = 9Hz and J180 = 12Hz.

The protons HC-X and HC-Y produce splittings dependent on the conformation of the system. The dihedral angles for the four limiting conformations have been measured from Dreiding models and are given in Table 2.7.

TABLE 2.7	Dihedral	angles	measured	from Dreid	ling models	(°)
· · · · · · · · · · · · · · · · · · ·						
Dihedral ang	;le	la	1b	2a	2Ъ	
01.2		105	130	20	0	
02.3		95	135	150	110	
03.4 <u>exo</u>		40	10	160	100	
03.4 <u>endo</u>		90	135	30	20	

The predicted coupling constants are given in Table 2.8.

TABLE 2.8	Coupling constants	from the Karplus	equation	(Hz) ³⁷
Conformatior	h H2	H3		
la	0,0	5,0,0		
lb	4.5,4.5	8.5,4.5,4.5		
2a	8,9	10,9,6.5	·	
2b	9,0	8,0,0		

These coupling constants can only be regarded as approximate as factors other than dihedral angle can influence the values obtained³³. These factors include:

- (1) the electronegativities of the substituents.J vicinal (Hz) decreases with increasing electronegativity of the substituents (such groups are present here)
- (2) the orientation of the substituents; the conformations considered here are limiting ones only
- (3) the values of JO and J180 are arbitrarily chosen.

However, the difference between the limiting <u>exo</u>and <u>endo</u>-envelopes is sufficiently large to permit a reasonably accurate deduction of the preferred conformation to be made.

The compounds studied are given in Table 2.9. From the results, it is evident that the <u>endo</u>-envelope is preferred in solution. Table 2,9

30 8 nmr. coupling constants (Hz)

 J1.2 ex	J _{2ex} , 3en	J _{3en} ,4ex	J _{3en} ,4en	J _{4x45}	J _{4en,5}	J _{4ex} ,4en	Conf.	
	9	11	6.5	9	1.5		endo	
6	9	9	6	9	1	12.5	endo	
7.5	9	9	6	9	1	13.5	endo	

<u>Table 2,9 (cont'd</u>)

J _{1.2en}	J _{2en} , 3ex	J _{3ex} ,4ex	J _{3ex,4en}	J _{4ex} ,5	J _{4en} , 5	J _{4ex,4en}	Conf.	
1	1	3	1	9	1	14.5	endo	
1	1	1	1	8	3		endo	

0 11

2.7 Summary of Results

The isomer ratios determined by g.l.c. in the reactions described in sections 2.4 and 2.5 correlate well with the ratios obtained by isolation and characterisation of the products. This strongly suggests that the g.l.c. results refer to the correct compounds in the correct ratios.

The role of solvent polarity and temperature in the determination of regio- and stereo-specificity appear to be minimal. Since these factors do not appear to affect the isomer ratios in a significant or consistent manner, the results at different temperatures in different solvents have been averaged. These results are summarised in Figure 2.1.

The epoxidation of (54) proceeds in a highly stereoselective manner favouring exo-epoxidation.

The opening of the <u>exo</u>-epoxy-ketal (55) is highly regio-specific favouring the 2-exo-3-endo product.

Similarly, opening of the <u>endo</u>-epoxy-ketal (56) again favours the 2-<u>exo</u>-3-<u>endo</u> product. However, in this case the reaction is not as regio-specific.

Opening of the <u>endo</u>-epoxy-ketone (6) proceeds regioselectively favouring the 2-<u>exo</u>-3-<u>endo</u> product.

Opening of the <u>exo</u>-epoxy-ketone (59) proceeds with very high regio-specificity giving almost exclusively the 2-<u>exo</u>-3-endo product.

The addition of the elements HOBr to (1) results in formation of the <u>exo</u>- (10) and <u>endo</u>- (9) bromonium ions in the ratio 91:9 (90 + 1:5 + 4). The <u>exo</u>-bromonium ion (10) opens almost exclusively to give the $2-\underline{exo}-3-\underline{endo}$ product. The <u>endo</u>-bromonium ion (9) is opened less selectively though again

Br+	=0	(9)	56	:	44	Br	=0	0H	Ь
0<	=0	(6)	82	•	18	ОН	=0	Br	e
<u>م</u> ر	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	(56)	60	•	40	он	=0	Br	e

Figure 2.1

The ratios of products observed on bromonium ion formation and epoxidation and the isomer ratios obtained upon opening these compounds are summarised here. The ratios quoted are the average of the product ratios observed in different solvents and at different temperatures as determined by g.l.c. Those results designated 'b' refer to reactions involving bromonium ions. Those designated 'e' refer to reactions involving epoxide.

42.

Ζ

favouring the 2-exo-3-endo product.

The stereo-selectivity of epoxidation (for (54)) and bromonium ion formation (for (1)) are identical. This suggests that similar factors (probably steric) control the approach of the reacting species. This appears to rule out intra-molecular hydrogen-bonding between the transition state during epoxidation and the <u>endo</u>-ketal oxygen (or transannular nucleophilic attack (BDS, Chapter 4).

The opening of the <u>exo</u>-epoxide (59) and the corresponding <u>exo</u>-bromonium ion (10) give almost identical isomer ratios. This suggests that the factors controlling regio-selectivity are identical in both these systems.

Opening of the <u>endo</u>-epoxide (6) and the analogous <u>endo</u>-bromonium ion (9) both favour the same substitution pattern (2-<u>exo</u>-3-<u>endo</u>). However, in this case the epoxide displays higher selectivity.

These results are discussed in detail in combination with X-ray structural data and force-field calculations in Chapters 4 and 5.

2.8 Experimental

Melting points were determined by the capillary tube method and are uncorrected. The Büchi-Kugelrohr (bulb to bulb) system was used for distillation and the boiling points reported are oven temperatures at distillation.

Thin layer chromatography (t.l.c.) was carried out on Camlab 'Polygram' pre-coated silica-gel plates which were developed by 2,4-dinitrophenylhydrazone unless otherwise stated. Where necessary, solvents were distilled in the recommended manner. Petroleum ether refers to the fraction of boiling range 60° - 80° C.

¹H nuclear magnetic resonance spectra (n.m.r.) were recorded on a Varian E.M.390 (90 MHz) spectrometer by the Analytical Department of Glaxo Group Research, Ware, Hertfordshire (unless otherwise stated). Protons were identified by double irradiation techniques where appropriate. Tetramethylsilane was employed as an internal standard and all spectral values are quoted in parts per million (δ). Additional coupling constants (Hz) are given where applicable in Chapter 2.6. Infra-red spectra (i.r.) were recorded on a Perkin-Elmer 402 instrument.

Mass spectra were determined on a Jeol JMS D100 mass spectrometer combined with a Jeol JCS 20K gas chromatograph and using an Instem Data Mass Maxi data processing system.

Micro analysis and gas liquid chromatography (g.l.c.) were carried out at the Analytical Laboratories of Glaxo Group Research, Ware, Hertfordshire. G.l.c. was performed on a Hewlett-Packard 5880. The carrier gas was helium, with a typical inlet pressure of 1.5 ml/m. The detector was a flame ionisation detector (F.I.D.).

Flash column chromatography (F.C.) refers to the technique described in reference 25. The stationary phase was Kieselgel 60, Merke 9385. Column size was varied from 2 cm diameter to 10 cm diameter depending on the sample loading. <u>Spiro{bicyclo[3.2.0]hept-2-ene-6,2'(1.3)dioxolan} (54)</u> A stirred solution of bicyclo[3.2.0]hept-2-ene-6-one (1) (24g, 0.22 mol), benzene (200 ml), 1,2-ethanediol (250 ml) and ptoluene sulphonic acid (50 mg) was heated under reflux and water was removed using a Dean-Stark trap. After 72 hours, the cooled

solution was washed with 8% potassium carbonate solution and the washings back extracted with cyclohexane (2 x 80 ml). The combined organic layers were dried (Na₂SO₄) and evaporated to give spiro{bicyclo[3.2.0]hept-2-ene-6,2'-(1,3)dioxolan} (54) (31g, 92%) as a colourless oil.

n.m.r.: $\delta(CDCl_3)$ 5.7-5.8 (2H,m,H-2,H-3), 3.7-4.0(4H,m,H-2'), 3.1(1H,m,H-5), 1.9-2.8(5H,m,H-1,2xH-4,2xH-7).

Found: (M⁺), 152.0883. C₉H₁₂O₂ requires 152.0837.

2,3-<u>endo</u>-epoxybicyclo[3.2.0] heptan-6-one (6).

 $2-\underline{exo}$ -bromo-3- \underline{endo} -hydroxybicyclo[3.2.0]heptan-6-one (2) (18.15g, 0.089 mol) in methanol (100 ml) was added to a stirred solution of sodium hydroxide (8.5g, 0.021 mol) in methanol (180 ml). After 3 hours at ambient temperature the mixture was neutralised with acetic acid (7.44g), diluted with water (100 ml), and extracted with dichloromethane (3 x 75 ml). Evaporation of the dried (MgSO₄) extracts and flash column chromatography of the residue, eluting with ethyl acetate-light petroleum (1:1) gave an oil which was further purified by Kügelrohr distillation (at 115°C and 2 mmHg) to give 2,3-<u>endo</u>-epoxybicyclo[3.2.0]heptan-6-one (6) as a colourless oil which solidified in the refrigerator.

t.l.c. single spot at Rf = 0.15 (ethyl acetate:petroleum ether; 3:7)

i.r. v_{max} (film) 1773,1035,833 cm⁻¹

n.m.r. $\delta(CDCl_3)$ 3.4-3.8(3H,m,H-3,H-2,H-5),2.7-3.2(3H,m,H-7 <u>exo</u>,

H-7 endo, H-1), 2.48(1H, m, H-4 endo), 1.9(1H, m, H-4 exo).

The ¹H n.m.r. and i.r. spectra were identical with an authentic specimen.

45.

•

Spiro{2,3-exo-epoxybicyclo[3.2.0] heptane-6,2'(1,3)dioxolan} (55)

A solution of m-chloroperoxybenzoic acid (85%, 57g) in dichloromethane (150 ml) was added dropwise (over 15 minutes) with stirring to an ice cooled mixture of spiro{bicyclo[3.2.0] hept-2-ene-6,2'-(1,3)dioxolan} (54) (43.8g, 0.288 mol) and potassium carbonate (3.0g) in dichloromethane (160 ml). After 3 hours aqueous sodium sulphite solution was added until a starch-iodide test was negative. The mixture was washed with 8% aqueous sodium bicarbonate, brine and water. The organic layer was dried (MgSO_{μ}) and evaporated to give a mixture of the exo- (55) and endo- (56) epoxy-ketals (44.05g, 91%) in the ratio 91:9 by g.l.c. (2m OV275 column, 120-150°C, F.I.D.). The individual isomers were isolated by subjecting a portion (12.0g) of this mixture to flash column chromatography eluting with ethyl acetate-light petroleum (1:1). The major isomer was spiro{2,3-exo-epoxybicyclo[3.2.0] heptane-6,2'l(1,3)dioxolan} (55) isolated as an oil (10.23g, 77%). t.1.c. single spot at Rf 0.55 (ethyl acetate:petroleum; 1:1) v_{max} (film) 1035,833 cm⁻¹ i.r. δ(CDCl₂) 3.7-4.0(4H,m,H-2'),3.3-3.6(2H,m,H-3,H-2), n.m.r. 1.8-2.9(6H,m,H-4,H-5,H-1,2xH-7).Found (M⁺), 168.0773. C₉H₁₂O₃ requires 168.0786.

The minor isomer was spiro{2,3-<u>endo</u>-epoxy-bicyclo[3.2.0] heptane-6,2'-(1,3)dioxolan} (56) obtained as an oil (0.87g, 6.6%).
t.l.c. single spot at Rf = 0.33 (ethyl acetate:petroleum; 1:1)
i.r. v_{max}(film) 1030,850 cm⁻¹
n.m.r. 6(CDCl₃) 3.7-4.1(4H,m,H-2'), 3.65(1H,t,H-2,H-3), 3.53 (1H,t,H-2,H-3),3.15(1H,m,H-5), 2.4-2.7(3H,m,2xH-7,H-1),
 2.27(1H,m,H-4 endo), 1.12 (1H,m,H-4 exo).

46.

The reaction of spiro{2,3-exo-epoxy-bicyclo[3.2.0]heptane-6,2'1(1,3)dioxolan} (55) with hydrobromic acid. A solution of 85% aqueous hydrobromic acid (20g) and water (20 ml) was added dropwise with stirring to a solution of spiro{2,3-exo-epoxybicyclo[3.2.0] heptane-6,2'-(1,3) dioxolan}(55) (10.0g, 0.06 mol) in acetonitrile (150 ml). After 24 hours, water (50 ml) was added and the mixture extracted with dichloromethane (3 x 150 ml). The combined extracts were washed with water, dried (MgSO $_{\rm H}$) and evaporated to give a mixture (10.0g, 83%) of two bromohydrin isomers in the ratio of 95:5 by g.l.c. (trimethylsilyl ether derivatives, 2m 1.5% QF-1 column, 140°C), separation by flash column chromatography eluting with ethyl acetate:cyclohexane (2:1) afforded 2-endo-bromo-3-exo-hydroxybicyclo[3.2.0] heptan-6-one (34) (higher Rf) as a colourless oil (0.83g, 7%). t.l.c. single spot at Rf = 0.33 (ethyl acetate:n-hexane; 1:1) v_{max}(film) 3440,1780 cm⁻¹

47.

δ(CDCl₃) 4.3(2H,m,H-3,H-2), 3.57 (1H,m,H-5), n.m.r. 3.0-3.4(3H,m,H-1,H-7 endo,H-7 exo), 2.7 (1H,s,H-OH), 2.27(1H,m,H-4 endo), 1.77(1H,m,H-4 exo).

Found (M⁺), 203.9793 and 205.9777. C₇H₉O₂Br requires 203.9787 and 205.9767.

i.r.

The major isomer (lower Rf) was 3-endo-bromo-2-exo-hydroxybicyclo[3.2.0]heptan-6-one (33) obtained as a white crystalline solid (8.09g, 66%), m.p. 42^oC.

 v_{max} (0.5% CHBr₃) 3585,1780 cm⁻¹ i.r. δ(CDCl₃) 4.56(1H,m,H-2), 4.3(1H,m,H-3), 3.77(1H,m,H-5), n.m.r. 2.2-2.5(2H,qq,H-7 exo,H-7 endo), 2.9(1H,m,H-1), 2.3-2.8(2H,m,H-4 exo,H-4 endo), 4.2(1H,s,H-OH).

Found, C,39.85; H,4.4. C7H902Br requires C, 41.0; H,4.4%.

2,3-<u>exo</u>-epoxybicyclo[3.2.0] heptan-6-one (59)

A solution of sodium hydroxide (2.28g, 0.057 mol) in methanol (55 ml) was added dropwise (over 30 minutes) to a stirred solution of 3-<u>endo</u>-bromo-2-<u>exo</u>-hydroxybicyclo[3.2.0]heptan-6one (33) in methanol (200 ml). During the addition the temperature was maintained at 20° C, and by frequent checking with universal indicator paper the pH was maintained at pH6-7. Water (250 ml) was added and the product extracted into dichloromethane (1 x 200, 1 x 50 ml). Evaporation of the dried (MgSO₄) organic extracts afforded 2,3-<u>exo</u>-epoxybicyclo[3.2.0]heptan-6-one (59) (5.44g, 93%) as a colourless oil, homogeneous by t.l.c., which solidified after refrigeration, m.p. 32° C.

i.r. ν_{max} (0.5% CHBr₃) 1773,845 cm⁻¹ n.m.r. δ(CDCl₃) 3.45-3.58(3H,m,H-2,H-3,H-5), 2.6-3.4(3H,m,H-1,

H-7 \underline{exo} ,H-7 \underline{endo}), 1.9-2.4(2H,m,H-4 \underline{exo} ,H-4 \underline{endo}). Found (M⁺), 124.0523; calculated for $C_7H_8O_2$ 124.0524. If this preparation is carried out at elevated temperature with an excess of sodium hydroxide, then an additional product is obtained;

spiro{5-<u>exo</u>-hydroxy-3-oxatricyclo[5.1.1.0^{4,9}]nonan-8-one-2l'(4',5'-<u>exo</u>-epoxybicyclo[3.2.0]heptane)} (58) i.r. v_{max}(0.5% CHBr₃) 3595,1770 cm⁻¹

n.m.r. &(CDCl₃). 4.46-4.49(2H,dd,H-4,H-5), 3.5-3.75(4H,m,H-1, H-4',H-9,H-3), 3.42(1H,d,H-5'), 3.06(1H,txt,H-2'), 2.59(1H,q, J=7.4 Hz,H-6'), 2.27(1H,ddd,J=2,38,15 Hz,H-3' endo), 2.06(1H,dd, J=9.5,15Hz,H-3' exo), 2.21(1H,dxt,J=4.5,14.5Hz,H-6 endo), 1.85(1H,dd,J=10,14Hz,H-6 exo), 2.04(1H,ddd,J=3,8.5,12.5Hz,H-7'exo), 1.85(LH,dd,J=7.5,12.5Hz,H-7'endo), 1.60(1H,bs,H-0H). The

:

assignments were proven by decoupling experiments at 200 and 250MHz.

The reaction of spiro{2,3-endo-epoxybicyclo[3.2.0] heptane-6,2'-(1,3)dioxolan} (56) with hydrobromic acid A solution of 85% aqueous hydrobromic acid (3.9g) in acetonitrile (20 ml) was added dropwise with stirring to spiro{2,3-endo-epoxybicyclo[3.2.0]heptane-6,2'-(1,3)dioxolan} (56) (1.72g, 0.01 mol) in acetonitrile (100 ml) and water (20 ml). After 24 hours 8% potassium bicarbonate solution (50 ml) was added and the solution extracted with dichloromethane (2 x 100 The combined extracts were washed with water, dried ml). (MgSO₁) and evaporated to give a white solid (2.1g). 3 components were present in the mixture in the ratio 51:35:14. 2 components (5.3, 5.9 mins) had almost identical retention times. The peaks at 4.2 and 5.3 mins.appeared to correspond to the expected bromohydrins (trimethylsilyl ether derivatives, 2m 1.5% QFl column, T=140°C, F.I.D.). Separation was accomplished by flash column chromatography eluting with ethyl acetate-cyclohexane (2:1). The isomer with higher Rf was 2-exo-bromo-3-endo-hydroxybicyclo-[3.2.0] heptan-6-one (2) obtained as a white crystalline solid (1.0g, 48%), m.p. 88°C (lit.87-89°C). i.r. v_{max} (Nujol mull) 3580,1772 cm⁻¹ n.m.r. δ(CDCl₃) 4.75(lH,m,H-3), 4.35(lH,m,H-2), 3.82(lH,m,H-5), 3.6-3.1(3H,m,H-1,H-7 exo,H-7 endo), 3.2(1H,s,OH), 7.2-8.0(2H,m,H-4 exo,H-4 endo) (identical with an

authentic specimin).

Found, C,40.75; H,4.3. C7H902Br requires C,41.0; H,4.4%.

49.

.

:

H

The isomer of lower Rf was

 $3-\underline{exo}-bromo-2-\underline{endo}-hydroxybicyclo[3.2.0]heptan-6-one (32) obtained as a white crystalline solid (0.96g, 46%), m.p. <math>52^{\circ}C.$ i.r. v_{max} (Nujol mull) 3550,1075 cm⁻¹

n.m.r. δ(CDCl₃) 4.48(1H,m,H-2), 4.05(1H,m,H-3), 3.6(1H,m,H-5), 3.5-2.9(3H,m), 2.78(1H,s,H-0H), 2.53(1H,m,H-4 <u>endo</u>), 2.14(1H,m,H-4 <u>exo</u>).

Found, C,41.17; H,4.44. C7H902Br requires C,41.0; H,4.4%.

The reaction of 2,3-<u>endo</u>-epoxybicyclo[3.2.0]heptan-6-one (6) with hydrobromic acid

Hydrobromic acid (48%, 18.0g) was added to a solution of 2,3-<u>endo</u>-epoxybicyclo[3.2.0]heptan-6-one (6) (4.03g, 0.033 mol) in dichloromethane (5 ml) at 0^oC. After 2 hours, the mixture was extracted with dichloromethane (3 x 10 ml). The extracts were washed with water, dried (MgSO₄) and evaporated to give a white solid (6.8g, 100%) which was a mixture of two bromohydrin isomers in the ratio of 83:17 by g.l.c. (trimethylsilyl ether derivatives, 3% 0V210 column, T = 130° C, F.I.D.). Flash column chromatography of the mixture, eluting with ethyl acetate-cyclohexane (1:1) afforded 2-<u>exo</u>-bromo-3-<u>endo</u>-hydroxy-bicyclo[3.2.0]heptan-6-one (2) (4.5g, 67%) as a white

t.l.c. single spot at Rf = 0.48 (ethyl acetate:cyclohexane; l:l).

i.r. v_{max}(Nujol mull) 3580,1772 cm⁻¹

n.m.r. $\delta(CDCl_3)$ 4.75(lH,m,H-3), 4.35(lH,m,H-2), 3.82(lH,m,H-5), 3.1-3.6(3H,m,H-1,2xH-7), 2.88 (lH,s,H-OH), 2.0-2.8 (2H,m,H-4 endo,H-4 exo).

50.

l

The reaction of 2,3-<u>exo</u>-epoxybicyclo[3.2.0]heptan-6-one (59) with hydrobromic acid.

Hydrobromic acid (85%, 4.5g) was added dropwise to a stirred solution of 2,3-exo-epoxybicyclo[3.2.0] heptan-6-one (59) (1.46g, 0.012 mol) in dichloromethane (10 ml) at 0⁰C. After 2 hours the mixture was neutralised by addition of 8% sodium bicarbonate solution, and extracted with dichloromethane (3 x 10 ml). The organic extracts were washed with water and the aqueous washings back extracted with dichloromethane (2 x 10 ml). The combined organic fractions were dried (MgSO_{μ}) and evaporated to give an oil (2.4g, 100%) which was a mixture of the two bromohydrin isomers in the ratio of 98:2 by g.l.c. (trimethylsilyl ether derivatives, 3% OV210 column, T = 120°C, F.I.D.). Flash column chromatography eluting with ethyl acetate-petroleum ether (2:1) gave 3-endo-bromo-2-exohydroxybicyclo[3.2.0]heptan-6-one (33) (2.15g, 89%) as a white crystalline solid, m.p. 42°C. N.m.r. and i.r. spectra were identical with a previously authenticated sample. The other isomer 2-endo-bromo-3-exo-hydroxybicyclo[3.2.0] heptan-6-one (34) (30 mg., 1%) was obtained as a colourless oil.

t.l.c. a single spot at Rf = 0.33 (ethyl acetate:petroleum ether; 1:1)

g.l.c. indicated the sample was 79% pure by area (trimethylsilyl ether derivative, column 3% OV210, T = 120° C, F.I.D.) i.r. v_{max} (film) 3440,1780 cm⁻¹

n.m.r. δ(CDCl₂) 4.3(2H,m,H-3,H-2), 3.6(1H,m,H-5),

3.0-3.4(3H,m,H-1,H-7 <u>exo</u>,H-7 <u>endo</u>), 2.5(1H,s,H-OH), 2.27(1H,m,H-4 endo), 1.8(1H,m,H-4 exo).

The reactions of 2,3-endo-epoxybicyclo[3.2.0]heptan-6-one (6) and 2,3-exo-epoxybicyclo[3.2.0]heptan-6-one (59) with hydrobromic acid in various solvents at 0°C and 25°C.

The following general procedure was used:-

Hydrobromic acid (85% 0.025g, 2 equivalents) was added to a solution of the epoxide (50 mg/ml) in the appropriate solvent at either 0° C or at 25°C dropwise with stirring. After 2 hours, water was added and the products extracted into ether. Evaporation of the dried (MgS0₄) extracts gave the crude product mixture.

Different experimental conditions were used at 25° C with carbon tetrachloride as solvent. Here, a saturated solution of hydrogen bromide in carbon tetrachloride was prepared by passing dried (H₂SO₄) hydrogen bromide gas (15g) through carbon tetrachloride (15 ml) giving a solution of 0.33g HBr/100 ml of CCl₄. This solution (5 ml) was added and the products worked up (as above).

In all cases, isomer ratios were determined by g.l.c. (trimethylsilyl ether derivatives, QFl column, T = 130° C, F.I.D.) Identification of isomers was by comparison of retention times (g.l.c.)

with authentic samples under the same experimental conditions. The results are tabulated in Tables 2.3 and 2.4.

The attempted conversion of spiro{2,3-<u>exo</u>-epoxybicyclo[3.2.0]heptane-6,2'-(1,3)dioxolan} (55) to the ketone (59) using sulphuric acid.

A mixture of spiro{2,3-<u>exo</u>-epoxybicyclo[3.2.0]heptane-6,2'-(1,3)dioxolan} (55) (0.2g, 001 mol), acetonitrile (3 ml), water (2 ml) and 2N sulphuric acid (0.5 ml) was stirred for 4 hours. 8% sodium bicarbonate was added (10 ml) and the products extracted into ethyl acetate (3 x 10 ml), dried (MgSO₄) and solvent evaporated to give an oil (0.12g).

t.l.c. showed a diffuse spot at Rf = 0.12 (ethyl acetate: petroleum; 1:1)

I.r. and n.m.r. indicated a mixture of diols and starting material.

The reaction of 2,3-endo-epoxybicyclo[3.2.0] heptan-6-one (6) with hydrobromic acid in tetrahydrofuran.

To a stirred solution of 2,3-<u>endo</u>-epoxybicyclo[3.2.0]heptan-6one (6) in tetrahydrofuran (10 ml) at -10° C was added hydrobromic acid (47%, 10.3g) dropwise over 10 minutes. After 2 hours, excess hydrobromic acid was neutralised (NaHCO₃), water was added (10 ml) and the products extracted into dichloromethane (3x 15 ml), dried (MgSO₄) and the solvent evaporated. T.l.c. showed 2 spots at Rf = 0.48 and Rf = 0.32 (cyclohexane-ethyl acetate; 1:1). The components were separated by flash column chromatography (ethyl acetate-cyclohexane; 1:1) to give 2-<u>exo</u>-bromo-3-<u>endo</u>hydroxybicyclo[3.2.0]heptan-6-one (2) as a white crystalline solid (1.26g, 77%) m.p. 88^oC. I.r. and n.m.r. were identical with an authentic sample.

The component of lower Rf was 3-<u>exo</u>-bromo-2-<u>endo</u>-(l'-oxabutan-4'-ol)bicyclo[3.2.0]heptan-6-one (57) as an oil (0.3g, 13%).

i.r. v_{max}(film) 3420,1770 cm⁻¹

n.m.r. &(CDCl₃) 4.48(lH,dd,J=9,7.5Hz,H-2), 4.08(lH,ddd,J=9,6.7, ll.3Hz,H-3), 3.44-3.7(4H,m,2xH-4',2xH-1'), 2.8-3.7(3H, m,H-5,H-1,H-7 <u>exo</u>,H-7 <u>endo</u>), 2.48(lH,ddd,H-4 <u>endo</u>), 2.1(lH,s,H-3'), 2.0-2.1(lH,ddd,J=ll.2,l.5,l3.2,H-4 <u>exo</u>), 1.5-2.1(4H,m,2xH-2',2xH-3'), 2.2(lH,s,H-0H).

Analysis of the reaction mixture by g.l.c. (trimethylsilyl ether derivative, 3% OV210 column, T = 120° C, F.I.D.) showed 2 components in the ratio 78:18 (96% purity). The major isomer was 2-<u>exo</u>-bromo-3-<u>endo</u>-hydroxybicyclo[3.2.0] heptan-6-one (2) (g.l.c. Rf identical with an authentic sample) and the minor component was 3-<u>exo</u>-bromo-2-<u>endo</u>-(1'-oxabutan-4'-ol)bicyclo-[3.2.0] heptan-6-one (57) (g.l.c. Rf identical with isolated component).

The attempted ketal exchange of spiro{2,3-exo-epoxybicyclo-[3.2.0]heptane-6,2'-(1,3)dioxolan} (55) with acetone A mixture of spiro{2,3-exo-epoxybicyclo[3.2.0]heptane-6,2'1 (1,3)dioxolan} (55) (1.74g, 0.01 mol), acetone (50 ml) and toluene-4-sulphonic acid (50 mg) was left to stand for 64 hours, then diluted with water (50 ml) and extracted into petroleum ether (3 x 50 ml), dried (Na_2SO_4) and solvent evaporated to give an oil (1.08g).

An i.r. spectrum of the product showed no evidence for the cyclobutane carbonyl group (ca. 1780 cm⁻¹) and the spectrum was consistent with starting material.

The reaction of bicyclo[3.2.0] hept-2-ene-6-one (1) with

1,3-dibromo-5,5-dimethylhydantoin at 0°C and 25°C.

1,3-dibromo-5,5-dimethylhydantoin (3g, 0.01 mol) was added to a stirred solution of bicyclo[3.2.0] hept-2-ene-6-one (1) (2.0g, 0.02 mol) in acetone (100 ml) and water (50 ml) at 0° C. After 4 hours at $0^{\circ}C$ (in the refrigerator) the solvent was evaporated under reduced pressure. The residue was treated with water (50 ml) and extracted into dichloromethane (3 x 75 ml). Evaporation of the dried (MgSO $_{\mu}$) extracts afforded the crude product, a mixture of bromohydrin isomers (3.59g, 88%). A sample was derivatised and analysed by g.l.c. (trimethylsilyl ether derivatives, SP200 capillary column, T = 120°C, F.I.D.) and showed the presence of four bromohydrin isomers in the ratio of 90:1:4:5. These had g.l.c. retention times (g.l.c. Rf) identical with those of authentic specimens (Table 2.6). The crude product was subject to flash column chromatography utilising multiple eluting with ethyl acetate-petroleum (1:1) and the following components were isolated and identified by spectroscopic comparison (i.r. and n.m.r.) and chromatographic comparison (t.l.c.) with authentic samples. The above procedure was repeated at 25°C.

- (1) 2-<u>exo</u>-bromo-3-<u>endo</u>-hydroxybicyclo[3.2.0]heptan-6-one (2) (2.22g at 0^oC, 54%; 2.58g at 25^oC, 63%), (g.l.c. Rf = 3.3 minutes). T.l.c. showed a single spot at Rf = 0.48 (ethyl acetate-hexane; 1:1).
- (2) A mixture of 3-<u>exo</u>-bromo-2-<u>endo</u>-hydroxybicyclo[3.2.0]heptan-6-one (32) (g.l.c. Rf = 3.8 minutes) and 2-<u>endo</u>-bromo-3-<u>exo</u>-hydroxybicyclo[3.2.0]heptan-6-one (34) (g.l.c. Rf = 4.0 minutes). These isomers were inseparable

- by chromatography on silica (combined yields were 0.20g at 0^oC, 5%; 0.14g at 25^oC, 3%). T.l.c. showed a single spot at Rf = 0.33 (ethyl acetate-hexane; 1:1).
- (3) 3-<u>endo</u>-bromo-2-<u>exo</u>-hydroxybicyclo[3.2.0] heptan-6-one (33) (0.13g at 0^oC, 3%; 0.11g at 25^oC, 5%), (g.1.c. Rf = 4.4 minutes). T.1.c. showed a single spot at Rf = 0.23 (ethyl acetate-hexane; 1:1).

The total isolated yields of bromohydrins after chromatography were 62% at 25° C and 71% at 25° C.

The results are displayed in Table 2.6.

2.9

REFERENCES

- Newton, R.F., Roberts, S.M., Tetrahedron Report No. 90, 1980.
- 2. Ali Mubaric, S., Crossland, N.M., Lee, T.V., Roberts, S.M., Newton, R.F., J.Chem.Soc.Perkin I, 1979, p.122.
- 3. Grieco, P.A., J.Org.Chem., 1972, 37, p.2363.
- 4. Dimsdale, M.J., Newton, R.F., Rainey, D.K., Webb, C.F., Lee, T.V., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1977, p.716.
- 5. Newton, R.F., Howard, C.C., Reynolds, D.P., Wadsworth, A.H., Crossland, N.M., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1978, p.662.
- 6. Caton, M.P., Tetrahedron, 1979, Vol.35, p.2705.
- Newton, R.F., Paton, J., Reynolds, D.P., Young, S., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1979, p.908.
- Reynolds, D.P., Newton, R.F., Roberts, S.M.,
 J.Chem.Soc.Chem.Commun., 1979, p.1150.
- 9. Crossland, N.M., Roberts, S.M., Newton, R.F., J.Chem.Soc.Perkin I, 1979, p.2397.
- Chapleo, C.B., Finch, M.A.W., Lee, T.V., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.676.
- 11. Finch, M.A.W., Lee, T.V., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.677.
- Ali Mubaric, S., Finch, M.A.W., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.679.
- 13. Chapleo, C.B., Roberts, S.M., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.680.

- 14. Grudzinski, Z., Roberts, S.M., J.Chem.Soc.Perkin I, 1975, p.1767.
- 15. Roberts, I., Kimba, G.E., J.Amer.Chem.Soc., 1937, 59, p.947.
- 16. Barton, D., Ollis, W.D., 'Comprehensive Organic Chemistry', Pergamon Press, 1979.
- 17. Ingold, C.K., 'Structure and Mechanism in Organic Chemistry', Cornell University Press, Ithaca, New York, 1953.
- 18. Olah, G.A., Bollinger, J.M., J.Am.Chem.Soc., 1967, 89, p.4744; ibid., 1968, 90, p.947.
- 19. Jones, R.A.Y., 'Physical and Mechanistic Organic Chemistry'. Cambridge University Press, 1979, p.171.
- 20. Dewar, M.J.S., Ann.Rev.Phys.Chem., 1965, 16, p.321.
- 21. Fahey, R.C., 'Topics in Stereochemistry', edited by E. L. Eliel and N. L. Allinger, Vol.3, p.285.
- 22. Kwart, H., Takeshita, T., J.Org.Chem., 1963, 28, p.670.
- 23. Parker, R.E., Isaacs, N.S., Chem.Rev., 1959, 59, p.737.
- 24. Addy, J.K., Parker, R.E., J.Chem.Soc., 1963, p.915.
- 25. Still, C.W., Kahn, M., Mitra, A., J.Org.Chem., 1978, Vol.43, No. 14, p.2923.
- 26. Payne, G.B., Tetrahedron, 1962, Vol.18, p.763.
- 27. Fieser, L.F., Fieser, M., 'Reagents for Organic Synthesis', Vol.1, p.136, John Wiley and Sons, Inc.
- Toromanoff, E., Tetrahedron Report No. 96, Tetrahedron, 1980, Vol.36, p.2809.
- 29. Bucourt, R., 'The torsion angle concept in conformational analysis'. Topics in Stereochemistry, (ed. Eliel, E.L., Allinger, N.L. (1974)), Vol.8, p.159, Interscience, New York.
- 30. Henbest, H.B., Mcullough, J.J., Proc.Chem.Soc., 1962, p.74.
- 31. Watson et al., J.Am.Chem.Soc., 1981, Vol.103, No. 8, p.2023.

- 32. Karplus, M., J.Chem.Phys., 1959, 30, p.11.
- 33. Jackman, L.M., Sternhell, S., 'Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry', 2nd ed., Pergamon Press (Germany), p.281.
- 34. Burkert, U., Angewandte Chemie, Int.Ed.Engl. 1981, 20, No. 6/7, p.572.
- 35. Newton, R.F., Reynolds, D.P., Kay, P.B., Roberts, S.M., Glen, R.C., Murray-Rust, P., J.Chem.Soc.Chem.Commun., 1981, submitted.
- 36. Glen, R.C., Murray-Rust, P., Reynolds, D.P., Newton, R.F., J.Chem.Soc.Chem.Commun., 1981, submitted.
- 37. Klinkert, G., personal communication.

CHAPTER 3

Contents

- 3.1 Introduction
- 3.2 The geometry and conformation of compounds studied by X-ray diffraction
- 3.2.1 2-(S)-<u>exo</u>-bromo-3-(S)-<u>endo</u>-hydroxybicyclo[3.2.0]heptan-6-one (3)
- 3.2.2 7,8-endo-epoxy-2-oxatricyclo[3.3.0.0.^{4,6}]octan-3one (60)
- 3.2.3 2,3-<u>endo</u>-epoxybicyclo[3.2.0] heptan-6-one-p-nitrophenylhydrazone (61)
- 3.2.4 3-<u>exo</u>-methoxy-6,7-<u>endo</u>-epoxybicyclo[3.3.0] octane (62)
- 3.2.6 6-endo-methoxy-8-trans-N-methyl-N-p-toluenesulphonamide-2-oxabicyclo[3.2.1]octan-2-one (63)
- 3.2.7 2-<u>exo</u>-bromo-3-<u>endo</u>-hydroxy-7,7-dichlorobicyclo-[3.2.0]heptan-6-one (29)
- 3.3 X-ray crystallography experimental
- 3.3.1 2-(S)-<u>exo</u>-bromo-3-(S)-<u>endo</u>-hydroxybicyclo[3.3.0]heptan-6-one (3)
- 3.3.2 7,8-endo-epoxy-2-oxatricyclo[3.3.0.0.^{4,6}]octan-3one (60)
- 3.3.3 2,3-<u>endo</u>-epoxybicyclo[3.2.0] heptan-6-one-p-nitrophenyldrazone (61)
- 3.3.4 3-<u>exo</u>-methoxy-6,7-<u>endo</u>-epoxybicyclo[3.3.0] octane (62)
- 3.3.5 spiro{5-<u>exo</u>-hydroxy-3-oxatricyclo[5.1.1.0^{4,9}]nonan-8-one-2-1'(4',5'-<u>exo</u>-epoxybicyclo[3.2.0]heptane)} (58)
- 3.3.6 6-endo-methoxy-8-trans-N-methyl-N-p-toluenesulphonamide-2-oxabicyclo[3.2.1]octan-2-one (63)
- 3.3.7 2-<u>exo</u>-bromo-3-<u>endo</u>-hydroxy-7,7-dichlorobicyclo-[3.2.0]heptan-6-one (29)

Chapter 3 Contents (contd.)

- 3.4 Appendix
- (A) Structure solution by the heavy atom method
- (B) Direct methods of phase determination
- (C) Anomalous dispersion

3.5 References

3.1 Introduction

The structures of 7 compounds (Figure 1) have been determined by X-ray crystallography.

Fig.l.

These compounds were selected (or designed) to elucidate the conformational, electronic and steric factors of importance in promoting regio- and stereo-selectivity in small polycyclic ring systems.

The conformation and geometrical properties of each structure is described in detail (Chapter 3.2) along with some features which may be relevant to regio- and stereo-control.

Of special interest has been the possibility that particular conformations and transition states in compounds of interest, e.g. (2), could be stabilised by transannular interactions between a suitably orientated nucleophile on one ring and an electrophilic group on another ring². Interactions of this type are indeed observed in some of the crystal structures described here. This aspect is discussed fully in Chapter 4.

The elucidation of the crystal structures is described in an experimental section (Chapter 3.3). X-ray structural data are given in Appendix 1.

3.2 The geometry and conformation of compounds studied by X-ray diffraction

3.2.1 2-(S)-exo-bromo-3(S)-endo-hydroxybicyclo[3.2.0]heptan-6-one (3)⁶,³²

This bromohydrin isomer is the major product on addition of the elements HOBr to bicyclo[3.2.0]hept-2-en-6-one (1) (Chapter 2.5).¹⁵ Knowledge of the ground state geometry is important in assessing the role of steric and conformational factors in the preferential formation of this isomer. Also, from models, it appears that there is the possibility of a transannular interaction of the type described by Bürgi, Dunitz and Shefter² between the hydroxyl and ketone which could conceivably influence the observed bromohydrin isomer ratios by stabilising the transition state leading to (2).

••• BDS interaction
The enantiomer (3) was resolved via a novel method involving yeast $enzymes^3$.

The structure was solved by the classical heavy atom method and the absolute configuration was determined by anomalous dispersion⁴ (Appendix C).

Molecular geometry

The structure consists of molecules hydrogen bonded along the 3_1 axis (C(3)...O(3)(1-x,x-y,1/3+z) = 2.766(15)Å. (Figure 3.1). Bond lengths, bond angles and torsion angles of interest are given in Figure 3.2.

The molecule (Figure 3.3) adopts a conformation with the cyclopentane ring in the <u>endo</u>-envelope arrangement (approximate mirror plane bisects C(1)-C(5)). The ring substituents are pseudoaxial in an approximate <u>trans</u> arrangement $(|\tau|Br(1)-C(2)-C(3)-O(3) = 158(1)^{\circ})$. Since the C(1)-C(5) bond is almost eclipsed $(|\tau| = 2.7(1)^{\circ})$ in the cyclopentane ring, this provides a driving force for the cyclobutane ring to be completely flat (C(1)-C(5)-C(6)-C(7) = O(1)^{\circ}).

This is in contrast to other structures such as $(64)^5$ and $(61)^6$ where the different constraints in the 5-membered ring cause noticeable puckering in the 4-membered ring $(|\tau| = 5-11^{\circ})$.

Fig 3,1

Packing diagram of (3). Hydrogen bonds are depicted in the figure by ——

Fig 3,3

The structure of (3).

An additional feature is the C(6)...O(3) distance of 2.990(15)Å which may indicate weak incipient nucleophilic attack by O(3) on C(6) of the type proposed by BDS. In keeping with this, C(6) is displaced from the plane C(7),C(5),O(6) by O.013Å towards O(3). However, although of the expected magnitude, this displacement is of the same order as the standard deviation (0.015Å) and the interaction can only be inferred by comparison with other molecules, e.g. (61).

3.2.2 7,8-endo-epoxy-2-oxatricyclo[3.3.0.0^{4,6}] octan-3-one³¹(60)

This is a highly strained tricyclic compound (60)⁷ in which the epoxide is constrained to a close approach on the lactone group thus introducing the possibility of a strong transannular interaction between the epoxide and the ketone of the type described by BDS.

Molecular geometry

Bond lengths, bond angles and torsion angles of interest are given in Figure 3.4. The crystal structure consists of discrete molecules (Figure 3.5) with no unusually short intermolecular contacts (Figure 3.6).

The ring fusions probably govern the conformations of the 5-membered rings.

Figure 3.4 Bond lengths (Å), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (60).

Fig 3,5

The structure of (60)

Fig 3,6

Packing diagram for (60)

The cyclopentane ring is in an envelope conformation (mirror plane bisecting C(7)-C(8)) with the flap <u>exo</u> to the epoxide. The lactone ring is also in an envelope (mirror plane bisecting C(3)-C(4)).

The $O(10)...\alpha(3)$ distance is 2.651(2)Å, which is unusually small for a non-bonded contact of this type and is mainly due to geometrical constraints imposed on the two 5membered rings by the C(4)-C(6) bond. Incipient nucleophilic attack by the lone pair of O(10) on the carbonyl carbon C(3)of the type described by BDS is observed. In confirmation of this, C(3) is displaced from the plain O(2), C(4), O(9) by 0.052(1)Å towards O(10). This agrees well with the relationship derived by BDS between the out-of-plane displacement of the C atom and the nucleophile 0...C=0 distance.

3.2.3 2,3-endo-epoxybicyclo[3.2.0] heptan-6-one-p-nitrophenylhydrazone (61)³⁵

The addition of nucleophiles to (6) is an important step in a number of syntheses of prostaglandins. The addition proceeds with high regio- and stereo-selectivity, giving predominantly the 3-<u>endo</u>-hydroxy product (Chapter 2.5). Since (6) is a liquid, the crystal structure of (61) (Figure 3.7), a solid derivative of (6), has been determined.

Fig 3,7

The structure of (61)

Fig 3,8

Packing diagram for (61). Hydrogen bonding is indicated by _____

. .

Figure 3.9 Bond lengths ($^{\circ}$), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (61).

Molecular geometry

The molecules are hydrogen-bonded to form chains N(10)(x,0.5-y,z-0.5)...0(8) = 2.970(2)Å. (Figure 3.8).

Bond lengths, bond angles and torsion angles of interest are given in Figure 3.9. The 5-membered ring has an envelope conformation with the flap <u>endo</u> to the epoxide (mirror plane bisects C(2)-C(3)).

