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Abstract 20 

One key component of any eutrophication management strategy is establishment of realistic 21 

thresholds above which  negative impacts become significant and provision of ecosystem services is 22 

threatened.   This paper introduces a toolkit of statistical approaches with which such thresholds can 23 

be set, explaining their rationale and situations under which each is effective.   All methods assume a 24 

causal relationship between nutrients and biota, but we also recognise that nutrients rarely act in 25 

isolation. Many of the simpler methods have limited applicability when other stressors are present.   26 

Where relationships between nutrients and biota are strong, regression is recommended.   27 

Regression relationships can be extended to include additional stressors or variables responsible for 28 

variation between water bodies.   However, when the relationship between nutrients and biota is 29 

weaker, categorical approaches are recommended.  Of these, binomial regression and an approach 30 

based on classification mismatch are most effective although both will underestimate threshold 31 

concentrations if a second stressor is present.   Whilst approaches such as changepoint analysis are 32 

not particularly useful for meeting the specific needs of EU legislation, other multivariate approaches 33 

(e.g. decision trees) may have a role to play.   When other stressors are present quantile regression 34 

allows thresholds to be established which set limits above which nutrients are likely to influence the 35 

biota, irrespective of other pressures.   The statistical methods in the toolkit  may be useful as part of 36 

a management strategy, but more sophisticated approaches, often generating thresholds 37 

appropriate to individual water bodies rather than to broadly defined “types”, are likely to be 38 

necessary too.   The importance of understanding underlying ecological processes as well as correct 39 

selection and application of methods is emphasised, along with the need to consider local regulatory 40 

and decision-making systems, and the ease with which outcomes can be communicated to non-41 

technical audiences.   42 

Keywords: nutrients, Water Framework Directive, standards, aquatic ecosystems, nitrogen, 43 

phosphorus 44 

 45 

46 
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Introduction  47 

If visions of long-term sustainable water resources are to be achieved it is necessary to understand 48 

the links between degraded ecosystems and the stressors responsible.  This enables appropriate 49 

management actions to be taken to restore those ecosystems to a point where they have sufficient 50 

resilience to be sustainable.   Many of the decisions involved will be specific to individual water 51 

bodies; however, there is a case for national and international frameworks that can convert the 52 

broad ambition of legislation into quantifiable objectives.  This, in turn, helps professionals identify 53 

those water bodies within a region in need of restoration, prioritise those with the greatest need, 54 

and gauge progress towards these objectives.    55 

If water bodies in need of restoration are to be identified and prioritised, then we need to know 56 

both the condition of the ecosystem in relation to legislative targets (in Europe this is “good 57 

ecological status”, as defined by the Water Framework Directive, WFD: European Union, 2000, or 58 

“good environmental status” for the Marine Strategy Framework Directive, MSFD, European Union, 59 

2008) as well as the stressors likely to be responsible for their degradation.   A key principle behind 60 

the WFD is that ecological status, though primarily focussed on biological structure, is also 61 

dependent on physico-chemical and hydromorphological conditions, which are in turn influenced by 62 

pressures in the catchment.  In theory, if the sensitivities of different groups of organisms to these 63 

physico-chemical conditions can be quantified, then it should be possible to infer a threshold above 64 

which good status is unlikely to be achieved.      65 

Much attention in recent years has focussed on interactions between stressors, recognising that part 66 

of the uncertainty observed in relationships with a single stressor is due to interactions (additive, 67 

synergistic or antagonistic) with other stressors (Nõges et al., 2016; Torres et al., 2017). 68 

Subsequently, models have begun to incorporate this complexity within catchment-level decision 69 

making processes (Spears et al., 2021).  Such approaches, however, sit within broader screening 70 

exercises that, in effect, evaluate a wide range of potential stressors against estimates of “no 71 

observable effect concentrations” (borrowing a phrase from ecotoxicology) in order to focus 72 

attention of regulators on stressor combinations likely to be significant within a particular region.  73 

These threshold concentrations may have regulatory significance and are often referred to as 74 

“standards” or “criteria”.  In practice, however, uncertainty in relationships between biology and 75 

individual stressors means that predictions of the benefits of remediation currently lack precision 76 

(Moe et al., 2015; Prato et al., 2014).  This is now recognised as a major weakness of WFD 77 

implementation (Hering et al., 2010; 2015; Carvalho et al., 2019).   78 
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Eutrophication (the negative biological consequences of elevated nutrient concentrations) is one of 79 

the key pressures affecting waters - both freshwater and marine (e.g. European Environment 80 

Agency, 2018).  The ability to set realistic targets to guide catchment managers would therefore be 81 

an important step towards achieving environmental quality objectives.   However, recent reviews of 82 

nutrient targets adopted by Member States revealed that a wide range of concentrations are 83 

currently used (Poikane et al., 2019a). Some of this variation reflects the substantial differences in 84 

background concentrations and the sensitivities of water bodies to nutrient enrichment that exist 85 

within and between Member States. However, it is also possible that some nutrient standards are 86 

not fit for the purpose of protecting good ecological status, both in the water body itself and in 87 

water bodies further downstream.   Recent predictions, for example, suggest that MSFD objectives 88 

are unlikely to be achieved even after proposed nutrient reduction measures are in place, and more 89 

ambitious steps may thus be required (Piroddi et al., 2021; Friedland et al., 2021; Grizzetti et al., 90 

2021).  Any such steps will have implications for various industrial and agricultural sectors and 91 

therefore need to be based on a firm understanding of what concentrations are necessary to achieve 92 

WFD and MSFD nutrient targets.  93 

Nutrients are also good candidates for a broader consideration of how thresholds for physico-94 

chemical stressors should be derived.  There are situations (e.g. phytoplankton in deep lakes) where 95 

phosphorus, in particular, is frequently the sole or most important stressor whilst in other 96 

circumstances (e.g. rivers), nutrients are almost always just one ingredient of a “cocktail” of stressors 97 

(Birk et al., 2020).   In both cases, however, decisions by regulators have substantial real-world 98 

consequences, requiring public or private investment, in the context of legislation for which public 99 

consultation and transparency are prerequisites.  The science behind such decisions, therefore, 100 

needs to be clear and uncertainty well explained.   101 

In this paper, we present a toolkit for establishing ecologically-relevant nutrient thresholds. The 102 

toolkit is available either as a series of R scripts 103 

(https://publications.jrc.ec.europa.eu/repository/handle/JRC112667) or as a Shiny app 104 

(http://phytoplanktonfg.okologia.mta.hu:3838/Tkit_nutrient/). These approaches have been tested 105 

for lakes (Free et al., 2016; Poikane et al., 2019b; Kagalou et al., 2021), rivers (Canning et al., 2021; 106 

