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Thesis abstract 

A substantial number of studies demonstrate the sensitivity of lakes to climate change 

and show that physical, chemical, and biological lake properties respond rapidly to 

climate-related changes. The indicators include variables such as temperature, dissolved 

organic carbon (DOC) or plankton composition.  

DOC is also known to play a primary role in protecting freshwater organisms from 

exposure to UV radiation and a big fraction of it is typically represented by dissolved 

organic matter (DOM). Moreover, the conservative properties between the coloured 

fraction of DOM (CDOM) and DOC, and the possibility of remotely estimating CDOM 

from space given its optical properties, makes it often used as a proxy for DOC.  

The development and validation of remote-sensing-based approaches for the retrieval 

of CDOM concentrations requires a comprehensive understanding of the sources and 

magnitude of variability in the optical properties of dissolved material within lakes. 

The present study aims to contribute with the knowledge of remote sensing of CDOM 

in inland water bodies with the specific objectives of characterising the link between 

CDOM absorption and DOC content in inland waters, investigating how changes in 

CDOM absorption can be used to infer information on its concentration, sources and 

decomposition and finally, to present an extensive CDOM algorithm validation 

exercise. 

The results of this Thesis indicate that the relationship between CDOM and DOC can 

vary remarkably. Strongest relationships have been found in waters with low 

anthropogenic influence, whereas waters more influenced by human activity present 

less clear linkages between the two parameters. As aromaticity increases in more 

productive waters we can then infer low CDOM to DOC relationships to them. 
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Remote-sensing models for DOC estimation based on the relationship between CDOM 

and DOC should therefore consider local variability and optical complexity, 

considering at least groups of water types according to their absorption features. 

In-lake spatial and seasonal variability in the quantity and quality of CDOM should also 

be taken into account. Photobleaching has been found to be a major factor controlling 

the in-lake transformation and degradation of CDOM, and a key process influencing the 

spatial structure CDOM throughout the system. These results also provide an insight on 

the potential contribution of wetlands to DOM and CDOM in lakes, not only in terms 

of the concentration of CDOM, but also in terms of its seasonality.  

All this leads to understand that CDOM content in complex inland waters usually 

present a wide range given their surrounding terrestrial characteristics and seasonal 

differences. The complexity of inland water bodies is currently a challenge to current 

remote sensing algorithms used to estimate parameters such as CDOM absorption 

(aCDOM). 

The accuracy of remote sensing-based retrievals of aCDOM at 440 nm (aCDOM (440)) can 

improve, mostly by targeting specific OWTs in algorithm development. For 

hypereutrophic waters with cyanobacterial blooms and abundant vegetation Blue-Green 

ratio based algorithms. For moderately productive waters with cyanobacteria presence, 

a double Blue-Green ratio based empirical algorithm is recommended. A double Blue-

Green ratio and a Red-Green ratio for application in clear waters, turbid waters with 

high organic content, high productive waters with high cyanobacteria abundance and 

high reflectance at red/near-infrared spectral region. For waters high in CDOM, 

cyanobacteria presence and high absorption by NAP (Non-Algal Particles), a Green-

Red ratio based algorithm. And finally, a semi analytic algorithm worked best for 

waters with high Rrs at short wavelengths.
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1. CHAPTER 1 – INTRODUCTION 

1.1. Research context 

The Earth’s climate is changing rapidly with impacts on terrestrial and aquatic 

ecosystems (Morel and Prieur, 1977; UNFCC, 1992). In this context, the sensitivity of 

inland waters to climate is being understood as a good indicator of global climate 

change (Carpenter et al., 2007; Pham et al., 2008; Williamson et al., 2008; Tranvik et 

al., 2009; Adrian et al., 2009).  

Lakes constitute a significant component of the global carbon cycle (Tranvik et al., 

2009) and can affect carbon (C) balances at regional scales (Cole et al., 2007). 

Moreover, they are distributed worldwide, and provide indicators directly related with 

response variables such as dissolved organic carbon (DOC), considered one of the most 

effective indicators of climate change (Adrian et al., 2009). 

DOC is also one of the main attenuating substances in freshwater and coastal marine 

waters absorbing strongly in the UV and shorter visible wavelengths (Häder et al., 

2007) and playing a primary role in protecting freshwater organisms (Schindler and 

Curtis, 1997). However, its full effects in aquatic ecosystems and the origin of those are 

still an issue to address.  

There is a need of a wider spatial and temporal coverage in DOC measurements and the 

assessment of DOC distributions from satellite measurements of the optical properties 

of the coloured part of the dissolved organic matter (CDOM) can be an interesting 

approach. 

This relationship has already worked well (Stedmon et al., 2011; Yamashita et al., 

2011), even though there are exceptions generally related to lakes and lake-influenced 

rivers that show weaker relationships. Moreover, one of the most challenging points of 
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developing remote sensing algorithms for estimation of DOC lays on the fact of its high 

variability. 

The current research focuses on the remote retrieval of CDOM concentration and it was 

undertaken under the auspices of the GloboLakes project. 

1.2. Lakes as sentinels of climate change 

1.2.1. Lakes and climate change 

There is now irrefutable evidence that the Earth’s climate is changing rapidly as a result 

of anthropogenic activity with detrimental impacts on terrestrial and aquatic ecosystems 

(Morel and Prieur, 1977; UNFCC, 1992). Also, the confidence that warming of lakes 

and rivers are occurring in many regions with effects on water quality and composition 

is high (IPCC, 2007). Inland waters provide many ecosystem services to both humans 

and wildlife such as water for drinking, bathing, recreation, and commercial and 

industrial use (Williamson et al., 2008); so increased temperatures will consequently 

affect human society and ecosystems (McCarthy, 2001) which makes it a particularly 

important field of study. 

A substantial number of studies demonstrate the sensitivity of lakes to climate and 

shows that physical, chemical, and biological lake properties respond rapidly to 

climate-related changes (ACIA, 2004; Rosenzweig et al., 2008). Thereby, lakes could 

be understood as good sentinels of global climate change (Carpenter et al., 2007; Pham 

et al., 2008; Williamson et al., 2008; Tranvik et al., 2009; Adrian et al., 2009). They 

provide indicators which can measure response variables (water temperature, dissolved 

organic carbon [DOC], or plankton composition), they are distributed worldwide, 

integrate responses over time, respond directly to climate change and also incorporate 

the effects of climate driven changes occurring within the catchment (Adrian et al., 
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2009). Moreover, inland waters are not only sentinels and integrators of terrestrial 

process but also of atmospheric processes (Williamson et al., 2008) and when properly 

interpreted can give us abundant information about the effect of climate change on 

water resources (Williamson et al., 2008). 

1.2.2. Global budget of carbon in lakes 

The force of gravity links terrestrial ecosystems with coastal oceans through the 

biogeochemistry of inland waters. Elements move over time from mountains to sea 

through the river network and during this transport, elements can be buried in 

sediments, assimilated into the tissues of living organisms or exported in form of gas, 

avoiding or delaying their downstream transport. 

Carbon in the biosphere has been generally understood as distributed among three 

major reservoirs: land, ocean and atmosphere (Bolin, 1981; IPCC, 2001), being the role 

of inland waters often not taken into account and when acknowledged, only as mere 

conveyors of carbon (C) through the riverine pipe. However, many inland 

water ecosystems depend on terrestrial carbon inputs to sustain their biological energy 

demands, making them important players in global biogeochemical cycles as storage, 

exchange with the atmosphere and transport to the ocean (Cole et al., 2007b). Inland 

water bodies constitute a significant component of the global carbon cycle (Tranvik et 

al., 2009) and although their area is small, these systems can affect C balances at 

regional scales (Cole et al., 2007).  

The largest pool of organic carbon (OC) in a lake is DOC, while particulate organic 

carbon (POC) is the dominant form of OC in sediments (Cole et al., 2007; Dean and 

Gorham, 1998).  
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Carbon storage rates in lakes commonly increase with lake productivity and are 

inversely proportional to lake size (Kortelainen et al., 2004; Mulholland and Elwood, 

1982). Because they are subsidized by terrestrial inputs, aquatic systems can 

simultaneously be net accumulators of sedimentary organic matter and net sources of 

carbon dioxide (CO2) to the atmosphere (Cole et al., 2007) (Figure 1-1). Fluvial and 

ground water exports of C may be affected by climate change-induced changes in 

hydrology, as well as indirectly by the anthropogenic rise in atmospheric carbon 

dioxide (CO2; Cole et al., 2007). 

 

Figure 1-1 Modified from Cole et al. 2007. Inland waters are active components of the global C cycle. 

They store terrestrially-derived carbon in sediments and lose CO2 in emissions to the atmosphere in 

addition to transporting it to the ocean. 

Dissolved Inorganic Carbon (DIC) and DOC are the predominant carbon inputs to most 

lakes, followed by POC and particulate inorganic carbon (PIC). Given that 90–95% of 

the total organic carbon (TOC) in lakes consists of DOC (Wetzel, 2001), it is 

considered one of the most effective indicators of climate change (Adrian et al., 2009) 

and its concentrations may be particularly appropriate for detecting changes within the 

terrestrial environment (Tranvik et al., 2009). 
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To understand how terrestrial and aquatic sources of organic carbon interact to 

determine fates of organic carbon in a lake, Figure 1-2 depicts a modified version of 

Hanson et al. (2004) which shows an idealized lake situated in a forested landscape. 

Where (1) represents a positive net of primary production in the surrounding terrestrial 

systems and implies an accumulation of biomass; (2) represents the mineralized 

biomass exporting DIC in groundwater and surface water; (3) represents additional 

biomass leached through surface water as DOC or translocated as POC; (4) represents a 

portion of the lake POC that settles to the sediments; (5) the POC in the sediments that 

slowly mineralise and release DIC to the water column; (6) the CO2 partial pressure 

gradient between the lake and the atmosphere driving net atmospheric flux of DIC and 

in (7) all forms of carbon are exported from the lake through surface flow. Although 

this system is rarely analysed in an integrated way, many of the fluxes and 

transformations have been quantified in the bibliography. 

 
Figure 1-2 Diagram of carbon cycling through a landscape with a lake. Modified from Hanson et al. 

2004. 
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1.2.3. Role of DOC in Carbon Cycle 

Photosynthesis is the primary source of energy that supports all aquatic life in a water 

body and phytoplankton fixes atmospheric carbon becoming the base of the aquatic 

food web through the process of photosynthesis. Rates of photosynthesis are dependent 

on the intensity and spectral quality of light, which in an aquatic environment are 

closely related to the optical characteristics of the water and its depth.  

Light availability is strongly influenced by the water itself, the presence of dissolved 

organic matter (DOM) and other attenuating substances. Consequently, a large fraction 

of the light incident at the water surface is attenuated and unavailable for 

photosynthesis 

DOC and POC are the main attenuating substances in freshwater and coastal marine 

waters. Recent models analysing the absorption of the components show that DOC 

absorbs strongly in the UV and shorter visible wavelength (Häder et al., 2007) and its 

concentrations often show a large spatial and temporal variability.  

Recent observations in lakes revealed that a gradual, long-term increase in DOC has 

been taking place in many freshwater systems from mid- to high latitudes of the 

northern hemisphere (Roulet and Moore, 2006; Clark et al., 2010) . This trend has been 

called “brownification” (Kritzberg and Ekström, 2011) and even though there are a 

large number of recent studies approaching the causes of this phenomenon, it currently 

remains poorly understood (Clark et al., 2010). 

Increases in DOC can translate in higher respiration rates (Williamson et al., 1999) 

even though, primary production can diminish as a result of shading (Carpenter et al., 

1998). Moreover, higher concentrations of DOC promote photo-oxidation (Lindell et 

al., 2000) and can, therefore, deplete oxygen (O2) decreasing the water mixing depth in 
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shallow lakes (Fee et al., 1996), diminishing the supply of O2 to deeper layers and 

inducing significand decreases in the biological biodiversity of the ecosystem 

(Townsend et al., 1992) meaning a possible significant decrease of lake productivity.  

Consequences of decreased productivity are a reduced sink capacity for atmospheric 

carbon dioxide and negative effects on species diversity, ecosystem stability, trophic 

interactions and ultimately global biogeochemical cycles (Häder et al., 2007).  

However, the full effects of DOC variations in aquatic ecosystems and the origin of 

these interactions are still a complex issue to address and therefore, the understanding 

of the actual role of DOC in the carbon cycle is currently limited by the very few 

information available, with data often restricted to local-regional observations. The 

need of a wider spatial and temporal coverage in DOC has been usually addressed 

through the assessment of DOC distributions from satellite measurements of the optical 

properties (absorption and fluorescence) of the coloured part of the dissolved organic 

matter (CDOM). 

The relationship between CDOM and DOC has been widely investigated (Ferrari et al., 

1996; Guéguen et al., 2005; Griffin et al., 2018) and, even though strong positive 

correlations have been observed, it varies widely among geographic regions and 

seasons and such variability limits our capability to predict DOC from CDOM 

absorption. The characterisation of the link between CDOM absorption (aCDOM) and 

DOC content within a wide range of inland water bodies is currently needed. 

1.3.Remote sensing of inland water bodies 

The remote estimation of the optical properties of water constituents has been 

historically based on the analysis of Chlorophyll-a (Chl-a) and CDOM (Morel and 

Gordon, 1980; Gordon et al., 1988). The high variability and complex interactions 
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between water constituents in inland waters makes its remote estimation different from 

open ocean waters and has historically made its remote estimation more challenging.  

Nevertheless, remote sensing has now been recognised for long time as having the 

potential to complement conventional approaches to lake monitoring, and Palmer et al. 

(2015) provide with a complete review of history and progress up to 2015. 

Remote sensing of inland waters is based on the optical properties of water constituents 

(Morel, 2001). These properties can be divided in two categories: i) properties that 

depend on the medium and the directional structure of the ambient light field, known as 

apparent optical properties (AOPs), and ii) those which depend only on the medium and 

are independent of the ambient light field, known as inherent optical properties (IOPs). 

1.3.1. Physical principles 

Optical imaging remote sensing sensors collect electromagnetic radiation with 

wavelengths between 400 and 1500 nm. It involves acquisition and analysis of optical 

data in form of electromagnetic radiation captured by the sensor after reflecting off an 

area of interest on ground or water.  The properties of an element depend on the 

material it is made of and its physical and chemical state, the surface roughness as well 

as the angle of the incident sunlight. The way it reflects, absorbs or scatters light varies 

with the wavelength of the incident electromagnetic energy. The amount of reflectance 

form an element can be measured then as a function of this wavelength and this is 

called spectral reflectance of this specific element. It is a measure of how much energy 

an element reflects at a specific wavelength. Many elements reflect different amount of 

energy in different parts of the electromagnetic spectrum, these differences in 

reflectance mae it possible to identify different materials by analysing their spectral 

reflectance signatures. Different water constituents scatter and absorb differently at 
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different wavelengths; thus, the targets can be identified by their spectral signatures in 

the remotely sensed images. 

The optical active water constituents (OACs), include phytoplankton (most commonly 

expressed as the Chl-a concentration), detritus and minerals (collected referred to as 

non-algal particles [NAP]), CDOM and water itself and they all have an impact on the 

optical signature of the water in the visible wavelengths. This makes possible to derive 

from optical remote sensing data, information about the characteristics of the water 

body and the type and concentration of its constituents. 

Remote Sensing of inland water bodies studies the colour of water through the 

observation of water leaving radiance (Lw) spectra to describe its properties from a 

distance without taking water samples.  The development of water remote sensing 

techniques has not only been based on empirical relationships between the spectral 

properties and the quality parameters of the water body. More complex neural network 

and inversion methods have also been applied to estimate inherent optical properties 

(IOPs) (Odermatt et al., 2012). Moreover, Hoogenboom et al. (1998) used matrix 

inversion methods for retrieving Chl-a and suspended matter and Arst and Kutser 

(1994) used a modelling approach for estimating Chl-a, CDOM and suspended matter 

from modelled spectra. 

Water remote sensing instruments allow us to record the colour of a water body which 

provides information on the presence and abundance of OACs. Thus, the value of this 

parameter will change with changes in the IOPs and concentrations of the optically 

active substances in the water.  
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2.2.2.1. IOPs 

The propagation of light within the ocean is described by a radiative transfer equation 

(RTE). The most common form of RTE describes the change of radiance with depth, 

which is caused by scattering and absorption of light by seawater. In addition to the 

OACs, the water-leaving radiative signal can also be influenced by gas bubbles, foam 

and white caps and other organisms such as zooplankton. IOPs (Figure 1-3) describe 

water and the substances in it, independent of sunlight and other ambient sources.  

IOPs depend only on the water and other substances that are dissolved or suspended in 

it (as distinguished from AOPs). The two fundamental IOPs are: 

 Absorption (a) 

 Scattering (b) 

Others commonly derived from these include: 

 Total scattering coefficient (b) 

 Backscattering coefficient (bb) 

 Beam attenuation coefficient (c = a + b) 

Fluorescence may be considered an IOP although it is usually treated separately from 

the previous ones. 

http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3045.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3299.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3027.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/17895.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3025.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3225.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3299.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/17895.htm
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3055.htm
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Figure 1-3 Scheme of how Inherent Optical Properties (IOP’s) affect to signals received by remote 

sensing sensors 

Instruments for IOP measurement provide their own carefully controlled illumination 

and are designed to reject the effects of ambient light.  In contrast, AOPs are typically 

derived from measurements of ambient light. 

2.2.2.2. AOPs 

AOPs are those that depend both on IOPs and on the light field in which they are 

measured. The most widely-used AOP is water remote sensing reflectance (Rrs). Rrs is 

defined as the ratio of water leaving radiance (Lw) to downwelling radiance (Ed) 

expressed per steradian (sr-1).  

However, Rrs is also influenced by the solar zenith angle and viewing direction and in 

order to compare measurements at different times and/or locations, these effects should 

be removed. The normalized water-leaving reflectance ([𝜌𝑤]𝑁, equation (1-1) is an 

AOP  

http://www.hobilabs.com/cms/index.cfm/37/152/1253.1.html
http://www.hobilabs.com/cms/index.cfm/37/152/1269.html
http://www.hobilabs.com/cms/index.cfm/37/1288/1301/1407/3045.htm
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 that reduces these effects while retaining a strong dependence on the water IOPs.  

2.2.2.3. The radiative transfer equation 

The radiative transfer theory provides the connection between the IOPs and the AOPs. 

The physical environment and the radiative transfer equation (RTE, equation (1-2) 

connect the optical properties of the water body and the light within the water thereby 

providing the theoretical framework for all oceanography and ocean colour remote 

sensing. 

𝑐𝑜𝑠𝜃 ∙
𝑑𝐿(𝜃, ∅)

𝑐𝑑𝑧
 

= −𝐿(𝜃, ∅) + 𝑤0 ∙ ∫ 𝛽(𝜃′, ∅′ → 𝜃, ∅)
4𝜋

∙ 𝐿(𝜃′, ∅′) ∙ 𝑑Ω(𝜃′, ∅′) + 𝑆(𝜃, ∅) 

  (1-2) 

where a is the absorption coefficient, β is the volume scattering function, bb is the 

backscattering coefficient, b is the total scattering coefficient, c is the beam attenuation 

coefficient, w0 the single scattering albedo and 𝛽 is the scattering phase function. 

2.2.2.4. The composition of the absorption spectra 

When light penetrates a water body, photons can be absorbed (the radiation energy 

converts into excitation energy of the molecules) or scattered (the energy is 

redistributed of the incident beam to all directions).  

Because IOPs are conservative properties, the magnitude of the absorption coefficient 

varies linearly with the concentration of the absorbing material. The absorption 

coefficient can be expressed as the sum of the different absorption coefficients 

(equation 1-3) that makes up the water body and, even though, it is not possible to 

[𝜌𝑤]𝑁 =
(𝐿𝑤 ∗ 𝜋)

𝐸𝑑
⁄  

 (1-1) 
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measure the absorption properties of every individual absorbing component of a water 

body, the individual components can be grouped into similarly absorbing constituents 

based on similarity in their optical properties. 

Absorption by pure water (Figure 1-4) is weak in the blue and strong in the red parts of 

the spectrum and varies with temperature and salinity. Absorption by particles is 

separated into phytoplankton (PHY) and NAP. Phytoplankton absorption presents the 

bigger spectral variations of any of the components but in general exhibits peaks in the 

blue and red regions of the spectrum. NAP absorption is strongest in the blue, 

decreasing approximately exponentially to the red given its composition of living 

zooplankton and bacteria, as well as the non-pigmented parts of phytoplankton and 

detrital material. CDOM absorption (aCDOM) spectra is very similar to that of NAP due 

in part to the similarity in composition, but generally exhibits a steeper exponential 

slope.  

𝑎(𝜆) = 𝑎𝑤 + 𝑎𝑃𝐻𝑌[𝑎𝑁𝐴𝑃(𝜆) + 𝑎𝐶𝐷𝑂𝑀(𝜆)]      1-3 
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Figure 1-4 Absorbing components of a water body 

For oligotrophic environments with very low concentrations of suspended and 

dissolved material, the absorption coefficient is dominated by water (Figure 1-5a) and 

the wavelength of minimum absorption is in the blue, hence the blue colour of the 

seawater. For eutrophic environments with high concentrations of suspended and 

dissolved material (Figure 1-5b), the absorption coefficient is dominated by that 

material and the wavelength of minimal absorption shifts to the green, lending green 

colour to that environment. 

 



35 

 

 

 

Figure 1-5 Component and total absorption spectra in a) clear open ocean waters where water dominates 

the absorption and b) eutrophic coastal waters where particulate and dissolved organic matter dominate 

the blue and green portions of the spectrum. 

1.3.2. Optical water types 

The optical water classification system introduced by (Morel and Prieur, 1977) 

distinguishes between optical Case 1 and 2 waters. The Case 1 and 2 classification 

system is used to classify waters for modelling purposes.  

Case 1 waters have optical properties dominated by phytoplankton and, their co-

varying degradation products; chlorophyll concentration is high relative to the 

scattering coefficient (ß). As the pigment concentration increases, the Rrs values in the 

blue-violet region (380-495nm) decrease progressively and a minimum is formed 

around 440nm, which corresponds to the maximum absorption of chlorophyll. The 

maxima shift toward 565-570nm, which is the wavelength where simultaneously the 

absorption due to pigments is at its minimum. The irregularity near 480nm may be 

attributed to carotenoids. 

The second maximum of absorption by Chl-a creates a minimum near 665 nm and at 

685nm a second maximum appears. The enhancement of scattering and of back-
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scattering on the long wavelength side of the absorption peak could explain the 

existence of the Rrs maximum at 685nm.  

Case 2 waters have optical properties dominated by other in-water constituents, such as 

total suspended matter (TSM) or CDOM. Waters higher in inorganic particles than in 

phytoplankton. As the turbidity increases the following modifications appear: The Rrs 

values are generally higher than for case 1 throughout the spectrum and of a different 

shape. There is no longer, a minimum at 440 nm, on the contrary, the curves become 

convex between 400 and 560nm. The maximum is flatter than in case 1, but located at 

the same wavelength, 560 nm. The increase in back-scattering (bb) is not compensated 

by a proportional increase in absorption, since Rrs values become higher as turbidity 

increases.  

Case 1 waters Case 2 waters 

 

Figure 1-6 Attenuation (kd), scattering (bw) and absorption (aw) coefficients for pure water. a) 

Experimental Rrs curves for different stations listed in inset. b) Experimental Rrs curves illustrating case 2 

waters. c) Spectral values of absorption coefficient, ex 
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The Case 1-2 scheme is commonly used as a way to classify waters for modelling 

purposes. Thus bio-optical models have been developed for the prediction of inherent 

optical properties (IOPs, namely the absorption, scattering, and backscattering 

coefficients) in Case 1 waters (Mobley et al., 2004). 

Although Case 1 waters cover a larger proportion of the Earth’s surface, there is far 

more variability within Case 2 waters and in an attempt to described this variability 

more accurately, there have been recent new approaches. Moore et al. (2014) proposed 

a method to classify waters into seven optical water types (OWTs; Figure 1-7) 

and  Spyrakos et al. (2018) identified 13 OWTs (Figure 1-8) for inland waters based on 

comprehensive data from more than 250 aquatic systems. This last approach has been 

considered the most suitable for its accuracy and applicability and, therefore, will be the 

approach followed along the development of this Thesis. 

 

Figure 1-7 Reflectance data sorted into seven clusters from Moore et al. (2014). Blue lines are individual 

in-situ reflectance and red lines mean values. 
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Figure 1-8 Mean remote sensing reflectance (Rrs) and standard deviation (shaded area) obtained in inland 

water s by Spyrakos et al. (2018). 
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1.3.3. Remote sensing of water quality 

In-situ data collections are only able to represent point estimations of the quality of 

water conditions in time and space, and obtaining spatial and temporal variations of 

quality indices in large waterbodies is almost impossible (Ritchie et al., 2003). To 

overcome these limitations, the use of remote sensing in water quality assessment has 

demonstrated being a useful tool, both to understand different and simultaneous 

processes occurring in lakes as well as to obtain information regarding spatial and 

temporal variability processes, especially when combined with additional local 

information (Nouchi et al., 2019). 

1.4.Remote sensing of CDOM 

As it has been previously stated, DOC pool comprises most of the organic carbon in 

lakes and CDOM has widely been used to describe a fraction of the DOC pool which 

has historically been called gelbstoff or “yellow substance”.   

In many systems, estimation of DOC through remote sensing of CDOM works well 

(Stedmon et al., 2011; Yamashita et al., 2011), even though there are exceptions 

generally related to lakes and lake-influenced rivers that show weaker relationships 

linked with low-colour autochthonous CDOM from phytoplankton and macrophytes 

(Spencer et al., 2012). It has also been demonstrated that low-colour DOM from 

wastewater or agricultural origin may shift the CDOM-DOC relationship. 

One of the most challenging points of developing remote sensing algorithms for 

estimation of DOC relates to the fact that the relationship between CDOM and DOC is 

very variable, being even negative or poorly defined in some occasions (Zhao and 

Song, 2018). Moreover, the relationships can vary between regions and/or seasons 

(Brezonik et al., 2015). Given this and taking into account the fact that CDOM 
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absorption is the only proxy for remote estimation of DOC, further research is 

considered needed for the retrieval of DOC in lakes from space. 