The 4-membered ring has a twist conformation $(|\tau|C(1)-C(7)-C(6)-C(5) = 5.8^{\circ})$. The conformation of the 5-membered ring is not completely transmitted across the ring junction $(|\tau|C(2)-C(1)-C(5)-C(4) = 12.3^{\circ}, |\tau|C(6)-C(5)-C(1)-C(7) = 5.6^{\circ})$ and this introduces torsional strain (6.7°). This effect appears to be a result of the constraint applied to the 5-membered ring by the epoxide.

The O(8)...C(6) distance is 2.99O(3)Å which is short enough to be considered as incipient nucleophilic attack of the type described by BDS. In confirmation of this, C(6)is displaced from the plane C(7), C(5), N(9) by 0.008(3)Å towards O(8).

3.2.4 3-<u>exo</u>-methoxy-6,7-<u>endo</u>-epoxy-2-oxabicyclo-[3.3.0] octane (62)³⁴

The crystal structure of (62) was undertaken to provide data on the effect of an epoxide substituent on the conformation of the bicyclo[3.3.0] system. Also, unlike other bicyclic epoxides studied in this series, there is no possibility of transannular incipient nucleophilic attack by the epoxide (as in $(8)^8$).

The structure (62) consists of discrete molecules (Figure 3.10) with no unusually short intermolecular contacts (Figure 3.11).

Fig 3,10

The structure of (62)

Fig 3,11

Packing diagram for (62)

Molecular geometry

Bond lengths, bond angles and torsion angles of interest are given in Figure 3.12. The cyclopentane ring adopts a shallow envelope conformation with the flap <u>endo</u> to the epoxide ($|\tau|$ C(6)-C(5)-C(1)-C(8) is 10.5^o). An approximate mirror plane passes through C(1) and O(9).

A similar molecule (8)⁸, differing only in the replacement of the acetal by the more rigid lactone group

has a much more puckered carbocyclic ring $(|\tau| C(6)-C(5)-C(1)-C(8)$ is 18.5°). This suggests that an important factor in the conformation of (62) is the effect of the pseudo-axial methoxy group on the conformation of the tetrahydrofuran ring which is forced to take up a twist arrangement (diad through C(5)). The torsional strain about O(2)-C(3) is thus much reduced $(|\tau| C(1)-O(2)-C(3)-O(10) = 79.5^{\circ})$, but only at the cost at transmitting some strain to the carbocyclic ring. In confirmation of this, the unsubstituted cyclopentene epoxide $(67)^9$ is considerably more puckered than either (8) or (62) $(|\tau| C(2)-C(3)-C(4)-C(5) \text{ in } (67) \text{ is } 27.9^{\circ})$. Relief of torsional strain might also have been possible if the methoxy group had taken up a pseudo-equatorial position, but models suggest that a rather short O(9)...C(3) distance would then be found.

3.2.5 5-<u>exo</u>-hydroxy-3-oxatricyclo[5.1.1.0^{4,9}]nonan-8one,2,1'-spiro{4',5'-<u>exo</u>-epoxybicyclo[3.2.0]heptane}(58)

This molecule (58) is formed from the <u>exo</u>-epoxide (59) by an aldol condensation at elevated temperature with excess base (Chapter 2.4).

Spectroscopic methods (i.r., n.m.r., mass spectroscopy) failed to positively identify this structure. Thus, an X-ray investigation was undertaken.

This structure offers the opportunity to analyse the effects of the <u>exo</u>-epoxide group on the geometry and conformation of the bicyclo[3.2.0] system. Also this is the first structure in this series with a saturated 4-membered ring.

Molecular geometry

Bond lengths, bond angles and torsion angles of interest are given in Figure 3.13.

Figure 3.13

Bond lengths (Å), bond angles ($^{\circ}$) and torsion angles (⁰) for (58).

The structure (58) (Figure 3.14) consists of molecules hydrogen-bonded head to tail in chains, O(15)...O(3)(x,y-1,z) = 2.819Å (Figure 3.15).

The tricyclic fragment adopts a conformation partly constrained by the ether bridge from C(2) to C(8). Here, the cyclopentane ring is in an approximate twist conformation (diad bisecting C(2)-C(3)) with O(3) almost anti-periplanar to O(8) $(|\tau|0(3)-C(3)-C(2)-O(8) = 167.7^{\circ})$, while the cyclobutanone ring is almost planar ($|\tau| = 2.4^{\circ}$). This introduces considerable torsional strain across the C(1)-C(5) bond ($|\tau|$ C(2)-C(1)-C(5)- $C(4) = 14.3^{\circ}$ and $|\tau| C(7)-C(1)-C(5)-C(6) = 2.2^{\circ}$. The furan fragment is also in a twist conformation (diad through C(1)) with O(8) endo to the cyclobutane ring. The inequality of the bond lengths O(8)-C(2) (1.455(4)Å) and O(8)-C(8) (1.433(5)Å) may be due to steric strain. The approach of O(8) towards C(6) (a 1-4 interaction) is a close contact, however, there does not appear to be any evidence for incipient nucleophilic attack by O(8) on C(6). The O(8) lone pair is not suitably orientated towards C(6), and the O(8)...C(6)-O(6) angle is rather oblique at 124°. The carbonyl carbon C(6) is planar to within experimental error with 0.004(6)Å deviation from the plane of C(5),C(7),O(6).

In the bicyclic fragment, the cyclopentane ring has an envelope conformation (mirror plane bisecting C(9)-C(10)). The degree of hybridisation of C(8) has been reduced from sp^2 to sp^3 with the result that the cyclobutane ring is more puckered ($|\tau| = 17^{\circ}$) than in the keto form and therefore transannular strain about C(9)-C(13) is much reduced ($|\tau|$ C(10)-C(9)-C(13)-C(12) = 14.6°).

Fig 3,14

The structure of (58)

Fig 3,15

Packing diagram for (58). The hydrogen bonds are indicated by -

3.2.6 6-endo-methoxy-8-trans-N-methyl-N-p-toluenesulphonamide-2-oxabicyclo[3.2.1]octan-2-one (63)³³

The hydroxylactone (65) rearranges remarkably easily to the γ -lactone (66)¹ providing a useful route to prostanoids.

This reaction seems to be promoted by the steric properties of the molecule and in particular by the possibility of a transannular intramolecular interaction between the hydroxy and the lactone group of the type described by BDS². Accordingly, the model compound (63) has been studied in which the assistance of a transannular interaction similar to that seen in related molecules seemed probable.

Molecular geometry

The crystal structure of (63) consists of discrete molecules (Figure 3.16) with no unusually short intermolecular contacts (Figure 3.17).

11

÷

÷

82+

Figure 3.18

Bond lengths (Å), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (63).

Bond lengths, bond angles and torsion angles of interest are given in Figure 3.18.

The carbocyclic 5-membered ring has a strongly puckered envelope conformation with an approximate mirror plane through C(8). The lactone ring has a sofa conformation with C(1), O(2), C(3), C(4), C(5) almost coplanar. The methoxy substituent is thus directed away from the ring system and the observed C(3)...O(10) distance (3.492(6)Å) is much larger than that (3.1Å) for the weakest interaction found by BDS. There are no structural data for the bicyclic system or analogous molecules, but the geometry is essentially that which would be predicted for the unsubstituted ring system. It is clear, therefore, that any energy gained by incipient nucleophilic attack of O(10) on C(3) is insufficient to distort the relatively rigid bicyclic nucleus (see Chapter 4).

3.2.7 2-exo-bromo-3-endo-hydroxy-7,7-dichlorobicyclo-[3.2.0]heptan-6-one (29)30

The bromohydrin (2) displays a weak transannular interaction between the hydroxy group on C(3) and the ketone carbon, C(6).(...)

The interaction displayed by (2) could be interpreted as a 'frozen-out' intermediate on the reaction pathway of nucleophilic addition to a carbonyl. Unfortunately the interaction seen here was so weak that it could only be inferred from comparison with similar compounds. However there was the possibility that activation of the ketone group by electron withdrawing substituents would give a structure further along the reaction pathway. Compound (29), in which the carbonyl is activated by the presence of two adjacent chlorines, was reported (on ¹H n.m.r. evidence)¹² to exist in CCl_4 solution as an equimolar mixture of (29a) and (29b). The ketone and ketal form thus represent the reactant and product of nucleophilic attack by the hydroxyl on the ketone.

X-ray structure analysis of the solid which crystallises from CCl_4 revealed that, remarkably, the two independent molecules in the asymmetric unit correspond to (29a) and (29b).

Their molecular geometries show little distortion along the reaction pathway (29a)...(29b); the O...C = O length is 2.83(2)Å in (29a) and 1.43(1)Å in (29b). The expected outof-plane displacement of the carbonyl in (29a) is masked by experimental error.

It appears, therefore, that crystal packing forces, whilst not strong enough to trap an intermediate, have isolated both partners in a chemical equilibrium.

Though frequently seen in conformational processes, this is unusual for chemical reactions involving bond formation and is normally limited to proton exchange (e.g. in anthranilic acid where both the neutral molecule and zwitterion coexist in the crystal)¹³. This is the first example of ring-chain tautomers being isolated as partners in a crystal lattice.

For (29), it seems the crystal structure of (29a)+(29b) is more stable than either (29a) or (29b), provided that (29a) and (29b) are equilibrating in solution and that crystallisation gives the thermodynamically controlled product. Although the last point cannot easily be formally verified, differential scanning calorimetry of the crystals showed no phase transitions in the range 173K to 352K (M.Pt.).

The 13 C n.m.r. spectrum of crystals of (29) in CHCl₃ solution at 298K shows 14 resonances (Table 3.2).

TABLE 3.2	¹³ C N.m.r. s	pectrum of (29) at 29	<u>98K</u>
	ppm	atom assignment	integral
	195.4(s)	(6a)	
	104.2(s)	(6b)	
	89.l(s)	(7b)	0.9
	87.4(s)	(7a)	ì.0
	82.5(d)	(3a)	16.5
	80.6(d)	(3b)	17.3
	60.4(d)	(2b)	
	59.5(d)	(2a)	
	54.5(d)		
	52.5(d)		
	47.2(d)	(la),(5a),(lb),(5b)	
	47.0(d)		
	36.2(t)	(4a)	20.4
	33.0(t)	(4b)	18.1

At 298K the 13 C n.m.r. may be interpreted as a mixture of (29a)+(29b) in the ratio of 1.0:1.1.

The spectrum appears independent of temperature (compare Tables 3.2 and 3.3) suggesting that the inter-conversion of (29a)=(29b) is very slow and that the 1:1 composition in the

8	7	•

*TABLE 3.3	¹³ C N.m.r.	spectrum of	(29) at 304K
	ppm	atom	integral
	88.9	(7b)	19.4
	87.2	.(7a)	21.7
	82.4	(3a)	58.5
	80.3	(ЗЪ)	56.2
	36.1	(2a)	32.3
	32.9	(2b)	40.8

solid is determined by the stoichiometry of the crystal.

Addition of a trace of acid catalyst (p-CH₃C₆H₄SO₃H) markedly alters the spectrum, giving a non-integral ratio which is temperature dependent.

TABLE 3.4	Temperatur of the 13(a trace of	re dependence of C n.m.r. of (29) F acid catalyst	integrated in CHCl ₄ so	intensities lution with
ppm	atom	<u>238K</u>	<u>243K</u>	<u>304K</u>
195.4	(6a)			
104.2	(6Ъ)			
89.1	(7ь)	49.4	42.3	15.4
87.4	(7a)	20.5	20.0	14.1
82.5	(3a)	52.8	47.6	43.8
80.6	(3b)	10.6	14.9	39.6
60.4	(25)			
59.5	(2a)			
54.5				
52.5				
47.2				
47.0				
36.2	(2a)	9.8	10.6	29.0
33.0	(2b)	42.0	30.4	32.1

From the integrated intensities of the resonances at 33.0, 36.2, 80.6, 82.5, 87.4, 89.1 ppm, an estimate was made of the ratio of (29a):(29b) (Table 3.5).

Г(К)	<u>ratio</u>	(29a):(29b)
238		4:1
243		3:1
304		1:1

The above n.m.r. spectra were obtained on a Bruker WP80 at 20.13 MHz in inverse gated decoupling mode.

Increasing the concentration of the acid or raising the temperatures led, as expected, to coalescence of peaks with (29a)≠(29b) becoming rapid on the n.m.r. time scale. Recrystallisation of (29) from a number of

solvents: MeOH, MeNO₂, CHCl₃, CCl₄ with or without acid catalysis, always led to the same solid. This was verified by infra-red spectroscopy since the spectrum of (29a)+(29b)in a KBr disc is very characteristic with a double peak in the OH region (3380 and 3480 cm⁻¹) (Figure 3.19). The crystal morphology and melting points were also used as checks. This is evidence that despite the composition of the solution, packing forces appear to control the crystal structure and stoichiometry of the solid.

Molecular geometry

Bond lengths, bond angles and torsion angles of interest are given in Figure 3.20.

The structure is hydrogen-bonded (O(1a)...O(2b) = 2.979Å (x,-y,Z-0.5); O(2b)...O(2a) = 2.836Å (0.5-x,0.5-y,-z)in chains along the c-glide (Figure 3.21). The ketone of (29a) is H-bonded to the hydroxyl of (29b). The hydroxyl of (29b) is

Figure 3.19

I.r. spectra of (29) displaying a double OH peak at 3350 and 3450 cm⁻¹, corresponding to the 2 isomers (29a) and (29b).

Figure 3.20a

Bond lengths (Å), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (29a) (the bicyclic partner).

Figure 3.20b

Bond lengths (Å), bond angles ([°]) and torsion angles ([°]) for (29b) (the tricyclic partner). also H-bonded to the hydroxyl of (29a) (i.e. the next molecule in the chain). The ketone of this molecule of (29a) is H-bonded to the hydroxyl of (29b) (etc.). The structure has 2 molecules in the asymmetric unit (Figure 3.22).

The bicyclic molecule (29a), has the 5-membered ring in an <u>endo</u>-envelope conformation with an approximate mirror plane bisecting C(la)-C(5a). The 4-membered ring has a twist conformation ($|\tau|$ C(7a)-C(la)-C(5a)-C(6a) = 6.9°). There is a relatively strong transannular interaction of the type described by BDS; O(la)...C(6a) = 2.808(10)Å with an out-of-plane displacement of C(6a) from the plane C(5a),C(7a),O(2a) towards O(la) of 0.016(12)Å.

The tricyclic molecule (29b) is considerably different conformationally from the bicyclic molecule (29a). Here, the 5-membered ring is an approximate twist conformation (diad bisecting C(3b)-C(4b)). The reduction of the carbonyl (which appears to encourage a planar geometry of the 4-membered ring) to a hemiketal results in the 4-membered ring displaying a conformation which is considerably twisted $(|\tau| C(7b)-C(1b) C(5b)-C(6b) = 24.2^{\circ}$). Also, there is the additional constraint of the ether linkage O(1b). The close proximity of C1(7b)endo to O(1b) (3.163(10)Å in (29a) and 3.016Å(10) in (29b)) results in steric repulsion which further assists twisting of the 4-membered ring. The formation of the transannular ether linkage is accomplished (conformationally) by an increase in the pucker of the 5-membered ring; the angle between the mean C(4), C(5), C(1), C(2) and C(2), C(3), C(4) is 145° in (29a) planes and 128° in (29b). Also, the angle between the 4- and 5-membered rings is reduced i.e. the angle between the mean planes

93.

Fig 3, 21

Packing diagram for (29). This is a section through the unit cell showing chains of hydrogen-bonded molecules (H-bonding is depicted as ____).

The structure of (29). Remarkably, the crystal structure consists of both the open chain (29a) and ring forms (29b) in a single crystal.

C(4), C(5), C(1), C(2) and $C(6), C(5), C(1), C(7) = 117.4^{\circ}$ in (29a) is reduced to 102° in (29b). This conformation results in an almost anti-periplanar arrangement of Br(1b) and O(1b) $(|\tau| 0(1b)-C(3b)-C(2b)-Br(1b) = 178^{\circ})$. This angle is 163° in (29a). The O(1)-C(3) bond length is increased from 1.424(10)Å in (29a) to 1.460(12)Å in (29b) as O(1) is displaced towards C(6). The O(1a)...C(6a) distance of 2.808(10)Å is reduced to 1.410(10) on forming a bond with C(6). Also, the carbonyl bond (C(6a)-O(2a) = 1.198(10)Å) increases in length, as expected, on formation of the hemiketal (C(6b)-O(2b) = 1.393(13)Å).

Stereo diagrams of the structures are displayed in Figure 3.23 a-g.

Since the structures (8), (74) and (64)^{5,6,8} are included in the discussion (Chapter 5), some bond lengths, angles and torsion angles of these compounds are given in Figures 3.24, 3.25 and 3.26.

94.

.

2.0

Figure 3.23

Stereo diagrams of the crystal structures of (3), (60), (61) and (62).

 $\frac{Fig}{c_1} 3, 23 (cont'd)$

(58)

Stereo diagrams of the crystal structures of (58), (63) and (29).

Figure 3.24 Bond lengths (A), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (8).

Figure 3.25a

Bond lengths (A), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (15a). There are two independent molecules in the 'asymetric unit.

Figure 3.25b

Bond lengths (Å), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (15b). There are two independent molecules in the asymetric unit.

Figure 3.26a Bond lengths (Å), bond angles ($^{\circ}$) and torsion angles ($^{\circ}$) for (64a). There are two independent molecules in the asymetric unit.

3.3 X-ray Experimental Method (all compounds)

Exploratory photographic data were collected on a Stoe Weissenberg camera using nickel filtered CuK α radiation and a Supper precession camera using zirconium filtered MoK α radiation.

Intensity data were collected on a Stadi-2 2-circle diffractometer using graphite monochromated MoKa radiation.

Integrated intensities were typically collected in 1 second steps by an ω° -scan of 80 x $\Delta \omega^{\circ}$ about the reflection peak over a variable range of $\Delta \omega^{\circ} = A + B \sin \mu / \tan \theta^{\circ}$ where A = B = 1.2.

Background intensities were collected for 20 steps of 1 second before and after the reflection (in ω°).

Corrections were made for Lorentz and polarisation effects (but not for extinction or absorption) and the data scaled by a Wilson plot (SHELX76¹⁷).

SHELX76 and MULTAN77¹⁸ computer packages were used for structure solution where indicated. All refinement calculations were carried out with SHELX76.

Complex neutral atomic scattering factors were taken from International Tables for X-ray Crystallography (1974)¹⁶.

The structures were refined by full matrix least squares minimisation. The functions minimised were $R = \Sigma \|Fo| - |Fc\| / |Fo|$ and $Rw = \Sigma (\|Fo| - |Fc\| \omega^{\frac{1}{2}}) |Fo| \omega^{\frac{1}{2}})$.

The refinement was assumed to have converged when the shifts in the atomic parameters were less than their standard deviations.

Hydrogen atoms were initially assigned calculated positions and included in the refinement (unless otherwise stated).

Densities were measured by the flotation method.

3.3.1 2-(S)-exo-bromo-3(S)-endo-hydroxybicyclo-[3.2.0]heptan-6-one (3).

The crystals were transparent, needle shaped and extinguished under crossed polars parallel to the needle axis. In cross section they appeared to have a C₃ axis.

A crystal of approximate dimensions 0.3 \times 0.3 \times 0.5mm was selected and mounted parallel to the needle axis.

Space group determination

A zero layer Weissenberg (h01) photograph displayed rhombohedral or hexagonal symmetry ($\beta = 120^{\circ}$), however the spot intensities indicated a C₆ axis. An upper layer Weissenberg photograph (h11) showed a C₃ axis from spot intensities. A precession photograph (Ok1) indicated systematic absences; 0001:1=3n. Precession and oscillation photographs gave cell dimensions consistent with trigonal symmetry (a=b=10.13Å,c=6.66Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 120^{\circ}$). The experimental density was measured as 1.72 MgM⁻³, which indicated 3 molecules per unit cell. The space group was assumed to be either P3₁ or P3₂ with inversion of axes.

Intensity data collection

Data were collected for hki0-61 with θ max=25°. This gave 752 data of which 563 reflections (including 52 Friedel pairs of the form hki0 with I>3 σ (I) were used in subsequent calculations.

The crystal blackened on prolonged exposure to X-rays.

Structure solution

The structure was solved by the heavy atom method⁴ with SHELX76.

The equivalent positions for space group P_{1}^{3} are (1) x,y,z; (2) -y,x-y,1/3+z; (3) y-x,-x,2/3+z. A single heavy atom gives rise to the vectors in Table 3.6.

TABLE 3.6

combination	vector	
1,2	x+y, 2y-x, -1/3	a
1,3	2x-y, y+x, -2/3	Ъ
2,3	-2y+x, 2X-y, -1/3	С
2,1	-y-x, x-2y, 1/3	-a
3,1	y-2x, -x-y, 2/3	- b
3,2	2y-x, -2x+y, 1/3	- c

The bromine atom coordinates were found as follows: Vectors a, b and c are related by the 3-fold axis and a+c=b. A Patterson map gave the atom-atom vectors; those of highest intensity (apart from the base peaks) are due to Br-Br vectors. The coordinates of peak 3 on the Patterson map (0.0656,0.312, 0.6677, peak height = 292) when substituted in equation (-b) gives

> y-2x = 0.0656-x-y = 0.3120.

These equations solve to give the coordinates of one bromine position -.1259, -.1861, z.

The bromine phased Fourier map contained many spurious peaks and could not be interpreted. From a difference map could be deduced a 5-membered ring and a carbonyl (at this stage R=0.20).

Structure refinement

All the non-hydrogen atoms were identified from difference maps giving R = 0.074. The inclusion of a weighting scheme, anisotropic thermal parameters for the non-hydrogen atoms and hydrogen atoms which were refined from calculated positions (except the H of OH) gave R = 0.069.

The hydroxyl-hydrogen was identified from a difference map and the refinement converged at R = 0.0416.

Determination of chirality

The absolute configuration of the molecule was determined using the anomalous dispersion effect of the bromine atoms.

Weighted full matrix least squares refinement converged at R = 0.0416 in P3₁ and R = 0.0450 in the enantiomeric structure in P3₂. (In most space groups, a simple inversion of the axes will produce coordinates for the enantiomeric structure. However, in this space group, which possesses a 3-fold screw axis, the handedness of the screw axis must also be changed, in this case from a 3_1 screw axis to a 3_2 screw axis.)

The correct enantiomorph may be deduced using Hamiltons R-factor ratio²⁰.

There were 563 reflections and 97 parameters in the refinement, therefore n-m=466.

The ratio or the R-factors i.e. $\text{RP3}_2/\text{RP3}_1$ was = 1.0817. The hypothesis that the structure in P3_2 is the correct structure is a one dimensional hypothesis (the dimentionality of this hypothesis has been subject to debate recently¹⁹). Since $\Re 1,466,0.005=1.0079$, we may reject the configuration in P3₂ at lower than the 0.005 level. This result was subsequently confirmed by examination of 41 Bijvoet pairs. 34 pairs had Fo(A)/Fo(B) and Fc(A)/Fc(B)both >1 or <1 where (A) and (B) refer to refinement in P3₁ and in P3₂ with inversion of coordinates.

Crystal data are given in Table 3.7.

TABLE 3.7

Molecular formula C₇H₉O₂Br. M_r=204.9

Approximate crystal dimensions 0.3 x 0.3 x 0.5mm.

Trigonal, P3₁, from structure solution and refinement a=b=10.13(2),c=6.66(1)Å from diffractometer measurements (MoKa radiation)

 $V = 592 Å^3, Z=3$

$$D_{\rm m} = 1.72 Mg M^{-3}, D_{\rm C} = 1.73 Mg M^{-3}$$

F(000)=306, μ =5.22mm⁻¹
[α] $D^{20.0} = -60^{\circ}$

In P3₁, R=0.0416, $R_w=0.0287$ (w=3.0286/(σ^2 (Fo)+0.000036(Fo)²) In P3₂, R=0.045, $R_w=0.0361$ (w=1/ σ^2 (Fo)+0.000123(Fo)²).

Preliminary oscillation photographs of 4 crystals showed them to be unsuitable due to multiple reflections. The fifth crystal selected had approximately monoclinic morphology and exhibited extinctions under crossed polars parallel to the needle axis.

Space group determination

An oscillation photograph exhibited mirror symmetry. From Weissenberg (h0ℓ,h1ℓ) and precession photographs (hk0,0kℓ) systematic absences; h0ℓ:ℓ odd; 0k0:k odd were observed. Approximate cell dimensions from photographs were consistent with monoclinic symmetry. The measured density was $1.59 Mg M^{-3}$, which implied 4 molecules per unit cell. The space group was assumed to be P2,/c.

Intensity data collection

Data were collected for h0-l0 ℓ with θ max=25°. This gave 1481 data of which 1124 unique reflections with I > 3 σ (I) were used in subsequent calculations.

Crystal quality deteriorated by ca. 5% in (I) (standard reflection (2,2,0)) during the course of the experiment and therefore an empirical correction was applied.

Structure solution

The structure was solved by direct methods with SHELX76.

A convergence map gave 2631 unique phase relations. The automatic centrosymmetric structure solution routine gave 2 E-maps. All the non-hydrogen atom positions could be deduced from E-map 1.

Structure refinement

The inclusion of a weighting scheme and anisotropic temperature factors gave R=0.074. Hydrogen atom positions were deduced from a difference synthesis giving R=0.045. Omission of the (0,1,3) reflection (probably affected by the backstop) gave R=0.041.

Crystal data are given in Table 3.8.

•

•

TABLE 3.8 Molecular formula C₇H₆O₃. M_r=138.1

Approximate crystal dimensions 0.6 x 0.3 x 0.1mm. Monoclinic $P2_1/c$. a=6.36(1),b=9.58(2),c=9.71(1)Å, β =75.13(2)^o, from diffractometer measurements (MoK α radiation). V=572Å³, Z=4, D_m=1.59MgM⁻³, D_c=1.60MgM⁻³. F(000)=288, μ =0.08mm⁻¹. R=0.041, R_W=0.045 (w=3.1037/(σ^2 (Fo)+0.000368(Fo)²).

3.3.3 2,3-endo-epoxybicyclo[3.2.0]heptan-6-onep-nitrophenylhydrazone (61)

The crystal selected was orange and extinguished under crossed polars parallel to an approximate needle axis. The approximate crystal dimensions were 0.6 x 0.5 x 0.15mm. The crystal was mounted parallel to the direction of extinction.

Space group determination

Oscillation, Weissenberg (hOl,hll) and precession (hk0,Okl) photographs indicated monoclinic symmetry (2/m) with systematic absences; hOl:l odd; OkO:k odd. Approximate cell dimensions measured from photographs were consistent with monoclinic symmetry. The density was measured as 1.37MgM⁻³, which indicated 4 molecules per unit cell.

The space group was assumed to be $P2_1/c$.

Intensity data collection

Data were collected for h0-61 and 0-3k1 with θ max=25°. 2164 unique data were recorded for the b axis and 832 data for the a axis (the crystal was remounted). The data were merged without layer scales after structure solution to give 2351 unique data of which 1538 reflections with I > 3 σ (I) were used in subsequent calculations. The structure was solved by direct methods with SHELX76 using the intensity data from axis b. The non-hydrogen atoms could be deduced from E-map 2.

Structure refinement

The inclusion of all the non-hydrogen atoms gave R=0.144. The addition of hydrogen atoms at calculated positions and a weighting scheme gave R=0.127. The temperature factors of the non-hydrogen atoms were made anisotropic giving R=0.045. At this stage data from axis a was merged (merging R-factor = 0.0498 (mean abs(ExE-1)=(approx.) 0.97 in effective N range). The refinement converged at R=0.048.

Crystal data are given in Table 3.9.

TABLE 3.9

Molecular formula $C_{13}H_{13}N_{3}O_{3}$. $M_{r}=259.14$ monoclinic, $P2_{1}/c$. a=9.50(2),b=13.73(2),c=9.70(2)Å,\beta=83.19(2)^O, from diffractometer measurements (MoK α radiation). V=1257Å³, Z=4 $D_{m}=1.37MgM^{-3}$, $D_{c}=1.36MgM^{-3}$. F(000)2545, $\mu=0.061mm^{-1}$ R=0.0479, $R_{W}=0.0459$ (w=4.4729/(σ^{2} (Fo)+0.000169(Fo)²).

3.3.4 3-exo-methoxy-6,7-endo-epoxy-2-oxabicyclo-[3.3.0]octane (62)

The crystals selected were white with no obvious crystal faces. Preliminary oscillation photographs indicated they decomposed or sublimed in air, therefore a suitable crystal was enclosed in a sealed glass tube to prevent deterioration. This crystal extinguished under crossed polars parallel (and perpendicular) to an approximate needle axis.

Space group determination

Weissenberg photographs (h01,h11,h21) displayed monoclinic symmetry (2/m) with systematic absences, hk1:h+k=2n; h01:1=2n; 0k0:k=2n. Cell dimensions were measured from Weissenberg and oscillation photographs and were consistent with monoclinic symmetry. The approximate density (the crystals dissolved slowly in a number of solvents tried) was 1.2MgM⁻³, which implied 8 molecules per unit cell. The space group was assumed to be C2/c.

Intensity data collection

Data were collected for h0-7% with θ max=25°. This gave 1698 data of which 905 unique reflections with I > 3 σ (I) were used in subsequent calculations.

Structure solution

The SHELX76 automatic centrosymmetric structure solution routine gave 4 E-maps. All the non-hydrogen positions could be deduced from E-map 1.

Structure refinement

The temperature factors of the non-hydrogen atoms were made anisotropic giving R=0.136. The addition of a weighting scheme and hydrogen atoms at calculated positions gave R=0.068. Omission of the 402 reflection (which had a low observed I, probably due to the backstop) gave R=0.0483, at which point the refinement had converged.

Crystal data are included in Table 3.10.

TABLE 3.10

Molecular formula $C_8H_{12}O_3$. M_r =156.18 approximate crystal dimensions 0.5x0.3x0.2mm. Monoclinic, C2/c. a=17.15(2), b=6.15(2), c=14.99(2)Å, β =82.47(3)^O from diffractometer measurements (MoKa radiation). V=1568Å³, Z=8, D_c =1.32MgM⁻³, D_m =1.2MgM⁻³, F(000)=672, μ =0.061mm⁻¹. R=0.0483, R_w =0.0510 (w=3.16/ σ^2 (Fo)+0.001(Fo)²).

3.3.5 spiro{5-<u>exo</u>-hydroxy-3-oxatricyclo[5.1.1.0^{4,9}]nonan-8-one-2-1'(4',5'-<u>exo</u>-epoxybicyclo[3.2.0]heptane)} (58)

Recrystallisation from an ethanol/methanol mixture gave clear needle like crystals which extinguished parallel and perpendicular to the needle axis. A fragment of approximate size 0.5x0.2x0.1mm was mounted parallel to the needle axis.

Space group determination

An oscillation photograph displayed mirror symmetry. Weissenberg (h0l) and precession (h0l,0kl) photographs showed systematic absences; 0kl:l=2n, h0l:h=2n and cell dimensions consistent with the orthorhombic space groups Pca2₁ or Pcam.

The density was measured to be 1.45MgM⁻³ which implied 4 molecules per unit cell. The space group was assumed to be Pca2₁.

Intensity data collection

Data were collected for hk0-91 with θ max=25°. This gave 1401 data of which 987 unique reflections with I > 3 σ (I) were used in subsequent calculations.

Structure solution

A convergence map gave 2449 unique phase relations.

3 origin defining reflections were chosen (6,0,1; 16,1,0; 5,1,0) and assigned phases of 0° . An enantiomorph defining reflection (12,6,5) was assigned phases of 45[°] and 135[°] and one multisolution reflection (3,12,1) was assigned the possible phases of 45[°],135[°],225[°],315[°]. From this starting set, 8 E-maps were computed.

From E-map 1, all the non-hydrogen atom positions could be deduced.

Structure refinement

The inclusion of a weighting scheme and anisotropic temperature factors gave R=0.08. The addition of hydrogen atoms at calculated positions followed by least squares refinement gave R=0.046, at which point the refinement had converged.

Crystal data are given in Table 3.11.

TABLE 3.11

Molecular formula $C_{14}H_{16}O_4$, M_r =248.28 approximate crystal dimensions 0.5x0.2x0.1mm. orthorhombic, Pca2₁, a=11.78 (2),b=9.04 (2),c=11.09 (3)Å from diffractometer measurements (MoKa radiation). V=1182.13Å³, Z=4 D_m =1.36MgM⁻³, D_c =1.39MgM⁻³. F(000)=528, μ =0.06mm⁻¹ R=0.046, R_w =0.0495 (w=1/ σ^2 (Fo)+0.0014(Fo)²).

3.3.6 6-endo-methoxy-8-trans-N-methyl-N-p-toluenesulphonamide-2-oxabicyclo[3.2.0]octan-2-one (63)

Preliminary oscillation photographs of two crystals showed them to be unsuitable due to 'tails' on the reflections (these would present difficulty in background intensity measurement).

The third crystal was monoclinic in shape and extinguished along the needle axis under crossed polars. The approximate crystal dimensions were 0.6x0.2x0.6mm. It was mounted parallel to the needle axis.

Space group determination

Weissenberg (Okl, lkl) and precession (hOl, hkO) photographs indicated 2/m symmetry with systematic absences; hQl:l odd, OkO:k odd. Approximate cell dimensions measured from photographs were consistent with monoclinic symmetry. The density was measured as 1.35MgM⁻³, which implied 4 molecules per unit cell.

The space group was assumed to be monoclinic, P21/c.

Intensity data collection

Data were collected for 0.6kl with $\theta max=25^{\circ}$. This gave 3253 data of which 1655 unique reflections with (I)>3 σ (I) were used in subsequent calculations.

Structure solution

The SHELX76 programs were used for all calculations.

A convergence map gave 2631 unique phase relations. The structure was solved by manual symbolic addition²¹.

A Σ_2 listing gave 475 reflections with |E| > =1.30. From the Σ_2 listing, 3 origin defining reflections of high E were chosen; 5,3,3; -5,6,7; -1,2,9 and assigned a phase of 0[°]. A further 4 reflections were assigned the symbolic phases a,b,c,d.

In the space group P2₁/c the following relationships may be derived (s=sign):

s(hkl)=s(-h-k-l)=s(h-kl)=s(-hk-l) for h+l=2n
s(hkl)=s(-h-k-l)=-s(h-kl)=-s(-hk-l) for k+l=2n+l.

These relationships were utilised to assign phases to a further 21 reflections. From the solution a=b=0 and $c=d=\pi$ an electron density map was computed using the signed E values as coefficients. From this map, the non-hydrogen atom positions could be deduced.

Structure refinement

The addition of a weighting scheme gave R=0.118. Hydrogen atoms were attached in calculated positions and the temperature factors of the non-hydrogen atoms made anisotropic giving R=0.063.

The high temperature factors of the hydrogens attached to C(23) indicated disorder. These were refined as 2 methyl groups with occupancies summed to unity, giving R=0.056. At this stage, the refinement had converged. A difference map showed no unusual features.

Crystal data are given in Table 3.12.

TABLE 3.12

Molecular formula $C_{16}H_{21}NO_5S$. $M_r=339.4$ approximate crystal dimensions $0.6 \times 0.2 \times 0.6 \text{mm}$. monoclinic, $P2_1/c$. a=6.46(2), b=11.77(1), c=22.62(1)Å, $\beta=101.97(1)^{\circ}$ from diffractometer measurements (MoK α radiation). $V=1683Å^3$, Z=4 $D_m=1.35MgM^{-3}$, $D_c=1.34MgM^{-3}$. F(000)=720, $\mu=0.172 \text{mm}^{-1}$. R=0.057, $R_W=0.041(w=(3.76/(\sigma^2(Fo)+0.000022(Fo)^2))$.

3.3.7 <u>2-exo-bromo-3-endo-hydroxy-7,7-dichlorobicyclo-</u> [3.2.0]heptan-6-one (29)³⁰

Recrystallisation from CCl₄ solution gave clear colourless crystals of approximately monoclinic shape which extinguished parallel to the needle axis. The crystals selected were mounted about the needle axis.

Space group determination

Preliminary oscillation photographs of 4 crystals displayed unfavourable characteristics due to absorption (crystal too big) or multiple reflection (tails on reflections). The 5th crystal of dimensions 0.5x0.7x0.7mm was of suitable quality.

An oscillation photograph displayed mirror symmetry. Weissenberg photographs (hk0,0kl) gave approximate cell dimensions consistent with monoclinic symmetry with systematic absences; hkl:h+k=2n, h0l:l=2n; 0k0:k=2n. The measured density was 1.7MgM⁻³. This implied 8 molecules per unit cell.

The space group was assumed to be monoclinic, C2/c.

Intensity data collection

2 data sets were collected. The first (using the above crystal) was used for structure solution. Data set 1:

Data were collected for h0-9kl with 0max=25°. This gave 3139 data of which 1361 unique reflections with I>3g(I) were used for subsequent calculations.

Data set 2:

Data were collected on a new crystal, mounted about axis c, of dimensions $0.8 \times 0.5 \text{mm}$ for hk0-9% with $\theta \text{max}=25^{\circ}$. This gave 2871 data of which 1596 with I>3 σ (I) were used in subsequent calculations. An empirical correction

was applied as the standard reflection (2,-2,0) decreased in intensity by ca. 6% during the experiment.

Structure solution

Data set 1 was used for structure elucidation. SHELX76 direct methods failed due to severe pseudo symmetry of the bromine atoms, which appeared to be near a pseudo mirror plane. This was evident from the data as odd layers were of low intensity. Similarly the Patterson (vector) map was not easy to interpret. Intensity data was input into MULTAN78. The data was scaled by a Wilson plot and 188 of the largest E-values (with the 6 smallest E values, used to calculate psi zero figure of merit) were used to prepare a convergence map. Two origin defining reflections (0,4,1 and 17,3,-4) and 3 other reflections (0,4,4; 2,6,8; 12,2,-4) were chosen as a starting set. Tangent formula expansion followed by a Fourier synthesis gave 8 E-maps. E-map 2 appeared to give the positions of 2 bromine and 4 chlorine atoms.

Structure refinement

The structure was refined on SHELX76.

The non-hydrogen atom positions of a bicyclo[3.2.0] fragment were deduced from a difference map which included the atom coordinates determined by MULTAN78, giving R=0.26.

A further difference map revealed another polycyclic fragment.

Inclusion of a weighting scheme and anisotropic thermal parameters gave R=0.0758. Hydrogen atom positions were determined from difference maps. The refinement for data set 1 converged at R=0.0641.

The second data set refined to R=0.0537 and this was

used for subsequent calculations. A final difference map revealed no additional features.

Crystal data are given in Table 3.13.

TABLE 3.13

Molecular formula $C_7H_7BrClp_2$, $M_r=273.9$, Z=16. approximate crystal dimensions 0.8x0.6x0.4mm. monoclinic, C2/c. a=22.98(1), b=12.05(1), c=14.41(1)Å, $\beta=72.22(1)^{\circ}$ from diffractometer measurements (MoKa radiation). V=3801Å³, F(000)=2144, $\mu=4.71mm^{-1}$, $D_m=1.7MgM^{-3}$, $D_c=1.8MgM^{-3}$. R=0.0537, $R_w=0.0507(w=3.2568/(\sigma^2(Fo)+0.000398(Fo)^2)$. APPENDIX A: Structure solution by heavy atom methods 4,22,26

The electron density of an averaged unit cell can be reconstructed by summing the Fourier series

$$P(x,y,z) = \frac{1}{V} \sum_{H} |F_{H}| \cos[2\pi(hx+ky+\ell Z) - \phi_{(hk\ell)}]$$

Unfortunately, only the intensities are observable from an X-ray diffraction experiment, the phases ϕ are unknown.

Patterson²⁷ derived a new Fourier series which could be calculated directly from experimental data. This considered not the atomic positions but the interatomic vectors. The Patterson function²² is usually written in 3 dimensions as:

$$P_{(u,v,w)} = \frac{2}{V_c} \sum_{h} \sum_{k} \sum_{\ell} |F_{\hat{H}}|^2 \cos 2\pi (hu+kv+\ell w)$$

The Patterson function can be handled in a similar fashion to the corresponding electron density function, however, the peaks of maximum intensity now correspond to interatomic vectors between atom pairs. There are as many Patterson peaks as there are i, j pairs of atoms, i.e. N^2 . The N peaks corresponding to i, j pairs appear at the origin of the Patterson function and the remaining N(N-1) peaks are centrosymmetrically distributed about the origin. It is thus only really necessary to consider half the Patterson unit cell. Although the crystal structure may be any one of the 240 space groups, the Patterson function introduces a centre of symmetry, thus only the primitive and centred Laue groups are seen.

The geometry of the peak locations in a Patterson function is due to the sets of interatomic vectors, each set using one atom as an origin, repeated for each atom and

weighted according to the electron density of the atom at the origin.

The height of a Patterson peak is proportional to the atomic numbers of the 2 atoms forming the vector.

In very favourable cases, if the Patterson peaks do not overlap it is possible to deduce atomic positions from vector triplets⁴. However, this is seldom the case due to the large number of peaks present in even relatively small structures.

If there are heavy atoms present in the structure e.g. bromine in an organic molecule containing only carbon, hydrogen and oxygen, since the Patterson peak intensities are proportional to the atomic numbers of the atoms involved, those peaks corresponding to vectors between the light atoms are of relatively low intensity, those corresponding to light and heavy atoms are of greater intensity and those of highest intensity correspond to interatomic vectors between the heavy atoms. This means that peaks may be assigned to particular .atom pairs, i.e. those involving the heavy atoms.

From the symmetry elements of the space group, the possible interatomic vectors between symmetry related atoms are evident. Since the Patterson peaks correspond to these interatomic vectors, the coordinates of the heavy atoms may be deduced from a series of simultaneous equation.

The clarity of the Patterson map may be increased by using a sharpened Patterson function. In this case, the atomic scattering factors are modified to behave as point atoms where their scattering power is not a function of $\sin\theta/\lambda$ but of their atomic number Z. A common approximation is^{26}

$$|F_{\widetilde{H}}|_{\widetilde{mod}}^{2} = \frac{|F_{\widetilde{H}}|_{obs}^{2}}{\exp[-2B(\sin^{2}\theta)/\lambda^{2}] \left(\sum_{i=1}^{N} f_{i}^{2}\right)}$$

Once |F point|'s are obtained from the measured |F real|, they can be squared and used in a sharpened Patterson function. This technique shows up more peaks.

Also, the origin peak can be a problem, swamping the close-in peaks and causing problems of scale. This may be removed by using modified coefficients of the form²⁶ (with F's placed on an absolute scale)

 $I_{\widehat{H}}^{I} = |F_{\widetilde{H}}|^{2} - \sum_{\substack{\Sigma \\ i=1}}^{N} f_{i}^{2}$

APPENDIX B: Direct methods of phase determination 4,22

Direct methods are analytical approaches to phase determination which are independent of trial structures (or nearly so). They are designed to find the phase information hidden in the intensities of the observed reflections by the use of approximate mathematical relationships and statistical methods.

The major source of information on the crystal structure is contained in the very strong and very weak reflections, where strong and weak refer to the intensities of the reflections corrected for scattering angle i.e. the structure factors are converted to normalised structure factors, $E_{\tilde{H}}$.

$$E_{\tilde{H}} = \frac{F_{\tilde{H}}}{(\epsilon_{\tilde{i}} f_{\tilde{i}}^2)^{\frac{1}{2}}}$$

Thus, $E_{\tilde{H}}$ is the ratio of $F_{\tilde{H}}$ to its root mean square expectation value and the quantity ε is introduced to allow for space group symmetry, which affects the intensities of some reflections e.g. in the space group P2₁/c where systematic absences are present, some reflections are missing while others are increased in intensity. The average intensities of (h0*l*) reflections for which *l* = 2n is twice as large as for hk*l* reflections.

The experimental data are usually on an arbitrary scale, however the proportionality factor and the overall temperature factor can be derived.