Poikane et al., 2021), coastal and transitional waters (Salas Herrero et al., 2019) as well as with 107 

simulated data (Phillips et al., 2019). Alongside statistical approaches, we also provide a brief guide 108 

on how to choose the most suitable approach and how to interpret the results. 109 
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General principles  110 

There are many potential approaches to defining boundaries for nutrients and other physico-111 

chemical variables. Conclusions from experimental studies could be used but are potentially highly 112 

context-specific, so the most common approach is to derive standards from monitoring data (Dodds 113 

et al, 2010; Free et al., 2016; Hausmann et al., 2016; HELCOM, 2013, Poikane et al., 2019b; Phillips et 114 

al., 2019).  This, however, presumes that a stressor gradient is present which, though usually the 115 

case, is not universally true.  It will be difficult to apply many of the methods in this toolkit in 116 

situations where there is no appreciable stressor gradient or, conversely, where all sites are so 117 

degraded that there are no high or good quality sites against which thresholds can be calibrated. The 118 

appropriate method for any situation will depend upon particular regulatory needs as well as the 119 

statistical properties of the data.   In the case of the WFD, boundaries for “supporting elements” 120 

need to be linked to boundaries between ecological status classes for one or more Biological Quality 121 

Elements (BQEs).  As the WFD adopts the “one out, all out” principle (Borja and Rodriguez, 2010; 122 

Ojaveer and Eero, 2011) for defining overall status, the BQE that is most sensitive to a given stressor 123 

is the best candidate for establishing a protective threshold.   High statistical significance should be 124 

combined with theoretical justification or experimental evidence to demonstrate a causal 125 

relationship between ecological condition and nutrients, including determination of whether 126 

phosphorus, nitrogen, or phosphorus and nitrogen are limiting nutrients (Dolman et al., 2016; 127 

Guildford and Hecky, 2000; Phillips et al., 2008; Søndergaard et al., 2017). However, the 128 

overwhelming conclusion from many studies is that phosphorus reduction alone, without 129 

concomitant reduction in nitrogen, will not provide efficient eutrophication control. In the best case, 130 

this might displace the effects of eutrophication in space or time whilst, in the worst case, it may 131 

increase the potential for algal blooms and associated toxicity (Conley et al., 2009; Glibert, 2017; 132 

Paerl, 2009; Paerl et al., 2016).   133 

Approaches in this toolkit should also protect particular levels on the “biological condition gradient”, 134 

as used in the USA (Davies & Jackson, 2006; Charles et al., 2021).   It is also possible to derive 135 

nutrient boundaries from ecological data without the need to summarise the latter as a metric (e.g. 136 

Roubeix et al., 2016, 2017; Tibby et al., 2019).  This is less appropriate in the context of the WFD or 137 

MSFD as there is no link with measured ecological condition, although it may be appropriate in 138 

situations where the link with ecology is defined differently and is also a valuable means of 139 

validating boundaries obtained by other means (Taylor et al., 2018; Kelly et al., 2019b).  140 

The prerequisite for all the methods described here is a dataset comprising biological samples 141 

summarised as a metric with each matched to water chemistry (preferably several samples 142 
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aggregated as a mean or median).   Samples in the dataset should be drawn from water bodies of a 143 

similar type so that the response of the biota throughout the dataset is not influenced significantly 144 

by major geological or geographical factors.   Typically, these samples are drawn from separate 145 

water bodies conforming to these properties within a territory, spanning a long gradient that 146 

encompasses the biological boundaries of interest.   In practice, multiple samples from the same 147 

water body but separated temporally, can also be used, though there are risks of pseudoreplication 148 

(Hurlbert, 1984) and spatial autocorrelation (Diniz-Filho et al., 2003; Legendre, 1993) if the ratio of 149 

water bodies to samples is low. An essential feature of the data is that it should span a sufficiently 150 

wide pressure gradient to allow robust characterisation of the ecological response. To achieve this 151 

there may be situations where different types of water body within a country can be merged to 152 

produce larger datasets, or where collaboration with neighbouring countries may be the most 153 

productive option.    154 

The general situation can conveniently be envisaged as a scatter plot between biology (expressed as 155 

an Ecological Quality Ratio, EQR) and nutrient concentrations for similar water bodies, to which a 156 

regression line is fitted (Fig. 1).  The threshold concentration for nutrients to support good status 157 

may be set at the point where the biological threshold intersects the chemistry (Fig. 1a) or at a 158 

position above or below this point (the upper or lower 95% confidence limit, for example). The use 159 

of the upper limit gives a low probability of restoring water bodies back to good status, but 160 

minimises the risk of a water body being wrongly downgraded (i.e. chemical threshold is exceeded 161 

despite biology at good status; Fig 1b). The lower limit is more precautionary, giving a high 162 

probability of restoring water bodies back to good status, but will result in more water bodies being 163 

wrongly downgraded (Fig 1c).  There are, in other words, trade-offs between the “false positives” 164 

and “false negatives” that a particular threshold will produce.   The scale of this problem will 165 

decrease as the predictive power of the regression equation increases, and when pressures other 166 

than nutrients have less influence on biological status (Phillips et al., 2019).  167 
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 168 

Figure 1: Hypothetical relationship between total phosphorus and biological EQR, showing 169 

regression line with confidence intervals (dotted lines). Horizontal line shows the biological 170 

good/moderate threshold (0.7 in this example), vertical lines show intersection with regression line 171 

± confidence intervals marking potential good/moderate threshold values for total phosphorus 172 

using, a) intersection with best fit line, b) upper confidence line, c) lower confidence line. Triangles 173 

mark areas where classification mismatches occur, green (biology Good but phosphorus Moderate) 174 

and yellow (biology Moderate or worse but phosphorus Good) using three different approaches to 175 

interpretation. 176 

 177 

The situation shown in Fig. 1 is typical for the relationship between phytoplankton and total 178 

phosphorus in lakes, where nutrients are typically the principal pressure. By contrast, there is often 179 

much greater scatter in the pressure response relationships in rivers, estuaries and coastal waters 180 

(Salas Herrero et al., 2019).  There are many potential reasons (Page et al., 2012; Harris and 181 

Heathwaite, 2012; O’Hare et al., 2018) including interactions with other stressors (Van den Brink et 182 

al., 2019) or by interactions amongst species (Pérez-Ruzafa et al., 2002).   In such cases, relationships 183 

between nutrient concentration and biological status have a high level of uncertainty. Appropriate 184 

target values therefore become difficult to establish and carry greater risks of false positive or 185 

negative classifications.   186 

Scatter plots often reveal patterns that clearly do not conform to a simple linear relationship. In the 187 

extreme they can show a ‘wedge’-type relationship to which an upper-quantile line can be fitted, 188 

providing an estimate of the highest level of nutrient that is theoretically consistent with good status 189 

