Stormier mid-Holocene southwest Indian Ocean due to poleward trending tropical cyclones

Green, A.N.^{1,2}, Cooper, J.A.G.^{2,1}, Dixon, S.¹, Loureiro, C.^{3,1}, Hahn, A.⁴, Zabel, M.⁴

¹Geological Sciences, School of Agricultural, Earth and Environmental Sciences,

University of KwaZulu-Natal, Westville Campus, Private Bag X54001, South Africa

²School of Environmental Sciences, Centre for Coastal and Marine Research, Ulster

University, Cromore Road, Coleraine BT52 1SA, UK

³Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK8 1XG, UK

⁴MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

Abstract

12 Geological evidence of past storminess is fundamental in contextualising long-term climate variability and investigating future climate. Unlike the Atlantic and Pacific 13 basins, robust storminess reconstructions do not exist for most of the Indian Ocean. 14 despite the hazard tropical cyclones pose to the SE African margin. Here we combine 15 16 seismic stratigraphy with analysis of marine sediment cores to look for regionally 17 representative storm-related sediment deposits -or tempestites- intercalated in shoreface sediments from the SW Indian Ocean off South Africa. Tempestites, represented by 18 hummocky seismic units, whose sediments have clear marine geochemical signatures, 19 are found to have been deposited between 6.5 and 4.6 cal kyr BP, when sea level was 20

between 0 and + 3 m above present. Deposition and preservation of the tempestites 21 22 reflect unprecedented tropical cyclone impacts, associated with periods of strongly 23 positive Indian Ocean Dipole (IOD) anomalies and linked to warmer sea surface temperatures. Future climate projections suggest stronger positive IOD anomalies and 24 25 further intensification and poleward migration of tropical cyclones, like their mid-Holocene predecessors. Given the rarity of tropical cyclone landfalls in South Africa, 26 this urges revaluation of hazards in areas along the southeast African coast likely to 27 28 become more vulnerable to landfalling tropical cyclones in future.

Palaeoclimatic reconstructions are vital in understanding past and future climate trends. 29 Because of the high impact of storms in coastal areas, climate projections often include 30 simulations of future storminess. Whereas many lines of evidence provide records of 31 past temperatures, pre-instrumental evidence of storminess is less abundant¹. Several 32 high-magnitude tropical storms (Hurricane Katrina, Cyclone Nargis, Hurricane Sandy, 33 Typhon Haivan) in recent decades reveal the inadequacy of the instrumental record to 34 characterise storm recurrence intervals for exceptionally high-impact events. Evidence 35 of past storms and stormy periods is preserved in various marine geological proxies 36 including: (i) the paralic zone (washover deposits in back-barrier marsh sediments² and 37 erosional scarps in emergent barriers³), (ii) the shoreface and shelf (storm deposits or 38 tempestites)^{4,5} and (iii) deep ocean sediments (coarse-grained layers in pelagic 39 sequences)⁶. These storminess proxies have the potential to extend the instrumental 40 record if adequate chronological control can be established. To date, paralic and deep 41 42 ocean sediments have received most attention in this regard whereas shelf and shoreface tempestites have long been recognised, but little used in palaeo-tempestology. Storm 43 deposits preserved in the shoreface or inner-shelf stratigraphy are effective tools to 44

assess the largest magnitude storms, however, their preservation potential is low as they
can potentially be reworked by subsequent storm events. When preserved, tempestites
provide a standing record of the largest storms, particularly intense tropical cyclones⁷,
and set a benchmark against which contemporary and future storminess can be assessed.

While the links between climate variability and tropical cyclone frequency, intensity 49 and track are nowadays better constrained⁸, uncertainties remain due to the limited 50 availability and quality of historical records and variations between modelling studies⁹. 51 Considering the sea surface temperature (SST) threshold (26.5°C) required for tropical 52 storms to develop¹⁰, ocean warming under a changing climate will lead to an expansion 53 of areas of tropical cyclone formation, consistent with the poleward displacement of 54 intensity maxima of tropical cyclones over the past decades¹¹. However, there is low 55 confidence in projected changes for tropical cyclone genesis, track and duration, despite 56 the likely decrease in frequency and increase in intensity⁹, and there is particularly low 57 confidence in basin-specific projections of storminess and associated storm surges¹². 58

59 Part of the reason for this uncertainty is the lack of palaeo-tempest records against which to compare climate model outputs, which need to be extended both in time and 60 space⁸. Various records of palaeo-tempests from the Pacific and Atlantic Oceans^{7,13} 61 have been linked to modes of climate variability such as the NAO, ENSO or the PDO^{14} . 62 No such records of palaeo-tempests have been reported from the coasts of the SW 63 Indian Ocean despite the known impacts of regular tropical cyclones^{15,16,17,18}. Here we 64 present evidence from tempestites preserved on the lower shoreface off Durban, South 65 Africa (29.9° S, 31.0° E) (Fig. 1), which record a period of enhanced storminess during 66 the mid-Holocene. We assesses the timing, genesis and preservation of the tempestites 67

and their association with tropical cyclones and climate variability for the SE African
coast, providing a benchmark for future assessment and modelling of tropical cycloneclimate links¹⁹ in the Indian Ocean.

71

72 Shoreface tempestites in the SW Indian Ocean

Along the microtidal, wave-dominated east coast of southern Africa, which is exposed 73 to a range of tropical and extratropical cyclones driving extreme storm waves, sea level 74 has risen episodically over the last 18 kyrs^{20,21}. It reached the present level ~ 6 kyrs BP, 75 after which two minor highstands (+3.5 and +1.5 m) occurred at 4.5 and 1.6 kyrs BP 76 (Fig. 1b). Offshore Durban (South Africa), the lower shoreface (between fair- and 77 storm-weather wave base²²), is characterised by Holocene unconsolidated transgressive 78 sediments that mantle and abut occasional aeolianite pinnacles²³. Here, we present the 79 seismic stratigraphy and age-controlled sedimentary and geochemical analysis of two 80 cores (see Methods) collected during RV METEOR Cruise M102²⁴. 81

The sedimentary succession intersected by cores GeoB18304-1 and GeoB18303-2 (Fig.1) comprises three units (1-3) that overlie and postdate the Holocene wave ravinement²³ (Fig. 2). The succession imaged occupies the mid-shelf where the sediment cover is thin and patchy, each unit separated in space but necessarily in time. The contemporary depth of storm wave sediment reworking is estimated at ~ 40 m²⁵, just below which these three units occur. The sandy nature and position of the units identify them as part of the contemporary lower shoreface²³.

