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The surface mucus of fish is a physical and biochemical barrier that plays roles in osmoregulation, chemical 22 

communication, and protection against physical damage (e.g., by abrasion and ultraviolet radiation), 23 

chemical insults (e.g., toxins, heavy metals and irritants) and biological threats (e.g., posed by predators, 24 

parasites and pathogens) (Shephard, 1994; Ellis, 2001; Alvarez-Pellitero, 2008; Esteban, 2012; Dash et al., 25 

2018; Reverter et al., 2018; Kumari et al., 2019). The major structural constituents of fish cutaneous mucus 26 

are mucins (highly glycosylated high molecular weight proteins), in addition to other proteins, carbohydrates, 27 

lipids, nucleic acids, and ions like calcium (Shephard, 1994; Brinchmann, 2016). Cutaneous mucus 28 

composition has been determined to differing extents for various fish, from gilthead sea bream Sparus aurata 29 

(L.) (Pérez-Sánchez et al., 2017) to stingray Hypanus americanus (Hildebrand & Schroeder, 1928) (Coelho et 30 

al., 2019). However, most studies focused on proteinaceous or immune-relevant constituents, while few 31 

studies have characterised the lipid and fatty acid constituents despite influencing mucus properties (Lewis, 32 

1970; Jais et al., 1998; Sato et al., 2008; Rahman et al., 2012; Torrecillas et al., 2019). Earlier studies 33 

determined fatty acids for total lipids only, whilst only Torrecillas et al. (2019) analysed the fatty acids in 34 

neutral and polar lipid fractions separately, meaning there are no reports detailing the fatty acids within 35 

distinct lipid classes of fish skin mucus. Therefore, the aim of this present study was to characterise the fatty 36 

acids and lipid classes of the skin mucus of the key farmed species, Atlantic salmon Salmo salar (L.). 37 

38 

Cutaneous mucus was collected from nine euthanised Atlantic salmon pre-smolts (each ca. 120 g). Each fish 39 

was placed into 10 mL distilled water in a plastic bag and massaged for 2 minutes. Samples were frozen in 40 

sampling pots (-20C, 2 h) and freeze-dried for 72 h. Total lipid was extracted according to Folch et al. (1957). 41 

Briefly, each sample was dissolved in 2 mL 0.88% (w/v) KCl, transferred to 50 mL QuickFit borosilicate glass 42 

test tubes before 16 mL chloroform/methanol (2:1, v/v) was added. Samples were homogenised with an 43 

Ultra-Turrax tissue disruptor (Fisher Scientific, Loughborough, UK) and kept on ice for 1 h, before 2 mL 0.88% 44 

KCl was added and the sample centrifuged (400 ×g, 5 min). The lower layer containing the lipid extract was 45 

dried under oxygen-free nitrogen (OFN) and lipid weight determined gravimetrically following overnight 46 
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desiccation in vacuo. Samples were resuspended in chloroform/methanol (2:1, v/v) containing 0.01% (w/v) 47 

butylated hydroxytoluene (BHT) and stored under OFN at -20°C. 48 

 49 

Lipid class separation was performed by double-development high-performance thin-layer chromatography 50 

(HPTLC) using methyl acetate/isopropanol/chloroform/methanol/0.25% KCl (25:25:25:10:9, v/v) and 51 

isohexane/diethyl ether/acetic acid (85:15:1, v/v) as first and second development systems, respectively 52 

(Henderson and Tocher, 1992). Total lipids (1020 µg) were applied to HPTLC plates (Merck KGaA, Darmstadt, 53 

Germany) and run to half and full distance using first and second development systems, respectively. Plates 54 

were sprayed with 3% (w/v) aqueous cupric acetate containing 8% (v/v) phosphoric acid, before charring 55 

(160°C, 15 min). Quantification was by densitometry using a CAMAG-3 TLC scanner (Version Firmware 56 