If k is the unknown scale factor to convert relative F values to the absolute values then

$$k(F_{\tilde{H}})_{rel} = F_{\tilde{H}}$$

$$k^{2} \langle F_{\tilde{H}}^{2} \rangle_{rel} = \sum_{i} f_{i}^{2} = \sum_{i} (f_{i}^{0})^{2} \exp(-2B\sin^{2}\theta/\lambda^{2})$$

thus,

$$\ln \left\{ \frac{\langle F_{\tilde{H}}^{2} \rangle_{rel}}{\sum_{i} (f_{i}^{0})^{2}} \right\} = -2(\ln \underline{k} + B \sin^{2} \theta / \lambda^{2})$$

So, by calculating $\langle F_{\widetilde{H}}^2 \rangle$ and $\sum_i (f_i^0)^2$ in various $\sin\theta/\lambda$ ranges and plotting the l.h.s. of the above equation against $\sin^2\theta/\lambda^2$ the straight line fitted to these points has a slope corresponding to the temperature factor coefficient B and from the intercept at $\sin\theta/\lambda = 0$, the scale factor k may be obtained.

Most modern direct methods use normalised structure factors or E values. In recent years, a number of inequality and equality relationships have been derived which attempt to predict the signs (or phases if non-centrosymmetric) of particular reflections. Sayre's equation is the basis of many such relationships. If one of the products is large, it will tend to dominate the sum. For a centrosymmetric structure, for $F_{hk\ell}$, $F_{h'k'\ell'}$, $F_{h-h'}$, k-k', $\ell-\ell$, all large, it follows that

 $s(hkl)s(h'k'l')s(h-h',k-k',l-l') \approx + 1$

where s = sign.

The symbol pprox means 'probably equals'.

The vectors associated with these reflections d*(hkl),d*(h'k'l') and d*(h-h',k-k',l-l') form a closed triangle or vector triplet. The physical significance of these triplets is that if they are drawn in real space, their points of intersection correspond to atomic positions. The probability is particularly strong if they have high E values.

This may be written in a more general form²³.

$$s[E(hkl)] \approx s \left[\sum_{h'k'l} E(h'k'l')E(h-h',k-k',l-l') \right]$$

The summation is over all vector pairs with known signs which form a triplet (hkl). The probability P is given by

$$P_{+}(hkl) = \frac{1}{2} + \frac{1}{2} \tanh[(\sigma_{3}/\sigma_{2}^{3/2})\alpha']$$

where α ' is given by

$$\alpha' = |E(hk\ell)| \sum_{hk\ell} E(h'k'\ell')E(h-h',k-k',\ell-\ell')$$

and σ_n by

 $\sigma_n = \sum_{i=1}^{\infty} Z_i^n$ Z = atomic number of the ith atom.

In practice, a list of strong triples and their associated triple products is produced. This is helped in many cases by the space group symmetry. When glide planes or screw axes are present, additional relationships hold e.g. in P21/c,

$$k+l=2n: s(hkl)=s(-h,-k,-l)=s(h,-k,l)=s(-h,k,-l)$$

k+l=2n+l: s(hkl)=s(-h,-k,-l)=-s(h,-k,l)=-s(-h,k,-l).

A listing of triple sign relationships is developed (Σ_2) by considering each value of E_{hkl} greater than a preset limit e.g. 1.4, in order of decreasing magnitude as a basic hkl vector and searching the data for all interactions with h'k'l' and h-h',k-k',l-l'.

One possible continuation of this approach is to assign phases symbolically²⁴.

The first step is to fix the origin (of the x,y,z, coordinates of the structure) using a few phases guessed either uniquely or symbolically. In centrosymmetric crystals the selection of phases is relatively easy (compared to the noncentrosymmetric case) due to Friedel's law as the imaginary part of the structure factor disappears

$$A'(hkl) = \sum_{i=1}^{n/2} g_i [\cos 2\pi (hx_i + ky_i + lz_i) + \cos 2\pi (-hx_i - ky_i - zl_i)]$$

$$B'(hkl) = \sum_{i=1}^{n/2} g_i [\sin 2\pi (hx_i + ky_i + lz_i) + \sin 2\pi (-hx_i - ky_i - zl_i)]$$

Since for any angle ϕ , $\cos(-\phi) = \cos \phi$ and $\sin(-\phi) = -\sin\phi$ A'(hkl) = $2\sum_{i}^{n/2} g_i \cos 2\pi (hx_i + ky_i + lz_i)$

B'(hkl) = 0

Thus $\phi_{\widetilde{H}} = 0$ if A'(hkl) is positive and $\phi_{\widetilde{H}} = \pi$ if A'(hkl) is negative. (g_i is the temperature corrected atomic scattering factor).

Three origin defining reflections are required to uniquely define one of the 8 centres of symmetry in the centrosymmetric cell. These are specially selected such that the parity groups of the reflections are not linearly related. (The sum of the parities of $h+h'+h'', k+k'+k'', l+l'+l'' \neq$ ggg). Reflections belonging to this group are termed structure invariant and their signs depend on the structure. In the case of non-centrosymmetric space groups, a further reflection is usually required to define the enantiomorph.

Those reflections which cannot immediately be assigned a phase are given symbolic signs, usually designated a,b,c, etc. Certain reflections will be involved in several strong triples leading to multiple sign indications which can be used to eliminate symbolic phases. As these are introduced, several contradictions are likely to be encountered and phases must be selected to keep these to a minimum. An E-map can now be computed using the Fourier synthesis where the coefficients are experimental E-values associated with the derived signs. Generally several such maps are needed using different sign expansion pathways or varying the choice of signs for the symbolic phases.

For non-centrosymmetric structures the problem is much greater since the phase allocated to a reflection is at best only approximately right. However, it was realised that the phase determining procedure could be repeated in an iterative manner using the tangent formula, derived from the Sayre equation²⁵:

$$\tan \phi_{\widetilde{H}} \approx \frac{\xi |E_{\widetilde{K}}| |E_{\widetilde{H}-\widetilde{K}}| \sin(\phi_{\widetilde{K}} + \phi_{\widetilde{H}-\widetilde{K}})}{\xi |E_{\widetilde{K}}| |E_{\widetilde{H}-\widetilde{K}}| \cos(\phi_{\widetilde{K}} + \phi_{\widetilde{H}-\widetilde{K}})}$$

(where the sums are taken over all available terms).

With a set of assumed or derived phases for a relatively small number of reflections the tangent formula can be used iteratively to refine the starting set and provide additional phased reflections.

Correct phases are recognised by statistical formula, one of the most generally used criterion being:

$$R = \frac{\sum_{\widehat{H}} (|E_{\widehat{H}}^{obs}| - |E_{\widehat{H}}^{calc}|)}{\sum_{\widehat{H}} |E_{\widehat{H}}^{obs}|}$$

where R is minimised.

At this stage in structure solution a number of chemical fragments are probably evident and the structure can be refined using a non-linear least squares procedure.

In symbolic addition a new phase may be indicated several times by the same combinations of symbols, then the individual implications reinforce one another. However, the combination of indications involving entirely different symbols can introduce problems²⁹ e.g. if 2 separate sign indications for the phase of ϕ are (a+b) and (c+d) and $a = \pi/4$, $b = 3\pi/4$, $c = -\pi/4$, $d = -3\pi/4$, then the combinations of (a+b) and (c+d) equal π . However, symbolic combination of 1/2(a+b+c+d) = 0, the incorrect solution.

The multisolution approach avoids these problems by assigning numeric rather than symbolic phases at an early stage. It is then possible to combine individual phase indications by the tangent formula.

The phase determining procedure is based on a starting set of phases:

(a) origin and enantiomorph definition, requiringup to 4 phase assignments

(b) phases derived from a Σ_1 formula or another method

(c) further phases required to initiate a continuous phase determining process by tangent formula expansion.

The Σ_1 relationship is derived from the Σ_2 relationship:

 $\Sigma_{2} \simeq_{\widetilde{H}} \approx \simeq \simeq (\Sigma_{\widetilde{K}_{r}} \simeq_{\widetilde{K}} \simeq_{\widetilde{H}-\widetilde{K}})$

when only a single triplet is considered,

s_{H̃}.s_{K̃} s_{H̃-K̃} ≈ 1

known as a triple product sign relationship. For the special case of $\tilde{H} = -\tilde{K}$ (\tilde{H} and \tilde{K} are vectors hkl and h'k'l') in

space group Pl; for example

$$\phi_{\widetilde{H}} \approx \phi_{-\widetilde{H}} + \phi_{2\widetilde{H}} \approx \frac{1}{2}\phi_{2\widetilde{H}}$$

similarly, in PI since $\phi_{\widetilde{H}} = 0, \pi$ it follows that $s_{\widetilde{H}} = s_{-\widetilde{H}} = \pm 1$ hence

The above two equations are referred to as Σ_1 relationships²⁹. The program MULTAN utilises the multisolution approach.

The initial starting phases are given numerical values according to space group symmetry. General non-centro-symmetric phases are assigned the values $+-\pi/4$, $+-3\pi/4$ and for enantiomorph $+-\pi/4$. A total of p variable phases including enantiomorph selection will now give 2 x 4^{p-1} . This method gives an initial maximum error in the starting phases of 45° . A weighted tangent formula is used to expand the initial starting set of phases

$$\tan \phi_{\widetilde{H}} = \frac{\sum_{r}^{Q} \widetilde{H}, \widetilde{K}^{\sin(\phi_{\widetilde{K}}^{+\phi_{\widetilde{H}}} - \widetilde{K})}}{\sum_{r}^{Q} \widetilde{H}, \widetilde{K}^{\cos(\phi_{\widetilde{K}}^{+\phi_{\widetilde{H}}} - \widetilde{K})}} = \frac{T_{\widetilde{H}}}{B_{\widetilde{H}}}$$

where
$$Q_{\tilde{H},\tilde{K}} = W_{\tilde{K}}W_{\tilde{H}-\tilde{K}}|E_{\tilde{K}}|E_{\tilde{H}-\tilde{K}}|/(|-|U_{\tilde{H}}|^2)$$

with

and

$$w_{\widetilde{H}} = \tan[\sigma_{3}\sigma_{2}^{-3/2} E_{\widetilde{H}}(T_{\widetilde{H}}^{2}, B_{\widetilde{H}}^{2})^{\frac{1}{2}}]$$
$$|U_{\widetilde{H}}| = |F_{\widetilde{H}}| / \sum_{j=1}^{N} f_{j}$$

the unitary structure factor.

 $\sigma_3 \sigma_2^{-3/2}$ is a correction for different types and numbers of atoms in the unit cell.

The weighting scheme is designed to give poorly assigned phases a low weight while still incorporating them in the sign expansion.

Phase sets are assessed by three figures of merit ABS FOM, PSI ZERO and RESID²⁹ prior to calculation of E maps.

ABS FOM(Z) (a measure of the internal consistency among the two relationships)

$$Z = \sum_{\widetilde{H}} (\alpha_{\widetilde{H}} - \alpha_{R_{\widetilde{H}}} O / \sum_{\widetilde{H}} (\alpha_{E_{\widetilde{H}}} - \alpha_{R_{\widetilde{H}}})$$

 $\alpha_{\rm R_{\tilde{H}}}$ is the value expected for random phases and $\alpha_{\rm E_{\tilde{H}}}$ is an estimate of calculated during the convergence procedure. PSI ZERO

$$\psi_{O} = \sum_{\substack{K \\ H \\ K}} \sum_{\substack{K \\ K}} |E_{\widetilde{K}}| |E_{\widetilde{H}} - \widetilde{K}|$$

the |E| values in this summation are very small. For small $|E_{\tilde{H}}|$, ψ_{O} should have a small value for the correct phase set. RESID corresponds to

$$R_{K} = \frac{\Sigma_{\widetilde{H}} \|\Sigma_{\widetilde{H}}| - |E_{\widetilde{H}}|_{calc}|}{\Sigma_{\widetilde{H}} |E_{\widetilde{H}}|}$$

where $|E_{\widetilde{H}}|_{calc} = K < |E_{\widetilde{K}}||E_{\widetilde{H}} - \widetilde{K}| > \widetilde{H}$

and K is a scale factor

$$\kappa = \sum_{\widetilde{H}} |E_{\widetilde{H}}|^2 / \sum_{\widetilde{H}} < |E_{\widetilde{R}}|^{\mathbb{E}} E_{\widetilde{H}-\widetilde{K}} >^2$$

The correct set of phases should have the smallest RESID.

APPENDIX C: Anomalous dispersion

In 1951, Bijvoet et al.²⁸ showed that the absolute configuration of an optically active molecule could be determined by measurement of the effects of anomalous dispersion. The method is based on the breakdown of Friedel's law under special conditions.

Friedel's law; I(hkl)=I(-h,-k,-l) is not an exact relationship and tends to become less so as the atomic numbers of constituent atoms in a crystal increase. The law breaks down severely if the X-rays used have a wavelength just less than that of an absorbtion edge of an atom in the crystal e.g. with molybdenum radiation and bromine atoms in the crystal structure. Anomalous scattering introduces a phase change into the atomic scattering factor which becomes complex:

$$F = F_{O}^{+} + \Delta F' + i\Delta F''$$

 $\Delta F'$ is a real correction and $\Delta F''$ is an imaginary component which is rotated through 90[°] in the complex plane with respect to F_{o} and $\Delta F'$. The result is best displayed with an Argand diagram. In Figure 3.26 three atoms a, b and c have the structure factors f_{a} , f_{b} and f_{c} . In this case, there is no anomalous dispersion.

Figure 3.27 shows the case with anomalous dispersion. Atoms a and b have no anomalous dispersion. However, atom c, as well as having a real correction to the structure factor f_c also has an imaginary correction f_c .

This result can be applied by comparing the observed and calculated F's. These are tabulated as $F_0(hk\ell)/F_0(-h,-k,-\ell)$ and $F_c(hk\ell)/F_c(-h,-k,-\ell)$ and each pair is compared. If the ratio of the observed reflections is consistently greater than 1

Figure 3.27 Argand diagram for 3 atoms a, b and c with structure factor amplitudes f_a, f_b, f_c and phases $\theta_a, \theta_b, \theta_c$ showing the contribution these atoms make to the observed structure factor F(hkl). In this case, there is no anomalous dispersion and F(hkl)=F(-h,-k,-l).

Figure 3.28 Argand diagram for 3 atoms a, b and c with structure factor amplitudes f_a, f_b, f_c and phases $\theta_a, \theta_b, \theta_c$ showing the atoms contribution to the observed structure factor F(hkl). In this case, there is anomalous dispersion. Hence, $F(hkl) \neq F(-h, -k, -l)$.

when the ratio of the calculated reflections is less than 1, the wrong configuration has been chosen²⁶.

For low symmetry space groups the enantiomorph is obtained by changing the sign of the coordinates; x to -x, y to -y, z to -z. For space groups which occur in enantiomorphic pairs ((e.g. P_{3_1}/P_{3_2}) in which compound (3) (Chapter 3) crystallises) the enantiomorph is obtained by change of space group and simultaneous inversion of the signs of all coordinates, e.g. (x,y,z) in P_{3_1} and (-x,-y,-z) in P_{3_2} are enantiomorphs.

3.5

REFERENCES

Crossland, N.M., Roberts, S.M., Newton, R.F., Webb, C.F., 1. J.Chem.Soc.Chem.Commun., 1978, p.660. 2. Burgi, H.B., Dunitz, J.D., Shefter, E., Acta Cryst., 1974, B30, p.1517. Newton, R.F., Paton, J., Reynolds, D.P., Young, S., 3. Roberts, S.M., J.Chem.Soc.Chem.Commun., 1979, p.908. Dunitz, J.D., 'X-Ray Analysis and The Structure of 4. Organic Molecules', Cornell Univ. Press, Ithaca, U.S.A., 1979, p.117. 5. Murray-Rust, P., Murray-Rust, J., Brown, A., Acta Cryst., 1979, B35, p.1915. Brown, A., Glen, R., Murray-Rust, P., Murray-Rust, J., 6. Newton, R.F., J.Chem.Soc.Chem.Commun., 1980, p.1178. Ali, S.M., Chapleo, C.B., Roberts, S.M., Wooley, G.T., 7. Newton, R.F., J.Chem.Soc.Perkin I, 1981, (Paper 9/1259) in press. 8. Murray-Rust, P., Murray-Rust, J., Newton, R.F., Acta Cryst., 1979, B35, p.1918. Hilderbrandt, R.L., Wieser, J.D., J.Molecular Structure, 9. 1974, 22, p.247. 10. Allinger, N.L., Advances in Physical Organic Chemistry, 1976, 13, p.1. 11. Allinger, N.L., J.Am.Chem.Soc., 1977, Vol.99, No.25, p.8127. 12. Grudzinski, Z., Roberts, S.M., J.Chem.Soc.Perkin I, 1975, p.1769. 13. Brown, C.J., Proc.Roy.Soc.London A302, 1968, p.185.

- 14. Kaftory, M., Dunitz, J.D., Acta Cryst., 1976, B32, p.1.
- 15. Newton, R.F., Reynolds, D.P., Webb, C.F., Young, S.N., Grudzinski, Z., Roberts, S.M., J.Chem.Soc.Chem.Commun., 1979, p.909.
- 16. 'International Tables for X-Ray Crystallography', 1974, Vol.4, p.99. Birmingham: Kynoch Press.
- Sheldrick, G.M., (1976). SHELX76 program for crystal structure determination. University of Cambridge,
 England.
- 18. Main, P., Hull, S.E., Lessinger, L., Germain, G., Declerq, J., Woolfson, M.M. MULTAN78. A system of computer programs for the automatic solution of crystal structures from diffraction data. University of York, England and Louvain, Belgium.
- 19. Rogers, D., Acta Cryst., 1981, A37, p.734.
- 20. Hamilton, W.C., Acta Cryst., 1965, 18, p.502.
- 21. Ladd, M.F.C., Palmer, R.A., 'Structure Determination by X-Ray Crystallography', Plenum Press, 1977.
- 22. Ibid., p.281.
- 23. Hauptman, H., Karle, J., 'Solution of the Phase Problem, 1. The Centrosymmetric Crystal', American Crystallographic Association Monograph No. 3, 1953.
- 24. Karle, J., Karle, I.L., Acta Cryst., 1966, 21, p.849.
- 25. Karle, J., Hauptman, H., Acta Cryst., 1956, 9, p.635.
- 26. Stout, G.H., Jensen, L.H., 'X-Ray Structure Determination', The Macmillan Company, 1968.
- 27. Patterson, A.L., Z.Krist., 1935, A90, p.517.
- 28. Bijvoet, J.M., Peerdman, A.F., Van Bommel, A.J., Nature, 1951, 168, p.271.

- 29. Ladd, M.F.C., Palmer, R.A., editors, 'Theory and Practice of Direct Methods in Crystallography', Plenum Press, 1980.
- 30. Glen, R.C., Murray-Rust, P., Kay, P., Newton, R.F., Riddell, F.G., J.Chem.Soc.Chem.Commun., 1981, No. 1009, in press.
- 31. Murray-Rust, P., Glen, R.C., Newton, R.F., Ali, S.M., Acta Cryst., 1981, WH2765, in press.
- 32. Murray-Rust, P., Glen, R.C., Newton, R.F., Acta Cryst., 1981, WH2763, in press.
- 33. Murray-Rust, P., Glen, R.C., Newton, R.F., Acta Cryst., 1981, WH2761, in press.
- 34. Murray-Rust, P., Glen, R.C., Newton, R.F., Acta Cryst., 1981, WH2764, in press.
- 35. Murray-Rust, P., Glen, R.C., Newton, R.F., Acta Cryst., 1981, WH2762, in press.
- 36. Newton, R.F., Reynolds, D.P., Kay, P.B., Roberts, S.M., Glen, R.C., Murray-Rust, P., J.Chem.Soc.Chem.Commun., 1981, submitted.
- 37. Glen, R.C., Murray-Rust, P., Reynolds, D.P., Newton, R.F., J.Chem.Soc.Chem.Commun., 1981, submitted.

CHAPTER 4

An investigation of regio- and stereo-chemical control by transannular 0...C=0 interactions

CONTENTS

- 4.1 Introduction
- 4.2 Review
- 4.3 Survey of 0...C=0 interactions involving 4-, 5- and 6-membered rings
- 4.4 Discussion
- 4.5 References
4.1 Introduction

The addition of the elements HOX to (1) (X=Cl,Br,I) gives the bromohydrin (2) in high yield via stereo-specific formation of the <u>exo</u>-bromonium ion (10) followed by regio-specific attack by nucleophile predominately at C(3). (Chapter 2).

Similarly, nucleophilic attack on the corresponding protonated epoxide of (6) proceeds in an analogous fashion with regio-specific attack by nucleophile at C(2).

In contrast, the oxabicyclo[3.3.0]octenone (7) forms both <u>exo-</u> (14) and <u>endo-</u> (16),(18) bromonium ions in equal proportions. However, the <u>exo</u>-bromonium ion is again attacked regiospecifically by nucleophile to give only the bromohydrin (15)⁹.

Nucleophilic attack on the bromonium ions (10), (14) and the protonated epoxide of (6) presumably proceeds via a transition state where the carbocyclic 5-membered ring adopts

⁽⁷⁾

an <u>endo</u>-envelope conformation with the halogen and hydroxy functions <u>trans</u> diaxial.

Attack at the alternative site would require the carbocyclic ring to take up an <u>exo</u>-envelope conformation (assuming an antiperiplanar transition state). N.m.r. evidence suggests that in solution bicyclo[3.2.0]heptan-6-one derivatives (Chapter 2) exist predominately in the <u>endo</u>-envelope conformation with the substituents pseudoaxial. The preference of the bicyclo[3.2.0]heptane system for the <u>endo</u>-envelope conformation has also been confirmed by force-field calculations (Chapter 5) and X-ray studies (Chapter 3).

There is however another factor which could stabilise the <u>endo</u>-conformation and direct the course of nucleophilic attack.

Substituted bicycloheptanones and 2-oxabicycloöctanones (of the type described above) and other polycyclic compounds (e.g. (65)) have the possibility of transannular intra-molecular interactions analogous to those described by Bürgi, Dunitz and Shefter (BDS)³ if one of the rings has as a substituent a nucleophile (e.g. OH) and the other ring, an electrophile (e.g. C=0) in a suitable orientation to each other. In the cases described above (1) to (14), the <u>cis</u> ring fusion accompanied by an endo-envelope conformation results in the

molecules having a folded appearance with the nucleophile presented to the electrophile in a very favourable geometry for transannular attack. Inspection of models appears to indicate that the orientation of the hydroxyl and ketone is such that other conformations (e.g. an <u>exo</u>-envelope) or substitution patterns (e.g. 2-<u>endo</u>-hydroxy-3-<u>exo</u>-bromo-) do not achieve the optimum geometry for a strong 0...C=0 interaction. Thus approach of an attacking nucleophile could be directed and the transition state stabilised by this type of interaction e.g. nucleophilic attack on the bromonium ion (10).

It seems therefore, that the presence of this interaction could possibly be the controlling factor in the observed regio-chemical nucleophilic attack. This view was encouraged when an investigation of the epoxy-lactone $(8)^{12}$ by X-ray analysis indicated an interaction with an 0...C=O distance of 2.992(2)Å.

However, the degree to which the transannular 0...C=O interaction exerts control of the conformation and energy of (8) and similar small polycyclic molecules required further data on similar molecular systems.

To achieve this aim, nucleophilic attack of the type

described by BDS¹⁰ is reviewed (Chapter 4.2) and the role of this interaction on the ground state geometry and conformation of small polycyclic molecules has been investigated utilising the Cambridge Crystallographic Data Files (CCDC), X-ray analysis and force-field calculations (Chapter 4.2 and Chapter 4.4).

4.2 Review

Dunitz et al. have found striking geometric correlations between nucleophilic groups and electrophilic centres which appear to map out the minimum energy pathway (reaction coordinate) of a series of chemical interactions³ very similar in nature to those observed in some of the compounds studied in Chapter 3.

From this work came the principle of structural correlation i.e. if a correlation can be found between 2 or more independent parameters describing the structure of a given structural fragment in a variety of environments, then the correlation function maps a minimum energy pathway in the corresponding parameter space⁴.

To apply this hypothesis, correlations between selected parameters describing the geometry of a subsystem frozen in a number of molecular or crystal environments are extracted from X-ray structural data. Molecular interactions of interest may perturb the subsystem, which will modify its geometry so as to minimise the energy of the crystal as a whole. The subsystem may now be considered to be constrained at some point along the reaction coordinate. If a sufficient number of structures are available covering the range of the interaction of interest, then comparison can be made between dynamic chemical reactions and the corresponding static crystal structures. The

139.

. J

t

2

transition state is energetically at the apex of the reaction coordinate and hence is difficult to observe. However, the approach of the nucleophile towards the electrophilic centre (and the departure of the leaving group) may be observed 'frozen' by inter- and intra-molecular forces in the crystalline environment.

Using this approach the N...C=O interaction has been investigated by Dunitz et al. in some detail. In this investigation the data on the N...C=O interaction were obtained by a careful (if tedious) survey of the literature. To test the sensitivity of automatic search methods (using CCDC⁸) and in the hope of retrieving a larger set of structures displaying N...C=O interactions, this search has been repeated for intramolecular N...C=O interactions.

A connectivity search using the criteria of Table 4.1, retrieved 721 structures.

TABLE 4.1: Connectivity search (CONNSER and RETRIEVE)

~
,
2

The data were screened, removing data sets without published coordinates and structures containing disordered atoms, reducing the number of compounds to 540.

The geometries of the chemical fragments of interest were calculated (Table 4.2). TABLE 4.2: Geometry screen (GEOM) CALC INTRA N 2.4 FRAC INTRA N...C=O AT1 O AT2 C AT3 C,0 AT4 C,0 AT5 N AT6 C AT7 C AT8 C,H C only compounds with N...C=O are processed BO 1 2 1.1,1.35 BO 2 3 1.15,1.6 BO 2 4 1.15,1.6 BO 2 5 1.49,3.3 BO 5 6 1.1,1.6 BO 5 7 1.1,1.6 BO 5 8 .8,1.7 C angle screen TEST ANG 5 2 1 85,125 ENDF DEF *RFACT D25 DEF *AS C plane of carbonyl is Pl SETUP P1 1 3 4 DEF D12 1 2 01 DEF D25 2 5 DEF A521 521 DEF DELTC P1 2 DEF DELTN P1 5 ENDQ

Only 29 structures contained the required fragments. The remaining structures were screened by hand. Those structures with an R-Factor greater than 0.12, 1-4 N..C=O interactions or with Pl..AT2 less than 1.4Å were removed. 17 structures remained. (The compounds are identified by their CCDC codes, Table 4.3). :

.

ŵ,

TABLE 4.3: N...C=0 interactions

Code	R-Factor	C=0(Å)	CN(Å)	NCO(°)	deltc(Å)
AEPCNQ10	.069	1.221	2.908	100.7	.010 *
CLIVORIO	.039	1.258	1.993	110.2	.213
CPSAIA	.043	1.211	2.879	112.1	.002 *
CRYPTP	.042	1.209	2.581	102.2	.102
DMUVIC	.060	1.165	2.988	117.7	.009 *
IKIDBB10	.113	1.153	3.170	93.3	.049 *
MAZUNO	.045	1.217	2.457	111.1	.097
METHAD	.040	1.215	2.911	105.1	.064
METHADOl	.038	1.207	2.912	105.0	.057
MMANCX	.038	l.336	2.995	94.3	.062
NMZNON	.086	1.211	2.759	112.5	.023
NMZNON	.081	1.216	2.690	114.4	.055
NANMEK	.047	1.218	2.559	104.2	. 088
NANPCX	.056	1.215	2.602	102.2	.063
OTOSEN10	.061	1.259	2.180	107.7	.133 *
PROTPN	.043	1.218	2.555	101.6	.115
SENKIR10	.045	1.213	2.292	109.4	.116

The relationship between out-of-plane displacement (Δ) and N...C=O distance (d2) is displayed in Figure 4.2.

The automatic structure retrieval process retrieved all the fragments in the original survey by BDS¹⁰. Surprisingly, only a few additional compounds were retrieved (indicated by *).

The approach of a nucleophilic group (in this case a tertiary amine group) to a carbonyl is accompanied by an out-ofplane displacement (Δ) of the carbonyl carbon from the plane of R1,R2,O and an extension of the C=O bond length (Figure 4.1, after BDS⁵). These results are consonant with re-hybridisation of the carbonyl carbon from sp^2 to sp^3 with associated change in geometry from trigonal to tetrahedral.

Table 4.3 also shows that the preferred angle of attack by the nucleophilic nitrogen on the carbonyl is ca. 100-1120.10

The search procedure used for the N...C=O interaction proved very successful and has been modified to search for intramolecular interactions between oxygen nucleophiles and carbonyls on 4, 5 and 6-membered rings (of the type observed in Chapter 2).

: 7

Figure 4.1 Nucleophilic attack on a carbonyl (=0,R,R') by a nucleophile N at a distance d₂ occurs at an angle α and results in an out-of-plane displacement (Δ) of the carbonyl carbon from the plane R,R',O and a lengthening of the C=O bond length d₁. (After BDS).

Figure 4.4 Stereo diagrams of transannular nucleophilic attack (of the type described by BDS) observed in the crystal structures (3), (60), (61), (8), (29), (14), (62), (63) (p=view perpendicular to R, R', =0, l=view line through R-R').

Figure 4.2

In N...C=O interactions retrieved from the $\Delta(A)$ graphic Data files, as the N...C=O distance (d₂) decreases from 3.2Å to 2.0Å, the out-of-plane displacement (Δ) of the carbonyl increases.

4.3 Survey of 0...C=0 interactions involving 4-, 5- and 6-membered rings

Intramolecular interactions between a carbonyl on a 5-membered ring and suitably orientated oxygen are considered first (Table 4.4).

145.

: -

:

н.⁻

TABLE 4.4: Connectivity search (CONNSER and RETRIEVE)

Q INTRA O...C=O C 5-membered ring with carbonyl AT1 0 1 0 E AT2 C 3 O E AT3 C 2 AT4:C 2 AT5 C 2 .C,O 5 C includes lactones AT6 C,0 2 AT7 0 BO 1 2 BO 2 3 C BO 3 4 C L BO 5 6 C BO 6 2 C ENDQ

945 structures were retrieved. The geometries of the chemical fragments of interest were calculated (Table 4.5).

TABLE 4.5: Geometry screen (GEOM)

FRAG INTRA OC=O AT1 O AT2 C AT3 C AT4 C	7 0
	6 /
ATT 0	
BO 1 2 1.15.1.3	5 4.0
BO 2 3 1.3.1.6	
BO 3 4 1.3,1.6	
BO 4 5 1.3,1.6	
BO 5 6 1.3,1.6	
BO 2 6 1.2,1.6	5
$\begin{array}{c} BU \ 2 \ 7 \ 2.4, 3.1 \\ C \ angle \ concerned \end{array}$	
TEST ANG 7 2 1 $85, 125$	
ENDF	
DEF *RFACT	
DEF *AS	
CALC INTRA O 2.2	
C plane of carbonyl	
SEIUP PI I 3 0	
(continued)	

Table 4.5 (continued)

DEF D12 1 2 DEF D27 2 7 DEF A721 7 2 1 DEF DELTC P1 2 DEF DELTO P1 7 END

There were 110 structures with a possible interaction (disordered structures and those without published coordinates were removed). These were screened by hand. Those structures were removed: with an R-Factor greater than 0.12; where the 0...C=0 interaction was a 1-4 interaction; where DELTO was less than 0.5A; containing transition metals; where D27 is less than 2.3Å. 32 structures remained (these are identified by their CCDC code, Table 4.6).

TABLE 4.6	0C=O (5-membered	ring) (CCD	C nomencl	ature)
Code	R-Factor	C=0(A)	CO(Å)	0C0(°)	delto(Å)
ANONAL10	.056	1.233	2.649	100.6	.032
APTSPN	.060	1.214	2.886	111.2	.026
BHELIN10	.058	1.200	2.812	99.7	.031
CPACHO	.090	1.237	3.100	118.7	.009
CXAEZT	.076	1.201	2.622	96.2	.017
DANETN	.049	1.214	3.055	119.9	.009
DCLACM10	.041	1.210	2.436	99.9	.001
EMCZTO	.083	1.186	2.871	87.2	.015
ENXBCO	.036	1.197	2.992	118.9	.010
EREMTB10	.061	1.215	2.683	120.1	.038
EREOLAIO	.056	1.188	2.650	115.0	.011
GLULAD	.040	1.215	2.902	104.7	.000
HELENI	.052	1.221	2.620	112.6	.015
ICASIN	.039	1.204	2.734	96.5	.007
ITHANE	.061	1.197	3.012	120.7	.010
KISCIT10	.046	1.195	3.069	122.3	.010
LYCPER	.059	1.207	2.902	116.9	.008
MCLPHD10	.090	1.236	2.843	99.4	.001
MEGAMI	.048	1.199	2.826	113.9	.021
MOLOLD	.067	1,196	2.882	95.2	.024
MXTHPO	.071	1,208	2.878	109.2	.022
NTMCPO	.049	1,201	2.901	95.8	002
NTRYOV	.054	1,196	2.469	101.7	.055
OTUBSTIO	.074	1.208	2.690	111.3	.019

(continued)

•

ł,

2

:

Table 4.6 (continued)

Code	R-Factor	C=0(A)	CO(Å)	0C0(⁰)	deltc(Å)
PEUNCN PLENOL10 PODOLB PROPTO PSCHDA ROSIGN THEDEC10	.038 .041 .048 .047 .054 .053	1.199 1.186 1.177 1.202 1.195 1.210	3.064 2.843 3.013 3.089 2.653 2.692	122.1 91.7 88.4 86.6 117.6 110.2	.015 019 .022 .013 030 016
TMHPFE	.065	1.170	2.720	90.6	.028

A similar search was carried out on 6-membered rings (Table 4.7).

TABLE 4.7: Connectivity search (CONNSER and RETRIEVE)

Q INTRA 0...C=O C 6-membered ring with carbonyl AT1 0 1 E AT2 C 3 E AT3 C AT4 C AT5 C AT6 C C includes lactones AT7 C,0 AT8 0 AT9 C,H AT10 C,H BO 1,2 BO 2 3 C BO 3 4 C BO 4 5 C BO 5 6 C BO 6 7 C BO 7 2 C BO 8 9 BO 8 10 ENDQ

929 structures were retrieved. Those structures containing transition metals or having 1-4 interactions were removed leaving 885 structures. Those structures not having published coordinates or containing disordered atoms were removed leaving 648 structures. The geometry of the fragments of interest was calculated (Table 4.8). TABLE 4.8: Geometry calculation (GEOM)

FRAG INTRA O...C=O AT1 0 AT2 C AT3 C AT4 C AT5 C AT6 C AT7 C,0 AT8 0 AT9 C,H AT10 C,H BO 1 2 1.15,1.4 BO 2 3 1.3,1.6 BO 3 4 1.3,1.6 BO 4 5 1.3,1.6 BO 5 6 1.3,1.6 BO 6 7 1.3,1.6 BO 7 2 1.3,1.6 BO 2 8 2.4,3.2 BO 8 9 .8,1.6 BO 8 10 .8,1.6 C angle screen TEST ANG 8 2 1 85,125 ENDF DEF *RFACT DEF *AS CALC INTRA 0 2.2 C plane of carbonyl Pl SETUP Pl 1 3 7 DEF D12 1 2 DEF A821 8 2 1 DEF DELTC P1 2 DEF DELTO P1 8 END

22 structures remained. These were screened by hand (as with the 5-membered ring structures), to give 18 remaining structures (these are identified by their CCDC codes, Table 4.9).

TABLE 4.9

Code	R-Factor	C=0(Å)	CO(Å)	0C0(⁰)	delto(Å)
AOTETC	.076	1.228	2.560	103.3	003
AXIPBT	.052	1.209	2.956	99.6	.010
BANEOV	.091	1.164	2.784	104.5	.056
CHASIN	.043	1.212	2.763	118.7	004
CYHPOC	.062	1.197	2.673	98.7	.032
DCHCBN	.079	1.218	3.042	85.1	003
FOMANN	.072	1.229	3.050	87.19	.030
GILMAN	.057	1.221	2.801	97.6	.003
ICOLIDIO	.096	1.195	2.937	94.7	.022
LOBSTE	.065	1.217	2.783	100.5	.016
MCPLNE	.054	1.217	2.858	91.7	.012
MFSUDT	.041	1.207	3.129	97.4	005
MXPCD010	.039	1.210	3.055	91.5	024
MXRCDC	.045	1.215	2.773	104.0	.037
NEPETA	.042	1.210	2.724	109.0	.041
NONFRA	.055	1.202	3.063	95.9	.024
PAFLEB	.107	1.229	2.556	104.2	.040
TEDMXTOl	.047	1.245	2.724	97.4	.006

A search for oxygen interactions with 4-membered rings containing a carbonyl (as before) retrieved no additional structures (1-4 interactions and those with an R-factor greater than .012 were omitted).

The variation of out-of-plane displacement of the carbonyl carbon (delta) with 0...C=O distance (d2) is displayed in Figure 4.3.

Although there is an abundance of X-ray structural data on the 0...C=O interaction, it is more difficult to determine precise correlations than in the case of the N...C=O interaction. Figure 4.3 shows that the O...C=O interaction displays a much smaller out-of-plane displacement than its N...C=O counterpart for a given X...C=O distance. Also, the scatter of points in Figure 4.3 (O...C=O) is much greater than in Figure 4.2 (N...C=O). These results imply the O...C=O interaction is much weaker and is very susceptible to perturbations in its environment⁷. There is a distinct gap in the available data between O...C=O

distances of 1.5-2.4Å and this is probably due to the unstable nature of this weak interaction near the intermediate transition state⁷. The out-of-plane displacement of the carbonyl carbon is only about 1/3 that observed for nitrogen nucleophiles (Figure 4.3 (0...C=0 interactions) and Figure 4.2 (N...C=0 interactions)). This suggests the energy of the 0...C=0 interaction is only about 1/10 that of the N...C=0 interaction¹⁰. The preferred angle of approach tends to be more dependent on the crystal and molecular environment than in the N...C=0 case and lies in the range $85-120^{\circ}$ (Tables 4.6 and 4.9) (see also reference 7).

4.4 Discussion

A number of polycyclic compounds having the possibility of a transannular 0...C=X (X=0,N) interaction have been investigated by X-ray diffraction (Chapter 2).

Of these compounds, $(3)^{11}$ and $(15)^{11}$ are the products of regio-selective reactions favouring the 2-<u>exo-3-endo</u> product. (6) (the p-nitro phenylhydrazone derivative (61) was analysed) and $(8)^{12}$ are attacked regio-selectively by nucleophile giving predominately the 2-<u>exo-3-endo</u> product. (65) undergoes a facile rearrangement which takes place spontaneously under the reaction conditions¹³ and involves transannular nucleophilic attack.

(The model compound (63) was analysed by X-ray diffraction).

The steric course of these reactions could conceivably be influenced by a transannular 0...C=O interaction (as detailed above)¹⁰. Similarly, the facile rearrangement of (65) suggests the presence of an 0...C=O interaction in the ground state.

In addition, the model compounds (60) and (29) were specifically designed to display strong 0...C=0 interactions. In (60) the ring fusions constrain the epoxide to a close approach on the carbonyl while in (29), the electrophilicity of the carbonyl is increased by the presence of 2 vicinal chlorines.

The geometries of the interactions observed are described in Table 4.10.

TABLE 4.10:	0C=X	(X=0,N)	interactions [.]

Compound	R-Factor	C=O(Å)	CO(Å)	A521(⁰)	deltc(Å)
(63)	.057	1.320(6)	3.492(6)	125(1)	.004(6)
(8)	.036	1.197(2)	2.992(2)	119(1)	.010(2)
(3)	.042	1.185(13)	2.99(2)	111(1)	013(15)
(61)	.048	1.275(3)	2.990(3)	124(1)	.008(3)
(60)	.041	1.198(2)	2.651(2)	116(1)	.052(2)
(29a)	.068	1.198(7)	2.826(7)	104(1)	.015(12)
(29 b)	.068	1.393(7)	1.410(7)	105(1)	.397(12)
(15a)	.11	1.22(5)	3.02(5)	111(2)	06(8)
(15Ъ)	.11	1.22(5)	3.01(5)	115(2)	.02(8)

The nucleophile:carbonyl positions derived from Table 4.10 are displayed graphically in a stereo-plot (Figure 4.4). Compounds which cannot display an intramolecular 0...C=O interaction (e.g. (64)²² and (55)) display planar carbonyl geometry (to within experimental error).

Inspection of Table 4.10 indicates that the 0...C=0 interaction appears to range from 3.1Å (weak, planar C=0) to 2.65Å (strong, Δ = ca. .05Å) (Figure 4.3). Dunitz¹⁰ has estimated the energy required for pyramidalisation of the carbonyl from the out-of-plane bending force constant to be approximately 0.5Kcal/mol for Δ = 0.05Å (which is about the maximum deformation observed in Table 4.10).

The X-ray studies of the bromohydrins (3) and (74) indicate weak 0...C=O interactions which can only be inferred (the out-of-plane displacement of the carbonyl carbon is less than the estimated standard deviation) by comparison with Figure 4.3. Similarly, the epoxides (8) and (61) also display weak interactions at the limit of observability.

(63) (a derivative of (65)), which was expected to display an 0...C=O interaction, displays no interaction at all. The 0...C=O distance of 3.320(6)Å is well outside the range where an interaction could be observed.

To explain this apparently surprising result forcefield calculations have been performed on the system (75), a model for (63) using the force-field of Allinger et al. (MM2, 1980 version) (Chapter 5, Appendix A).

This model can give an indication of the energies involved on constraining the methoxy oxygen to closer approach on the carbonyl (Table 4.11). An attractive 0...C=0 interaction can be simulated by introducing opposite charges on the hydroxyl and carbonyl carbon.

TABLE 4.11:

C)C=O(Å)	cha OH(i)	rge* C=O(j)	∆E.(Kcal/mol)	
	3.51	0.0	0.0	0.0 (minimised)	
-	3.18	- 0.3	0.3	1.2	
	2.87	-0.4	0.4	2.5 Me	
	2.59	-0.5	0.5	4.3	-0
*	E electros	tatic =	e.e. K <u>i</u> j r.j	Me -0 (1	-0 -0 75)

In this calculation the methoxy oxygen and the carbonyl carbon were assigned equal and opposite charges (dipole/dipole interaction suppressed) chosen to reduce the 0...C=O distance while the geometry of the rest of the molecule is subjected to energy minimisation.

When the molecule is constrained to a conformation where a detectable 0...C=O interaction would be expected to occur, i.e. ca. 2.9Å, an additional amount of strain in the region of 2.5Kcal/mol is imparted to the molecule. This appears to imply that the strain is sufficient to overcome any weak (certainly less than 2.5Kcal/mol) attractive 0...C=O interaction, if indeed the interaction is attractive in the range studied here.

A similar set of calculations were performed on the bromohydrin (3) (using the force-field MM2).

The minimised geometry indicated an 0...C=O distance of 3.03Å in the ground state. (X-ray structure determination of (3) gave an 0...C=O distance of 2.99(2)Å). As before, charges were placed on the hydroxyl group and the carbonyl to simulate an attractive 0...C=O interaction (Table 4.12).

TABLE 4.12:

0C=O(Å)	charge* OH(i) C=O(j)	∆E.(Kcal/mol)
3.03	0.0 0.0	0.0
2.89	4.4	2.9
2.79	4 .6	5.2
* ^E el	lectrostatic = $K_{\underline{i}}^{\underline{e},\underline{e}}$	

Again, the force-field suggests that an attractive 0...C=0 interaction of only ca. 2.5Kcal/mol is required to reduce the 0...C=0 distance significantly (although the forcefield is less reliable in this case due to the presence of bromine).

It appears therefore that there is no evidence the net 0...C=0 interaction is attractive at any r(0...C=0).

Even in these cases where a strong interaction is observed, the net interaction appears to be repulsive.

