This is a postprint version of the article published in *Journal of Sports Medicine and Physical Fitness*. This version is free to view and download to private research and study only. Not for redistribution or re-use. ©Edizioni Minerva Medica. The final published article is available online on Minerva Medica website at https://doi.org/10.23736/S0022-4707.20.11205-2. Cite this article as Mason L, Kirkland A, Steele J & Wright J (2020) The Relationship between Isometric Mid-Thigh Pull Variables and Athletic Players and Meta-analysis of Extant Literature. *Journal of Sports Medicine and Physical Fitness* 2021 May;61(5):645-55.

1 2 3	The Relationship between Isometric Mid-Thigh Pull Variables and Athletic Performance Measures: Empirical Study of English Professional Soccer Players and Meta-analysis of Extant Literature.							
4	Liam Mason ^{1,2} , Andy Kirkland ^{1,} James Steele ^b and James Wright ^b							
5								
6	Mr Liam Mason (Corresponding author)							
7	Blackburn Rovers Football Club							
8	Brockhall Village, Old Lango, Lancashire, BB6 8BA							
9	E: <u>Lmason@rovers.co.uk</u> , T: 07913418609							
10								
11	Dr Andrew Kirkland							
12	University of Stirling							
13	Stirling, FK9 4LA							
14	E: Andrew.Kirkland@stir.ac.uk							
15								
16	Dr James Steele							
17	Solent University and ukactive							
18	Solent University, Faculty of Sport, Health and Social Science, East Park Terrace, Hampshire, SO14							
19	OYN							
20	Ukactive, The Bloomsbury Building, 10 Bloomsbury Way, London, WC1A 2SL							
21	F: james steele@solent ac.uk							
22								
23	Dr James	Wright						
24	Solent	University						
25	Faculty of Sport, Health and Social Science, East Park Terrace, Hampshire, SO14 0YN							
26	E: james.wright@solent.ac.uk							
27	Word count: 5,489 words (not including abstract, tables, figures and reference list)							

28 Abstract

- BACKGROUND: There is currently limited evidence available to support the use of the isometric midthigh pull (IMTP) within professional soccer. The aim of this study was to analyse the association
 between IMTP variables, with common markers of athletic performance capability.
- 32 METHODS: Eleven professional development soccer players (age: 20 ± 2 years, stature: 1.82 ± 0.10 m,
- 33 mass: 76.4 ± 12.8 kg) performed IMTP, 5 m and 10 m accelerations, maximal sprint speed (MSS),
- 34 countermovement jump (CMJ), and the 505 change of direction test (COD).

RESULTS: Relative and absolute Peak force (PF) and force at 50, 100, 150 and 200 ms values were measured during the IMTP. Relative F150, F200, PF displayed large to very large correlations with MSS (r = 0.51, r = 0.66, and r = 0.76 respectively), while absolute PF also displayed a large correlation with MSS (r = 0.57). Relative and absolute PF showed large correlations with CMJ height (r = 0.54 and r = 0.55 respectively). Relative F150 and F200 highlighted large correlations with COD ability (r = -0.68and r = -0.60 respectively). Relative F200 and PF had a large negative correlation with 10m acceleration (r = -0.55 and r = -0.53 respectively).

- 42 CONCLUSION: This study provides an important contribution to knowledge within the area of IMTP
 43 testing in professional soccer by evidencing the prominence of the isometric force generating capacity
 44 as an underpinning factor in relation to athletic capability.
- 45
- 46 Keywords: Football; Force; Strength; Training
- 47
- 48
- 49
- 50

51 INTRODUCTION

52 Strength and conditioning (S&C) coaches in soccer are tasked with improving physical performance 53 and minimising injury risk for the players they work with. As such gym-based strength training is a staple in the programmes of professional soccer¹. A key aim of this type of training is to improve the 54 ability to generate force via the neuromuscular system², referred to as the force generating capacity 55 (FGC). Therefore S&C coaches must be able to practically and accurately quantify the FGC of the 56 57 players they work with in order to understand whether training interventions have been successful 58 for this purpose³. However, measuring FGC within professional soccer is challenging because of the 59 density of matches⁴, player's physical competencies⁵, and cultural resistance¹. The isometric mid-thigh 60 pull (IMTP) test may provide solutions to these challenges due to its validity, reliability, simplicity, and low level of inherent risk⁶. The isometric nature of the test ensures there is a limited skill 61 62 requirement¹⁸, with substantially less muscle damage exhibited post-test when compared to exercises 63 containing an eccentric component²¹. This is practically essential within professional soccer in order 64 to allow for increased testing opportunities during congested fixture schedules. Additionally, it can 65 provide the S&C coach with insight into specific physical qualities of players regardless of injury history and mobility restrictions¹⁸. This is not possible with more commonly used methods, such as the back 66 67 squat, which requires a good level of technical proficiency²² and no contraindications. Consequently, 68 the IMTP is more practical within an applied environment across a whole squad.