89 The lower shoreface comprises a seaward Unit 1 that consists of irregular, wavy to chaotic high-amplitude reflectors (e.g. Fig. 2a, Extended Data Fig. 1a). Unit 2 90 91 comprises two facies: a proximal set of flat-lying reflectors that become progradational with depth (2A) (Extended data Fig. 1a), onlapped by hummocky, wavy to irregular and 92 93 chaotic reflectors (2B, Fig. 2b), all of which are truncated by Surface ii (Extended data Fig. 1b, Fig. 2). This surface is irregular and is overlain by Unit 3, which comprises 94 another series of irregular, wavy to chaotic high-amplitude reflectors and forms the 95 96 shallowest accumulation of the lower shoreface (Fig. 2b). Units 1 and 2 are separated by zones of non-deposition, marked by exposed erosional surfaces and aeolianite pinnacles 97 at -55 to -60 m (Extended data Fig. 1). 98

99 The seaward core (GeoB18303-2) in 60 m water depth contains a uniform succession of 100 shelly, medium to coarse sands (Fig. 3a). Seismic unit 1 is intersected by the upper 3.5 101 m of the core. This unit is characterised by the presence of several mudballs between 102 1.8 and 3 m depth. These date from 12 052 cal yr BP in the lower sections followed by a 103 significant hiatus between 11 224 cal yr and 4177 cal yr BP when the most recent 104 deposition of mudballs occurred (Fig. 3a).

The landward core (GeoB18304-1) in 35 m water depth shows a general fining-upward succession from a series of pebbly coarse sands to medium sand that correlates to Unit 2B (Fig. 3b). The lower portion of the core comprises a series of coarse grained, sharptopped and sharp-based event beds. No datable material was found at their upper boundary, but ages below and above date from 6980 cal yr BP to a minimum of 2619 cal yr BP (Fig. 3b). The uppermost part of the core correlates with Unit 3 and comprises a coarsening upward succession of coarse to very coarse sands.

112 The most significant changes in grain size and element concentration in core GeoB18303-2 occur between 1.5 m and 2.25 m (Fig. 3c and d). Here significant 113 decreases in the concentration of the marine fraction elements including Ca (103.76 114 g/kg) and Sr (174 mg/kg) are evident, with corresponding finer grain sizes (Fig 3c). 115 116 Associated with these depths are increases in the terrigenous fraction elements including Si (204.91 g/kg), Al (41.57 g/kg), K (15.97 g/kg), Ti (319 mg/kg) and Rb (7 mg/kg), as 117 well as an increase in Fe (20.15 g/kg). These coincide with the matrix that hosts the 118 mudballs (Fig. 3d). 119

Grain size and elemental concentrations in core GeoB18304-1 vary little with depth until 3.15 m (Fig. 3e and f). From 3.15 m down to the basal layers, there is a significant scatter with multiple switching between high and low concentrations. There are multiple spikes in abundance of the marine elements towards the core base (Fig. 3f). The increases in marine elemental abundances are associated with the coarsest grain sizes that form the base of the small-scale, fining-upwards packages (Fig. 3b).

Potential mobilization of seafloor sediments based on modelled bed shear stress during 126 127 extreme storm waves offshore Durban (see Methods) indicate that coarse sand, the most 128 common material found in both cores, is mobilized over the entire domain (Extended 129 Data Fig. 2a). The thresholds for mobilization of gravel-sized sediments (Extended Data Fig. 2b), the coarsest material found in the proximal cores, are similarly exceeded along 130 the entire lower shoreface. For the 100 yr return-period storm, the entire shoreface and 131 inner shelf would be subject to disturbance for both classes of coarse sediment 132 (Extended Data Fig. 2c,d). 133

The shoreface units (1-3) post-date the early Holocene wave ravinement surface 136 identified by previous authors²³. Unit 1 onlaps the various aeolianite/beachrock ridges 137 as a series of seaward-thinning wedges of shelly sediment with notably irregular, wavy 138 to chaotic high-amplitude reflectors. Distally, unit 1 comprises mudballs within a very 139 coarse sand matrix. The terrestrial origin of the mudballs is indicated by high Ti 140 abundance (Fig. 3d). They occur within a coarse-grained shell hash with high marine 141 elemental signatures. Mudballs on the shelf are commonly found in storm-dominated 142 settings where the coastline is undergoing transgressive erosion. They are derived 143 through storm-driven erosion of muddy coastal/fluvial sediments and subsequent 144 offshore transport in storm-return flows that extend below storm wave base^{26,27}. The 145 mud is likely derived from an outcropping or subcropping source on the adjacent 146 foreshore. This occurs presently in the study area, when storm erosion exposes laterally 147 continuous back-barrier mud lavers along the shoreline²⁸. Based on their terrestrial 148 signatures and transgressively eroding setting, we consider the mudballs to represent 149 similar storm-based erosion of terrestrial-sourced muds from the foreshore and 150 151 subsequent deposition within the tempestite sequence in the lower shoreface, as a result of storm return flows. No further mudballs occurred in the upper stratigraphy of either 152 153 of the cores. The dated outer layer of the mudball (4117 cal yr BP) reflects the maximum age of deposition of this material on the shelf. 154

Unit 2 is present at depths from 60 to 40 m (Extended Data Fig. 1), with isolated pockets of sub-Unit 2B occurring at the termini of the prograding sub-Unit 2A. The high abundance of marine fraction elements, separated by finer material with high

terrigenous elemental abundance are indicative of periodic high-energy marine events^{29,30}. The marine-dominated shell and pebble hash horizons are similar to deposits ("rippled scour depressions") associated with storm scour on the inner shelf^{31,32,33}. The small-scale, sharp-based coarse packages that terminate with terrestrial element-rich sands are similar to the tempestites described by others²⁶. Sub-Unit 2B is thus considered to comprise a series of storm-generated gravel/sand couplets.

Dates from the overlying Unit 3 constrain the deposition of the overlying shoreface 164 sediments to 2619 cal yr BP and 1878 cal yr BP. Units 1 and 2B, and the storm intervals 165 they record, span two distinct time periods. The distal storm deposits (mudballs in storm 166 return flow deposits) date from 12 052 cal yr BP to 11 224 cal yr BP, followed by a 167 hiatus, to 4 177 cal yrs BP. The more proximal storm deposits more closely match this 168 younger date, and span the 6 980 cal yr BP to 4910 cal yr BP interval. In the context of 169 170 palaeo-sea levels, the timing of deposition of the older tempestites is associated with a time when sea levels were ~ 30-45 m below mean sea level^{21,34} (Fig. 1), whereas the 171 proximal group occurred when sea level was between 0 and $+ 3 \text{ m}^{21}$ (Fig. 1). The older 172 and distal storm deposits were initially associated with a lowered wave base (~ -45 to -173 174 60 m from 12 to 11 ka), at which time and based on their depths, they likely developed in upper shoreface-hosted rippled scour depressions. As sea level rose to the present, 175 periodic storm deposition continued on the outer shoreface until 4 177 cal yr BP. 176

The proximal deposits relate entirely to deposition below storm wave base under contemporary sea level conditions²⁵. Preservation potential of tempestites is low because subsequent storms rework older deposits³⁵, but intense tropical cyclones generate thick shoreface deposits that can survive physical and biological reworking³⁶.