Evidence for this is seen in the tricyclic system (60) where the epoxide is constrained by the ring fusions to a close approach on the carbonyl. A small 0...C=O distance and a large out-of-plane displacement of the carbonyl carbon is seen in agreement with the general trend observed in Figure 4.3. However, careful examination of the epoxide geometry shows that the angle between the plane of the epoxide (C(7),C(8),O(10)) and the plane of the substituent carbon atoms (C(6), C(7), C(8), C(1)) (planar to within 0.018Å) is 107.0(2)^o, which is significantly larger than in less hindered cyclopentene epoxides. In cyclopentene epoxide itself (67) gas phase electron diffraction gives an interplanar angle of $104.7(1)^{\circ}$ ¹⁴ and in three other structures containing the cyclopentene epoxide fragment (61), (62) and (8)¹² this angle is in the range 104.8(3)[°] to 105.0(2)[°]. To obtain more information on the cyclopentene epoxide geometry, the CCDC files⁸ were searched for molecules containing the fragment (76).

(76)

The connectivity search retrieved 50 structures. 32 fragments having the specified geometry were retrieved. Those structures having disordered atoms, no published coordinates, a <u>trans</u> ring fusion, or an R-factor greater than 0.06 were rejected leaving 3 fragments $^{14}, ^{15}, ^{16}$. The relationship between the close approach of another atom or group (X) to the epoxide oxygen and the effect on the cyclopentene epoxide geometry is given in Table 4.13.

TABLE 4.13: The effect of non-bonded interactions on epoxide geometry

In substituted cyclopentene epoxides, θ° is the angle between the plane of the epoxide (Pl) and the leastsquares plane of the substituent atoms (P2). X is an atom of group forming a close non-bonded contact (d) to the epoxide oxygen (0), where r(0) and r(X) are their Van der Waals radii (Å) (Pauling (1960)²; C=1.6, O=1.4, N=1.5, CH2=2.0) and D=d(0...X)-r(0)-r(X) (Figure 4.5).

Structure	Х	d(Å)	D(Å)	θο
(67)	-	-	-	104.7
(61)	0	2.99	0	104.7
(62)	0	3.15	>0	104.9
(8)	0	2.93	>0	104.9
(60)	0	2.62	-0.18	106.9
XZCVIN (68)	N	2.68	22	107.9
MEXOFE (69)	CH2	2.55	85	109.7
ENDRIN (70)	CH2	2.53	87	110.5

When another atom or group is constrained to a distance from the epoxide oxygen of less than the sum of their Van der Waals radii², the angle θ increases as expected, primarily due to steric repulsion. In the case of (60), the highly strained tricyclic epoxide, this effect does not appear to be moderated by the BDS interaction (Figure 4.6); therefore at this distance the net 0...C=0 interaction is repulsive. This is in keeping with the structural results on (3) and (74) where the 0...C=0 interaction is at the limits of detection.

The 0...C=O interaction can be assisted by placing electron withdrawing substituents next to the carbonyl carbon. (29) is a molecule near the transition state which displays an enhanced interaction. In CCl_{μ} solution, it exists as a 1:1.1 mixture of (29a) + (29b) while in the crystalline state it exists as a remarkable 1:1 mixture of (29a) + (29b). Both forms (29a) and (29b) in the crystal show very small movement along the nucleophilic addition pathway (Chapter 3)²³. The movement observed is primarily due to the presence of the two vicinal chlorines which greatly increase the electrophilic nature of the carbonyl carbon and effectively reduce the barrier to nucleophilic attack.

Recent work on propellanes (Kaftory et al.^{17,18,19,20}) which contained suitably orientated 0...C=0 fragments investigated the possibility that significant departures from mirror symmetry in (71) and (72) were due primarily to attractive 0...C=0 interactions. Although 0...C=0 interactions were seen (using the

criteria defined above) and at first appeared to account for the conformational changes observed, replacement of the carbonyls by CH₂ groups resulted in a structure which displayed similar departures from mirror symmetry (73). The observed 0...C=0 interactions appeared therefore to be present due to geometrical constraints and did not play a significant role in modifying the molecular conformation²¹. Subsequent force-field calculations showed that the deformation could be explained by conformation-stability arguments rather than due to the attractive interaction of the 0 lone pair electrons²¹.

It appears from the results discussed above that the energy gained by 0...C=0 interactions is sufficient to

distort relatively flexible acyclic angles e.g. 1,8-disubstituted naphthalene derivatives³ (probably introducing about 0.5Kcal/mol of strain) but is not of sufficient energy to distort to any significant degree more rigid cyclic systems of the type described above (e.g. (63)) which require ca. 2.5Kcal/mol for any significant distortion. When constrained, small distortions may occur to minimise the overall energy of the molecule, however, the overall conformation is not controlled by the interaction. Although therefore the 0...C=0 interaction is frequently seen (defined by the criteria of d(0...C=0 less than ca. 3.0Å, a related non-planarity of the carbonyl group and 0...C=0 angles of $110(20)^{\circ}$) it would seem to be a consequence of constraints (by steric factors and possibly crystal packing) rather than a constraint in itself.

Therefore, the weight of evidence implies that the 0...C=O interaction does not influence the regio-selectivity of nucleophilic attack in the molecules investigated here. Other evidence suggests that steric and conformational factors are more important (Chapter 5).

4.5

REFERENCES

- 1. Birnbaum, K.B., Acta Cryst., 1972, B28, p.2825.
- Pauling, L. (1960). 'The Nature of The Chemical Bond',
 3rd ed., Cornell Univ.Press, Ithaca, New York.
- 3. Dunitz, J.D., Phil. Trans. R. Soc. London. 1975, B272, p.99.
- Murray-Rust, P., Burgi, H.B., Dunitz, J.D.,
 J.Am.Chem.Soc., 1975, 97, p.921.
- 5. Bürgi, H.B., Dunitz, J.D., Shefter, E., J.Am.Chem.Soc., 1973, 95, p.5065.
- Burgi, H.B., Lehn, J.M., Wipff, G., J.Am.Chem.Soc., 1974, 96, p.1956.
- Bürgi, H.B., Dunitz, J.D., Shefter, E., Acta Cryst., 1974, B30, p.1517.
- Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters, B.G., Kennard, O., Motherwell, W.D.S., Rogers, J.R., Watson, D.G., Acta Cryst., 1979, B35, p.2331.
- 9. Ali, S.M., Crossland, N.M., Lee, T.V., Roberts, S.M., J.Chem.Soc.Perkin I, 1979, p.122.
- 10. Dunitz, J.D., 'X-Ray Analysis and the Structure of Organic Molecules', Cornell University Press, 1979.
- 11. Brown, A., Glen, R., Murray-Rust, P., Murray-Rust, J., Newton, R.F., J.Chem.Soc.Chem.Commun., 1979, p.1178.
- 12. Murray-Rust, P., Murray-Rust, J., Acta Cryst., 1979, B35, p.1918.
- Crossland, N.M., Roberts, S.M., Newton, R.F., Webb, C.F.,
 J.Chem.Soc.Chem.Commun., 1978, p.660.

- 14. van Meerssche, M., Germain, G., Declercq, J.P., Bodart-Gilmont, J., Viehe, H.G., Merenyi, R., Francotte, E., Acta Cryst., 1977, B33, p.3553.
- Delacy, T.P., Kennard, C.H.L., J.Chem.Soc.Perkin II, 1972, p.2153.
- 16. Wenger, J., Thuy, N.H., Boschi, T., Roulet, R., Chollet, A., Vogel, P., Pinkerton, A.A., Schwarzenbach, D., J.Organomet.Chem., 1979, 174, p.89.
- 17. Kaftory, M., Dunitz, J.D., Acta Cryst., 1976, B32, p.617.
- 18. Kaftory, M., Dunitz, J.D., Mills, O.S., Acta Cryst., 1976, B32, p.619.
- 19. Kaftory, M., Acta Cryst., 1978, B34, p.952.
- 20. Kaftory, M., Acta Cryst., 1979, B35,p1637.
- 21. Kaftory, M., Acta Cryst., 1980, B36,p.2668.
- 22. Murray-Rust, P., Murray-Rust, J., Brown, A., Acta Cryst., 1979, B35, p.1915.
- 23. Glen, R.C., Kay, P., Murray-Rust, P., Newton, R.F., Riddell, F.G., J.Chem.Soc.Chem.Commun., 1981, No. 1009, in press.

CHAPTER 5

5.1 INTRODUCTION

The reactions of the bicyclo[3.2.0] heptane system can display a high degree of regio- and stereoselectivity. Although the factors controlling the observed regio- and stereochemistry (e.g. the addition of the elements HOBr to (1)) are complex, they may be simplified by treating the overall reaction as a 2-step process. The first step is the formation of a 3-membered ring.

In the reactions studied in Chapter 2, the 3-membered ring may be either a bromonium ion or an epoxide. This is a highly stereoselective process strongly favouring <u>exo</u>-attack.

The second step is the opening of the 3-membered ring, generally in a regioselective fashion. In this case, the degree of regioselectivity appears to depend on the conformational properties of the molecule.

These processes are considered separately in Chapters 5.3 and 5.4. First, however, an understanding of the observed regio- and stereoselectivity requires a knowledge of the conformational properties of the bicyclo[3.2.0] system. This aspect is investigated in Chapter 5.2.

5.2 The Conformation of Bicyclo[3.2.0] heptanes

The bicyclo[3.2.0] heptane system is a combination of a 4- and a 5-membered ring. In the molecules studied here, these rings are <u>cis</u>-fused. The properties of bicyclo[3.2.0] heptanes are to some extent determined by the conformational and steric properties of the constituent rings. Stereochemical understanding of the cyclobutane ring (81) is at a considerably less well developed stage than, for example, cyclohexane. Recent studies show it to prefer a non-planar conformation with $|\tau|$ C(1)-C(2)-C(3)-C(4)=22^o (the torsion angles around the cyclobutane ring are equal in magnitude and alternate in sign). The pucker angle ϕ (the angle between the planes C(1),C(2),C(4) and C(2),C(3),C(4)) is ca. 25-35^o.^{21,30} The pucker angle $\phi \approx 1.4 \times |\tau|^{22}$.

The reasons for the deviation from non-planarity are not completely understood, although calculations by Wiberg and Lampman²⁴ imply that the major factor is minimisation of the C-C-C-C torsional energy at the expense of angle strain. The barrier to inversion via the planar conformation appears to be ca. 1.4 Kcal/mol from infra-red studies²⁵. The geometry calculated by molecular mechanics (Appendix A; all calculations are by MM2⁴⁴) suggests $|\tau| = 20^{\circ 28}$ with a barrier to inversion via the planar conformation of 0.9 Kcal/mol. A number of substituted cyclobutane rings analysed by electron diffraction³⁴ indicate that $|\tau| = 23(5)^{\circ}$ is the most common arrangement. The difference in energy between substituents in an axial or equatorial position is ca. 0.6 Kcal/mol²³, e.g. substitution by a methyl group (MM2).

Ester. 29.11

29.71 Kcal/mol

In contrast to the puckered conformation observed in cyclobutane, force-field calculations indicate that cyclobutanone (82) takes up a planar conformation and experimental data from microwave²⁷ and infra-red studies²⁶ confirm this result. Small deviations from planarity result in an appreciable increase of strain energy e.g. substitution of the cyclobutanone ring (83), (84), (85) results in conformations which are still relatively planar (in comparison with cyclobutane).

It appears that an increase in $|\tau|$ from 0[°] to 7[°] requires ca. 1.5 Kcal/mol.

To determine the preferred conformation of the cyclobutanone system in the crystalline state, the Cambridge Crystallographic Data File (CCDC)⁴³ was searched for the cyclobutanone fragment (82). 67 structures were retrieved. Structures without published coordinates or having disordered atoms were removed leaving 59 structures. Those remaining were screened to remove fragments where the carbonyl was involved in conjugation, spiro ring fusions or ring fusions introducing a large amount of strain (e.g. <u>trans</u> ring fusion). The cyclobutanone fragments in the remaining 38 structures displayed almost planar geometry ($|\tau|$ C(1)-C(2)-C(3)-C(4)=0-7°) with the exception of two fragments with gem-dichloro substituents for which $|\tau|$ =17(1)°.

The cyclopentane-ring has been studied intensivel $y^{29,30}$. Unsubstituted cyclopentane exhibits nearly free pseudorotation²⁹. The pseudorotation pathway varies between an 'envelope' form (86a) with C_s symmetry and a 'twist' form (86b) with C₂ symmetry. The energy barrier between these has been calculated as 0.005 Kcal/mol³².

The molecule can invert from the C_2 to the C_s form easily, avoiding the planar conformation which is of high energy, the barrier to planarity being ca. 5.5 Kcal/mol³¹.

Mono substituted cyclopentanes were initially taken to exist in the envelope conformer with the substituent equatorial on the flap of the envelope. However, a number of substituents, particularly halogens appear to prefer a pseudoaxial orientation. This also seems to be the case for <u>trans</u>-1,2-di-substitution by halogens. However, as the size of the substituent increases the equatorial form may become favoured²⁹.

Considering the cyclopentane ring as existing in

distinct and well-defined conformations e.g. envelope (C_s) and twist (C_2) forms may be misleading. It is probably better to consider the system as a series of intermediate conformations with those conformers of lowest energy having the highest population²⁹. The smaller the substituents the larger the range of 'pseudolibration'²⁹.

The introduction of a double bond into the cyclopentane ring has the effect of severely restricting pseudorotation resulting in an envelope form with a flap inversion barrier of < 1 Kcal/mol²⁹ and a pucker angle of $29(2.5)^{\circ}$ (electron diffraction study³³).

Similarly, substitution of the ring by a 3-membered ring²⁹ results in a boat conformation which, from microwave data, appears to be the only conformer present. The flap of the 5-membered ring takes up an <u>endo</u> conformation with respect to the substituent. The exclusive preference for this conformer appears to be due to the tendency of the <u>cis</u> (1,2) and (4,5) hydrogens (or substituents) to avoid eclipsing strain present in the chair form.

If the 4- and 5-membered rings are compared, it appears that the 4-membered ring has a range of conformations which are relatively stable: non-planar for the unsubstituted saturated species and planar for the cyclobutanones. This is in contrast to the relative flexibility of cyclopentane moieties which (in the saturated cases) are relatively free to pseudorotate. The combination of these conformational aspects leads to interesting stereochemical consequences via conformational transmission between the rings.

In the bicyclo[3.2.0] heptane system the conformations

available to the cyclobutane ring are still accessible $(|\tau| = 0\pm 25^{\circ})$ but the pseudorotation of the cyclopentane ring is limited by the <u>cis</u> ring fusion. If (as seems to be the case) the C(1)-C(5) torsion angles are restricted to lie in the range $\tau = -20^{\circ}$ to $\pm 20^{\circ}$ then by utilising the relationship between torsion angle and phase angle coordinate (due to Dunitz⁴²) it appears that only two distinct regions each allowing 72[°] pseudorotation, are available i.e. about the limiting <u>exo</u>- and endo-envelope conformations.

Force-field calculations on bicyclo[3.2.0] heptane and derivatives indicate that this system has two conformational potential minima. These correspond to an <u>endo</u>-envelope form (78a) with C(3) <u>endo</u> to the 4-membered ring and an <u>exo</u>-twist form (78b) with C(3) <u>exo</u> to the 4-membered ring.

For (78), the <u>endo</u> conformer (E_{ster} =37.2 Kcal/mol) and the <u>exo</u>-twist conformer (E_{ster} =38.5 Kcal/mol) have an energy difference of 1.3 Kcal/mol which suggests that (neglecting entropy) these conformers are in the ratio of 90:10 (<u>endo:exo</u>twist) at 298K. The 4-membered ring is considerably puckered in the <u>exo</u>-twist conformer (τ C(1)-C(5)-C(6)-C(7)=17^o) in which the cyclopentane takes up a conformation intermediate between an envelope (flap at C(3)) and twist, (diad through C(2)-C(3)),

conformations. This is in contrast to the <u>endo</u>-conformation in which the cyclobutane ring is flat.

By driving the torsion angle C(3)-C(2)-C(1)-C(7)from -70° to -135° an estimate of the barrier to inversion may be obtained. However, this method requires care as it does not always follow the minimum energy pathway³⁵. Nevertheless, a barrier of ca. 3 Kcal/mol is indicated in going from the <u>endo-</u> to the <u>exo</u>-twist conformer. The force-field calculation indicates that the major contributors to the barrier height are bending strain and Van der Walls (1,4) interactions. The increases in bending and Van der Waals strain are somewhat offset by the decrease in torsional strain (Figure 5.1).

The bicyclo[3.2.0] heptan-6-one system (77) has been investigated in a similar fashion. The energy difference between the endo- (steric energy = 36.2 Kcal/mol) and exo-twist (steric energy = 37.8 Kcal/mol) conformations is 1.6 Kcal/mol which indicates that the ratio of endo:exo-twist is ca. 94:6. In contrast to the puckered cyclobutane ring, the cyclobutanone ring is relatively planar τ C(1)-C(5)-C(6)-C(7) = 2^O(endo) and -4⁰(exo-twist). X-ray analysis of (3),(61),(64), and (29a) (all of these have the cyclobutanone ring) show $|\tau|(1)-C(5)-C(6)-C(7)$ is in the range 0° to 11°. However, in (58), where the cyclobutane ring is saturated, τ (1)-C(5)-C(6)-C(7) = 17^o. Driving from the endo- to the exo-twist conformation indicates a barrier height of ca. 3.5 Kcal/mol (Figure 5.2). The preference for the endo-envelope conformation (in the absence of strong steric factors) is confirmed by X-ray analysis (Chapter 3) and n.m.r. data (Chapter 2).

The preferred conformation is however influenced by substituents. If the C(2)-C(3) bond is sp^2 or substituted by an

Fig 5,1

171.

Figure 5.1

The variation in strain energies observed upon driving τ 3217 from -70° to -135° (endo- to exo-conformation). Esteric = total strain energy B=angle strain SB=stretch-bend strain VDW(1,4)=(1,4)Van der Waals interaction strain VDW(other)=other Van der Waals interaction energy C=bond strain τ=torsional strain The energies at -75° are (kcal/mol) C=0.92 B=15.03 SB=0.88 VW(1.4)=3.44 VW(other)=-1.12 Ester=37.2 Et=19.8

Figure 5.2

The variation in steric energy for (77) and (78) upon driving $\tau 3217$ from -40° to -160° (<u>endo-</u>to <u>exo-</u>conformation).

epoxide the cyclopentane ring is flattened (crystal structures (26) and (61)) and $|\tau|$ C(1)-C(2)-C(3)-C(4) is in the range 0[°] to 1[°]. In this substitution pattern the cyclopentane ring is in an envelope conformation with the flap at C(4). <u>Trans</u> substitution at C(2) and C(3) to form the bromohydrin (3) results in a more puckered envelope conformer (Br favours a near axial position) as the cyclopentane ring is no longer constrained by a double-bond or epoxide e.g. the crystal structures (3) and (29a).

The presence of a double bond at C(6)-C(7) in the cyclobutane ring has the effect of restricting the ring to a flat conformation. Thus the cyclopentane ring can take up two limiting envelope conformations:-

An electron diffraction study³⁶ on bicyclo[3.2.0]hept-6-ene (87) implied that this molecule takes up an <u>exo</u>envelope conformation in the gas phase. This is contradictory to what would be expected given the X-ray data of Chapter 3 and the calculations outlined above. Indeed, molecular mechanics calculations on (87) imply that the <u>endo</u> conformer is of lower energy by ca. 2.7 Kcal/mol.

Ester.

(87a)

ч 9. 57

Kcal/mol

(87b)

The published structure appears to have a calculated strain (MM2) of ca. 75 Kcal/mol. We believe that the electron diffraction data has been refined to the incorrect structure.

5.3 Stereoselectivity

Bromohydrination of (1) is assumed to take place via reversible bromonium ion formation, both <u>exo-</u> and <u>endo-</u> bromonium ions being formed. Each ion can then be attacked by OH⁻ at either the 2- or 3-position, giving two pairs of isomers.

All four bromohydrin isomers have been isolated and characterised (Chapter 2). From the product ratios one can estimate the ratio of <u>exo-</u> to <u>endo-bromonium</u> ion if it is assumed that OH⁻ attack is equally rapid on either ion. This is supported by the <u>exo:endo</u> ratio in a very similar reaction, the epoxidation of spiro{bicyclo[3.2.0] hept-2-ene-6,2' (1,3) dioxolan} (54) by meta-chloroperoxybenzoic acid where the epoxide formed is a model for the bromonium ion and where the same steric factors might be expected to hold.

The steric congestion about the double bond in (1) can be estimated by Wipke's algorithm^{37,38}. In this calculation (Fig. 5.3, after Wipke et al.³⁸), the accessibility of atom x on side a with respect to electrophilic attack by atom N is determined by each hindering atom i. The cone of preferred approach for each atom is calculated and intersection of this cone with a sphere of unit radius defines a spherical cross section of preferred approach. The solid angle α is equated with the accessibility on side a. A corrective term is included in the calculation to take into account non-bonded repulsion³⁸. The results are summed for all the atoms on one side of the double bond. The reciprocal of the accessibility is the congestion. This is repeated for the other side of the double bond and the results for each side may be compared to predict the favoured side for electrophilic approach.

In this calculation, the coordinates for the crystal structure (64) were used as a model for (1)³⁹ and electrophilic attack was simulated on the mid-point of the C(2)-C(3) bond.

Figure 5.3

The cone of preferred approach for each atom is calculated (after Wipke et al.¹⁷) and intersection of this cone with a sphere of unit radius defines a spherical cross section of preferred approach. The solid angle α is equated with the accessibility on side a. A corrective term is included in the calculation to take into account non-bonded repulsion¹⁷. The results are summed for all the atoms on one side of the double bond ('a' in this case). The reciprocal of the accessibility is the congestion.

The ratio of the congestion for <u>exo</u>- and <u>endo</u>attack is 45:6 (<u>exo:endo</u>). This agrees well with the experimental ratios observed on bromonium ion formation (91:9) and epoxide formation (91:9). It appears that steric crowding is of paramount importance in controlling the stereoselectivity.

The reason for the difference in stereoselectivity in (1), which displays high stereoselectivity on bromonium ion formation (91:9, <u>exo:endo</u>) compared to (7),

which displays no stereoselectivity on bromonium ion formation⁴⁰ (1:1, <u>exo:endo</u>) can be explained on purely steric congestion. For (7) the calculated congestion, using the minimised structure predicted by molecular-mechanics, is 4.9 : 5.3 (<u>endo:exo</u>). This agrees well with the experimental results.

The possibility that a bent double bond (Chapter 1)

could enhance the stereoselectivity observed in (1) appeared possible. The crystal structure (64) appears to show a deformation of the double bond of ca. 4⁰ (from improper torsion angles about the double bond). Unfortunately, the experimental error in the hydrogen positions makes any conclusion here unreliable.

5.4 Regioselectivity

The regiochemical reactions of bicyclo[3.2.0]heptane derivatives can be explained if the geometry of the transition state is fairly similar to that of the major product. Using this approach, the results from X-ray analysis and force-field calculations of reactant and product like molecules can indicate the preferred conformation of the transition state, assuming least conformational change during the course of the reaction⁴⁷.

The protonated <u>endo</u>-epoxide and <u>endo</u>-bromonium ion can be attacked by nucleophile at C(2) or C(3). Attack at C(2) requires that the molecule take up the <u>endo</u>-envelope conformation while attack at C(3) requires the <u>exo</u>-twist conformation. This rationale assumes that attack by nucleophile occurs in a <u>trans</u> fashion with an approximate antiperiplanar geometry for the reactants. Force-field calculations on a number of substituted bicyclo[3.2.0]heptane derivatives indicate that the <u>endo</u>-envelope Table 5.1

Product ratios of the ring opening of bicyclo[3.2.0] - heptane-2,3-epoxides and the analogous bromonium ions. (Chapter 2)

(01101			0		0
R2~	R	1 → H0'	+ Br (2)	Br-	(32)
ر بر R ₂ ~	F	^k 1 → Brı	(33) OH	HO	(34)
	Rl	Reagent	R ₂	Rat	io
<u>Endo</u>	epoxides			(2):	(32)
(a)	=0	HBr	0	82 :	18
(Ъ)	och ₂ ch ₂ o	HBr	0	60 :	40
<u>Endo</u>	bromonium i	on			
(c)	=0	HBr	Br ⁺	56 :	44
<u>Exo</u> e	poxides			(33):	(34)
(d)	=0	HBr	. 0	98 :	2
(e)	OCH2CH20	HBr	0	95 :	5
<u>Exo</u> b	promonium io	n		١	
(f)	=0	HBr	Br ⁺	99 :	1

conformation is preferred. Also, the bromohydrin (3), the major product of addition of the elements HOBr to (1), has an endo-envelope conformation.

From the results of opening bicyclo[3.2.0]heptane epoxides and bromonium ions by HBr (Chapter 2) (Table 5.1), the regioselectivity varies, particularly between the opening of the exo- and endo 3-membered rings.

The ketones (a) and (d) display very constant product ratios on opening the epoxide with HBr despite variations of solvent and temperature (Chapter 2). The <u>endo</u>-bromonium ion opening is approximate due to the very small amount of material isolated. The reaction is more complex in the case of the ketals since the acid also opens the ketal ring. The final product ratio is based on the ketones. It appears, by monitoring the reaction by t.l.c., i.r. and n.m.r. spectroscopy that the epoxide ring opens first, but results from ketals must be only approximate.

The opening of the <u>endo</u>-epoxy ketals could be influenced by hydrogen-bonding (Chapter 1). There is the possibility of hydrogen-bonding between a 3-<u>endo</u>-hydroxyl group and the <u>endo</u>-ketal oxygen provided that the cyclopentane-ring is in an <u>endo</u>-envelope conformation. Also, a 2-<u>endo</u>-hydroxy group and the <u>endo</u>-ketal oxygen can form a hydrogen-bond if the cyclopentane ring is the exo-twist or <u>endo</u> conformations.

Br

HO

Both these cases require that the 4-membered ring is not in the twist-conformation with the ketal group directed <u>exo</u>.

However, force-field calculations suggest that the 4-membered ring is twisted, τ C(7)-C(1)-C(5)-C(6)=-10^O and that the ketal group takes up a pseudo-equatorial position. If the cyclobutane ring is twisted in the opposite sense, orienting the ketal in a pseudo-axial conformation, τ C(7)-C(1)-C(5)-C(6)=9^O, requires ca. 0.7 Kcal/mol (MM2).

With the ketal in a pseudo-equatorial conformation hydrogen-bonding is not possible. In confirmation of a pseudoequatorial conformation, (58), which is a model for the <u>exo</u>-epoxy ketal clearly shows that the cyclobutane ring is twisted $(|\tau| = 17^{\circ})$ and that the model ketal takes up a pseudo-equatorial position (Figure 5.4). The energy gained by hydrogen-bonding may be sufficient to overcome the tendency of the ketal to take up a pseudo-equatorial position and this could be important in promotion of the 2-<u>exo</u>-3-<u>endo</u> product in the transition state.

Figure 5.4

The structure of (58), a model for the exoepoxyketal showing the twist in the cyclobutane ring ($|\tau| = 17^{\circ}$) and the pseudo-equatorial position of the model ketal. From five crystal structures of reactant-like and product-like molecules, the torsion angle about C(1)-C(5) in the cyclopentane and cyclobutane rings is very similar (Table 5.2). Over a range of torsion angles 0° to 17° the standard deviation is 2° , i.e. there is excellent conformational transmission between the rings.

182.

TABLE 5.2

Bicyclo[3.2.0] heptane system

Structure	<u>Cyclopentane</u> (⁰)	Cyclobutane(°)	<u>∆</u> (°)
(3)	3	0	3
(29a)	6	7	1
(58)	16	17 .	2
(61)	12	6	6
(64a)	13	11	· 2
(64Ъ)	8	6	2
	σ _{n-1} = 1.7		
Bicyclo[3.3.0] oct	ane system		
(8)	18	20	2
(60)	21	29	8
(62)	11	14	3
(74a)	5	ц	ì
(74b)	13	ц	9
	$\sigma_{n-1} = 3.6$.		

Interestingly, the X-ray structures of bicyclo[3.3.0] octane derivatives (Table 5.2) indicate lower conformational transmission with a standard deviation of 3.6[°] between the rings. Bicyclo[3.3.0] octane derivatives also display lower regioselectivity. Force-field calculations on the ketal (56) and the ketone (77) indicate that the ketone should display greater regioselectivity as indicated by the difference in energy between the <u>endo-</u> and <u>exo-twist</u> conformations. Also, there appears to be a greater energy barrier between the two conformations (<u>endo-</u> envelope and <u>exo-twist</u>) of the ketone (77) than the unsubstituted compound (78). This may be due to the constraints applied to the cyclopentane ring by the cyclobutane ring (which is constrained to be flat) by the ketone. The differences between the <u>exo-</u> and <u>endo-</u>envelope conformers is shown in Table 5.3. TABLE 5.3

3-exo and 3-endo envelope conformations and energies. Structures (defined by torsion angles (°)). The last column (E(endo-exo)) estimates the difference in steric energy between the 3-endo and 3-exo envelope conformations for each substitution pattern.

Rl	R2	Ring A	a	Ъ	С	d	Steric E Kral/mol	Δ
=	0	3- <u>endo</u>	2	l	22	-36	36.20	
=	o `	3-exo	4	3	-27	41	37.81	1.6
OCH ₂	СН20	3- <u>endo</u>	- 2	0	23	-36	47.49	
OCH ₂	CH ₂ 0	3-exo	-17	-16	-10	32	48.00	0.5

Low selectivity thus depends on the ability of the cyclopentane ring to adopt a 3-<u>exo</u> envelope. This conformation is not so easily accessible to 6-ketones in which (as the crystal structures show) the cyclobutane ring is constrained to be nearly flat.

The opening of the <u>exo</u>-bromonium ions and protonated epoxides is even more selective than in the case of the <u>endo</u>analogues.

The major product on opening the <u>exo</u>-epoxide and <u>exo</u>-bromonium ions probably involves a product-like transition state with a 3-<u>endo</u>-envelope conformation and 2-<u>exo</u>-3-<u>endo</u>substituents. The minor product requires 2-<u>endo</u>-3-<u>exo</u>substitution of the less favoured (energetically) 3-<u>exo</u>-envelope.

The <u>exo</u>-epoxide fragment is found in the model compound (58) (formed when the <u>exo</u>-epoxyketone (59) undergoes aldol condensation and transannular epoxide opening). The structure of this, determined by X-ray crystallography, is an excellent model for the ketal of (55) (Figure 5.4).

As in cyclopentene epoxide⁴⁶ the cyclopentane ring is in an envelope conformation with the flap (C(5)) <u>endo</u> to the epoxide so that τ C(2)-C(1)-C(5)-C(4) = -15°. In the <u>endo</u>-epoxy derivative of bicyclo[3.2.0]heptene (61) the flap is still <u>endo</u> to the epoxide, i.e. τ C(2)-C(1)-C(5)-C(4) = +12°. Force-field calculations suggest that in the 3-<u>endo</u>-envelope conformation of the major product (and transition state) this torsion angle is about -2° (ketone) to -4° (unsubstituted 6-position).

Thus for the <u>exo</u>-epoxides and bromonium ions the starting geometry is closer to the transition state (for the major product) than for the <u>endo</u>-epoxide and bromonium ions hence favouring the 2-exo-3-endo product.

As well as product development control, steric control is present. In the <u>exo</u>-twist conformation, H(7)<u>endo</u> obstructs attack at C(2) and there is also an unfavourable torsional interaction between the attacking moiety and the

C(1)-C(7) bond.

This relative favouring of the $2-\underline{exo}-3-\underline{endo}$ pathway in the <u>exo</u>-epoxide/bromonium ion system leads to the greater regioselectivity observed.

APPENDIX A: Molecular mechanics 1,2,3

There are a large number of experimental methods available today for the elucidation of molecular structure. These include X-ray crystallography, electron diffraction, microwave, vibrational and n.m.r. spectroscopy. Of these methods, X-ray crystallography is undoubtedly the most useful in determining geometry and conformation. However, crystals of the compound of interest may be impossible to obtain and the structure elucidated relates to the molecule(s) in the crystalline state and not in solution or the gas phase which are the states of most interest when considering chemical reactivity.

A number of calculational procedures have been developed to provide knowledge of molecular states not directly observable by experiment. The most accurate of these methods are those based on quantum mechanics. However, even approximate solutions of the Schrödinger equation are voracious users of computer time.

The quantum approach essentially involves assuming or fixing the positions of the nuclei and establishing the electronic configuration (using the Born-Oppenheimer approximation). The force-field method (or molecular mechanics or Westheimer method) considers the nuclear positions but does not consider the electronic configurations explicitly (but attempts to take them into account).

The fundamental idea behind the force-field is to use the large mass of data available on small molecules to

predict the structure and energy of more complex molecules. This presupposes that sufficient data on the class of compound of interest are currently available.

In the molecular mechanics model a molecule is described as a collection of masses held together by simple harmonic or elastic forces. Deformation of the molecule will result in strains being set up. These strains may be calculated if the necessary force laws and constants are known.

Using the available data on the class of molecule of interest, the force laws may be chosen intuitively and the force constants tailored to reproduce the basis set of molecules as accurately as possible in terms of the thermodynamic and structural properties of the molecules (sometimes spectroscopic data are also utilised).

Most force-field programs consists of three major parts:

- (a) a set of equations from which the strain energy of the molecule may be calculated
- (b) a set of force constants (for substitution in (a)) relating to each type of atom in the molecule which configure the force-field for a particular class of compound
- (c) a procedure to vary the geometry of the molecule such that the minimum energy geometry(s) may be found.

In (a), a suitable model based on classical equations which essentially treats the molecule as a set of masses joined by springs is set up.

Bonds and bond angles appear to have particular 'natural' values. If the bond or angle is stretched or bent

from these relaxed values, a certain amount of strain energy is imposed on the molecule. Bond deformation is easily calculated by Hooke's law. Bond angle deformation energy may be calculated in a similar fashion.

$$E_{s} = \Sigma \frac{k_{s}}{2} (\ell - \ell_{o})^{2}$$

$$E_{\theta} = \Sigma \frac{k_{\theta}}{2} (\theta - \theta_{o})^{2}$$

 k_0 is the natural bond length θ_0 is the natural angle k_s , k_{θ} are constants.

The bond and angle strain is summed over all the bonds and angles in the molecule. Hooke's law is reasonably accurate only for small deformations, larger deformations require additional anharmonic (usually cubic) terms to be added to the equations. However, the model should be as simple as possible so as the interpretation of the results is not obscured. The constants (k) should be chosen such that they are transferable from one molecule to another.

In addition to stretching and bending, the atoms of the molecule are subject to repulsive and attractive forces from other atoms in the molecule i.e. van der Waals forces. The van der Waals energy is generally calculated as the sum of an attractive (dispersion) and repulsive (kinetic energy) term. This interaction is particularly difficult to emulate¹⁴ (Allinger's early force-field MM1⁴ had a particularly steep potential for hydrogen ('hard' hydrogens). This gave problems with compounds like cyclodecane⁵.) The potentials used are usually similar to the Hill equation

 $E_{vdw} = \epsilon \left[-c_1 \left(\frac{r^*}{r} \right)^6 + c_2 \exp(-c_3 r/r^*) \right]$

The c's are universal constants, r is the interatomic distance and the energy minimum is at r* (the sum of the van der Waals radii of the two interacting atoms), $\tilde{\epsilon}$ is an energy parameter; or the Lennard-Jones 6-12 potential

$$\mu_{(r)} = 4\varepsilon \{ \left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{6} \}$$

The interactions are summed over all the other atoms in the molecule not directly joined to the atom considered (in some force-fields, 1-3 interactions are not considered). Any intervening electron density is not considered to affect the interaction.

A further contributor to the energy of the molecule is a torsional term, which has a form similar to that for ethane

$$E_{\omega} = \frac{V_{O}}{2}(1 - \cos 3\omega)$$

 V_{o} is a force constant and ω is the H-C-C-H dihedral angle. This potential is usually expanded as a Fourier series and summed over all non-terminal bonds

$$E_{\omega} = \Sigma \left[\frac{V_1}{2} (1 + \cos \omega) + \frac{V_2}{2} (1 - \cos 2\omega) + \frac{V_3}{2} (1 + \cos 3\omega) + \dots \right]$$

This type of simple force-field gives an energy for the molecule that is a sum of the various types of interaction

 $E = E_s + E_{\theta} + E_{vdw} + E_{\omega}$

Various refinements can be added to improve the accuracy of the force-field. Allinger has added a stretch-bend term⁴

 $E_{s\theta} = k_{s\theta} (l - l_0)(\theta - \theta_0)$

to take into account the long bonds in cyclobutane.

Onefold and twofold rotational barriers for the torsional energy have been used by Allinger⁶ to resolve the problem of obtaining a sufficiently large gauche-butane interaction while keeping the hydrogens sufficiently small (soft) for good structural predictions.

$$E_{\omega} = \frac{V_{1}}{2}(1 + \cos\omega) + \frac{V_{2}}{2}(1 - \cos2\omega) + \frac{V_{3}}{2}(1 + \cos3\omega)$$

The inclusion of charge/charge interactions and dipole/dipole interactions⁷, molecular vibrations¹³ etc. increases the accuracy of the model for some types of compound.

The geometry and energy calculated from the above force-field model for a given set of atomic coordinates would represent a point on the energy hypersurface which would not correspond to a real physical situation (unless one were very lucky). A scheme to minimise the energy of the molecule by varying the geometry (as in (b)) is required since the structure of the molecule will correspond to that geometry where the energy is at a minimum.

If the total energy of the molecule is written

 $E = E_{electronic} + E_s + E_{\theta} + E_{vdw} + cross terms, etc.$ then the first derivative with respect to each degree of freedom should be equal to zero at each energy minimum. A number of methods of evaluating the energy minimum have been developed.

The steepest descent method⁸ involves calculating an initial trial geometry and then moving each atom in the x, y, and z directions by a test increment where the energy is recalculated. This process is repeated for all the atoms. The atoms are then moved simultaneously in directions which result in a lowering of energy. The amount each atom is moved depends on the reduction in energy obtained by the test increment. This procedure is repeated until there is no appreciable change in energy.

An improvement on the steepest descent method is pattern minimisation². This is similar to the previous method, but information on the direction of motion of the atoms is saved from one iteration to the next. The correction terms calculated from the previous iteration and the latest iteration are summed with the result that the minimisation procedure is accelerated.

If the minimum energy conformation of the molecule is sought, one point worth emphasising is that the starting point on the energy hypersurface must be within the energy well which has as its base the global minimum as neither of the above methods are capable of climbing out of a false minimum.

A more sophisticated procedure for minimisation of molecular geometry is the Newton-Raphson method.

The energy function (with respect to each coordinate) is differentiated. An energy minimum will be found when

$$f'(x) = 0$$

if x + dx is a close approximation to a minimum x, then

 $f'(x + \delta x) = 0$ and $f'(x + \delta x) = f'(x) + f''(x)\delta x$

and using Taylor's expansion and truncating the series after the linear term

> $f'(x) + f''(x)\delta x = 0$ $\delta x = -f''(x)^{-1}f'(x)$

this can be written in a more general form

$$\delta x = -\lambda f''(x)^{-1} f'(x)$$

where λ is a scalar called the step length. If x is not a good approximation to the minimum geometry there is the danger that the equation becomes oscillatory or divergent. This may be overcome by setting 0< λ >1 in the early part of the minimisation³.

In practice, a combination of second derivative methods, quasi-Newton methods (the Newton iteration with numerical and analytical derivatives) and discrete quasi-Newton methods (setting f" equal to the diagonal matrix $d^2Vs/dx_i^{2\ 10}$, or setting f" equal to the block diagonal matrix $d^2Vs/dx_j, dx_i;i,j$, >=3 for each atom¹⁰) offers the best hope of achieving global minimisation³.

The parameterisation of the force-field (selection of appropriate constants) can proceed in two ways. The constants can be fitted to the available spectroscopic and thermodynamic data by a least squares procedure¹¹. However, this method is not generally used as the surplus of observations over parameters is not large. Trial and error adjustment of the force constants is the most generally used procedure¹².

In recent years, force fields have been developed for many classes of compound. Hydrocarbons (alkanes and alkenes)

or

have been investigated extensively^{6,2,15} and the approach has been extended to include hetero-atoms (this is rather difficult, especially the torsional interactions between different atom types)^{1,16,2}, conjugated systems¹⁷ (this also is not particularly successful) and intermolecular interactions^{18,19}.

5.5

٠

REFERENCES

1.	Allinger, N.L., Adv. Phys. Org. Chem., 1976, 13, p.1
± •	Allinger, N.H., Maverhystorg.chem., 1570, 15, p.1.
2.	Engler, E.M., Andose, J.D., Schleyer, P. von R.,
	J.Am.Chem.Soc., 1973, 95, p.8005.
3.	White, D.N.J., Computers & Chemistry, 1977, Vol.1, p.225.
4.	Wertz, D.H., Allinger, N.L., Tetrahedron, 1974, Vol.30,
	p.1579.
5.	White, D.N.J., Bovill, M.J., J.Mol.Struct., 1976, 33, p.273.
6.	Allinger, N.L., J.Am.Chem.Soc., 1977, Vol.99, Number 25,
	p.8127.
7.	Allinger, N.L., Dosen-Micovic, L., Tetrahedron, 1978, 34,
	3385.
8.	Wiberg, K.B., J.Am.Chem.Soc., 1965, 87, p.1070.
9.	Bixon, M., Liffson, S., Tetrahedron, 1967, 23, p.769.
10.	White, D.N.J., Sim, G.A., Tetrahedron, 1973, 29, p.3933.
11.	Lifson, S., Warshel, A., J.Chem.Phys., 1968, 49, p.5116.
12.	Allinger, N.L., Hirsch, J., Miller, M.A., Tyminski, I.J.,
	Van-Catledge, F.A., J.Am.Chem.Soc., 1968, 90,p1199.
13.	Wertz, D.H., Allinger, N.L., Tetrahedron, 1979, Vol.35, p.3.
14.	Wiberg, K.B., Computers and Chemistry, 1977, Vol.1, p.221.
15.	White, D.N.J., Boville, M.J., J.Chem.Soc.,Perkin 2,
	1977, p.1610.
16.	Bovill, M.J., Chadwick, D.J., Sutherland, I.O.,
	J.Chem.Soc.,Perkin 2, 1980, p.1529.
17.	Allinger, N.L., Sprague, J.T., J.Am.Chem.Soc., 1973, 95,
	p.3893.
18.	Lifson, S., Hagler, A.T., Dauber, P., J.Am.Chem.Soc.,
	1979, Vol.101, No. 18, p.5111.

- 19. ibid., p.5122.
- 20. Ali, S.M., Lee, T.V., Roberts, S.M., Synthesis, 1977, p.155.
- 21. 'Topics in Stereochemistry', Moriarty, R.M., 1974, Vol.8, p.271. Editors E. L. Eliel, N. L. Allinger, John Wiley & Sons.
- 22. Ibid., p.286.
- 23. Ibid., p.291.
- 24. Wiberg, K.B., J.Amer.Chem.Soc., 1965, 87, p.1070.
- Miller, F.A., Capwell, R.J., Spectrochim.Acta., 1971, 27a, p.947.
- 26. Durig, J.R., Lord, R.C., J.Chem.Phys., 1966, 45, p.61.
- 27. Scharpen, L.H., Laurie, V.W., J.Chem.Phys., 1968, 49, p.221.
- 28. Allinger, N.L., J.Am.Chem.Soc., 1977, Vol.99, No. 25, p.8127.
- 29. 'Topics in Stereochemistry', Fuchs, B., 1978, Vol.10, p.1. Editors E. L. Eliel, N. L. Allinger, John Wiley & Sons.
- 30. Molecular Structure by Diffraction Methods, Bohn, R.K., 1977, Vol.5, p.23.
- 31. Ikeda, T., Lord, R.C., Malloy, T.B., Ueda, T., J.Chem.Phys., 1972, 56, p.1434.
- 32. Lifson, S., Warshel, A., J.Chem.Phys., 1968, 49, p.5116.
- 33. Davis, M.I., Mueke, T.W., J.Phys.Chem., 1970, 74, p.1104.
- 34. Rankin, D.W.H., 'Molecular Structure by Diffraction Methods', 1977, Vol.5, Chapter 1, p.23.
- 35. Muller, K., Angew.Chem.Int.Ed.Eng. 1980, 19, p.1.
- 36. Chiang, J.F., Bauer, S.H., J.Am.Chem.Soc., 1966, 88:3, p.420.
- 37. Wipke, W.T., Gund, P., J.Am.Chem.Soc., 1974, Vol.96:1, p.299.
- 38. Wipke, T.D., Gund, P., J.Am.Chem.Soc., 1976, 98:25, p.8107.
- 39. Congest calculations performed on 'Video Vector Dynamics Chemical Graphics System', Morrow, C., Chemistry Dept., University of Glasgow.