1.14.16; CAMAG, Muttenz, Switzerland) with winCATS Planar Chromatography Manager, with classes 57 

identified by comparison to standards. 58 

    59 

Fatty acid methyl esters (FAME) of total lipid extracts were prepared by acid-catalysed transesterification 60 

(50°C, 16 h) using 2 mL of 1% (v/v) sulphuric acid (95% Aristar®; VWR Chemicals, Poole, UK) in methanol and 61 

1 mL toluene (Christie, 1993). FAME were extracted and purified according to Tocher and Harvie (1988). To 62 

determine the FAME in phosphatidylcholine and free fatty acid classes, total lipid extracts were combined 63 

and prepared by TLC (fatty acids in other classes were not determined due to insufficient material). Briefly, 64 

total lipid (24 mg) was applied to silica gel sixty plates (Merck KGaA, Darmstadt, Germany) and developed 65 

to full distance as above. Lipid classes were visualised by spraying with 0.1% (w/v) 2-7-dichlorofluroescin in 66 

97% aqueous methanol (v/v) and viewed under ultraviolet light at 240 nm (UVP® Mineralight® R-52G; UVP 67 

Inc. USA, California, USA). Lipid classes were scraped into separate 15 mL QuickFit tubes before acid-68 

catalysed transesterification as above. The reaction was stopped with 2% (w/v) potassium bicarbonate in 69 

purified water and each sample was washed twice with isohexane/diethyl ether (1:1) + 0.01% BHT. The upper 70 

layers from both washes were combined and dried under OFN before re-dissolving in isohexane.  71 

 72 
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FAME were separated and quantified by gas-liquid chromatography (GLC) using a Fisons GC-8160 (Thermo 73 

Scientific, Milan, Italy) equipped with a 30 m × 0.32 mm i.d. × 0.25 µm ZB-wax column (Phenomenex, 74 

Cheshire, UK), ‘on column’ injection, flame ionisation detection and hydrogen as carrier gas. The oven started 75 

at 50°C and increased to 150°C at 40°C/min before reaching 230°C at 2°C/min. FAME were identified by 76 

comparison to standards and data were processed with Chromcard for Windows (version 1.19; Thermoquest 77 

Italia S.p.A, Milan, Italy). 78 

 79 

The nine Atlantic salmon skin mucus samples were comprised mostly of neutral lipids (63.5±2.9%, mean ± 80 

standard deviation) (Table 1), which is consistent with cutaneous mucus collected from gilthead sea bream 81 

where neutral lipids accounted for 53.260.0% of total lipids (Torrecillas et al., 2019). Cholesterol/sterols 82 

made up the greatest proportion of the lipid classes (24.7±1.7% of total lipids; Table 1), which is not 83 

unexpected because these molecules are major components of eukaryotic cell membranes and dead host 84 

cells contribute to mucus composition (Brinchmann, 2016). Meanwhile, phosphatidylcholine predominated 85 

the polar lipids (15.9±2.6%), with phospholipids collectively composing around 30.1% of total lipids (Table 1). 86 

By comparison, Lewis (1970) reported phospholipids in skin mucus from flathead grey mullet Mugil cephalus 87 

(L.), marine catfish Plotosus lineatus (Thunberg, 1787) and dusky flathead Platycephalus fuscus (Cuvier, 1829) 88 

to contribute 36.1, 48.8 and 62.4% of total lipids, respectively.  89 

 90 

The fatty acid profile of total lipid in the salmon mucus consisted saturated (SFA; 38.63±3.84% of total fatty 91 

acids), monounsaturated (MUFA; 28.49±1.07%) and polyunsaturated (PUFA; 32.88±4.48%) fatty acids (Table 92 

2). The most abundant fatty acid in the skin mucus was palmitic acid (C16:0; 21.80±1.71%), followed by 93 

docosahexaenoic acid (DHA, C22:6n-3; 16.99±3.16%), oleic acid (C18:1n-9; 14.19±1.55%), stearic acid (C18:0; 94 