While the largest of contemporary storms recorded in the coast of Durban appears 181 capable of remobilising gravel-sized particles over the entire lower shoreface (Extended 182 183 Data Fig. 2), the tempestite horizons are still preserved in the substrata. The storm deposits thus appear to record events of a magnitude that has not been exceeded since. 184 185 We attribute this to intense tropical storms given the geographical position of Durban in relation to the Southern Indian Ocean tropical cyclone belt³⁷. In the overlying 186 succession of shoreface sediments, there are no further storm event horizons, suggesting 187 no further impingement by intense storms capable of forming such pervasive 188 tempestites on the seabed. 189

Similar sequences of tempestites have been associated with centennial to millennial 190 periods of increased tropical cyclone activity in the Atlantic Ocean^{7,38}, produced by 191 landfall of hurricanes of category 3 and higher. While tropical cyclones of such intensity 192 193 have not made landfall along the eastern coast of South Africa in the past 5 decades^{18,37,39}, and less intense (category 1 and 2) tropical cyclones rarely make landfall 194 along this coastline⁴⁰, the tempestites archived in the cores and seismic stratigraphy 195 point to a prolonged mid-Holocene period of very intense tropical cyclone activity in 196 southern Africa. 197

198

199 Paleo-climatic context

The mid-Holocene tempestite record of core GeoB18304-1 indicates that intense storm activity started at or before the oldest date the core (6980 cal yrs BP) and was ongoing at least until the youngest date (4816 cal yrs BP). Studies elsewhere suggest that intense storminess is likely to be associated with increased regional SST⁴¹, which in the western

Indian Ocean is related to the IOD⁴². The IOD is considered a major climatic driver 204 across the Indian Ocean region throughout the Holocene⁴³. Positive IOD events are 205 206 associated with greater-than-average SST in the western Indian Ocean and increased rainfall over East Africa⁴⁴. Positive IOD anomalies occur when strong easterly winds 207 and weakening of eastward oceanic currents along the equatorial Indian Ocean facilitate 208 atmospheric and oceanic current reversals^{45,46,47}. The majority of studies of atmospheric 209 and oceanic circulation in the Indian Ocean link rapid SST warming in the west to 210 strong easterly winds and weakening of eastward oceanic currents along the equatorial 211 Indian Ocean. Enhanced convection over the Indian Ocean reflects a positive IOD 212 anomaly⁴⁸. Large changes in the monsoon rainfall in the eastern Indian Ocean have been 213 attributed to the occurrence of strong positive IOD anomalies^{49,50}, during which SST is 214 high and the likelihood of intense and more frequent tropical cyclones in the western 215 Indian Ocean increases. Strong positive IOD induces extreme weather events in eastern 216 Africa⁵¹, and is associated with increased rainfall along the coasts of Mozambique and 217 South Africa⁵². 218

This period coincides with strong positive IOD events that caused aridity and SST 219 220 cooling over the eastern Indian Ocean, while the western margin experienced increased precipitation and positive SST anomalies^{53,54,55,56}. When compared to Mauritian climate 221 records (Fig. 4b), the tempestite deposition matches an overall period of negative IOD 222 state with strong positive anomalies⁵⁷. This period is further correlated with records 223 offshore Somalia⁵⁸ and Tanzania⁴³ which reveal warmer SST for the western Indian 224 Ocean between 7.8 and 4.7 ka BP (Fig. 4c). Higher SST not only increases the 225 likelihood of intense and more frequent tropical cyclones, but also contributes to a 226 southward shift in the latitudinal position of the 26 °C and 27 °C isotherms, and 227

potential changes in the location of tropical cyclone landfalls, tracking south of
Madagascar and making landfall in higher latitude regions along the coasts of
Mozambique and South Africa¹⁶. After 4.3 ka the lack of tempestites is also associated
with a shift towards a stronger El Niño and a less prominent Eastern Indian Ocean
monsoon since 3600 BP⁵⁴ (Fig. 4d).

Examinations regarding changes to tropical cyclone frequency and intensity over the 233 southern Indian Ocean under a warming climate have been inconclusive and often 234 contradictory^{9,17,39,59,60}. However, an increasing trend in the intensity and duration of 235 tropical cyclones associated with warming SST and upper ocean heat content in the 236 southern Indian Ocean has been observed in the last two decades¹⁸. Under high 237 greenhouse emission scenarios, multi-model climate projections robustly indicate more 238 frequent⁶¹ and more intense⁵¹ strong positive IOD events, driven by increased SST 239 240 variability in the western Indian Ocean. Therefore, global warming will likely lead to enhanced storminess in Southern Africa, linked to strong positive IOD events associated 241 with more intense and southward tracking tropical cyclones, of which the mid-Holocene 242 deposits on the Durban shelf provide a clear analogue. 243

244

These findings demonstrate the potential of shoreface deposits as a proxy for past storminess and intense tropical-cyclone landfall. Two phases of enhanced storminess are recorded. One is associated with an early Holocene sea-level of ca. -40 m and is preserved in a drowned shoreface. The second (6.9 to 4.8 ka) is associated with contemporary sea-levels and records a period of enhanced storminess that, alongside other proxies, evidences a clear association with strong positive IOD events. Higher

SST and strong positive IOD events due to global warming are likely to lead to more intense, frequent and southward tracking tropical cyclones, whose impacts will be significantly greater than those of the present and the historic past along the coast of southern Africa.

255

256 Author Contributions Statement

AG led the paper conceptualisation, data collection, analysis, figure drafting, and together with JAGC managed the paper writing and editorial review. SD performed the laboratory analyses and figure drafting. CL performed the modelling and assisted in data analysis, writing, figure drafting and editorial review. AH and MZ assisted with data collection, writing, editorial review, with MZ the principal funding recipient.

262 Competing Interests Statement

263 The authors declare no competing interests.

264 Data availability

Samples and data (inorganic data, radiocarbon analyses) are respectively archived at the GeoB Core Repository and Pangaea (www.pangaea.de) both located at MARUM, University of Bremen. Modelling results are available on request of the corresponding author.