The IMTP test is an assessment of peak force (PF) production which is positively correlated with 1RM tests in dynamic exercises such as the squat (r = 0.97, P < 0.05 and r = 0.72, P < 0.05) (7,8), deadlift (r = 0.88, P < 0.05)⁹, and power clean (r = 0.57, P < 0.05)¹⁰. IMTP PF has also displayed moderate to large correlations with both 20 m acceleration (r = 0.69, P < 0.01)¹¹ and jumping height (r = 0.45, P < 0.05)¹² in university athletes, highlighting possible diagnostic capabilities of the IMTP as a test for S&C coaches. 75 Important performance demands such as accelerating, sprinting, changing direction, and jumping 76 occur within limited time constraints during soccer matches. Typical ground contact times (GCT) during maximum sprinting last <100 ms¹³, <200 ms during the acceleration phase¹⁴, and <500 ms 77 during changes of direction¹⁵. As such, the ability to be able to exert large forces rapidly is also 78 79 considered important in professional soccer players. Therefore, the ability to measure rapid force 80 production capability in players may be important in order to provide insight as to the efficacy of 81 training interventions for individual players. The IMTP does not solely inform on maximum FGC, as 82 vertical ground reaction forces (vGRF) can also be calculated through the use of the force plate. Consequently, the resultant force-time curve enables the assessment of PF¹⁶ and rapid force 83 production¹⁷. The assessment of both PF and time-specific force from the IMTP, have been shown to 84 be valid and reliable measurements of FGC¹⁸. This addition to the performance testing battery can 85 86 highlight players who may be strong (high PF values), but 'slow' (have low rates of force development 87 e.g. low force at 0-250 ms), or vice versa³. This data is important because it may help coaches provide more focussed training interventions which are designed to target a specific point on the force-time 88 89 curve¹⁹. The force applied at these different time points of the IMTP have been shown to be associated 90 with proxy measures of athletic performance. For example, the force attained at 100 ms (F100) has exhibited a moderate inverse relationship (r = -0.54 [95% CI = -0.73 to -0.27]) with 10 m acceleration 91 capability in professional rugby league players²⁰. Additionally, Thomas et al.¹¹ also reported moderate 92 93 inverse correlations between F100, 5–20 m acceleration time (r = -0.51 [95% CI = -0.81 to 0.03] and -94 0.54 [95% CI = -0.83 to -0.01], respectively) and 505 change of direction speed (r = -0.57 [95% CI = -95 0.84 to -0.06]). Additionally, whether IMTP should be expressed relative, or allometrically scaled, to 96 body mass is something which requires consideration as relationships between absolute and relative IMTP characteristics show varying relationships with proxies of sport performance^{11,20, 24, 25}. 97

98 Despite the quantity of literature exploring IMTP and its relationship to markers of athletic 99 performance^{6, 11,12,20, 24, 25}, at present there is paucity of research within the field of professional soccer. 100 The current paper aims to bridge this gap in the research in order to add to the cumulative data on 101 this topic and better inform the soccer S&C coach when identifying their physical profiling options. 102 Few studies have examined the IMTP within soccer specifically, and those that have were conducted in youth ^{3, 28, 29}. Brownlee et al.³ explored differences between IMTP ability in professional academy 103 104 and non-professional academy youth soccer players finding greater PF levels in the academy group when compared to the non-academy players. Morris et al.²⁹ empirically identified differences between 105 106 IMTP ability and maturation status, confirming anecdotal evidence that the more physically mature 107 players are, the higher PF values they can achieve. Further, in a large sample of elite youth soccer 108 players reported relationships between PF and 10m (r = -0.61 [95% CI = -0.68 to -0.53]) and 30m (r = 109 -0.75 [95% CI = -0.80 to -0.70]) sprint times, countermovement jump height (r = 0.62 [95% CI = 0.54 to 110 0.69]), and both right (r = 0.32 [95% CI = 0.21 to 0.41]) and left (r = 0.58 [95% CI = 0.50 to 0.65]) change 111 of direction speed. However, in none of these studies examined time-specific force measures. Whilst 112 these studies made welcome advances in IMTP research within soccer, further research is required to 113 inform S&C coaches with evidence-based knowledge that is relevant to specific coaching contexts; in 114 particular for elite adult soccer athletes. Examining associations between IMTP ability and athletic 115 performance variables will inform coaches regarding the potential value of IMTP testing in soccer. 116 Therefore, the aim of this study was to describe the relationship between PF, and force at 50 ms (F50), 117 100ms (F100), 150 ms (F150), and 200 ms (F200) derived from the IMTP, with common performance 118 indicators used in professional soccer in a sample of elite soccer athletes. Further, with the exception 119 of the large study of Morris et al., given that previous estimates of the correlations between IMTP 120 measures and proxy measures of athletic performance have been relatively imprecise in part due to 121 the small samples typical of working with sporting populations, we report an exploratory meta-122 analysis combining our results with previous findings in order to provide more general estimates of 123 these relationships.