7.63±0.81%) and eicosapentaenoic acid (EPA, C20:5n-3; 6.41±1.25%). Other fatty acids were at <5% 95 

abundance (Table 2) and variations between samples from the nine individuals in the same tank were 96 

relatively low. Comparison of the fatty acids in the total lipids of the salmon samples to similar studies is 97 

complicated by the influence of intrinsic and extrinsic factors, which affect the composition of the mucus, 98 
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such as diet (van der Marel et al., 2010; Jung et al., 2012; Ekman et al., 2015; Torrecillas et al., 2019; 99 

Benktander et al., 2020). Nevertheless, the most abundant fatty acid constituents of cutaneous mucus of fish 100 

in earlier reports are C18:1n-9, C16:0 and C18:0, which is consistent with this present study (Table 3). 101 

 102 

The phosphatidylcholine fraction of the salmon skin mucus was composed largely of PUFA (36.11%), followed 103 

by SFA (33.63%) and MUFA (30.26%) (Table 2), with the most abundant fatty acids being C16:0 (25.9%), DHA 104 

(19.05%), C18:1n-9 (14.36%), EPA (8.81%) and palmitoleic acid (C16:1n-7; 6.05%); other fatty acids were at 105 

<5% abundance (Table 2). Free fatty acids were the third most abundant lipid class in the salmon mucus 106 

(14.6±2.5%), followed by the wax/sterol esters (12.6±2.1%), triglycerides (7.0±2.2%), and pigmented material 107 

(6.4±1.4%); other lipid classes were detected at <5% of total lipids (Table 1). This relative abundance of free 108 

fatty acids in the salmon mucus concurs with Lewis (1970), where these constituted 9.823.1% in cutaneous 109 

mucus from three fish species. In this present study, the fatty acid profile of the free fatty acids consisted SFA 110 

(47.28%), MUFA (28.80%) and PUFA (23.93%), with the most abundant fatty acids being C16:0 (27.87%), 111 

C18:1n-9 (14.74%), C18:0 (13.23%), DHA (9.33%) and EPA (5.35%) (Table 2). Free fatty acids are antimicrobial 112 

and therefore may explain some of the antimicrobial and anti-parasitic properties of fish cutaneous mucus 113 

(Lewis, 1970; Hellio et al., 2002; Alvarez-Pellitero, 2008; Desbois and Smith, 2010; Fuochi et al., 2017; Kumari 114 

et al., 2019). However, interestingly, the most abundant fatty acids in the free fatty acids of the salmon mucus 115 

have only modest antimicrobial activity, whilst typically more potent PUFA, like DHA and EPA, were present 116 

at lower abundance. Still, PUFA may be present at concentrations sufficient to exert meaningful biological 117 

activities, especially if synergy with other antimicrobial compounds like antimicrobial peptides or histone 118 

fragments is considered (Lee et al., 2009; Martinez et al., 2009; Desbois and Lawlor, 2013; Desbois, 2013). 119 

Nevertheless, some fish pathogens are attracted to the lipid components of mucus (O’Toole et al., 1999; 120 

Klesius et al., 2008), may adhere to this fluid and its constituents (Magarinos et al., 1995; Padra et al., 2019), 121 

and use mucus as a source of nutrients (Guardiola et al., 2014; Shoemaker and LaFrentz, 2015; Shoemaker 122 

et al., 2018; Minniti et al., 2019) 123 

 124 
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Lipids influence mucus viscosity and the absolute and relative abundances of lipids (and their fatty acid 125 

constituents) affect this and other physical traits, including elasticity, wettability and adhesiveness (Murty, 126 