269 Figure captions

Figure 1. Location of the Durban shelf and study site with multibeam bathymetry²⁰
(courtesy eThekweni Municipality), seismic coverage (grey lines) and core sites. Inset
b, SE African sea level curve²¹. SA=South Africa, Moz = Mozambique, Tan =

Tanzania, Ken = Kenya, Som = Somalia, Sey = Seychelles, Maur = Mauritius. Map
projection WGS84, UTM 36S

275 Figure 2. Zoomed in ultra-high-resolution seismic stratigraphy of the lower shoreface. a) core site GeoB18303-2. b, GeoB18304-1. Note the hummocky nature of unit 2B 276 intersected by GeoB18304-1. Profile positions of a and b denoted in figure 1 and the 277 full profiles are provided in Extended Data Fig. 1. WRS = wave ravinement surface 278 Figure 3. Downcore variations and chronology. a, GeoB1803-2. b, GeoB18304-1. 279 Areas of interest are outlined by shaded grey boxes. WRS = Holocene wave ravinement 280 surface. c, bulk sediment grain size variations GeoB1803-2. d, downcore elemental 281 distributions GeoB1803-2. e. bulk sediment grain size variations GeoB1804-1. f. 282 downcore elemental distributions GeoB1804-1. Grey lines link spikes in grain size with 283

285 VFS = very fine sand, FS = fine sand, MS = medium sand, CS = coarse sand, VCS =

corresponding peaks and troughs in marine and terrestrial material. Cl = clay, Si = silt,

very coarse sand, P = pebbles, Gr = granules, Co = cobbles, B = boulders

Figure 4. Lithologic and geochemical variations compared to major climatic 287 288 oscillations in the South West Indian Ocean (SWIO). a, downcore variations of grain 289 size. Ca and Ti abundances and geochronology of GeoB18304-1, b, fluctuating Ca/Ti ratios in cores from Mauritius⁵⁷, c, SST anomalies (lines) from Tanzania⁴³ and 290 reconstructed alkenone palaeothermometry SST data from Tanzania (circles)⁵⁸, **d**, El 291 Niño events per 100 years⁶². Red circles are strong El Niño Indian Ocean Dipole (IOD) 292 events, blue circles are strong monsoon IOD events, grey blocks denote period of 293 interest. ENSO = El Niño-Southern Oscillation 294

295

296 References

297

- Oliva, F., Viau, A. E., Peros, M. C., and Bouchard, M. 2018. Paleotempestology
 database for the western North Atlantic basin. The Holocene, 28(10), 1664–
 1671.
- Donnelly, J.P. Roll, S. Wengren, M. Butler, J. Lederer, R. Webb T. 2001.
 Sedimentary evidence of intense hurricane strikes from New Jersey. Geology,
 29, 615-618.
- Buynevich, I.V., FitzGerald, D.M., van Heteren, S. 2004. Sedimentary records
 of intense storms in Holocene barrier sequences, Maine, USA Marine Geology
 210, 135-148
- 307 4. Siringan, J.W., Anderson, J.B., 1994. Modern shoreface and inner-shelf storm
 308 deposits off the east Texas coast, Gulf of Mexico. Journal of Sedimentary
 309 Research B64, 99-110.
- 5. Tamura, T., Masuda, F., 2005. Bed thickness characteristics of inner shelf
 storm deposits associated with a transgressive to regressive Holocene wave
 dominated shelf, Sendai coastal plain, Japan. Sedimentology 52, 1375-1395.
- 6. Toomey, M. R., Curry, W. B. Donnelly, J. P. van Hengstum P. J. 2013.
 Reconstructing 7000 years of North Atlantic hurricane variability using deep-sea
 sediment cores from the western Great Bahama Bank, Paleoceanography 28,
 31–41
- 7. Donnelly, J.P. and Woodruff, J.D., 2007. Intense hurricane activity over the past
 5,000 years controlled by El Niño and the West African monsoon. Nature,
 447(7143), 465-468.

320	8.	Walsh, K.J.E., McBride, J.L., Klotzbach, P.J., Balachandran, S., Camargo, S.J.,
321		Holland, G., Knutson, T.R., Rossin, J.P., Lee, T., Sobel, A., Sugi, M., 2016.
322		Tropical cyclones and climate change. WIRES Climate Change 7, 65-89. DOI:
323		10.1002/wcc.371
324	9.	Knutson, T.R., McBride, J.L., Chan. J., Emanuel, K., Holland, G., Landsea, C.,
325		Held, I., Kossin, J.P., Srivastava, A.K., Sugi, M., 2010, Tropical cyclones and
326		climate change. Nature Geoscience 3, 157-163.
327	10.	Tory, K.J. and R.A. Dare, 2015. Sea Surface Temperature Thresholds for
328		Tropical Cyclone Formation. J. Climate, 28, 8171-8183
329	11.	Kossin, J.P., Emanuel, K.A., Vecchi., G.A., 2014. The poleward migration of
330		the location of tropical cyclone maximum intensity. Nature 509, 349-352.
331	12.	Kirtman, B., S.B. Power, J.A. Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J.
332		Doblas-Reyes, A.M. Fiore, M. Kimoto, G.A. Meehl, M. Prather, A. Sarr, C.
333		Schär, R. Sutton, G.J. van Oldenborgh, G. Vecchi and H.J. Wang, 2013: Near-
334		term Climate Change: Projections and Predictability. In: Climate Change 2013:
335		The Physical Science Basis. Contribution of Working Group I to the Fifth
336		Assessment Report of the Intergovernmental Panel on Climate Change [Stocker,
337		T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y.
338		Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge,
339		United Kingdom and New York, NY, USA.
340	13.	Nott, J., Hayne, M., 2001. High frequency of "super-cyclones" along the Great
341		Barrier Reef over the past 5,000 years. Nature 413, 508-512.
342	14.	Liu, K., 2013. Paleotempestology. In: Encyclopedia of Quaternary Science, 2nd
343		Edition. Eds S.A. Elias, C.J. Mock. Elsevier, Amsterdam, 209-221.

344	15. Ash, K.D., Matyas, C.J., 2012. The influences of ENSO and the subtropical
345	Indian Ocean Dipole on tropical cyclone trajectories in the southwestern Indian
346	Ocean. International Journal of Climatology, 32(1), 41-56.