124

125

126 METHODS:

127 Experimental Approach

Testing occurred in the final two weeks of a 7-week pre-season mesocycle, over two testing sessions separated by 7 days. Both testing sessions were performed in the morning after a day off and before any training took place to ensure players were rested, to minimise any diurnal effect, and to ensure that testing fitted in with the regular squad training programme.

The first testing day was completed to determine PF and force at given time periods (50 ms, 100 ms, 133 150 ms and 200 ms) during the IMTP, and maximal sprinting speed recorded over 65 m. The second 134 testing day included a counter movement jump (CMJ) to determine maximal jump height, an 135 acceleration test with times recorded at 5 m and 10 m, and change of direction (COD) ability via the 136 505 COD test (COD505). If participants achieved their best score on their final attempt of any of the 137 tests, they were allowed subsequent attempts until no further improvement was made.

138 Participants:

139 Eleven professional soccer players (age: 20 ± 2 years, stature: 1.82 ± 0.10 m, mass: 76.4 ± 12.8 kg) who 140 played for an English Championship under 23's team participated in this study. This was a convenience 141 sample and limited by the players which were available for participation. Following university ethical 142 approval and in accordance with the university's ethical procedures for research, participants were 143 briefed on the benefits and potential risk factors of the study and provided written informed consent. 144 All testing was assessed by the lead researcher who is a NSCA certified strength and conditioning 145 specialist. All players had been screened by the club's medical team and were deemed fit to 146 participate. Each of the participants were familiar with all testing procedures having performed all 147 procedures on two previous separate occasions as part of the club's performance testing battery. 148 Given the primary purpose of this study was to describe the relationships between IMTP measures 149 and proxies of sport performance, we conducted a sensitivity analysis to examine the precision of 150 interval estimates which would be achieved at this sample size across a range of correlation 151 coefficients (-1, 1), and for a range of compatibility (confidence) levels (50%, 80%, and 95%). The 152 widths of these interval estimates can be seen in the figure in the accompanying supplementary 153 materials (see https://osf.io/hzwg5/). Given the obvious lack of precision for estimates due to the 154 sample size, as noted, we also aimed to combine the results from our sample with those of other studies^{11, 12, 20, 24, 25, 29, 30, 31}. This resulted in the inclusion of data from 510 participants (including 155 156 collegiate athletes across a range of sports, elite soccer youth athletes, professional rugby league 157 players, and professional soccer players) across 9 studies (including the present one).

158 Isometric Mid-Thigh Pull

To contribute to testing reliability, all participants performed the same warm-up protocol as described
by Guppy et al.,⁶. This consisted of bodyweight squats and lunges, low load mid-thigh pulls, moderate
load mid-thigh pulls, and 3 x 3 s IMTP sub-maximal trials (50%, 75% & 90% perceived maximal effort).
Force was measured using a portable force plates sampling at 1000 Hz (9286AA, Kistler, Switzerland),
which were imbedded into a portable IMTP rack (Perform Better, UK).

164 The IMTP has been demonstrated to be a reliable measure of absolute peak force and absolute force-165 time generating capacity with a coefficient of variation (CV) of 3.2% (PF); 7.3% (F200); 8.6% (F150); 9.6% (F100) and 5.7% (F50)^{15, 32}. The IMTP protocol in the current study followed the standardised 166 methodological guidelines for the test set out by Guppy et al.,⁶. Prior to testing, the bar height 167 168 pertaining to the correct body posture was determined (knee angle = 125–145° and hip angle = 140– 150්°). The participants were secured to the bar using lifting straps to ensure grip strength was not a 169 170 limiting factor on their ability to perform maximally¹⁷. The instructions given to the participants were 171 standardised. Participants were told to; "push your feet into the ground as fast and as hard as 172 possible"³³. They were then told to remove the 'slack' from the bar by assuming the correct start position, with a subtle amount of tension applied to the bar before standing still and ready for further 173 174 instruction. The researcher viewed the force response from the plates and waited until it was stable

with the pre-tension not <50 N above body mass³⁴. Participants were then given an instruction of "3, 2, 1, PULL" and strong verbal encouragement was given throughout all trials. Trials lasted ~3-5 s, or until a drop off in force was displayed on the force-time graph²⁶. If a countermovement occurred prior to the pull, the test was discarded⁶. A minimum of three trials were performed by all participants, with 1–2 min rest between trials. The force-time data was generated via ForceDecks software. All IMTP measures were examined both as absolute, and relative (i.e. normalised to body weight).

181 Maximal Sprint Speed Testing

182 All participants completed a standardised 15-min RAMP warm-up consisting of general dynamic 183 movement patterns, lower body mobility exercises and finishing with explosive jumping and bounding 184 exercises. This warm-up, along with the testing was completed on a grass training pitch on a dry day 185 with the players wearing soccer boots. MSS was recorded from a 65 m sprint to replicate a typical box-186 to-box recovery sprint. Following the warm-up all participants completed 3 x maximal 65 m sprints 187 with 4 min rest between each. Participants were instructed to 'keep trying to accelerate until you 188 reach the 65 m poles' and to 'run as fast as possible', with loud encouragement given by the coaches 189 throughout all of the trials. MSS was recorded using Catapult S5 GPS monitors (10 Hz), which were 190 worn by the players. This device has been shown to be a valid (TEE = 1.19%) measurement of maximum 191 velocity in field sport athletes³⁵. The MSS chosen for analysis was the peak speed each player recorded 192 during their 3 maximal sprints.