1984). Increased cholesterol is associated with greater viscosity (Galabert et al., 1987), whilst sphingomyelin, 127 

phosphatidylserine and phosphatidylinositol are linked to greater rigidity (Girod et al., 1992). Consequently, 128 

the lipids in the cutaneous mucus will influence its rigidity, accumulation or dispersal from the surface, and 129 

thus the protective potential against pathogens and parasites (Lewis, 1970). Few studies have examined the 130 

viscosity of fish-derived mucus (Roberts and Powell 2005; Nordgård et al., 2015) and determination of this 131 

and other physical characteristics was beyond the scope of this present study. As such, much still remains to 132 

be discovered regarding the influence of the lipids on mucus properties. Recent studies reporting 133 

comprehensive characterisation of fish mucus by sophisticated mass spectrometric techniques (Ivanova et 134 

al., 2018; Patel et al., 2020) offer an attractive approach to enhance our understanding for the role of lipids 135 

in this fluid especially when performed alongside assays of physical and biological properties. 136 

 137 

To conclude, the lipid components of the cutaneous mucus of fish have received little attention and this is 138 

the first study to determine the lipid classes in samples from Atlantic salmon. In addition, the fatty acid 139 

profiles of total lipid, and free fatty acid and phosphatidylcholine fractions, were determined. 140 

Characterisation of the lipid contents of mucus is a first step to understanding the influence that these 141 

components exert on the physical and biological properties of this fluid and thus its importance to the fish. 142 

In turn, this new knowledge may allow for the mucus contents to be manipulated to augment functions, in 143 

particular to protect against biological threats posed by pathogens and parasites.  144 
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Table 1 – Lipid class composition (% of total lipid) of total lipid extracted from skin mucus samples collected 311 

from Atlantic salmon pre-smolts (n=9). SD, standard deviation. 312 

 313 

   

Lipid class Mean (%) ±SD Range (%) 

   
   

Wax/Sterol esters 12.6 ±2.1 (9.614.5) 

Triacylglycerols 7.0 ±2.2 (4.410.7) 

Free fatty acids 14.6 ±2.5 (9.618.6) 

Cholesterol/sterols 24.7 ±1.7 (22.326.9) 

Diacylglycerol 4.7 ±1.0 (3.56.1) 

Total neutral lipids 63.5 ±2.9 (59.567.8) 

   
Phosphatidylethanolamine 3.6 ±0.9 (2.45.3) 

Phosphatidic acid/Phosphatidylglycerol/cardiolipin 0.0 ±0.0 N/A 

Phosphatidylinositol 4.1 ±0.9 (2.75.4) 

Phosphatidylserine 3.2 ±0.6 (2.34.0) 

Phosphatidylcholine 15.9 ±2.6 (11.317.8) 

Sphingomyelin 2.5 ±0.2 (2.22.6) 

Lysophosphatidylcholine 0.8 ±0.3 (0.41.2) 

Pigmented material 6.4 ±1.4 (4.68.2) 

Total polar lipids 36.5 ±2.9 (32.240.5) 

   

 314 

  315 
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Table 2 – Fatty acid profiles (% total fatty acids) from total lipid, and the free fatty acids and 316 

phosphatidylcholine fractions extracted from skin mucus samples collected from Atlantic salmon pre-smolts  317 

(n=9 for total lipids; n=1 for free fatty acids and phosphatidylcholine fractions). PUFA, polyunsaturated fatty 318 

acids; SD, standard deviation. 319 

 320 

     
Fatty acid Total lipids Free fatty acids Phosphatidylcholine 

 Mean (%) ±SD Range (%) Mean (%) Mean (%) 

     
     