- 347 16. Fitchett, J.M. and Grab, S.W., 2014. A 66 year tropical cyclone record for
 348 south east Africa: temporal trends in a global context. International Journal of
 349 Climatology, 34, 3604-3615.
- 17. Muthige, M.S., Malherbe, J., Engelbrecht, F.A., Grab, S., Beraki, A., Maisha,
 T.R., Van der Merwe, J., 2018. Projected changes in tropical cyclones over the
 South West Indian Ocean under different extents of global warming.
- 353 Environmental Research Letters 13, 065019. DOI: 10.1088/1748-9326/aabc60
- 18. Vidya, P.J., Ravichandran, M., Murtugudde, R., Subeesh, M.P., Chartejee, S.,
- Neetu, S., Nuncio, M., 2021. Increased cyclone destruction potential in the
 Southern Indian Ocean. Environmental Research Letters, 16 (1), 014027.
- 19. Frappier, A, Knutson, T, Liu, K-B, Emanuel, K., 2007 Perspective: coordinating
 paleoclimate research on tropical cyclones with hurricane-climate theory and
 modelling. Tellus A 59, 529–537.
- 360 20. Green, A.N., Cooper, J.A.G., Salzmann, L., 2014. Geomorphic and stratigraphic
 361 signals of postglacial meltwater pulses on continental shelves. Geology 42(2),
 362 151-154.
- 21. Cooper, J.A.G., Green, A.N. and Compton, J. 2018. Sea-level change in
 southern Africa since the last glacial maximum. Quaternary Science Reviews,
 201, 303-318.

366	22. Hamon-Kerivel, K., Cooper, J.A.G, Jackson, D.W.T., Sedrati, M., Pintado, E.G.,
367	2020. Shoreface mesoscale morphodynamics: A review. Earth-Science Reviews,
368	209, p.103330

- 23. Pretorius, L., Green, A.N., Cooper, J.A.G. (2016). Submerged shoreline
 preservation and ravinement during rapid post glacial sea-level rise and
 subsequent slowstand. Bulletin of the Geological Society of America 128, 10591069.
- 24. Eckau, W. (2014). Short cruise report RV Meteor—M102. Retrieved from
 https://www.ldf.uni hamburg.de/meteor/wochenberichte/wochenberichte

375 <u>meteor/m101 m103/m102 scr.pdf</u>

- Smith, A.M., Mather, A.A., Bundy, S.C., Cooper, J.A.G., Guastella, L.A.,
 Ramsay, P.J., Theron, A., 2010. Contrasting styles of swell-driven coastal
 erosion: examples from KwaZulu-Natal, South Africa. Geological Magazine,
 147(6), 940-953.
- Walker, R.G., Plint, A.G., 1992. Wave- and storm-dominated shallow marine
 systems. In Walker, R.G., and James, N.P., (eds). Facies models: response to
 sea-level changes. St. John's, Newfoundland, Canada, Geological Association of
 Canada, 219-238.
- 27. Hampson, G. J., Storms, J. E. A., 2003. Geomorphological and sequence
 stratigraphic variability in wave-dominated, shoreface-shelf parasequences.
 Sedimentology 50(4), 667-701.
- 28. Cooper, J.A.G., Mason, T., 1986. Barrier Washover Fans in the Beachwood
 Mangrove Area, Durban, South Africa: cause, morphology and environmental
 effect. Journal of Shoreline Management 2, 285-303.

- 29. Morton, R.A., Gelfenbaum, G., Jaffe, B.E., 2007. Physical criteria for
 distinguishing sandy tsunami and storm deposits using modern examples.
 Sedimentary Geology 200(3), 184-207.
- 30. Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B., Dominey-Howes, D., 2012.
 Progress in palaeotsunami research. Sedimentary Geology, 243–244: 70–88.
 DOI:10.1016/j.sedgeo.2011.11.002.
- 31. Murray, A.B., Thieler, E.R., 2004. A new hypothesis and exploratory model for
 the formation of large-scale inner-shelf sediment sorting and "rippled scour
 depressions". Continental Shelf Research 24(3), 295-315.
- 32. Goff, J.A., Mayer, L.A., Traykovski, P., Buynevich, I., Wilkens, R., Raymond,
 R., Glang, G., Evans, R.L., Olson, H., Jenkins, C., 2005. Detailed investigation
 of sorted bedforms, or "rippled scour depressions," within the Martha's Vineyard
 Coastal Observatory, Massachusetts. Continental Shelf Research, 25(4), 461484.
- 33. Trembanis, A. C., T. M. Hume., 2011. Sorted bedforms on the inner shelf off
 northeastern New Zealand: Spatiotemporal relationships and potential paleoenvironmental implications, Geo Marine Letters 31(3), 203-214. DOI:
 10.1007/s00367-010-0225-8.
- 408 34. Peltier, W.R., Fairbanks, R.G., 2006. Global glacial ice volume and Last Glacial
 409 Maximum duration from an extended Barbados sea level record. Quaternary
 410 Science Reviews 25(23-24), 3322–3337
- 411 35. Keen, T.R., Bentley, S.J., Vaughan, W.C., Blain, C.A., 2004. The generation
 412 and preservation of multiple hurricane beds in the northern Gulf of Mexico.
 413 Marine Geology 210 (1-4), 79-105. DOI: 10.1016/j.margeo.2004.05.022

414	36. Bentley, S.J., Keen, T.R., Blain, C.A. and Vaughan, W.C., 2002. The origin and
415	preservation of a major hurricane event bed in the northern Gulf of Mexico:
416	Hurricane Camille, 1969. Marine Geology, 186(3-4), pp.423-446.
417	37. Ramsay, A.H., Camargo, S.J., Kim, D., 2012. Cluster analysis of tropical
418	cyclone tracks in the Southern Hemisphere. Climate Dynamics 39, 897-917.
419	38. van Hengstum, P.J., Donnelly, J.P., Toomey, M.R., Albury, N.A., Lane, P.,
420	Kakuk, B., 2014. Heightened hurricane activity on the Little Bahama Bank from
421	1350 to 1650 AD. Continental Shelf Research 86, 103-115.
422	39. Fitchett, J.M., 2018. Recent emergence of CAT5 tropical cyclones in the South
423	Indian Ocean. South African Journal of Science 114 (11/12), 4426, 6 p.
424	40. Reason, C., Keibel, A., 2004. Tropical cyclone Eline and its unusual penetration
425	and impacts over the Southern African mainland. Weather and Forecasting 19,
426	789-805.
427	41. Webster, P.J., Holland, G.J., Curry, J.A., Chang, H.R., 2005. Changes in
428	Tropical Cyclone Number, Duration, and Intensity in a Warming Environment.
429	Science 309(5742), 1844-1846. DOI: 10.1126/ science.1116448.
430	42. Saji, N.H., Goswami, B.N., Vinayachandran, P.N., Yamagata, T., 1999. A
431	dipole mode in the tropical Indian Ocean. Nature 401, 360-363.
432	43. Kuhnert, H., Kuhlmann, H., Mohtadi, M., Meggers, H., Baumann, KH.,
433	P€atzold, J., 2014. Holocene tropical western Indian Ocean sea surface
434	temperatures in covariation with climatic changes in the Indonesian region.
435	Paleoceanography 29, 423-437. DOI: 10.1002/2013PA002555.