- 40. Ali, Mubaric S., Crossland, N.M., Lee, T.V., Newton, R.F., J.Chem.Soc.Perkin 1, 1979, p.122.
- 41. Dunitz, J.D., 'X-Ray Analysis and the Structure of Organic Molecules', 1979, Cornell University Press.
- 42. Ibid., p.431.
- 43. Allen, F.H., Bellard, S., Brice, M.D., Cartwright, B.A.,
 Doubleday, A., Higgs, H., Hummelink, T., Hummelink-Peters,
 B.G., Kennard, O., Motherwell, W.D.S., Rogers, J.R.,
 Watson, D.G., Acta Cryst., 1979, B35, p.2331.
- 44. Allinger, N.L., 1980, QCPE program no. 395.
- 45. Newton, R.F., Howard, C.C., Reynolds, D.P., Wadsworth, A.H., J.Chem.Soc.Chem.Commun., 1978, p.662.
- 46. R. L. Hilderbrandt and J. D. Wieser, J.Mol.Structure, 1974, 22, 247.
- 47. Toromanoff, E., Tetrahedron, 1980, Vol.36, p.2809.

APPENDIX 1

2-(S)-<u>exo</u>-bromo-3-(S)-<u>endo</u>-hydroxybicyclo[3.2.0] heptan-6-one

(3).

Atomic coordinates Bong lengths Bond angles Torsion angles Isotropic temperature factors Anisotropic temperature factors Structure factors FRACTIONAL ATOMIC COOPDIVATES X10000 WITH E.S.D.S. IN BRACKETS

198.

	XZA	Y/5	270	OCCUPANCY
+				
C(1)	10760(14)	3942(13)	4044	(20)
0(2)	9359(10)	2926(10)	5226	(13)
6(3)	8022(12)	2229(12)	3701	(16)
C(4)	8694(13)	1982(16)	1556	(17)
6(5)	10350(17)	3203(14)	1685	(21)
0161	10665(12)	4773(13)	1168	(21)
U(7)	11095(17)	5495(15)	3216	(22)
0131	7614(11)	3348(10)	3194	(15)
0(6)	105/5(13)	5273(10)	-0492	(15)
BK(1)	-1253(1)	-1891(1)	00000	
H(1A)	11520(129)	3715(115)	4067	(1/3)
H(24)	9082(74)	3665(81)	6468	(123)
HIJA)	7056(84)	1196(84)	4271	(122)
H(30)	7004(122)	5073(140)	2/60	(199)
HI4A)	4372(84)	1965(78)	0585	(156)
H(43)	3347(92)	9669(107)	2523	(135)
H(5A)	10851(87)	2915(91)	1542	(151)
H17A)	11953(118)	6133(106)	3424	(150)
H(73)	10612(116)	2884(109)	3874	(162)

BOND DISTANCES (R) WITH L.S.D.S IN BRACKETS

L(1)	-	C(2)	1.489(14)
L(1)	-	0(5)	1.547(16)
L(1)	-	C(7)	1.532(16)
L121	-	C(3)	1.539(12)
L(3)	-	C(4)	1.523(13)
L(3)	-	0(3)	1.429(12)
6141	-	C(5)	1.524(19)
L(5)	-	C(6)	1.528(15)
L(6)	-	C(7)	1.513(18)
L(6)	-	0(6)	1.185(13)
Br(1)	-	C(2)	1.955(10)

BOND ANGLES (DEGREES) WITH E.S.D.S IN BRACKETS

L(5)	- C(1)		C(2)	104.4(10)
L(7)	- C(1)	-	C(2)	11/.8(11)
L(7)	- C(1)	-	C(5)	89.6(4)
L(3)	- 0(5)	-	C(1)	106.4(10)
6(4)	- C(3)	-	C(2)	104.5(8)
0(3)	- C(3)	-	C(2)	108.7(8)
0(3)	- C(3)	-	C(4)	109.5(9)
L(5)	- C(4)	-	C(3)	101.9(10)
L(4)	- C(5)	-	C(1)	109.3(11)
L(5)	- C(5)	-	C(1)	69.2(10)
L(6)	- C(5)	-	C(4)	119.3(11)
L(7)	- C(6)	-	C(5)	91.0(10)
0(6)	- C(6)	-	C(5)	134.1(12)
0(6)	- C(6)	-	C(7)	134.8(11)
6161	- C(7)	-	C(1)	90.3(10)
Br(1)	- C(2)	-	C(1)	111, 9(10)
Br(1)	- (2)		C(3)	108,0(10)

TORSION ANGLI E.s.d's ca.	ES (DEGREI 1.5 ⁰	ES)	
C5 C1 C2 C3 C5 C1 C2 BR1 C7 C1 C2 C3 C7 C1 C2 BR1 C2 C1 C5 C4 C2 C1 C5 C4 C2 C1 C5 C6 C7 C1 C5 C4 C7 C1 C5 C6 C2 C1 C7 C6 C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4 BR1 C2 C3 C4 BR1 C2 C3 C4 BR1 C2 C3 C4 BR1 C2 C3 O3 C2 C3 C4 C5 C3 C4 C5 C1 C3 C4 C5 C1 C3 C4 C5 C6 C1 C5 C6 C7 C1 C5 C6 C7 C4 C5 C6 C7 C4 C5 C6 C7 C1 O6 C6 C7 C1		-19.2 97.9 78.0 -164.7 -2.6 116.9 -119.8 0.0 -106.5 0.0 34.1 -82.7 -84.4 158.5 -34.4 83.6 22.7 -76.9 0.0 -177.9 111.7 -66.3 0.0 177.9	

H(1/)	0023(402)
1(2A)	0124(221)
H(3A)	0167(211)
H(30)	0335(556)
H(4A)	0001(231)
1(46)	0585(251)
H(5A)	0019(257)
(117/\)	0269(329)
H(7B)	0420(407)

()(6)

BR(1)

0471(8) 1275(95) 0541(50) 1222(85) 0525(71)

1454(7) 11675(71) 0552(59) 0290175) 0513(96)

(1595(5) U52R(10) 0297(53) 0662(115) 1626(106)

-9032(8)

(R) [6UL--02611651 - 77351451 -116500--01321651

0155(8) 0535(69) (144)+960

- 11 34 (40) 0118(55)

0041(77) 0081(75)

-00.14(59)

1213(55)

-

C(6) C(/) 0(5)

C(1) 0515 C(2) 0515 C(2) 0547 C(5) 0547	(1223(62) 0411(68) 0262(59)	US3 US47(88) US97(69) US97(71)	123 -0021(62) -0024(55)	10050000000000000000000000000000000000
C(1) 0315 C(2) 03470 C(3) 03470	0411(68) n262(59) n353(62)	(1547(88) U397(69) U397(71)	-0021(62) -0024(55) 0001(56)	-00926091 1012129) 10195(05)
C(4) 0270 C(5) 04891	0590(87) 0460(79)	U255(74) U519(105)	-0068(63)	(1191123)

|--|

1

THE

H K L -3 2 0 1 2 0 -3 3 0 -4 3 0 -4 3 0 -4 3 0 -1 4 0 -1 3 0 -1 4 0 -1 5 0	FU 458788200 4407788200 455500 4407788200 555500 4407555500 4407555500 44071555785500 455000 4500000000	FC 69904503928730623123219110027775599912212	4 3 5117987-6543210123450976543210109876568 	K 55666666666666666667777777777789588484 K 4	F0 14 22 15 7 16 13 7 14 20 10 36 11 32 14 20 10 36 11 32 14 21 34 21 34 21 34 21 34 21 34 21 54 20 16 16 11 35 28 17 16 16 17 16 16 17 16 16 17 16 17 16 17 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 16 17 16 17 17 17 17 17 17 17 17 17 17	FC 16 22 H 12 5 15 14 15 21 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 15 25 25 25 25 25 25 25 25 25 2	H K L -4 4 9 9 -3 5 0 2 8 0 2 8 0 -11 9 0 -9 9 9 9 -6 9 0 -10 9 0 -9 9 0 -4 9 0 -2 9 0 -1 9 0 2 9 0 -1 9 0 -2 9 0 -1 0 0 -9 10 0 -9 10 0 -6 10 0 -5 10 0 -5 10 0 -7 11 0 -6 11 0 -5 11 0 -6 11 0 -5 11 0 -2 2 1 -1 2 1 -2 2 1 -1 2 -1 2 -1 2 1 -1 2 -1 2 -1 -1 2 1 -1 2 -1 2 -1 -1 2 -1 2 -1 -1 2 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 -1 2 -1 -1 2 -1 -1 -1 2 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	FO 9215 1691 1091 1411 1592 1411 1592 1411 1592 1411 1592 1411 1592 173 1593 1653 665 653 FD	FC 92515510010511116424809122341582991106663663	- - 1 - - 1 - - - - - 1 - - 1 - - 1 - - 1 - - 1 - - 1 - - - <t< th=""><th>F) 1913137673824559543575577069750732727 F) 191913776738245595136544111 442255 32 2 F)</th><th>FC 4451902966444912464996059889970069950941414 FC 4511246496059889970069950941414</th><th>H K L 4 5 1 -0 6 1 -0 6 1 -0 6 1 -7 6 1 -1 -7 6 1 -1 -5 6 1 -2 7 1 -3 7 1 -3 7 1 -3 7 1 -3 7 1 -4 7 1 -5 7 1 -2 7 1 -3 7 1 -4 7 1 -5 7 1 -5 7 1 -5 7 1 -1 7 1 -2 7 1 -3 7 1 -4 9 1 -7 5 3 1 -7 5 3 1 -7 5 3 1 -7 5 1 -7 5 3 1 -7 5 7 1 -7 5 3 1 -7 5 3 1 -7 5 7 1 -7 5 7 1 -7 5 7 1 -4 7 1 -5 7 1 -4 9 1 -7 5 3 1 -7 5 3 1 -7 5 7 1 -7 5 7 1 -7 5 7 1 -7 5 3 1 -7 5 4 1 -7 5 3 1 -7 5 4 1 -7 5 7 1 -7 5 7 1 -7 5 7 1 -7 5 3 1 -7 5 4 1 -7 5 5 5 1 -7 5 5 1 -7 5 5 1 -7 5 5 5 1 -7 5 5 1 -7 5 5 1 -7 5 5 5 5 5 1 -7 5 5 5 1 -7 5 5 5 1 -7 5 5 5 5 5 1 -7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th>FD 1211 122234 4310 1010 1576 1010 1577 101 101 101 101 101 101 101 1</th></t<>	F) 1913137673824559543575577069750732727 F) 191913776738245595136544111 442255 32 2 F)	FC 4451902966444912464996059889970069950941414 FC 4511246496059889970069950941414	H K L 4 5 1 -0 6 1 -0 6 1 -0 6 1 -7 6 1 -1 -7 6 1 -1 -5 6 1 -2 7 1 -3 7 1 -3 7 1 -3 7 1 -3 7 1 -4 7 1 -5 7 1 -2 7 1 -3 7 1 -4 7 1 -5 7 1 -5 7 1 -5 7 1 -1 7 1 -2 7 1 -3 7 1 -4 9 1 -7 5 3 1 -7 5 3 1 -7 5 3 1 -7 5 1 -7 5 3 1 -7 5 7 1 -7 5 3 1 -7 5 3 1 -7 5 7 1 -7 5 7 1 -7 5 7 1 -4 7 1 -5 7 1 -4 9 1 -7 5 3 1 -7 5 3 1 -7 5 7 1 -7 5 7 1 -7 5 7 1 -7 5 3 1 -7 5 4 1 -7 5 3 1 -7 5 4 1 -7 5 7 1 -7 5 7 1 -7 5 7 1 -7 5 3 1 -7 5 4 1 -7 5 5 5 1 -7 5 5 1 -7 5 5 1 -7 5 5 5 1 -7 5 5 1 -7 5 5 1 -7 5 5 5 5 5 1 -7 5 5 5 1 -7 5 5 5 1 -7 5 5 5 5 5 1 -7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	FD 1211 122234 4310 1010 1576 1010 1577 101 101 101 101 101 101 101 1
-4 9 1 -4 9 1 -2 8 4 1 -1 8 4 1 -1 9 9 1 -1 1 1 1 -1 1 9 9 1 -1 1 1 -1 1 1 1 -1 1 9 9 1 -1 1 1 -1 1 1 1 -1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300227450628359179294130222745045465050 1179294110222537454545450 11792941111245554654545450 45050	52758459460755846219580152152795448666161 11958015279544866161	19376543210193498765432101234098765454		21642923112739217096769345297×302840330140	212123112 3 2161470984 55408 8 50 57 50 250 50	-3 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	20 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	27039574946351377×1197981529329634737771	1 1 2 <td>111111 221215312431452232145323311 1 1 1</td> <td>111111 22121535695593295275139331137777</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>7774 11157111577217217134 11541115773447217217217292 11154110534 117793447217217217292 117792 1177992 1177992 1177992 117792 1177992 117792 11</td>	111111 221215312431452232145323311 1 1 1	111111 22121535695593295275139331137777	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7774 11157111577217217134 11541115773447217217217292 11154110534 117793447217217217292 117792 1177992 1177992 1177992 117792 1177992 117792 11

201.

- 41,24121

1	(Maria	-	1- 1				7	~			227	dis.		100		1.123		1.24	5 in .	-				- 128	12/01/24
			,	50				1	FO	FC	н	к	L	FO	FC	M	4	L	FU	FC	н	к	L	FD	۲C
		- ^	-	FU	FL		~	-	10	10								-				-	~		
	-10	7	5	11	8 20	0	5	4	14	15	-10	5	4	11	15	- 2	5	5	22	21	-8	7	5	15	T9 T4
	-9	8	3	15	16	2	3	4	26	26	-7	7	4	9	A	-1	5	5	35	35	-6	7	5	9	2
	-/	8	3	22	21	3	5	4	29	30 14	-6	7	4	9 14	12	1	5	5	20	21	-5	7	5	11	15
	-4	9	3	9	8	-5	4	4	25	26	-4	7	4	16	17	2	5	5	10	16	- 1	1	5	1.4	13
	- 5	8	3	14	14	-4	4	4	19	19	-1	777	4	13	13	۲ +4	5 -4	5	11	11	-9	9	5	12	5
		8	3	10	7	-5	4	4	32	32	1	7	4	12	q	-5	4	5	25	23	-9	8	5	9	9
	-10	9	5	15	12	-1	4	4	38	39	2	7	4	11	10	= 11	- 4 - 4	5	19	19	-2	-9	5	12	14
	-9	9	3	4	4	1	4	4	18	18	-8	8	4	14	13	-2	4	5	17	18	-7	9	5	12	11
	-7	9	5	12	12	2	4	4	35	35	-5	8	4	20	50	-1	4	5	5	8	-6	9	5	12	11
	-5	9	3 3	8	12	3	4	4	9	4	-2	8	4	15	17	1	4	5	16	15	-4	9	5	13	11
	-2	9	5	13	13	-9	5	4	20	19	-1	8	4	15	17	3	4	5	9	9	- 3	9	5	11	11
	-1 U	9	3	20	19	-6	5	4	27	27	2	3	4	11	10	- 9	5	5	15	12	- 3	10	5	12	12
	- 6	τO	3	1.5	12	-5	5	4	25	25	-9	9	4	12	13	-4	5	5	14	12	-1	1	6	20	20
	- 5 - 2	10	5	17	18	-4	5	4	20	50	-8	9	4	15	18		2	5	14	14	-3	5	6	12	11
	-1	10	3	15	12	-2	5	4	40	40	-4	9	4	15	16	= 3	5	5	25	26	-2	2	6	18	19
	- 5	11	.5	10	- 11 - 3	-1	ל 5	4	21	21	-1	9	4	10	10	-2	ר 5	5	12	11	-1	2	6	24	26
	-1	1	4	42	42	4	5	4	19	11	- 3	10	4	11	3	1	5	5	52	33	2	2	6	13	12
	U 1	1	4	22	22	5	5	4	9 19	18	-1	1	5	15	16	1 5	ר כ	5	19	19	-3	5	6 0	29	21
	- 5	5	4	29	28	- 8	6	4	14	12	1	î	5	14	14	= 4	5	5	15	15	٥	3	6	21	22
	-2	5	4	47	47	-7	6	4	21	10	-3	2	5	11	.11	-7	j.	5	15	15	1	3	5	17	18
	-1	2	4	22	23	-5	6	4	25	26	-1	S	5	59	39	= 5	5	5	16	17	3	3	6	15	12
	1	2	4	50	30	-3	5	4	15	16	0	2	5	30	29	-4	5	5	20	20	-7	4	5	19	13
	- 7	3	4	10	11	-1	6	4	17	15	2	2	5	24	24	-1	5	5	22	22	-4	4	ь	19	20
	- 5	3	- 14	50	50	1	ń 6	4	16	17	-5	3	5	24	22	1	۲ ۲	5	19	19	- 3	4	6	23	25
	-1	3	4	20 .50	50	1	6	4	16	1/	-5	3	5	24	22	1	5	5	19	19	- 3	4	6	23	23
	- 1	3	4	26	26	3	6	4	11	14	-4	3	5	55	36	2	à	5	11	9	-5	4	6	15	15
											4														
	11	×	L	۲U	۲C	ч	к	L	FO	FC	н	к	L	FO	FC	1	۲	L	FD	FC	н	к	L	۶٦	۲C
	- 1	ц		11	9	-4	5	6	16	17	u	5		12	5	2	5	5	11	12	- 3	7	6	20	17
	-1	4	6	16	16	- 5	5	5	10	10	=6	6	6	3	3)		1	6.	Ĵ,	8	-5	7	0	15	12
	1	4	6	14	15	-1	5	6	11	В	-2	6	6	19	15	• 5	1	5	15	15	-5	3	5	15	15
	-1	ר 5	6	12	12	3	5	6	15	12	-1	6	6	15	13		'	2	Le	10	- 3	1	0	14	*0

-

7,8-<u>endo</u>-epoxy-2-oxatricyclo[3.3.0.0^{4,6}]octan-3-one (60).³¹

Atomic coordinates Bond lengths Bond angles Torsion angles Isotropic temperature factors Anisotropic temperature factors Structure factors

BE LAS METELLYS, MIS DE BEATELTS

	100

тŕ

204.

1

ł

ł

FRACTIONAL ATOMIC COORDINATES X10000 WITH E.S.D.S. IN BRACKET

	X/A	YVB	Z/C	OCCUPANCY
C(1) C(3)	3457(2) 5460(2)	1263(2) 1127(2)	4286	(2)
C(4) C(5) C(6)	2533(3)	0143(2) 0010(2) 0650(2)	2103 3655 2750	(2) (2) (2)
C(7) C(8)	0686(2) 1972(2)	2124(2) 2503(2)	3224	(2) (2)
U(9) U(10)	6901(2) 2469(2)	1542(1) 1494(1) 3098(1)	5195 0210 2212	(1) - (1) (1)
H(1A) H(4A)	3747(31) 3759(31) 2259(32)	1094(21) -0580(19)	5217 1463	(22) (17) (21)
H(6A) H(7A)	0164(34)	0150(21) 2502(22)	2464	(21) (19)

BOND DISTANCES (R) WITH L.S.D.S IN BRACKETS

3

(1)	-	C(5)		1.533(2)
C(1)	-	C(8)		1.534(2)
C(1)	-	0(2)		1.446(2)
C(3)	•	C(4)		1.486(2)
L(3)	-	0(2)		1.357(2)
C(3)	-	0(9)		1.198(2)
C(4)	-	C(5)	2	1.492(2)
L(4)	-	C(6)		1.529(2)
C(5)	-	C(6)		1.494(2)
U(6)	•	C(7)		1.496(2)
0(7)	-	C(8)		1.448(2)
L(7)	-	0(10)		1.446(2)
U(8)	-	0(10)		1.448(2)

BOND ANGLES (DEGREES) WITH E.S.D.S IN BRACKETS

	C(8)	-	C(1)	-	C(5)	106.2(1)
	U(2)	-	C(1)	-	C(5)	105.5(1)
	0(2)	-	C(1)	-	C(8)	107.3(1)
	U(2)	-	C(3)	-	C(4)	110.0(1)
	U(9)	-	C(3)	-	C(4)	128.8(1)
	U(9)	-	C(3)	-	0(2)	120.8(1)
	U(5)	-	C(4)	-	C(3)	106.2(1)
	5'(6)		C(4)	-	C(3)	125.2(1)
	L(6)	-	C(4)	-	C(5)	59.3(1)
	1.(4)	-	C(5)		C(1)	101.4(1)
è	((4)	_	C(5)	_	C(1)	104.2(1)
	0107	-	0157	-	0(1)	
	C(6)	-	C(5)	-	C(4)	61.6(1)
	C(5)	-	C(6)	-	C(4)	59.1(1)
	C(7)	-	C(6)	-	C(4)	121.0(1)
	U(7)	-	C(6)	-	C(5)	108.8(1)
	C(8)	-	C(7)	-	C(6)	108.5(1)
	U(1U) -	-	C(7)	-	C(6)	114.9(1)
	U(10)	-	C(7)	-	C(8)	60.0(1)
	6(7)	-	C(8)	-	C(1)	107.6(1)
	01101	-	C(8)	-	C(1)	111.7(1)
	0(10)	-	C(8)	-	C(7)	59,9(1)
	1 (7)	_	0(0)	_	C/11	107 9(1)
	0(5)	-	0121	-	U(I)	10/0711/
	CIRI	-	0(10)	•	C(7)	60.0(1)

E.s.d's ca. 1.5° **C**8 C 1 CD 04 R4.7 08 C 1 21.4 05 60 02 C 1 CD C4 -28.9 -92.2 02 C1 05 06 05 C1 CB C7 -15.5 C5 C1 Cв 010 -79.4 05 C1 96.9 CВ C7 02 C1 CВ 010 35.0 05 C1 92 C3 28.8 83 C1 03 -84.1 02 02 03 C4 С5 -2.9 02 C 3 C6 60.6 **C**4 09 C 3 **C**4 05 169.2 09 C3 C4 C6 -12/.1 C4 C1 -16.5 C 3 02 09 02 C 3 C1 170.7 03 C4 CO C1 14.5 C 3 C 4 CЪ 119.5 **C**6 06 C 4 C5 C1 -100.0 C3 C4 -89.9 C6 05 C3 C4 Сь C7 4.5 C5 C 4 С6 C7 94.5 C1 65 60 C4 95.5 -19.9 C1 C5 C6 C7 C4 С5 С6 C7 -115.4 C 4 C6 C1 C 8 -55.8 C4 C6 01 010 10.9 C5 C6 01 C8 10.8 C5 C6 C1 010 75.6 C6 C7 63 C1 5.2 C7 C6 03 010 108.6 010 C 7 Съ C1 -105.5 06 C / UIU -91.8 C 8 C1 C 8 98.5 010 C7

TORSION ANGLES (DEGREES)

	1047240	
(th) H	0597(47)	
H(5A)	(90)000	
H(6A)	(nc)99+0	
H(7A)	(jcj3(jc))	
H(8A)	(LC) #900	

ANISOTROPIC THERMAL PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(+2*PI*PI*(H*H*ASTAR*ASTAR*U11+. .+2*K*L*BSTAR*CSTAR*U23))

		011	U22	U33	U23	U13	U12
	C(1)	0343(8)	0472(10)	0250(/)	0025(6)	-0075(6)	0060(7)
	C(3)	0275(6)	0265(8)	0537(7)	-0004(6)	-0042(5)	0006(6)
	C(4)	0318(7)	0250(8)	0354(8)	-0046(6)	-0065(6)	-0013(6)
	C(5)	0338(7)	0269(8)	0416(8)	0109(7)	-0020(6)	0011(6)
	C(6)	0270(7)	0311(9)	0470(9)	0001(7)	-0112(6)	-0061(6)
	C(7)	0245(7)	0317(9)	0470(9)	0037(7)	-0081(6)	0017(6)
	C(8)	0372(8)	0354(9)	0524(8)	-0066(7)	-0040(6)	0048(7)
	0(2)	0258(5)	0475(7)	0386(6)	-0057(5)	-0117(4)	-0002(4)
	0(9)	0398(6)	0504(8)	0453(7)	0001(6)	0082(5)	-0080(6)
	0(10)	0365(6)	0267(6)	0429(6)	0042(5)	-0105(5)	-0021(4)

KETS
H 4 3 2 U 1 3 / 6 5 4 3 2 1 2 3 4 5 6 / 8 8 / 6 5 4 2 1 U 1 2 3 4 5 6 / 8 / 8	085E K 000000000000000000000000000000000000
K	RVEU L 0 0 0 0 0 0 0 0 0 0 0 0 0
	ANU FO 35 8 6 2 2 3 4 4 4 12 12 12 6 12 5 8 8 10 18 4 5 8 12 12 12 12 12 12 12 12 12 12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CALCULA FC -33 7 5 -7 -6 -3 -41 -44 17 -9 -17 12 -17 12 -17 12 -17 12 -17 -2 -17 -3 -3 -41 -44 -3 -3 -41 -44 -4 -4 -17 -9 -17 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -3 -3 -41 -44 -4 -4 -17 -9 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -3 -3 -41 -44 -4 -4 -17 -9 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -2 -17 -4 -2 -17 -2 -17 -4 -4 -2 -17 -2 -17 -2 -17 -4 -4 -5 -7 -4 -2 -10 -2 -10 -2 -12 -2 -12 -2 -12 -2 -12 -2 -12 -2 -12 -2 -12 -2 -2 -12 -2 -2 -2 -2 -2 -2 -2 -2 -2 -
	NTED H 56723461234567123561245623447-6543-2111
4 75432101234567875432101234587654321012	S K 55566667777777888889999900001111111111111
K 22222222222222333333333444444444444444	
	JRE F 0 5 8 5 9 2 7 5 7 2 2 2 5 5 4 4 5 2 8 6 2 5 6 2 6 9 4 2 7 4 1 2 2 5 0 5 1 2 2 5 5 4 4 5 2 8 6 2 5 6 2 6 9 4 2 7 4 1 2 2 5 0 5 1 1 1 2 2 5 0 5 1 1 1 2 2 5 0 5 1 1 1 2 2 5 0 5 1 1 1 2 2 5 0 5 1 1 1 2 2 5 0 5 1 1 1 2 2 5 0 5 1 1 1 1 2 2 5 0 5 1 1 1 1 1 2 2 5 0 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 FC 4 - 16 2 5 5 4 2 9 5 5 - 16 2 5 5 4 2 9 5 5 - 17 5 2 4 9 9 6 4 8 0 - 26 5 5 2 7 2 5 7 6 7 10 8 3 - 10 5 0 10 5 0 10 5 - 10 5 0 10 10 5 0 10 10 10 10 10 10 10 10 10 10 10 10 1	ACTURS FC -3 -9 12 -3 -7 2 -13 -2 -13 -2 -13 -2 -13 -3 5 2 4 4 4 5 2 8 -6 -2 -5 -2 -15 -2 -15 -2 -15 -2 -15 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2
	H 24567875432112346887654321023567654343
H 12345665432101235675432101234567654343	× 1111122222222222222222222222222222222
K 44444555555555556666666666666777777	
	F0 1463 15 5 2 7 2 5 5 2 9 2 4 4 3 6 5 1 2 5 5 2 9 2 4 4 3 6 5 1 8 9 3 5 7 5 1 6 6 9 2 3 2 6 4 6 4 6 4
F 532 552 62258099705355400419754522536252	F(-14 -14 -14 -14 -14 -14 -14 -14 -14 -14
F -32667151259099706366400919754612536262	C 463386665622371182434639936526692326553
	< 4444444444555555555555555555555555555
F 20212542572225721115754317772432525252525252525252525252525252525252	F 0 21 15 23 23 52 14 9 24 5 10 - 10 - 5 24 5 14 9 24 5 10 - 15 - 15 - 15 - - - - - - - - - - - - -
F 4022126423431452117572927752843323333	FC 217572504228553492425003652357972438686
H 45765431123456776543212125456776432121	H 676543211234676321012345656
K 1001111111111122222222222222222353535353535	K 66777777777888888888888888888888888888
2225555555555555555555555555555555555	
FD 47 34 47 47 47 47 47 47 47 47 47 4	F 2296326647035332696049353446224995252525
C - 57 24 - 43 - 17 - 143 - 52 5 - 51 57 87 217 66 6 5 2 5 4 4 4 2 2 1 2 - 5 1 5 7 8 7 1 7 6 6 5 6 3 2 5 4 4 4 2 2 1 2 - 1 4 4 2 2 1 2 - 1 4 4 2 2 1 2 - 1 4 4 2 2 1 2 - 1 4 4 2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	F - 285336647935325960493523462338852424

208.

1

6	-	6	4	c	÷	ŧ	ť	_	œ	σ	6	N:	-	c	<u>.</u>	*	÷.	# #	÷	U	÷	5	N :		c	I.	ŀ	œ	7	or i	ď	÷	6	ь,	-	L .	ł.	I	
7	-	7	7	7	7	7	7	σ	σ		ۍ	œ	ъ		ው	5	σ	ው	or	ur	U ^s	ur	U	σ	u	UN	UI.	£	ŧ	£	F -	£	.	£ -	F	£.	£	×	
a r 1	6	œ	3r	J	σ	6	r	œ	ď	r	a٦	σ	ď	G r	σ	Q,	۵r	J	σ	ar.	5	6	o	0r	o	5	6	œ	d'r	dr .		an i	ית	ויזכו	ינ	יס	or	r	
7	N	1	N :	£	J	(,,	<u>ل</u>	N	~	4	15	5	7	1	œ	N	£	۰.	N	7	N	19	15	11	с,	C =	s	J	6	N	s	~	15	ŧ I	N	10	12	FO	
-7	-2	-7	+2	ŧ	÷.	6	1	NJ		£	-13	£	.	6	5	-2	-4	N	N	-7	N	-18	15	11	4	-2	6	ur.	5	2	•9	-2	13	+	N	10	-12	ň	
# [4	+	÷.3	-4	-	-6	J	#	-	n)	مر	0	<u>+</u>	•	e Ui	j.	15	2		0	1	ŧ	ы	~	0	н Сн	л	UR	CH	-	2	1	5		4	5	Jn	÷	I	
su.	N	N	N	N	~		-		-				μ	-	-	-	10	10	10	10	9	4	9	Ja	y.	œ	6	œ	36	66	30	в	30	Э	-	4	7	×	
1	1	1	1	7	1	7	1	7	7	7	7	7	7	7	7	7	6	6	5	6	a,	6	01	5	5	6	5	σ	5	6	5	σ	6	5	5	5	5	r	
13	N	13	N	+	2	N	18	u	÷	11	12	9	N	UP	÷	¢	6	5	5	CH	ŧ	6	N	5	6	U	64	N	g	N	y	un	0r	u	30	÷	or	FO	
14	i.	14	ł.	1 8	1	N:	в1-	÷	÷	10	-12	y	5	ů	-	÷	-5	5	5	£	-5	5	₽.	¦.	2	5	-5	~:	ŗ,	- 5	ų	÷	t d	u	-1	٤.	æ	FC	
N	مو	N	μ	0	÷	1	7	6	U	÷	2	μ	0	4	-2	-	,	8	7	0	ŧ	(H	N		٥	÷	-4	-6	38	7	6	4	G	2	0	4	-2	I	
u	u	u	u	u	JI	u	4	#	÷	÷	÷	4	÷	÷	÷	÷	£	6	6	(N	6	ŝ	G	6	CH	(JI	6	CH	N	N	ຸ	N	N	N	N	N	N	*	
4	-	4	4	7	7	4	4	7	1	7	7	7	7	7	1	1	1	7	7	7	1	4	1	7	1	7	1	7	7	1	1	7	7	+	7	4	+	-	
10	£	10	4	12	2	12	£	2	u	N	÷	U	up.	7	s	u	GI	N	61	6	19	19	s	7	r)	7	÷	u	5	U	11	£	£	υn	u	11	14	5	
10	t Gi	10	e Ge	-13	.53	12	£	-2	J	-1	+4	-	9	7	ور	е О1	2	4	2	+ 3	19	-18	9	7	23	-7	-4		7	1,8	11	Li	+ 4	4 (J)	-5	11	-15	FC	
1	•	1	•	1	4		-		0	1	••	•	۾	+	3				1	5	,				1	7	5			-	2	1	- 2		1	,		2	
9	9	-	a	6	10	10	10	-	4	4	4	J.	a	æ	u	œ	J	()	a	-	-	-	~	~	1	J	ar	s	5	J.	r	ur.	ur.	J,	J	J	σ	*	
8	0	8	00	8	1	7	1	7	7	7	7	1	7	7	1	1	7	7	7	1	4	1	7	1	1	1	1	7	7	1	7	7	7	7	7	7	7	-	
21		21	u	N		5		2	U	N		5	+	N				4	N		4	U	N	1				5	1	U	L	15	15	u	+	N	11	FO	
21	-9	21	- 9	Ļ	6	CH.	-2	-	J	•••	2	- 64	4	N	4	1	. 0	- 64	~	- 13	9	a u	1.3	-1	1.64	0		- ም	-7	ut	-	-1.3	1.3	ļ,	6	+2	-11	FC	
6	2	6	1 (1)		0	÷	4	-	00	U	6	N N		0	1	-2		+	œ	7	0	U	æ	N	مر ر	1	- 2	1	-4	8	7	on	J	£	2	н	э.	r	
6	6	-		i (J	6		6		N	~	N	N	-		N		N	-	-	بر ا	-	. _н	مو ا	++			-	مر	-	0	٩	0	a	0	0	0	•	*	
œ	œ	α	α.	0	0	02	œ	a	0	a	0	. 00	0	a	a	a	a	0	œ	a	a	: a	a	a	a	: 0	0	0	00	8	6	0=	œ	a	00	ac	œ	•	
J	10		10	9	5	4	2	J	u	~	10	un	16		5		u	*	٥,		1	1.08	6	16		10	6	÷	U	۵,		6	6	12	7	10	13	FO	
+	-10	+	-10	-		+	~		-	- Po		- 0	16		: d			-	-		-	-	n ar	10	-		. 0		-	8	N	6	-7	13		•9	-13	*	

Ð

	£		£	-	c	ŧ.	6	J	#	5	••	u	÷	-	с	r.	:	+	-	u			-	c	:		σ	+	u	~	c	1	k	:	a	σ	U	÷	I	
	8	8	8	8	8	8	1	-	7	7	1	a,	o	5	5	5	5	5	v	u	U	U	u	u	u	+	=		\$	ŧ		+	÷	÷	•	4			×	
	œ	8	66	38	8	œ	8	6	35	æ	00	3 b	Ŧ	30	-	30	08	œ	35	8	80	8	a:	œ	38	æ	œ	œ	×	30	39	œ	æ	œ	30	3	a	x	٢	
		4	+		4	~	N					4	5	+	5	5	N	+	~	6	0	α	4	3		4	+	6	7	10	6	15	10	5	N	N		11	FO	
	u	U	J	UI	-4	UI I	G	61	-4	ď	=	-4-	£	J	(m	6	÷.	\$	÷.	6	-6	e,	Gi	8	G	£	-4	G r	7	10	6	15	10	- 5	-2	~:	-	11	'n	
	£	CHI	£	ы	2		<u>_</u>	-2	6	4	ul.		a	÷	+2	-4	35	4	CH		J	÷	30	er.	J	4	ы	N		a	<u>.</u>	8 54	-4	2	1	v	0	+	Ξ	
	4	+		*	=	+	+	#		-							N	2	2	N	2	N		-				-	-		-	-	-	10	10			9	x	
	4	9	9	9	9	g	9	9	s.	4		9	9	9	9	9	-9	9	9	9	g	9	y.	9	-s	s	s	J.		9	9	9	9	08	00	00	30	00	~	
	£N	5	(Ja	CH	7	CH	6	5	C.	7	÷	N	13	5	U	N	6	7	11	7	11	6	*	UI II	U	U	e	N	10	s.	U)	ຸ	N	£	N	£.HI	u	U	FO	
	4	-5	4	- 3	1	4	-6	-	6	-1	0	N	1.5	•	v	-2	-	-	11	-7	11	-6-	+	0	t.	U	a	N	0.1	4	5	N	N	#	N	E.	ų	J.	FC	
	N		N	+	0	4	-2	-	1.4			0	u	#		4	-2	u				0			5	N		1	5	w	2	-		1	-	4	6		I	
	5	0	0	0	0	0	0	0	0	9	9	9	6	æ	30	8	8	7	7	7	7	7	7	5	6	5	5	J.			J	UR.			u		-	-		
	10	10	10	10	10	10	11	10	10	-	J.	e,	9	9	9	9	9	9	g	9	9		e	e.	J.	j,				Ja		G	Ja	۵.		Ja	ف	- -	-	
																																						Ĩ	T	
	N)	÷	N	f	7	N	(H	6	2	5	N	N	U	N	CH.	2	LH.	s.	5	3	7	£	N	N	U	N	CH	7	£	U	N	N	an	÷	U	#	2	LH.	a	
	4	1 (A)	-	a Ja	7	2-	II LH	ы	ч	N	-	6	ال	-2	CM	t CH	u.	۱ ال	1	ы	-7	£	4 73	•	4 11	N	UI	7	-		*	н	л	£	+4	l Ul	-	ui.	۴c	
	_		-	1				1										-							2															
	5	5	J.P.	5	J				4	-	-	4		-							6:	61	A.	A.	A.		•	_	_	_		_			~	-	-	6	-	
	-	-	10	-	-	-	-	10		-	-	-	-	-	-	-	-	10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	-	
																					-	_			-	_												-		
	U	ŝ	U	6	U	T	~	2	N	6	~	5	6	6	P.	U	œ	N	(h	£	5	N	N	10	U	C,	N:	U.	6	4	2	-	N	o	or	7	œ	1	0	
	J	l Gi	J	t Gi	i,	ა	-7		a Gi	đ Lui	5	64	G	.	2	i U	00	N	G	1 #	N 3	1	2	10	ů	I Gi	I N	u		# [H	u		61	5	- 6	-7	QA.	-7	FC	
	-	0	۲	0	-	UN	¢	~	-	•	-	5	u	-	•	÷.	'n	5	+	~		1	N			•	N	-	•	-		-			4	5	=	N	τ	
			-	1	-	*	4	*	+	#	-	La	-	-	61	61	64	N	N	N	N	~	N3 1	N	-	-	-	-	-	8	4	-	4	4	~	đ	ð	an .	x	
	-	-	+	-	2		-	-		-		-	-	-	-	-	-	24	24	н	-	-	-		-	H	Ë	-	-	0	0	c	0	0	0	c	6	c	r	
		4		CH	N	2	J	£	~	u	#	7	6	£	F	J	u	N	~	(al	~	LHE I	nu i	ч	N) -	Le P	~	~	N) ·	4.	5	0 1	υ.	æ -	6 2 -	u n -	4	~	0.4	
	1	-	I Gi	-	N	<u>.</u>	1	-	+	-		- 1	4	-		Gr	1 (4	Pi2	R.J	4 (H	fN2		м	٤	I NI	H Na i		A1	N		Pu 1	4 NJ 1	4	£	£	CR.	-6	1	-	

									210.
							and the second		
H K L FO	нс н 3 2	К L FC	FC -3	нкL 5112	F0 FC	4 K L	F0 FC 2 2	нк L 3 5 12	F0 FC 3 3
3 5 11 2 5 5 11 3 -1 6 11 2	-2 -1 3 0 1 1	0 12 2 0 12 2 0 12 4	4 2 -3	6 1 12 -2 2 12 0 2 12	4 -4 2 2 5 -5	0 4 12 1 4 12 3 4 12	2 -2 2 2 3 -3	2 6 12 0 1 15 1 1 15	6 5 3 - 3 6 5
1 6 11 2 2 6 11 3 3 6 11 4	1 3 3 5 -4 -2	0 12 2 3 1 12 4	2	0 3 12 1 3 12 2 3 12	4 -4 3 3 2 1	4 4 12 4 4 12 1 2 12 1 2 12	4 4 5 -2 5 -3	$\begin{array}{c} 2 & 1 & 1 & 5 \\ 5 & 1 & 1 & 5 \\ 4 & 1 & 1 & 5 \\ 2 & 3 & 1 & 4 \end{array}$	2 0
4 6 11 4 5 6 11 5	4 -1 3 0	1 12	i -5	4 3 15	~ ~		5 -5	5 3 13) 2
1									
				÷					

2,3-endo-epoxybicyclo[3.2.0] heptan-6-one-p-nitrophenyl-

hydrazone (61).