193 <u>Countermovement Jump Testing</u>

All participants performed the same standardised RAMP warm-up protocol as they did prior to the MSS testing. At the end of the 15-min warm-up protocol, participants completed 3 x CMJ's and 3 x squat jumps each at >80% of maximal intensity with their hands on their hips. The CMJ testing in the current study was performed using portable force plates sampling at 1000 Hz (9286AA, Kistler,). Each participant performed 3 sets of 3 CMJ's with a 1-min rest between each set. Instruction was standardised with all participants told to; 'jump as high as you possibly can' from a self-selected depth. A valid repetition was one where there was the presence of a stable baseline for at least 1 s prior to the test. The participant's hands stayed on their hips throughout the jump, with no hip or knee flexion displayed while off the ground, and landed with their feet on the force plate in the same position as take-off. The lead researcher ensured correct technique was maintained throughout all repetitions, with incorrect technical repetitions discarded from the data collection and participants being asked to repeat the set. Jump height was estimated from flight-time via the ForceDecks software, which has displayed high reliability (CV = 3.8%) when performed without an arm-swing as in the current study³⁶.

207 Acceleration Testing

208 The acceleration testing was performed after the CMJ testing on an indoor 4G pitch at the clubs 209 training ground. All participants completed a subsequent 5-min potentiation phase as part of a 're-210 warm up' following the jumps. Timing gates (TCi system, Brower, USA) were placed at 0 m, 5 m and 211 10 m. The timing gates used within this study have displayed excellent validity for acceleration testing over 10 m (CV = 1.13%)³⁷. Participants started in a 2-point split stance, 30 cm behind the 0 m timing 212 213 gate. Instruction was standardised for all participants with them being told to; 'Accelerate as fast as 214 possible through the end timing gate'. All participants performed 3 sets of 1 x 10 m maximum 215 acceleration with 2 min rest between each set. The fastest times were recorded for each subject at 5 216 m and 10 m.

217 <u>505 Change of Direction Testing</u>

Following the completion of the acceleration testing, the participants completed the change of direction speed test. This was assessed via a 505 modified test on the same surface as the acceleration testing and using the same timing gate system (CV = 2.4%)³⁸. Participants started in the 2-point split stance, 30 cm behind the 0 m timing gate, with a timing gate set up 5 m further forward. Participants were instructed to accelerate to the 5 m line and plant their preferred foot before turning 180° back to the start/finish line³⁹. Instructions were standardised for all participants; 'get to the 5 m line and back as fast as possible'. Each participant performed 3 trials with 2 min rest between each one. The
fasted time for each participant was used in the analysis.

226 Statistical Analyses

227 Analysis of the dataset generated from our participants was performed such that inferential statistics 228 were treated as highly unstable local descriptions of the relations between model assumption and 229 data in order to acknowledge the inherent uncertainty in drawing generalised inferences from single and small samples⁴⁰. To complement the local descriptive analyses of the dataset generated in the 230 231 present study, we also combine our estimates with those from the wider literature in a meta-analysis. For all analyses we opted to avoid dichotomising the existence of effects and therefore did not employ 232 traditional null hypothesis significance testing, which has been extensively critiqued^{41, 42}. Instead we 233 consider the implications of all results compatible with these data, from the lower limit to the upper 234 235 limit of interval estimates, with the greatest interpretive emphasis placed on the point estimate. All 236 analysis was conducted in R (v 4.0.2; R Core Team, <u>https://www.r-project.org/</u>) and all code utilised is 237 presented in the supplementary materials (<u>https://osf.io/zu4y9/</u>).

238 Descriptive statistics were calculated for all measures. The reliability of repeated measures (i = 3) for those taken in the present study was explored using intra-class correlation coefficients (3,1) with 239 240 accompanying 95% compatibility (confidence) intervals, using the 'psych' package⁴³. Pearson correlation coefficients were used to analyse associations between all IMTP variables, and proxies of 241 242 sport performance. Accompanying compatibility intervals were computed for a range of levels (50%, 80%, and 95%) so as to present gradation⁴⁴ and are presented on scatterplots as grey ribbons to aid in 243 244 visual interpretation of uncertainty of estimates. Magnitude of correlation coefficients were 245 qualitatively evaluated using recommendations from Hopkins⁴⁵; small (0.10–0.29), moderate (0.30– 246 0.49), large (0.50–0.69), very large (0.70–0.89) nearly perfect (0.90–0.99), and perfect (1.0).