436	44. Webster, P.J., Moore, A.M., Loschnigg, J.P., Leben, R.R., 1999. Coupled ocean-
437	atmosphere dynamics in the Indian Ocean during 1997-98. Nature 401, 356-360.
438	DOI: 10.1038/43848.
439	45. Vecchi, G. A., Soden, B. J., 2007. Global warming and the weakening of the
440	tropical circulation. Journal of Climatology 20(17), 4316-4340.
441	46. Cai, W., Zheng, X.T., Weller, E., Collins, M., Cowan, T., Lengaigne, M., Yu,
442	W., Yamagata, T., 2013. Projected response of the Indian Ocean Dipole to
443	greenhouse warming. Nature Geoscience 6, 999-1007.
444	47. Zheng, X.T., Xie, S.P., Du, Y., Liu, L., Huang, G., Liu, Q., 2013. Indian Ocean
445	dipole response to global warming in the CMIP5 multimodel ensemble. Journal
446	of Climate, 26(16), 6067-6080.
447	48. Ding, R., Li, J., 2012. Influences of ENSO teleconnection on the persistence of
448	sea surface temperature in the tropical Indian Ocean. Journal of Climate, 25(23),
449	8177-8195.
450	49. Gadgil, S., Vinayachandran, P.N., Francis, P.A., Gadgil, S., 2004. Extremes of
451	the Indian summer monsoon rainfall, ENSO and equatorial Indian Ocean
452	oscillation. Geophysical Research Letters 31(12), L12213. DOI:
453	10.1029/2004GL019733.

- 50. Deshpande, A., Chowdary, J.S., Gnanaseelan, C., 2014. Role of thermocline
 SST coupling in the evolution of IOD events and their regional impacts. Climate
 Dynamics 43(1), 163-174.
- 457 51. Cai, W., Yang, K., Wu, L., Huang, G., Santoso, A., Ng, B., Wang, G.,
 458 Yamagata, T., 2021. Opposite reponse of strong and moderate positive Indian
 459 Ocean Dipole to global warming. Nature Climate Change, 11, 27-32.

460	52. Reason, C.J.C., 2001. Subtropical Indian Ocean SST dipole events and southern
461	African rainfall. Geophysical Research Letters, 28(11), 2225-2227.
462	53. Wang, Y., Cheng, H., Edwards, R.L., He, Y., Kong, X., An, Z., Wu, J., Kelly,
463	M.J., Dykoski, C.A., Li, X., 2005. The Holocene Asian Monsoon: links to solar
464	changes and North Atlantic climate. Science 308(5723), 854-857. DOI:
465	10.1126/science.1106296.
466	54. Abram, N.J., Gagan, M.K., Liu, Z., Hantoro, W.S., McCulloch, M.T.,
467	Suwargadi, B.W., 2007. Seasonal characteristics of the Indian Ocean Dipole
468	during the Holocene epoch. Nature 445(7125), 299-302.

469 55. Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I.,

470

Neff, U., Al Subbary, A.A., Buettner, A., Hippler, D., Matter, A., 2007.

- 471 Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from
 472 Oman and Yemen (Socotra). Quaternary Science Reviews 26(1-2), 170-188.
- 473 56. Mohtadi, M., Oppo, D.W., Steinke, S., Stuut, J.B.W., De Pol Holz, R., Hebbeln,
- D., Luckge, A., 2011. Glacial to Holocene swings of the Australian-Indonesian
 monsoon. Nature Geoscience 4, 540-544.
- 476 57. De Boer, E.J., Tjallingii, R., Vélez, M.I., Rijsdijk, K.F., Vlug, A., Reichart, G.J.,
- Prendergast, A.L., de Louw, P.G., Florens, F.V., Baider, C. and Hooghiemstra,
 H., 2014. Climate variability in the SW Indian Ocean from an 8000-yr long
 multi-proxy record in the Mauritian lowlands shows a middle to late Holocene
 shift from negative IOD-state to ENSO-state. Quaternary Science Reviews, 86,
 pp.175-189.

482	58. Bard, E., Rostek, F., Sonzogni, C., 1997. Interhemispheric synchrony of the last
483	deglaciation inferred from alkenone palaeothermometry. Nature, 385(6618),
484	707-710.

- 59. Malherbe, J., Engelbrecht, F.A., Landman, W.A., 2013. Projected changes in
 tropical cyclone climatology and landfall in the Southwest Indian Ocean region
 under enhanced anthropogenic forcing. Climate Dynamics 40, 2867-2886.
- 60. Holland, G., Bruyere, C.L., 2014. Recent intense hurricane response to global
 climate change. Climate Dynamics 42, 617-627.
- 490 61. Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., Masumoto, Y.,
- 491 Yamagata, T., 2014. Increased frequency of extreme Indian Ocean Dipole events
 492 due to greenhouse warming. Nature 510, 254-258.
- 493 62. Moy, C.M., Seltzer, G.O., Rodbell, D.T., Anderson, D.M., 2002. Variability of
 494 El Niño/Southern Oscillation activity at millennial timescales during the
 495 Holocene epoch. Nature, 420(6912), 162-165.

496 Acknowledgements

- 497 This work was financially supported by the Bundesministerium für Bildung und
- 498 Forschung (BMBF, Germany) within the project "Regional Archives for Integrated
- 499 Investigations (RAiN, 03G0840A)" (MZ). We thank the captain, crew and scientists of
- 500 the METEOR M102 cruise for facilitating the recovery of the studied material, and
- 501 eThekwini Municipality for access to multibeam bathymetry.
- 502 Corresponding author: Andrew Green greenal@ukzn.ac.za

503

Extended Data Fig. 1. Seismic reflection profiles and interpretations of the seismic
stratigraphy of the Durban shelf. a, full record including figure 2a. b, full record
including figure 2b.

Extended Data Fig. 2. Bed shear stress represented according to the thresholds for sediment mobility. Model results for the largest recorded storm offshore Durban for: a, coarse sand, b, fine gravel, and the 100 yr return-period storm for c, coarse sand, d, fine gravel. Areas below threshold are blanked. Note that at the GeoB18304-1 site, granulesize sediment would be mobilised, but not at the GeoB18303-2 site.