(Figure 2a). Such a pattern would be caused where other stressors (e.g. hydromorphological 190 

alteration) are present, depressing ecological status independently of nutrients. An inverted wedge 191 
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(Figure 2b) can also occur where other factors mitigate the effect of nutrient enrichment. In lakes 192 

and coastal waters this might be grazing by zooplankton or zebra mussels (Caraco et al., 2006; ; 193 

Higgins et al., 2011; Pérez-Ruzafa et al., 2002); in rivers and estuaries it might be shade or flow 194 

reducing primary production, or the toxic effects of herbicides (e.g. Polazzo & Rico, 2021) or metals. 195 

In this case a lower quantile line could be fitted and used to generate a target concentration derived 196 

from the lowest concentration of nutrient associated with good status.  197 

There is an ongoing debate on how to set nutrient targets when other stressors are present and 198 

definitive guidance cannot yet be offered.  In the meantime, Feld et al. (2016) provide a toolkit for 199 

investigating the role of multiple stressors whilst Phillips et al. (2019) use synthetic datasets to 200 

examine the extent to which interactions amongst stressors might affect relationships.   The 201 

complexity of multiple stressor interactions has also raised interest in the use of more sophisticated 202 

approaches such as null models that consider underlying mechanistic assumptions for better 203 

predicting multi-stressor effects at different organisational levels from individual to communities 204 

(e.g. Schäfer and Piggott, 2018). More recently, a general framework to aid identification and 205 

assessment of the interactive effects of multiple stressors on aquatic ecosystems (Van der Brink et 206 

al. 2019) was tested in anthropogenic influenced environments such as ditches (Bracewell et al., 207 

2019), floodplains (Monk et al., 2019) and estuaries (O’Brien et al., 2019). 208 

 209 

Figure 2: Hypothetical relationship between total phosphorus and biological EQR where multiple 210 

pressures occur. a) Regression of an upper quantile (e.g. 95th percentile); b) regression of a lower 211 

quantile (e.g. 5th percentile). Horizontal lines show the biological good/moderate threshold, 212 

vertical lines show intersection with line marking potential good/moderate threshold values for 213 

total phosphorus. 214 
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 215 

Preliminary visualisation and overview of method selection  216 

The first step of any process of developing nutrient thresholds is visualisation of the data.  217 

Preliminary data visualisation does not need any complicated software – basic functions in Excel may 218 

suffice – but it provides the insights into the distribution of data along the gradient of interest that 219 

will guide subsequent method selection (Zuur et al. 2010).   This visualisation will also reveal 220 

whether or not transformation of axes is necessary to ensure linearity, and the extent to which 221 

heteroscedasticity is an issue that will complicate analyses (see above).   Some curvature may 222 

remain even after axes have been transformed, in which case visualisation will help to identify the 223 

linear range (but see below for statistical approaches for identifying “breakpoints”).  All methods 224 

described in this paper have advantages and disadvantages, depending on circumstances and the 225 

most appropriate method for any situation is summarised in Figure 3.  Application of causal analysis 226 

principles (Grace & Irvine 2019) may also be helpful.  We recommend, however, that as many 227 

approaches as possible are applied to the data and results evaluated with an awareness of the 228 

statistical properties of the dataset prior to selecting a regulatory threshold.   For example, a dataset 229 

for which type II regression is a suitable approach could also be analysed using categorical methods.  230 

Each will generate a different threshold but together, and when combined with knowledge of the 231 

water bodies under examination, as well as local regulatory needs, will give a more nuanced insight 232 

into the most appropriate threshold.   233 
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 234 

Figure 3.  A flow-chart to select the most appropriate method in the toolkit for situations where 235 

nutrient thresholds need to be established. 236 
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Statistical approaches to establishing thresholds 237 

Linear regression  238 

Where there is a strong relationship between biology and nutrients, fitting regression models to data 239 

that span the pressure gradient is recommended.  These models assume a linear response between 240 

variables which can often be achieved by log transformation of nutrient concentration data. Even 241 

after this, however, visual inspection may reveal nonlinearity, often with sigmoid responses (i.e. with 242 

regions at the extremes of the distribution, where there is little response of the biology to changed 243 

nutrient concentrations). Preliminary visualisation of the data using generalized additive modelling, 244 

followed by segmented regression (Muggeo, 2021) to identify breakpoints is recommended.  245 

Thresholds of interest need to be within the linear portion of the graph if linear regression is to be 246 

effective. 247 

It is also important that there is not a high proportion of ‘less than’ values in the stressor data set 248 

(due to limits of detection) as these constitute ‘censored’ data which incorrectly ‘anchor’ regression 249 

relationships and exert undue influence on the modelled gradient (Helsel, 2010). Where this is the 250 

case specialist advice should be obtained. As the WFD requires status to be expressed as an EQR on 251 

a 0-1 scale, it is also common practice for values that are >1.0 to be rounded down (“capped”) to 1.0.   252 

This, too, is a form of censoring that can distort natural gradients, introducing curvature and 253 

increasing uncertainty.   Wherever possible, we recommend the use of uncapped data and, where 254 

this is not possible, alternative approaches such as generalized linear models with logit link 255 

functions, or binomial regression should be considered 256 

Ordinary least squares (OLS) regression models establish a relationship between nutrients and 257 

biological status by minimising the variation in the dependent variable whilst assuming no error in 258 

the predictor variable. When using such models to establish nutrient thresholds changing nutrient 259 

concentrations are assumed to influence ecological condition, suggesting that the former is the 260 

independent variable whilst the latter is dependent.  However, for this particular purpose we are 261 

inferring the chemical concentration at a particular point on the biological scale, in effect inverting 262 

this assumption.   Furthermore, nutrient concentrations are also influenced by the biology through 263 

uptake, especially when dissolved inorganic nutrients are used in the regression.  This means that 264 

neither is, strictly, independent of the other.  In practice, however, as neither biological nor chemical 265 

condition is measurable without error, OLS regression will underestimate the true slope of the 266 

relationship (Legendre, 2013) and thus influence the estimation of a nutrient concentration at the 267 

biological threshold.    268 
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The alternative is to use a type II regression (Sokal and Rohlf, 1995), which minimises the variation of 269 

both dependent and independent variables. The disadvantages of a type II regression are that it is 270 

less appropriate where the purpose of the model is to make predictions (Legendre and Legendre, 271 

2012), and, secondly, it is more difficult to interpret uncertainty (Smith, 2009). It is also important to 272 

only apply type II regression to relationships with a strong correlation (r ≥ 0.6; r2 = 0.36) as suggested 273 

by Jolicoeur (1990) as the method will generate a line with a slope significantly different from zero 274 

with random data. It should be noted however, that if the threshold EQR being predicted is close to 275 

the mean EQR of the data, the choice of regression method will have little effect as both type I (i.e. 276 

OLS regression) and type II fitted lines pass through the mean of x and y.  Where r2 values are high 277 