247 The meta-analysis was performed using the 'metafor' package⁴⁶. Effects and variances were

248 calculated using the raw correlation coefficients from each study and the escalc function. Because of

249 the nested structure of the effects calculated from the studies included (i.e. multiple correlations 250 nested within studies), multilevel mixed effects meta-analyses with study and included as a random 251 effect in the model were performed. Cluster robust point estimates and precision of those estimates 252 using 95% compatibility (confidence) intervals (CIs) were produced, weighted by inverse sampling 253 variance to account for the within- and between-study variance (tau-squared). Restricted maximal likelihood estimation was used in all models. I² values were calculated to indicate the degree of 254 255 heterogeneity in the effects: 0-40% were not important, 30-60% moderate heterogeneity, 50-90% 256 substantial heterogeneity, and 75-100% considerable heterogeneity⁴⁷.

257 **RESULTS**

Descriptive statistics and ICCs for the IMTP, acceleration, sprint, jump and change of direction tests are presented in Table 1. All proxy measures of sport performance displayed good reliability (ICC = >0.75) though with interval estimates ranging from moderate to excellent. IMTP measures appeared to improve with reliability as they neared PF. For example table 1 shows that F50 showed very poor reliability, F100 and F150 showed better albeit still poor to moderate reliability, while both F200 and PF showed reliability interval estimates that ranged good to excellent. The results of the correlational analysis between the IMTP force variables and athletic performance can be found in Table 2.

265

266 ***Table 1 near here***

267

268 ***Correlation precision sample near here***

269

270 Present Study Correlations

As expected, estimated of the correlations within the present sample were imprecise. Thus, we highlight here only key outcomes and direct the reader to figure 1 and figure 2 where the scatterplots 273 for all variables are presented. For absolute IMTP measures correlations with 5 m acceleration were 274 trivial to small which was similarly to case for 10 m acceleration with the exception of moderate 275 negative relationships for F200 and PF. This was also reflected in the moderate to large positive 276 relationships between MSS and both F200 and PF. Interval estimates had less precision for CMJ and 277 COD; though, PF had a large positive relationship with CMJ, and there were consistent negative 278 relationships between all IMTP measures and COD ranging from small to moderate. Most of these 279 were also reflected in the relative IMTP measures; however, for 5 m acceleration relationships 280 appeared slightly improved and were small to moderate and negative.

281 Meta-analysis

The main model examining the relationship between IMTP measures and 'speed' measures included 65 correlations across 6 studies with an estimated correlation of r = -0.40 [95%CI = -0.65 to -0.15] and an l^2 of 62%. The main model examining the relationship between IMTP measures and 'jump' measures included 158 correlations across 7 studies with an estimated correlation of r = 0.33 [95%CI = 0.18 to 0.49] and an l^2 of 41%. The main model examining the relationship between IMTP measures and 'change of direction' measures included 38 correlations across 4 studies with an estimated correlation of r = -0.38 [95%CI = -0.69 to -0.07] and an l^2 of 58%.

289 ***Figures 1 & 2 near here***

290 DISCUSSION

The primary aim of the current study was to explore the association between IMTP force variables and acceleration, MSS, CMJ and COD ability in professional Under-23 soccer players. This paper has made an important contribution to knowledge within the area of IMTP testing in professional soccer by evidencing the importance of the isometric FGC as an underpinning factor in relation to athletic capability. Furthermore, it appears the ability to express higher forces relative to soccer players body mass, may be more desirable for athletic performance than absolute FGC. 297 There were large negative correlations existent between both F150 (r = -0.68) and F200 (r = -0.60) 298 relative to body mass and COD ability. There were also moderate negative correlations present between COD ability and all of the other relative force outputs noted at specific time points (F50: r = 299 300 -0.46; F100: r = -0.47; PF: r = -0.49); however, when analysing the absolute force data within the 301 current study only F150 (r = -0.46) and F200 (r = -0.45) were shown to display a moderate negative correlation with COD ability. While in contrast studies from Thomas et al.^{11, 12} have revealed large 302 303 negative correlations with absolute PF and COD time (r = 0.57 and r = 0.66). This suggests that despite 304 the relatively longer GCT during COD activities when compared with accelerating and sprinting¹³ it 305 may still be the ability to produce force rapidly which provides an advantage during COD tasks, as 306 opposed to the overall maximal force the player can produce. Our research is important in an applied 307 environment because an identified COD weakness in a player may suggest an intervention is required to improve rapid force production capability. Thomas et al.,¹¹ supports this notion as they noted 308 309 moderate negative correlations between COD505 time and force produced at 100 ms (r = -0.58) and 300 ms (r = -0.62) in university soccer and rugby league players. Research from Verheul et al.³⁸ helps 310 311 to rationalise this further by showing the peak vGRF during deceleration tasks appear within the first 312 100 ms of ground contact. Therefore the ability to produce the rapid (<100ms) and high forces required during changes of direction places a large demand on the tendon qualities around ankle, 313 314 knee, and hip². Tendon stiffness is an important underpinning structural component within rapid force 315 production^{39,40}, with increased stiffness resulting in a more effective force transmission from muscle to bone⁴¹. Improvements in isometric strength have been shown to display a subsequent 316 improvement in tendon function⁴². As such it may be that the players who could produce higher 317 318 isometric vGRF relative to their body weight within the current study were better equipped from a 319 musculotendinous perspective to handle the large stresses in the deceleration phase immediately 320 prior to the change of direction action. This may then have allowed the players to get into their 321 acceleration pattern faster, and in a more advantageous position. Whilst it is evident the ability to 322 change direction effectively is a critical athletic performance factor within football¹, there is still