Atomic coordinates Bond lengths Bond angles Torsion angles Isotropic temperature factors Anisotropic temperature factors Structure factors

	011171261	
		-27364221
01.701		

DISTANCES INF FUT DAVIDA DA BALANYS

121411		
	3.5	
1111		

FRACTIONAL ATOMIC COORDINATES X10000 WITH E.S.D.S. IN BRACKETS

	XZA	Y/B	Z/C	OCCUPANCY
C(1)	0963(3)	5748(2) 1285	(2)
C(2)	1018(3)	6364(2) 0009	(2)
C(3)	2213(3)	6095(2) -0977	(2)
C(4)	3028(4)	5274(2) -0429	(2)
C(5)	2375(3)	5151(2) 1071	(2)
C(6)	2867(2)	5744(2) 2230	(2)
C(7)	1460(3)	6260(2) 2575	(3)
C(11)	5335(2)	6426(2) 4463	(2)
C(12)	6465(3)	5789(2) 4132	(2)
C(13)	7660(3)	5856(2) 4804	(2)
C(14)	7721(2)	6560(2) 5813	(2)
C(15)	6609(3)	7185(2) 6169	(3)
C(16)	5417(3)	7123(2) 5499	(3)
0(8)	2259(2)	6975(1) -0172	(2)
0(18)	9975(2)	6073(2) 6197	(2)
0(19)	8972(2)	7216(2) 7485	(2)
N(9)	4060(2)	5754(1) 2710	(2)
N(10)	4144(2)	6391(2	3798	(2)
N(17)	8974(2)	6624(2	6536	(2)
H(1A)	0087(26)	5358(1	7) 1477	(23)
H(2A)	0252(27)	6710(1	7) -0263	(24)
H(3A)	2209(24)	6162(1	6) -1968	(27)
H(4A)	4024(37)	5436(2	1) -0521	.(31)
H(4B)	2848(29)	4653(2	1) -095	(29)
H(5A)	2309(24)	4488(1	8) 1294	(23)
H(7A)	0986(28)	6026(1	8) 3449	(30)
H(7B)	1493(25)	6983(1	8) 2483	(23)
H(10A)	3471(23)	6755(1	5) 4051	(20)
H(12A)	6370(24)	5302(1	5) 3461	(24)
H(13A)	8440(23)	5398(1	5) 4551	(20)
H(15A)	6652(26)	7665(1	7) 6868	(25)
H(16A)	4660(26)	7549(1	8) 5745	(24)

BOND DISTANCES (A) WITH E.S.D.S IN BRACKETS

0(1)	-	C(2)	1.496(3)
Ü(1)	-	C(5)	1.565(3)
(1)	-	C(7)	1.557(3)
(2)	-	C(3)	1.444(4)
(2)	-	0(8)	1.441(3)
(3)	-	C(4)	1.500(4)
(3)	-	0(8)	1.442(3)
0(4)	-	C(5)	1.522(3)
2(5)	-	C(6)	1.507(3)
(6)	-	C(7)	1.515(3)
0(6)	-	N(9)	1.275(3)
C(11)	-	C(12)	1.393(3)
2(11)	_	C(16)	1.396(3)
(11)		N(10)	1.369(3)
(12)		C(13)	1.378(3)
(13)	-	C(14)	1.382(3)
(14)	_	C(15)	1.373(3)
21143		N(17)	1.454(3)
(15)		C(16)	1.375(3)
)(18)		N(17)	1,230(3)
)(19)	-	N/17)	1 228(3)
J(9)	_		1 390(2)
	-	NUTUN	1.000121

C(5)	-	C(1)	-	C(2)	104.0(2)
C(7)	-	C(1)	-	C(2)	115.2(2)
C(7)		C(1)	-	C(5)	90.4(2)
C(3)	-	C(2)	-	C(1)	110.5(2)
U(8)	-	C(2)	-	C(1)	112.2(2)
0(8)		C(2)	-	C(3)	60.0(2)
C(4)	-	C(3)	-	C(2)	110.9(2)
0(8)	-	C(3)	-	C(2)	59.9(2)
0(8)		C(3)	-	C(4)	112.8(2)
C(5)	-	C(4)	-	C(3)	104.7(2)
C(4)	-	C(5)	-	C(1)	108.4(2)
C(6)	-	C(5)	-	C(1)	87.4(2)
C(6)	-	C(5)	-	C(4)	121.8(2)
C(7)	-	C(6)	-	C(5)	94.2(2)
N(9)		C(6)	-	C(5)	130.3(2)
N(9)	-	C(6)	-	C(7)	135.5(2)
C(6)	-	C(7)	•	C(1)	87.4(2)
C(16)	-	C(11)	-	C(12)	119.3(2)
N(10)		C(11)	-	C(12)	121.7(2)
N(10)	-	C(11)	-	C(16)	118.9(2)
C(13)	-	C(12)	-	C(11)	120.3(2)
C(14)	-	C(13)	-	C(12)	119.2(2)
C(15)	-	C(14)	-	C(13)	121.3(2)
N(17)	-	C(14)	-	C(13)	119.3(2)
N(17)	-	C(14)		C(15)	119.3(2)
C(16)	-	C(15)	-	C(14)	119.6(2)
C(15)	-	C(16)	-	C(11)	120.2(3)
C(3)	-	0(8)	-	C(2)	60.1(2)
4(10)	-	N(9)	-	C(6)	114.9(2)
(9)	-	N(10)	-	C(11)	120.6(2)
0(18)	-	N(17)	-	C(14)	119.0(2)
0(19)	-	N(17)	-	C(14)	118.2(2)
0(19)	-	N(17)	-	0(18)	122.7(2)

E.s.d's ca.	1.50	
C5 C1 C2 C3 C5 C1 C2 C3 C7 C1 C2 C3 C7 C1 C2 C3 C7 C1 C5 C4 C2 C1 C5 C4 C7 C1 C5 C6 C7 C1 C5 C4 C7 C1 C5 C6 C2 C1 C7 C6 C5 C1 C7 C6 C1 C2 C3 C4 C1 C5 C6 C7 C1 C5 C6 N9 C4 C5 C6 N9 C4 C5 C6 N9 C4 C5 C6 N9 C4 C5 C6 N9 C1 C	C13 C13 C15 C15 N9 N9 C14 C15 N17 C16 C16 C16 O18 O19 O18 O19 C11	7.2 -57.7 104.3 39.3 -12.2 110.4 -128.3 -5.6 -100.0 5.5 0.0 -104.5 104.9 101.7 -8.2 56.7 -101.66 12.5 -86.00 5.7 -175.33 180.00 -1.29 178.89 175.8 175.9 -175.9 -175.6 -175.6 -175.9 -175.9 -175.6 -175.9 -175.9 -175.9 -175.9 -175.9 -175.9 -175.6 -17
00 H0 HT0 01		

TORSION ANGLES (degrees)

1

ISOTROPIC PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-8*PI*PI*U11*SINSQTHETA/LAMBDASQ)

0740(77)
0708(75)
0731(72)
1107(119)
0950(92)
0661(74)
0867(86)
0706(80)
0413(65)
0604(66)
0518(62)
0760(77)
0739(79)

ANISOTROPIC THERMAL PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-2*PI*PI*(H*H*ASTAR*ASTAR*U11+. .+2*K*L*BSTAR*CSTAR*U23))

	U11	N55	IJ 3 3	U23	U13	U12
C(1)	0468(14)	0696(17)	0538(13)	-0042(12)	-0152(11)	-0144(14)
C(2)	0533(15)	0651(17)	0565(14)	-0007(12)	-0276(12)	0008(15)
C(3)	0734(18)	0786(19)	0410(13)	0007(13)	-0174(13)	0024(15)
C(4)	0814(22)	0853(22)	0453(13)	-0098(14)	-0166(14)	0191(19)
C(5)	0774(18)	0480(15)	0461(13)	0015(11)	-0195(12)	-0025(14)
C(6)	0574(15)	0512(14)	0367(11)	0025(10)	-0126(10)	0015(13)
C(7)	0488(15)	0795(21)	0483(14)	-0083(14)	-0137(12)	0011(15)
C(11)	0488(13)	0540(14)	0431(11)	-0004(10)	-0132(10)	0048(12)
C(12)	0543(14)	0582(16)	0404(11)	-0045(11)	-0099(11)	0065(13)
C(13)	0484(14)	0646(16)	0463(13)	0071(12)	-0.082(11)	0087(14)
C(14)	0486(14)	0613(15)	0472(12)	0086(12)	-0167(11)	-0039(13)
C(15)	0661(18)	0656(17)	0630(15)	-0155(14)	-0270(14)	0066(15)
C(16)	0608(17)	0670(18)	0665(16)	-0184(13)	-0240(14)	0175(15)
0(8)	0735(12)	0602(10)	0659(10)	0115(9)	-0217(9)	-0174(10)
0(18)	0545(11)	1190(16)	0836(13)	0068(12)	-0239(10)	0134(12)
0(19)	0829(14)	0990(15)	0921(13)	-0156(12)	-0465(11)	-0079(12)
N(9)	0600(13)	0611(13)	0402(10)	-0035(9)	-0158(9)	, 0068(10)
N(10)	0512(13)	0691(14)	0526(11)	-0172(10)	-0200(10)	0197(12)
N(17)	0525(13)	0767(16)	0595(13)	0144(12)	-0205(11)	-0106(13)

- - -

OBSERVED AND CALCULATED STRUCTURE FACTORS

_	-																							
н	к	L	FO	FC	н	к	L	FO	FC	н	к	L	F٥	FC	н	×	L	FO	FC	н	к	L	FO	FC
3	0	0	10	-10	6	4	0	8	3	7	8	0	5	5	-7	1	1	13	13	-2	3	1	2	1
- 4	0	U	2	2	7	4	0	5	- Ĵ	1	9	0	2	2	-6	t	1	19	19	-1	3	1	71	71
5	0	0	2	-1	8	- 4	0	7	- 8	2	9	0	4	-4	-5	1	1	14	14	0	5	1	69	-71
6	0	0	29	-30	9	4	0	5	-5	3	9	0	4	4	-4	1	1	2	0	1	3	1	9	9
7	0	0	3	-4	10	4	0	5	-4	4	9	0	4	3	-3	1	1	25	-25	2	3	1	34	= 34
9	٥	0	15	15	1	5	0	3	-3	5	9	0	7	-7	-2	1	1	27	28	3	3	1	46	-47
9	0	0	24	24	2	5	0	2	+2	8	9	0	- 3	1	3	1	1.	40	41	4	3	1	17	-17
10	0	0	6	6	3	5	0	16	-15	9	9	0	4	3	4	1	1	4	-4	5	3	1	.19	17
3	1	0	22	-22	4	5	0	2	5	0	10	0	5	5	5	1	1	31	30	6	3	1	6	8
4	1	0	22	-22	5	5	0	16	16	1	10	0	5	5	7	1	1	13	-12	7	3	1	2	-2
5	1	a	3	3	6	2	0	6	= 13	2	10	٥	11	-11	5	1	1	12	12	9	3	1	3	-2
6	1	Q	10	11	8	2	0	3	= 4	3	10	0	3	3	-11	5	1	4	4	-11	4	1	4	-3
	1	0	10	-9		5		3		4	10	0	12	12	-10	S	1		4	-10	- 44	1	5	- 3
8	1	u	19	19	10	2	0	2	-3	2	10	0		8	- 9	2	1	15	15	-9		1		- 3
7	1	0		• 7	11	2	0	10	2	5	10	0	3	3	-8	<	1	20	-20	-8-		1		
3	2	0	42	91	1	4		17	-17		10	0	4	-4	-/	-	1	16	-16	-6	- 44	1	17	11
-	2	0	10	10	2	4	0	4	5		10	u	10	2	-0	-	1	1	20	= 3	- 14	1		**
	2		12	14	2	4		25	- 74	1	11	u	1.4	14	= 3	2	1	21	20				37	- 5
ģ	2	0	A	-8	4	6	ň	11	10	~	11		15	-15		5	1	11	-11	- 3			2	
10	2	ň	4	3	5	6	ň	5	-5	4	11		5	-13		6	÷.	37	37		u.	- î	77	-80
1	4	ň	62	64	6	6	ő	5	-6	6	11	ň	7	7	2	2	- î	34	-35	1	4	ī	3	-4
2	3	a	6	7	1	7	Ő	4	3	Ä	11	ň	6	-5	3	2	î	21	20	2	4	1	22	22
3	3	a	58	57	2	7	ō	16	-16	ñ	12	ň	2	1	4	2	ī	31	30	3	4	1		-4
4	3	D D	1.5	13	3	7	0	17	-16	2	12	ñ	5	-5	5	2	1	22	-21	4	4	1	5	6
5	3	ō	4	-3	4	7	0	7	7	3	12	ă	5	5	6	2	1	6	5	5	4	ī	30	29
6	3	0	24	-23	5	7	0	3	3	6	12	Ō	6	-6	7	2	1	5	-6	6	4	1	13	13
7	3	0	10	-10	7	7	0	4	4	2	13	0	5	-5	8	2	1	31	32	7	4	1	6	6
ы	3	0	5	6	я	7	0	5	-1	3	13	Ō	3	-3	9	2	1	4	4	A	4	1	10	-10
9	3	0	11	-11	9	7	0	3	2	0	14	٥	15	15	-10	3	1	3	3	10	4	1	4	-4
11	3	0	3	2	0	9	0	2	-2	1	14	0	7	-6	- 7	- 3	1	6	-5	-9	5	1	5	-5
0	4	0	68	-73	1	9	0	8	8	2	14	٥	5	2	-7	5	1	11	-10	-8	5	1	5	6
1	4	0	2.7	-26	5	в	0	12	12	2	16	0	3	0	-6	3	1	9	=9	-6	5	1	4	-3
2	4	0	28	-28	3	8	0	8	-9	-10	1	1	5	- 5	=5	3	1	8	- 7	-5	-5	1	19	-20
- 3	4	0	14	14	5	8	0	3	3	-9	1	1	7	6	-4	- 3	1	6	-5	-4	- 5	1	29	-26
5	4	0	18	-18	6	8	0	5	4	-8	1	1	- 3	-2	= 3	- 3	1	- 31	29	- 3	5	1	9	-d
3	4	0	14	14	5	8	0	3	3	-9	1	1	7	6	=4	- 3	1	6	-5	-4	5	1	29	-26
5	4	0	18	-18	6	8	0	5	4	-8	1	1	3	-2	- 3	- 3	1	31	29	-3	5	1	9	= d

H	ĸ	L	FU	F C		~	-	1.4	Fu			-		r C	11	~	-	FO		н	-	6	FU	FL
-2	5	1	1.0	10	4	7	1	6	-6	- 3	10	1	10	9	0	15	1	3	-2	-11	2	2	5	-1
-1	5	1	14	-14	5	7	1	3	2	-2	10	1	5	-2	ŋ	16	1	7	-7	- 9	2	2	5	ć
ч	5	1	32	-32	6	7	1	5	2	- 1	10	ι	3	-4	1	14	1	5	-4	- 9	2	2	10.1	_ 9
1	1	1	2	2	-4	7	1	ذ	-2	0	10	1	13	13	-10	1	2	19	-10	7	2	2	5	-6
2	5	1	35	36	9	7	1	٦	2	1	10	1	4	-5	- 9	1	2	15	16	-6	2	2	4	5
5	5	1	21	-21	10	7	1	м	7	2	10	1	3	2	-7	1	2	15	-16	-5	2	2	14	-14
4	5	1	23	-23	-9	8	1	4	-3	3	10	1	11	11	-6	ŋ	2	5	-5	-4	2	2	14	-13
5	5	1	22	-22	- 8	8	1	3	2	5	10	1	5	-5	-5	0	2	6	6	-3	2	2	9	10
6	5	1	4	4	-6	8	1	12	-11	7	10	1	7	-7	-4	0	2	63	63	-2	2	2	8	-8
8	5	1	21	-21	-5	8	1	4	-4	-6	11	1	3	5	-3	0	2	19	-20	+1	2	2	88	89
10	5	1	3	2	-2	8	1	2	3	+5	11	1	6	-6	-2	0	2	14	-15	Ō	2	2	3	- 3
-7	6	1	4	4	-1	8	1	8	_7	+4	11	1	5	-5	5	0	2	49	-49	1	2	2	21	-20
-5	6	1	10	-10	0	8	1	4	-5	-3	11	1	6	6	3	0	2	4	4	2	2	2	8	-8
=4	6	1	22	-21	1	8	1	4	4	-1	11	1	12	11	4	0	2	51	50	3	2	2	5	4
-3	6	1	15	-15	2	8	1	18	-19	0	11	1	6	-5	5	0	2	20	20	4	2	2	29	-28
-2	6	1	15	-15	3	8	1	3	1	1	11	1	6	6	5	0	2	3	3	5	2	2	21	-22
=1	6	1	15	15	4	8	1	10	-10	2	11	1	3	= 4	7	0	2	25	-25	7	2	2	6	6
0	6	1	10	11	5	8	1	4	=4	4	11	1	3	= 3	8	0	5	2	2	8	2	2	15	16
1	6	1	29	-30	10	8	1	4	4	-6	12	1	4	- 3	9	n	2	8	8	-10	- 3	5	7	6
2	6	1	30	31	=9	9	1	4	- 5	-5	12	1	5	5	10	0	5	4	4	-9	3	2		2
3	6	1	9	-10	-6	9	1	7	7	= 3	12	1	7	-7	-9	1	2	11	11	+8	3	2	5	5
4	6	1	17	=17	=4	9	1	4	-4	0	12	1	4	5	=R	1	5	9	9	-4	3	5	11	10
5	6	1	11	-11	- 5	9	1	6	6	1	12	1	8	= 8	-7	1	5	10	10	= 3	3	5	5	2
6	6	1	- 3	-1	- 2	9	1	12	12	2	12	1	3	3	+5	1	2	12	-12	•5	3	2	26	26
8	6	1	6	=6	0	9	1	4	=4	3	12	1	11	11	=4	1	2	19	-19	-1	-5	2	122	125
10	6	1	5	-5	1	9	1	5	-4	4	12	1	4	3	- 3	1	2	9	9	0	3	5	32	-35
=9	7	1	4	- 3	2	9	1	15	15	6	12	1	5	-5	-5	L	2	31	-31	1	3	5	8	5
-6	7	1	12	-12	3	4	1	14	14	7	12	1	5	5	5	1	2	65	66	5	3	5	19	18
-5	7	1	7	8	5	9	1	7	=7	= 3	13	1	3	-5	3	1	2	23	23	3	3	2	5	5
=4	7	1	15	14	6	9	1	6	6	=2	13	1	7	-6	4	1	2	34	31	4	3	2	28	27
- 3	7	1	4	- 3	7	9	1	9	9	0	13	1	12	12	5	1	5	21	-21	5	- 5	5	9	-8
-1	7	1	11	11	9	9	1	4	3	1	13	1	4	4	6	1	5	13	13	6	3	5	4	= 5
0	7	1	2	-2	- 8	10	1	3	-3	2	13	1	7	-7	7	1	5	17	-17	7	3	5	21	21
1	7	1	4	-5	-7	10	1	5	6	-3	14	1	3	= 5		1	5	4	-4	9	3	2	3	5
2	7	1	11	11	-6	10	1	6	=6	2	14	1	4	3	10	1	5	5	5	10	5	2	5	5
- 3	1	1	27	=27	=4	10	1	4	-4	-2	15	1	5	5	11	1	5	7	7	11	3	2	4	4
2	7	1	11	11	-6	10	1	6	-6	2	14	1	4	3	10	1	2	3	2	10	5	4	C	3
3	7	1	27	-27	=4	10	1	4	-4	-2	12	1	2	5	11	1	2	1	7	11	5	5	4	4

50

. .

~

.

50

-

Н FO к L FO FO FO K Ł FC н FC н к L FC н × L FC н ĸ L FO FC -3 -7 в 10 3 3 7 23569954321012345678754210123456797474 9 9 3 -6 111111222233344455611111111111111111111111 12 3 5 н -8 -4 11 12 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 16 16 10 $-10^{-}-24^{-}$ 14565634425573532666875441254344434 11 3 $\begin{array}{c} 15\\ -19\\ -16\\ 8\\ -61\\ -33\\ 11227\\ -728\\ -94\\ -23\\ -23\\ -11\\ -45\\ -7\\ 15\\ -7\\ 3\\ 3\\ 12\end{array}$ 94991141823675583720870661144 1208770630845661144 11141 1620 2586 40422 838 289494 338528 1528 10 -7 -4 -2 -1 0 12 3 4 6 7 -8 -7 -6 -4 -2 -1 0 -1 23 11 4 8 4 7 3 4 2 4 2 4 2 4 2 L FO FC н к L FO FC н к L FO FC н × L F٥ FC H ĸ L FO FC н ĸ - 8 22 $\begin{array}{r} -22 \\ -7 \\ -7 \\ -10 \\ 5 \\ -10 \\ -12 \\ -14 \\ -9 \\ -12 \\ -14 \\ -3 \\ -6 \\ -12 \\ -4 \\ -3 \\ -2 \\ 0 \\ -5 \\ -5 \\ -6 \\ 4 \\ -3 \\ 12 \\ 4 \\ 6 \\ -2 \\ -7 \\ -9 \\ -9 \\ -9 \\ -9 \\ -10$ -4-21012365432 -4-2023232323009765422112343 18 5 5 34567898764321012345689875431012345656 7 100225575060903667574139455013259224747 67 890098754 321 ****************************** 21 - 21816254 54 87 7984 94 37 776 31 54 4 29 92 92 8 3945155100 155100 1596534146377906454 1146377906454 13 9 8 11 5 5 6 4 3 8 7 4 2 9 8 4 9 4 4 7 7 7 5 6 8428473578253605555433333438 1055553433333438 1 13 3 6 5 11 9 5 11 12 2 22 012345678909765432101212 4 11 12 5 9 7 6 6 7 5 4 4 4 15 13 13 2 9 19 22 19 22 4 13 16 14 27 75 75 75 75 75 14 52 29 21 29 10 29 20 7 1 7 -10 10 10 1

L FO к ٤ ĸ L FO FC к L н к FO FC н к L FC н F۵ FC н н FO FC -7 -3 -66 -53 -140 -140 -120 7 142 -210 -14 -210 7 -14 -210 -14 -210 -140 -210 -140 -210 -140 -210 -140 -210 -140 -210 -140 -210 -140 -210 -140 -210 -140 -100 -140 -40 -7 -47 -7 -47 -7 -47 -7 -47 -7 -47 -7 01257543210123457312876543210123456767 347934383442335553454539705959164531616 7 ********************* 3 -44 -44 -429 -33 -422 -355 -464 -497 796 -1684 -91684103637275311226311534573814037103586360610 ************************ 7 1623098925313274587454206686054757 **************** $\begin{array}{c} -14 \\ -99 \\ 111 \\ -111 \\ 95 \\ -36 \\ -56 \\ -52 \\ -24 \\ 135 \\ -56 \\ -57 \\ -24 \\ -75 \\ -37 \\ -75 \\ -46 \\ -11 \\ -75 \\ -46 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\ -11 \\ -12 \\$ $\begin{array}{c} 15\\ -122\\ -230\\ 19\\ -27\\ 17\\ 326\\ 4\\ -21\\ 3\\ -35\\ 5\\ 5\\ 5\\ 8\\ -7\\ 5\\ 5\\ 14\\ 122\\ 6\\ 6\\ 4\\ 7\\ -17\\ -3\\ 6\\ 4\\ 4\\ 3\\ -6\\ -6\\ -6\\ -6\\ -6\end{array}$ 10 197654202345789198654310123456789595 к L FO FC н FO н ж L FO FC Н ĸ E, FC н × L F0 FC Н ĸ L FO FC -534 -134 -1798 -165953364 -165953364 -165953364 -7290763364 -7290763364 -35973432 -35973432 -35973432 -35973432 -35973432 -2248434 -35973432 -3597342 -3597342 -3597342 -3597342 -3597342 -3597342 -3597342 -3597342 -3597342 -3597342 -3597342 -3597442 -3501234598532012345678904321012564321010 23629973378122559126333386587276266554343 13467863210136763210124652101210653131 0 32147573434453766647539559558523572323 $\begin{array}{c} -4 \\ -8 \\ -112 \\ -266 \\ 10 \\ 79 \\ -25 \\ -67 \\ 79 \\ -35 \\ -67 \\ -79 \\ -23 \\ -33 \\ -4 \\ -12 \\ -4 \\ -12 \\ 67 \\ -7 \\ 24 \\ 44 \\ -1$ 666666677777777777777778886688889939999 - 32134 - 65834 - 24237 - 646539 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 19569 - 1956 - 1 568115776170375779454225544454416723434 116723434 12 1235678098654101235678943210123457979 4 37799886544336534729075363507343223858 223858 107343223858

219.

220.

н	к	L	FŰ	FC	н	к	L	FO	FC	н	к	L	FO	FC	н	×	L	FO	FC	н	к	L.	FO	FC
	~														,				7					2
1	8	7	8	8	T	- 4	10	4	4	3		TO	~	- 9	- 3	+	TT	3	2	T		11	۷	£
2	8	9	4	- 3	2	1	10	7	7	4	4	10	4	5	2	1	11	9	- 9	2	4	11	9	8
4	8	9	5	5	3	1	10	12	12	6	4	10	4	4	- 3	l	11	9	9	3	- 4	11	4	- 5
1	9	9	3	4	4	1	10	3	-4	-3	5	10	3	4	4	1	11	3	2	1	5	11	3	3
2	9	9	3	3	6	1	10	3	2	-2	5	10	4	-4	5	1	11	5	-5	2	5	11	8	1
4	á	9	ŝ	_ 11	7	5	10	5	5	-1	š	10	*		-1	5	11	ū	ú	1	5	11	ź	-6
2	~	á			- 3	5	10		2	-1	5	10	2	2	-1	-		ž		5	é			- 0
	. 7	7		= 3	-2	~	IU		3	u	2	10		5	U	1	11		-1	- 2	2	14	2	
-5	11	9	4	4	-1	2	10	4	5	1	5	10	5	-5	1	Ś	11	4	- 5	5	6	11		2
0	11	9	3	0	0	2	10	3	- 3	3	- 5	10	5	-5	4	5	11	7	6	-2	9	11	5	2
-2	12	9	4	-2	1	2	10	4	- 3	4	5	10	5	-4	5	2	11	4	3	2	10	11	- 6	-5
-4	0	10	6	5	5	2	10	4	-3	-2	6	10	2	-2	-2	3	11	4	- 3	2	0	12	4	-4
-3	0	10	4	-4	6	2	10	3	-2	0	6	10	3	-4	-1	- 5	11	5	=6	2	1	12	5	4
1		10	*		- 5	3	10	6	5		2	10				E.	11	7	2	2	- 2	12		6
- 4	U	10	3	2			10	0	- 3	1		10		3	0		11	-		4	5	14	3	
1	a	10	2	1	= 3	3	10	4	4	2	6	ra	۲	5	1	1	11	2	4	2	3	14	10	10
2	Ó	10	22	-22	-1	3	10	5	5	3	6	10	5	-5	2	3	11	9	9	5	- 4	12	6	2
- 3	0	10	16	16	1	3	10	3	3	4	6	10	4	3	3	- 5	11	4	-5	-2	6	12	- 3	1
5	0	10	4	4	5	3	10	3	-3	5	6	10	4	5	4	3	11	3	-2	2	6	12	3	-2
7	ō	10	5	-4	6	3	10	4	5	6	6	10	8	- 8	5	5	11	4	- 3	2	7	12	3	-3
-		10		- 7		u.	10	2			-	10	-	- 12		1		2		-		10		
- 3	1	TU	-	- (0		10	2	- 2	U		10	3	- 3	0		TT.	3	-1	۷	a	1 <	2	
0	1	10	3	- 3	2		10	3	4	-2	10	10	3	- 5										

1

PRACTABLAL STURIC COURSENATES FLADE SCHERALS

3-exo-methoxy-6,7-endo-epoxybicyclo[3.2.0]octane (62).

Atomic coordinates Bond lengths Bond angles Torsion angles Isotropic temperature factors Anisotropic temperature factors Structure factors

	X/A	Y/8	3	Z/C	OCCUPANCY
C(1)	0950	(2)	1096(5)	9078	(2)
C(3)	1429	(2)	1907(6)	10393	(2)
C(4)	1645	(2) -	0439(6)	10234	(2)
C(5)	1253	(2) -	1068(5)	9410	(2)
C(6)	1796	(2) -	1953(7)	8627	(2)
C(7)	1772	(2) .	0568(6)	7842	(2)
C(8)	1197	(2)	1230(7)	8055	(2)
C(11)	0497	(3)	4183(8)	11242	(3)
0(2)	1328	(1)	2776(3)	9541	(1)
0(9)	2436	(1) -	0454(4)	8341	(1)
0(10)	0725	(1)	2006(4)	10999	(1)
H(1A)	0374	(16)	1169(52)	9252	(17)
H(3A)	1850	(16)	2817(51)	10640	(16)
H(4A)	2252	(16) -	0550(50)	10069	(17)
H(48)	1467	(19) -	1331(64)	10729	(22)
H(5A)	0824	(17) -	2086(56)	9549	(16)
H(6A)	1932	(16) -	3457(60)	8618	(18)
HI7A)	1903	(18) -	1097(59)	7239	(21)
H(8A)	1413	(19)	2645(61)	7873	(19)
H1881	0716	(20)	0991(57)	7769	(20)
H(11A)	-0017	(28)	4053(93)	11674	(32)
H(11B)	0347	(25)	5167 (95)	10727	(35)
H(11C)	0884	(25)	4870(84)	11551	(28)

. .

BOND DISTANCES (A) WITH E.S.D.S IN BRACKETS

1

C(1)	-	C(5)	1.535(4)
C(1)	-	C(8)	1.540(4)
C(1)	-	0(2)	1.444(3)
C(3)	-	C(4)	1.501(5)
C(3)	-	0(2)	1.418(3)
C(3)	-	0(10)	1.414(3)
C(4)	-	C(5)	1.533(4)
C(5)	-	C(6)	1.502(4)
C(6)	-	C(7)	1.457(5)
C(6)	-	0(9)	1.454(4)
0(7)	٠	C(8)	1.488(5)
0(7)	-	0(9)	1.444(3)
C(11)	-	0(10)	1,429(5)

BOND ANGLES (DEGREES) WITH E.S.D.S IN BRACKETS

2

C(8)	-	C(1)	-	C(5)	108.0(2)
U(2)	-	C(1)	-	C(5)	105.8(2)
0(2)	•	C(1)	-	C(8)	111.0(2)
0(2)	-	C(3)	-	C(4)	106.0(2)
0(10)	-	C(3)	-	C(4)	108.4(2)
0(10)	-	C(3)	-	0(2)	111.5(2)
C(5)	-	C(4)	-	C(3)	104.2(2)
C(4)	-	C(5)	-	C(1)	104.2(2)
C(6)	-	C(5)	-	C(1)	105.2(2)
C(6)	-	C(5)	-	C(4)	115.4(2)
U(7)	-	C(6)	-	C(5)	109.8(3)
U(9)	-	C(6)	-	C(5)	111.6(3)
0(9)	-	C(6)	-	C(7)	59.5(2)
C(8)	•	C(7)	-	C(6)	110.5(3)
U(9)		C(7)	-	C(6)	60.1(2)
U(9)	-	C(7)	-	C(8)	113.5(3)
C(7)	-	C(8)	-	C(1)	105.2(2)
C(3)	-	0(2)	-	C(1)	106.2(2)
C(7)	-	0(9)	•	C(6)	60.4(2)
C(11)	-	0(10)	-	C(3)	112.7(3)

						13								1				10			i	a ji				9.		
0	3	0.0	С ŗ	C5	60	C5	C 5	C4	C4	C 1	C1	C3	C 3	02	C 4	010	C4	010	20	C 8	C5	02	C 5	02	20	CB	CE	
•	17	C7	C7.	C 6	60	с б	C 6	G	C 5	C5	C 5	04	C4	C S	C 3	03	03	C3	63	C1	C1	C1	C1	C1	C1	C 1	C1	
	0 2	Cв	Ce	60	C7	C7	C7	C6	C 6	- C6	65	С У	C 5	010	010	02	20	04	C4	02	20	CB	6.9	C 5	0	CS Store	C UI	
0	() =	C1	17	C7	C 3	260	Съ	60	C7	69	C7	C6	1	C11	C11	C1	C1	CS	СЪ	Co	C S	C7	C7	Сb	C4	C6	C4	
F			-		-1			1	1	-					1					1) : 14 14				-1				
1111	2	UI D	α	0.0	36	63.	100	UI UI	5 1	58	U.	23	5	67	76	79.	88	91-	28	48	51	03.	11	84	цца (Да	10.	32	
	=	e.	σ	10	Ö		-	σ	σ	σ	01	U.	3	a.	C	UI	N	÷	÷	9	F	7	7	5	ບ	U	UI.	

N

1.00

.

.

TURSIUN ANGLES (DEGREES) E.s.d's ca. 1.50

ISOTROPIC PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-8*PI*PI*U11*SINSQTHETA/LAMBDASQ)

1

H(1A)	0521(76)
H(3A)	0445(72)
H(4A)	0492(73)
H(4B)	0752(105)
H(5A)	0489(77)
H(6A)	0504(86)
H(7A)	0704(93)
H(8A)	0615(99)
H(8B)	0662(90)
H(11A)	1222(148)
H(11B)	1331(176)
H(11C)	1048(146)

ANISOTROPIC THERMAL PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(+2*PI*PI*(H*H*ASTAR*ASTAR*U11+. .+2*K*L*BSTAR*CSTAR*U23))

1

	U11	U22	U33	U23	U13	U12
		-				
C(1)	0403(13)	0497(20)	0407(13)	0035(12)	-0064(11)	-0049(13)
C(3)	0487(14)	0522(21)	0361(13)	0032(13)	-0065(11)	-0125(15)
C(4)	0600(17)	0484(23)	0416(14)	0040(14)	-0136(12)	-0012(15)
C(5)	0435(13)	0453(20)	0432(13)	0060(13)	-0082(11)	-0095(14)
C(6) .	0598(17)	0520(25)	0542(17)	=0096(16)	-0162(13)	0011(18)
C(7)	0602(17)	0793(27)	0368(13)	-0124(15)	-0088(12)	-0049(18)
C(8)	0628(19)	0642(26)	0413(14)	0059(16)	+0154(13)	-0039(18)
C(11)	0856(27)	0762(33)	0645(21)	-0266(23)	-0028(20)	0040(23)
0(2)	0662(12)	0412(13)	0424(10)	0050(9)	-0076(8)	-0068(10)
0(9)	0445(10)	0921(19)	0525(11)	-0097(11)	-0045(8)	-0034(12)
0(10)	0577(11)	0622(16)	0438(10)	-0052(10)	-0004(8)	-0100(11)

4

H -142	H 68 102 14 18 57 9 11 15 7 9 4 68 102 14 18 57 9 11 15 7 9 4 68 102 14 57 9 11 15 7 9 4 68 102 14 6 8 102 14 6 8 102 14 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 9 11 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 15 57 57 15 57 57 15 57 57 15 57 57 57 57 57 57 57 57 57 57 57 57 57	0
K 2222222222222222222233333333333333333	K 0000001111111122222233334444445555797	BSEF
L 3333223333333333333333333333333333333		RVED
F0 911 922 904 912 912 912 912 912 912 912 912	FO 100 44 166 100 44 166 100 21 7 14 138 130 17 74 14 138 130 17 74 14 16 100 100 100 100 100 100 100	AND
FC -88 -11 -226 -228 -228 -228 -228 -228 -228 -228	FC -9 20 -43 16 -10 22 -8 -14 13 9 -13 9 -14 13 9 -14 13 9 -14 13 9 -14 13 9 -15 16 -5 11 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5	CALCU
H 2 + 10 12 + 14 - 13 -1 + 37 - 9 11 + 17 + 13 - 18 - 16 - 14 + -12 - 108 - 44 - 20 - 44 - 12 - 108 - 14 - 12 - 15 - 11 - 14 - 15 - 15 - 15 - 15 - 15	H -155 -13 -11 -99 -75 -3 5 7 9 13 15 17 19 -14 -12 -8 -6 -4 4 6 8 10 12 14 -13 -11 -99 -75 -3 5 7 9 -13 15 15 17 19 -14 -12 -8 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	LATED
K 44444555555577000000000000001111111	K 11111111111222222222233533333333333	STR
233333333333334444444444444444444444444		UCT
F 109306825486675918535472297857778955	FO 11 26 47 44 108 435 22 16 16 12 12 12 12 12 12 12 12 12 12	URE F
FC 100-11 681667547290842657650834	FC 10 -26 -19 -49 -45 -120 -427 -427 -20 -427 -20 -427 -20 -427 -20 -427 -120 -427 -427 -120 -427 -120 -427 -427 -120 -427 -120 -427 -120 -427 -120 -427 -111 122 -132 -132 -132 -15 -15 -15 -15 -15 -15 -15 -15	ACTORS
H -11 35791135120 -186202468246812465131997-53-11	$\begin{array}{c} H \\ 19 \\ -12 \\ -10 \\ -8 \\ -6 \\ -4 \\ 4 \\ 4 \\ 12 \\ 14 \\ -13 \\ 13 \\ 13 \\ 17 \\ -14 \\ -11 \\ -11 \\ -14 \\ -12 \\ -10 \\ -86 \\ -14 \\ -12 \\ -10 \\ -86 \\ -14 \\ -12 \\ -10 \\ -86 \\ -14 \\ -12 \\ -10 \\ -86 \\ -14 \\ -12 \\ -10 \\ -86 \\ -14 \\ -12 \\ -10 \\ -86 \\ -14 \\ -12 \\ -19 \\ -22 \\ -19 \\ -22 \\ -19 \\ -10 \\ -1$	S
K 1111111111222222222222222222222222222	K 34444444444555567700000000000000000101	
• • • • • • • • • • • • • • • • • • • •		
F 9413319267656531131213099777442513772	F0 6 10 6 25 11 6 6 6 7 6 5 6 2 5 2 3 2 4 2 5 4 2 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7	
F 04131421867862103371908078551613671	FC 70687441756284716300144536763582727	
H 5791137620468046531135115511553197531	H -175-139 -153-99 -75-3357 -1664-2246 10268-151-75-3355 -112-1084-2246 10268-151-75-3355 -153-5355 -155-5355 -155-5355 -155-5555 -155-5555 -155-5555 -155-5555 -155-5555 -155-555	
K 33333344444444555555555577711111111	K 11111111111112222222222222223333333333	
F0 19 10 122 14 122 125 125 125 125 125 125 125	F0 99 622 458 222 102 65 11 122 65 11 122 65 11 122 65 11 122 66 19 81 77 12 68 19 22 95 27 52 27 52 27	
FC 90111371526776529167176574901227398	FC 98622324 -2424 -212-12265 -113286599775987226882295757 -25757	
H 3579911 13916 -12-64-2024 6801244 -119-75-311 3579135779 1357170	H 9 11 13 17 -2 4 6 8 12 -3 7 9 13 17 -3 3 -7 -3 15 9 -7 -5 -1 1 3 5 7 11 15 7 -7 -5 -1 1 5 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	
K 11111122222222222222333333333333333333	K 33334444445555557771111111111111111212	
2 5555555555555555555555555555555555555	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
F 0 32 7 5 5 7 5 9 4 9 1 3 2 8 9 1 3 2 8 9 1 3 2 3 2 3 2 3 8 9 1 3 9 8 7 9 7 0 1 1 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F0 12 15 15 15 15 11 9 18 25 17 14 10 32 28 11 12 26 6 7 5 12 88 46 54 1 9 9 11 12 2 6 14 6 14 6 14	
FC 13 73 4 -39 -20 7 -3 -5 18 -25 31 -33 -27 -13 -27 -13 -27 -13 -34 -24 -34 -24 -34 -24 -25 18 -24 -25 -25 -27 -13 -27 -13 -27 -13 -27 -13 -27 -13 -27 -13 -27 -13 -27 -13 -27 -13 -24 -25 -27 -13 -24 -24 -25 -27 -13 -24 -25 -27 -24 -25 -24 -25 -27 -24 -25 -24 -25 -24 -25 -25 -27 -24 -25 -24 -25 -25 -27 -24 -25 -25 -27 -24 -25 -27 -26 -25 -27 -26 -27 -26 -27 -27 -28 -27 -27 -28 -27 -28 -27 -28 -27 -28 -27 -28 -27 -28 -29 -29 -29 -29 -29 -29 -29 -29	FC 12 -154 -10 -17 -17 -17 -17 -17 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	

H 135711358642024602448119771357938420220166364202460244811977135793844202020000000000000000000000000000000	H -420022446810224468102244681022446810224468102244681022446810224468102244681024468468468468468468468468468468468468468
K 11111112222222222223333333333444444454	K 44444444455555570000000000000000000011111111
L 8888555555555555555555555555555555555	ι σητηγητητητητητητητητηταια σασασασασασασα
FO 32722 3126 80 10948 34711 15850 39762 1268 10948 34711 15850 129902 12027 137616 12027 137616 1468 10946 10958 10958 10958 10968 10968 109762 1007 10076 1	F0 233 134 59 112 20 10 15 22 76 10 10 15 22 76 10 10 10 10 10 10 10 10 10 10 10 10 10
FC -38 -27 -30 -30 -14 -47 -10 -17 -10 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	FC 22 -13 166 -40 -91 -17 10 150 -23 -86 -13 -37 -13 -37 -12 -143 -22 -43 -65 -22 -22 -22 -22 -22 -22 -22 -2
H + 9^{-5} - 1^{-9} - 1^{-5} - 1^{-1} - 1^{-1}	H -7-55-3-31 -11 355799135 17799-164-100-66 -14-22246 8100123-199-77-55 -3-115579979 9799799
K 555557111111111111222222222223333333	K 11111111111112222222222223333333333333
L 8888899999999999999999999999999999999	
F0 155 14 5 8 8 6 13 13 14 5 8 8 6 13 13 14 5 5 8 1 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	F0. 2033 111 222 102 102 102 102 102 102
FC 4-61538763132735237021828986580055656	FC 2040-2103-1055568500-4257656689999371-315858
H 3579914 420460713579608642024680224681024681181 -11811 -11811 -11811 -11811	H 13 19 -12 -10 -8 -6 0 2 -13 -7 -13 -7 -10 -8 -6 0 2 -13 -7 -10 -8 -6 -13 -7 -10 -13 -7 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -10 -15 -15 -15 -15 -15 -15 -15 -15
X 333334444444555555500000000000000000000	K 33444444455555555677771111111111111111
L 9999999999999999999999000000000000000	L 6666666666666666666666677777777777777
F0 2269 310 6103 199 730 95 138 47 67 67 227 96 58 112 183 47 8 612 52 5	F0 11 7 7 8 5 7 6 7 8 9 5 6 6 7 8 9 5 6 6 6 5 1 5 8 7 4 2 5 11 1 6 7 1 6 7
FC -27050004997191473967879768138357872626	FC 11 -67 77 86 88 8 - 128 89 4367 58655644485466167 - 167 - 167 - 167
H 9753115791156284024682611975311359138484	H 1577 191 -100 -6642 -20246 82407 -15397 -313 579 1357 -18664 -40 -40 -40 -40 -40 -40 -40 -4
K 1 100 1 10	K 1111222222222222223333333333334444444444
F0 11711069776185777115292676666222002775697878	F0 7 111 5 5 6 12 22 21 10 7 6 8 22 22 22 22 27 7 10 10 100 109 199 126 8 4 12 25 5 5 5 5 5
F 272059776855882519256565320237758966666	FC 8 114-78 12-22222222222222222222222222222222222
H -20248 -11997-5135799137190642024826119975135757 -1064202482611975135757	H 2 4 6 8 10 12 2 14 8 - 9 - 7 3 1 - 18 - 16 4 - 2 0 4 6 8 10 14 6 - 11 2 - 13 1 - 14 18 - 10 4 - 10
K 4410 L 100 L 100	K 444444555700000000000000000000000000000
F 80279773947677235758845575796279043131	F0 4995286571666612702756655911077640808
FC -113 -17 -19376773256588456657 -1053690441 -153665705369044121	FC -14 -99 2 8 4 - 129 - 159 - 159 - 56 - 117 - 38 - 155 - 20 - 1127 - 38 - 155 - 20 - 117 - 16 - 20 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3

ĸ L FO FC FO FC H ĸ L FO FC Η × L F0 FC Н н ĸ L FO FC L + ĸ 7 -13 9 -9 12 -9 12 -9 -12 -9 -12 -9 -12 -9 -12 -3 -9 -12 -3 -9 -12 -3 -9 -12 -3 -9 -12 -5 -5 -5 -6 -6 -7 -5 -5 -6 -6 -7 -12 -55 -56 -66 -7 -111 -88 -812 -7 -12 -55 -66 -67 -72 -12 -56 -66 -72 -72 -72 -66 -7200111111111122223333444111122222234440000 $\begin{array}{c} -156\\ -179\\ 5380\\ -385\\$ 22333334444444550000000000011111111122222 12 - 99 - 100 -242517406059311359864422804510201802424 2223354444551111112222222233344450000000
 1
 2
 6
 5
 7
 5
 3
 8
 0
 6
 0
 2
 7
 5
 8
 5
 7
 5
 3
 8
 0
 6
 0
 2
 7
 5
 8
 5
 7
 8
 6
 7
 4
 0
 5
 7
 5
 8
 5
 7
 8
 6
 7
 4
 0
 5
 7
 5
 8
 5
 7
 8
 6
 7
 4
 0
 5
 7
 5
 8
 5
 7
 8
 6
 7
 4
 0
 5
 7
 5
 8
 5
 7
 8
 6
 7
 4
 0
 5
 5
 7
 8
 6
 7
 5
 6
 6
 7
 5
 7
 6
 7
 4
 0
 5
 5
 7
 8
 6
 7
 4
 0
 5
 5
 7
 8
 6
 82911357913226231702431374202603244848 7205911167601151503665655800956567698585 $\begin{array}{c} -16 \\ -56 \\ -85 \\ 193 \\ -66 \\ -113 \\ -222 \\ 267 \\ -229 \\ -279 \\ 05 \\ -14 \\ 225 \\ -77 \\ -104 \\ -95 \\ -14 \\ 257 \\ -104 \\ -95 \\ -14 \\ 126 \\ -137 \\ -55 \\ -55 \\ -55 \\ -55 \\ \end{array}$ 151685135863109076370890912123123 1907637089091709410222323 -4 - 22 -4 - 22 + 8 106 + 85 - 7 114 - 22 - 4 -119 - 75 - 53 - 11 15 - 9 - 75 - 53 - 11 15 - 9 - 75 - 53 - 11 15 - 44 - 20 - 44 -15 66859377681627888853447169543527875656 1222224412221 11111275656

нкц	FO	FC	нкц	FO	FC	нкс	FO FC	н	кι	FO	FC	нкц	FO FC
10 0 18	5	-3	2 2 18	10	_9	6 2 18	6 -4	10	2 18	7	6	5 1 19	76

.

spiro{5-exo-hydroxy-3-oxatricyclo[5.1.1.04,9] nonan-8-one-2-1'-

(4',5'-exoepoxybicyclo 3.2.0 heptane)} (58).