Both DOC and CDOM can be of autochthonous (derived from in-situ primary and 

bacterial production) or allochthonous (terrigenous) origin and composed of low 

molecular weight (LMW) or high molecular weight (HMW) substances (Sempéré and 

Cauwet, 1995; Del Vecchio, 2004; Aurin et al., 2010; Martínez–Pérez et al., 2019). 

Most near-shore CDOM is usually of terrigenous origin composed by HMW substances 

and it is degraded over time both by microbial activity, photooxidation and other 

abiotic processes. 

CDOM tends to dominate the blue and UV part of the spectrum and it is the most 

important factor controlling UV and blue light penetration. Its presence reduces the 

photosynthetically active radiation available for phytoplankton and macrophyte growth 

and generates heat in the surface layers of the water column, thus affecting mixing 

(Pegau, 2002). In the UV, CDOM also causes surface heating, but acts protecting 

aquatic organisms by the reduction of high frequency radiation harmful for cell 

structures. 

The absorption of light by CDOM initiates a variety of processes that lead to multiple 

reactions ending up with the loss of CDOM absorption (Kouassi et al., 1990; Reche et 

al., 1999; Twardowski and Donaghay, 2001; Del Vecchio and Blough, 2002) and acting 

as a sink of CDOM. These “photobleaching” reactions can increase transparency of 

surface waters with important consequences (Williamson et al., 1996). It is therefore to 

understand the dynamics of CDOM and the significance of photobleaching as sink in 

inland water bodies. 
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1.4.1. Compilation of algorithmic approaches 

Many approaches have been proposed to retrieve CDOM from remote sensing imagery. 

Some are empirical models (based on band ratios) but also semi/quasi-analytical 

models, matrix inversion methods (MIM), artificial neural networks (ANN) and 

optimisation methods. 

The development of reliable methods for estimating CDOM across optically different 

inland waters needs to deal with several issues. Between others, CDOM levels vary 

seasonally in a water body (Lars J. Tranvik et al., 2009; K. Toming et al., 2016; Zhu et 

al., 2018; Chen et al., 2019; Massi et al., 2020). Moreover, spectral properties of 

CDOM vary spatially and over time in a given water body (Babin et al., 2003; Keith et 

al., 2002; Kutser et al., 2009b). Finally, the relationship between measured CDOM 

absorptivity at 440 nm (aCDOM (440))and DOC as mg per litre is not constant (Vodacek 

et al., 1997; K. Toming et al., 2016; Hestir et al., 2015; C.G. Griffin et al., 2018; Chen 

et al., 2019).  

On top of that, to retrieve CDOM values from spectral reflectance data is difficult for 

several reasons; sometimes, it has been described as the most difficult parameter to 

measure accurately in inland waters. First of all, CDOM absorbs but does not scatter or 

reflect light, therefore, the upwelling water-leaving radiance is very small in CDOM 

rich waters. CDOM absorbance does not present any peak; instead, its absorption 

follows a simple quasi-exponential decrease with increasing wavelength. This means 

that its effects on reflectance are higher in the blue region of the electromagnetic 

spectrum, just where atmospheric correction is more difficult (Kutser et al., 2005). 

Finally, the measurement of low levels of CDOM in optically complex waters (those 

containing mineral suspended solids, algae and associated organic particles) is 

especially difficult given the light scattering induce by these particles. 
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First attempts to retrieve water quality information remotely were made for the 

application of Landsat satellites and knowledge about the radiative transfer process in 

optically complex waters has developed enormously since then. Large number of 

algorithms for the retrieval of biogeochemical parameters have been developed for 

inland waters, but its applicability and associated uncertainties for its application on the 

full range of optical water types needs to be further developed (Palmer et al., 2015b). 

Sources, magnitude and variability in the IOPs of the water as well as specific 

properties in highly turbid waters also need to be tackled. 

1.4.2. Algorithm selection, decision process 

The first empirical algorithm found in the literature to retrieve CDOM remotely is 

based on a blue-green band ratio, generally more suitable for oceanic environments 

(Tassan, 1994). Since then, some of the most used algorithms for CDOM retrieval are 

based on green-red band ratios (Kutser et al., 2005b, 2015; Kaire Toming et al., 2016; 

Ligi et al., 2017).  

The problem of empirical algorithms, even though they are the ones of simplest 

application given that do not require a big knowledge about IOPs and AOPs of the 

water, is that they are usually developed under specific site characteristics and therefore 

very sensitive to changes in the specific composition of water constituents when the 

conditions change (IOCCG, 2000). 

Semi-analytical methods retrieve total absorption and scattering from Rrs at a reference 

wavelength and then infer individual contributions from classes of optically active 

constituents by application of semi-empirical models (Lee et al., 2009). 

Matrix inversion methods also require knowledge about site specific IOPs and are, 

therefore, generally not applicable across different environments without the support of 
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field measurements. And finally, artificial neural network (ANN) approaches such as 

Doerffer and Schiller (2007) have also been successfully developed and applied. 

However and even though there are several algorithms of each category developed and 

successfully applied in different coastal or open sea environments, few studies have 

looked at their utility on inland water bodies and when done, it has been based on 

specific environments (Zhu et al., 2014a). 

Several studies have recently been published looking at the comparison in performance 

of existing bio-optical models, mainly for the estimation of Chl-a concentration in 

inland waters (i.e. Gurlin et al., 2011; Augusto-Silva et al., 2014; Beck et al., 2016) and 

TSM (i.e. Petus, 2013).  

Most algorithms to determine Chl-a concentration are based on measurements of 675 

and 700 nm wavelengths. Neil et al. (2019) investigated the accuracy of several 

algorithms to retrieve Chl-a concentrations, concluding that empirical three-band ratio 

algorithms perform generally poorly when compared to two band empirical algorithms. 

Moreover, they state that the blue-green ratio algorithms are more sensitive to changes 

in Chl-a concentration at low reflectance levels, whilst semi-analytical models are 

better at dealing with optical complexity. They finally show that accuracy in the 

retrieval can be improved by targeting specific OWTs in algorithm development. 

Remote sensing algorithms have also been widely used to estimate TSM providing 

spatial and temporal variations. Ritchie (1976) showed that the most useful range of 

spectrum for the determination of suspended particles in surface waters was between 

700 and 800 nm. The use of single band based algorithms can provide a robust 

approach when the band is chosen appropriately (Nechad et al., 2009). Curran et al. 

(1987) and Novo et al. (1989) demonstrated that single band algorithms may be applied 
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in those cases where TSM increases with increasing reflectance. However, the complex 

composition of inland waters can cause variation in colours and therefore in reflectance, 

and thus, different spectral bands have been proposed for TSM retrievals (Doxaran et 

al., 2002; Nechad et al., 2009; Feng et al., 2014). CDOM estimation models have also 

been reviewed by Odermatt et al. (2012) and Zhu et al. (2014). 

The majority of these algorithms have been tried on individual or small groups of water 

bodies with generally limited variability on their optical water types, only Neil et al. 

(2019) applies an optical water type tuning approach, testing the original algorithms on 

a set of 2807 samples collected from 185 global inland water bodies and considering 13 

different optical water types. 

1.5.Conclusions 

While CDOM is widely accepted as a good estimator of DOC in inland water bodies a 

great diversity of spectral characteristics and relatively weak relationships between 

CDOM and DOC have also been found. Moreover, the composition of DOM also 

presents seasonal variations that can influence its dynamics. 

Most of the studies found, looking at the origin, distribution and degradation of DOM 

and how this influences its optical properties, have been undertaken in coastal waters or 

in high latitude lakes. Few studies have focused on large shallow temperate lakes. Even 

though in these systems the DOC pool is typically smaller than at higher latitudes it still 

plays a significant role in regulating light availability and therefore lake metabolism, 

while the influence of processes such as photobleaching is also likely to be more 

pronounced.  
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1.6.Thesis objectives 

The general aim of this Thesis is to contribute with the knowledge of remote sensing of 

CDOM in inland water bodies. For this, it approaches the following research lines 

addressed by the subsequent Thesis chapters: 

1. To look at the regional variability in CDOM optical properties aiming to 

characterise the link between CDOM absorption and DOC content in inland 

waters. 

2. To explore spatial and seasonal variability in optical properties of CDOM and 

its degradation. Investigating how changes in its absorption can be used to infer 

information on the concentration, sources and decomposition of CDOM.  

3. To present an extensive CDOM algorithm validation exercise. 

1.7. Thesis structure 

The Thesis is structured to guide the reader through the research questions previously 

outlined. 

First of all, a literature review (CHAPTER 1 – ) gives an overview of previous works 

carried out in this area and provides with background information on subjects relevant 

to this study.  

Following there are three data chapters. Chapter 2 looks at the relationship between 

CDOM absorption and DOC in UK and other European lakes in order to characterise 

the link between CDOM absorption and DOC content within a wide range of inland 

water bodies. It defines aCDOM-DOC relationships in these inland waters, tests different 

parameters for describing the variation in the aCDOM-DOC ratio and determine the 

general conditions for which CDOM may be used as a proxy of DOC. Chapter 3 delves 

into the spatio-seasonal variability of CDOM absorption deepening into the 
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photobleaching phenomena and Chapter  4 evaluates the accuracy of aCDOM algorithm 

performance over a wide range of optical water types (OWTs) examining the influence 

that specific parameters such as Chl-a and other optically active constituents have on 

the estimation performance.  

The concluding chapter (Chapter 5) summarises the findings of the preceding three 

chapters and makes recommendations for further investigations based on these 

conclusions. 
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2. CHAPTER 2 – THE RELATIONSHIP BETWEEN COLOURED 

DISSOLVED ORGANIC MATTER ABSORPTION AND DISSOLVED 

ORGANIC CARBON IN UK AND EUROPEAN LAKES 

2.1.Introduction 

Dissolved organic carbon (DOC) represents the biggest reservoir of organic carbon in 

inland water ecosystems (Hedges, 2002; Chen and Borges, 2009), playing a major role 

in the global carbon cycle (Tranvik et al., 2009; Yang et al., 2015). Carbon in lakes 

originates from a variety of sources that can be either of allochthonous or 

autochthonous origin. Allochthonous carbon is of terrestrial origin and arrives through 

the export of organic carbon from ecosystems that enters directly as plant and litter 

detritus (particulate and dissolved). The second pathway (autochthonous carbon) can be 

the product of the in situ fixation of atmospheric carbon dioxide (CO2) by 

photoautotrophs in the water column. 

Lakes have been described as indicators and regulators of climate change (Tranvik et 

al., 2009; Williamson et al., 2009a), however, our understanding of the DOC stock in 

lakes and its rates are still limited, even though essential in order to be able to assess its 

role. Quantification of DOC concentration is relatively easy through field observations 

and laboratory analysis, but remote and inaccessible lakes are out of reach for this 

estimation (Brezonik et al., 2015).  

Remote sensing can contribute with the possible assessment of DOC distribution from 

in-situ or satellite measurements of the optical properties of coloured dissolved organic 

matter (CDOM). Light absorption by CDOM at 440 nm (aCDOM (440)) often correlates 

strongly with DOC concentrations (Kutser et al., 2005a; Osburn and Stedmon, 2011; 

Spencer et al., 2012; Griffin et al., 2018)  and has been widely used in order to estimate 
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the composition and quantity of DOC in aquatic systems (Helms et al., 2008; 

Massicotte et al., 2017).  However, the correlation between aCDOM (440) and DOC will 

just work when the chromophoric fraction of DOM represents most of the DOC pool, 

and when that chromophoric fraction has homogeneous molecular weight and 

composition. 

Estimated CDOM values could be converted into the DOC concentrations by using 

regression models (Bieroza et al., 2009), being an univariate linear regression the most 

popular approach to using optical methods for DOC estimation. CDOM optical 

properties (absorption at 440nm) is the basis of the bio-optical model to derive DOC. 

However, the CDOM optical properties and the CDOM-DOC relationship generally 

present high seasonal and spatial discrepancies.  

Allochthonous organic matter from agricultural or urban sources usually lacks 

aromatic, light absorbing compounds (Tsui and Finlay, 2011). Historic landscape 

modification has also led to eutrophication and, therefore, an increase in the production 

of low colour DOM of autochthonous origin (Y. Zhang et al., 2009). CDOM 

concentration can be measured by its absorption coefficient (aCDOM) at 440 nm and its 

structure and composition can be inferred from the spectral slope parameter (SCDOM) 

calculated between two reference wavelengths (Cédric G. Fichot and Benner, 2012; 

Helms et al., 2008). 

For more than a decade, studies have demonstrated that satellite remote sensing can be 

effectively used to trace CDOM in freshwaters (Del Castillo and Miller, 2008; Zhu et 

al., 2014a; Fichot et al., 2016; Chen et al., 2017; Spyrakos et al., 2018a), assuming a 

conservative relationship between CDOM absorption and DOC concentration (Spencer 

et al., 2012; Tehrani et al., 2013; Chen et al., 2017). However, low colour lakes with 

higher contributions of in-lake or allochthonous origin CDOM, have shown a greater 
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diversity of spectral characteristics and relatively weak relationships between CDOM 

and DOC (Griffin et al., 2018).  

DOC concentrations in arctic rivers (e.g. Kolyma River), are higher during the spring, 

being lower and more stable during the autumn (Holmes et al., 2012) and the DOM to 

CDOM composition changes rapidly in storms and spring freshets, being the DOC 

concentration during the spring freshet and summer discharge higher and lower in 

autumn (Spencer et al., 2010). Hestir et al. (2015) looked at six reservoirs in Australia 

along a temperate to tropical gradient not finding a good correlation between the 

CDOM and DOC.  

There are several studies looking at CDOM-DOC relationship for coastal waters 

(Fichot and Benner, 2011; Fichot et al., 2013), for inland systems literature is limited 

however is lately growing (Kutser et al., 2005; Spencer et al., 2012; Yunlin Zhang et 

al., 2007a).  

The present study examines regional variability in CDOM optical properties from a 

multi-year dataset of samples from contrasting lakes across Europe. It specifically aims 

at characterising the link between CDOM absorption and DOC content within a wide 

range of inland water bodies. Moreover, we define aCDOM-DOC relationships in these 

inland waters, test SCDOM for describing the variation in the aCDOM-DOC ratio and 

determine the general conditions for which CDOM may be used as a reliable proxy of 

DOC. 

2.2.Material and methods 

2.2.1. Study sites 

The dataset is composed of samples from 11 European water bodies including 8 lakes 

in the United Kingdom (UK): Loch Leven, Loch Lomond, Loch Ness, Bassenthwaite, 
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Coniston, Derwent Water, Windermere and Ullswater; and three large European lakes: 

Lake Vänern (Sweden), Lake Geneva (Switzerland) and Lake Balaton, (Hungary).  

Collectively, these lakes encompass a large range of Chlorophyll-a (Chl-a), particulate 

organic carbon (POC), DOC and CDOM concentrations. It constitutes a diverse set of 

lakes climatically, tropically (eutrophic to oligotrophic), in size of lake (4.9 to 5,650 

Km2) and catchment (62.5 to 47,000 Km2) and depth (3.3 to 310 m). 

The lakes were sampled in one or more occasions between May 2013 and June 2015 

and the characteristics of the sampling campaigns carried out are shown in Table 2-1. 
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Table 2-1 Record of DOC, POC, Chl-a and aCDOM (440) samples, sampling sites and sampling dates 

Sampling site 
Sampling dates Number of samples 

Year Month DOC POC Chl-a aCDOM (440) 

Loch Lomond 

2013 

May -- -- 4 6 

June 12 12 12 12 

July 6 6 6 6 

September 4 7 4 7 

2014 
May 5 5 5 5 

June 6 6 3 6 

2015 June -- 4 3 -- 

Total 33 36 37 36 

Loch Leven 

2013 

May 4 4 4 4 

June 5 3 5 5 

September 8 8 8 8 

2014 August 5 5 5 4 

Total 22 20 22 21 

Loch Ness 2014 July 7 7 6 7 

Windermere 

2013 July 7 7 7 7 

2014 August -- 5 4 5 

Total 7 12 11 12 

Derwent Water 

2013 July 5 5 5 5 

2014 August 5 4 5 5 

Total 10 9 10 10 

Bassenthwaite 

2013 July 5 5 5 5 

2014 August 5 4 5 5 

Total 10 9 10 10 

Ullswater 2014 August 5 5 6 6 

Coniston 2014 August -- 4 5 5 

Lake Geneva 2014 June -- -- 6 6 

Lake Vanern 
2015 

August 15 10 15 15 

September 15 7 15 15 

Total 30 17 30 30 

Lake Balaton 
2013 August -- -- 11 19 

2014 July 55 -- 5 18 

 Total 55 -- 16 37 

 

Regarding the three lakes in Scotland (UK, Figure 2-1b), Loch Lomond is the largest 

lake in Great Britain and its trophic status ranges from mesotrophic in the shallow south 

basin to oligotrophic in its deeper north basin (Habib et al., 1997; Table 2-2). It has 

been recorded as the second richest lake in term of phytoplankton biodiversity and 

fourth in terms of phytoplankton species richness (Habib et al., 1997). Loch Leven is 

the largest shallow lake in Great Britain (Table 2-2) and has been intensively 
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monitored since the late 1960s; it has been strongly affected by external pressures 

including diffuse nutrient inputs. Nevertheless, recent efforts have improved Loch 

Leven water quality, cyanobacterial blooms (Brook, 1965) have reduced in frequency 

and spring water quality has increased (Carvalho et al., 2012) since the reduction of 

phosphorous (P) sources. However, dense cyanobacterial blooms still occur during hot 

summers.
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Table 2-2 Physical characteristics of sampling sites (catchment area, mean catchment altitude, trophic status, latitude, longitude, lake length, area, volume, maximum depth 

and mean depth. 

Lake 
Catchment 

area (km2) 

Mean catchment 

altitude (m) 
Trophic status Lat/Lon 

Lake length 

(km) 

Area 

(km2) 

Volume 

(Mm3) 

Max. 

depth 

(m) 

Mean 

depth 

(m) 

Loch Lomond 766 8 Mesotrophic Oligotrophic 56.1114° N, 4.6289° W 39 71 2698 190 37 

Loch Leven 145 107 Eutrophic 56.1966° N, 3.3764° W 6 13.3 52.4 25.5 3.9 

Loch Ness 1775 15.8 Oligotrophic 57.3229° N, 4.4244° W 39 56.4 7400 230 132 

Bassenthwaite 360 333 Mesotrophic Eutrophic 54.6794° N, 3.1941° W 6.2 5.3 27.9 19.0 5.3 

Coniston 62.5 227 Mesotrophic 54.3432° N, 3.0716° W 8.7 4.9 113.3 56.1 24.1 

Derwent Water 85.4 354 Mesotrophic 54.5769° N, 3.1468° W 4.6 5.4 29.0 22.0 5.5 

Ullswater 147 393 Mesotrophic Oligotrophic 54.5762° N, 2.8860° W 11.8 8.9 223.0 63.0 25.3 

Windermere 425 231 Mesotrophic Eutrophic 54.3807° N, 2.9068° W 16.8 14.8 314.5 64.0 25.1 

Lake Geneva 46.800 372 Mesotrophic 42.5917° N, 88.4334° W 73 580 8900 310 154.4 

Lake Vanern 47.000 44 Oligotrophic 59.0320° N, 13.6255° E 140 5.650 153.000 106 27 

Lake Balaton 5.174 105 Eutrophic Mesotrophic 46.8303° N, 17.7340° E 78 592 1.9 12.2 3.3 
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Loch Ness is a large and deep oligotrophic lake in northern Scotland and holds the 

largest volume of water in the Great Britain (Table 2-2). Given its very low 

phytoplankton production (Jones et al., 1997), there is a very high dependence of the 

food web on allochthonous organic matter inputs from the catchment. 

 

Figure 2-1 Sampling sites locations. a) Location of the 11 sampling sites within Europe and zooms of 

different areas. b) From top to bottom right, Loch Ness, Loch Lomond and Loch Leven, c) from top to 

bottom right, Bassenthwaite, Derwent Water, Ullswater, Coniston 

Five more lakes are located within the English Lake District, Bassenthwaite Lake, 

Coniston, Derwent Water, Ulls Water and Windermere (Figure 2-1c). The lakes range 

from the less productive Coniston, Derwent Water and Ullswater to the more 

productive Windermere and Bassenthwaite (Maberly et al., 2006; Table 2-2). The 

English Lake District is one of the most popular touristic regions in the UK and has 

been subject of an increased use of fertilisers which has increased the ecological 

pressure on the lakes. 
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Finally, three European lakes, Lake Geneva, Lake Vanern and Lake Balaton (Figure 

2-1d, e and f; Table 2-2). Lake Geneva is the largest freshwater body in western 

Europe and has been in recovery from eutrophication since the 1980s. Currently, after 

an intensive restoration effort, the lake has returned to its previous mesotrophic state. 

Lake Vänern is the third largest lake in Europe and the largest Swedish inland water 

(Willen, 1984). Its total biomass corresponds to that of oligotrophic lakes (Willén, 

2001) and it usually presents a phytoplankton bloom in spring (between May and early 

June) and another one in summer (generally in August). It has some eutrophic regions 

particularly in shallow embayments in the southern part of the lake. Lake Balaton is one 

of the largest shallow lakes in Eastern Europe, situated in the mid-western part of 

Hungary. The site is an historical popular holiday resort and after a period of 

anthropogenic eutrophication from the late 1960s until the mid-1990s, restoration 

measures aimed at reducing the nutrient load reaching the lake led to gradual re-

oligotrophication. The nutrient loading to Lake Balaton from River Zala (Szilágyi et al., 

1990) induces a pronounced eutrophic (>20 mg m-3 Chl-a) to mesotrophic (2.6-20 mg 

m-3 Chl-a) gradient from west to east. 

2.2.2. Sampling methods and analysis 

 DOC measurements 

Water samples for DOC analysis were collected using acid-rinsed polypropylene 

bottles at 0.3 m depth below the surface. The samples were immediately stored on ice 

and in the dark until they were transferred to the laboratory for filtration. The samples 

were filtered through 0.7 µm pre-combusted 47 mm glass-fibre membranes (Whatman 

GF/F) and stored cold (4 ºC) and in the dark until measurement. They were after 

analysed for DOC concentration by thermal catalysis at 950ºC in an Elementar High 
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TOC instrument (Elementar Analysensysteme GmbH Germany) equipped with a 

platinum catalyst cartridge using synthetic air as the carrier gas. 

 Chl-a concentrations 

Water samples for Chlorophyll-a (Chl-a) analysis were filtered in triplicate through 

GF/F filter papers and stored at -80ºC in the dark until analysis.  Chl-a was determined 

spectrophotometrically after extraction for 24 hours in 96% hot ethanol on a dual-beam 

Cary 100 Varian spectrophotometer.  

 POC 

Particulate organic carbon (POC) content was determined from lake water samples 

(100-200 mL) filtered through pre-combusted 47 mm diameter Whatman GF/F filters 

(cut to 9 mm) and stored at -80oC. The filters were dried before analysis at 70°C and 

combusted in a Fisons EA-1108 CHN analyser (Grasshoff et al., 2009). Sulphanilamide 

was used as the standard. 

 CDOM 

Samples for CDOM analysis were collected separately in acid-rinsed amber glass 

bottles from 0.3 m depth and immediately stored on ice and in the dark until transfer to 

the laboratory. Samples were prefiltered through pre-combusted 0.7 µm pore size glass-

fibre membranes (Whatman GF/F) to remove large particles and then re-filtered 

through a 0.2 µm Whatman nucleopore membrane filters. Loch Lomond and Loch 

Leven samples were measured fresh (i.e. without preservation) within 24 h following 

(G. Tilstone et al., 2002). Samples for Windermewre, Derwent Water, Bassenthwaite, 

Loch Ness, Lake Geneva, Ullswater, Coniston, Lake Vanern and Lake Balaton were 

preserved with a 0.5 % (vol : vol) solution of 10 g L-1 of sodium azide (NaN3) (Ferrari 
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et al., 1996) prior to analysis, which was completed within 1 month of sample 

collection. 

Absorbance (A) of the samples was determined on a Shimadzu UV 1601 

spectrophotometer (Cuthbert and Del Giorgio, 1992; Kirk, 2010) using a 1, 4 or 10 cm 

path-length cuvette between 350 and 800 nm with 0.5 nm sampling interval using 

Milli-Q as a reference (Vodacek et al., 1997). CDOM spectral absorption coefficients 

(aCDOM) were calculated using equation ( 2-1) (Kirk, 2010): 

𝑎𝐶𝐷𝑂𝑀 (𝜆) = 2.303 ∙
𝐴𝐶𝐷𝑂𝑀 (𝜆)

𝐿⁄  ( 2-1) 

 

Where ACDOM() is the measured absorption at a given wavelength and L is the cuvette 

path length in meters. A baseline correction was applied by subtracting the mean value 

of aCDOM in a 5 nm window centred on 685 nm (Babin et al. 2003). This wavelength 

was selected because CDOM absorption is negligible and the effects of temperature and 

salinity on water absorption are small (Pegau et al., 1997).  

The spectral slope of the CDOM absorption curve was calculated over the wavelength 

range of 350-500 nm (SCDOM(350–500)) (Babin et al., 2003) using a single exponential 

decreasing function fitted by non-linear regression (NLR) (equation 2-2; Bricaud et al., 

1981; Twardowski et al., 2004), where λref is a reference wavelength (440 nm in this 

study). 

𝑎𝜆 = 𝑎𝜆𝑟𝑒𝑓
∙ 𝑒−𝑆(𝜆−𝜆𝑟𝑒𝑓)   (2-2) 

       

The E2/E3 index (250 to 365 nm absorption ratio), also known as M value, developed 

by De Haan and De Boer (1987) was calculated to track changes on relative size on 
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CDOM molecules. Decreasing ratios indicate increasing molecular size, aromaticity 

and humification (Peuravuori and Pihlaja, 1997).  

Specific UV absorptivity at 254 nm (SUVA254) was obtained by normalising the 

absorption coefficient at 254nm to DOC concentration (mg/L) (Weishaar et al., 2003a). 