323 debate as to how best to efficiently improve⁴⁹ and measure it^{35, 43}. A potential reason for this is due to the multi-factorial nature of the skill. The ability to change direction rapidly requires good 324 deceleration, acceleration and kinematic skills⁴³, and so identifying the specific area for development 325 326 within these three areas would be important for the S&C coach looking to improve COD performance. 327 The moderate to large negative correlations between relative FGC and COD ability in the current study 328 provides increased support for the S&C coach to seek improvements in isometric force production 329 capacity for their athletes relative to their body weight as opposed to absolute FGC, when looking to 330 improve change of direction capability. Further research into whether there is a cause and effect 331 relationship between the two parameters through a training intervention study would provide further 332 insights for the S&C coach.

333 CMJ height displayed a large positive correlation with both relative and absolute PF (r = 0.54 and r =334 0.55 respectively). There were also some moderate positive correlations displayed between relative 335 F50 (r = 0.30) and F200 (r = 0.30). In contrast, absolute values for F50 (r = 0.17), F100 (r = 0.10), and 336 F200 (r = 0.20) only exhibited small positive correlations with CMJ ability. The large positive correlation 337 between PF and CMJ height identified by our research for both relative and absolute values is consistent with research from other sports^{20, 25, 44, 45, 46}. These findings can be explained by a 338 339 rearrangement of Newton's second law of motion (acceleration = force/mass). The ability to exert 340 large forces is a key factor in order to accelerate the body in a given direction and subsequently, the 341 players who display large PF on the IMTP have an increased capacity to jump higher. However, whilst 342 PF is an important underpinning capacity with regards to CMJ height, the ability to produce force 343 during the IMTP does not seem to be wholly causal of CMJ performance. A possible reason for this 344 may be the isometric nature of the test which contrasts with the triphasic action inherent within a 345 CMJ⁴⁷. Both absolute and relative eccentric PF have previously displayed very large and statistically 346 significant correlations (r = 0.74, P < 0.001 and r = 0.79, P < 0.001) with CMJ height⁴⁴. Additionally, McErlain-Naylor et al.,⁴⁸ delineated that kinematic factors (58%) explained a much higher variance of 347 348 jump height than isometric ability (18%) in the CMJ, suggesting coachable technical aspects of jumping are more important determinants of CMJ than IMTP ability. Whilst this study supports the evidence
base for improved PF capacity to affect CMJ height, the S&C coach may also be wise to consider
eccentric PF and kinematic variable when seeking to improve a player's CMJ height.

352 Relative and absolute PF attained in the IMTP test and the MSS achieved by the players were shown 353 to display very large and large positive correlations respectively (r = 0.78 and r = 0.57). This result was 354 also supported by some large positive correlations for relative F150 (r = 0.51) and relative F200 (r = 355 0.68). A moderate positive correlations between MSS and absolute F200 (r = 0.45). Interestingly, these 356 results would appear to suggest that PF attained in the IMTP may be more important to MSS ability 357 than the force an athlete is able to produce in a shorter time period. This contrasts with the current literature relating to the kinetics of MSS, within which, it is widely accepted that the ability produce 358 high amounts of force rapidly is a key determinant of MSS⁴⁹. This is because GCT during maximum 359 360 sprinting lasts <100 ms¹³, and as such athletes have an extremely limited time frame within which to apply force into the ground. Following the current papers meta-analyses, to the best of our knowledge 361 362 there are no published studies identifying a correlation between any IMTP variable and sprint speed 363 over 20 m. This is despite several studies which highlight correlations between IMTP and 5 and 10 m 364 acceleration time, which is subsequently discussed. Therefore, findings in the present study offer a 365 novel and interesting outcome into the relationship between IMTP derived PF and MSS. Being able to 366 produce a large amount of both absolute and relative isometric PF, as opposed to having the ability 367 to produce less force in a shorter amount of time may be beneficial due to its association with increased tendon stiffness^{39,40,41}. The musculotendinous unit plays a key role in maximal sprinting 368 through the utilisation of the stretch-shortening cycle⁵⁰, with higher level sprinters displaying 369 increased lower limb tendon stiffness⁵¹. This increased stiffness of the muscle-tendon unit enables 370 increased absorption of elastic energy during the swing phase of maximal sprinting⁵², subsequently 371 372 equating to faster sprint speeds⁵¹. Interestingly, Meckel et al.⁵³ have also previously highlighted the 373 importance of maximum strength with maximum running speed. Their research into female sprinters 374 displayed a very large correlation (r = 0.89) with 1RM performance in the back squat and 100 m sprint times. This ability to exert large vGRF during strength testing may translate into larger vGRF during the first half of the stance phase in sprinting, which has been highlighted as an important capability of elite sprinters¹³. Based on the findings within this paper, we tentatively suggest that the S&C coach may wish to adopt a broad approach to improving the kinetic aspect of MSS. The current paper provides support for the rationale of the development of rapid force production (150-200ms) within soccer players who are aiming to improve MSS, whilst also adding a fresh and interesting finding to the current literature regarding the importance of isometric PF for maximal sprinting performance.