Atomic coordinates Bond lengths Bond angles Torsion angles Isotropic temperature factors Anisotropic temperature factors Structure factors

FRACTIONAL ATOMIC COORDINATES X10000 WITH E.S.D.S. IN BRACKETS

	X/A	Y73	270	OCCUPANCY
C (1)	(177017)	0147(5)	005517	
	4007(0)	0571(0)	2235(7)
(12)	3987(4)	0551(4)	2115(7)
C(3)	3040(4)	1040(4)	1047(7)
0(4)	0702(4)	0254(5)	017317)
0(5)	4801(47	(142(5)	0975(7)
C(B)	4/3713/	-1554(5)	0995(7)
	4337(4)	-1614(4)	2268(7)
0(8)	0747(2)	-2017(4)	2421(6)
0(49)	2743(3)	-3598(4)	2040(6)
	1010(4)	-3826(5)	1624(7)
	0962(4)	-4722(5)	2595(7)
C(12)	1681(2)	-4944(6)	3619(8)
C(13)	2761(4)	-4026(4)	3380(7)
C(14)	2719(6)	-2353(5)	3696(8)
0(3)	5592(4)	2989(3)	1386	
0(6)	4945(3)	-2478(4)	0269(6)
0(8)	2505(3)	-0839(2)	1817(6)
0(15)	1548(3)	-6112(3)	2829(5)
HU(3)	2783(57)	3298(60)	1759(7	7)
H(1A)	4798(65)	0734(68)	2912(7	4)
H(2A)	2692(31)	0951(35)	2795(4	5)
H(3A)	2334(41)	1544(42)	0713(4	5)
H(4A)	3593(49)	0230(64)	-0361(6	5)
H(43)	4317(41)	1790(51)	-0221(4	4)
H(5A)	5567(42)	0483(49)	0870(4	9)
H(7A)	4802(64)	-2270(77)	2838(7	7)
H(9A)	3321(48)	-4104(60)	1532(6	4)
H(10A)	1480(47)	-4366(60)	0824(6	3)
H(10B)	1101(48)	-2848(60)	1565(5	7)
H(11A)	0144(45)	-4725(57)	2566(6	3)
H(12A)	1498(45)	-5017(62)	4405(6	7)
H(13A)	3475(39)	-4464(50)	3670(4	9)
H(14A)	3262(56)	-2030(70)	433817	0)
H(14B)	1930(62)	-2052(77)	389717	2)

BOND DISTANCES (2) WITH E.S.D.S IN BRACKETS

C(1)	-	C(2)	1.528(6)
C(1)	-	C(5)	1.521(8)
C(1)	-	C(7)	1.565(5)
C(2)	-	C(3)	1.497(7)
C(2)	-	0(8)	1.455(4)
C(3)	-	C(4)	1.513(8)
L(3)	-	0(3)	1.420(5)
C(4)	-	C(5)	1.521(8)
C(5)	-	C(6)	1.535(6)
C(6)	-	C(7)	1.490(8)
U(5)	-	0(6)	1.185(6)
C(7)	-	C(8)	1.528(6)
C(8)	-	C(9)	1.544(5)
C(8)	-	C(14)	1.510(8)
L(R)	-	0(8)	1.433(5)
0(9)	-	C(10)	1.538(7)
C(9)	-	C(13)	1.536(8)
C(10)	-	C(11)	1.495(8)
C(11)	-	C(12)	1.422(9)
C(11)	-	0(15)	1.457(6)
C(12)	-	C(13)	1.497(7)
C(12)	-	0(15)	1.452(7)
C(13)	-	C(14)	1.553(6)

-0

C(5)	-	C(1)	-	C(2)	104,2(4)	c(12)	- 1	0(15)	-	C(11)	58.5(3)
0(0)	-	C(1)	-	C(2)	104.1(3)	0.1-2.					Containe.
0(7)	-	C(1)	-	C(5)	91.4(4)						
0(3)	-	C(2)	-	C(1)	105.2(4)						
0(8)	-	C(2)	-	C(1)	105.7(3)						
0(8)	-	C(2)	-	C(3)	109.0(4)						
((4))	-	C(3)	-	C(2)	104-5(4)						
0(3)	-	C(3)	-	C(2)	110,1(4)						
0(3)	-	C(3)	-	C(4)	107.7(4)						
C(5)		C(4)	-	C(3)	106.1(5)						
0(4)	-	C(5)	-	C(1)	107.4(4)						
0(6)	-	C(5)	-	C(1)	87.4(4)						
0(6)	-	C(5)	-	C(4)	116.5(4)						
0(0)	-	C(6)	-	C(5)	93.7(4)						
0(5)	-	C(6)	-	C(5)	133.2(5)						
0(6)	-	C(6)	-	C(7)	133.1(5)						
0(5)	-	C(7)	-	C(1)	87.4(4)						
C(B)	-	C(7)	-	C(1)	104.0(3)						
0(8)	-	C(7)	-	C(6)	114.9(4)						
0(9)	-	C(8)	-	C(7)	116.3(3)						
C(14)	-	C(8)	-	C(7)	115.4(5)						
C(14)	-	C(8)	-	C(9)	89.7(3)						
0(8)	-	C(3)	-	C(7)	103.4(3)						
0(8)	-	C(8)	-	C(9)	115.8(4)						
0(8)	-	C(8)	-	C(14)	116.8(4)						
C(10)	-	C(9)	-	C(B)	117.0(3)						
C(13)	-	C(9)	-	C(8)	88.0(4)						
C(13)	-	C(9)	-	C(10)	105.7(4)						
C(11)	-	C(10)	-	C(9)	195.4(5)						
C(12)	-	C(11)	-	C(10)	111.1(5)						
0(15)		C(11)	-	C(10)	113.0(4)						
9(15)	-	C(11)	-	C(12)	60.6(3)						
L(13)	-	C(12)	-	C(11)	109.1(5)						
0(15)	-	C(12)	-	C(11)	60.9(4)						
0(15)	-	C(12)	-	C(13)	112.0(5)						
C(12)		C(13)	-	C(9)	106.5(5)						- He
C(14)	-	C(13)	-	C(9)	88.4(4)						34
C(14)	-	C(13)	-	C(12)	114.4(4)						
C(13)	-	C(14)	-	C(8)	88.6(4)						
C(8)	-	0(8)	-	C(2)	107.5(3)						

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 4 6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	008666666666666666666666666666666666666	
111 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	888888888888888888888888888888888888888
G3 -31.1 G10 G11 G12 G15 105 G4 -11.0 G11 G12 G13 G11 G12 G15 G4 -10.0 G11 G12 G13 G11 G12 G13 G15 G4 -10.0 G13 G11 G12 G13 G11 G12 G13 G13 G11 G12 G13 G13 G11 G12 G13 G13 G13 G13 G13 G13 G13 G14 G15 G15 G13 G13 G14 G15 G14 G15 G15 G14 G16 G14 G16 G14 G16 G14 G17 G14 G16 G16 G16 G16 G16 <		<pre>CUUDUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU</pre>	0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-110.5 -110.5		ио + + 	9 6 7 6 7 9 6 9 9 6 7 6 7 6 6 8 6 8 9 6 7 7 6 7 8 6 8 9 6 7 7 7 7 8 6 8 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
$\begin{array}{c} c_{10} c_{11} \\ c_{10} c_{11} \\ c_{12} c_{12} \\ c_{13} c_{12} c_{13} \\ c_{12} c_{13} c_{12} \\ c_{13} c_{12} c_{13} \\ c_{14} c_{14} \\ c_{14} c_{14} \\ c_{124} \\ c_{14} \\$	- 101 - 3 - 110 - 3 - 110 - 3 - 14 - 6 - 14 - 6 - 14 - 6 - 14 - 6 - 10 - 4 - 15 - 6 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5	145.3 90.3 103.3 103.3 103.3 105.3 1	
10 10 10 10 10 10 10 10 10 10			nanoonnon
			0000000000 44444444 3000000
			1 0 5 1

TORSION ANGLES (DEGREES)

234.

ISUIROPIC PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-0*PI*PI*U11*SINSOTHETA/LAMBDASQ)

A11

H0(3)	0697(223)
H(1A)	0851(244)
H(2A)	0073(86)
H(3A)	0168(102)
H(4A)	0528(163)
H(4B)	0307(118)
H(5A)	0305(118)
H(7A)	0802(232)
H(9A)	0476(155)
H(10A)	0458(157)
H(10B)	0527(153)
H(11A)	0488(154)
H(12A)	0362(157)
m(13A)	0260(115)
H(14A)	0574(177)
H(14B)	0733(215)

.

.

ANISOTROPIC THERMAL PARAMETERS X10000 WITH E.S.U.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-2*PI*PI*(H*H*ASTAR*ASTAR*U11+. .+2*K*L*BSTAR*CSTAR*U23))

	U11	055	0.53	023	1113	U12
C(1)	0373(20)	0266(17)	(1443(32)	-0059(21)	-0078(23)	-0066(17)
C(2)	0337(20)	0241(16)	0423(34)	-0.053(20)	0083(23)	-0004(14)
C(3)	0315(22)	0235(18)	0557(37)	0021(21)	-0033(24)	-0025(15)
C(4)	0516(27)	0319(20)	0404(35)	0012(22)	-0016(25)	-0064(19)
C(5)	0299(21)	0322(19)	0540(39)	-0056(24)	0079(24)	-0046(18)
C(6)	0170(17)	0395(23)	0500(39)	-0069(25)	-0030(20)	-0002(16)
C(7)	0392(21)	0230(16)	0460(36)	-0047(21)	-0141(22).	0002(15)
C(8)	0380(21)	0209(16)	0287(30)	0003(17)	0027(21)	-0021(14)
C(9)	0368(23)	0227(14)	0297(34)	-0007(20)	0045(21)	0005(15)
C(10)	0435(26)	0344(19)	0451(40)	0056(26)	-0048(24)	-0058(19)
C(11)	0353(22)	0448(26)	0580(43)	0010(25)	0097(25)	-0040(19)
C(12)	0630(35)	0363(24)	0337(41)	0002(23)	7179(30)	-0036(22)
C(13)	0501(29)	0282(18)	0255(36)	0029(20)	-0011(24)	0016(17)
C(14)	0744(42)	0295(19)	0346(45)	-0057(22)	0021(31)	-0040(22)
0(3)	0621(24)	0231(13)	0759(33)	-0017(17)	0183(23)	-0031(14)
0(6)	0574(23)	0414(17)	0635(30)	-0165(21)	0125(21)	-0003(16)
0(8)	0296(13)	0240(10)	0503(29)	0070(15)	-0020(13)	-0009(13)
0(15)	0619(21)	0300(14)	0447(24)	0012(16)	0090(19)	-0083(14)

4 2346999234679912224569013467112361313		F 246023456789004601234567901123434 1123456789001234567901123434 11123434	c
K 66666677777777788885888899999990000111111			;8S(
			ERV
			ED
F 125359434706425445516458783575634760707		F0 68 39 8 3 100 42 9 7 10 6 5 9 8 2 10 4 4 9 28 9 7 10 6 5 9 12 1 7 10 6 8 22 11 1 4 2 3 6 4 6 7 9 22 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AND
FC 1554694448164344345117458783574534660707		FC 72737821144156651166982116457786116699822116457786116699822116424646701222221164246446701222222	CALCU
H 45783452468212345678904601234568912323		H 56789011145012345678901123456712212	LATED
K 11112220000111111111111222222222222222		X 33738888888888888888888888888888888888	ST
L 1111112222222222222222222222222222222			RUCT
F0 66640743579549826346565893001938197676	-	F0 15 16 19 11 16 44 49 7 34 24 10 16 49 35 94 62 62 12 16 21 22	URE F
F 56539855570659725235665992092947176666		FC 14 86 1942 16 24 3 48 8 3 3 42 40 16 50 28 87 12 7 1 9 3 6 9 4 7 22 7 2 17 2 17 2 17 2 17 2 17 2 17	ACTOR
H 01234678901113401234567890334012345678989		+ 56 7 8 2 3 4 5 6 8 9 0 1 2 3 4 5 6 8 8 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	s
x >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	12	K 666666667777777778888888899999999110000 11000	
F0 26442333680445940185337946868756202929		F0 22 10 36 32 1 4 7 11 2 7 7 4 13 5 10 6 7 10 7 5 6 5 6	
FC 4163213247815367391753389458597671020		FC 2003632244711934077445044826811675656	
4 340134567897127123456791712345679101		4 5 1 1 1 1 1 1 1 1 1 1 1 1 1	
K 5566666666666777777777899999999999999999			
FC 6595621558676723291379748842056647555		F0 4074544779555697347226630657420304636767 1172266306712120304636767	
FC 7495326575776133813697488439665463434		FC 50746347784567966432653766219305635757	
H K 3 9 4 9 5 9 6 9 9 0 10 10 10 10 10 10 10 10 10 1		H 222222222222222222222222222222222222	
L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
F05554786507654955966559686951091942525		F0 965555426477339117955409799095470411565959	
F 55543794506665954856559595950992021414 22211123333	_	FC 425535527582382785538979818635942664949 21212664949	

** A

239.

-

6-endo-methoxy-8-trans-N-methyl-N-p-toluenesulphonamide-2-

oxabicyclo[3.2.1]octan-2-one (63).

Atomic coordinates Bond lengths Bond angles Torsion angles Isotropic temperature factors Anisotropic temperature factors Structure factors

0	1.	٦.	
2	4	1	

	FRACTIONAL	ATUMIC	COOPDINATES	x100nn	WITH	E.S.D.S.	IM
	X/1	Y/	в	2/0	occu	JPANCY	
	0.7.11		7001///	0.000			
((1))	936	5(7)	7221(4)	-0294(2			
C(S)	-000-	7(IU) 9/11)	9141(0)	-0619(2			
C(4)	200	2(11)	9140(4)	-0528(2			
CICI	278	8(8)	7102(3)	-0491/2			
0157	070	9(9)	6712(5)				
CIRN	258	1(7)	7564(5)	0043(2			
C(0)	<u>е</u> () С 1 и и и	7(12)	77/7/6)	-1760(3			
	595	5(8)	6414(5)	-1100(3	5 Z	1	
(177)	194	2(7)	7162(5)	1535/1	1		
01193	684	2(9)	6396(4)	1767/0			
C(19)	821	4(10)	7677(4)	2105/2			
C (20)	748	6(10)	8751(4)	2211212			
C(21)	541	3(10)	9001(4)	1960(2	• •		
C(22)	407	4(10)	8220(4)	1622(2			
C(23)	898	1(14)	9631(7)	2550(4			
0121	-091	9(6)	8229(5)	-0420(1	1		
0(9)	-125	8(7)	9942(5)	-0789(1)		
0(10)	254	3(5)	7648(2)	-1576(1)		
0(15)	110	3(5)	6452(2)	1000(1)		
0(16)	407	6(5)	5091(2)	1147(1)		
S(14)	321	1(2)	6220(1)	1010			
N(12)	370	5(5)	6534(2)	0334(1)		
H(1A)	-030	6(73)	6758(31)	-0061(1	7)		
H(4A)	256	8(69)	9437 (29)	-1017(1	7)		
H(43)	289	7(79)	9714(35)	-0378(1	8)		
HISA)	487	6(59)	8250(24)	-0376(1	31		
HIGA)	250	5(54)	8094(25)	0349(1	2)		
H(7A)	381	1(60)	6601(27)	-0952(1	5)		
H(BA)	082	7(69)	5951(34)	=0846(1	61		
HIRB)	-030	9(82)	6967(35)	-1215(1	8)		
H(11A) 420	8(77)	7990(54)	-2151(2	0)		
H111B) 529	8(85)	7043(40)	-1/53(1	8)		
H(11C) 532	1(112)	8403(47)	-1489(2	24)		
H113A) 648	8(63)	5735(28)	0526(1	5)		
H113B) 680	6(68)	7073(31)	0485(1	5)		
H113C) 608	3(59)	6302(25)	=0116(1	5)		
H118A) 748	2(65)	6194(31)	1667(1	5)		
H119A) 953		7496(29)	2265(1	4)		
H121A	1 465	51687	9716(35)	2030(1	6)		
H122A) 276	4(60)	8390(25)	1446(1	3)		
H123A) 924	5(70)	10245(25)	2303(2	(0)	8119(427)
H123B) 1011	2(110)	7575(51)	2784(7	51)	8119(427)
H123C) 8750	6(147)	9/94(87)	2895(?	(8)	8119(427)

9373(134)

9431(100)

10390(150)

1881(427)

1881(427)

2576(115) 1881(427)

2200(72)

2259(60)

9391(313)

7603(321)

10620(249)

H123D1

H(23E)

H123F)

U(1)	-	C(7)	1.491(6)
L(1)	-	C(R)	1.526(5)
L(1)	-	0(2)	1.449(5)
L(3)	-	C(4)	1.503(8)
L(3)	-	0(?)	1.320(6)
6(3)	-	0(9)	1.212(5)
6(4)	-	C(5)	1.546(6)
L(5)	-	C(6)	1.535(5)
L(5)	-	C(A)	1.523(5)
6(5)	-	C(7)	1.521(6)
L(6)	-	0(10)	1.428(4)
L(8)	-	N(12)	1.491(4)
し(11)	-	0(10)	1.382(6)
L(15)	-	N(12)	1.480(5)
L(17)	-	C(18)	1.368(6)
L(17)	-	C(55)	1.380(5)
6(17)	-	S(14)	1.757(4)
6(18)	-	C(19)	1.382(6)
L(19)	-	C(20)	1.381(6)
L(20)	-	C(21)	1.370(6)
L(20)	-	C(23)	1.521(9)
L(21)	-	C(22)	1.380(6)
0(15)	-	S(14)	1.423(3)
11(16)	-	S(14)	1.437(2)
5(14)	-	N(12)	1.651(3)
1

L(8)	-	C(1)	-	C(7)	105.7(4)
.1(2)	-	C(1)	-	C(7)	110.1(4)
U(2)	-	C(1)	-	C(9)	108.8(5)
0(2)	-	C(3)	-	C(4)	120.8(4)
J(9)	-	C(3)	-	C(4)	120.8(6)
0(9)	-	C(3)	-	0(5)	118.3(6)
L(5)	-	C(4)	-	C(3)	115.2(4)
6(5)	-	C(5)	-	C(4)	110.7(4)
L(8)	-	C(5)	-	C(4)	104.8(4)
L(8)	-	C(5)	-	C(6)	105.4(5)
6(7)	-	C(6)	-	C(5)	104.3(4)
U(10)	•	C(6)	-	C(5)	114.6(3)
U(10)	-	C(6)	-	C(7)	111.0(4)
L(6)	-	C(7)	-	C(1)	106.1(4)
L(5)	-	C(8)	-	C(1)	99.1(5)
N(12)	-	C(8)	-	C(1)	108.9(3)
N(12)	-	C(8)	-	C(5)	115.1(3)
r(55)	-	C(17)	-	C(18)	119.6(4)
5(14)	-	C(17)	-	C(18)	120.0(3)
5(14)	-	C(17)	-	C(22)	120.2(3)
L(19)	-	C(18)	-	C(17)	120.3(4)
L(20)	-	C(19)	-	C(18)	120.8(5)
L(21)	-	C(50)	-	C(19)	118.1(5)
L(23)	-	C(20)	-	C(19)	120.4(6)
L(23)	-	C(50)	-	C(21)	121.6(6)
r(55)	-	C(21)	-	C(20)	121.8(5)
L(21)	-	C(55)	-	C(17)	119.4(5)
L(3)	-	0(2)	-	C(1)	115.0(4)
L(11)	-	0(10)	-	C(6)	112.5(4)
0(15)	-	S(14)	-	C(17)	108.8(2)
U(16)	-	S(14)	-	C(17)	108.0(2)
U(16)	-	S(14)	-	0(15)	119.5(2)
N(12)	-	S(14)	-	C(17)	105.9(2)
N(12)	-	S(14)	-	0(15)	107.4(2)
PI(12)	-	S(14)	-	0(16)	106.5(1)
0(13)	-	N(12)	-	C(8)	116.7(3)
5(14)	-	N(12)	-	C(8)	115.0(2)
5(14)	-	N(12)	-	C(13)	112.8(5)

.

÷.

. .

E.s.d's ca. 1.5°

CA	C 1	C7	05	-23.0
02	C1	C7	Co	94.5
C 7	C1	0.8	C 5	42.0
C7	C1	CB	112	-79.6
02	C1	80	C5	-75.2
02	C1	CH	1412	163.1
C7	C1	02	C.3	-79.6
69	C1	02	03	44.8
02	C 3	C4	Co	7.7
0.9	CS	C4	C5	-172.9
C 4	C 3	02	C1	-9.2
09	CS	02	Cl	171.4
C 3	C4	05	63	70.0
C.3	C 4	CЪ	C 8	-47.3
C4	С5	60	C7	-80.0
C 4	Co	06	010	41.4
CB	05	C6	C 7	31.9
C 8	СЪ	C.S	010	153.5
C.4	05	03	C 1	71.4
C4	05	C S	M15	-172.6
06	C5	80	C 1	-44.7
06	СЪ	80	N12	71.2
C5	06	C7	C1	-5.4
010	Сю	C7	C 1.	-129.2
C5	C6	019	C11	82.3
C.7	06	010	C11	-160.0
<u>C1</u>	СВ	412	C13	137.0
C1	CS	M13	S14	-87.5
05	CB	M1 -	C13	25.2
05	68	M12	\$1,4	162.5
055	C17	C1 *	C19	-2.5
514	C1/	C1	C19	172.0
C12	017	022	C21	2.7
\$14	C17	024	621	-172.0
018	C17	S1+	015	157.1
CIS	C17	S14	016	24.1
014	C17	S14	5112	-17.6
122	C17	514	010	-28.1
022	C17	51 -	016	-159.1
C17	018	014	012	5/+J
C18	r19	C20	C21	• 7
C16	C19	620	024	
C19	C17	521	020	= [//+6
603	C 20	021	022	177 7
620	021	022	CPC	1.//•/
C17	C L L	MIZ	CIE	- <u>1</u> + U
(17	514	M1 -	C13	-//.8
015	514	111	CIO	29.4
015	614	101 2	C1 4	0 4 • 0 1 7 5 - 4
010	534		615	1
010	614	MIS NI	C13	107.0
nih	214	171.5	CIS	ر • رر -

ISUIROPIC PARAMETERS X10000 WITH E.S.D.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-0*PI*PI*U11*SINSQTHETA/LAMBDASQ)

H(1A)	0/06(147)
H(4A)	0651(133)
H(4B)	0/92(164)
H(5A)	0275(102)
H(6A)	0357(96)
H(7A)	0429(109)
h(8A)	0668(147)
H(8B)	0890(172)
H(11A)	0835(159)
H(11B)	0970(180)
H(11C)	1340(245)
H(13A)	0533(114)
H(13B)	0622(136)
4(130)	0469(105)
H(18A)	0626(123)
H(19A)	0428(130)
H(21A)	0724(135)
H(22A)	0308(115)
H(23A)	0880(124)
H(23B)	0880(124)
H(23C)	0880(124)
日(250)	0880(124)
H(23E)	0880(124)
H(23F)	0880(124)

÷.

	011	N55	U33	U23	U1-3	U12
C(1)	0267(32)	0757(33)	0659(31)	0147(28)	0119(27)	0143(28)
C(5)	0/30(50)	0902(38)	0529(29)	-0073(26)	-0045(52)	9482(37)
C(4)	0979(56)	0471(28)	0492(30)	-0027(24)	0156(35)	0097(33)
C(5)	0357(32)	0375(22)	0501(25)	0026(18)	0077(24)	0029(24)
C(6)	0488(33)	0483(25)	0405(22)	-0010(20)	0078(23)	0132(27)
C(7)	0561(41)	0643(33)	0619(32)	-0031(29)	00021301	-0005(33)
C(8)	0357(31)	0435(23)	0406(21)	-0043(20)	0097(22)	0126(22)
C(11)	0950(55)	0337(46)	0579(34)	0228(34)	0347(59)	0251(46)
C(13)	0361(34)	0706(35)	U508(28)	0036(28)	9141(26)	0175(29)
C(1/)	0385(29)	0470(23)	0322(19)	0100(17)	0071(20)	0118(22)
C(18)	0598(40)	0556(29)	0501(25)	-0054(23)	0045(27)	0191(29)
C(19)	0516(42)	0786(38)	0579(30)	-0017(27)	-0006(50)	0174(35)
C(20)	0157(43)	0621(30)	0406(25)	0075(24)	0006(28)	-0016(35)
C(21)	N818(44)	0448(28)	0550(27)	0019(22)	0120(50)	0151(31)
C(22)	0538(38)	0493(27)	0467(24)	0078(22)	0072(26)	0160(28)
C(23)	1281(77)	0798(50)	0637(48)	-0002(42)	-0096(50)	-0181(51)
0(2)	0510(25)	1012(25)	0841(23)	0186(20)	0141(20)	0349(23)
0(9)	1586(41)	1055(26)	0976(25)	0091(21)	-0028(26)	0875(28)
0(10)	0661(26)	0322(21)	0393(16)	0079(15)	0037(17)	0220(20)
0(15)	0407(22)	0676(19)	0686(18)	0085(14)	0272(17)	0008(16)
0(15)	0/17(24)	0379(14)	0690(18)	0115(13)	0179(18)	0095(15)
S(14)	0439(8)	0423(5)	0518(6)	0056(5)	0170(6)	0044(6)
N(12)	0305(23)	0411(18)	0421(17)	0029(14)	0137(17)	0080(16)

.+2*K*L*BSJAR*CSTAR*U25))

.ANISOTROPIC THERMAL PARAMETERS X10000 WITH E.S.U.S IN BRACKETS TABLE THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-2*PI*PI*(H*H*ASTAR*ASTAR*U11+.

OBSERVED	ANU CAL	CULATED	STRIJCTU	RE FACTO	S FUR	AH2	9							
нкг	FO F	сн	ĸL	FO FC	н	×	L	FO	FC	u K L	FD FC	н к с	FO	۲C
3 4 5 5 6 6 6 7 7 7 8 8 9 9 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 2 44 4 49 1 44 3 49 1 44 3 49 1 49 1 49 3 49 3 53 -4 53 -6 44 -3 55 -4 55 -4 56 -4 56 -4 57 -4 40 -5 20 -5 44 -3 20 -5 44 -3 20 -4 9 0 -4 -4 9 0 -4 -4 -5 -4 -6 -4 -7 -4 -9 -4 -9 -4 -9 -4 -9 -4 -4 -4 -4 -4	$\begin{array}{c} 11 & 0 \\ 11 & 0 \\ 12 & 0 \\ 12 & 0 \\ 15 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 2 & 2 \\ 1 & 1 \\ 1 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 -10 12 3 4 5 -5 -5 -10 12 3 4 5 -5 -10 12 3 4 5 -5 -10 12 3 4 5 -5 -10 12 3 4 5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -5 -	555555566666666667777777788899999999	111111111111111111111111111111111111111	31 31 31 31 31 31 31 31	-31 13 -34 -17 12 -40 -12 20 21 -42 20 21 -15 55 -312 -312 -14 -20 21 -15 55 -312 -14 -20 21 -15 -14 -220 -11 -42 20 -11 -42 21 -15 -5 -14 -20 -14 -20 -13 -14 -20 -13 -14 -452 -29 -19 -13 -13 -14 -29 -13 -13 -14 -29 -13 -13 -14 -29 -13 -14 -29 -13 -14 -29 -13 -14 -29 -13 -14 -29 -13 -14 -29 -13 -14 -32 -14 -32 -14 -29 -13 -14 -32 -14 -32 -14 -19 -14 -34 -14 -14 -19 -14 -14 -14 -19 -14 -14 -14 -19 -14 -14 -14 -14 -19 -14 -	$\begin{array}{c}1 & \mathbf{y} & 1 \\ \mathbf{y} & 1 \\ \mathbf{x} & \mathbf{y} & 1 \\ \mathbf{x} & \mathbf{y} & 1 \\ \mathbf{x} & 10 & 1 \\ \mathbf{x} & 11 & 1 \\ \mathbf{x} & 11 & 1 \\ \mathbf{x} & 11 & 1 \\ \mathbf{x} & 12 & 13 & 1 \\ \mathbf{x} & 11 & 1 & 1 \\ \mathbf{x} & 12 & 13 & 1 \\ \mathbf{x} & 11 & 1 & 1 \\ \mathbf{x} & 12 & 13 & 1 \\ \mathbf{x} & 11 & 1 & 1 \\ \mathbf{x} & 11 & 1 & 1 \\ \mathbf{x} & 12 & 13 & 1 \\ \mathbf{x} & 11 & 1 & 1 \\ \mathbf{x} & 12 & 13 & 1 \\ \mathbf{x} & 11 & 1 & 1 \\ \mathbf{x} & \mathbf{x} & 10 & 1 \\ \mathbf{x} & \mathbf{x} & 11 & 1 \\ \mathbf{x} & \mathbf{x} & 10 & 1 \\ \mathbf{x} & \mathbf{x} & 10 & 10 \\ \mathbf{x} & 10 & 10 \\ \mathbf{x} & 10 & 10 \\ \mathbf{x} & 10 &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22222222222222222222222222222222222222	666694010543392728309429738163964761 143392728309429738163964761 143143927283094297381	-55 -16 -40 -29 -116 -13329 -16 -13329 -16 -13329 -129 -16 -13329 -16 -1329 -16 -1329 -16 -1329 -16 -1329 -16 -1329 -16 -13329 -16 -16 -16 -129 -16 -16 -16 -16 -16 -16 -16 -16 -16 -16
H 36 53 22 <t< td=""><td>FU $20 - 15 - 17$ $15 - 12$ $10 - 15 - 10$ $12 - 15 - 10$ $14 - 17$ $15 - 12$ $15 - 12$ $15 - 12$ $25 - 11$ $12 - 12$ $8 - 5$ $23 - 7$ $10 - 12$ $8 - 5$ $23 - 7$ $10 - 12$ $7 - 9$ $14 - 7$ $10 - 10$ $10 - 1$</td><td>$\begin{array}{c} FC \\ 21 \\ 13 \\ 11 \\ 11 \\ 15 \\ 16 \\$</td><td>4 123 1155 1133 1155 1133 1115 1133 1155 1133 1155 1133 1115 1133 1133 1133 1155 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1115 11</td><td>FO F(9 (5) 5) 7 6 (10 - 11 19 2: 9 24 - 22 14 12 24 - 22 14 12 16 - 11 13 1: 27 - 2 13 12 14 - 12 14 - 12 15 - 5 10 12 12 - 2 13 12 14 - 12 15 - 5 10 - 12 17 - 12 24 - 22 17 - 12 18 - 12 17 - 12 18 - 12 19 - 12 18 - 12</td><td></td><td><pre>4 \$5555555555555555566666677777777778888889999999</pre></td><td>L 333333333333333333333333333333333333</td><td>F 140903448947952729082595786676339999</td><td>FC -14 -18 -13 157 -27 -29 -27 -27 -29 -27 -27 -29 -27 -29 -27 -29 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27</td><td>L 3333333333333333333333344444444444444</td><td>FU FC 15 - 16 9 9 17 17 19 -18 19 19 10 9 -18 19 10 9 -18 19 10 9 -59 -69 -100 -59 -100 -59 -122 -127 11 -129 -127 119 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -120 -110 -100 19 -100 -110 -1000 -1000 -1000 -1000 -1000 -1000 -1000</td><td>H 45653211234654310123453101244320124545 K 2235333334444444445555556666666767</td><td>F 7025252991117356297297399391117756666607129773993111279739931112797399311127973993111279739931112797</td><td>+ 410 - 105 - 100 - 105 - 105</td></t<>	FU $20 - 15 - 17$ $15 - 12$ $10 - 15 - 10$ $12 - 15 - 10$ $14 - 17$ $15 - 12$ $15 - 12$ $15 - 12$ $25 - 11$ $12 - 12$ $8 - 5$ $23 - 7$ $10 - 12$ $8 - 5$ $23 - 7$ $10 - 12$ $7 - 9$ $14 - 7$ $10 - 10$ $10 - 1$	$\begin{array}{c} FC \\ 21 \\ 13 \\ 11 \\ 11 \\ 15 \\ 16 \\$	4 123 1155 1133 1155 1133 1115 1133 1155 1133 1155 1133 1115 1133 1133 1133 1155 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1133 1115 1133 1133 1133 1115 11	FO F(9 (5) 5) 7 6 (10 - 11 19 2: 9 24 - 22 14 12 24 - 22 14 12 16 - 11 13 1: 27 - 2 13 12 14 - 12 14 - 12 15 - 5 10 12 12 - 2 13 12 14 - 12 15 - 5 10 - 12 17 - 12 24 - 22 17 - 12 18 - 12 17 - 12 18 - 12 19 - 12 18 - 12		<pre>4 \$5555555555555555566666677777777778888889999999</pre>	L 333333333333333333333333333333333333	F 140903448947952729082595786676339999	FC -14 -18 -13 157 -27 -29 -27 -27 -29 -27 -27 -29 -27 -29 -27 -29 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27	L 3333333333333333333333344444444444444	FU FC 15 - 16 9 9 17 17 19 -18 19 19 10 9 -18 19 10 9 -18 19 10 9 -59 -69 -100 -59 -100 -59 -122 -127 11 -129 -127 119 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -129 -127 19 -120 -110 -100 19 -100 -110 -1000 -1000 -1000 -1000 -1000 -1000 -1000	H 45653211234654310123453101244320124545 K 2235333334444444445555556666666767	F 7025252991117356297297399391117756666607129773993111279739931112797399311127973993111279739931112797	+ 410 - 105 - 100 - 105 - 105

H 321145632101285820285548201482101852	H -21 0123443210123443210132410132211233120101244101322112331201011244101332112011011
x 55555656666667777777888888899999999090	K 777777788888888999999999991000011111122233333
	1. 林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林林
F 94227U2894871572399251121112112112112111976920400	FU 3272295713 180638 18422 137953719695 1318122299 1318122 195767 19767767 195511 1812299 131812299 131812299 131812299 13181229 1318120 1318120 13181100 100000000000000000000000
$\begin{array}{c} -94\\ -223\\ -11\\ 19\\ -11\\ -15\\ -16\\ 10\\ -15\\ -12\\ -12\\ -12\\ -12\\ -12\\ -12\\ -12\\ -12$	$\begin{array}{c} + c \\ 33 \\ -6 \\ -23 \\ 20 \\ -6 \\ -27 \\ 15 \\ 19 \\ -11 \\ -38 \\ -24 \\ 11 \\ -14 \\ 7 \\ -18 \\ -14 \\ 7 \\ -18 \\ -10 \\ -15 \\ -10 \\ -15 \\ -10 \\ -12 \\ -10 \\ -12 \\ -10 \\ -10 \\ -7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ $
H 01201111122222222222222222222222222222	H 11111122222222223333333334444445555 K 1111112222222222233333344444445555
2 6666666666666666666777777777777777777	
F 796944291137691675567693232787495151	F0 8 11 37 23 9 5 15 14 11 347 46 66 9 43 22 9 5 5 8 27 25 8 27 25 8 27 25 8 27 25 8 27 25 8 27 25 8 27 25 8 27 25 25 25 25 25 25 25 25 25 25
FC 79624610245680682778795050	FC -10 -11 37 -23 -10 -16 -349 -47 -23 -31 -26 -31 -25 -31 -25 -31 -25 -31 -25 -31 -32 -31 -32 -10 -32 -31 -10 -32 -31 -10 -32 -32 -32 -32 -32 -32 -32 -32
H 12365432101243101234553211234654321010	H 32101234543201235531035432101234653232
K 2223333333333444444455555555666666666666	x 5555555566666666677777188888888889999999
L アファファファファファファヴァファファファファファファファファファファファファ	2 5555555555555555555555555555555555555
F 7 8 8 3 9 5 7 1 2 3 0 0 0 7 2 4 9 5 5 8 7 7 3 7 0 6 7 5 1 3 0 2 6 0 5 5 5 1 7 7 3 7 0 6 7 5 1 3 0 2 6 0 5 5 5 5 1 5 1 5 1 5 5 5 5 1 5 7 7 3 7 0 6 7 5 1 3 0 2 5 3 0 2 6 0 5 5 5 5 5 7 7 3 7 0 6 7 5 5 3 0 2 6 0 5 5 5 5 5 7 7 3 7 0 6 7 5 5 3 0 2 6 0 5 5 5 5 5 7 7 3 7 7 3 7 7 5 7 5 3 0 2 6 0 5 5 5 5 5 7 7 3 7 7 5 7	F 155293129131679890363459983636 22226 2226 22226 226 2226 2226 2226 256 26 26 26 26 26 26 26 26 26 26 26 26 26
FC 268 5395-1-90105399 A372 666612-2011823105399 A372 666612-20107677	FC -14 12 -13 -11 -17 -17 -17 -17 -17 -17 -17
x 565///////////////////////////////////	<pre><</pre>
∟ 777777777777777777777777777777777777	- 555555555555555555555555555556666665656666
F0 26 20 30 74 25 11 11 11 12 7 4 7 32 7 4 9 7 32 5 11 11 12 7 12 11 12 7 12 11 12 7 12 11 12 7 11 11 11 12 7 7 12 7 11 11 11 12 7 7 12 7 12 7 12 7 12 7 11 11 12 7 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 12 7 11 11 12 7 7 12 7 12 11 1 12 7 12 11 11 12 7 12 11 1 12 7 12 11 1 12 7 12 11 1 1 12 7 12 11 1 1 12 7 12 11 1 1 1	F 15837 19222142 827 97 65 68 55 003 07 1294 0 827 97 65 68 55 003 00 82 94 0
FC 260 -200 -250 -250 -127 -259 -137 -279 -279 -137 -29 -129 -137 -59 -129 -129 -137 -59 -129 -137 -59 -129 -129 -120 -1	FC -159-33-76 -224 -239 -765 -421 -230 -243 -99 -765 -421 -230 -243 -29 -10 -365 -35 -35 -35 -35 -35 -35 -35 -35 -35 -3
H 1133 	H 34565432101246532101236543210123565454
. / / / / 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
C 9775955389055431261922987255074918969696	F 2129991997931285998994702556944546
C H 64 38 784790764207162217962786845	$\begin{array}{c} + C \\ - 20 \\ - 16 \\ 9 \\ - 11 \\ - 9 \\ - 11 \\ - 9 \\ - 11 \\ - 13 \\ - 13 \\ - 20 \\ - 13 \\ - 20 \\ - 3 \\ - 3 \\ - 3 \\ - 3 \\ - 3 \\ - 15 \\ - 16 \\ - 16 \\ - 15 \\ - 16 \\$

1. 1. 24

FC н ĸ L FO нc Fΰ FC н ĸ FO FC н ĸ L ۶O FC ĸ L L ł Ł FO н к -21 20 -59 99 -14 8 1 4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 5 5 4 4 4 4 4 4 -5 -4 -2 5 Š -6 9 ~~~~~~~~~~ 20 59 98 17 3 -9 9 -10 15 -14 11 -21 -13 25 -8 13 10 10 9 12 15 8 9 19 19 29 10 -9 13 -11 9 -9 -14 -12 -12 -12 -7 -7 25 11 17 24 14 7 17 13 26 7 14 6 15 13 10 7 13 32 34 12 14 8 11 8 9 14 13 24 5 25 25 19 24 10 12 9 9 14 35 21 19 28 7 15 32 13 14 14 50 21 20 7 7 6 17 6 14 9 10 17 10 15 14 16 5 7 7 12 9 7 15 5 7 -23 9-10 17 -10 15 -16 17 5 -6 6 -8 -12 13 6 13 17 10 9 8 7 5 8 6 6 7 17 23 72 9 9 10 9 8 6 9 5 **HBBABHHBBBBBBBB** 10 22 15 12 25 15 10 11 23 7 36 17 9 12 9 12 9 19 3d 16 11 9 9 -16 -5 -6 8 -6 8 10 10 10 21 32 19 10 19 -18 - 8 - 1 FO ⊢ C н ĸ н κ L L ĒΟ FC н ĸ L FO FC ы L FO FC н ĸ L, ۲C En 21 11 -27 4 9 7 9 9 0000111111111222272272272323 53 -22 38 57 24351 4 31 17 13 8 -6 9 15 8 5 12 24 7 51 24 4 16 11 -8 -7 -7 -9 -9 -29 -29 1337 -29 144 -288 1322 -144 -308 288 -169 1028 -169 1028 -1058 -10586 -10586 -10586 -10586 -10586 -10586 15 11 7 11 13 34 19 21 10 23 10 23 10 23 10 23 10 23 10 23 7 35/ 2951 2711 1421 40 10 11 12 -20 12 -14 -13 52 -13 7 9 -10 -14 -22 -19 41 -7 26 -11 6 -11 30 29 7 15 51 13 12 19 13 24 7 11 17 9 37 7 22 18 40 5 12 9 19 26 19 15 15 10 10 10 13 9 13 10 15 10 = 34 - 36 9 12 1.3

+ 24 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	H 42112541J2121211111122222222233333333333434
L 5555555555555566666666666666666666666	L 12 12 12 12 12 12 12 12 12 12 12 12 12
FU 2291674878630906166879861179575926766666	FU 12 21 226 6 6 4 15 5 20 27 6 6 7 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 16 6 4 15 5 20 27 6 16 6 6 4 15 5 20 27 6 16 6 6 4 15 5 20 27 6 16 6 6 7 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 6 17 5 20 27 7 6 17 5 20 27 7 6 17 5 20 27 7 6 17 5 20 27 7 6 17 5 20 27 7 6 17 11 1 12 2 5 2 2 11 1 1 1 2 2 5 2 2 11 1 1 1
$\begin{array}{c} FC \\ 12 \\ -11 \\ -21 \\ -14 \\ -9 \\ -7 \\ 14 \\ -9 \\ -7 \\ 14 \\ -9 \\ -11 \\ 9 \\ -11 \\ -11 \\ -49 \\ 16 \\ 15 \\ 9 \\ -14 \\ 15 \\ -20 \\ 14 \\ -20 \\ 14 \\ -20 \\ 14 \\ -27 \\ -37 \\ $	FC 12 -21 26 -6 -13 -6 -7 4 1 21 -28 -16 -7 -11 -9 20 -11 -9 27 -24 -24 -24 -24 -24 -24 -14 -14 -14 -3
H 12642012353521013441023540242521013434	
к 。223333333344444455555566666777МЛВАЛАЧ9мЧ Ц 11111111111111111111111111111111111	4 K L 5 4 135 6 4 135 7 138 8 133 8 133 8 133 8 133 9 133 1 133 1 133 1 133 1 133 1 133 1 10 1 133 1 10 1 133 1 10 1 133 1 10 1 133 1 10 1 133 1 11 1 133 1 12 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1<
F0 812119 506310119 146739 189520 1119 146739 189520 1119 1224 81299 12992 12992 12912	F0 5111 64 23.10 161215 177210 255144 276 7714 155 88 774 158 88 177 66 500 10 8 66 500 10 8 74 10 66 500 10 8 774 10 10 66 8 8 77 10 10 10 10 10 10 10 10 10 10 10 10 10
FC / -12 -11 / -20 / 2 -15 -14 -15 -12 -13 -24 -12 -13 -24 -12 -13 -24 -12 -12 -12 -12 -12 -12 -12 -12 -12 -12	FC 4 11 -59 -21 U -161 -21 U -21 U -15 -21 U -25 -4 -2 -38 9 -4 -5 -5 -5 -5 -5 -5 -5 -7 -4 -7 -7 -7 -4 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7
H 10211205421012356541013501234401342121	H 1-64-2-1 -112 -2-1 -112 -2-1 -12 -2-1 -12 -2-4 -2-1 -2-1 -2-2 -
$ \begin{array}{c} K \\ 9 \\ 16 \\ 16 \\ 111 \\ 16 \\ 16 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 111 \\ 122 \\ 122 \\ 122 \\ 1777777777777777777777777777777777777$	$\begin{array}{c} K \\ L \\ 12 \\ 13 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 14 \\ 1 \\ 1 \\ 14 \\ 4 \\ 14 \\ 1$
FD 6 9 5 5 5 6 7 9 10 5 10 7 11 1 5 9 9 4 15 2 4 4 2 6 8 10 9 2 1 5 7 1 10 5 9 7 9 15 11 5 11 5 11 5 11	F0 511135555 2113555 21122220 200555 200555 200555 200555 200555 200555 200555 200555 200555 200555 200555 200555 200555 200555 200555 2005555 2005555 2005555 20055555 200555555 20055555555
FC 67465790 -101301718961144569119395118-696743143	FC -3 -10 37 -215 -45 -45 -45 -45 -45 -45 -45 -45 -45 -4
1	
<pre>x 7755655777777777777777843888888888844444933</pre> L 777777777777777777777777777777777777	<pre>< 4 4 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</pre>
50 50 10 59 12 13 10 90 12 13 10 90 12 13 10 90 12 13 10 90 12 13 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 90 12 10 10 90 12 10 10 10 90 12 10 10 10 10 10 10 10 10 10 10	F 92972221235695745911709928005550988779747
FC - 4 5 9 - 10 4 5 10 4 5 10 4 5 5 7 0 4 9 5 10 7 2 4 7 8 5 0 7 2 4 7 8 9 8 9 8 - 8	FC 8 -21 96 -12 200 11 8 4 -23 200 11 8 4 -23 200 11 8 4 -12 -23 200 11 8 4 -12 -23 200 11 8 4 -12 -23 200 11 8 4 -12 -12 -12 -12 -12 -12 -12 -12
H 01235207364510125210221020302432455232	H 164201542101254052105544000000000000000000
K 2222333333444444455555566666777899111122222 L 8848888888888888888888888888888888888	K 1405 1111555511555556666666666666666666666
F 919711786714065579509741993969099690996909	FD 6001343411111113742297544001777312991449556967790121111714714
+C -8 10 10 -9 12 20 -24 17 -10 15 -10 15 -10 15 -10 -17 -11 10 -6 -13 -7 6 15 -11 -10 -10 -11 -10 -11 -10 -11 -10 -11 -10 -10	FC 7