As aromatic groups are largely responsible for absorption at this wavelength, this index 

indicates the degree of aromaticity of CDOM in the sample (Weishaar et al., 2003b; 

Helms et al., 2008). 

2.2.3. Data analysis 

CDOM-DOC relationship was tested by calculating univariate linear regressions between 

DOC concentration and each aCDOM (440).  

Moreover, CDOM structure and composition was inferred from the spectral slope 

parameter (SCDOM) calculated between 350 and 500 nm (Cédric G. Fichot and Benner, 

2012; Helms et al., 2008). 

The UV absorbance parameter (SUVA254) is the UV absorbance of the water sample at 

254 nm normalised by the dissolved organic carbon (DOC) concentration. It is strongly 

correlated with DOM and an indicative of a higher abundance of aromatic compounds.  

And the E2:E3 ratio (M value) is the ratio of absorption at 250 nm and 365 nm. (De Haan 

and De Boer, 1987) and is generally used to track changes in relative size of CDOM 

molecules: increases in molecular size result in decreases in the E2:E3 ratio because of 

stronger light absorption by higher molecular weight compounds at longer wavelengths.  

Finally, the relationship Chl-a to aCDOM (440) relationships were also investigated.  

All analyses were performed using R statistical software (R Core Team, 2017) and 

figures made in R using “ggplot2” (Wickham, 2016) package except for Figure 2-1 

which was created in ArcGIS v10.5. 
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2.3.Results 

2.3.1. Optical and biogeochemical variability 

Over the study lakes, the mean values of Chl-a (20.137±25.511), DOC (5.654±3.332), 

POC (0.832±1.350) and aCDOM (440) (1.273±1.571) recorded showed a wide variability 

(Table 2-3). No DOC data were available for lakes Coniston and Geneva and no POC 

data were available for Lake Geneva. 

Table 2-3 Water quality in different types of waters, DOC (Dissolved Organic Carbon), POC (Particulate 

Organic Carbon), Chl-a (Chlorophyll-a concentration) and aCDOM (440) (CDOM absorption at 440nm) 

Sampling site    aCDOM (440) DOC (mg/L) POC (mg/L) Chl-a (µg/L) 

Loch Lomond 
Mean 1.189 3.089 0.229 7.627 

Range 0.013-3.363  2.037-5.386 0.060-0.463 1.250-21.805 

Loch Leven 
Mean 0.501 6.058 1.781 57.897 

Range 0.093-1.003 3.623-21.400 0.496-3.172 10.557-100.640 

Loch Ness 
Mean 0.273 3.705 0.169 3.979 

Range 0.226-0.336 2.647-4.578 0.133-0.267 2.072-6.907 

Bassenthwaite 
Mean 1.193 2.799 0.451 17.007 

Range 0.868-1.529 2.214-3.415 0.327-0.745 6.265-36.276 

Coniston 
Mean 0.596 NA 0.293 9.987 

Range 0.521-0.667 NA 0.256-0.321 9.012-10.985 

Derwent Water 
Mean 0.835 2.126 0.321 8.691 

Range 0.507-1.181 1.691-2.684 0.234-0.419 4.900-12.284 

Ullswater 
Mean 0.569 1.391 0.421 13.967 

Range 0.431-0.704 0.830-1.643 0.258-0.781 9.801-19.405 

Windermere 
Mean 0.570 1.638 0.413 15.453 

Range 0.442-0.829 1.558-1.682 0.238-0.984 7.943-26.837 

Lake Balaton 
Mean 2.610 9.388 1.151 21.47 

Range 0.120-10.070 7.870-18.640 0.058-9.165 0.005-55.253 

Lake Geneva 
Mean 0.273 NA NA 12.010 

Range 0.214-0.325 NA NA 3.486-45.156 

Lake Vanern 
Mean 1.418 5.443 1.453 21.699 

Range 1.019-2.254 4.197-9.040 0.058-10.152 2.092-135.371 

All 
Mean 1.273 5.654 0.832 20.137 

Range 0.013-10.070 0.831-21.400 0.055-10.152 0.005-135.371 
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Maximum values of Chl-a were found at Lake Vanern (135.371 µg l-1) and Loch Leven 

(100.64 µg l-1). Minimum values at Loch Lomond (1.25 µg l-1) and Loch Ness (2.072 

µg l-1). Lake Vanern showed the maximum variability in the dataset, with Chl-a 

concentrations ranging between 2.092 to 135.37 µg l-1. Mean and extreme values per 

lake are shown in Table 2-3.  

DOC concentrations varied between 0.831 mgL-1 at Ullswater to 21.4 mgL-1 at Loch 

Leven. Maximum mean DOC values were found at Lake Balaton (9.388 mgL-1) and 

minimum average values at Ullswater (1.391 mgL-1). Concentrations at Lake Balaton 

were in the range of values previously reported (Aulló-Maestro et al., 2017) and no 

previous reports about Ullswater DOC content have been found to compare with this 

study. Highest POC values were found at Lake Vanern (10.152 mg L-1) and Lake 

Balaton (9.165 mg L-1) and minimum values at Lake Balaton (0.058 mg L-1) and Loch 

Lomond (0.06 mg L-1).  

No published references have been found regarding POC at Lake Balaton, however, 

minimum values for Loch Lomond were lower than values previously reported for both 

north and south basin 0.29-0.76 mg L-1 (Bass, 2007), even though average values 

(0.229 mg L-) were in the range of previous studies (Bass, 2007). Mean POC values for 

all the dataset varied between 0.169 (Loch Ness) and 1.781 mg L-1 (Loch Leven).  

aCDOM (440) varied between 0.013 m-1 at Loch Lomond to 10.07 -1 at Lake Balaton. 

Maximum mean values were found at Lake Balaton (2.61 m-1) and minimum average 

values at Lake Geneva (0.273 m-1). Reference values for aCDOM (440) for Lake Balaton 

were not found in published studies. 
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2.3.2. DOC vs CDOM relationship for various types of waters 

The relationship between DOC and CDOM was investigated based on CDOM 

absorption at 440 nm. Considering the whole dataset, the relationship between aCDOM 

(440) and DOC (n=116, R2=0.164, p<0.05) was weak (Figure 2-2).  

 

Figure 2-2 Direct relationship between aCDOM (440) and DOC for all the dataset 

Table 2-4 reports the statistics for the regressions using aCDOM (440), with slopes 

ranging from -0.056 (Loch Leven) to 2.639 (Lake Balaton). No DOC data for 

regression were available for Coniston and Lake Geneva. 

 

 

Table 2-4 Fitting equations for DOC against aCDOM (440) in different types of waters. DOC data for 

regression was not available for Lakes Geneva and Coniston. 

Site Equations R2 N p-value 

Loch Lomond aCDOM (440) =0.736*DOC-0.992 0.293 31 <0.01 

Loch Leven aCDOM (440) =-0.056*DOC+0.948 0.058 14 0.29 

Loch Ness aCDOM (440) =0.049*DOC+0.093 0.814 7 <0.01 

Bassenthwaite aCDOM (440) =0.628*DOC-0.564 0.807 10 <0.01 

Coniston NA NA NA NA 
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Derwent Water aCDOM (440) =0.632*DOC-0.509 0.899 10 <0.01 

Ullswater aCDOM (440) =-0.214*DOC+0.888 0.441 5 0.22 

Windermere aCDOM (440) =-0.628*DOC-1.575 0.561 7 0.05 

Lake Balaton aCDOM (440) =2.369*DOC-18.322 0.463 18 <0.01 

Lake Geneva NA NA NA NA 

Lake Vanern aCDOM (440) =0.185*DOC+0.412 0.609 30 <0.01 

ALL aCDOM (440) =0.233*DOC+0.155 0.089 139 <0.01 

 

When splitting the data in individual sampling sites, some significant relationships 

between aCDOM (440) and DOC can be seen. Regression using aCDOM (440) were 

statistically significant for Loch Lomond, Derwent Water, Bassenthwaite, Loch Ness, 

Lake Vanern and Lake Balaton, with coefficients of determination (R2) ranging between 

0.23 (Loch Lomond) and 0.899 (Derwent Water), all of them presented a positive 

correlation. The strongest correlations were found for Loch Ness, Derwent Water and 

Bassenthwaite (Figure 2-3a, b and c), resulting Derwent Water and Bassenthwaite 

divided in two clusters of lower and higher aCDOM (440) and DOC. 

 
Figure 2-3 Relationships between DOC and aCDOM (440) in a) Loch Ness, b) Derwent Water and c) 

Bassenthwaite 

Lake Vanern and Lake Balaton also showed strong relationships (R2=0.61 and 0.463 

respectively; Figure 2-4 a and b). 
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Figure 2-4 Relationships between DOC and aCDOM (440) in a) Lake Vanern and b) Lake Balaton 

The relationships between CDOM and DOC exhibited negative intercept for some lakes 

(Loch Lomond, Windermere, Derwent Water, Bassenthwaite and Lake Balaton), 

showing that not all DOC is chromophoric. 

Moreover, it needs to be taken into account, that the association of dissolved iron with 

DOC affects the water colour, and spatial variations in iron concentrations lead to poor 

DOC-CDOM relationships (Prieur and Sathyendranath, 1981).  

Moreover, strong negative relationships have been found for Windermere and 

Ullswater (Table 2-4). No DOC data were available for Lake Geneva and Coniston. 

2.3.3. CDOM molecular weight and aromaticity 

SCDOM (350-500) values for the entire dataset ranged between -0.001 (Lake Balaton) 

and 0.102 (Lake Windermere) nm-1 (Table 2-5). Minimum values were found at Lake 

Balaton (0.001 nm-1) and Lage Geneva (0.011 nm-1). Highest variability was found at 

Loch Lomond (0.012-0.050nm-1) followed by Lake Balaton (0.030 nm-1). 
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Table 2-5 Mean and range values of aCDOM (440), SCDOM (350-500), [DOC], E2:E3 ratio and SUVA254 per sampling site 

  aCDOM (440) (m-1) SCDOM (350-500) (nm-1) E2:E3 ratio SUVA254 (Lmg-1m-1) 

Loch Lomond 
Mean 1.189 0.018 5.151 9.537 

Range 0.013-3.363 0.012-0.050 4.133-9.145 6.427-13.838 

Loch Leven 
Mean 0.501 0.017 7.222 2.693 

Range 0.093-1.003 0.015-0.028 6.390-9.356 0.105-6.333 

Loch Ness 
Mean 0.273 0.015 8.297 1.468 

Range 0.226-0.336 0.013-0.015 7.903-9.010 1.233-1.779 

Bassenthwaite 
Mean 1.193 0.017 5.415 7.673 

Range 0.868-1.529 0.015-0.017 5.191-6.003 6.204-9.088 

Coniston 
Mean 0.596 0.017 5.965 

NA 
Range 0.521-0.667 0.016-0.018 5.771-6.141 

Derwent Water 
Mean 0.835 0.017 5.349 7.281 

Range 0.507-1.181 0.016-0.018 5.515-5.631 6.160-8.558 

Ullswater 
Mean 0.569 0.018 5.714 9.733 

Range 0.431-0.074 0.017-0.021 5.428-6.160 7.033-16.505 

Windermere 
Mean 0.570 0.017 6.042 6.562 

Range 0.442-0.829 0.016-0.1018 5.524-7.632 6.176-6.917 

Lake Balaton 
Mean 2.610 0.015 11.243 3.252 

Range 0.120-10.070 0.001-0.016 2.736-47.197 2.252-5.604 

Lake Geneva 
Mean 0.273 0.012 59.278 

NA 
Range 0.214-0.325 0.011-0.013 50.644-77.235 

Lake Vanern 
Mean 1.418 0.017 7.083 6.590 

Range 1.019-2.254 0.015-0.019 6.279-12.864 5.051-9.690 

All 
Mean 1.273 0.016 8.895 5.525 

Range 0.013-10.070 0.001 – 0.102 2.736-77.235 0.105-16.505 
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SCDOM (350-500) exhibited a negative correlation with aCDOM (440) for Loch Ness 

(R2=0.737), Ullswater (R2=0.644), Coniston (R2=0.980) and Lake Geneva (R2=0.364) 

that has already been found in other studies (Del Castillo and Coble, 2000; C. A. Stedmon 

et al., 2000; Kowalczuk et al., 2003a; Yacobi et al., 2003a; Yunlin Zhang et al., 2007a) 

and a slight positive correlation was found at Bassenthwaite (R2=0.344). 

Lowest SUVA254 values (Table 2-5) were found at Loch Leven (average 0.105 mg-1) 

and highest values at Ullswater (average 9.733mg-1). No SUVA254 data were available 

for Coniston and Lake Geneva. As it can be seen in Figure 2-5, SUVA254 also 

exhibited high values for Bassenthwaite, Derwent Water, Ullswater and Windermere. 

Highest M value (Figure 2-5) was found for Lake Geneva (59.278),  followed by Loch 

Leven, Loch Ness, Lake Balaton and Lake Vanern, which indicates that low molecular 

weight molecules dominate in this water (less light absorption). High values (higher than 

8.895, the average value for all the water bodies) were found for Lake Balaton (11.243). 

  

Figure 2-5 SUVA254 and E2:E3 ratio variation per sampling site 
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2.3.4. aCDOM to Chl-a relationship 

Chl-a was not strongly related to CDOM, DOC or SUVA when all the samples were 

considered together (R2= 0.006, 0.172 and 0.018 respectively) but when separating 

samples clear differences appeared in Chl-a patterns with the three parameters. 

For Loch Ness, Windermere and Derwent Water, Chl-a did not correlate with CDOM 

(R2<0.200), DOC and SUVA and Chl-a variations were not large across the sampling 

sites. 

However, Chl-a explains 57% of aCDOM (440) in Loch Leven (Figure 2-6a), 58% 

Bassenthwaite (Figure 2-6b) and 43% in Lake Vanern (Figure 2-6c). 

 

Figure 2-6 aCDOM (440) to Chl-a relationship for a) Loch Leven, b) Bassenthwaite and c) Lake Vanern 
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2.3.5. Discussion 

Different water bodies were sampled across Europe, presenting different climatic, 

hydrologic and land use conditions as well as very different catchments with diverse 

anthropogenic influence. The biological and geochemical properties of these water 

bodies is very diverse, presenting a large variability for each parameter measured 

(Table 2-3). The most turbid waters have generally been collected in shallow water 

bodies (Table 2-2, Table 2-3), which is consistent with previous findings (Song et al., 

2017). 

Lower DOC concentrations have been found in samples collected generally 

mesotrophic lakes which most of the DOC is coming from the catchment (Ullswater, 

Windermere, Derwent Water and Bassenthwaite; Table 2-3.  

High DOC concentrations have been found at Lake Balaton and Loch Leven (9.388 and 

6.058 respectively), both lakes with signs of eutrophication and a recently intense 

anthropogenic influence. The Zala wetland, responsible of about half of the total 

Balaton watershed, provides DOC into Balaton, whereas DOC in Loch Leven could to 

be the decaying of an algal bloom. Higher concentrations were found for shallower 

water bodies (Lake Balaton and Loch Leven), probably as a result of less dilution 

within the water body. 

It should be noted at this stage, that DOC concentrations are strongly connected with 

hydrological conditions and catchment landscape features (Lee et al., 2015; Neff et al., 

2006). 

Generally, the relationships between CDOM and DOC in rivers and other inland waters 

are very variable due to the possible hydrological variability and other catchment features 

(Ågren et al., 2010; Spencer et al., 2012; Ward et al., 2013; Zhao et al., 2017). As 
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demonstrated in Table 2-4, the relationship between CDOM and DOC in lake waters of 

this study are also very variable. 

For Loch Leven, Carvalho et al. (2012) showed a mean annual average Chl-a value of 

15 µg l-1, therefore the high values for Loch Leven found within this study are possibly 

in association with a phytoplankton bloom. The same is the case with Lake Vanern, 

with mean concentrations from existing monitoring data between 2002 and 2012 

between 0.6 and 5.9 µg l-1 (Philipson et al., 2016), conspicuously lower than 

concentrations found in this study (average: 20.137 µg l-1). Concentrations obtained for 

Loch Lomond were within values previously reported (Habib et al., 1997; Bass, 2007), 

and also for Loch Ness (Jones et al., 2001). 

Derwent Water and Bassenthwaite show the strongest relationship between DOC and 

CDOM with high regression slope values (Table 2-4) which has been usually linked with 

less disturbed water bodies with low anthropogenic influence (Spencer et al., 2012).  On 

the other hand, water bodies more heavily influenced by human activities such as Loch 

Leven and Lake Balaton, show less clear linkages between CDOM and DOC. 

Low CDOM to DOC relationships are a possible consequence of aromaticity and 

coloured fractions in the DOC components (Spencer et al., 2009; Lee et al., 2015). 

This general lack of co-variation can be related to the different biogeochemical and 

catchment characteristics, trophic status and land cover of the 11 sampling sites, 

suggesting large differences regarding the source and sink factors acting on CDOM 

dynamics (Stedmon and Markager, 2001) in these very optically different water bodies. 

Lowest CDOM to DOC relationships have been found for Loch Leven, one of the most 

productive sampling sites of this study. Generally, in less coloured lakes, the 

composition of DOM has varied widely, leading to weaker relationships (Griffin et al., 
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2018), but landscape modification has also historically led to increasing eutrophication 

of lakes, with substantial autochthonous production of low colour DOM from both 

phytoplankton and macrophytes (Y. Zhang et al., 2009) which may explain this result. 

Most of the sampling sites present high Chl-a concentrations (>3.979 µg/L), reflecting 

high algal biomass and productivity typical of mesotrophic and eutrophic lakes. Chl-a, 

primarily an indicator of phytoplankton biomass, thus by itself cannot explain the 

variability in CDOM-DOC relationships introduced by macrophytic DOM. 

A potential cause of the limited relationship is the sample size and range of DOC and 

CDOM in the study. Although representative range of reservoirs and their conditions 

were sampled, the sample size is limited relative to the variance (specially within water 

bodies), challenging even more a higher relationship. 

Moreover, we aimed at defining an aCDOM-DOC relationship in these inland waters and 

test S275-295 for describing this variation and determine the general conditions for which 

CDOM may be used as a reliable proxy of DOC. 

Large variations in DOC are observed for all sampling sites (1.39 – 21.4 mg/L). DOC 

and aCDOM (440) measurements differ between lakes according to trophic status.  

Highest values of sCDOM (350-500) were found at Loch Lomond and Lake Balaton. 

Minimum values were found at Lake Balaton and Lage Geneva. Highest variability was 

found at Loch Lomond followed by Lake Balaton. Lowest SUVA254 values were found 

at Loch Leven and Loch Ness and highest values at Ullswater, Bassenthwaite, Derwent 

Water and Windermere. Finally, High M values found at Lake Geneva and Lake 

Balaton indicate that low molecular weight molecules dominate in this water (less light 

absorption). Lowest M values were found at Loch Lomond, Derwent Water, 

Bassenthwaite, Coniston and Ullswater. 
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High SUVA254 and low E2:E3 ratio values are typical of terrestrially-derived DOM, 

reflective of DOM from wetlands, high DOC loading rates, shallow photic zones and 

short residence times. Lakes with low DOC and aCDOM are highly variable in SUVA254 

and M values. Major sources of DOM to oligotrophic lakes are precipitation, aerial 

deposition, surface waters and ground water.  

High SUVA254 values were found at Loch Leven, Windermere, Derwent Water, 

Bassenthwaite Lake, Ullswater and Lake Vanern. High SUVA254 values are associated 

with high molecular weight, aromaticity and humification. Presence of allochthonous 

material into the lake is supposed to raise SUVA254 and it is also associated with higher 

CDOM absorption values. Low values of SCDOM (Loch Ness, Lake Geneva) along high 

values in absorption (Loch Ness) suggest a substantial contribution of terrestrial CDOM 

for Loch Ness. 

Variation in DOC-CDOM has implications for remote sensing applications. Estimates of 

carbon pools might be inaccurate where there is high variability. Lakes of high ecological 

status in undisturbed catchments might show stronger DOC-CDOM relationships than 

those in lowland catchments with more anthropogenic disturbance.  This will affect 

estimates for DOC from space at local, regional and global scales. 

2.4.Conclusions 

The central goal of this study was to examine regional variability in CDOM optical 

properties and CDOM-DOC relationships across a range of lakes, looking at factors 

that might affect this variability. 

Based on the measurement of CDOM absorption and DOC laboratory analysis, the 

relationships between CDOM and DOC have been analysed in various types of waters 
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in Europe. This investigation showed that both CDOM absorption and DOC content 

varied significantly. 

Overall, CDOM and DOC were highly correlated, particularly in Loch Ness, 

Bassenthwaite and Derwent Water (all sampling sites with low E2:E3 ratio, indicating 

composition of low aromaticity). For lakes such as Loch Leven (low SUVA254), 

widely affected by eutrophication, the composition of DOM might weaken the 

relationships between CDOM and DOC. This is also linked with autochthonous 

composition and low molecular weight. 

The results of this chapter indicate that the relationships between CDOM absorption 

and DOC can vary remarkably by showing highly varied regression slopes in various 

types of waters.  

The results of this chapter highlight that remote-sensing models for DOC estimation 

based on the relationship between CDOM and DOC should consider local variability 

and optical complexity, considering at least groups of water types according to their 

absorption features.
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3. CHAPTER 3 - SPATIO-SEASONAL VARIABILITY OF CDOM 

ABSORPTION AND RESPONSES TO PHOTOBLEACHING IN A 

LARGE SHALLOW TEMPERATE LAKE 

This chapter is based on the following publication: 

Aulló-Maestro, M. E., Hunter, P., Spyrakos, E., Mercatoris, P., Kovács, A. W., 

Horváth, H., ... & Tyler, A. (2017). Spatio-seasonal variability of chromophoric 

dissolved organic matter absorption and responses to photobleaching in a large shallow 

temperate lake. Biogeosciences, 14(5), 1215-1233. doi: 10.5194/bg-14-1215-2017. 

3.1. Introduction 

3.1.1. Importance of CDOM in lakes 

There are approximately 117 million lakes on Earth greater than 0.002 km2 in surface 

area collectively covering about 3.7 % of its non-glacial surface (Verpoorter et al., 

2014). The importance of the role that lakes play as regulators of the carbon cycle and 

thereby global climate has only recently been recognized (Tranvik et al., 2009), acting 

as both a sink (sediment storage through flocculation from dissolved to particulate 

organic carbon) or source for carbon (degradation and resulting mineralization to CH4, 

CO and CO2; (Benoy et al., 2007; Cole et al., 2007a; Tranvik et al., 2009). As a result 

they also play an important role in transforming and releasing terrestrially-derived 

carbon to the atmosphere and ocean (Tranvik et al., 2009). As extremely sensitive 

ecosystems (IPCC, 2007; Millennium Ecosystem Assessment, 2005), lakes can respond 

rapidly to external pressures including meteorology, climate and land use change.  This 

has led to the emerging concept of lakes as sentinels of environmental change (Adrian 

et al., 2009; Schindler, 2009; Williamson et al., 2009; Williamson et al., 2009).  
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The optical properties of lakes provide particularly useful metrics for measuring 

ecosystem change (Vincent et al., 1998) as they not only convey information on the 

quantity of particulate and dissolved material but also its quality (Williamson et al., 

2014). Furthermore, understanding how the optical properties of particulate and 

dissolved material in lakes influences the underwater light field and water-leaving 

radiative signal is important for the development and application of remote sensing 

techniques for lake monitoring and assessment, but also their application to lake carbon 

studies. 

Much of the dissolved organic matter (DOM) found in lakes typically represents 

between 90  to 100 % of the total carbon pool ((Wilkinson et al., 2013) and is derived 

from terrestrial inputs, transported through streams, rivers and wetlands.  This 

allochthonous component of the DOM originates from soils, sediments and plants and 

is primarily composed of humic substances. The autochthonous fraction of DOM is 

produced mostly by phytoplankton, zooplankton and bacterioplankton and is largely 

composed of fulvic acids, carbohydrates, amino acids, proteins, lipids and organic 

acids. 

Chromophoric dissolved organic matter (CDOM) is the coloured fraction of DOM. It is 

one of the dominant colour-forming constituents in lakes: it not only exerts a strong 

influence over the underwater light field and water-leaving radiance, but it also has a 

number of important ecosystem functions. First of all, it absorbs light strongly in the 

ultraviolet (UV) spectrum limiting the penetration of biologically-damaging UV-B 

radiation providing protection for phytoplankton and other primary producers (Hoge et 

al., 1995; Laurion et al., 2000; Williamson et al., 2001; Y. Zhang et al., 2007b). In 

addition, CDOM can be remineralised by bacteria acting as a source of inorganic 

nutrients (Buchan et al., 2014),which is important for phytoplankton nutrition, thus 
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fulfilling an important role in the development of phytoplankton blooms and lake 

metabolism more widely. On the other hand, studies have also shown that light 

absorption by CDOM can reduce the amount and quality of photosynthetically active 

radiation (PAR) available to phytoplankton, thereby decreasing primary production and 

constraining lake metabolism (Kirk, 1994; Laurion et al., 2000, 1997; Vähätalo et al., 

2005). Moreover, its conservative properties with dissolved organic carbon (DOC), 

means CDOM is often used as a proxy for DOC. Thus, there is substantial interest in 

the use of CDOM as an optical tracer of DOC due to the importance of the latter in 

regulating physical, chemical and biological properties of lakes.  It is therefore 

important that we develop a better understanding of the optical properties of CDOM 

and how these relate to the chemical composition and concentration of DOM whether 

driven by changes to source relationships or through the in-lake processes and 

transformation of the carbon pool.  

Understanding how the optical properties of CDOM vary both temporally and spatially 

within lakes and how the observed variability influences the underwater light field is of 

particular importance for the development and validation of remote sensing-based 

approaches for retrieving CDOM concentrations. The recent launch of new satellite 

missions (e.g., Sentinel-2 and -3), allied with the prospect of new hyperspectral sensors 

(e.g., EnMAP), has provided a new impetus for the development and application of 

remote sensing techniques for the assessment and monitoring of inland water quality. 