382 Finally, F50, F100 and F150 ms from the IMTP test displayed a trivial correlation for both relative and 383 absolute values and 10 m acceleration performance. When participants were allowed more time to 384 produce force however, there were large negative correlations present with 10 m acceleration ability 385 and relative IMTP values (F200; r = -0.55 and PF; r = -0.53). This increased time available to produce 386 force also improved the correlation between 10m acceleration and absolute figures (F200; r = - 0.35 387 and PF; r = -0.30). A similar trend is present when comparing relative FGC and 5 m acceleration ability, 388 with small negative correlations appearing for F50 (r = -0.26) and F100 (r = -0.24), yet moderate 389 negative correlations for relative F150 (r = -0.36), F200 (r = -0.37), and PF (r = -0.33). This finding 390 suggests that the ability to produce high forces over a longer time-frame translates better to 391 acceleration performance than the ability to produce forces rapidly. This may be explained due to the 392 slightly longer GCT's (compared to sprinting) of <200 ms during the acceleration phase¹⁴. The 393 increased available time allows for higher expressions of force to be generated during acceleration 394 tasks⁴⁹, and so players who are able to produce large forces would seem to have an increased capacity 395 for improved 0–10 m acceleration capability. However with the higher negative correlations 396 appearing for relative IMTP ability when compared to absolute values for acceleration ability, the 397 importance of the aforementioned Newton's second law of motion (acceleration = force/mass), is 398 clearly apparent for the soccer strength and conditioning coach. PF and force at specific time bands 399 have been previously negatively correlated with acceleration capability within research studies from other sports^{11, 12, 20, 44}. The findings within the current paper and the wider IMTP literature, are in 400

401 congruence within an extensive body of literature linking various strength measures and acceleration
 402 performance⁴⁹.

403 No research is without limitation; however, the fact that this research was conducted in a naturalistic setting adds to its credibility in 'real-world' applied settings. Notwithstanding, sample-size was 404 405 constrained through the practicalities of the research being conducted in a professional team 406 environment and caution is suggested when considering the inference-based nature of interpretation 407 of the correlations. However, given this lack of precision for estimates due to the sample size, as noted, we also aimed to combine the results from our sample with those of other studies^{11, 12, 20, 24, 25, 29, 30, 31}. 408 409 This resulted in the inclusion of data from 510 participants (including collegiate athletes across a range 410 of sports, elite soccer youth athletes, professional rugby league players, and professional soccer 411 players) across 9 studies (including the present one). The small sample size may have also contributed 412 to the poor reliability of F50 (ICC = 0.089) and F100 (ICC = 0.48), with large variations in these metrics 413 being recorded in only two of the participants. This poor reliability is in contrast with previous studies showing F50 and F100 to be reliable markers (ICC = 0.76 and 0.85 respectively, CV = 12.8%)^{18, 29}. This 414 415 study is however in agreement with earlier research highlighting the excellent reliability of F200 and PF (ICC = 0.90 and 0.90 respectively)^{18, 29}. Future research may be worthwhile measuring more 416 417 longitudinally. Researchers could use repeated measures to enable the use of within participant 418 repeated measures correlations, in order to take a closer step towards understanding whether changes in IMTP measures are 'causally' related to changes in proxies of sport performance. 419 420 Importantly in this setting, implementing interventions is done on a player-by-player basis and 421 involves complex decision-making processes concerning multiple stakeholders. We believe that this 422 research makes an important contribution to these processes by highlighting the importance of 423 isometric FGC within athletic performance in professional soccer players.

424

425

426 CONCLUSION

427 The current study aimed to identify relationships between IMTP and markers of athletic performance 428 and discuss the importance of these for the S&C coach. This paper represents an important starting 429 point for the IMTP research within professional soccer, and has already added value to the physical 430 profiling process within the first authors applied setting. It has highlighted some interesting moderate 431 to very large correlations between IMTP relative and absolute force parameters and 5-10m 432 acceleration, MSS, CMJ and 505COD. Due to the associations displayed with markers of athletic 433 performance, this study has highlighted the value of the IMTP as an assessment tool for S&C coaches 434 working within professional soccer. The results of this test can help to direct the prioritisation of 435 training interventions depending upon the desired athletic performance improvement. The IMTP can 436 serve as an efficient profiling method to re-assess changes in FGC, and in doing so, the effectiveness 437 of the programme.