(>0.6) there is little practical difference in the nutrient boundaries resulting from type I or type II, but 278 

for less certain relationships differences are more substantial. 279 

When type II reduced major axis regression was applied to a dataset of macrophyte communities 280 

from streams in NW Europe, predictions of total phosphorus concentrations to support high and 281 

good ecological status using the line of best fit (i.e. Fig. 1a) were 14 and 37 µg L-1 respectively (Fig. 4).   282 

When predictions were based on the upper quartile of residuals, the corresponding figures were 25 283 

µg L-1 for high status and 66 µg L-1 for good status (Poikane et al., 2021).   284 

 285 

 

3 

Figure 4.  Relationship between EQRs for macrophytes and soluble reactive phosphorus for low 286 

alkalinity lowland rivers in NW Europe.  Estimates of threshold concentrations for high/good and 287 

good/moderate status assume EQRs of 0.8 and 0.6 respectively.  Solid line shows type II RMA 288 

regression and dashed lines show upper and lower quartiles of residuals.  Modified  from Poikane 289 

et al. 2021. 290 
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Multivariate regressions 291 

A development from the use of bivariate regressions is the inclusion of extra predictor variables into 292 

the models from which thresholds are obtained. These could include variables that account for 293 

natural variability of the dependent ecological variable, such as alkalinity and altitude, in order to 294 

increase precision. This approach can also bypass the need for artificial divisions of water bodies into 295 

“types”.   296 

This does not necessarily require multivariate modelling if such variables can be combined within a 297 

single index value.  In the United Kingdom, for example, river phosphorus standards are based on 298 

models which use the alkalinity and altitude of the site, along with the biological EQR (macrophytes 299 

and phytobenthos combined, in this case) to set standards (UK TAG, 2014). 300 

The first step in deriving these phosphorus standards was to predict the concentration of 301 

phosphorus expected if a site were at ‘reference condition’ — an estimate of the natural condition 302 

of the site. The prediction used values of alkalinity and altitude to represent key geological and 303 

geographic factors that determine a site’s natural phosphorus concentration. The next step was to 304 

calculate the ratio between the estimated ‘natural’ phosphorus concentration and the concentration 305 

actually measured at the site (this is, in effect, a phosphorus ‘EQR’). A regression equation was then 306 

developed to describe the link between the biological data (also expressed as an EQR) and these 307 

phosphorus ratios. Provided a site’s alkalinity and altitude are known, this model, following 308 

rearrangement of the equation, can estimate the likely ranges of phosphorus concentrations for 309 

each status class at any site (Figure 5).  310 

311 
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 312 

 313 

Figure 5.  The relationship between reactive P concentration and EQR (minimum of macrophytes 314 

and phytobenthos) for a typical lowland high alkalinity river in England.   Phosphorus standards 315 

are shown as vertical dotted lines and are set at the midway point of the overlapping error bars 316 

for the five classes (blue = high; green = good; yellow = moderate; orange = poor; red = bad). This 317 

position represents a concentration at which there is equal statistical confidence (P = 0.5) of the 318 

biology being in adjacent classes.  319 

For any site, the phosphorus concentrations at the midpoint of the biological class are calculated 320 

using the following equation: 321 

P concentration = 322 

10^((1.0497 × log10 (EQR) + 1.066) × (log10 (reference condition RP) – log10(3,500)) + log10(3,500)). 323 

where: 324 

EQR = class midpoint ecological quality ratio (minimum of macrophytes and phytobenthos), i.e. 0.9, 325 

0.7, 0.5, 0.3, 0.1 for High, Good, Moderate, Poor and Bad respectively. 326 

Reference condition RP = phosphorus concentration expected at reference condition, calculated as: 327 

Reference condition RP = 10^(0.454 (log10alk) – 0.0018 (altitude) + 0.476) 328 
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where: 329 

Alk = alkalinity (as mg L-1 CaCO3) 330 

Altitude = height above sea level (metres) 331 

For a hypothetical lowland (28 m above sea level) high alkalinity (2.1 meq L-1) river in the UK, the 332 

midpoint of high status, estimated by this method, is 29 µg L-1, with a likely range of 17 – 48 µg L-1 333 

whilst the midpoint and range of good and moderate status are 50 (30 – 85) µg L-1 and 69 (54 - 85) 334 

µg L-1 respectively moderate status.   These error bars represent the range in the estimates of the 335 

phosphorus concentrations predicted by the regression model.   As the ranges of adjacent status 336 

classes often overlap it is not possible to use these to set thresholds.   Instead, the recommended 337 

phosphorus standards are set at the midway point of the overlapping error bars since this position 338 

represents a concentration at which there is equal statistical confidence (P = 0.5) of the biology 339 

being in adjacent classes.  340 

A benefit of the approach described here is that it does not rely on dividing rivers into “types”. By 341 

using the alkalinity and altitude of the site concerned, the method derives phosphorus standards 342 

that are, in principle, specific to each point in a river. In contrast, most of the other approaches 343 

specify a single threshold applicable to the continuum of waters within a type, which could vary 344 

widely depending on how types are defined. By working with EQRs for both biology and nutrients 345 

this approach also has the advantage of extending the available gradient lengths for both stressor 346 

and response beyond what is likely to be available within individual river types. On the other hand, 347 

care is needed when applying such models in regions where calcium carbonate or related materials 348 

(‘lime’) are applied to agricultural land (or to mitigate acidification in low alkalinity rivers), as this 349 

may raise the alkalinity of the receiving water and indirectly influence the phosphorus target (Tappin 350 

et al., 2018). In theory, the natural alkalinity of a river could be modelled from underlying geology 351 

but this has not yet been incorporated into this assessment scheme, and would, in itself, be prone to 352 

uncertainty.  353 

Multivariate modelling can also include additional pressure variables. For example, Poikane et al. 354 

(2019b) used models that included both TP and TN to derive nutrient threshold values for lakes 355 

based on their relationships with macrophytes. These models had higher precision and thus greater 356 

confidence in the resulting threshold values. Multivariate models have the potential disadvantage 357 

that they generate an unlimited range of potential pairs of threshold values which can complicate 358 

their use for management. However, Poikane et al. (2019b) provided a solution by determining the 359 
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threshold for the most likely TP:TN ratio using a bivariate plot overlain by the good/moderate 360 

threshold EQR value expressed as a contour (Figure 6).  361 

 362 

Figure 6. Relationship between mean TP and TN in high alkalinity very shallow lakes (L-CB2). 363 

Dotted lines show contours of predicted TN and TP concentration when macrophyte EQR is at a) 364 

high/good and b) good/moderate threshold (±25th & 75th residuals of prediction). Horizontal and 365 

vertical lines show intersection with RMA regression of observed TP and TN showing threshold 366 

concentrations for good status. 367 

Binomial regression 368 

In practice, ecological status assessment collapses the EQR, a continuous variable, into five 369 

ecological status classes and it is also possible to derive nutrient thresholds directly from these.   370 