However, CDOM is arguably the most challenging water quality parameter for reliable 

estimation of remotely sensed observations (Palmer et al., 2015b) and, in spite of its 

importance to the physical, chemical and biological function of lakes, it remains one of 

the least studied parameters. Indeed, few studies have explored the application of 

remote sensing for the estimation of CDOM in lakes.  To progress such research, an 
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improved understanding of the spatial and temporal variation in the optical properties 

of CDOM in lakes is needed. 

3.1.2. Optical properties of CDOM 

CDOM concentration is commonly measured by its absorption coefficient (aCDOM) at 

440 nm, whereas its structure and composition has been most commonly inferred from 

the spectral slope parameter (SCDOM) calculated between two reference wavelengths 

(Cédric G. Fichot and Benner, 2012; Helms et al., 2008). Other optical metrics related 

to CDOM compositions include the E2:E3 ratio or M value, which is the ratio of 

absorption at 250 nm and 365 nm. (De Haan and De Boer, 1987) used E2:E3 ratio to 

track changes in relative size of CDOM molecules: increases in molecular size result in 

decreases in the E2:E3 ratio because of stronger light absorption by higher molecular 

weight compounds at longer wavelengths.  

In addition, (Weishaar et al., 2003a) introduced the specific UV absorbance parameter 

(SUVA254) defined as the UV absorbance at 254 nm normalised by the dissolved 

organic carbon (DOC) concentration. SUVA254 has been shown to be strongly 

correlated with DOM aromaticity in a large number of aquatic environments, with 

higher SUVA254 values indicative of a higher abundance of aromatic compounds.  

Previous studies have used SUVA254 to explore variability in the composition of DOM 

in natural waters.   

The compositional properties of CDOM vary over time in response to processes such as 

microbial decomposition and exposure to UV irradiation. Previous studies have shown 

the latter process, first described by (Wipple, 1914) as ‘photobleaching’, plays a major 

role in the transformation of DOM in natural waters. Exposure to solar irradiance has 

been shown to reduce its capacity to absorb light, the loss of absorptivity is linked to a 
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reduction in molecular weight (MW), alteration of its chemical composition and an 

increase in the bioavailability of DOM (Corin et al., 1996; Geller, 1986; Keiber et al., 

1990; Lindell et al., 1995; Reche et al., 1998; Wetzel et al., 1995) with implications for 

lake metabolism. SCDOM is also known to vary in response to photobleaching (Cédric G. 

Fichot and Benner, 2012; Swan et al., 2012). 

Most previous studies on the origin, distribution and degradation of DOM and how this 

influences the optical properties of CDOM have been undertaken in oceans (Andrew et 

al., 2013; D’Sa et al., 2014; Hancke et al., 2014; Matsuoka et al., 2014), coastal waters 

(Kutser et al., 2009a; Para et al., 2013; C. a. Stedmon et al., 2000; Vantrepotte et al., 

2007) or in high latitude lakes (Ficek et al., 2011a; Ylöstalo et al., 2014). 

Understandably, the bias towards high latitude systems partly reflects the fact this 

region contains a high density of humic-rich lakes. There is a relatively rich literature 

on DOM in temperate lakes (Müller et al., 2014; Jordan S Read and Rose, 2013; Zhang 

et al., 2011) but few studies have focused on large shallow lakes like Lake Balaton with 

a continental climate and hence our understanding of the variability in CDOM optical 

properties in these systems is comparatively poorer.  In systems such as Lake Balaton, 

although the DOC pool is typically smaller than at higher latitudes it still plays a 

significant role in regulating light availability and therefore lake metabolism, while the 

influence of processes such as photobleaching is also likely to be more pronounced. 

In this study we explore spatial and seasonal variability in optical properties of CDOM 

in Lake Balaton, a large temperate lake with a highly continental climate. We 

investigate how changes in spectral absorption, spectral slope coefficients, SUVA254 

and the E2:E3 ratio can be used to infer information on the concentration, source and 

decomposition of CDOM. The main objectives of the study were to: (1) characterize 

the spatial and seasonal trends in CDOM in Lake Balaton over the course of a year and 
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to (2) determine the origin and magnitude of the variability of different sources of 

CDOM. 

3.2. Material and methods 

3.2.1. Study site 

With a surface area of 596 km2 and a mean depth of 3.25 m, Lake Balaton in Hungary 

is the largest shallow lake in central Europe (Figure 3-1a).  The region is situated on 

the boundaries between the Mediterranean, continental, and oceanic climatic zones 

(Peel et al., 2006), resulting in a climate characterised by dry summers and moderately 

wet winters with typical continental extremes in temperature. The first two weeks of 

January are the coldest periods of the year (-4 – 3 C) whilst July and August the 

warmest months (15 – 28 C). The annual precipitation in the Lake Balaton region is 

between 500–750 mm; most precipitation falls during the spring, while the minimum 

occurs during the summer. There is a secondary maximum in autumn, due to a strong 

cyclone activity at that time of the year. In regard to solar radiation, Lake Balaton is 

situated between the southern, western and central Transdanubian regions in Hungary 

with an annual mean of 4500 MJ m-2. The highest solar radiation is received in July 

(650 MJ m-2), while cloudy weather and shorter days mean that lowest radiation occurs 

in December. The maximum in sunshine duration is also reached in July with more than 

250 hours, falling to a minimum of approximately 40 hours during winter months. 

Lake Balaton is usually divided into four basins (south-west to north-east): Keszthely; 

Szigliget; Szemes; and Siófok (Figure 3-1b).  The lake has 20 permanent and 31 

temporary inflows, many of which are small streams or springs in the lake bed. The 

largest inflow to the lake is the Zala River, which flows through Kis-Balaton reservoir – 

a large semi-natural wetland system – and enters the lake in the westernmost part of 
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Keszthely basin (Figure 3-1b).  The only outflow is the Sió channel in the northeast 

that connects the Siófok basin with the Danube River.   

Lake Balaton has experienced eutrophication since the middle of the 18th century due to 

agricultural intensification and urbanisation within the catchment. Since the early 

1980s, significant effort has been invested in improving its water quality (Tátrai et al., 

2000). The construction of Kis-Balaton reservoir and wetland system was one of the 

main engineering controls built to reduce nutrient inflow from the Zala River and the 

overall loading within the lake. Kis-Balaton removes approximately 60 % of the annual 

nutrient loading to Lake Balaton (Szilágyi et al., 1990).  However, nutrient inputs from 

the Zala River still result in high summer primary production in the eutrophic (>20 mg 

m-3 chl-a) waters in the western basins, with a steep gradient towards more mesotrophic 

(2 - 20 mg m-3 chl-a) waters in the east. The hypertrophic Kis-Balaton wetland system 

is believed to be responsible for much of the DOM entering the lake, largely derived 

from luxuriant growth and decomposition of aquatic plants.  Previous research (Palmer 

et al., 2013; Riddick et al., 2015) has shown that CDOM is usually significantly higher 

close to Zala River inflow, and decreases towards the outflow but very little is known 

about the seasonal dynamics of CDOM in the system. 

Suspended particulate matter in Lake Balaton is highly variable (spatially and 

temporally) due to its very shallow depth, constant mixing and susceptibility to wind-

driven resuspension events (Istvánovics et al., 2004). Phytoplankton composition in the 

lake shows strong seasonal trends, with two annual blooms (Hajnal and Padisák, 2008; 

Padisak and Reynolds, 1998; Présing et al., 2008). In late summer and early autumn, 

cyanobacterial blooms often occur in the Keszthely basin (I), extending westwards to 

the Szigliget (II) and Szemes (III) basins and very occasionally to the Siófok (IV) basin 

(Hajnal and Padisák, 2008; Padisak and Reynolds, 1998; Présing et al., 2008).  The 
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lowest phytoplankton biomass generally occurs in February when the lake can be ice-

covered; a small dinoflagellate bloom may also occur in April (Mózes et al., 2006).  

3.2.2. Water sampling 

Spatial variability in CDOM quantity and quality was assessed over a 1-week period in 

July 2013 (6 stations) and a 3-week period in July 2014 (25 stations) at 31 stations over 

a biogeochemical gradient from the southwest in the water masses influenced by Zala 

River to the northeast near the outflow (Figure 3-1c). Five stations were also sampled 

in the Kis-Balaton reservoir during the same period (2 in 2013 and 3 2014).  These 

intensive sampling campaigns were timed to coincide with the annual summer peak in 

DOC to capture the maximum spatial variability likely to occur in the system.  

In order to capture seasonal variability in CDOM quantity and quality, water samples 

were collected fortnightly at 6 long-term monitoring stations on Lake Balaton over the 

course of seven months (March to September 2014).  These comprised stations 01 and 

03 from Keszthely basin (I), station 12 from Szigliget basin (II), station 20 from 

Szemes basin (III) and stations 25 and 30 from Siófok basin (IV) (for location of 

stations see Figure 3-1c).    
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Figure 3-1 a) Location of Lake Balaton within Europe. b) Map of basins, Kis-Balaton Reservoir, River 

Zala and Sió Channel. c) Location of 31 sampling stations in Lake Balaton 

Water samples for DOC analysis were collected in triplicate using acid-rinsed 

polypropylene bottles at 0.3 m depth below the surface.  The samples were immediately 

stored on ice and in the dark until they were transferred to the laboratory for filtration. 

The samples were filtered through 0.7 µm pre-combusted 47 mm glass-fibre 

membranes (Whatman GF/F) and stored cold (4°C) and in the dark until measurement. 

Filters were selected for DOC measurements because of their compatibility with other 

POC measurements and were combusted reducing the possibility of contamination. 

Even though due to their large nominal pore size, these filters are expected to allow 

high number of bacteria, viruses and colloids through, the differences with a smaller 

nominal pore size are expected to be small given that this DOC was only used to 

correlate with aCDOM. Samples for CDOM analysis were collected separately in acid-

rinsed amber glass bottles from 0.3 m depth and immediately stored on ice and in the 

dark until transfer to the laboratory. Samples were pre-filtered through pre-combusted 
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0.7 µm pore size glass-fibre membranes (Whatman GF/F) to remove large particles and 

then re-filtered through a 0.2 µm Whatman nucleopore membrane filters. The samples 

collected as part of the seasonal sampling campaign were measured fresh (i.e., without 

preservation) within 24 hours following (Gh Tilstone et al., 2002). The samples 

collected during the campaigns focused on spatial variability were preserved with a 0.5 

% (vol:vol) solution of 10 g L-1 of sodium azide (NaN3) (Giovanni M Ferrari et al., 

1996) prior to analysis, which was completed within 1 month of sample collection. 

3.2.3. CDOM absorption 

The spectral absorbance (A) of the seasonal samples was measured on a Shimadzu UV 

1601 spectrophotometer (Cuthbert and Del Giorgio, 1992; Kirk, 2010) using a 1, 4 or 

10 cm cuvette between 350 and 800 nm with a 0.5 nm sampling interval using ultrapure 

water (Milli-Q) as a reference (Vodacek et al., 1997). These samples were measured 

fresh in the laboratory of the Balaton Limnological Institute. Samples from campaigns 

focused on spatial variability were preserved immediately with 0.5 % (vol:vol) sodium 

azide and transported to the University of Stirling for analysis on a Cary-100 UV-

visible spectrophotometer using a 1 or 10 cm cuvette between 200 and 800 nm with 0.2 

nm sampling interval against ultrapure water with 0.5 % (vol:vol) sodium azide as the 

reference. The absorbance data were baseline corrected by subtracting the mean of 

aCDOM in a 5 nm interval centred at 685 nm (after Babin et al. 2003). This wavelength 

was selected because absorption by CDOM and other dissolved constituents is 

negligible in the far red (Pegau et al., 1997). The CDOM spectral absorption coefficient 

(aCDOM) was calculated as follows (Kirk, 2010): 

𝑎CDOM(𝜆, m−1) = 2.303 ∙
𝐴CDOM(𝜆)

𝐿
 

  (3-1) 
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where aCDOM () is the absorbance over a pathlength of L meters.  

The absorption coefficient at 440 nm was used to express variation in CDOM quantity.  

This wavelength was preferred over UV wavelengths because it is more relevant to 

(and consistent with previous) studies on the optical properties and remote sensing of 

CDOM in natural waters (Carder et al., 1989; Nelson et al., 1998; Schwarz et al., 2002).  

The spectral slope for the interval of 350–500 nm (SCDOM(350–500)) (Babin et al., 

2003) was determined by fitting a single decreasing exponential function to the 

absorption spectra using non-linear regression (Bricaud et al., 1981; Twardowski et al., 

2004) between 350 and 500 nm, as follows: 

𝑎λ(nm) = 𝑎λref
∙ e−S(λ−λref)   3-2 

where λref is a reference wavelength (440 nm in this study). This range of calculation 

was consistent with (Babin et al., 2003; Matsuoka et al., 2012)others and is more 

relevant to remote sensing studies than the use of wavelength ranges that extend into 

the UV spectrum.  

The E2/E3 index was calculated as the ratio of the CDOM absorption coefficients at 

250 and 365 nm. Previous studies have shown that decreases in this ratio are related to 

increases in molecular size, aromaticity and humification of DOC (Peuravuori and 

Pihlaja, 1997).  Finally, specific UV absorptivity at 254 nm (SUVA254) was obtained by 

normalising the absorption at 254 nm by the DOC concentration (mg L-1) (Weishaar et 

al., 2003a).  
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3.2.4. Dissolved organic carbon (DOC) 

Samples for dissolved organic carbon (DOC) were measured by thermal catalysis at 

950°C in an Elementary High TOC instrument (Elementar Analysensysteme GmbH 

Germany) equipped with a platinum catalyst cartridge using synthetic air as the carrier 

gas. For spatial measurements, DOC data were only available for 18 out of 31 stations 

(Table 2-1). 

3.2.5. CDOM photodegradation 

In order to examine the effects of solar radiation on autochthonous and allochthonous 

CDOM in Lake Balaton, a 7-day in-lake incubation experiment was undertaken during 

mid-July 2014.  CDOM samples from Lake Balaton were incubated in 65 mL capacity 

quartz tubes over 7 days under natural solar radiation.  The mean daytime lake 

temperature of the lake over the experimental period was 24.6 °C. The quartz tubes 

were attached horizontally to a wire frame to minimise shading and submerged 

approximately 1 cm beneath the water surface in a sheltered bay. Fifty-six samples 

were taken in total of which twenty-one experimental were composed of 

phytoplankton-derived autochthonous CDOM (CDOMauto) and a further 21 were 

comprised of CDOM of allochthonous origin (CDOMallo). In addition, 14 dark control 

samples (CDOMallo-dark and CDOMauto-dark) were incubated (7 allochthonous, 7 

autochthonous).  

The autochthonous CDOM was extracted from a strain of Cylindrospermopsis 

raciborskii (ACT 9502) previously isolated from Lake Balaton and grown under 

nutrient replete conditions in semi-continuous culture at 24°C and 14:10 h light/dark 

cycle. Cylindrospermopsis raciborskii dominates the phytoplankton community during 

summer in Lake Balaton (Présing et al., 1996), often contributing >90% of the total 
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biomass. A total of 3200 mL of cultured material was centrifuged in the early stationary 

growth phase (5 min, 4000 rpm; Hermle Z320 BHG) in order to shake off the 

remaining allochthonous CDOM in the supernatant and the resulting cell pellet was 

broken using a mini-bead beater (30 s, 3500 rpm; Biospec products) to facilitate the 

release of cell contents. The total cell disruption was confirmed by microscopic 

examination (Olympus BX51). Similar processes take place in natural environments. 

During some natural process the cell releases its content, for example when grazed by 

zooplankton, (Levine et al., 1999) or in the presence of algal viruses causing the lysis of 

natural phytoplankton communities (Suttle et al., 1990). The material was incubated in 

the dark for 5 days at 20°C to allow production of CDOM and then diluted to 0.4 % 

(vol:vol) with ultrapure water. The aCDOMauto at day 0 was 1.33 m-1.  

For the CDOMallo samples, 5 L of water was collected inside the mouth of Zala River at 

1 m below the surface with an acid-rinsed amber glass bottle on day zero of the 

experiment. The predominately allochthonous origin of the DOM was confirmed by 

mass-spectrometry (Lajtha and Michener, 1994). 0.5 L of water was filtered in triplicate 

and the filter was dried and stored until analysis on an Isotope Ratio Mass Spectrometer 

(ANCA-MS, Europa Scientific Ltd., UK).  The 13C values of the allochthonous 

samples analysed had a mean 13C signal of -33.48 ± 0.43, which is consistent with 

published data on the 13C signature of C3 plants. 

The CDOMauto and CDOMallo samples were filtered through a pre-combusted 47 mm 

diameter glass fibre filter paper (Fisher Brand MF300, nominal pore size 0.7 m) 

previously rinsed with ultrapure water to remove particulate matter including bacteria. 

The samples were re-filtered using 0.2 m porosity Whatman nucleopore membrane 

filters. The quartz tubes were acid-washed for 24 h, and then rinsed repeatedly with 

ultrapure water. The tubes were then filled with the CDOM samples and sealed with 
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parafilm to prevent contamination. The dark samples were wrapped with black vinyl 

tape (resistant to UV radiation). Data on the total solar UV-radiation during the 

experiment were obtained from the Hungarian Meteorological Service. 

One CDOMallo and one CDOMauto sample were collected and analysed in triplicate at 

daily time steps and their absorption and fluorescence spectra were measured. CDOM 

absorption coefficients were measured according to the methods detailed above. 

Subsamples for fluorescence measurements were stored cold (4 °C) and in the dark 

after preservation with a 0.5 % (vol:vol) of 10 g L-1 sodium azide (NaN3) (Giovanni M 

Ferrari et al., 1996) until further analysis.  

Spectral fluorescence signatures (SFS) were measured using an Instant Screener (ISC) 

analyser (Laser Diagnostic Instruments Ltd., Tallinn, Estonia).  Measurements were 

made using a 1 cm quartz cuvette at excitation wavelengths from 240 to 360 nm and at 

emission wavelengths from 260 to 575 nm with a 5 nm slit-widths for excitation and 

emission wavelengths. Ultrapure water with 0.5 % NaN3 was used as a reference. The 

fluorescence signals of the samples were examined in two spectral regions. “Protein-

like” fluorescence (Fn(280)) was excited at a wavelength of 280 nm, with the emission 

peak recorded in the range 350 ± 5 nm. “Humic-like” fluorescence (Fn(355)) was 

excited at 355 nm and its emission was measured at 450 ± 5 nm (Vignudelli et al., 

2004; Vodacek et al., 1997).  The fluorescence data were expressed as QSU (Quinine 

sulfate units; (Coble et al., 1998).  
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3.3. Results 

3.3.1. Seasonal variability 

 CDOM optical properties 

There was some (pronounced in basin 1, noticeable in basin 2 and low in basin 4) 

seasonal variability in the CDOM concentration measured in Lake Balaton throughout a 

year (Figure 3-2, Table 3-1). It should be stressed that seasonal changes were only 

measured for one year and may not represent the typical seasonal cycle observed over 

longer time periods. High aCDOM (440) values were observed throughout the year at the 

mouth of the Zala River in the Keszthely basin at ST01 (Table 3-2), with 

concentrations increasing from an annual minimum in spring (3.69 m-1 in March) to a 

peak in August (9.01 m-1) during the warmest and driest period of the year (Anda and 

Varga, 2010). Values of aCDOM (440) decreased for ST03 (0.64 m-1 in June – 1.43 m-1 in 

March) and were consistently lower and less variable in the other lake basins with a 

maximum value of 0.63 m-1 observed at ST12 (Szigliget) in September and a minimum 

value of 0.06 m-1 at ST30 (Siófok) in June.  

Table 3-1 Seasonal variability of aCDOM (440) for permanent stations 

Month ST01 ST02 ST03 ST04 ST05 ST06 

3 3.694 1.435 NA NA 0.265 NA 

4 5.485 1.244 0.617 0.468 0.228 0.302 

5 6.831 0.912 0.603 0.615 0.221 0.329 

6 6.872 0.637 0.417 0.152 0.145 0.062 

7 7.547 0.670 0.419 0.274 0.088 0.111 

8 9.005 0.746 0.507 0.431 0.258 0.189 

9 6.172 0.930 0.633 0.265 0.196 0.170 

MAX 9.005 1.435 0.633 0.615 0.265 0.329 

MIN 3.694 0.637 0.417 0.152 0.088 0.062 

MEAN 6.515 0.939 0.533 0.367 0.200 0.194 
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Table 3-2 Values of CDOM absorption coefficient at 440nm, CDOM slope coefficient between 350 and 500nm, DOC concentration, E2:E3 ratio, SUVA254 and 

mean distance of the basin to River Zala. Values obtained for CDOM seasonal variation. 

Station Basin 

aCDOM (440) (m-1) 

Min    -   Max 

Season   Season 

(Mean±SD)  

SCDOM (350-500) (nm-1) 

Min    -   Max 

Season   Season 

(Mean±SD)  

[DOC] mg·L-1  

Min    -   Max 

Season   Season 

(Mean±SD)  

Distance to River 

Zala (Km) 

01 

Keszthely 

3.69 - 9.01 

Summer - Spring 

(6.52±1.54) 

0.0161 - 0.0181 

Spring - Summer 

(0.0173±0.0006) 

10.02 - 19.70 

Summer - Winter 

(16.08±2.88) 

0.48 

03 

0.64 - 1.43 

Spring - Summer 

(0.94±0.28) 

0.0187 - 0.0221 

Summer - Summer 

(0.0201±0.0011) 

8.97 - 12.67 

Autumn - Spring 

(10.15±1.04) 

3.59 

12 Szigliget 

0.42 - 0.63 

Autumn - Summer 

(0.53±0.09) 

0.0185 - 0.0230 

Summer - Summer 

(0.0211±0.0016) 

8.88 - 10.85 

Autumn - Spring 

(9.51±0.66) 

14.95 

20 Szemes 

0.15 - 0.61 

Spring - Summer 

(0.37±0.15) 

0.0175 - 0.0275 

Summer - Summer 

(0.0213±0.0035) 

8.23 - 9.00 

Summer - Autumn 

(8.76±0.23) 

39.73 

25 

Siófok 

0.09 - 0.26 

Spring - Summer 

(0.20±0.06) 

0.0185 - 0.0279 

Summer - Summer 

(0.0215±0.0033) 

7.63 - 8.54 

Summer - Spring 

(8.13±0.25) 

62.86 

30 

0.06 - 0.33 

Spring - Summer 

(0.19±0.10) 

0.0158 - 0.0300 

Summer - Spring 

(0.0219±0.0049) 

7.82 - 8.36 

Autumn - Spring 

(8.01±0.18) 

69.16 
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The lowest and highest SCDOM (350-500) coefficients were observed in Keszthely (I) 

basin and ranged from 0.0161 nm-1 in August at ST01 to 0.0221 nm-1 in June at ST03 

(Figure 3-2).  SCDOM was more variable with increasing distance from the inflow; all 

the stations except for ST01 demonstrated a maximum in early or mid-summer month 

(June-July) and minima in spring and autumn (Table 3-2). The maximum value for 

SCDOM (350-500) was 0.0300 nm-1 at ST30 in June and the minimum observed was 

0.0158 nm-1 at ST30 in May, highlighting the high variability of this parameter near the 

outflow. The mean (and range) in SCDOM (350-500) for Lake Balaton in the summer 

period was 0.0211 nm-1 (0.0174 to 0.0229 nm-1), higher than values reported in several 

other spatial variation studies including Lake Erie (C. Binding et al., 2008; O’Donnell 

et al., 2010) and Lake Chapman (O’Donnell et al., 2013).   

 

Figure 3-2 Seasonal aCDOM (440), SCDOM(350-500) and DOC concentration variation in Lake Balaton 

between January and December 2014 and seasonal variability of runoff in Balaton region (Hungary), 

monthly means from 1921 to 2007 (modified from (Anda and Varga, 2010). 
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SCDOM (350-500) values for Keszthely and Siófok basins were negatively correlated 

with aCDOM (440) (Figure 3-3a & b) (R2=0.78, p<0.001 for the Keszthely basin and 

R2=0.92, p<0.001 for the Siófok basin). The relationship between SCDOM and aCDOM in 

the Szigliget and Szemes basins was also negative (R2=0.91, p=0.01 for Szigliget and 

R2=0.79, p=0.01 for Szemes) (Figure 3-3b).  

 

Figure 3-3 Plot of SCDOM (350-500) as a function of aCDOM (440) using the seasonal sampling data for (a) 

basin Keszthely, SCDOM (350-500) = -0.0005·aCDOM (440) + 0.0205, R2=0.7833, p<0.001 and (b) basin 

Szigliget, SCDOM (350-500) = -0.0114·aCDOM (440) + 0.0277, R2=0.9122, p=0.011; basin Szemes, SCDOM 

(350-500) = -0.0209·aCDOM (440) + 0.0209, R2=0.7932, p=0.0108 and basin Siófok, SCDOM (350-500) = -

0.0507·aCDOM (440) + 0.0317, R2=0.9154, p<0.001. 

 DOC 

Seasonal variation in DOC was measured at six permanent sampling stations (Stations 

01 and 03 from Basin Keszthely (I), Station 12 from Basin Szigliget (II), Station 20 

from Basin Szemes (III), Stations 25 and 30 from Basin Siófok (IV). DOC 

concentrations ranged from 7.63 at ST25 in April to 19.70 mg L-1 at ST01 in July with 

a mean value of 10.1 mg L-1 (Table 3-2). The highest concentrations were observed at 

ST01 (where the Zala River enters the lake) in summer (July: mean 19.7 mg L-1, 



91 

 

August: mean 18.6 mg L-1) with a slightly smaller secondary peak in early autumn 

(October: mean 18.9 mg L-1) (Figure 3-2).  However, a slightly different trend was 

observed in the central part of Keszthely basin at ST03, where DOC started increasing 

at the end of the summer reaching a maximum in November (12.7 mg L-1). For stations 

furthest from the main inflow, DOC concentrations remained relatively consistent 

during the course of the year, with two small peaks at ST12 in July and November. 