513 Methods

Regional setting: The eastern coast of South Africa is characterised by mean annual 514 significant wave height of 1.65 m⁶³, and spring and neap tidal ranges are between ~ 1.8 515 m and ~ 0.5 m, respectively⁶⁴. Extreme waves in this coastal area are driven by tropical 516 cyclones, mid-latitude (extratropical) cyclones and cut-off lows^{63,65}. If tropical cyclones 517 become stationary south east of Madagascar they can drive large wave events along the 518 east coast of South Africa^{63,65}, while cut-off low systems may also drive large waves 519 520 storm waves and surges. No tropical cyclones made landfall in the coast of South Africa 521 since wave records began in the early 1980's, but an intense cut-off low system 522 occurred in March 2007. The storm generated the largest waves recorded, with peak significant wave height of 8.5 m, corresponding to a return-period of 32 to 61 years⁶⁶. 523 This event caused widespread coastal erosion and infrastructural damage²⁵. 524

525 **Geophysical surveying and coring:** The shallow sub-surface geology was examined 526 using ultra-high-resolution 0.5kHz PARASOUND collected during RV METEOR 527 Cruise M102 in December 2013²⁴. All data were processed by high and low band pass

filtering and gain application and exported as SEGY data for visualisation in the 528 Kingdom Suite software package. The processed PARASOUND data resolve to ~ 10 529 cm in the vertical domain with a maximum penetration of ~ 20 m in localised areas. In 530 all lines, the upper 5 m of the seafloor sediment package were resolved with a high level 531 of detail. Key targets were identified from the ultra-high-resolution seismic packages for 532 coring. Three vibrocores were collected during the same $cruise^{24}$, two of which 533 (GeoB18303-2 and GeoB18304-1) are described in this study (Fig. 1). Previous 534 descriptions of the seismic stratigraphy are included together with those of this study in 535 Supplementary Table 1. Multibeam bathymetry⁶⁷ collected by the eThekweni 536 Municipality were integrated with the ultra-high resolution seismic and core data in 537 order to assess the spatial distribution of tempestite signatures on the lower Durban 538 shoreface. 539

540 Laboratory analysis: Cores were split onboard and logged according to standard sedimentological procedures. Sub-sampling at 5cm intervals for grain size and 541 geochemical analyses was undertaken, together with sampling for material suitable for 542 Accelerator Mass Spectrometry (AMS) 14C dating. A total of 13 samples were 543 544 collected from cores GeoB18303-2 and GeoB18304-1 for dating purposes. The material used for AMS 14C dating is listed in Extended Data Fig. 3. All shell material was 545 546 selected from in-situ life position, especially in the case of bivalves that were still articulated. Wherever possible, the most intact shells were chosen with the least amount 547 of bleaching of the shell exterior. All dates are corrected for reservoir effect with a ΔR 548 of 121 ± 16 14C yr⁶⁸. The dates discussed in this manuscript are median values; the two 549 sigma ranges are indicated in Supplementary Table 2. 550

551 Particle size analysis was undertaken for both the bulk and terrigenous sediment 552 fractions. The samples were sieved to obtain the bulk grain size distribution with the 553 result of the analysis presented as phi values where the mean, median, sorting and skewness were calculated using the Folk and Ward equations. For the terrigenous grain 554 555 fractions, the sediment samples were treated with 10% HCl, H₂O₂ and NaOH to remove calcium carbonate, organic matter, and biogenic opal, respectively. The samples were 556 then suspended in demineralised water with the addition of $Na_4P_2O_7$ to prevent the 557 558 formation of aggregates. The particle size distribution was measured with a Coulter laser particle sizer LS 13 320 (MARUM, University of Bremen, Germany) generating 559 92 size classes from 0.4 to 2000 µm. For this study the mean grain-size data are 560 displayed as phi. 561

Additional samples were collected at selected locations corresponding to significant results obtained from the grain size analyses. Sample pre-treatment consisted of drying and grinding for 120 seconds in a silicon nitride vessel to prevent contamination (Planetary Micro Mill PULVERISETTE 7 premium line, MARUM, University of Bremen, Germany), to assure that all particles were smaller than 63 µm.

Elemental compositions were measured on 205 sediment samples where 4 grams of each sample compressed at 25 kPa, were used to analyse for major, minor and trace element composition by X-Ray Fluorescence spectrometry (Panalytical epsilon 3 XL, Bremen University, Germany). USGS and Chinese rock and sediment standard reference material GBW 07316 was measured simultaneously and gave results within +-3-5% of certified values.

Wave modelling and sediment mobility analysis: Shoreface sediment mobility in 574 response to storm wave forcing was analysed using the nearshore wave propagation 575 model SWAN version 41.20AB^{69.70}. Simulations of the wave field were performed for 576 the maximum wave conditions during the largest storm recorded offshore Durban⁶³ 577 (March 2007; significant wave heigh of 8.5 m and peak wave period of 16.6 s) and for 578 the 100-year return period storm⁶⁶ (significant wave height of 10.3 m and peak period of 579 17.4 s). SWAN is a depth and phase-averaged, third-generation wave model that 580 581 simulates de refractive propagation and evolution of the wave spectrum. The model was run in stationary mode, i.e. time is removed from the computations and waves are 582 assumed to propagate instantaneously across the modelling domain, using default 583 parameters in order to account for bottom friction dissipation, non-linear wave 584 interaction, diffraction and white-capping dissipation⁷¹. A regular structured grid with 5 585 meters resolution was used for representing the computational domain, matching the 586 bathymetric grid used to represent the bottom conditions (Fig. 1). 587

Considering the dependency of near-bed sediment movement on the bottom orbital 588 velocity amplitude⁷², outputs from SWAN included the root-mean-square of the orbital 589 motion near the bottom (U_{rms}) for the entire modelling domain, computed considering a 590 JONSWAP spectral shape and empirical bottom friction model and linear wave 591 theory⁷³. To evaluate the potential for wave-induced coarse sediment entrainment and 592 transport during modelled storm conditions, the threshold bed shear stress for initiation 593 of sediment transport (T_{cr}) based on the modified Shields parameter was computed⁷² for 594 coarse sand (d_{50} = 0.5 to 2mm) and fine gravel (d_{50} =2 to 8 mm)⁷⁴. T_{cr} values of 0.63 595 N/m^2 and 4.00 N/m^2 were obtained for the mean class values of coarse sand ($d_{50} = 1.25$ 596 mm) and fine gravel ($d_{50} = 5$ mm), respectively. 597

These values were then compared to the spatially variable bed shear stress under waves (T_{ws}), considering that on a flat, non-rippled bed typical of coarse sediments, the bed shear stress can be simplified and only the wave-skin friction component (T_{ws}) is required to determine the hydrodynamic forcing acting on the bed and driving sediment entrainment and transport⁷². T_{ws} was computed using modelled bottom orbital velocity ($U_w = U_{rms}$) and the wave friction factor (f_w) according to:

$$T_{\rm ws} = \frac{1}{2} p f_{\rm w} U_{\rm w}^2$$

where *p* is seawater density (1027 kg/m³), U_w corresponds to U_{rms} modelled with SWAN and f_w computed using the formulation⁷²:

607
$$f_{\rm w} = 1.39 (A/z_0)^{-0.52}$$

where A is the semi-orbital excursion $(U_w T/2\pi)$, and z_0 the bed roughness length $(d_{50}/12)$.