Binomial logistic regression offers a method for fitting a logistic model to categorical data using a 371 

binary response, either side of the threshold of interest (e.g. “moderate or worse” = 1 and “good or 372 

better” = 0). This approach has the advantage of being applicable in situations where the 373 

relationship between nutrients and biology is weak and is less sensitive to the position of the data 374 

cloud relative to the threshold of interest.  It also overcomes the limitations of EQR values capped at 375 

an upper value of 1.0. The quality of the statistical model can be tested using a variety of methods 376 

and binomial regression can be combined with other approaches.   For example, it could be applied 377 

after linear regression, to determine the probability that predicted nutrient concentrations will 378 

protect ecological status. Furthermore, logistic regression could also be applied for risk assessment 379 

of management practices, while allowing the effect of nutrient reduction targets proposed by 380 

authorities in relation to Ecological Status classification to be tested. 381 
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Results obtained using simulated data (Phillips et al., 2019) suggest it is likely to be the best 382 

alternative to linear regression models, provided that other stressors are not also influencing 383 

biological status.  The resulting model can however also be used to determine threshold values at 384 

different levels of probability of being ‘moderate or worse’, providing an adequate alternative when 385 

the size of classes (i.e. “biology good or better” vs. “biology moderate or worse”) is not balanced and 386 

when there are multiple pressures or unaccounted environmental factors (see Wallace et al., 2011).   387 

Bivariate regression was not appropriate for deriving thresholds for dissolved inorganic nitrogen 388 

(DIN) using phytoplankton in estuaries (“transitional waters”) from five EU Member States (ES, IE, 389 

NL, PT, UK) bordering the North East Atlantic due to the weak relationship between biology and 390 

chemistry (r2 = 0.22).  Instead, binomial regression gave estimated threshold concentrations with a 391 

50% probability of being in either category were 44 µM for high/good status and 80 µM for 392 

good/moderate status (Fig. 7). These estimates are equivalent to the “line of best fit” in a bivariate 393 

regression (i.e. Fig. 1a) and, by adjusting the probability it is also possible to estimate precautionary 394 

boundaries (20 and 32 µM respectively) and non-precautionary boundaries (102 and 196 µM 395 

respectively).   Once again, interactions from other stressors is a key consideration when deciding 396 

whether this method is appropriate (Phillips et al., 2019). 397 

a. b. 

 398 

Figure 7. Binomial logistic regression showing the probability of ecological status being a. “good or 399 

lower status” and b) “moderate or lower status” for phytoplankton in estuaries (“transitional 400 

waters”) in five countries bordering the NE Atlantic.   Lines show potential threshold values for DIN 401 

at different probabilities of being in good or worse status and moderate or worse. Modified from 402 

Salas-Herrero et al. (2019).  403 



18 
 

Other categorical methods  404 

Another approach is simply to set a nutrient threshold that minimises the mismatch between 405 

ecological status and the supporting element (Figure 8a).   Use of bootstrap sampling and a LOESS 406 

curve fit make the approach more robust and testing using synthetic data has shown that it is more 407 

sensitive to data uncertainty than logistic regression (Phillips et al., 2019) and requires a relatively 408 

large data set.  This approach is conceptually similar to the conditional probability approach which 409 

uses non-parametric deviance reduction in order to determine the change point (Paul and 410 

McDonald, 2005). 411 

 412 

Figure 8:  Minimisation of mis-match between nutrient and biology for H/G  and G/M boundaries 413 

respectively as a means of setting nutrient boundaries, based on the European very large river 414 

dataset (Kelly et al., 2019a).  The y axis shows the percentage of misclassified records when 415 

biological and nutrient classifications are compared, vertical lines mark the range of crossover 416 

points where the misclassification is minimised, together with the mean nutrient concentration, 417 

after bootstrap iterations (each line indicates a sub-sample of the data set selected at random). 418 

 419 

Categorical methods, in other words, are a valid option in situations where there are well defined 420 

states that need to be protected but there are few heavily impacted sites with which to ‘anchor’ a 421 

regression model. However, the precision of estimates will not be any greater when the relationship 422 

is very noisy than would be the case if a regression was used. The categorical approach is similar to a 423 

type 1 regression of nutrients on biology, because it assumes that all the uncertainty is in nutrients 424 
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and that biology is the (error-free) ‘predictor’. Problems will also arise if there are few water bodies 425 

in each category or if there are missing categories.     426 

Decision trees 427 

Decision tree methods such as classification and regression trees can also be used as alternatives to 428 

logistic regression. These work by iteratively splitting the data into distinct subsets, with the splits 429 

chosen in such a way that entropy in the resulting subsets is minimised. Decision tree outputs 430 

typically have high accuracy and stability and should be straightforward to understand even for 431 

people with non-statistical backgrounds. Use of decision trees is also possible in the presence of 432 

multiple stressors and they can be used to model complex datasets (Mori et al., 2019).  In contrast to 433 

other modelling approaches such as neural networks, techniques such as classification and 434 

regression trees are able to handle different types of predictor variables and accommodate missing 435 

data and outliers. They can fit complex nonlinear relationships and handle interactions between 436 

predictors (Lemm et al., 2021 ).  437 

In the simplest case, decision trees can generate likely thresholds for a single variable.   Kagalou et 438 

al. (2021) used this approach to derive thresholds for TP  in deep natural lakes in Greece ) were 13 439 

µg L-1 and 49 µg L-1 TP respectively for high and good status (Kagalou et al., 2021).   However, these 440 

methods can also be used for simultaneous generation of thresholds for several variable.  When 441 

used to derive TP and TN in Hungarian lakes, for example (Figure 9; G. Varbiro, unpublished data), 442 

threshold values for high status were TP < 128 µg L-1  and TN < 960  µg L-1  whilst for good  status 443 

these were TP  128 µg L-1  and TN <  1709 µg L-1. The importance of cross-validation to indicate the 444 

size of the tree that is appropriate for the decision to be made increases as the number of variables 445 

increases but is always recommended in order to avoid overfitting (Flach, 2019).    446 

In case of classification and regression trees, the accuracy of the model may be increased by 447 

bootstrapping methods such as fitting multiple trees to minimise the risk of overfitting. Multiple tree 448 

models such as boosted regression trees (Ridgeway, 2006) or random forest methods (Breiman, 449 

2001) increase diversity among the classification trees by resampling the data with replacement, 450 

bootstrapping and random changes in the predictive variable sets over the different tree induction 451 

processes. The validity of the models can be evaluated through the use of misclassification or 452 

confusion matrices which summarizes the performance of the final classifications using metrics such 453 

as accuracy, misclassification rate, null error rate or Cohen's Kappa (Liu et al., 2011).                                           454 
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 455 