A A LAND THE

н	κL	F ()	⊢C	н	к	ί, FΟ	FC	н	ĸι	FD	FC		κL	ΕŬ	FC	н	κL	FO	⊧c	
-1	2 19	5	5	- 3	0 2	0 20	20	0	8 21	7	6		U 22	11	-12	-2	2 25	12	11	
1	2 19	17	-17	-1	0 2	0 20	-10	-3	10 20	7		-3	0 22	4	9	2	2 25	7	-0	
4	2 19	11	-9	0	0 2	0 22	22	1	10 20	7	-6		1 22	10	-10	-3	3 23	5	6	
-6	3 19	9	6	-4	1 2	0 14	-14	-1	11 20	7	-6	- 1	0.55	14	14	-1	3 23	٩	3	
+2	3 19	13	13	- 3	12	0 10	10	-5	1 21	. 9	9	1	0 55	9	- 8	2	3 25	5	4	
1	3 19	5	-0	-1	1 2	0 20	-21	-3	1 21	7	-4		1 22	11	-9	- 3	5 25	11		
2	3 19	14	-14	0	1 2	0 7	6	-2	1 21	7	7		1 22	9	10	Ō	5 23	. 7	5	
-4	4 19	11	8	1	1 2	0 24	24	-1	1 21	15	-15	= 1	5 55	5	- 2	1	5 25	10	-10	
- 3	4 19	7	6	2	1 2	0 9	-9	0	1 21	7	-8	7	2 22	7	-6	2	5 25	11	9	
-2	4 13	10	-10	-4	2 2	0 9	=11	-1	2 21	6	-11	-4	3 22	9	-10	-3	7 23	4	- 0	
=4	5 19	11	-10	-2	2 ?	0 8	в	ō	2 21	. 5	- 7	-2	5 22	9	- 9	1	7 25	6	6	
- 5	5 19	- 6	6	n	2 2	0 9	-9	1	2 21	13	-14	2	5 22	9	-6	- 3	9 23	9	7	
U	5 19	. 11	=7	5	2 2	າງ 7 ດີ ອ	7	2	2 21	9	8	-5	4 22	11	9	-3	0 24	11	-10	
ء د	5 19	15	13	2	3 2	0 6	-5	-4	3 21	. 10	- /	-2	4 22	7	-11	-2	0 24	6	-5	
-4	6 19	4	-8	-6	4 2	0 8	-7	0	3 21	7	A	-1	4 22	12	-11	-5	1 24	4	= 9	
- 5	6 19	9	-10	-5	4 2	0 11	9	- 3	4 21	10	-11	2	4 22	5	-5	-2	1 24	11	-10	
-2	6 19	15	-12	-3	4 2	0 13	10	1	4 21	5	3	1	4 22	5	6	-1	1 24	15	15	
Ū	6 19	12	-13	-2	4 2	0 8	-9	-5	5 21		-6	-1	5 22	6	-6	-5	2 24	9	-6	
1	6 1 9	4	9	0	4 2	0 5	-4	- 3	5 21	11	11	1	5 22	7	-5	0	2 24	6	-5	
-5	7 19	7	-8	- 3	5 2	8 0	9	-2	5 21	14	-14	1	5 22	8	6	2	2 24	٩	7	
-2	7 1 9	9	-9	-1	6 2	0 9	-9	1	5 21	. b	2	+1	1 22	7	10		3 24		-8	
ĩ	7 19	8	- 7	ā	6 2	0 7	=d	-4	6 21	10	-9	- 4	5 22	11	7	-2	4 24	7	- 5	
- 5	9 19	9	-6	2	6 2	0 6	5	2	6 21	11	-10	-2	4 22	7	-6	0	4 24	10	11	
-1	9 14	10	4	-1	7 2	0 11	11	- 3	7 21	7	-8	=1	1 22	10	10	2	4 24	9	-9	
0	9 19	- 10	8	1	7 2	0 5	- 7	-2	7 21	5	5	1	9 22	9	-7	-2	6 24	7	-7	
-2	10 19	10	-10	2	7 2	0 6	5	a	8 21	5	7	= 4	1 23	10	- 9	0	6 24	5	6	
- 1	10 14	9	2	-5	8 2	9	-5	-2	9 21	13	12	- 1	1 23	19	-10	1	6 24	q	7	
-6	n 20	11	-17	- 3	8 2	07	6	0	9 21	6	-4	-5	2 23	14	13	-2	7 24	12	12	
-3	0 20	11	- 17	= 3	AD	0 7 0 7	-9	-1	10 21	5	7		2 25	14	-8	-2	7 24	12	-6	
- 5	0 20	18	-17	-5	a 2	0 7	-9	-1	10 21	7	7	-3	2 23		-8	0	7 24	6	-6	
н	K L	ΕØ	۲C	н	K L	FO	FC	н	K L	FO	FC	4	K L	FJ	FC	н	K L	F٦	FC	
-1	a 24	м	Ы	1	2 25	5	5	-1	0 25	6	-5	-1	> 26	7	+5	0	85 0	6	5	
U	4 24	6	-5	-5	5 25	10	1	- 4	1 26	11	9	1	5 25	У	10	-3	1 28	٩	-7	
0	1 25	6	-6	- 5	3 25	5	-10	0	1 26	7	= 7	+1	1 25	c p	-4	-1	4 78	9	5	
	2 25	12	-11	= 1	6 25	6	6	-1	3 26	7	- 7	5	2 27	10	10	-2	2 29	7	- 7	
•2	2 25	6	5	- 3	0 26	- 9	-7	a	3 26	5	-4	- 2	5 27	5	5	-1	2 29	7	5	
+1	5 52	11	=10	= S	0 26	10	19	1	3 26	5	-5	- ×	J 28	6	4	-2	5 29	6	-5	

** 3*5

2-<u>exo</u>-bromo-3-<u>endo</u>-hydroxy-7,7-dichlorobicyclo[3.2.0]-

L T L T L T			 5
heptan	1-6-one (29).		
CAREL			
-	1000000		
Atomic	coordinates		
Bond 1	engths		
Bond a	ngles		
Torsio	n angles		
ISOLPO	pic temperatu	re factors	
Anisot	Popic tempera	ture factors	
Struct	ure lactors		

	XZA	Y/B	Z/C	OCCUPANCY
	0859(4)	1464(8)	4/05(7)
C(13)	1195(4)	4240(3)	-0823(7)
C(2A)	1965(4)	0273(8)	4404(7)
C(28)	0758(5)	3793(9)	0153(8)
C(3A)	1579(4)	0298(8)	5201(8)
C(33)	1159(6)	3024(10)	0489(9)
C(4A)	1610(6)	1438(10)	5618(9)
C(48)	1731(6)	3669(15)	0571(1	2)
C(5A)	1316(4)	2200(9)	5056(8)
C(58)	1834(4)	3905(9)	-0/11(9)
C(6A)	1672(5)	2412(8)	4009(8)
C(63)	1713(5)	2753(8)	-1116(8)
C(7A)	1191(4)	1829(8)	3650(8)
C(73)	1295(4)	3320(8)	-1609(8)
0(14)	2058(2)	0264(6)	4500(5)
0(13)	1345(3)	2193(5)	-0284(5)
0(21)	2138(3)	2878(6)	3584(6)
0(23)	2157(5)	1985(9)	-1593(9)
BR(1A)	0320	-0103(1)	6184(1) .
BK(1B)	0428	5000(1)	1069(1)
CL(1A)	1420(1)	0840(2)	2701(2)
CL(1B)	1728(1)	3889(3)	-2756(2)
CL(SA)	0763(1)	2904(2)	3270(2	•)
CL(2B)	0674(1)	2558(3)	-1759(3)
H(1A)	0410(40)	1678(69)	4519(6	2)
H(13)	1138(38)	5074(70)	-0914(6	7)
H(5V)	0948(34)	-0331(64)	4416(6	2)
H(23)	0421(42)	3440(74)	0016(6	8)
HI3A)	1649(47)	-0380(91)	5667(8	(3)
H(38)	1050(42)	2619(76)	1143(7	(9)
HISA)	1136(35)	2849(66)	5368(5	(8)
H(58)	2166(32)	4417(63)	-1042(5	5)
H(4A1)	2003(37)	1609(65)	564216	1)
H(4A2)	1386(38)	1461(68)	628917	3)
H(431)	1828(48)	4147(89)	0677(8	(4)
H(482)	2090(52)	3287(87)	0453(9	0)
HU(1A)	1976(37)	-0451(76)	4079(6	(à)
HO(5R)	2222(66)	2210(114)	804219	(8)

....

BOND DISTANCES (A) WITH L.S.U.S IN BRACKETS

1

C(1/1)	-	C(2A)	1.529(12)
L(1A)	-	C(5A)	1.572(13)
6.(1.6.)	-	C17A1	1,543(13)
C(1R)	-	CI2B)	1 534(13)
01101	_	CIEDI	1 579/171
CTIDI	-	01351	1.070(10)
C(TB)	-	C(7B)	1.551(13)
LIZAI	-	C(3A)	1.535(12)
C(2A)	-	$BR(1\Lambda)$	1,957(8)
r(58)	-	C(3P)	1.503(15)
C(5B)	-	BR(18)	1.971(10)
C(3A)	-	C(4A)	1.509(14)
C(3A)	-	0(1A)	1.424(11)
C(3B)	-	C(48)	1,491(17)
L(3B)	-	0(18)	1.460(12)
C(4A)	-	C(5A)	1.513(15)
L(48)	-	C(5B)	1.531(18)
C(5A)	-	CLEAD	1.503(14)
L(58)	-	CIGR)	1 564(13)
C1601	-	C(7A)	1 528(17)
CIGAT		OLDAN	1 109(10)
CICINI		0(2/)	1.190(10)
CIEDI	-	C(7B)	1.021(10)
C(BB)		0(18)	1.410(10)
C(6B)		0(SB)	1.393(13)
$C(7\Lambda)$	-	CL(1A)	1.769(10)
$C(7\Lambda)$	-	CF(SV)	1.810(9)
C(78)	-	CL(18)	1.784(10)
C(7B)	-	CL(2P)	1,764(10)

.

.

254.

14

L(5A)	-	C(1A)	-	C(2A)	105.7(8)	CL.	(21)	-	C(7A)	-	CL(1))	108.0(5)
C(7A)	-	C(1A)		C(2A)	11/.1(8)	CO	68)	-	C(78)	-	C(1R)	87.3(3)
U(7A)	-	C(1A)	-	C(5A)	88.8(7)	CL	(1B)	-	C(78)		C(1B)	198.5(5)
0(58)	-	C(1B)	-	C(2B)	101.1(8)	CL	(18)	-	C(78)	-	C(68)	110.6(6)
U(78)	-	C(18)	-	C(2B)	108.4(7)	CL	(28)	-	C(78)	-	C(1B)	121.1(6)
C(78)	-	C(18)	-	C(5B)	91.6(1)	CL	(28)	-	C(7B)	-	C(58)	118.2(7)
C(3A)		C(2A)	-	C(1A)	105.3(7)	CL	(2B)	-	C(78)	-	CL(17)	109.3(6)
SR(1A)	-	C(2A)	-	C(1A)	108.1(6)	CO	6B)	-	0(18)	-	C(ZR)	196.3(7)
BR(1A)	-	C(2A)	-	C(3A)	108.7(6)							
0(38)	-	C(2B)	-	C(18)	102.7(8)		1					
BR(18)	-	C(28)	-	C(18)	111.4(7)		~					
BR(13)	-	C(2B)	-	C(3R)	111.8(8)							
C(4A)	-	C(3A)	-	C(2A)	104.9(8)							
U(1A)	-	$C(3\Lambda)$	-	C(2A)	105.5(8)							
U(1A)	-	C(34)	-	C(4A)	105.7(8)							
C(4B)	-	C(3B)	-	C(2B)	104.5(10)							
U(18)	-	C(3B)	-	C(2B)	103.3(9)							
0(18)	-	C(3B)	-	C(4B)	103.2(10)							
C(5A)	-	C(4A)	-	C(3A)	104.8(9)							
L(5B)	-	C(4B)	-	C(38)	94.0(11)						1	
C(4A)	-	C(5A)	-	C(1A)	106.3(8)							
C(6A)	-	C(5A)	-	$C(1\Lambda)$	89.1(8)							
C(5A)	-	C(5A)	-	C(4A)	116.4(9)							
C(4B)	-	C(58)	-	C(1B)	107.0(9)							
C(6B)	-	C(56)	-	C(1B)	84.9(7)							
L(6B)	-	C(58)	-	C(48)	103.1(10)							
U(7A)	-	C(6A)	-	C(5A)	91.9(8)							
0(2/)	-	C(5A)	-	C(5A)	136.1(10)							
2(2A)	-	C(6A)	-	$C(7\Lambda)$	132.0(11)							
し(7日)	-	C(6B)	?	C(5B)	89.2(7)							
0(18)	?	C(6B)	-	C(5B)	103.6(8)							
0(18)	-'	C(6B)	-	C(7B)	108.2(8)							
0(28)	-	C(6B)	-	C(5B)	125.9(9)							
0(2B)	-	C(6B)	-	C(7B)	122.7(9)							
U(2B)	-	C(6B)	-	0(1B)	105.1(9)							
L(6A)	-	C(7A)	-	C(1A)	89.3(8)							
CL(1A)	-	C(7A)	**	C(1A)	120.7(7)							
CLIIN	-	C(7A)	-	C(6A)	119.7(6)							
CL(2A)	-	C(7A)	-	C(1A)	110.6(6)							
CL(2A)	-	C(7A)	-	C(6A)	106.9(6)							

			BC11550	ひつしいししししし するみ下下へるらり 世界時代	CCCCCCCCCCCCCCCCCCC CCCCCCCCCCCCCCCCC
	- Εχ α χρ τ τ τ τ τ τ τ τ τ τ τ τ τ		<pre>c c c c c c c c c c c c c c c c c c c</pre>		
	C4A C4A C4A C4A C4B C4B	2 0 0 0 0 0 2 0 0 0 0 3 0 2 0 0 0 0 3 0	C378 C378 C37	ССССССССС 2777555555 8 ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш ш	C C C C C C C C C C C C C C C C C C C
0 + 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C5A C5A C5B C5B C5B C5B C5B C5B C5B C5B C5B C5B	200000 111111 110000	C47 C47 B C47 B	CCC CCC CCC CCC CCC CCC CCC CCC CCC CC	C C C C C C C C C C C C C C C C C C C
	178.9 -36.4 -54.7 -54.7 HE 1EMPE HE 1EMPE			6	
	THRATURE				
	no WI Fact	028 028 028	018 028	00000000000000000000000000000000000000	BBBBBBBB > > > BBBBBBB > > BBBBBBBB > > > BBBBBB
	OR LS.			C C C C C C C C C C C C C C C C C C C	
	s S	018 018	C7788	С С С С С С С С С С С С С С	日 日 日 日 日 日 日 日 日 日 日 日 日 日
	IN BRA				00000000000000000000000000000000000000
	CKETS	- H2 · · ·	0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1		

. .

TOPSION ANGLES (DEGREES) E.s.d's ca. 1.5⁰

AMISOTROPIC THERMAL PARAMETERS X10000 WITH E.S.U.S IN BRACKETS THE EXPRESSION FOR THE TEMPERATURE FACTOR IS EXP(-2*PI*PI*(H*H*ASTAP*ASTAP*U11+. .+2*K*L*BSTAR*CSTAR*U23))

CL(2B)	CL(2V)	CL(18)	CL(1A)	BR(18)	BRILAD	0(28)	0(21)	0(1H)	0(1A)	C(78)	C(7A)	C(68)	C(6A)	(99)	(10)	C(48)	C(4A)	C(38)	C(3A)	C(2B)	C(2N)	C(18)	C(1A)	
0478(17)	0568(17)	0767(20)	0617(17)	0561(7)	0388(5)	(69)9690	0405(43)	(55)6640	0314(31)	0352(57)	0326(52)	0451(62)	0418(61)	0292(57)	0407(57)	0517(84)	0467(71)	0814(94)	0405(52)	0412(60)	(44) 47.00	0369(55)	0334(56)	U11
1105(27)	0622(19)	0722(21)	0702(20)	0588(7)	0834(9)	0529(56)	0555(46)	0371 (43)	0479(52)	1691 4940	0532(70)	0380(65)	0340(50)	9561(79)	0502(71)	0924(121)	0732(85)	0576(74)	0465(72)	0437(64)	0441(65)	0278(57)	19519640	U22
0717(26)	0572(22)	0388(21)	0355(19)	0563(9)	0417(9)	U507(73)	0614(56)	0347(52)	(64)2640	0453(79)	0539(74)	0351(74)	0510(83)	(99) 0550 (99)	0244(75)	0738(143)	0290(84)	(46) 4520	0290(70)	0574 (76)	0220(64)	0459(76)	0287(71)	1153
-0437(21)	0142(16)	0172(16)	-0144(15)	-0217(7)	(1) + (7)	0089(58)	-0046(41)	0115(37)	-0031(39)	0028(56)	-0033(53)	0039(52)	-0082(54)	0061(66)	-0175(55)	-0255(100)	-0053(54)	0106(66)	-0072(53)	-0134(54)	0001(48)	0099(53)	-0045(51)	1)23
-0145(17)	-0203(16)	0009(16)	-0089(14)	-0013(6)	-nnn9(5)	1003(22)	-0075(41)	(54) 4600	n013(30)	0049(53)	-0144(50)	-90%1(55)	-0147(61)	0007(55)	-0022124)	-n=19(R5)	-0201(54)	-0045(58)	-0086(48)	-(1732(54)	-9nn1(41)	-0031(50)	-0051(51)	1113
-0075(16)	0085(15)	1. 0157(17)	-0005(15)	-0015(6)	-0057(6)	0251 (45)	(85) 9600-	0028(37)	(1035(33)	(1020(47)	0031(47)	0050(50)	0024(48)	-0098(55)	0150(52)	0182(83)	-0119(63)	0087(70)	(64)9200	-0024(52)	-0050(42)	-0058(44)	0106(50)	9112

- *				
H 'K L FO FC n. 14 0 40 44 2 14 0 36 12 14 0 36 12 14 0 36 12 14 0 36 12 14 0 37 5 15 0 24 -33 11 15 0 37 27 16 12 0 41 39 2 12 0 65 64 2 12 0 65 64 2 12 0 57 -57 14 12 0 37 -77 14 12 0 35 -41 7 11 0 34 21 7 11 0 34 21 7 11 0 36 -45 12 13 16 94 91 7 16 7 77	H K L F0 FC 12 a 0 50 -31 14 a 120 -111 16 a 0 55 -59 3 7 9 40 33 7 7 0 74 -73 9 7 0 61 57 11 7 0 113 115 13 7 0 26 22 17 7 0 68 -71 0 60 168 164 2 6 212 210 4 6 212 210 4 6 131 -34 10 6 9 59 -50 12 6 135 -129 14 6 0 47 -447 3 5 5 72 -74 15	μ K L F0 FC 14 4 9 43 -94 16 4 0 120 -120 13 4 0 49 -46 1 3 0 126 133 3 5 0 43 92 11 3 0 130 127 15 0 93 92 17 3 0 76 -73 19 0 90 -93 92 17 0 77 -73 97 19 0 90 -93 -94 23 2 363 356 24 2 0 363 356 24 2 0 244 174 122 2 134 -174 122 20 266 14 2 0 244 174	4 4 L F0 FC 4 7 0 125 126 1 0 246 -274 16 1 0 247 -210 14 0 94 -96 15 1 0 152 -129 13 0 0 72 -75 27 0 94 -97 26 1 0 57 27 0 0 94 -97 26 1 0 55 75 10 155 161 -174 11 0 35 35 7 1 0 155 161 -1 1 178 -144 13 1 0 45 -52 21 1 0 40 -39 23 1 0 57 -62 23 1 0 267 -296 14 2 0 265 -26	H K L F0 FC 5 1 1 33 36 7 1 1 37 -36 9 1 1 47 -36 9 1 1 47 -36 9 1 1 47 -36 15 1 1 42 44 17 1 1 45 47 1+1 1 26 -11 -126 -10 2 1 121 112 -8 2 1 40 -38 -6 2 1 213 239 -2 2 1 214 213 -2 2 1 244 -255 8 2 1 43 -40 10 2 1 24 24 24 12 2 1 24 24 26 12 2 1 24 24 26 13 1<
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H K L Fn FC -16 2 2 3 , -31 -11 2 144 142 -3 2 144 143 -6 2 2 144 143 -6 2 2 144 144 -4 2 555 5,3 -2 2 2,44 142 2 2 2,44 142 2 2 2,44 -472 10 2 2 4,45 -472 10 2 2 4,45 -472 10 2 2 4,45 -472 10 2 2 4,45 -472 10 2 2 4,5 -472 10 2 2 4,5 -472 10 2 2 4,5 -472 11 2 2 4,5 -472 12 2 2 4,7 74 24 2 2

.....

0 _ w

- u	к	1	FO	FC	ч	к	L	FO	FC	ч	к	L	FD	FC	L.	×	L	FU	FC .	н	ĸ	L	۶ŋ	FC
H -14 -14 -14 -17 -4 -4 -2 -4 -2 -4 -2 -2 -4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	スーキキキキキキキキキキキキキキキキキキキキキャップ ブブ つってい ひっつい つい つう		F() 10a 112 945 556 576 556 455 125 556 455 125 556 455 125 567 40 125 567 40 125 567 40 125 567 40 125 567 40 507 60 125 567 40 507 60 125 507 60 137 70 111 157 70 115 157 60 157 50 60 157 60 157 60 157 157 157 157 157 157 157 157	FC -106 -106 -9494023220 -38491223220 -3849122320 -385922320 -385922320 -3859220 -3859220 -3859220 -3859220 -3859220 -3859220 -3859220 -3859220 -385220 -3925200 -3925200 -3925200 -39252000 -39252000 -392520000 -3925200000000000000000000000000000000000	4 1 2 3 5 2 3 6 9 3 6 4 2 0 2 4 6 9 0 6 4 9 2 2 1 5 7 9 1 5 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	К ううち 66 5 5 7 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7	, , , , , , , , , , , , , , , , , , ,	Fn 47 313 376 447 313 376 447 313 376 447 4212 1212 1212 1212 12217 2217	FC 643034503440235075444270257178779565666	4 -29 -18 -19 -19 -19 -19 -19 -19 -19 -19	× 44354888888888888888889999999999999111111111	L	F0 40 73 49 98 107 129 126 57 92 126 57 92 126 57 92 125 57 92 125 57 129 121 121 121 121 121 121 121 121 122 122 57 92 122 57 92 125 57 92 125 57 92 125 57 129 92 125 57 129 92 125 57 129 92 126 125 57 129 92 126 125 57 129 92 126 125 57 129 126 125 57 129 92 126 125 57 129 126 125 57 129 125 57 129 126 125 57 129 126 125 57 129 126 126 126 126 126 126 126 126 126 126	FC - 3677 - 577 1014 1263 1261 1263 1261 - 14372 - 14372 - 14372 - 14372 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143755 - 143	10 10 12 11 -11 -1 -1 -1 -1 -1 -1 -1 -	<pre>< n 1 1 1 1 1 1 1 1 1 </pre>	L 222222222222222222222222222222222222	FU 229445471410155295455705650011554445475141015529545570565255011652650115525501165265011555265011555265011555265011555650115556501155565011555600000000	$\begin{array}{c} -91\\ -91\\ -53\\ -59\\ 20\\ 43\\ -46\\ -24\\ 508\\ -37\\ 749\\ -25\\ -9149\\ -36\\ -37\\ 749\\ -25\\ -9149\\ -36\\ 651\\ -123\\ -1033\\ -250\\ -1033\\ -51\\ -51\\ -51\\ -51\\ -51\\ -51\\ -51\\ -51$	H -22 -12 -22 -22 -22 -22 -22 -22 -22 -22	ス ひろひひひひひひひ ひんちゅう ひんひん ひんしん しんしん しんしん ひんしん しん		2 3 3 1 2 1 2 3 4 7 1 2 4 4 4 7 3 6 3 4 4 4 7 3 6 4 4 4 0 3 0 1 2 1 2 1 2 1 2 1 2 1 2 4 1 2 5 7 3 2 4 4 4 7 3 6 7 3 1 2 4 3 6 7 1 1 2 5 6 7 1 1 2 5 6 7 1 1 2 5 7 5 7 1 2 1 2 4 1 2 5 6 7 1 1 2 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	- 121 -
													*											
4	vł	L	ЕQ	۴C	ч	ĸ	L	FO	FC	н	к	L	۴O	FC	-1	<	L	FC	FC	н	×	L	۴D	FC
$\begin{array}{c} 1 \\ 2 \\ -17 \\ -15 \\ -x \\ -11 \\ 17 \\ -22 \\ -14 \\ -5 \\ -4 \\ -17 \\ -14 \\ -5 \\ -4 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -17 \\ -12$	44555555555556666666666777777777778898844	***************************************	$\begin{array}{c} 52\\ 51\\ 52\\ 53\\ 151\\ 109\\ 43\\ 52\\ 112\\ 515\\ 112\\ 515\\ 112\\ 515\\ 24\\ 83\\ 24\\ 52\\ 24\\ 51\\ 515\\ 515\\ 54\\ 54\\ 100\\ 55\\ 54\\ 54\\ 52\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55\\ 55$	- *7 57 57 57 57 56 94 10 10 10 10 10 10 10 10 10 10	- 7 4 4 7 2 1 5 3 1 5 1 5 1 5 4 2 7 2 4 4 4 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 4 4 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 1 1 7 2 4 2 5 3 5 4 2 0 4 1 4 1 4 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 5 m a 8 1 9 9 9 9 9 9 9 0 0 0 1 1 1 1 1 1 1 1 2 2 2 3 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	*** ***********************************	$\begin{array}{c} 27724493544466504234445400445742300424354434344544444544444444444444444444$	-210 -305 -305 -305 -307 -1092 1137 -335 	-642066002219753199531975319959159126942020 			$\begin{array}{c} 1549\\ 1214\\ 79\\ 992\\ 655\\ 578\\ 978\\ 578\\ 9462\\ 658\\ 578\\ 947\\ 272\\ 21\\ 642\\ 555\\ 578\\ 947\\ 79\\ 578\\ 10\\ 967\\ 23\\ 527\\ 23\\ 565\\ 10\\ 347\\ 79\\ 525\\ 52\\ 225\\ 53\\ 58\\ 12\\ 55\\ 55\\ 58\\ 12\\ 55\\ 58\\ 58\\ 12\\ 58\\ 58\\ 58\\ 12\\ 58\\ 58\\ 58\\ 12\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58\\ 58$	1524297764239 1094939 1094939 1094939 101113373296442 1094939 1011129334 10945369 10112934 196359 107042934 196359 237	- a - u 		***	$\begin{array}{c} 241\\ 2597\\ 221\\ 241\\ 221\\ 221\\ 242\\ 221\\ 242\\ 221\\ 242\\ 221\\ 242\\ 221\\ 245\\ 221\\ 245\\ 211\\ 35\\ 55\\ 949\\ 246\\ 741\\ 231\\ 165\\ 94\\ 301\\ 9\\ 745\\ 55\\ 949\\ 301\\ 9\\ 745\\ 55\\ 949\\ 301\\ 9\\ 745\\ 55\\ 949\\ 301\\ 9\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 55\\ 949\\ 745\\ 745\\ 745\\ 745\\ 745\\ 745\\ 745\\ 745$	$\begin{array}{c} 229\\ -63\\ -240\\ -470\\ -285\\ -253\\ -260\\ -79\\ 217\\ 199\\ 176\\ -56\\ -55\\ 108\\ -9\\ 23\\ -82\\ -84\\ 23\\ -86\\ -75\\ -16\\ -55\\ 108\\ -9\\ -65\\ -16\\ -75\\ -32\\ -69\\ -64\\ 511\\ 75\\ 73\\ 75\\ 73\end{array}$	235464204620246902469197531975311379797	h h h h h h h h h h	**********************	53451414 655212221 53451414 655341642445455455445A538937562712445759470562455150 157627124523150	570715522305452514316566233657271552 1196557271552230545251435665544735512755

4

- 11 · 1

and the second s			1 4 3 4 5 To	
H K L FU FC 19 5 4 42 49 23 5 4 41 44 19 6 4 43 47 16 5 4 44 47 16 6 4 43 47 16 6 4 44 47 16 6 4 44 47 16 6 4 41 72 10 6 4 101 173 -8 6 4 51 -46 -9 6 4 266 -272 4 6 4 36 38 12 6 4 266 -272 4 6 4 36 38 12 6 4 121 134 14 6 4 49 -103 12 7 4 36 38 12 6 4 121 134 <th>4 K L FO FC 23 7 4 45 33 -16 4 35 30 -14 4 56 59 -12 3 40 79 -13 4 62 60 -2 3 4 154 -157 0 3 4 122 -114 2 3 4 122 -114 2 3 4 127 -130 4 4 174 -183 6 4 40 -34 10 4 45 -92 12 8 407 107 14 4 45 -92 12 4 43 -14 16 4 45 -92 -11 4 43 -92</th> <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>4 K L FJ FC n 2 5 122 -119 7 2 5 31 35 4 2 5 102 107 3 2 5 40 43 17 2 5 40 43 17 2 5 40 43 17 2 5 40 43 12 2 5 40 43 12 2 5 40 43 12 2 5 44 -45 14 3 5 44 -45 15 5 41 -57 -11 3 5 42 -37 -11 3 5 106 -105 -7 3 5 103 99 -1 3 5 104 129 3 5 104 41 13 5 42 47 13 5 28</th> <th>H K L F0 FC 10 4 5 56 54 12 4 5 57 35 20 4 5 57 35 20 4 5 57 35 20 4 5 47 41 14 4 5 57 35 20 4 5 47 41 -3 5 27 -13 -11 5 5 5 47 -41 -3 5 5 57 -34 9 5 5 47 -45 -16 6 5 5 47 -16 5 56 7 -44 -16 5 54 -43 -10 6 5 43 -49 -10 5 24 20 24 4 5 57<</th>	4 K L FO FC 23 7 4 45 33 -16 4 35 30 -14 4 56 59 -12 3 40 79 -13 4 62 60 -2 3 4 154 -157 0 3 4 122 -114 2 3 4 122 -114 2 3 4 127 -130 4 4 174 -183 6 4 40 -34 10 4 45 -92 12 8 407 107 14 4 45 -92 12 4 43 -14 16 4 45 -92 -11 4 43 -92	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 K L FJ FC n 2 5 122 -119 7 2 5 31 35 4 2 5 102 107 3 2 5 40 43 17 2 5 40 43 17 2 5 40 43 17 2 5 40 43 12 2 5 40 43 12 2 5 40 43 12 2 5 44 -45 14 3 5 44 -45 15 5 41 -57 -11 3 5 42 -37 -11 3 5 106 -105 -7 3 5 103 99 -1 3 5 104 129 3 5 104 41 13 5 42 47 13 5 28	H K L F0 FC 10 4 5 56 54 12 4 5 57 35 20 4 5 57 35 20 4 5 57 35 20 4 5 47 41 14 4 5 57 35 20 4 5 47 41 -3 5 27 -13 -11 5 5 5 47 -41 -3 5 5 57 -34 9 5 5 47 -45 -16 6 5 5 47 -16 5 56 7 -44 -16 5 54 -43 -10 6 5 43 -49 -10 5 24 20 24 4 5 57<
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H K L F0 FC -6 1 5 432 -437 -4 1 6 425 -424 -2 0 6 74 -711 1 0 6 54 -542 -2 0 6 74 -711 1 0 6 530 330 6 1 6 44 6 44 0 6 204 197 102 5133 312 1 0 6 204 197 126 127 126 1 4 14 114 111 127 126 22 0 6 640 -622 -716 6206 21 1 6 1039 -1197 -114 1039 -1197 -13 5 128 -1271 -6 377 35	H K L F0 FC -A 2 6 125 -121 -4 2 6 174 -169 -4 2 6 174 -169 -4 2 6 33 29 -2 2 6 33 29 4 2 6 313 29 4 2 6 313 329 4 2 6 314 307 12 2 6 239 235 14 2 6 41 -74 16 2^{\prime} 6 41 -74 16 2^{\prime} 6 41 -29 20 2 6 77 -63 -11 3 6 120 -111 -7 3 5 5 -57 -11 3 5120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H K L F1 FC 10 6 6 113 126 12 6 6 123 135 16 5 6 57 -53 13 7 3 14 -61 22 6 3 44 -36 -15 7 6 34 -43 -11 7 6 34 -44 -15 7 6 34 -44 -11 7 6 34 -44 -15 7 6 34 -44 -17 7 6 54 -44 -9 7 0 53 -36 -17 7 6 54 -40 -13 7 6 41 -44 -13 7 6 54 40 -14 4 6 77 65 41 -16 -3 59 -57 -67 -44 9 164<

·** .

- 10 F.F.

					The Party States	
4 K L FU FC 24 K L FO	сякс	FO FC	L	FO FC	н,к с	F) FC
-9 6 51 -40 -6 7 51	-557	29 31	-5 7 7	45 51	11 1 3	4ŋ 40 40 - 84
	1 157 5 5 5 7	14 95 44 95	1 7 7	39 30 39 -32	19 1 3	39 - 39 40 - 43
я 9 6 37 -21 6 2 7 64 7 9 6 58 41 10 4 7 82 -	4 7 5 7 11 9 5 7	54 -30 62 -67	7 7 7	57 -45 35 -57	-14 2 5	75 -72 123 -122
-8 10 5 21 -62 12 2 7 56 -6 10 6 79 -82 15 2 7 61 -	5 11 5 7 7 13 5 7	45 -34 54 45	-5137	41 52 52 50 59 58	-10 2 5	132 -157
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 =10 5 7 19 =8 6 7	43 -29	-7 11 7 -5 11 7	46 41 42 38	-2 2 3	291 277 265 254
4 10 6 45 55 -7 5 7 70 6 10 6 42 43 -5 5 7 29 -	-4 5 7 4 -2 6 7	39 - 37 76 75	-1- 0 8 -14 -0 8	65 -66 104 -103	2 2 3	225 222
10 10 6 94 90 -1 3 7 82 10 10 6 57 31 1 5 7 82 -	18 6 6 7 11 8 6 7	69 -70 46 47	-10 3 3 -5 3 9	125 -133	923	55 51 85 -35
-3 11 6 35 32 5 3 7 29 -1 11 6 40 34 13 5 7 35	10 6 7 13 16 6 7	31 17 54 -59	-9 1 9	77 -76	12 2 d 14 2 d	44 47 95 -d4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 6 7 20 6 7 20 7 7	52 -44 52 -50 49 -43	2 1 3 2 1 8	265 268 341 341	18 2 9 20 2 4	129 -125 89 -74
- 12 6 76 51 −14 4 7 58 -	5 -13 7 7	65 -67 95 33	4 9 8 10 9 8	87 86 112 -107	-17 5 9 -15 5 8	47 -86 40 -99
14 12 6 37 40 -12 4 7 371 15 6 3-3 20 -8 4 7 461 15 7 39 40 -6 4 7 36 -		43 50 44 47 58 -56	12 1 5	165 -181 175 -162	-15 5 5 -7 5 6 -5 5 8	84 76 124 119
-11 1 7 119 -126 -2 4 7 31 -7 1 7 105 101 2 4 7 25	10 15 7 7 10 -4 8 7	38 -35 40 37	1ª J 9 -17 1 8	92 -79 40 -82	-3 5 3 -1 3 8	94 95 52 49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 9 7 54 2 3 7	' 52 -53 ' 55 83 ' 107 114	-15 1 8 -13 1 8	55 -71 55 -67 55 -59	1338	36 25
5 1 7 54 57 12 4 7 31 - 11 1 7 54 -45 14 4 7 30	6 12 3 7 U 14 8	63 -59 47 -45	-7 1 9 -7 1 8	66 68 154 159	23 5 8	39 -51 71 -75
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 -13 9 1 15 -9 9 1 18 -5 9 1	42 -23 34 -28 34 34	-1 1 8 -1 1 8	33 -27 32 78 177 170	-14 4 5 -12 4 5 -19 4 3	73 -67 137 -134
-12 2 7 50 -26 1A 4 7 31 - 2 7 55 -27 20 4 7 40	55 -2 9 1 58 -8 9 1	34 -23 34 ,38	-3 1 8 -1 1 8	42 78 177 170	-12 4 5 -10 4 9	73 -67 139 -139
						-
	ч. к. Г	50 FC	sa ak l	F0 F0	ыкт	50 50
-1 4 - 54 -51 12 6 8 78 -7	0 10 3	71 73	4 3 9	75 -75	5 7 9	57 -13
-4 4 9 92 -57 14 9 9 100 -10 -9 4 4 94 55 16 5 8 59 -5 - 4 4 142 183 19 5 9 78 -7	2 2 10 4 2 4 10 3 1 6 10 9	71 75 46 59 77 32	7 5 9	37 - 51 35 - 52 32 - 53	777 -697 -293	74 =79 34 50 59 59
4 4 1/1 172 20 5 8 66 - F	10 10 9 12 10 8	59 -42 41 -38	-14 4 9 -6 4 9	36 -18 75 69	2 4 9 8 4 9	41 -39 50 -45
2 4 4 204 210 -10 7 8 37 -3 2 4 4 52 55 -11 7 8 36 3 10 4 8 144 -154 -9 7 8 55 8	9 16 10 3 -5 11 9 5 3 11 9	41 -44 37 30 52 -47	-749 749 449	32 35 28 27	10 4 7 12 8 9 16 8 7	52 -50 40 32 52 -53
14 4 4 274 -216 -7 7 8 55 5 16 4 4 140 -102 - 7 8 94 9	4 12 9 5 12 P	52 49 41 37	10 4 9 12 4 9	4U 39 35 -53	-7 9 9	54 68 41 49
20 4 4 52 - 47 - 57 - 57 6 31 - 2 - 1 - 5 4 4 - 59 - 57 8 31 - 2 - 1 - 5 4 5 - 54 5 7 8 4 - 4	-5 1 -7	75 72 104 -103 43 43	14 4 9 22 4 9 24 4 9	45 -42 45 38 49 36	-3 7 7 1 9 9 3 7 9	44 -31 45 -37 35 -25
-1x 5 45 -31 47 5 40 3 -x 5 4 40 40 -12 4 3 45 -4	5 1 9 5 7 1 9	65 -70 45 41	-13 5 9	50 35 61 68	9 9 9	36 -35
-1 5 A 49 46 -9 4 A 71 -7 -1 5 A 49 46 -9 4 A 71 -7) <u>13</u> 19 1519	57 54 51 -31 55 -39	_ * ~ ~ ~	67 -60 21 -25		40 14 51 56 54 -50
5 9 9 150 -163 -2 9 3 38 8 9 53 32 29 7 6 9 36 9 9 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	-12 2 9	55 53 50 21	7 5 9	35 - 36 30 - 26	10 10 9 12 10 9	34 -46 35 -25
10 5 4 4 4 4 4 4 7 9 21 5 6 51 -50 5 8 5 55 5	-4 2 9 1 9 2 9	32 - 29	-4 5 9	49 43	5 11 4 5 11 4 9 11 9	90 -91 94 -6 <u>1</u> 39 7
-14 5 8 58 -54 3 8 8 53 5 -12 5 8 55 -65 12 8 8 50 -6	4 2 9	92 -91 35 -33	5 5 9	72 74 75 71	-14 J 1J -13 0 1J	56 -69 56 -71
-in 5 3 145 -175 14 5 7 75 -75 5 3 145 -176 15 0 4 83 -3 5 3 54 -51 14 3 4 54 -4	1229	12 -93 91 -87 -4 73		44 -47 106 -119 55 -62	-6 0 10 -4 3 1J -2 0 13	195 213 191 131 253 254
-4 5 4 59 31 -7 9 9 62 5 -2 5 4 60 45 -3 4 9 55 3	2n 2 a -11 3 a	54 -24 34 48	11 5 4	55 72 34 30	0 9 1 J 2 9 1 J	46 40 53 29
7 6 8 113 179 -1 9 7 44 7 6 8 245 246 5 9 9 47 -4 4 6 8 155 157 7 9 9 36 -4	-53 -55-3 -53-3	114 121	-7 7 -3 -1 7 -3	17 27 72 76 37 44	6 9 10 3 0 10 19 1 1 1	225 -225
6 6 8 27 -12 13 - 8 36 1 F 6 8 30 32 19 9 8 37 -2	-1 3 9 3 3 4 0	72 -91 26 23	2 7 9	50 -46	12 9 10	110 +104
a 6 4 50 32 19 9 8 37 -2	5 7 3 9	25 23	3 7 9	50 -45 56 -51	12 0 10	119 -104

FØ FC ч × L FO FC ч L e n FC ı. L FÜ FC н ĸ. L FD FC K L × Ч -3 -1 1 7 -10 90 -67 50 92 -59 50 -93 +1 94 U 9 P
 3
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 10
 <t 17 10 10 10 10 - 1171152589471134024541511x59 70 -11 -9 -7 -3 -1 1 3 7 9 9 4 + + 75 125 49 69 94 -31 n 1 -75 -51 40 59 53 87 70 92 -99 -50 -49 54 34 50 -15 43 40 55 59 77 14 16 18 イイイ・フ 10 10 10 10 10 -102 -103 -45 41 -43 35 45 74 53 -65 -103 -112 -22 -39 -47 25 -46 57 -46 57 -44 -41 -27 47 71 -53 -5 3 11 13 35 31 53 - 59 19 19 11 11 51 44 54 40 29 41 42 30 46 36 34 -40 -50 -39 -47 35 130 161 58 41 40 -50 -47 -50 -42 44 27 -43 +0 49 130 1, 10 10 10 10 10 10 - 9 0 2 4 -50 -52 -50 39 -42 132 163 50 49 -49 54 51 47 55 74 55 53 70 -160 -66 -54 -40 47 74 11 11 11 31 42 143 144 11
11
11 -7 -3 -1 13 -9 50 51 55 -53 -51 29 31 56 41 149 73 55 90 -70 -94 149 77 54 -144 -145 -175 -214 -214 -29 -52 47 -40 11 11 11 11 -54 47 -54 -57 -54 -57 -56 -26 -26 41 50 70 -154 -11 -9 1 3 5 13 -30 -76 -79 75 -70 25 108 тu 175 204 57 70 43 54 35 72 19 22 -13 -11 -7 -5 74 39 38 -59 57 59 10 10 10 10 -67 11 11 11 52 195 41 34 39 - 5 - 1 1 5 9 4 9 7 9 -21 9 10 - 37 99 33 1) 49 53 35 78 -36 -30 46 99 49 1 1) 1 1 = 9 = 6 62 -51 -39 -59 -4 -11 ķ ι1 +7 - 35

1.0