DOC concentrations at ST20, 25 and 30 were significantly lower at the p<0.5 level than 

ST01, 03 (ANOVA (F (1,57) = 31.63, p<0.001). 
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Table 3-3 Values of CDOM absorption coefficient at 440nm, CDOM slope coefficient between 350 and 500nm, DOC concentration, E2:E3 ratio, SUVA254 and 

mean distance of the basin to River Zala. Values obtained for CDOM spatial variation (values July 2014). 

Basin 

aCDOM (440) (m-1) Min 

- Max 

 (Mean)  

SCDOM (350-500) (nm-1) Min 

- Max 

(Mean) 

[DOC] mg·L-1 Min - 

Max 

(Mean)  

E2:E3 ratio     

Min - Max 

(Mean)  

SUVA254 (L·mg-1·m-1) Min - 

Max 

(Mean)  

Mean distance to 

River Zala (Km) 

Kis-Balaton 
2.45 - 4.66 

(3.58) 

0.0186 - 0.0191 

(0.0189) 
---  --- 

 

Kestzthely 
0.57 - 7.89 

(1.49) 

0.0174 - 0.0212 

(0.0199) 

10.9 - 8.85 

(9.66) 

34.1 - 11.1  

(15.9) 

4.45 - 3.59 

(4.04) 

3.84 

Szigliget 
0.33 - 4.31 

(1.00) 

0.0190 - 0.0214 

(0.0209) 

9.63 - 8.50 

(8.85) 

28.8 - 14.4 

(18.9) 

4.35 - 3.24 

(3.70) 

17.4 

Szemes 
0.26 - 0.34 

(0.294) 

0.0211 - 0.0221 

(0.0215) 

9.07 - 8.03 

(8.56) 

44.3 -18.4 

(27.2) 

3.82 - 2.62 

(3.12) 

40.0 

Siófok 
0.17 - 0.21 

(0.193) 

0.0203 - 0.0229 

(0.0215) 

8.99 - 8.14 

(8.66) 

62.0 - 24.1 

(42.2) 

3.13 - 2.47 

(2.69) 

60.5 
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3.3.2. Spatial variability 

 CDOM optical properties 

We observed an aCDOM gradient across the lake (Figure 3-4a) with higher aCDOM (440) 

values in Kis-Balaton and the Keszthely basin (I) (where the Zala River enters into the 

lake) decreasing rapidly towards the northeastern basins near the outflow.   The aCDOM 

(440) coefficients were markedly different between basins ranging from 0.17 to 7.89 m-

1 with the highest value observed in Keszthely basin at the mouth of Zala River (Figure 

3-4a and Figure 3-5a) (Table 3-3). 
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12  

Figure 3-4 a) Spatial aCDOM (440) variation in Lake Balaton per station. b) Spatial SCDOM (350-500) 

variation in Lake Balaton per station. c) Spatial DOC concentration in Lake Balaton per station.  Data 

derived from measurements made in July 2014. 

SCDOM coefficients showed marked variability (0.0174-0.0229 nm-1) compared to 

previous studies in inland and marine waters (e.g. Helms et al., 2008). There was no 

consistent trend in SCDOM coefficients across the lake although the lowest values 

generally occurred in the western basin near the inflow (Figure 3-4b, Figure 3-5b). In 

Kestzthely (I) basin and the western parts of Szigliget (II) basin nearest the inflow of 
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the Zala River, higher variability was observed with lower SCDOM coefficients more 

than elsewhere in the lake. In our study, SCDOM (350-500) exhibited a negative 

correlation with aCDOM (440) (Figure 3-6a & b) as has been shown in previous studies 

(e.g., (C. a. Stedmon et al., 2000), (Castillo and Coble, 2000); (Yacobi et al., 2003b); 

(Rochelle-Newall et al., 2004); (Yunlin Zhang et al., 2007b); (Kowalczuk et al., 

2003b). 

 

Figure 3-5 Scatterplots against distance to the main inflow [Km] with loess curve fitted to data. (a) 

Variation of CDOM absorption coefficient at 440 nm (aCDOM (440)) [m-1], (b) CDOM slope coefficient 

between 350 and 500 mm (SCDOM (350-500)) [nm-1] variation, (c) 

The E2:E3 ratio varied significantly (R2=0.47, p<0.001) between the mouth of the river 

(11.1) and the main outflow (62.0) as specified in Table 3-3. SUVA254 varied between 

2.47 L mg-1 m-1 at ST25 in the Siófok basin to 4.45 L mg-1 m-1 at ST06 in the Keszthely 
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basin (Table 3-3). Figure 3-5d and 6e shows that SUVA454 decreased with distance 

from the inflow of the River Zala (R2=0.713, p<0.001), whereas E2:E3 ratio increases 

with increased with distance from the main inflow.  

 

Figure 3-6 Plot of SCDOM (350-500) as a function of aCDOM (440) spatial variation. a) Kis Balaton, SCDOM 

(350-500) = 0.019266*aCDOM (440)-0.017362; basin Keszthely, SCDOM (350-500) = 0.019817*aCDOM (440)-

0.070820 and basin Szigliget, SCDOM (350-500) = 0.020418*aCDOM (440)-0.070820. b) Basins Szemes, SCDOM (350-

500) = -0.01252·aCDOM (440) + 0.02521 and Siofok, SCDOM (350-500) = -0.03330·aCDOM (440) + 

0.027900. 

 DOC 

Concentrations ranged from a minimum of 8.03 at ST17 (Basin III) to 10.9 mg L-1 at 

ST07 (Basin 1) with a mean value of 9.66 in the Keszthely basin (I), 8.85 for the 

Szigliget basin (II), 8.56 for the Szemes basin (III) and 8.66 for the Siófok basin (IV). 

DOC concentrations slowly decreased with increasing distance from Zala River 

(Figure 3-4c, Figure 3-5c), similarly to the trends observed for aCDOM (440), but with 

greater variability through the system than for SCDOM (coefficient of variation (CV) for 

SCDOM = 0.053) and smaller than for aCDOM (440) (CV for aCDOM (440) = 2.065). DOC 

concentrations showed a strong and positive relationship with aCDOM (440) coefficients 
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over the entire dataset (Figure 3-7) (R2=0.945, p<0.001) although for individual basins 

this relationship was only significant for Keszthely (R2=0.952, p= <0.001).  

 

Figure 3-7 Scatterplot of aCDOM (440) plotted as a function of DOC concentration (mg/L).  Line is a 

regression curve by least squares fit. 

3.3.3. CDOM photodegradation experiment 

Ultraviolet irradiance during the photobleaching experiment ranged from 7.79 to 42.9 

MJ m-2 per day with a mean of 32.4 MJ m-2 per day (Figure 3-8a). The exposure of 

CDOM to natural solar UV radiation resulted in marked alterations to its absorption 

properties (Figure 3-8b). aCDOM (440) remained relatively constant in the dark control 

samples (7.04 to 6.18 m-1) for the allochthonous treatment from days 0 to 7 (Figure 

3-8b) indicating minimal bacterial degradation of CDOM. However, the CDOMallo 

samples exposed to natural solar radiation demonstrated considerable a reduction in 

absorption (ANOVA, F (1,14) = 12.70, p=0.003; Figure 3-8b) in the visible part of the 

spectrum (440 nm) with regard to the dark samples. After 7 days, aCDOM (440) for the 

allochthonous samples decreased from 7.04 to 3.36 m-1; this equates to a rate of loss of 

1.49 m-1 d-1 and a 42 % net decrease in absorption from day 0.  The difference observed 

between the control samples and those exposed to natural solar radiation is indicative of 

a strong photobleaching effect, although it is also possible that bacterial degradation 
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was enhanced in the light.  In contrast, there was no discernible, systematic change in 

the CDOMauto samples over time.  They showed an increase in aCDOM (440) during the 

first 3 days (Figure 3-8b) from 1.22 to 1.34 m-1, but subsequently showed a decrease in 

absorption from 1.34 to 0.312 m-1 during the last 4 days, which equates to a 77 % 

decrease (1.03 m-1) from the value at day 3. 

 

Figure 3-8 a) Ultraviolet irradiance during the photobleaching experiment. b) Variation of SCDOM (350-

500) per day. c) Variation of aCDOM (400) accumulated UV radiation. 

The autochthonous control samples (CDOMauto-dark) varied in aCDOM (440) from 1.22 to 

0.596 m-1; in the absence of photobleaching the decrease in aCDOM (440) might be 

explained by residual bacterial activity (although the samples were filtered to minimise 

bacterial contamination before exposure). 

Photodegradation also modified the spectral slope coefficient of the samples (Figure 

3-8c). The values of SCDOM (350-500) for the CDOMallo samples remained stable, 

varying less than 0.001 nm-1 per day. However, for the CDOMauto treatment, SCDOM 
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coefficients decreased conspicuously until the third day (from 0.009 to 0.005 nm-1) and 

then increased with further irradiation from day 3 to day 7 until recovering to its 

original value (from 0.0051 to 0.0084 nm-1). Both the spectral slope (ANOVA, F (1,14) 

= 63.20, p<0.001) and absorption coefficient (ANOVA, F (1,11) = 208.65, p<0.001) 

values for CDOMauto were significantly lower than those for CDOMallo. 

Humic-like fluorescence as indicated by Fn (355) decreased gradually for the CDOMallo 

samples with increasing cumulative UV radiation and exposure time (Figure 3-9a) 

from 41.1 to 17.5 QSU (42.6 % of the original value). Interestingly, no marked changes 

or clear trend was observed in Fn (280) (Figure 3-9b), suggesting protein-like 

fluorescence was less susceptible to degradation by natural solar radiation. 

 

Figure 3-9 Changes in humic-like fluorescence (Fn (355)) and protein-like fluorescence (Fn (280)) for 

allochthonous CDOM samples with time during photobleaching experiment. Bars = ±Standard 

Deviation. 

There were more than ten orders of magnitude difference in fluorescence intensity 

between CDOMallo and CDOMauto samples, presumably driven by the difference in 

concentration. Given the low concentrations of CDOM, after Milli-Q correction, there 

was no measurable fluorescence signal for the autochthonous samples. 
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3.4. Discussion 

3.4.1. Dynamics of dissolved organic carbon 

CDOM is the coloured fraction of DOC and is often the dominant light absorbing 

component in lakes, particularly at blue and green wavelengths. Previous research has 

shown that CDOM can be responsible for up to 80 % of light absorption in Lake 

Balaton Riddick et al. (2015) in spite of the fact that the lake also has high 

concentrations of phytoplankton and non-algal particles (NAP). The high input of DOC 

from the Zala River results in elevated concentrations in the western basin relative the 

remainder of the lake (from 0.169 m-1 near the outflow to 7.89 m-1 at the mouth of the 

Zala river).  High DOC concentrations were largely confined to the waters nearest the 

inflow but the at times the influence of this input could be observed across the 

westernmost basin and as such must exert influence over metabolic processes in this 

part of the lake.  In comparison to published data from other large systems such as Lake 

Erie (O’Donnell et al., 2010); 0.19-2.0 m-1), Lake Champlain (O’Donnell et al., 2013); 

0.5-1.15 m-1) and lakes Peipsi, Vättern and Vänern (Reinart et al., 2004); 0.33-3.82 m-1) 

the magnitude of variability in aCDOM (440) observed in this study was markedly greater 

(although these previous studies might not have captured the full range of aCDOM(440) 

variation), which is perhaps surprising given the northerly latitude of some of these 

lakes (Curtis, 1998). However, the magnitude variability in aCDOM(440) observed in this 

study is not too dissimilar from that reported previously in other systems such as Lake 

Taihu (Zhang et al., 2011).  

The seasonal pattern in CDOM absorption and DOC concentration varied considerably 

in the western basin, but was relatively constant in other basins. The annual peak(s) in 

aCDOM (440) and DOC occurred in spring and/or autumn some stations (e.g., ST03, 

ST12, ST30) were broadly coincident with or lagged slightly behind the annual runoff 
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maxima suggesting a seasonal trend that was partly driven by the flushing of organic 

matter from catchment soils during high flow events.  This pattern is common in many 

temperate and boreal lakes where DOC export from catchments is driven by the 

availability of flushable terrestrial carbon sources and the seasonality of precipitation 

and/or snowmelt.  

Conversely, at the station nearest to the inflow of the River Zala the main peak in 

aCDOM (440) and DOC occurred in summer (August and July respectively) with a 

smaller secondary peak in DOC the autumn. The summer peak in aCDOM (440) and 

DOC at the inflow of the River Zala was clearly related to the proximity of the station 

to the mouth of the River Zala and a high input of humic-rich water from the Kis-

Balaton wetland complex.  In wetlands, high production of DOC can occur during the 

growing season due to leaching from plants and biological degradation of organic 

detritus (Freeman et al., 2004; Pinney et al., 2000). In our study system, this summer 

peak in DOC production also coincides with the annual rainfall minimum and the 

period of lowest flow into the lake, resulting in a concentrated input of humic-rich 

water and elevated CDOM absorption at the inflow of the Zala and across the western 

basin.  

It is also notable that the effect of this humic-rich water from the River Zala on the 

biogeochemistry and light climate in Lake Balaton diminishes rapidly through the 

system in summer. This can be partly attributed to the dilution of the inflow with less 

humic water, but also the rapid degradation of the highly biologically and 

photochemically reactive DOC originating from Kis-Balaton during a period when 

microbial activity is high due to warm water temperatures and UV irradiance is at its 

maximum. The collective residence time of the Keszthely and Szigliget basins (0.25 

and 0.72 years respectively; (Somlyódy, L., & van Straten, 2012) explains why the 
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highly humic and labile components of the DOC entering the lake from the River Zala 

are largely degraded before reaching the Szemes basin with only the most recalcitrant 

DOC fractions persisting beyond the westernmost basins. The resulting differences in 

CDOM composition are clearly reflected in the variability in the CDOM absorption 

characteristics (SCDOM, SUVA254 and E2:E3) observed through the system.  These 

findings agree with other field and experimental studies which have shown that CDOM 

can be rapidly degraded by photobleaching in summer (Del Vecchio and Blough, 2002; 

Vodacek et al., 1997; Yunlin Zhang et al., 2009a).   

The mean (and range) in SCDOM (350-500) for Lake Balaton in summer was 0.0211 nm-1 

(0.0174 to 0.0229 nm-1), higher than values reported for several other systems including 

Lake Erie (C. Binding et al., 2008; O’Donnell et al., 2010) and Lake Chapman 

(O’Donnell et al., 2013) (Figure 3-2 & Figure 3-5b).  The values reported by (C. E. 

Binding et al., 2008; O’Donnell et al., 2013) were more comparable to the mean slopes 

observed for the humic-rich waters encountered in Kis-Balaton (0.0189 nm-1) and the 

Keszthely basin (0.0199 nm-1).  However, it should be stressed that some of this 

variation could in part be explained by the different wavelength ranges used in the 

calculation of SCDOM.  The magnitude of spatial variability in Lake Balaton was more 

comparable to that reported for northern Lake Taihu, where SCDOM was found to vary 

between 0.0127 to 0.0190, from 0.0159 to 0.0220 and from 0.0122 to 0.0174 nm-1 for 

the wavelength domains 280 to 500 nm, 280 to 360 nm and 360 to 400 nm respectively 

(Y. Zhang et al., 2007a) and between 0.0180 to 0.0281 nm-1 (for SCDOM (280-500)) in 

(Zhang et al., 2011). 

Very few studies have investigated seasonal variation in SCDOM in lakes. In the present 

study, seasonal variation in SCDOM (350-500) was greatest in the eastern basin furthest 

from the inflow ranging from 0.0158 nm-1 to 0.0300 nm-1 (Table 3-2, Figure 3-2) with 
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a mean annual value of 0.0205 nm-1.  The range observed in Lake Balaton was greater 

than previously reported in other lake systems. (Ylöstalo et al., 2014) for instance 

reported a mean (range) of 0.0182 nm-1 (0.0155-0.0200 nm-1) for 15 boreal lakes in 

Southern Finland within the summer months.  Interestingly, there is more variation in 

SCDOM in lakes and other optically complex inland waters (Kowalczuk et al., 2003b; Y. 

Zhang et al., 2007a) than shelf sea environments despite the fact the latter are globally 

diverse and far more extensive (Babin et al., 2003). 

The structural modifications in DOM and its coloured fractions that are in part 

conveyed through variation in SCDOM result from interplay between the input of 

allochthonous DOC from the catchment, the production of autochthonous DOC from 

the microbial digestion of phytoplankton cells and the rate at which these materials are 

degraded biologically and photochemically (Nelson et al., 1998; Vantrepotte et al., 

2007; Yamashita and Tanoue, 2004; Yunlin Zhang et al., 2009b)(Yamashita et al., 

2013).  Newly produced autochthonous CDOM typically has a higher SCDOM coefficient 

compared to humic-rich allochthonous material (Bracchini et al., 2010). Photobleaching 

also results in an increase in SCDOM.  The majority of sampling stations in Lake Balaton 

exhibited higher slope coefficients during the summer months, which could be 

attributed to an increase in new autochthonous DOC production from the growth and 

decay of phytoplankton during the summer bloom period and intense photobleaching of 

humic-rich material received from the catchment.  Seasonal variability in SCDOM was 

notably lower at the inflow of the River Zala than in the easternmost basins, which 

again probably reflects the marked effect that intense summer photobleaching has on 

the structural composition of dissolved organic matter as it slow moves through the 

system. 
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Noticeably, while aCDOM (440) and SCDOM (350-500) demonstrated a strong inverse 

relationship over the entire dataset, the slope of this relationship varied significantly 

between the different basins in the lake. The slope of the relationship highest in the 

eastern basin and lower in the west near the inflow where DOC concentrations were the 

highest. The relationship between aCDOM (440) and SCDOM is known to be influenced by 

both its provenance and any subsequent transformations (Carder et al., 1989; Helms et 

al., 2008) that take place. The observed trends in Lake Balaton are likely to be a result 

of the mixing of water rich in allochthonous carbon from the River Zala with more 

dilute and autochthonous carbon sources in the main lake and the progressive 

degradation of this material via photobleaching as it moves through the system. 

Comparable trends have been found by (Y. Zhang et al., 2007a) in the Yunnan Plateau 

lakes. 

E2:E3 ratio variation found in this study have also been shown in previous studies 

(Helms, 1998; Santos et al., 2014). In coastal waters E2:E3 values are typically within 

the range 8.70±1.4 and 13.5±1.6 (nearshore – offshore in Georgia Bight; (Helms et al., 

2008). In inland and transitional waters, E2:E3 ratios as high as 14.6 have been reported 

in Lake Taihu (Zhang et al., 2011) and up to 26.9 in Chesapeake Bay (Helms et al., 

2008). E2:E3 values for Lake Balaton were significantly higher and more variable than 

previously reported varying between 11.0 and 72.0, with the highest values near the 

outflow indicating the CDOM here was less humified and had a lower molecular 

weight. Increasing values of E2:E3 ratio have been reported by other authors indicating 

a decrease in colour as well as in molecular weight (Helms et al., 2008; Peuravuori and 

Pihlaja, 1997).  

Similar trends were also observed in SUVA254. In Lake Balaton, SUVA254 varied 

between 2.5 mg-1 m-1 in the easternmost basin and 4.5 L mg-1 m-1 near the mouth of the 
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River Zala.  This again indicates that water entering from the river contained high 

molecular weight dissolved organic carbon with a high content of aromatic substances 

(Weishaar et al., 2003a), whereas the compounds comprising the DOC in the central 

and eastern parts of the lake had a lower molecular size and aromaticity. The SUVA254 

values measured in Lake Balaton were broadly comparable to those reported for other 

lake systems.  For example, (Song et al., 2013) reported a maximum value of 8.7 ± 2.8 

(L mg-1 m-1) for 26 inland water bodies in China.  SUVA254 values were lower than 

those reported for marine waters where the relative contribution of autochthonous 

carbon sources is often greater. The sensitivity of SUVA254 to changes in the carbon 

provenance is shown by (Asmala et al., 2013) who obtained a range SUVA254 values of 

3.58±0.33 5.41±0.40 L mg-1 m-1 in three Baltic Sea estuaries whereas measurements 

taken from stations on the sea shelf varied between 1.87±0.09 and 3.47±0.27 L mg-1 m-

1.  

3.4.2. CDOM photobleaching 

The spatio-seasonal variability in CDOM absorption in Lake Balaton strongly suggests 

that photobleaching plays a key role in the processing and degradation of dissolved 

organic carbon as it flows through the system.  Rapid degradation of allochthonous 

CDOM was observed (Figure 3-8), which was especially pronounced at the time of 

year with the highest solar radiation but probably also enhanced by mineralisation by 

bacterial activity as a response to high water temperatures during the summer period. 

Dilution processes alone cannot explain the loss of DOC; therefore, it must also be due 

to in-lake transformation. The processing and transformation of DOC by 

photobleaching not only influences carbon cycling, but it also is accompanied by an 

increase in the transparency of the water column (Osburn et al., 2009) and changes in 
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the optical properties (Yamashita et al., 2013) that have wider implications for the 

underwater light climate and primary production. 

The in-lake incubations conducted in Lake Balaton provide further substantiation for 

the critical role of photochemistry in the turnover of CDOM. We observed rapid 

changes in the absorption properties of CDOM in response to exposure to natural UV 

irradiation. In the allochthonous CDOM treatments, the rate of degradation resulted 

higher than that obtained for Lake Taihu by Zhang et al. (2013) who reported a 22 % 

decrease over 9 days. Bacterial degradation was not noticeable in the allochthonous 

samples as there was almost no difference in aCDOM(440) for the dark treatment 

compared to the initial value (Figure 3-8d) although we cannot exclude the possibility 

of enhanced bacterial degradation in light exposed treatments (Kragh et al., 2008). 

Photodegradation also modified the spectral slope (Figure 3-8b) of the CDOM 

absorption spectra. Both the spectral slope and absorption coefficient for autochthonous 

CDOM were significantly lower than for allochthonous samples (ANOVA, F (1,27) = 

6.55, p=0.01). During our experiment, SCDOM (350-500) did not follow a systematic 

trend in the allochthonous samples, varying less than 0.0007 m-1
 per day. However, for 

the autochthonous treatment, it decreased conspicuously until the third day (from 

0.0087 to 0.0051 m-1) but then increased again from day 3 to day 7 until it almost 

returned to its original value (from 0.0051 to 0.0084m-1). The increase in slope matches 

with an increase in aCDOM (440) and has been considered by (Helms et al., 2008) to be a 

result of transformation from high to low molecular weight CDOM and is considered to 

be a response to photo-induced decomposition (Grzybowski, 2000; Moran et al., 2000; 

Yamashita et al., 2013).  The initial decrease in slope during the early part of the 

experiment echoes observations by  (Yamashita et al., 2013) and (C.G. Fichot and 
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Benner, 2012) whom attributed this phenomena to microbial degradation of 

bioavailable CDOM (Nelson et al., 2004).  

The fluorescence spectra also indicate a marked difference in composition between the 

allochthonous and autochthonous material. The decomposition of CDOM into lower 

molecular weight compounds under UV-B radiation (Lepane et al., 2003) results in a 

significant loss of both absorption and fluorescence. The negligible fluorescence signal 

observed for the autochthonous CDOM samples in this study is likely due to its low 

concentration.  In contrast, the humic-like fluorescence signal measured from 

allochthonous samples was initially high but decreased over the experimental period 

from 41.07 to 17.48 QSU (57.5 % decrease). Similarly, we observed a reduction in 

protein-like fluorescence from 2.06 to 1.93 QSU (6.31 % decrease; Figure 3-9b) over 

the 7 days of the experiment. This agrees strongly with the results of previous studies 

showing the fluorescence signal from humic compounds is rapidly lost through 

photobleaching, whereas aromatic-like fluorescence is generally not as susceptible to 

photo-degradation. Helms et al. (2013) for example reported an 84% decrease in 

humic-like fluorescence in response to photobleaching compared to an only 47 % 

decrease in aromatic-like fluorescence after 68 days of continuous irradiation in a UV 

solar simulator. 

3.4.3. Implications for underwater light field 

The absorption of light by CDOM is a major determinant of water transparency in lakes 

and the availability of light for primary production (Kirk, 1994; Laurion et al., 2000, 

1997; Vähätalo et al., 2005). Absence of measurements of the underwater light field 

makes it difficult to attribute its effect to this particular case, but there clearly exists 

evidence that the dynamic nature of dissolved organic carbon in lakes results in marked 

spatio-seasonal variation in both the magnitude and wavelength-dependency of light 
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absorption by chromophoric substances. This variability undoubtedly has implications 

not only for the quantity of light available to photosynthetic organisms but also its 

quality.  High concentrations of CDOM result in intense absorption of light at blue and 

green wavelengths but the intensity of absorption decreases exponentially with 

wavelength. This not only has implications for the productivity of the system (Cory et 

al., 2015), but also for the photo-physiology and species composition of the 

phytoplankton community. The intense absorption of UV light by CDOM protects 

phytoplankton from physiological damage and reduces the need for phytoplankton cells 

to manufacture UV-protective pigments. This can result in chromatic acclimation with 

phytoplankton in high CDOM waters investing less in UV-protective pigments 

(Riddick et al., 2015). 

The magnitude of variability in the spectral dependency of CDOM absorption also has 

implications for bio-optical models of the underwater light field that are used to 

underpin remote sensing algorithms for estimation of CDOM in lakes and other inland 

waters. Existing bio-optical models (Lee et al., 2002a) commonly extrapolate 

absorption by CDOM in the blue to longer wavelengths using a fixed slope coefficient. 

We demonstrate here that even within a single lake system significant variability can 

occur in SCDOM. Failure to accommodate variability in SCDOM in bio-optical models will 

lead to errors not only in the estimation of CDOM absorption but also in the 

contributions of other optically-active substances (e.g., chlorophyll, non-algal particles) 

to light absorption and scattering within the water column. In Lake Balaton, the 

variability observed in SCDOM (0.0174 - 0.0289 nm-1) could produce errors up to 180 % 

and 900 % on estimates of aCDOM at wavelengths in the blue (350 nm) and red (650 nm) 

respectively. This suggest that new approaches are needed to incorporate knowledge on 

the variability in SCDOM into adaptive bio-optical modelling frameworks for optically-
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complex waters to improve our ability to model the underwater light field and increase 

the performance of physics-based remote sensing algorithms for CDOM retrieval.  