Figure 9: a) Classification decision tree of total phosphorus (TP)  on biological classes (High, Good, 456 

Moderate) for phytoplankton in deep natural lakes in Greece (Kagalou et al., 2021). Each node 457 

shows (from left) the predicted class, the predicted probability of each class and the percentage of 458 

observations in the node (High, Good, Moderate). b) Classification decision tree of total 459 

phosphorus(P) and total nitrogen (N) on biological classes (High, Good, Moderate) for 460 

phytoplankton of Hungarian lakes. 461 

Quantile regression 462 

Most of the methods described above are unlikely to yield meaningful precautionary boundaries 463 

when other stressors confound nutrient-biology relationships (Fig. 2; Phillips et al., 2019).  In such 464 

cases the  variance around the mean of the response variable is itself a function of the explanatory 465 

variable, leading to a wedge-shaped distribution. Under these circumstances, quantile regression 466 

may be more appropriate. This is a variant of conventional least squares regression analysis. 467 

Whereas least squares regression aims to predict the mean of the response variable for a given value 468 

of the predictor variable, quantile regression aims to predict different aspects of the statistical 469 

dispersion of points.  470 

Quantile regression can be implemented through packages such as ‘quantreg’ (Koenker, 2016) 471 

within R and the toolkit includes some scripts that could be adapted for other uses. The values 472 

produced by an upper quantile of a relationship between EQR and nutrients will be inherently less 473 

precautionary than those produced by a conventional “line of best fit”.  In effect, an upper quantile 474 

defines the maximum value of a response variable likely at any given value of the explanatory 475 

variable and is useful where one or more additional pressures drive the response variable, overriding 476 

the influence of nutrients to reduce status.  477 
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As a result, the use of quantile regression for setting thresholds needs to be considered with care. A 478 

wedge-shaped distribution might, for example, indicate that nutrients are not the primary factor 479 

influencing the biota for sites included in the data set. This, in turn, might provoke investigations into 480 

the role of other stressors and better regulation of these might need to take priority over nutrient 481 

control (Spears et al., 2021). The upper quantile will, nonetheless, provide a value that can serve as 482 

an interim target, by identifying thresholds above which nutrients are almost certainly driving 483 

ecological status.   In a few cases (e.g. sites of high conservation interest), the use of a lower 484 

quantile, which will produce a precautionary threshold value, may be appropriate. 485 

The confidence with which the slope and intercept of a quantile function can be estimated will 486 

decrease towards the extreme of the distribution, due to a likely variation of the ‘conditional density 487 

of the response’ (Koenker, 2011). The selection of an appropriate quantile for threshold setting is 488 

essentially a value judgement, partially conditioned by dataset size, data distribution, but it should 489 

be based on knowledge of the importance of nutrients versus other pressures and of how their 490 

interactions affect the sensitivity of the BQEs to nutrients.  We suggest that values of the 25th and 491 

75th percentiles are most likely to be appropriate for data with inverted wedge- or wedge-shaped 492 

scatter plots, respectively. Where an upper-quantile approach is used, leading to less precautionary 493 

thresholds, it is particularly important that the threshold is validated by independent evidence 494 

(Phillips et al. 2018). 495 

Data from phytoplankton in estuaries draining into the NE Atlantic has a clear wedge-shape 496 

distribution (Salas-Herrero et al., 2019; Figure 10).   Boundaries obtained using quantile regression 497 

were of a similar order, albeit slightly more lenient, as the upper (less precautionary) ranges 498 

obtained using logistic regression (Fig. 7).  Bear in mind, however, that data from five countries, each 499 

with slightly different approaches to collecting both chemical and biological data, had to be merged 500 

and harmonised in order to obtain a dataset covering a sufficiently large range to permit estimates 501 

to be made, particularly for countries not covering the full gradient of disturbance (e.g. PT, which  502 

only had High status samples). 503 
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 504 

 505 

 506 

Figure 10. Relationship between dissolved inorganic nitrogen (DIN) concentrations (μM) and 507 

normalised phytoplankton EQRs (nEQR) in NE Atlantic estuaries. Observations coloured by WFD 508 

ecological status (High to Bad, n=160) (a.) and quantile regression (Additive Quantile Regression 509 

Smoothing rqss using quantreg; Koenker, 2016) fit of nutrient with nEQR (b.) based on 160 510 

observations from Ireland (IE), Netherlands (NL), Portugal (PT), Spain (SP) and the United Kingdom 511 

(UK).  Horizontal lines indicate nEQR boundaries at H/G and G/M, and vertical lines the nutrient 512 

boundaries, respectively for H/G and G/M, at the 70th quantile. Modified from Salas-Herrero et al. 513 

2019. 514 

Discussion: selecting appropriate threshold values 515 

Setting targets for nutrients (and, indeed, other physico-chemical variables that influence ecological 516 

condition) for aquatic systems is rarely straightforward.  Applying a range of approaches to the same 517 

dataset can result in a wide range of potential threshold values with very different implications for 518 

regulators and, by extension, for the type of developments permitted within river basins, or the 519 

programmes of measures intended to reduce such pressures.   It is important, therefore, that any 520 

exercise to develop nutrient thresholds includes rigorous validation steps to ensure that regulatory 521 

boundaries are robust.  These steps may include checking threshold estimates against values 522 
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published in the literature (including those based on experimental studies) and with boundaries 523 

used by other countries with similar water bodies, as well as examining the condition of other 524 

components of the biota (Piroddi et al., 2021).  The data from which nutrient targets are obtained 525 

often contains considerable uncertainty and heteroscedasticity which confounds attempts to use 526 

simple statistical methods.   Yet, at the same time, the use of nutrient targets is linked to the 527 

regulatory regime within which they operate and, as there are likely to be significant financial 528 

implications, they need to be established using approaches that are not just statistically robust but 529 

which can be readily understood at all levels within organisations (not just by technical specialists) 530 

and by the wider public.  Our discussion is, therefore, framed around four themes: ecology, 531 

statistics, regulation and communication, all of which overlap with each other, and all of which need 532 

to be considered when setting nutrient targets. 533 

Ecological aspects of setting nutrient targets 534 

In many respects, this is the most straightforward aspect of the process: setting nutrient targets 535 

assumes that there is a causal relationship between nutrients and biology, even though 536 

demonstrating this causality in the field may, in practice, be challenging (Poikane et al., 2021).   537 

Whilst this has been demonstrated many times in lakes (e.g. Anonymous, 1982), the story is more 538 

nuanced in other ecosystems where the nutrient signal is likely to be confounded by other pressures 539 

(Matthaei et al., 2010; Piggott et al., 2012, Gameiro and Brotas, 2010; Salas-Herrero et al., 2019; 540 