610

611 **Data availability**

Seismic and core data (geochemical, grain size and chronology) are available at
Pangaea (www.pangaea.de). Modelling data are available on request from AG or CL.

614

615 Methods references:

63. Corbella, S., Stretch D., 2012a. The wave climate on the KwaZulu-Natal coast
of South Africa. Journal of the South African Institution of Civil Engineering
54(2), 45-54.

619	4. Moes, H., Rossouw, M., 2008. Considerations for the utilization of wave power
620	around South Africa. Workshop on Ocean Energy, Centre for Renewable and
621	Sustainable Energy Studies, Stellenbosch, 21, February 2008, Abstracts.
622	55. Mather, A.A., Stretch, D.D., 2012. A perspective on sea level rise and coastal
623	storm surge from Southern and Eastern Africa: a case study near Durban, South
624	Africa. Water, 4(1), 237-259
625	66. Corbella S., Stretch D., 2012b. Multivariate return periods of sea storms for
626	coastal erosion risk assessment. Natural Hazards and Earth System Sciences, 12,
627	2699-2708.
628	7. Green, A.N., Dladla, N. and Garlick, G.L., 2013. Spatial and temporal variations
629	in incised valley systems from the Durban continental shelf, KwaZulu-Natal,
630	South Africa. Marine Geology, 335, pp.148-161.
631	8. Maboya, M., Meadows, M., Reimer, P., Backeberg, B., & Haberzettl, T. (2018).
632	Late Holocene Marine Radiocarbon Reservoir Correction for the Southern and
633	Eastern Coasts of South Africa. Radiocarbon, 60(2), 571-582.
634	doi:10.1017/RDC.2017.139
635	99. Booij N., Ris R.C., Holthuijsen L.H., 1999. A third-generation wave model for
636	coastal regions - 1. Model description and validation. Journal of Geophysical
637	Research, 104, 7649–7666.
638	0. Ris RC, Holthuijsen LH, Booij N. 1999. A third-generation wave model for
639	coastal regions - 2. Verification. Journal of Geophysical Research, 104, 7667-
640	7681.

641	71. Loureiro C., Ferreira Ó., Cooper J.A.G., 2012. Extreme erosion on high-energy
642	embayed beaches: influence of megarips and storm grouping. Geomorphology,
643	139–140, 155–171.
644	72. Soulsby R. 1997. Dynamics of Marine Sands: a manual for practical
645	applications. Thomas Telford, London, 280p.
646	73. Holthuijsen L.H., 2007. Waves in Oceanic and Coastal Waters. Cambridge
647	University Press: Cambridge.
648	74. Blott S., Pye K., 2012. Particle size scales and classification of sediment types
649	based on particle size distributions: review and recommended procedures.
650	Sedimentology, 59, 2071-2096.

c)

a

Supplementary Table 2. Chronostratigraphy of GeoB18304-1 and GeoB18303-2. AMS radiocarbon dates are

Depth (cm)	14C age yr BP	error ±	Material
Core GeoB18304-1			
25	2 270	30	Bivalve
145	2 845	30	Single gastropod, Nassarius sp
310	4 595	35	Whole shell
359	5 530	40	Articulated bivalve, life position, Eumarcia paupercula
418	6 200	35	Articulated bivalve, life position, Eumarcia paupercula
476	6 480	40	Articulated bivalve, life position, Eumarcia paupercula
Core GeoB18303-2			
190	3 835	35	Bulk organic carbon (outer rim)
190	9 850	50	Bulk organic carbon (centre)
225	10 010	50	Bulk organic carbon
303	10 680	50	CaCO3
340	11 690	90	Bulk organic carbon
489	13 300	70	Bulk organic carbon

indicated, together with the composition of material dated and interpretation of the intersected unit/bracketing surfa

Internation (Unit/Surface)	Cal age yr	Cal age yr BP		
Interpretation (Unit/Surface)	median	+2σ		
Contemporary shoreface, unit 3	1878	1973		
Storm-generated gravel/sand couplets, lower shoreface, unit 2	2619	2710		
Storm-influenced sand lower shoreface, unit 2B	4816	4910		
Storm-generated gravel/sand couplets, lower shoreface, unit 2B	5915	6017		
Storm-generated gravel/sand couplets, lower shoreface, unit 2B	6644	6741		
Storm-generated gravel/sand couplets, lower shoreface, unit 2B	6980	7127		
Exterior of mudball, lower shoreface deposit, unit 1	4177	4383		
Interior of mudball, lower shoreface deposit, unit 1	11224	1326		
Mudball, lower shoreface deposit, unit 1	11412	11699		
Reworked lower shoreface material, overlying wave ravinement surface, unit 1	12052	12346		
Incised valley fill, flood tide deltaic package, underlying wave ravinement surface	13479	13583		
Incised valley fill, flood tide deltaic package	15938	16180		

-2σ	Calibration curve		
1796	marine 13 (Reimer et al 2013)		
2488	marine 13 (Reimer et al 2013)		
4695	marine 13 (Reimer et al 2013)		
5826	marine 13 (Reimer et al 2013)		
6535	marine 13 (Reimer et al 2013)		
6870	marine 13 (Reimer et al 2013)		
3994	SHcal13 atmospheric curve (Hogg et al. 2013)		
11138	SHcal13 atmospheric curve (Hogg et al. 2013)		
11244	SHcal13 atmospheric curve (Hogg et al. 2013)		
11827	SHcal13 atmospheric curve (Hogg et al. 2013)		
13357	SHcal13 atmospheric curve (Hogg et al. 2013)		
15707	SHcal13 atmospheric curve (Hogg et al. 2013)		