3.5. Conclusions 

This study revealed the high spatial and seasonal variability in the quantity and quality 

of CDOM that can exist within a large, temperate shallow lake.  The variation was 

strongly driven by the allochthonous input of dissolved carbon from the Zala River and 

its rapid transformation as it moves through the system. The variability in the quantity 

and quality of CDOM was strongly reflected in a number of readily measured optical 

parameters including SCDOM, E2:E3 ratio and SUVA254, which collectively pointed 

towards a marked decrease in the molecular weight of dissolved carbon compounds, a 

reduction on its aromatic content and a decrease in the degree of humification as water 

moved through the system from the main inflow to outflow.   

Photobleaching was found to be a major factor controlling the in-lake transformation 

and degradation of CDOM, and a key process influencing the spatial structure CDOM 

throughout the system. The photobleaching rate coefficient for allochthonous CDOM 

was found to be higher than for autochthonous CDOM due to the greater 

photoreactivity of terrestrially-derived compounds.  CDOM in Lake Balaton is mainly 

terrestrial in origin and is thus rapidly degraded by exposure UV irradiation.  The 

implied importance of photobleaching to carbon dynamics is consistent with previous 

studies conducted in other inland water bodies (Zhang et al. 2013) as well as other 

studies carried out in shelf seas (Babin et al., 2003) and the open ocean ((Helms et al., 

2013).   

More widely, these results provide an insight on the potential contribution of wetlands 

to DOM and CDOM in lakes, not only in terms of the concentration of CDOM but also 
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its seasonality. The seasonal trend in CDOM observed close to the main inflow was 

significantly different from that observed elsewhere in the system.  Notwithstanding the 

fact that most of the CDOM in Lake Balaton would seem to be terrestrial in origin, we 

did observe an increase in aCDOM (440) in autumn following the breakdown of 

phytoplankton blooms on the lake.   

The observed spatial and temporal variability in the optical properties of CDOM in this 

study has important implications for biogeochemical cycling in Lake Balaton but also 

for bio-optical models of the underwater light climate in lakes and their application in 

the parametrization of algorithms for optical remote sensing of CDOM and other 

optically-active constituents.   
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4. CHAPTER 4 – REMOTE SENSING OF COLOURED DISSOLVED 

ORANIC MATTER IN LAKES: OPTIMISING RETRIEVAL 

ALGORITHMS FOR GLOBAL APPLICATION 

4.1. Introduction 

Lakes and in particular, small inland water bodies, play an important role in the global 

carbon cycle (Cole et al., 2007b) affecting climate and acting as indicators of climate 

warming (Williamson et al., 2009). Dissolved organic carbon (DOC) is one of the 

predominant forms of carbon in most lakes (Tranvik et al., 2009) and coloured 

dissolved organic matter (CDOM) is one of the major contributors to light and heat 

absorption in fresh and near-shore coastal waters (Soppa et al., 2019), being commonly 

used as a proxy for DOC (Hoge et al., 1993; Williamson et al., 2001).  

CDOM contributes significantly to and often dominates light absorption in freshwaters, 

particularly at wavelengths <500 nm (Fichot et al., 2007; Nelson and Siegel, 2013) 

playing an important role in photo-processes (Smith et al., 1992; Herndl et al., 1993; 

Häder et al., 1998; Aulló-Maestro et al., 2017). In waters with high concentrations of 

CDOM (humic waters), light does not penetrate more than 30-50 cm in the water 

column (Gareis et al., 2010), making deeper waters dark and protected from sunlight, 

limiting photo-degradation processes. All this can lead to reductions in water 

transparency to UV and photosynthetically active radiation (PAR, 400-700 nm) that can 

influence food web structure and, ultimately, ecosystem services. This “browning”, can 

result not only in increases in DOC concentrations but also in its colour and its effects, 

which depend and vary with the initial colour of the lake (Jordan S. Read and Rose, 

2013). The shading of CDOM can increase thermal stratification, deplete oxygen and 

alter the structure of the pelagic food web inhibits photosynthesis reducing food supply 
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for higher trophic levels and in recent decades, it has also been associated with 

increasing pH (Williamson et al., 2016).  

Moreover, the absorption spectrum of CDOM contributes significantly to subsurface 

radiative transfer processes and therefore, to water-leaving radiative signals measured 

from space.  

Optical remote sensing provides a valuable tool to measure CDOM absorption (aCDOM) 

at large spatial scales (Tranvik et al., 2009). However, much of the research on the 

development of algorithms for the retrieval of CDOM absorption from optical satellite 

data has focussed on marine systems, particularly open ocean waters and generally in 

brown lakes. The markedly different and highly complex optical properties that 

characterise inland waters mean that algorithms developed for open ocean waters may 

not perform adequately in inland waters given the potential interference from high 

concentrations of suspended material of biogenic and minerogenic origin not typically 

found in open oceans.  

Many CDOM retrieval algorithms have been developed using both empirical and 

analytical approaches (IOCCG, 2006). Some authors have obtained CDOM absorptivity 

at 440 nm (aCDOM (440)) estimations from satellite radiometry using ratios of remote 

sensing reflectance (Rrs) in the red and blue parts of the spectrum ( rs670/Rrs410, Bowers 

et al., 2000) and others showed that aCDOM (440) can be derived using the ratio of Rrs in 

the red and blue-green parts of the spectrum (e.g., Rrs665/Rrs490 in Binding and 

Bowers, 2003).  Empirical approaches such as Kutser et al. (2005), Del Castillo and 

Miller (2008), Ficek et al. (2011) and Mannino et al. (2008) or combination of multiple 

band ratios such as Griffin et al. (2011) and Carder et al. (1999), require adequate data 

to parametrise the model and are usually focused on specific lake types. Semi-analytical 

approaches such as Lee et al., 2002 and 2009, matrix inversion methods (MIM, Siegel 
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et al., 2002) and artificial neural networks (ANN, Tanaka et al., 2000) require more 

knowledge about specific inherent optical properties being also specific for regional 

environments. A summary of bio-optical models previously used to estimate aCDOM can 

be found at Zhu et al. (2014), while Brezonik et al. (2015) presents an overview of the 

factors affecting the measurement of CDOM from remote sensing. However, previous 

validation efforts have been based on small datasets, being therefore a need to 

determine the most accurate algorithms for wide ranges of optical water types (OWTs) 

is still needed.  

In this study we present the first extensive algorithm validation over 250 inland water 

bodies. In total 35 algorithms (24 empirical and 11 semi-analytical) were assessed. A 

previous validation study have focused on specific water bodies with particular 

characteristics (Zhu et al., 2014 evaluated fifteen algorithms on water from 

Kawkawling and Saginaw rivers and Lake Huron). The validation and training dataset 

(https://www.limnades.org/home.psp) used to investigate aCDOM retrieval algorithms 

was developed with simultaneous measurements of in situ chlorophyll-a (Chl-a), total 

suspended matter (TSM), CDOM absorption (aCDOM) and in situ hyperspectral Rrs. The 

dataset is clustered in 13 optical water types following Spyrakos et al. (2018). 

This chapter aims to evaluate the accuracy of aCDOM algorithm performance over a wide 

range of OWTs examining the influence that specific parameters such as Chl-a and 

other optically active constituents had on the estimation performance. Moreover, to 

improve the overall performance of a selection of algorithms by its reparameterization, 

improving at the same time the ability to select the most appropriate algorithms and 

parametrisations for specific scenarios. Finally, a robust selection of candidate 

algorithms will be proposed for aCDOM retrieval in more than 1000 lakes globally. To 

this end, the study was organised as follows: (1) existing algorithms with original 

https://www.limnades.org/home.psp
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parametrisations were tested over a wide range of OWTs; (2) best performing 

algorithms were calibrated by empirically adjusting model coefficients using in-situ 

measurements as training dataset, globally and per OWT. 

4.2. Methods 

4.2.1. Data 

The data used in this study were obtained from the LIMNADES database 

(https://www.limnades.org/home.psp).   

The database was compiled from a variety of natural and artificial inland aquatic 

systems including lakes, reservoirs, rivers and floodplains in 13 individual datasets. It 

provides in-situ measurements of water parameters such as aCDOM (440), Chl-a and total 

suspended matter (TSM).  Corresponding measurements of hyperspectral Rrs (λ) (sr-1) 

at a 3nm spectral resolution were also provided. Primary input for CDOM algorithms is 

generally remote sensing reflectance, Rrs (λ) (sr-1). 

In total, 1809 measurements of in-situ hyperspectral Rrs (λ) were identified that had 

contemporaneous measurements of aCDOM, Chl-a and TSM.  These data represent 281 

lakes in 12 OWTs according to the classification of  Spyrakos et al. (2018).  

  

https://www.limnades.org/home.psp
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Table 4-1 summarises the data for the aCDOM in-situ samples available showing a list of 

the datasets from inland water systems used from the LIMNADES dataset. 
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Table 4-1 OWTs used for the algorithm validation 

OWT Number of Lakes Number of Samples 

1 4 21 

2 46 261 

3 13 95 

4 39 315 

5 14 159 

6 27 224 

7 11 25 

8 20 106 

9 35 162 

10 10 50 

11 27 167 

12 35 224 

Total 281 1809 

 

The data were classified in 12 spectrally distinct OWTs following (Spyrakos et al., 

2018b). The original scheme identified 13 different OTWs, according to a specific 

combination of biogeochemical characteristics, but in this study, aCDOM (440) data were 

only available for 12 OWTs, as OWT-13 (spectra from very high biomass waters with 

scums) had no contemporaneous aCDOM (440) measurements. Figure 4-1 shows Rrs (λ) 

spectra for every water type (apart from OWT-13). 
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Figure 4-1 The Rrs (λ) spectra per OWT used in this study for the 

4.2.2. Satellite data simulation 

The majority of CDOM algorithms have been developed for application to ocean colour 

satellite platforms such us the Medium Resolution Imaging Spectrometer (MERIS) that 

was part of ESA’s Envisat payload, the Moderate Resolution Imaging Spectrometer 

(MODIS) on NASA’s Aqua/Terra and NASA’s Sea-viewing Wide Field-of-view 

Sensor (SeaWiFS). In addition, some algorithms have also been developed for 

application to lower spectral and radiometric resolution sensors primarily for terrestrial 

applications but offering spatial resolutions more suitable for the observation of inland 

waters and near-shore marine systems such as Landsat ETM and Advanced Land 

Imager (ALI) and Landsat Operational Land Imager (OLI). 

Hyperspectral Rrs (λ) from LIMNADES database for 1809 stations was spectrally 

resampled to the wavebands of MERIS, MODIS, SeaWiFS, Landsat TM, Landsat ETM 

and Landsat OLI sensors, using the specific spectral response functions and used as 
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input to the models. Estimated aCDOM (440) was at the end compared with in-situ values 

from LIMNADES database to determine the performance of the algorithms.  

4.2.3. CDOM estimation Algorithms 

A group of 35 published and well documented algorithms representing the two major 

categories of CDOM retrieval algorithms were selected: 24 empirical (EMP) and 11 

semi-analytical (SA). The algorithms were developed for a range of different water 

types, for specific remote sensing sensors, utilising different reflectance bands and 

retrieving CDOM absorption coefficients at different wavelengths. The specifications 

of the algorithms are summarised in   
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Table 4-2. Algorithms with different versions were treated as different algorithms and 

evaluated independently.  

 

 

 

 

  



120 

 

Table 4-2 Compilation of algorithm, sensor, input Rrs (λ), band ratios and outputs 

Model Type Algorithm name Sensor 
Input  Rrs 

(λ) (nm) 
Band ratio Output Reference(s) 

1 

Emp 

D’Sa & Miller-1 

SeaWiFS 

443, 510 443/510 
aCDOM 

(412) 

 

2 D’Sa & Miller-2 412, 510 412/510 D’Sa and Miller 

(2003) 3 D’Sa & Miller-3 510, 555 510/555  

18 
DelCastillo-

Miller 
510, 670 510/670 

aCDOM 

(412) 

Del Castillo & 

Miller (2008) 

5 D’Sa 510, 555 510/555 aCDOM 

(412) 
D’Sa et al. (2006) 

6 Johannessen-1 

412, 555 412/555 

aCDOM 

(323) 

aCDOM 

(338) 

aCDOM 

(380) 

Johannessen et al. 

(2003) 

7 Johannessen-2 

8 Johannessen-3 

9 Johannessen-4 aCDOM 

(323) 

aCDOM 

(338) 

aCDOM 

(380) 

10 Johannessen-5 

11 Johannessen-6 

12 Mannino-1 

490, 555 490/555 

aCDOM 

(355) 
 

13 Mannino-2 aCDOM 

(412) 
 

14 Mannino-3 aCDOM 

(443) 

Mannino et al. 

(2008) 15 Mannino-4 

Aqua-

MODIS 

490, 551 490/551 

aCDOM 

(355) 
 

16 Mannino-5 aCDOM 

(412) 
 

17 Mannino-6 aCDOM 

(443) 
 

21 Carder-1 412, 443, 

551 

412/551, 

443/551 
adg (443) 

Carder et al., 

(1999) 
22 Carder-2 

443, 488, 

551, 667 

443/551, 

488/551, 

667/551 

4 Kutser 
ALI 

 565/660 aCDOM 

(420) 
Kutser et al. (2005) 

19 Ficek  570/655 aCDOM 

(440) 
Ficek et al. (2011) 

20 Griffin Landsat-

5, -7 
 560/660 aCDOM 

(400) 
Griffin et al. (2011) 

23 Lee-1 
SeaWiFS, 

CZCS 

440, 490, 

555 

440/555, 

490/555 
aT (440) Lee et al. (1998) 

24 Lee-2 
490, 510, 

555 

490/555, 

510/555 

25  GSM01 SeaWiFS 
Full 

spectrum 

--- 

aCDM 

(440) 

(Maritorena et al., 

2002) 

26 

SA 

QAAv4-Lee1 

SeaWiFS, 

Aqua-

MODIS, 

MERIS, 

Hyperspe

ctral 

 adg (443) 
Lee et al., (2002) 

 

27 QAAv4-Lee2 

28 QAAv4-Lee3 

29 QAAv4-Le 

30 QAAv4-Zhu1  missing 

Zhu et al. (2011) 31 QAAv4-Zhu2  missing 

32 QAAv4-Zhu3 

 
 

aCDOM 

(440) 

33 QAAv5-Lee  Lee et al. (2009) 

34 QAAv5-Mishra 

 
 Mishra et al., 

(2013) 35 QAA-CDOM  Zhu and Yu (2013) 
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Models 1, 2 and 3 

Models 1, 2 and 3 refer to the two-band ratio algorithms of D’Sa and Miller (2003) 

described for SeaWiFS bands. It takes as an input Rrs (λ) measured at 412 (Rrs (412)), 

443 (Rrs (443)), and 510 (Rrs (510)): 

𝑎𝐶𝐷𝑂𝑀(412) = 0.417 ∙ (
𝑅𝑟𝑠(443)

𝑅𝑟𝑠(510)
)

2.025

, (4-1) 

𝑎𝐶𝐷𝑂𝑀(412) = 0.403 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(510)
)

1.388

,   (4-2) 

𝑎𝐶𝐷𝑂𝑀(412) = 0.547 ∙ (
𝑅𝑟𝑠(443)

𝑅𝑟𝑠(510)
)

2.225

. (4-3) 

            

Model 4 

Model 4 refers to the ALI B2/B3 ratio algorithm developed by (Kutser et al., 2005) that 

retrieves aCDOM (420) from Advanced Land Imager (ALI) images. 

𝑎𝐶𝐷𝑂𝑀(420) = 5.13 ∙ (
𝐵2

𝐵3
)

−2.67

, (4-4) 

 

being B2 (525-605 nm) and B3 (630-690 nm). 

Model 5 

Model 5 refers to D’Sa et al. (2006) empirical algorithm calibrated using coastal waters 

impacted by the Mississippi River. It retrieves CDOM absorption at 412 nm from 

SeaWiFS bands; 

𝑎𝐶𝐷𝑂𝑀(412) = 0.227 ∙ (
𝑅𝑟𝑠(510)

𝑅𝑟𝑠(555)
)

−2.022

.         (4-5) 

Models 6, 7, 8, 9, 10 and 11 

Models 6 to 11 refer to the band ratio set of algorithms proposed by Johannessen et al. 

(2003) developed for the Bering Sea, the Mid-Atlantic Bight, Delaware and 
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Chesapeake Bay applied to SeaWiFS images to calculate aCDOM at 323, 338 and 380 

nm. 

The equations of the best fit regression lines for the Bering Sea and from the coast to 

the Gulf stream in the Mid-Atlantic Bight: 

𝑎𝐶𝐷𝑂𝑀(323) = 0.7060 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(555)
)

−1.07

− 0.00714,      (4-6) 

𝑎𝐶𝐷𝑂𝑀(338) = 0.5182 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(555)
)

−1,12

− 0.00190        (4-7) 

and  

𝑎𝐶𝐷𝑂𝑀(380) = 0.2935 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(555)
)

−1.24

− 0.00171.       (4-8) 

The equations of the best fit regression lines to the bay data are: 

𝑎𝐶𝐷𝑂𝑀(323) = 0.2405 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(555)
)

−1.07

+ 0.0463,      (4-9) 

𝑎𝐶𝐷𝑂𝑀(338) = 0.1564 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(555)
)

−1.12

+ 0.171       (4-10) 

 

and  

𝑎𝐶𝐷𝑂𝑀(380) = 0.0553 ∙ (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(555)
)

−1.24

+ 0.400.                            (4-11) 

Models 12, 13, 14, 16, 16 and 17 

Models 12 to 17 refer to the band-ratio empirical algorithm developed by Mannino et 

al. (2008) to retrieve surface ocean CDOM (aCDOM (355), aCDOM (412) and aCDOM 

(443)) from NASA’s MODIS-Aqua; 

𝑎𝐶𝐷𝑂𝑀(355) = −0.2847 ∙ 𝑙𝑛 (
0.3662 ∙ 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(551)
+ 0.0514),       (4-12) 

𝑎𝐶𝐷𝑂𝑀(412) = −0.1243 ∙ 𝑙𝑛 (
0.4264 ∙ 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(551)
+ 0.0241),       (4-13) 
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𝑎𝐶𝐷𝑂𝑀(443) = −0.0762 ∙ 𝑙𝑛 (
0.4502 ∙ 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(551)
+ 0.0150),       (4-14) 

and SeaWiFS satellite sensors; 

𝑎𝐶𝐷𝑂𝑀(355) = −0.2746 ∙ 𝑙𝑛 (
0.3273 ∙ 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(555)
+ 0.0436),       (4-15) 

𝑎𝐶𝐷𝑂𝑀(412) = −0.1201 ∙ 𝑙𝑛 (
0.3848∙ 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(555)
+ 0.0205),       (4-16) 

𝑎𝐶𝐷𝑂𝑀(443) = −0.0736 ∙ 𝑙𝑛 (
0.4077 ∙ 𝑅𝑟𝑠(490)

𝑅𝑟𝑠(555)
+ 0.0127),         (4-17) 

Model 18 

Model 18 refers to the two band ratio algorithm developed by Del Castillo and Miller 

(2008) for the estimation of aCDOM (412) at the Mississippi River Plume from SeaWiFS 

imagery; 

𝑎𝐶𝐷𝑂𝑀(412) = −0.90 ∙ (
𝑅𝑟𝑠(510)

𝑅𝑟𝑠(670)
) + 2.34.         (4-18)

  

Model 19 

Model 19 refers to the two-band empirically derived ratio algorithm of Ficek et al. 

(2011) for 15 Pomeranian lakes and the Baltic Sea; 

𝑎𝐶𝐷𝑂𝑀(440) = 3.65 ∙ (
𝑅𝑟𝑠(570)

𝑅𝑟𝑠(655)
)

−1.93

         

(4-19) 

Model 20 

Model 20 refers to the empirical algorithm developed for Landsat satellite data by 

Griffin et al. (2011): 

𝑎𝐶𝐷𝑂𝑀(440) = 𝑒𝑥𝑝
(−1.145+26.529∙𝑇𝑀3+0.603∙(𝑇𝑀2

𝑇𝑀1⁄ )),
    (4-20) 

where TM1= 0.45-0.52µm, TM2= 0.52-0.60 µm and TM3= 0.63-0.69 µm. 
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Models 21 and 22 

Models 21 and 22 refer to the empirical moderate-resolution imaging spectrometer 

algorithms for Chl-a and absorption developed by (Carder et al., 1999): 

𝑎𝑑𝑔(443) = 10(−1.144−0.738∙𝜌15−1.386∙𝜌152−0.644𝜌25+2.451∙𝜌252)      (4-21) 

and 

𝑎𝑑𝑔(443) = 10(0.043−0.185∙𝜌25−1.081∙𝜌35+1.234∙𝜌65),         (4-22) 

where 𝜌15 = (
𝑅𝑟𝑠(412)

𝑅𝑟𝑠(551)⁄ ),         (4-23) 

𝜌25 = (
𝑅𝑟𝑠(443)

𝑅𝑟𝑠(551)⁄ ),       (4-24) 

 𝜌35 = (
𝑅𝑟𝑠(488)

𝑅𝑟𝑠(551)⁄ )        (4-25) 

and  𝜌65 = (
𝑅𝑟𝑠(667)

𝑅𝑟𝑠(551)⁄ ).         (4-26) 

Models 23 and 24 

Refers to the empirical algorithm for light absorption by ocean water based on colour 

developed by Lee et al. (1998): 

log  𝑎𝑇(440) = (𝐴0 + 𝐴1 ∙ 𝜌25 + 𝐴2 ∙ 𝜌252 + 𝐵1 ∙ 𝜌35 + 𝐵2 ∙ 𝜌352),  (4-27) 

 

where 𝐴0 = −0.674, 𝐴1 = −0.531, 𝐴2 = −0.745, 𝐵1 = −1.469, 𝐵2 = 2.375, 

 𝜌25 = 𝑙𝑜𝑔 (
𝑅𝑟𝑠(440)

𝑅𝑟𝑠(555)⁄ )         (4-28) 

and 

 𝜌35 = 𝑙𝑜𝑔 (
𝑅𝑟𝑠(490)

𝑅𝑟𝑠(555)⁄ ).         (4-29) 

Model 25 

Model 25 refers to the semi-analytical Garber-Siegel-Maritorena (GSM01) inversion 

model developed by Garver & Siegel (1997) and updated by Maritorena et al. (2002) 
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and based on an underlying quadratic relationship relating Rrs (λ) to the IOPs of the 

water body; 

𝑅𝑟𝑠(𝜆) =
𝑡2

𝑛𝑤
2 ∑ 𝑔𝑖 (

𝑏𝑏(𝜆)

𝑏𝑏(𝜆)+𝑎(𝜆)
)

𝑖
2
𝑖=1          (4-30)

        

In turn, IOPs are partitioned into their contributing components where bb(λ) = bbw(λ) + 

bbp(λ) for water and SPM and a(λ) = aw(λ) + aph(λ) + aCDOM (λ) for water, phytoplankton 

and CDOM. The IOP spectra are then parameterized as a known shape with an 

unknown magnitude using the following expressions; 

𝑎𝑝ℎ(𝜆) = 𝐶ℎ𝑙𝑎 × 𝑎𝑝ℎ
∗ (𝜆),         (4-31)

        

𝑎𝑐𝑑𝑜𝑚(𝜆) = 𝑎𝑐𝑑𝑜𝑚(𝜆) × exp  −𝑆(𝜆 − 𝜆0)),                (4-32) 
     

𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝 𝜆0) × (
𝜆0

𝜆
)

𝑌

       (4-33) 

       

Inversion of the model produces simultaneous estimates of the unknown quantities of 

Chl-a, CDOM and bbp from Rrs (λ) by application of a nonlinear least square 

optimisation routine. Global parameters, aw(λ), bbw(λ), nw, t, and gi were taken from the 

literature (Pope & Fry, 1997; Smith & Baker, 1981; Gordon et al., 1988), while a*ph, S 

and Y were derived empirically from the SeaWiFs Bio-Optical Algorithm Mini-

Workshop (SeaBAM) in-situ dataset.  

Model 26, 27 and 28 

Models 26, 27 and 28 refer to the QAA method devised by Lee et al. (2002), developed 

primarily for optically deep waters.  

Total absorption is estimated from subsurface Rrs (λ) (sr-1) a given wavelength. 

𝑎(𝜆) =
(1−𝑢(𝜆))(𝑏𝑏𝑤(𝜆)+𝑏𝑏𝑝(𝜆))

𝑢(𝜆)
        (4-34)
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where  

𝑢(𝜆) =
−𝑔0+√(𝑔0)2+4𝑔1×𝑟𝑟𝑠(𝜆)

2×𝑔1
 ,         (4-35) 

𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(555) ∙ (
555

𝜆
)

𝑌

 ,         (4-36) 

𝑌 = 2.2 ∙ {1 − 1.2 ∙ 𝑒𝑥𝑝 [−0.9 ∙
𝑟𝑟𝑠(440)

𝑟𝑟𝑠(555)
]}       (4-37)

  

𝑏𝑏𝑝(555) =
𝑢(555)∙𝑎(555)

1−𝑢(555)
− 𝑏𝑏𝑤(555),        (4-38) 

𝑎(555) = 0.0596 + 0.2 ∙ [𝑎(440)𝑖 − 0.01], 𝑎(440)𝑖 = exp(−2.0 − 1.4𝜑 +

0.2𝜑2) , 𝜑 = 𝑙𝑛 [
𝑟𝑟𝑠(440)

𝑟𝑟𝑠(555)⁄ ],        (4-39) 

𝑟𝑟𝑠(𝜆) =
𝑅𝑟𝑠(𝜆)

(0.52 + 1.7 ∙ 𝑅𝑟𝑠(𝜆))⁄         (4-40) 

and  go = 0.0895, g1 = 0.1247.  

The absorption signal is then decomposed into CDOM and phytoplankton components 

using known relations and empirical estimations; 

𝑎𝑑𝑔(𝜆) = 𝑎𝑑𝑔(443) ∙ exp  −𝑆(𝜆 − 443)),      (4-41) 

𝑎𝑝ℎ(𝜆) = 𝑎(𝜆) − 𝑎𝑤(𝜆) − 𝑎𝑐𝑑𝑜𝑚(𝜆)        

(4-42) 

The slope of CDOM, S, was derived empirically from samples collected from 

aquaculture ponds in Mississippi.  