Polazzo and Rico, 2021) and where retention times are lower.   Our experience is that interactions 541 

from these other stressors frequently complicate the process of setting targets, due to limitations of 542 

predicting the combined effect of stressors (Orr et al., 2020).  Of the techniques included in the 543 

toolkit, quantile regression allows boundaries (albeit non-precautionary) to be set in the face of 544 

additional stressors whilst decision trees and multivariate models also both show potential.   545 

However, it is also likely that solutions to achieve desirable ecological states will have to be worked 546 

out for each water body separately, with outcomes depending upon the “cocktail” of stressors 547 

present and the tractability of each of these to remediation. 548 

Measurements of both the environmental chemistry and the biological communities from which 549 

these targets are derived are, necessarily, greatly simplified expressions of the complex interactions 550 

which occur in reality and, consequently, both prone to uncertainties.   A discussion of chemical 551 

sampling frequencies and design (Kreyling et al., 2018) and appropriate determinands (e.g. Ptacnik 552 

et al., 2010; Poikane et al., 2021) is beyond the scope of this paper although we recognise both as 553 

potentially significant contributors to the overall uncertainty in relationships.   Similarly, biological 554 

communities are collapsed into summary metrics calibrated against principal pressure gradients 555 
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(Borja et al., 2011).  Whilst this is far from ideal from the point of view of understanding ecosystem 556 

dynamics, one positive consequence of the WFD is that these high-level expressions of ecological 557 

health have been subject to intercalibration, to ensure that Member States share a similar level of 558 

ambition towards WFD targets (Birk et al., 2013; Kelly et al., 2014; Lopez y Royo et al., 2011; 559 

Simboura et al., 2008).  It is generally assumed that photosynthetic components of the biota are 560 

used to set nutrient targets although there is no reason why heterotrophic organisms should not 561 

also be used and, indeed, secondary effects of eutrophication such as hypolimnetic deoxygenation 562 

(Winfield et al., 2008) or habitat alteration (Law et al., 2019) can be sensitive indicators of condition. 563 

In addition, there should be reasonable grounds for expecting a causal relationship between 564 

nutrients and biology without significant interference from other stressors.   This means that it can 565 

be assumed that a water body with a biota consistent with elevated nutrient concentrations is, in 566 

theory, capable of being restored back to pre-impact conditions (presumed at or close to the 567 

“natural” state).   All the approaches considered in this paper are, in other words, underpinned by a 568 

“space-for-time” substitution (Pickett, 1988).  The limitations of this with respect to setting nutrient 569 

targets are considered in Taylor et al. (2018); however, we argue that the use of large spatial 570 

datasets does, at least, mean that between-water body variation can be acknowledged in ways that 571 

are not possible using experimental approaches.    572 

A further question that should be asked is whether metrics that are developed as broad indicators of 573 

ecological integrity are appropriate for deriving nutrient standards.  Another recurring theme in this 574 

paper is the importance of acknowledging the role played by other stressors and appreciating the 575 

scale of inherent uncertainty.   Thus, whilst the relationship between nutrients and ecological status 576 

cannot be ignored (as it is the basis by which the overall success of national and regional 577 

management programs will be judged under existing frameworks), there is also a case for developing 578 

alternative metrics focussed on particular stressors.   Leboucher et al. (2020), for example, recognise 579 

the role played by mass effect and dispersal processes on phytobenthos assemblages in rivers and 580 

this raises the possibility that variants of metrics that are capable of filtering out “noise” from such 581 

processes may permit purer insights into biology-nutrient relationships.   582 

Statistical aspects of setting nutrient targets 583 

Much of this paper has addressed the issues around uncertainty in the datasets from which nutrient 584 

targets are derived.   Whilst this uncertainty can be reduced by using adequate data sets (see 585 

General Principles, above) and categorising water bodies into similar types, the complexity of the 586 

ecological interactions involved, coupled with stochastic effects, will always result in a variation in 587 
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biological status (or EQR) at any nutrient concentrations for any water body. This uncertainty can be 588 

broken down into three components: adequate data, statistical approach and model uncertainty. 589 

Adequate data  590 

Methods described in this paper, and in many others that suggest means of setting nutrient targets 591 

(e.g. Dodds et al., 2010; Hausmann et al. 2016; Poikane et al., 2019b) depend upon datasets derived 592 

from sampling that captures the spatial and temporal variability of water bodies of similar types 593 

within a region.  It is possible to use long-term datasets (e.g. HELCOM, 2013); however, our 594 

experience is that there are few locations where appropriate data have been collected in a 595 

consistent manner for long enough for this to represent a viable alternative to approaches based on 596 

spatial datasets.  Similarly, experimental approaches (e.g. Taylor et al., 2018) are also possible but 597 

require considerable investment in resources at a few locations, results of which then have to be 598 

extrapolated to cover all water bodies in a region.   By contrast, spatial datasets allow standards to 599 

be set that take account of the range of variation within a region so long as:   600 

● there is a means of grouping water bodies into ecologically meaningful types such that their 601 

response to nutrients will be similar (Lyche Solheim et al., 2019); 602 

● data capture the full range of spatial and temporal variation, including the part of the 603 

gradient where biology is most sensitive to nutrients; and, 604 

● there are analytical procedures for both explanatory and response variables, with means for 605 

accounting for differences between laboratories (as large datasets invariably involve several 606 

analysts).  In the context of target-setting for the WFD, the use of biological metrics with 607 

harmonised status class boundaries (Birk et al., 2013; Poikane et al., 2015) should mean that 608 

targets represent similar levels of ambition between Member States.  609 

Whilst data that fulfil these criteria should be available from national monitoring programmes, there 610 

will be situations where individual Member States do not have enough data, and collaboration 611 

between countries is necessary (Salas-Herrero et al., 2019).    612 

Choice of statistical approach  613 

Each of the methods described in this paper will differ in suitability depending upon the particular 614 

circumstances associated with each exercise.  For example, type II regression is the preferred 615 

regression model, as it minimises deviations along both EQR and nutrient axis.  Similarly, estimates 616 

derived from categorical methods depend upon factors such as the relative number of water bodies 617 

in each biological class and the width of that class. Thus, these categorical estimates are also 618 
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uncertain, and users need to be sure that their data sets are representative of the regions to which 619 

they will be applied. Uncertainty can be estimated by fitting a binary logistic model, or by the use of 620 

bootstrapping when estimating misclassification rates but results are dependent on the reliability of 621 

the underlying biological status classification. 622 

In view of these factors, we recommend that the flow chart (Figure 3) is followed but, wherever 623 

possible, as many methods as possible are applied to the data and that the predictions (which 624 

represent a range of possible threshold values) are compared. The range in thresholds reflects 625 

differences in concepts and assumptions underpinning the statistical methods used. Data where r2 626 

values are low will have higher uncertainty and some relationships may be so uncertain it is 627 

impossible to make a reliable or useful prediction.  In such cases, the answer may be to return to the 628 

field and gather new – likely different – data and address the problem from a different perspective. 629 