14:0 2.89 ±0.33 3.512.39 2.16 3.19 

15:0 0.98 ±0.25 1.410.73 1.27 0.71 

16:0 21.80 ±1.71 19.9524.98 27.79 25.99 

17:0 4.23 ±0.85 2.685.58 1.32 1.22 

18:0 7.63 ±0.81 6.528.98 13.23 2.34 

20:0 0.30 ±0.10 0.180.51 0.55 0.11 

22:0 0.47 ±0.16 0.300.74 0.69 0.00 

24:0 0.34 ±0.12 0.220.56 0.26 0.07 

Total saturated 38.63 ±3.84 33.3444.31 47.28 33.63 

     
16:1n-9 3.63 ±0.48 3.094.44 2.74 4.32 

16:1n-7 3.38 ±0.61 2.144.34 3.41 6.05 

17:1 0.51 ±0.21 0.270.81 0.79 0.55 

18:1n-9 14.19 ±1.55 13.0518.04 14.74 14.36 

18:1n-7 2.09 ±0.28 1.692.47 2.93 1.88 

20:1n-11 0.16 ±0.03 0.100.20 0.16 0.13 

20:1n-9 1.54 ±0.24 1.171.90 2.11 1.08 

20:1n-7 0.61 ±0.16 0.320.78 0.90 0.68 

22:1n-11 0.43 ±0.12 0.300.62 0.29 0.13 

22:1n-9 0.64 ±0.11 0.450.78 0.37 0.08 

24:1n-9 1.32 ±0.47 0.551.83 0.35 1.00 

Total monounsaturated 28.49 ±1.07 27.0430.89 28.80 30.26 

     
18:2n-6 2.49 ±0.39 2.023.33 2.39 2.32 

18:3n-6 0.00 ±0.00 N/A 0.17 0.05 

20:2n-6 0.44 ±0.11 0.320.64 0.40 0.41 

20:3n-6 0.22 ±0.09 0.000.31 0.23 0.27 

20:4n-6 3.24 ±0.65 2.234.01 3.71 2.49 

22:4n-6 0.15 ±0.04 0.090.22 0.14 0.16 

22:5n-6 0.26 ±0.05 0.180.34 0.13 0.50 

Total n-6 PUFA 6.80 ±0.73 5.527.53 7.16 6.20 

     
18:3n-3 0.27 ±0.11 0.170.49 0.29 0.16 
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18:4n-3 0.74 ±0.24 0.451.17 0.34 0.31 

20:4n-3 0.22 ±0.08 0.000.26 0.11 0.26 

20:5n-3 6.41 ±1.25 3.727.97 5.35 8.81 

22:5n-3 1.10 ±0.24 0.651.51 0.78 1.31 

22:6n-3 16.99 ±3.16 10.9019.97 9.33 19.05 

Total n-3 PUFAa 25.73 ±4.25 17.1930.41 16.20 29.91 

     
Other PUFAb 0.35 ±0.47 0.001.30 0.56 0.00 

     
Total PUFA 32.88 ±4.48 24.8137.93 23.93 36.11 

     

 321 

a Includes C20:3n-3 and C21:5n-3; b includes C16:2, C16:3 and C16:4 322 

  323 
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Table 3 – Comparison of most abundant fatty acids in the total lipid extracted from cutaneous mucus of different fish. 324 

 325 

   

Species Most abundant fatty acids in total lipids Reference 

   
   

Haruan (Channa striata Bloch, 1793) C18:2n-6 > C18:1 > C18:0 > C16:0 > C20:4n-6 Jais et al. (1998) 

Amberjack (Seriola dumerili Risso, 

1810) 

C16:0 > C18:1n-9 > C22:1n-9 > C18:0 > C24:1n-9 Sato et al. (2008) 

Spotted halibut (Verasper variegatus 

Temminck & Schlegel, 1846) 

C18:1n-9 > C22:1n-9 > C16:0 > C24:1n-9 > C18:0 Sato et al. 2008 

Bluestreak cleaner wrasse (Labroides 

dimidiatus Valenciennes, 1839) 

C18:2n-6 > C16:0 > C20:1n-11 > C20:0 > C18:1n-9 > C18:2n-6t > C18:3n-6 Rahman et al. (2012)  

Flathead grey mullet (Mugil cephalus 

L.)  

C18:1n-9 > C18:4n-3 > C16:0 > C18:3n-6 > C18:3n-3 > C18:0 Balasubramanian and 

Gunasekaran (2015) 

Gilthead sea bream (Sparus aurata L.) C18:1n-9 > C16:0 > C22:6n-3 > C18:2n-6 Torrecillas et al. (2019) 

Atlantic salmon (Salmo salar L.) C16:0 > C22:6n-3 > C18:1n-9 > C18:0 > C20:5n-3 This study 

   

 326 

 327 