Model 29 

Model 29 refers to the calibration and adaptation of the QAA-V4 algorithm for highly 

turbid eutrophic waters and was described by Le et al. (2009) with 710 nm used as a 

reference wavelength instead of 555.  

𝑢(𝜆) =
−𝑔0+√(𝑔0)2+4𝑔1×𝑟𝑟𝑠(𝜆)

2×𝑔1
 ,        (4-43) 

𝑏𝑏𝑝(𝜆) = 𝑏𝑏𝑝(710) ∙ (
710

𝜆
)

𝑌

 ,         (4-44) 

𝑌 = 2.2 ∙ {1 − 1.2 ∙ 𝑒𝑥𝑝 [−0.9 ∙
𝑟𝑟𝑠(560)

𝑟𝑟𝑠(750)
]}       (4-45) 
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𝑏𝑏𝑝(710) =
𝑢(710)∙𝑎(710)

1−𝑢(710)
,          (4-46) 

𝑎(555) = 0.0596 + 0.2 ∙ [𝑎(440)𝑖 − 0.01],       (4-47) 

𝑟𝑟𝑠(𝜆) =
𝑅𝑟𝑠(𝜆)

(0.52 + 1.7 ∙ 𝑅𝑟𝑠(𝜆))⁄         (4-48) 

and  go = 0.0895, g1 = 0.1247.  

In this case, the absorption of suspended solid and phytoplankton is negligible, the 

absorption is dominant by pure water, and the reflectance can be accurately measured. 

Pure water backscattering coefficient can also be neglected. 

Model 30, 31 and 32 

Models 30, 31 and 32 refer to an adaptation of the QAA-V4 algorithm so-called 

Extended Quasi-Analytical Algorithm (QAA-E), the first model which separates ag, the 

absorption coefficient a of CDOM, from adg (a of CDOM and nonalgal particles) based 

on two absorption-backscattering relationships. It was developed by Zhu et al. (2011) 

and in this model, the water absorption and backscattering coefficients, a(λ) and bb(λ), 

are expressed as 

𝑎(𝜆) = 𝑎𝑤(𝜆) + 𝑎𝑝ℎ(𝜆) + 𝑎𝑔(𝜆) + 𝑎𝑑(𝜆)        (4-49) 

and 

𝑏𝑏(𝜆) = 𝑏𝑏𝑤(𝜆) + 𝑏𝑏𝑝(𝜆) ,          (4-50) 

Where the subscripts, w, ph, g and d denote the contributions of pure sea water, 

phytoplankton, CDOM and NAP respectively, and p in the backscattering term means 

the total particulate backscattering coefficients including both phytoplankton and NAP. 

Model 33 

Model 33 refers to the update of the Quasi-Analytical algorithm developed by Lee et al. 

(2009), QAAv5; 
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𝑎(𝜆) =
(1−𝑢(𝜆))(𝑏𝑏𝑤(𝜆)+𝑏𝑏𝑝(𝜆))

𝑢(𝜆)
        (4-51)

       

where  

𝑢(𝜆) =
−𝑔0+√(𝑔0)2+4𝑔1∙𝑟𝑟𝑠(𝜆)

2∙𝑔1
         (4-52)

         

and go = 0.089, g1 = 0.125. The absorption signal is then decomposed into CDOM and 

phytoplankton components using known relations and empirical estimations; 

𝑎𝑐𝑑𝑜𝑚(𝜆) = 𝑎𝑐𝑑𝑜𝑚(443) ∙ exp  −𝑆(𝜆 − 443)),    ( 4-53) 

     

𝑎𝑝ℎ(𝜆) = 𝑎(𝜆) − 𝑎𝑤(𝜆) − 𝑎𝑐𝑑𝑜𝑚(𝜆)       (4-54)
  

Model 34 

Model 34 refers to the method developed by Mishra et al. (2013) for the retrieval of 

cyanobacteria in turbid waters. As a first step, total absorption and particulate 

backscattering are estimated from subsurface Rrs (λ) (rrs, sr-1) at a given wavelength;  

a(λ) =
(1−u(λ))(bbw(λ)+bbp(λ))

u(λ)
         

(4-55)        

where  

u(λ) =
−g0+√(g0)2+4g1×rrs(λ)

2×g1
         (4-56)

       

and go = 0.089, g1 = 0.125. The absorption signal is then decomposed into CDOM and 

phytoplankton components using known relations and empirical estimations; 

acdom(λ) = acdom(443) × exp  −S(λ − 443)),    ( 4-57) 

    

aph(λ) = a(λ) − aw(λ) − acdom(λ)        (4-58)

      

The slope of CDOM, S, was derived empirically from samples collected from 

aquaculture ponds in Mississippi.  
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Model 35 

Model 35 refers to the quasi-analytical algorithm (QAA-CDOM) developed by Zhu and 

Yu (2013) to invert CDOM absorption from Earth Observing-1 (EO-1) Hyperion 

satellite images. It was developed from original QAA algorithm with the goal of 

improving its performance for a wide range of water conditions, particularly turbid 

water sin estuarine and coastal regions. To derive a (440) from  Rrs (λ), QAA-v4 

executes the following six steps: 

a) Estimating Rrs (λ);  

𝑟𝑟𝑠(𝜆) =
𝑅𝑟𝑠(𝜆)

𝑇+𝛾𝑄∙𝑅𝑟𝑠(𝜆)
,           (4-59) 

where T=0.52 and 𝛾𝑄 = 1.7 

b) Calculating u(λ); 

 𝑢(𝜆) =
−𝑔0+√(𝑔0)2+4𝑔1∙𝑟𝑟𝑠(𝜆)

2∙𝑔1
 ,         (4-60) 

where g0=0.0895 and g1=0.1247 and u(λ) is defined by ; 

 𝑢(𝜆) =
𝑏𝑏(𝜆)

𝑎(𝜆)+𝑏𝑏(𝜆)
          (4-61) 

c) Estimating a (555); 

𝑎(555) = 𝑎𝑤(555) + 10ℎ0+ℎ1∙𝑋+ℎ2∙𝑋
2
        (4-62) 

with  

𝑋 = 𝑙𝑜𝑔 (
𝑅𝑟𝑠(440)+𝑅𝑟𝑠(490)

𝑅𝑟𝑠(555)+2∙
𝑅𝑟𝑠(640)

𝑅𝑟𝑠(490)
∙𝑅𝑟𝑠(640)

)         (4-63) 

where h0=-1.226, h1=-1.214 and h2=-0.35. 

d) Calculating bbp (555) 

𝑏𝑏𝑝(555) =
𝑢(555)∙𝑎(555)

1−𝑢(555)
− 𝑏𝑏𝑤(555).        (4-64) 

 

e) Calculating bbp (440) 
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𝑏𝑏𝑝(440) = 𝑏𝑏𝑝(555) ∙ (
555

440
)

𝑌

         (4-65) 

with 

𝑌 = 𝑦0 ∙ (1 − 𝑦1 ∙ 𝑒𝑥𝑝 (𝑦2 ∙
𝑟𝑟𝑠(440)

𝑟𝑟𝑠(555)
)) ,        (4-66) 

where y0=2.2, y1=1.2 and y2=-0.9. 

f) Calculating a (440) 

𝑎(440) =
(1−𝑢(440))∙(𝑏𝑏𝑤(440)+𝑏𝑏𝑝(440))

𝑢(440)
.        (4-67) 

4.2.4. Model version denotations 

The algorithms were validated using three different approaches: (1) original algorithms 

(OPA) – in first instance, the original algorithm (published parametrisation) was 

applied over the entire dataset and over every of the 12 OWTs independently; (2) 

globally re-parametrised algorithms (GPA) – subsequently, and assuming that the 

optimal relationship is linear, we re-calibrated the algorithm coefficients by regressing 

the estimated absorption coefficients against the in-situ data from the complete 

LIMNADES dataset; and (3) re-parametrisation by OWT (TPA) – finally, the best 

performing algorithms for each OWT were re-calibrated. 

Optimisation algorithms (models 25, 34 and 35) were re-parametrised from the start of 

the analysis, so no original version was available to apply. 

4.2.5. Quantitative statistical methodology 

To test the performance of each algorithm, the following statistical tests that are 

commonly used good indicators for performance. Every statistic was assessed 

independently. 

Pearson’s correlation coefficient (r) 

The correlation coefficient (r-value) is calculated according to 
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𝑟 =
1

𝑁−1
∑ [

𝑋𝑖
𝑀−(

1

𝑁
∑ 𝑋𝑗

𝑀𝑁
𝑗=1 )

{
1

𝑁−1
∑ [𝑋𝑘

𝑀−(
1

𝑁
∑ 𝑋𝑙

𝑀𝑁
𝑙=1 )]

2
𝑁
𝑘=1 }

1/2] 𝑥 [
𝑋𝑖

𝐸−(
1

𝑁
∑ 𝑋𝑚

𝐸𝑁
𝑚=1 )

{
1

𝑁−1
∑ [𝑋𝑛

𝐸−(
1

𝑁
∑ 𝑋𝑜

𝐸𝑁
𝑜=1 )]

2
𝑁
𝑛=1 }

1/2]𝑁
𝑖=1 ,   (4-68) 

 

where, X is the variable and N is the number of samples. The superscript E denotes the 

estimated variable (from the model) and the superscript M denotes the measured 

variable (from LIMNADES database). 

Bias 

The error between model and measurement can be expressed according to 

𝐸𝑟𝑟𝑜𝑟𝑙𝑜𝑔 = 𝑙𝑜𝑔(𝑥𝑚𝑜𝑑𝑒𝑙) − log  𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)      (4-69) 

Bias is a systematic error that arises due to the sample selection, therefore, the closer 

the algorithm bias is to zero, the better the retrieved data corresponds with the in-situ 

data. It is important also to look at the 95% confidence interval, even when the bias is 

very close to zero, a much larger value of this interval will imply lower confidence in 

the retrieved bias. 

𝑏𝑖𝑎𝑠𝑙𝑜𝑔 = 𝑀𝑒𝑎𝑛(𝐸𝑟𝑟𝑜𝑟𝑙𝑜𝑔)         (4-70) 

Mean Absolute Percentage Error 

It is an accuracy measure of the forecast quality and is calculated as: 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛(𝑙𝑜𝑔10𝐴𝑃𝐸), being  𝐴𝑃𝐸 = 100 ∙ |
𝑥𝑖

𝑚𝑜𝑑𝑒𝑙−𝑥𝑖
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑥𝑖
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 |.     (4-71) 

As a percentage relative error measure, it is considered a better index than absolute 

error measures (e.g. RMSE) in comparing model performance among data which mean 

could differ considerably. 
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Slope and intercept of the regression between in situ data and the estimated variable 

Slope (S) and intercept (I) were obtained from type-2 regression. The closer the 

intercept is to the reference value of zero and the closer the slope is to the reference 

value of one, the better the fit between variables. In addition to it, the standard 

deviation has been also computed. 

𝑙𝑜𝑔10𝐶𝐷𝑂𝑀𝑚𝑜𝑑 = 𝑆 × 𝑙𝑜𝑔10𝐶𝐷𝑂𝑀𝑚𝑒𝑎𝑠 + 𝐼       (4-72) 

 

Percentage of possible retrievals 

𝜂 =
𝑁𝑚𝑜𝑑𝑒𝑙

𝑁𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
∙ 100          (4-73) 

where n is the number of observations (Arnone et al., 2006), xmodel is the variable of 

interest derived from the proposed models and xmeasured is the same variable observed 

from in situ measurements. 

RMSE (Root Mean Squared Error) 

The absolute root mean square error (RMSE) is used to provide a description of the 

difference between estimated and in-situ aCDOM (440) and it is defined as follows: 

𝑅𝑀𝑆𝐸 = √∑ [log(𝑥𝑖
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)−log  𝑥𝑖

𝑖𝑛−𝑠𝑖𝑡𝑢)]
2𝑛

𝑖=1

𝑛−2
     ( 4-74) 

4.3. Results 

4.3.1. In situ biogeochemical characteristics of the dataset 

The distribution of aCDOM (440) measurements is shown in Figure 4-2, as well as Chl-a 

and TSM. The mean aCDOM (440) was 1.470 m-1 (median=0.900 m-1). The mean Chl-a 

value of 58.785 mg m-3 (median=16.055 mg m-3) which suggests the distribution of 

Chl-a is biased by some very high values from highly eutrophic systems. 
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Figure 4-2 Distribution of a) aCDOM (440), b) Chl-a and c) TSM 

The dataset shows large differences in biogeochemical and optical water properties 

between the optical water types. Table 4-3 shows average measured TSM and Chl-a 

concentrations, CDOM absorption coefficients and spectral slopes (400-500) for the 12 

OWTs. 
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Table 4-3 Biogeochemical and optical water properties of the dataset (average values) 

OWT 

Number 

of 

samples 

aCDOM (440) 

(m-1) 

Average 

Min-max 

SCDOM (400-500 

nm) 

Chl-a (mg/m3) 

Average 

Min-max 

TSM 

samples 

TSM (mg L-1) 

Average 

Min-max 

1 21 
7.40 

0.530-10.2 
-0.006 

2070 

43.1-13296 
21 

340 

20.4-1833 

2 261 
0.748 

0.010-2.82 
-0.007 

11.6 

0.150-55.4 
169 

8.50 

0.400-45.9 

3 95 
0.155 

0.020-1.03 
-0.008 

1.65 

0.160-6.17 
61 

1.55 

0.150-11.0 

4 315 
1.21 

0.010-3.39 
-0.007 

17.8 

0.100-97.6 
234 

17.6 

1.30-110 

5 159 
1.52 

0.320-7.61 
-0.007 

36.9 

0.900-943 
154 

88 

1.88-286 

6 224 
1.30 

0.010-4.19 
-0.008 

49.6 

7.80-125 
135 

12.8 

1.55-43.8 

7 25 
3.034 

0.630-17.9 
-0.007 

417 

19.3-1842 
23 

153 

5.00-2533 

8 106 
1.20 

0.010-3.04 
-0.007 

142.4 

19.3-3443 
57 

42.2 

4.35-500 

9 162 
0.317 

0.010-1.38 
-0.008 

5.59 

0.540-23.2 
128 

9.22 

0.910-58.4 

10 51 
9.00 

0.840-42.5 
-0.006 

16.1 

0.510-115 
49 

29.8 

0.650-423 

11 167 
2.69 

0.400-15.3 
-0.007 

19.7 

0.800-86.5 
134 

27.4 

4.00-113 

12 224 
1.02 

0.030-5.71 
-0.007 

28.2 

1.70-223 
192 

34.0 

2.00-124 
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The range of aCDOM (440) was large (0.172 m-1 for OWT-9 to 9.001 m-1 for OWT-10) 

and the mean/median Chl-a varied from 5.589 mg/m3 to 2072.753 mg/m3 (for OWT 9 

and 1 respectively). OWT-1, -7 and -8 exhibit highest values of Chl-a and lower values 

are represented by OWT-3 and -9, consistent also with low values of TSM (1.511 and 

9.098 mg L-1). 

4.3.2. Performance of original algorithms 

 Full dataset 

Overall, the performance of the original CDOM algorithms (OPA) tested varied greatly 

within the complex set of OWTs included in this study.  

The RMSE, calculated on log values, for the retrieval of aCDOM varied between 0.269 

and 1.438  For clarity, we considered RMSE values in the first quartile (Q1 < 0.365) to 

represent comparatively “good” performance , values falling into the second quartile 

(0.365 < Q2 < 0.490) to perform “moderately good” and those with values falling into 

the third quartile (Q3 > 0.615) and above to perform “poorly”. Generally, semi-

analytical algorithms (mean RMSE= 0.516, max. RMSE=1.060, min. RMSE=0.270) 

marginally outperformed the empirical models (average RMSE=0.562, max. 

RMSE=1.440, min. RMSE=0.290). In addition, 25 algorithms generated invalid 

CDOM estimates (i.e. negative aCDOM(440) values) when existing model parameters 

where used (models 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 21, 24, 26, 27, 

28, 30, 31, 32 and 33) and they were excluded from further comparison and discussion.  

In total, 10 algorithms retrieved valid CDOM estimates (models 4, 18, 19, 20, 22, 23, 

25, 29, 34 and 35), and from those, only 7 generated R2>0.25 (models 4, 19, 22, 25, 29, 

34 and 35) and were moved to reparameterization. Within these 7 algorithms, only 3 
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produced RMSE<0.365 (models 4, 34 and 35). Moreover, the highest R2 was obtained 

by models 4 and 19 (R2=0.432 and 0.486 respectively). 

Figure 4-3 shows the distributions when comparing modelled log10(aCDOM (440)) with 

in-situ measurements for each of the 7 best ranked models. 
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Figure 4-3 OPA Algorithms that retrieved valid aCDOM (440) a) Model-4 (Kutser), b) Model-19 (Ficek), 

c) Model-22 (Carder-2), d) Model-25 (GSM01), e) Model-9 (QAAv4-Le), f) Model-34 (QAAv5-

Mishra), g) Model-35 (QAAv5-CDOM). 

Table 4-4 shows the error statistics generated when comparing modelled log10(aCDOM 

(440)) with in-situ measurements for each of the ranked models. 

Table 4-4 Statistic for OA over the entire dataset, excluding those that produced negative values 

Model R2 SLOPE INTERCEPT RMSE MAPE BIAS N 

Kutser 0.432 0.665 -0.376 0.346 219.855 0.211 59.714 

Ficek 0.486 0.920 -0.659 0.366 140.693 0.271 59.714 

Carder-2 0.420 0.218 `-0.317 0.570 14433 -1.43 59.69 

GSM01 0.230 0.227 -.0421 1.060 32560 0.47 100 

QAAv4Le 0.298 0.573 -0.703 0.485 528.613 0.469 59.714 

QAAv5Mishra 0.304 0.514 -0.183 0.341 247.583 0.062 59.714 

QAAv5CDOM 0.270 0.723 -0.031 0.325 158.664 -0.008 59.714 

 

 Performance per OWT 

The performance of the original algorithms (OPA) was also examined within each 

individual OWT by comparing retrieved log10(aCDOM(440) using the original algorithm 

parametrisation against the in-situ measurements. Algorithm performance showed high 

variability between the tested models and between the different OWTs, with values of 

RMSE ranging from 0.040 (Carder-2, OWT-11) to 6.690  

(Carder-1, OWT-10).  

The performance of the algorithms was again considered by examination of the 

distribution of RMSE values.  Those algorithms falling in Q1 are considered to have 

comparatively good performance, retrieving RMSE  <0.320, those with moderate 

performance in Q2 retrieved RMSE between 0.320 and 0.470, while those with poor 

performance in Q3 had RMSE >0.470.  
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Overall, 13 algorithms performed well or moderately well across more than 6 OWTs 

(models 4, 5, 6, 9, 10, 12, 13, 14, 18, 19, 20, 29, 35) achieving RMSE < 0.470, even 

though, model 9 did not work for OWT-1 and model 18 did not retrieve any value for 

OWT-3. 14 models performed bad for more than 6 OWTs (models 1, 2, 3, 15, 16, 17, 

21, 25, 26, 30, 31, 32, 33 and 34). 

When looking at every cluster separately, OWTs 1 and 10 have only 2 algorithms 

performing well or moderately well, whereas OWT-2, and -9 have at least 29. Best 

performing algorithms per OWT are represented in Table 4-5. Higher values of RMSE 

where found for OWT-1, -10 and -11 (2.072, 6.688 and 2.487 respectively) and lowest 

values for OWT-6, -8 and -11 (0.068, 0.122 and 0.039 respectively).  

Finally, for OWT-3 and 4 three algorithms did not retrieve any value (models 3, 17 and 

18 for OWT3 and models 20, 21 and 24 for OWT-4). For OWT 1, models 9 and 17 did 

not retrieve any value and for OWT-12, model 17 did not retrieve any value. 

Algorithms with good performance per OWT, were assumed as best performing and 

moved forward for re-parametrisation for OWTs 1 to 9, 11 and 12. For OWT-10, 

moderately good performance algorithms Carder-2 and QAAv4-Le (models 22 and 29) 

were moved to reparameterization given that no good RMSE valued were retrieved by 

any model. 
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Table 4-5 RMSE of OPA per OWT. Dark green show good performance algorithms, light green show moderately goodperformance algorithms, in orange we show 

algorithms with poor performance and in red, algorithms that did not retrieve any value. 

OWT 1 2 3 4 5 6 7 8 9 10 11 12 

N 21 255 95 314 159 222 25 106 149 50 167 224 

Model RMSE 

1 1.692 0.653 0.435 0.813 0.417 0.659 0.629 0.726 0.526 0.916 1.183 0.851 

2 1.091 0.664 0.331 0.883 0.832 0.791 0.756 0.827 0.483 0.959 1.116 0.866 

3 1.296 0.677 NA 0.918 0.541 0.617 0.600 0.631 0.406 1.434 1.162 0.826 

4 0.818 0.334 0.348 NA 0.350 0.196 0.316 0.308 0.414 0.747 0.310 0.262 

5 0.935 0.351 0.178 0.465 0.592 0.329 0.391 0.360 0.308 1.019 0.723 0.427 

6 0.275 0.316 0.175 0.411 0.619 0.099 0.354 0.123 0.317 0.648 0.521 0.456 

7 0.486 0.363 0.170 0.500 0.676 0.230 0.393 0.201 0.313 0.798 0.704 0.514 

8 0.518 0.414 0.169 0.555 0.734 0.289 0.424 0.246 0.316 0.857 0.795 0.566 

9 NA 0.301 0.181 0.392 0.620 0.068 0.275 0.122 0.310 0.704 0.512 0.450 

10 0.454 0.341 0.174 0.470 0.680 0.184 0.377 0.195 0.309 0.824 0.674 0.509 

11 0.498 0.382 0.170 0.537 0.734 0.236 0.409 0.234 0.312 0.881 0.774 0.561 

12 0.971 0.291 0.231 0.313 0.578 0.252 0.425 0.348 0.305 1.348 0.507 0.385 

13 0.993 0.292 0.220 0.316 0.604 0.258 0.437 0.356 0.305 1.398 0.523 0.405 

14 0.959 0.300 0.250 0.283 0.586 0.230 0.418 0.343 0.321 1.411 0.483 0.372 

15 1.374 0.473 0.254 0.644 0.946 0.533 0.677 0.616 0.433 1.888 0.906 0.752 

16 1.554 0.577 0.497 0.759 1.195 0.630 0.866 0.786 0.562 1.311 1.061 0.988 

17 NA 0.300 NA 0.813 0.126 0.783 0.386 0.673 0.228 0.848 1.092 NA 

18 0.823 0.330 0.217 0.340 0.463 0.188 0.280 0.293 0.363 0.627 0.376 0.360 

19 2.072 0.904 0.385 NA 1.333 1.050 1.183 1.190 0.593 6.688 1.667 1.172 

20 0.540 0.484 0.251 0.131 0.534 0.356 0.293 0.499 0.491 2.083 0.039 0.461 

21 0.811 0.308 NA 0.267 0.249 0.199 0.289 0.272 0.345 0.680 0.342 0.209 

22 0.708 0.381 0.249 0.296 0.452 0.206 0.245 0.321 0.463 0.440 0.333 0.393 

23 0.694 0.376 0.300 0.324 0.411 0.288 0.409 0.494 0.401 0.686 0.381 0.252 

24 0.708 0.372 0.291 NA 0.416 0.288 0.428 0.480 0.392 0.628 0.382 0.258 

25 0.899 0.437 0.292 0.270 1.284 0.398 0.505 0.774 0.595 2.303 2.487 0.731 

26 1.269 0.354 0.187 0.554 0.812 0.335 0.654 0.474 0.313 0.776 0.773 0.773 

27 1.514 0.345 0.186 0.380 0.809 0.332 0.590 0.462 0.311 0.805 0.701 0.620 

28 1.255 0.358 0.187 0.377 0.794 0.324 0.657 0.464 0.316 0.762 0.710 0.602 

29 0.619 0.517 0.265 0.369 0.432 0.455 0.373 0.589 0.466 0.336 0.619 0.359 

30 0.698 0.326 0.296 0.603 0.838 0.381 0.567 0.498 0.402 0.721 0.687 0.795 
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OWT 1 2 3 4 5 6 7 8 9 10 11 12 

N 21 255 95 314 159 222 25 106 149 50 167 224 

Model RMSE 

31 1.041 0.332 0.276 0.307 0.852 0.475 0.631 0.507 0.338 0.705 0.688 0.742 

32 1.313 0.279 0.422 0.982 0.451 1.060 0.589 0.487 0.291 0.707 0.735 0.678 

33 1.041 0.332 0.276 0.519 0.852 0.475 0.631 0.507 0.338 0.705 0.688 0.742 

34 1.468 0.345 0.186 0.510 0.788 0.326 0.577 0.454 0.314 0.793 0.678 0.604 

35 0.814 0.322 0.184 0.297 0.473 0.223 0.342 0.357 0.312 0.718 0.300 0.267 

 
 Good 

Moderately 

good 
Poor Not performing    
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4.3.3. Performance of reparametrized algorithms 

 Full dataset (GPA) 

When reparametrizing the 7 best performing original algorithms ( models 4, 19, 22, 25, 

29, 34 and 35), with the entire training dataset (we are working now with a reduced set 

of algorithms having removed the non-performers based on the results achieved using 

the original parameterisations), the overall performance slightly improves (Table 4-6, 

mean RMSE=0.54 and mean R2=0.33). No noticeable differences in overall algorithm 

performance was observed between empirical and semi-analytical models. Overall, 

performance of the set of algorithms improved with reparameterization (GPA) (Table 

4-6). Similarly happened for most models individually, the reparameterization causes 

algorithm performance to improve (Table 4-6). It needs to be taken into account at this 

stage, that models 25, 34 and 35 were re-parametrised from the start of the analysis, so 

no original version was available to apply. 