Model uncertainty 630 

Regression models provide the best estimate of the ‘average’ response of water bodies in a data set. 631 

Individual water bodies will fall above or below that line, partly due to data and statistical 632 

uncertainty, but also because of uncertainty inherent in the model itself.   This can be expressed 633 

using the interquartile range of the residuals of the regression models, from which a further range of 634 

threshold values, the ‘possible range’, can be predicted. The magnitude of the possible range 635 

depends on the quality of our conceptual model. For example, in mesotrophic deep lakes 636 

phytoplankton biomass is highly dependent on phosphorus and thus the relationship between 637 

phytoplankton EQR and TP is normally very good (r2 > 0.65: Phillips et al., 2008). Conversely, in rivers 638 

phytobenthos and macrophytes will respond to many other pressures and be subject to other 639 

influences such as grazing, shade or variation in substratum and simple pressure-response models 640 

will result in boundaries with very large uncertainty bands. Until it is possible to improve our 641 

conceptual models to include a mechanistic understanding of multi-stressor effects and develop 642 

statistical models that incorporate a wider range of variables (Schäfer and Piggot, 2018), we need to 643 

recognise and manage this variation when we set threshold values for management. 644 

Regulatory aspects of setting nutrient targets 645 

The uncertainty described above is more than just an interesting ecological and statistical paradox 646 

for academic scientists to unravel at their leisure: it has to work within regulatory structures 647 

governed by national and international legislation.  Those involved in regulation stress clarity and 648 

stability as two key factors that need to be considered: the former gives managers an indication of 649 

the benefits that can be expected when a particular target is applied whilst the latter enables the 650 

likely investment (e.g. in improved wastewater treatment) to be calculated and costed.   Bearing this 651 
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in mind, we recognise three types of ecological target that can be achieved using the approaches 652 

described here, and suggest possible applications of each within the EU:   653 

● Most likely threshold value derived from regression best fit lines (Figure 1a), and the 654 

mismatch approach.   The likelihood of achieving good status with the mean nutrient 655 

concentration as the threshold would be 50 % and there would be a moderate risk of 656 

downgrading a water body despite biology being at good status, when the ‘one out, all out’ 657 

rule is applied. 658 

● Most certain that biology dictates status derived from either an upper quantile of linear 659 

regression residuals (Fig. 1b) or higher probability value of logistic regression. Only 25 % of 660 

water bodies would be classified as not being at good status based on nutrients when their 661 

biological status was good.  However, the benefits of reducing unnecessary downgrades due 662 

to the “one out all out” rule are offset by the low level of precaution in the target.  This 663 

would be a good option if many water bodies in a region were not achieving good status, 664 

and the primary roles of the target are to prioritise water bodies for remediation, and to 665 

establish the importance of nutrients relative to other pressures.   It would, however, not be 666 

a good option if the purpose was to prevent deterioration of water bodies that were already 667 

at good status.  Where multiple stressors are suspected this approach would indicate 668 

nutrient concentration which would be relatively certain of causing a downgrade of 669 

biological status.  Whilst achieving this target should ensure a reduction in secondary effects, 670 

further interventions may be required before good status is achieved.   671 

● Most protective threshold value derived from the lower quantiles of the linear regression 672 

residuals (Figure 1c), a lower quantile of a quantile regression, or a lower probability value 673 

from binary logistic regression should be used.   This ensures that a majority of water bodies 674 

within a type will achieve good status but will result in unnecessary downgrades of status 675 

using the ‘one out all out’ rule, with implications for expenditure on programmes of 676 

measures unless additional safeguards in the decision-making process can be applied. 677 

Communication of nutrient targets  678 

A recurring theme of this paper has been the complex interactions between biology and nutrients 679 

that occur in many natural systems, and the advanced statistical approaches required to deal with 680 

this.   However, these targets then have to be implemented within regulatory regimes, with cost 681 

implications that may run into millions of Euros.  The final element to be considered, therefore, is 682 

the communication of results from those who develop the standards to those who are affected by 683 

their implementation.   Ecological targets may well push the capability of “best available technology” 684 
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as well as testing consumer’s enthusiasm for changes in land-use practices, so those engaged in 685 

setting them should be prepared for their results to face close scrutiny from those responsible for 686 

their implementation. 687 

Our experience is that box and whisker plots and mismatch plots (Figure 8) are the easiest visual 688 

means for explaining nutrient targets.   Scatter plots (Figure 5) are also useful, so long as the 689 

relationship between nutrients and biology is strong enough for the position of the line of best fit 690 

within the data cloud to be obvious to a non-specialist.   Advanced statistical methods such as TITAN 691 

undoubtedly have a role to play in setting nutrient targets (e.g. Roubeix et al., 2016; 2017; 692 

Hausmann et al., 2016) but the output from these methods can be difficult for those without prior 693 

knowledge of the method to interpret.   Whilst we have encouraged the use of binomial logistic 694 

regression for setting standards, interpretation of results produced using unbalanced datasets has 695 

been difficult for those without a strong statistical background.   696 

Once we start to consider the role of multiple stressors the situation becomes considerably more 697 

complex, particularly if multivariate models are used.  Such models typically generate multiple 698 

potential target values contingent on other predictor variables included within the model (Poikane 699 

et al., 2019b) but do not remove the difficulty of communicating targets derived by this method. 700 

Extreme climatic events, such as droughts, floods and strong winds, are expected to exacerbate 701 

nutrient pollution effects by influencing the nutrient load and concentration in aquatic ecosystems 702 

(Wetz and Yoskowitz, 2013; Malta et al. 2017). Nutrient targets set in current conditions must not be 703 

communicated as static thresholds as they might need adjustments in the future in order to reflect 704 

these additional stressors and protect from such, likely to intensify, future scenarios. 705 

Conclusions 706 

Whilst we have dwelt at length on the problems associated with setting nutrient targets, our final 707 

message is one of hope rather than despair.   An appreciation of the uncertainties associated with 708 

spatial datasets, coupled with a willingness to collaborate with neighbours where necessary and an 709 

awareness of how targets will be used should allow plausible estimates to be established for many, if 710 

not most, types of water body.  These can be corroborated by comparison with targets set for similar 711 

water bodies elsewhere (see Tables 4.1 – 1.14 in Phillips et al., 2018) and, in turn, provide a basis for 712 

strategic planning for nutrient management within Member States.   Recognition of the limitations 713 

of these methods, at the same time, sets an agenda for research, firstly to better understand the 714 

interactions between nutrients and other stressors, but also to broaden the toolkit (perhaps looking 715 
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beyond the established suite of ecological metrics) in order to gain better insights into the needs of 716 

individual water bodies. 717 
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