Table 4-6 Performance of OPA and GPA over the 7 best OPA algorithms 

 OPA GPA 

 RMSE MAPE Bias R2 RMSE MAPE Bias R2 

MAX 1.058 32560.038 0.563 0.486 1.058 32560.038 0.521 0.562 

MIN 0.325 140.693 -0.008 0.233 0.267 47.628 -0.033 0.233 

AVERAGE 0.499 6918.298 0.293 0.348 0.442 4838.794 0.182 0.369 

   Improves Worsen Stays    

 

Only one algorithm individually improved both its RMSE and its R2 (Carder-2, Table 

4-7, Figure 4-4), retrieving also the best R2 value of the entire reparameterization 

exercise for all OWTs (R2=0.50). 
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Table 4-7 Performance of reparameterization 

Model RMSE MAPE Bias R2 

4 - Kutser 0.304 188.474 0.152 0.432 

19 – Ficek 0.293 82.472 0.115 0.483 

22 – Carder-2 0.267 47.268 -0.033 0.562 

25 – GSM01 1.058 32560.038 0.466 0.233 

29 – QAAv4-Le 0.507 586.696 0.521 0.298 

34 – QAAv5-Mishra 0.341 247.583 0.062 0.304 

35 – QAAv5-CDOM 0.325 158.664 -0.008 0.270 

Improves Worsen Stays 

 

Figure 4-4 Estimated aCDOM (440) against in-situ values for the reparametrized version of model 22 

 Performance per OWT (TPA) 

The reparameterization within OWT groups (TPA) was performed for those original 

good performing algorithms (those with RMSE values <0.365 for OWT 1 to 9, 11 and 

12 and RMSE<490 for OWT-10). Table 4-8 provides the situation of 

reparameterization per model and per OWT showing also retrieved RMSE of 

reparametrized forms. aCDOM (440) generated using the OWT training subsets (TPA) 

were compared to outputs from OPA models for the corresponding OWT assigned 

spectra.  

Algorithm performance is highly variable across the tested models, with RMSE values 

ranging between 0.151 (22_Carder-2, OWT-3) to 1.577 (Lee-1, OWT-3). Values under 

Q1 (0.198) were considered good, between Q1 and Q2 (0.198 < RMSE < 0.269), 
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moderate and higher than Q2 (RMSE > 0.269), poor. Following this scheme, no 

algorithms demonstrated good or moderately good performance for OWT-2, -5 and -9. 

For OWT-3, 21 algorithms performed good or moderately good (models 5 to 15, 18, 

20, 22, 24, 26 to 29, 34 and 35), for OWT-6 , 16 algorithms performed good or 

moderately good (4, 6 to 14, 18, 21 to 24 and 35), 5 algorithms for OWT-4 and 12 

(models 12, 13, 14, 20 and 21; models 4, 21, 23, 24 and 35), 2 models for OWT-7 and -

11 (21 and 22; 4 and 20) and one model for OWT-10 (22). 

Several models are found to perform reasonably well across more than three or more 

OWT. Best performing algorithms have been selected from those best RMSE values 

with R2>0.25 (for those OWTs with no models retrieving R2>0.25, best R2 have been 

selected) 
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Table 4-8 Performance of algorithm reparameterization in respect to the original parameters of every algorithm per OWT and RMSE values. In bold, best RMSE value for 

each model and OWT. In bold, best performing algorithms per OWT 

OWT  1 2 3 4 5 6 7 8 9 10 11 12 

N  21 255 95 314 159 222 25 106 149 50 167 224 

Algorithm Model RMSE 

DSa-Miller-1 1             

DSa-Miller-2 2             

DSa-Miller-3 3             

Kutser 4      0.190 0.299 0.282   0.228 0.216 

DSa 5   0.176      0.322    

Johannessen-1 6 0.264 0.276 0.198   0.238  0.654 0.430    

Johannessen-2 7   0.198   0.238  0.654 0.430    

Johannessen-3 8   0.198   0.238  0.654 0.430    

Johannessen-4 9  0.307 0.206   0.256 0.465 0.648 0.562    

Johannessen-5 10   0.206   0.256  0.648 0.562    

Johannessen-6 11   0.206   0.256  0.648 0.562    

Mannino-1 12  0.300 0.173 0.266  0.196   0.320    

Mannino-2 13  0.300 0.173 0.266  0.196   0.320    

Mannino-3 14  0.300 0.173 0.266  0.196   0.320    

Mannino-4 15   0.173          

Mannino-5 16             

Mannino-6 17  0.300   0.198    0.320    

DelCastillo-Miller 18   0.165   0.192 0.311 0.281     

Ficek 19             

Griffin 20   0.179 1.208   0.921    0.254  

Carder-1 21  0.251  1.208 0.157 0.189 0.244 0.274    0.200 

Carder-2 22   0.151 0.260  0.179 0.211 0.261  0.268   

Lee-1 23   1.577 0.324  0.188      0.203 

Lee-2 24   0.160   0.190      0.209 

GSM01 25   0.292 0.270         

QAAv4-Lee-1 26   0.187      0.315    

QAAv4-Lee-2 27   0.186      0.314    

QAAv4-Lee-3 28   0.187   0.319   0.316    

QAAv4-Le 29   0.259       0.337   

QAAv4-Zhu-1 30   0.302          

QAAv4-Zhu-2 31   0.292 0.511         
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OWT  1 2 3 4 5 6 7 8 9 10 11 12 

N  21 255 95 314 159 222 25 106 149 50 167 224 

Algorithm Model RMSE 

QAAv4-Zhu-3 32  0.279       0.317    

QAAv5-Lee 33   0.292          

QAAv5-Mishra 34   0.186      0.314    

QAAv5-CDOM 35   0.322 0.184 0.297   0.223     0.312   0.300 0.267 
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Corresponding error and regression statistics for the best performing models across 

OWTs are shown in Table 4-9. It is clear that significant variability in performance is 

observed across each water type, even for best performing algorithms. 

Table 4-9 Corresponding error and regression statistics for the best performing models across OWTs 

OWT Model RMSE BIAS MAPE R2 SLOPE INTERCEPT 

OWT-1 6_Johannessen-1 0.264 0.155 201.562 0.296 0.871 -0.125 

OWT-2 21_Carder-1 0.251 -0.003 168.689 0.149 0.434 0.003 

OWT-3 22_Carder-2 0.151 -0.006 43.005 0.328 0.490 0.006 

OWT-4 22_Carder-2 0.571 -0.002 96.241 0.199 0.434 0.002 

OWT-5 21_Carder-1 0.157 -0.005 38.110 0.610 0.435 0.005 

OWT-6 22_Carder-2 0.179 0.008 92.034 0.151 0.478 -0.015 

OWT-7 22_Carder-2 0.211 0.005 64.134 0.314 0.434 -0.005 

OWT-8 22_Carder-2 0.261 0.514 399.096 0.099 0.251 -0.295 

OWT-9 35_QAAv5CDOM 0.312 0.215 244.460 0.159 0.666 0.055 

OWT-10 22_Carder-2 0.268 -0.006 65.450 0.471 0.434 0.003 

OWT-11 4_Kutser 0.228 0.062 58.364 0.253 1.095 -0.233 

OWT-12 21_Carder-1 0.200 0.004 57.561 0.123 0.434 -0.004 

 

4.3.4. Performance of the ensemble algorithm 

Based on an objective evaluation and individual error statistics, the best performing 

algorithm selection for inland waters per OWT are shown in Table 4-10 indicating the 

corresponding parametrisation. The selected choice of models is varied and from the 12 

groups, five models identified as best performers appear in their OPA form and seven 

in their OTA form. 

When considering the whole dataset comparison, the performance improves with TPA 

form, what could be an effect of the variation in the number of observations. 
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Table 4-10 Recommended model for each defined OWT ordered by OWT group median aCDOM (440). 

Parameters for semi-analytical algorithms were the slope of the corresponding OWT 

OWT Model Architectural approach a b c d e 

1 Johannessen-1 (TPA) Band-ratio -649 -0.035 686   

2 21_Carder-1 (TPA) Semi-analytic -1.62 -0.736 0.212 -3.73 -3.87 

3 22_Carder-2 (TPA) Semi-analytic -0.363 1.59 -7.00 0.965  

4 22_Carder-2 (TPA) Semi-analytic -0.505 -1.65 -2.66 0.765  

5 22_Carder-1 (TPA) Semi-analytic 0.648 0.407 -3.75 2.60 8.98 

6 22_Carder-2 (TPA) Semi-analytic 0.174 -0.629 -0.407 1.58  

7 22_Carder-2 (TPA) Semi-analytic 0.549 -1.05 -1.98 1.7  

8 22_Carder-2 (TPA) Semi-analytic 0.006 -0.363 0.120 0.933  

9 35_QAAv5-CDOM (TPA) Semi-analytic 0.0180     

10 22_Carder-2 (TPA) Semi-analytic 0.149 -0.686 -2.24 2.07  

11 4_Kutser (TPA) Band-ratio 2.33 -1.68    

12 21_Carder-1 (TPA) Semi-analytic 0.545 1.33 2.49 3.48 5.79 

ALL Carder-2 (TPA) Semi-analytic -0.0600 -0.449 0.730 1.35  

 

4.3.5. Influence of other OACs on CDOM retrieval 

The corresponding histogram of residuals for Carder-2 in its original and 

reparametrized form is shown in Figure 4-5. 

 

 

Figure 4-5 Histogram of residuals for model outputs in its original and reparametrized form 



148 

 

 

 

No correlation was found between  aCDOM (440) and Chl-a measurements (Figure 4-6) 

or TSM (Figure 4-7). 

 
Figure 4-6 Correlation between aCDOM (440) and Chl-a (R2=0.0008, Y=0.0001x + 1.4672). 

 
Figure 4-7 Correlation between aCDOM (440) and TSM (R2=0.003, Y=0.001x+1.856). 
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4.4. Discussion 

This chapter shows how the accuracy of remote sensing-based retrievals of aCDOM (440) 

can improve, mostly by targeting specific OWTs in algorithm development. 

For original parametrisations across the entire dataset the accuracy of the models was 

very variable Figure 4-3. Of the 35 algorithms tested, 9 produced good estimations 

(RMSE values within the first quartile) when original parametrisation was used, and a 

further 14 algorithms produced poor estimations. The remainder performed moderately.  

In addition, 25 algorithms generated invalid CDOM estimates (i.e. negative aCDOM 

(440) values) when existing model parameters were used. 

In total, 10 algorithms retrieved valid CDOM, and from those, only 7 were 

reparametrized (those with R2>0.25). Within these 7 algorithms the highest R2 was 

obtained by models 4 and 19 (R2 = 0.432 and 0.486 respectively). 

It must be noted that several of the OWTs were under-represented by the in situ data 

resulting in poorer error statistics for OWTs 1, 7 and 10. These results can be useful for 

highlighting the areas that require further attention in terms of data needs: 

hypereutrophic waters (OWT 1), highly productive waters with high cyanobacteria 

abundance and elevated reflectance at red/near-infrared spectral region (OWT 7) and 

CDOM-rich waters (OWT 10). 

OWT 10 differ from the rest of the OWTs on having lower reflectance values between 

400 and 600 nm and a peak around 700 nm. Is made up of data collected from rivers 

and lakes with high CDOM concentrations (0.84 - 42.27 m-1) with strong absorption 

even at shorter wavelengths (<500 nm), at the red part of the spectrum. Kutser et al. 

(2016) and Toming et al. (2016) highlighted the use of 705 nm bands (such as Sentinel-

2 band 5) for estimation of CDOM in high coloured water bodies such as boreal and 



150 

 

artic lakes. Even though care needs to be taken when using CDOM for the remote 

estimation of DOC, given that in these water bodies, relationship CDOM-DOC is 

demonstrated to vary seasonally (Kutser et al., 2016a; K. Toming et al., 2016). 

For almost every model validated, the reparametrized version produced more accurate 

results. The reparametrized version of model 22 was the best performer for most of the 

individual OWTs.  Highest R2 was obtained by reparametrized versions of models 4 

and 19. Model 4 was developed by Kutser et al. (2005) for the estimation of CDOM in 

lake waters over large geographic areas and using Landsat-ALI. aCDOM (420) values of 

this study varied between 0.68 and 11.13 m-1. On the other hand, Ficek et al. (2011) 

developed Model 19 from data of the Pomeranian lakes and the Baltic Sea with the 

algorithm being trained on data with aCDOM (440) between 0.1 and 17.4 m-1 and 

chlorophyll a concentrations between 1.3 and 336 mg m-3. Both models 4 and 19 and 

Green/Red based empirical algorithms. 

Improvement in the final error statistics was achieved by applying the best performing 

algorithm for each OWT indicated in Table 4-9, producing an improvement in log 

transformed RMSE of 10 % on average between the 12 OWTs. This demonstrates that 

improvement on the retrieval of algorithm performance can be achieved by focusing on 

OWTs during algorithm development. Moreover, it shows that algorithms perform very 

differently across OWTs in spite of the fact they are all Case 2 waters.  

For hypereutrophic waters with cyanobacterial blooms and abundant vegetation (OWT-

1), Blue-Green ratio based algorithms outperformed semi-analytic as well as empirical 

algorithms based on different wavelength ratios. For waters with diverse reflectance 

shape and marginal dominance of pigments and CDOM over inorganic suspended 

particles, sediment-laden waters and turbid, moderately productive waters with 

cyanobacteria presence, a double Blue-Green ratio based empirical algorithm 
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outperformed the rest. A double Blue-Green ratio and a Red-Green ratio was the best 

algorithm for application in clear waters, turbid waters with high organic content, 

waters with balanced effects of optically active constituents at short wavelengths, high 

productive waters with high cyanobacteria abundance and high reflectance at red/near-

infrared spectral region, productive waters with cyanobacteria presence and Rrs peak 

close to 700 nm and for CDOM-rich waters. For waters high in CDOM, cyanobacteria 

presence and high absorption by NAP (Non-Algal Particles), a Green-Red ratio based 

algorithm outperformed the others. And finally, a semi analytic algorithm worked best 

for waters with high Rrs at short wavelengths. 

The errors were still high for retrievals of several OWTs (4, 5, 6, 8, 9, and 11), what 

could constitute a first step for further research on aCDOM algorithm validation and 

development, focusing on these OWTs. 

As a consequence of was has been exposed, a dynamic approach to algorithm selection 

is needed to optimise retrievals.  Neil et al. (2019) reached similar conclusions for Chl-

a algorithms. 

4.4.1. Band effects on algorithm performance 

The information regarding the spectra needed for aCDOM retrieval across several water 

types has a relevant importance on the performance of the algorithms. The spectral 

characteristics determine the degree to which the collected spectra influence the 

algorithm output: (i) band selection and (ii) band ratios. Zhu et al. (2014) have 

previously demonstrated that bandwidth might not influence the accuracy of the 

retrievals, probably given that CDOM absorption extend over a broad spectral range; 

even though, bands need to target those spectral regions where Chl-a absorption is 

lowest.   
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The results of this chapter illustrate that the performance of the algorithms in optically 

complex inland waters can be improved by selecting the appropriate bands with longer 

wavelengths than those typically selected for ocean environments. Model 22 performed 

for the full dataset far better than its predecessor model 21 (which produced negative 

retrievals) when a second band at 667 nm was incorporated. These longer wavelengths 

(>600 nm) are generally more appropriate for CDOM-rich inland waters. 

Empirical algorithms based on band ratios generally improve their accuracy when 

incorporating at least one band >565 nm (e.g. models 4, 18, 19, 20 and 22). It was a 

generality that original algorithms based only on shorter wavelengths generated as a 

result negative, therefore, invalid aCDOM estimates. 

4.4.2. Methodological considerations  

This chapters looks at the accuracy retrieved by several bio-optical models designed to 

retrieve aCDOM (440) from measurements of water colour in optically complex inland 

waters. aCDOM (440) was calculated from an extensive database of in situ Rrs 

measurements resampled to the wavebands of MERIS, MODIS, SeaWiFS, Landsat 

TM, Landsat ETM and Landsat OLI sensors.  

Some of the observations from this dataset have been already used in previous studies 

to parametrise some of the algorithms tested in this chapter, therefore the influence of 

data dependency on the results need to be acknowledged.  

Spyrakos et al. (2018) provides with a full description of the individual datasets with 

corresponding measurements and processing protocols. The validation dataset 

comprised 1809 Rrs measurements with corresponding concentrations of Chl-a, TSM 

and aCDOM (440). aCDOM (440) measurements were made following generally accepted 

methods, and it needs to be acknowledged that variability in aCDOM (440) quantification 
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methods and interlaboratory protocols may contribute to uncertainty to the final 

retrieval (Hooker et al., 2005). However, usually refinement and optimisation of 

methodologies are required when applied to inland waters in order to approach optical 

complexities, what difficulties the standardisation of protocols. Moreover, all the 

datasets used in this study have been validated by data providers and quality checked 

before inclusion in the LIMNADES database. 

Improvements in the accuracy of CDOM retrieval is demonstrated by calibrating best 

performing original models with OWT specific coefficients. With this, best performing 

OWTs were 3 (model 22, RMSE=0.151), 5 (model 21, RMSE=0.157) and 6 (model22, 

RMSE=0.179). 

Finally, and even though this study focuses on OWTs defined by Spyrakos et al. 

(2018), it is recognised that these might not represent all water typed occurring in 

natural waters and that OWTs may be defined by alternative methods such as Moore et 

al. (2014).  

4.4.3. Proposed solution for CDOM remote sensing 

4.5. Conclusions and future perspectives 

In this chapter, a series of aCDOM (440) retrieval models have been validated using a 

dataset of in-situ measurements collected from over 185 inland waters to determine the 

most effective for recovering concentrations of aCDOM (440) in optically complex 

environments.  

CDOM content in complex inland waters usually present a wide range given their 

surrounding terrestrial characteristics and seasonal differences. CDOM levels in our 

sites vary between 0.172 m-1 (OWT-9) 9.001 m-1 (OWT-10). 



154 

 

The complexity of inland water bodies is currently a challenge to current remote 

sensing algorithms used to estimate parameters such as aCDOM and even though this 

study does not attempt to be a full validation exercise for every bio-optical model 

developed for retrieving aCDOM (440) from remote sensing estimations, it identifies 

several key observations with respect of current algorithms. 

A total of 35 algorithms were explored and ranked based on their relative statistical 

performance and several final conclusions can be made: 

 The most suitable and accurate models for estimating aCDOM (440) within the 

whole range of water bodies were models 35, 34, 4, 19, 29, 22 and 25. 

 The very big variability of performance of the tested algorithms emphasises the 

importance of model selection and validation and the risks of applying models 

across wide ranges of water bodies of different biogeochemical and physical 

characteristics. 

 The overall performance was improved when reparametrizing algorithms within 

different OWTs. 

 This research work aims to contribute to the remote monitoring of inland waters 

from space. 

Given that this analysis has been carried out based on a series of in situ Rrs assuming 

them correspondent with true water-leaving reflectance, the next steps would be to 

transfer the results to satellite data such as Sentinel-3 OLCI.  

Moreover, several OWTs were under-represented by the dataset analysed in this study, 

highlighting some areas that require further attention in terms of data needs: 

hypereutrophic waters (OWT 1), highly productive waters with high cyanobacteria 
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abundance and elevated reflectance at red/near-infrared spectral region (OWT 7) and 

CDOM-rich waters (OWT 10). 
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5. CHAPTER 5 – CONCLUSSIONS AND FUTURE RESEARCH 

The central goal of this PhD Thesis was to contribute with the knowledge of remote 

sensing of CDOM in inland water bodies. It delves into the role of lakes within the 

current climate change and the carbon cycle and reviews the physical principles that 

support the remote estimation of water quality parameters from space. The Thesis is 

structured to approach its objectives by trying to reply to three main questions.  

In the first place, and taking into account the remote estimation of DOC is usually made 

through estimation of CDOM optical properties, we have looked at how the last one 

varies regionally and how this variation affects to the CDOM-DOC relationships across 

a range of lakes.  

Subsequently, the Thesis looks at how the origin, distribution and degradation of 

CDOM vary both temporally and spatially within a shallow temperate lake and how the 

observed variability influences the underwater light field.  

Finally, to evaluate the current accuracy of existing aCDOM algorithms over a wide range 

of OWTs examining the influence that specific parameters such as Chl-a and other 

optically active constituents had on the estimation performance. Moreover, we intended 

to improve the overall performance of a selection of algorithms by its 

reparameterization, improving at the same time the ability to select the most appropriate 

algorithms and parametrisations for specific scenarios. A robust selection of candidate 

algorithms have been proposed for aCDOM retrieval in more than 1000 lakes globally. 

The presence of a significant relationship between CDOM and DOC has been 

documented in several inland waters in the recent years (Vodacek et al., 1997; Mannino 

et al., 2008; Harvey et al., 2015; Vantrepotte et al., 2015; Specchiulli et al., 2018; Li et 

al., 2018; Shao et al., 2019). Some studies evidence the constant behavior of the 
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relationship in waters dominated by terrestrial discharges given the conservative mixing 

of CDOM and DOC. However, a wide variability in the link at both seasonal and 

regional scale has also been proved. Based on the measurement of CDOM absorption 

and DOC laboratory analysis from a multi-year dataset of samples from contrasting 

lakes across Europe, the relationships between CDOM and DOC were analysed in 

various types of waters. This investigation showed that both CDOM absorption and 

DOC content varied significantly regionally and generally in accordance to the origin 

of its carbon content.  

Overall, CDOM and DOC were highly correlated, particularly in sampling sites with 

composition of high aromaticity and allochthonous carbon compositions. For lakes 

historically affected by eutrophication, we found that the composition of DOM might 

weaken the relationships between CDOM and DOC fact that could be linked with the 

autochthonous composition and low molecular weight.  

It can also be inferred from the results obtained, that CDOM optical properties and the 

CDOM-DOC relationship present high seasonal discrepancies that should be taken into 

account. Therefore and based on these conclusions, remote-sensing models for DOC 

estimation based on the relationship between CDOM and DOC should consider local 

and seasonal variability as well as optical complexity, considering at least groups of 

water types according to their absorption features. However, in order to better 

understand the implications of these results, future studies could deepen in the 

limitations on using CDOM as a proxy for DOC in different inland waters. 

Subsequently, the Thesis looks at how the origin, distribution and degradation of 

CDOM and how it varies both temporally and spatially within a shallow temperate lake 

and how the observed variability influences the underwater light field.  
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In this context, photobleaching is understood as the decomposition of CDOM as a 

result of its exposition to UV irradiation. It has been found to be a major factor 

controlling the in-lake transformation and degradation of CDOM, and a key process 

influencing the spatial structure CDOM throughout the system. The variability in the 

quantity and quality of CDOM found pointed towards a marked decrease in the 

molecular weight of dissolved carbon compounds, a reduction on its aromatic content 

and a decrease in the degree of humification as water moved through the system from 

the main inflow to outflow.   

Wetlands are important transitional zones between the terrestrial and aquatic 

environment. They are broadly recognized as substantial sources of aromatic CDOM to 

fluvial networks. They supply organic matter to downstream waters so that there is a 

significant relationship between the proportion of wetlands contributing and the 

concentration of DOM in destination waters. This study strengthen the general 

recognition of the potential contribution of water draining from wetlands often 

containing high concentrations of darkly coloured DOM, not only in terms of the 

concentration of CDOM but also its seasonality. 

We also found a spatial and temporal variability in the optical properties of CDOM.  In 

this study, this has important implications for bio-optical models of the underwater light 

climate in lakes and their application in the parametrization of algorithms for optical 

remote sensing of CDOM and other optically-active constituents.   

Finally, we evaluated the current accuracy of existing aCDOM algorithms over a wide 

range of OWTs examining the influence that specific parameters such as Chl-a and 

other optically active constituents had on the estimation performance. Several CDOM 

estimation algorithms have been developed in the last times, including empirical band 

ratios (Carder et al., 1999; D’Sa and Miller, 2003; Johannessen, 2003; D’Sa et al., 
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2006; Del Castillo and Miller, 2008; Mannino et al., 2008), semi-analytical models 

(Lee et al., 2002b, 2009; Zhu et al., 2011; Mishra et al., 2013; Zhu and Yu, 2013), 

matrix inversion methods (MIM) based on the Hydrolight® radiative transfer model 

(Campbell and Phinn, 2010) and artificial neural networks (Hieronymi et al., 2017).  

This exercise arises as a response to the need of validating existing remote sensing 

models on a wider group of water bodies with higher variability in their optical 

properties than what has been done until now. Moreover, we have intended to improve 

the overall performance of a selection of algorithms by its reparameterization, 

improving at the same time the ability to select the most appropriate algorithms and 

parametrisations for specific scenarios. A robust selection of candidate algorithms are 

proposed for aCDOM retrieval in more than 1000 lakes globally. 

We present the first extensive CDOM algorithm validation exercise based on the 

validation of a series of aCDOM (440) models over a dataset of in-situ measurements 

collected from over 185 inland waters to determine the most effective for recovering 

concentrations of aCDOM (440) in optically complex environments.  

The complexity of inland water bodies is currently a challenge to current remote 

sensing algorithms used to estimate parameters such as aCDOM and even though this 

study does not attempt to be a full validation exercise for every bio-optical model 

developed for retrieving aCDOM (440) from remote sensing estimations, it identifies 

several key observations with respect of current algorithms. 

The performance of the algorithms in optically complex inland waters can be improved 

by selecting the appropriate bands with longer wavelengths than those typically 

selected for ocean environments. These longer wavelengths (>600 nm) are generally 

more appropriate for CDOM-rich inland waters. 
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Empirical algorithms based on band ratios generally improve their accuracy when 

incorporating at least one band >565 nm. It was a generality that original algorithms 

based only on shorter wavelengths generated as a result negative, therefore, invalid 

aCDOM estimates. 

This research work aims to contribute to the remote monitoring of inland waters from 

space. 

Given that this analysis has been carried out based on a series of in situ Rrs assuming 

them correspondent with true water-leaving reflectance, the next steps would be to 

transfer the results to satellite data such as Sentinel-3 OLCI.  

Moreover, several OWTs were under-represented by the dataset analysed in this study, 

highlighting some areas that require further attention in terms of data needs: 

hypereutrophic waters, highly productive waters with high cyanobacteria abundance 

and elevated reflectance at red/near-infrared spectral region and CDOM-rich waters. 
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