438 DISCLOSURE STATEMENT

The authors of the current paper have no affiliations with or involvement in any organization or entity
with any financial or non-financial interest in the subject matter or materials discussed within the
current paper. There is no conflict of interest in any form.

442 DATA AVAILABILITY STATEMENT

The dataset generated for this study is available and can be found at the following link;
<u>https://osf.io/zu4y9/</u>.

445

446

447

448

449 **REFERENCES**

- 450 1. Walker G, and Hawkins R. Structuring a Program in Elite Professional Soccer. Strength &
 451 Cond Journ *2018*:40: 72–82.
- 452 2. Bosco C. Monitoring strength training: neuromuscular and hormonal profile. Med & Sci in
 453 Sports & Exercise 2000;32:202.
- 454 3. Brownlee T, Murtagh C, Naughton R, Whitworth-Turner C, O'Boyle A, Morgans R, et al.
- 455 Isometric maximal voluntary force evaluated using an isometric mid-thigh pull differentiates 456 English Premier League youth soccer players from a maturity-matched control group. Sci &
- 457 Med in Football. 2018; *2*: 209–215.
- Dupont G, Nedelec M, McCall A, McCormack D, Berthoin S, and Wisløff U. Effect of 2 Soccer
 Matches in a Week on Physical Performance and Injury Rate. The American Journ of Sports
 Med 2010;38: 1752–1758.
- 461 5. Cook G. Movement. California 2017: On Target Publications.
- 462 6. Guppy S, Haff G, Brady C, and Comfort C. The Isometric Mid-Thigh Pull: A Review and
 463 Methodology Part 1. Journ of Strength and Cond *2018;28:* 21–28.
- 464 7. McGuigan, M, Newton M, and Winchester J. Use of isometric testing in soccer players. Journ
 465 of Aus Strength and Cond, 2008;16: 11–14.
- McGuigan M, Newton M, Winchester J, et al. Relationship Between Isometric and Dynamic
 Strength in Recreationally Trained Men. The journ of strength and cond research, 2010;24:
 2570–2573.
- 469 9. De Witt J, English K, Crowell J, et al. Isometric mid-thigh pull reliability and relationship to
 470 deadlift one repletion maximum. The Journ of Strength and Cond Research 2016;32: 1–9.
- 471 10. Dos'Santos T, Lake J, Jones P. and Comfort P. Effect of low pass filtering on isometric
- 472 midthigh pull kinetics. Journ of Strength and Cond Research. 2018;32: 1983–989.

473	11.	Thomas C, Comfort P, Chiang C. and Jones P. Relationship between isometric mid-thigh pull
474		variables and sprint and change of direction performance in collegiate athletes. Journal of
475		trainology, 2015;4: 6–10.
476	12.	Thomas C, Jones P, Rothwell J. and Chiang C. An investigation into the relationship between
477		maximum isometric strength and vertical jump performance. Journ of strength and cond
478		research, 2016;29: 2176–2185.
479	13.	Weyand P, Sternlight D, Bellizi M. and Wright S. Faster top running speeds are achieved with
480		greater ground forces not more rapid leg movements. Journ of applied biomech 2000;89:
481		1991–1999.
482	14.	Mackala K, Fostiak M. and Kowalski K. Selected determinants of acceleration in the 100m
483		sprint. Journ of Human Kinetics 2015;45: 135–148.
484	15.	Dos'Santos T, Jones P, Kelly J, McMahon J, Comfort P. and Thomas C. Effect of sampling
485		frequency on isometric mid-thigh pull kinetics. Inter Journ of Sports Phys and Perf 2016;11:
486		255–260,
487	16.	Haff G, Ruben R, Lider J, & Twine C. A comparison of methods for determining the rate of
488		force development during isometric midthigh clean pulls. Journ of Strength and Cond
489		Research 2015;29: 386–395.
490	17.	Haff G, Stone M, O'Bryant H, Harman E, Dinan C, Johnson R. & Han K. Force-time dependant
491		characteristics of dynamic and isometric muscle actions. Journ of Strength and Cond
492		Research 1997 11: 269–272.
493	18.	Guppy S, Haff G, Brady C. & Comfort C. The Isometric Mid-Thigh Pull: A Review and
494		Methodology - Part 2. Journal of Strength and Conditioning 2018;51: 21–29.
495	19.	Dietz C, & Peterson B. Triphasic training. Bye Dietz Sports Enterprise, San Francisco. 2012.
496	20.	West D, Owen N, Jones M, Bracken R, Cook C, Cunningham D, et al. Relationships between
497		isometric midthigh pull and dynamic performance in professional rugby league players.
498		Journ of Strength and Cond Research 2011;25 3070–3075.

- 499 21. Nosaka K. & Newton M. Difference in the magnitude of muscle damage. Journ of strength
 500 and cond research, 2002;16: 202–208.
- 501 22. Myer G, Kushner A, Brent J, et al. The back squat: A proposed assessment of functional
 502 deficits and technical factors that limit performance. Strength and Conditioning Journal
 503 2014;36: 4–27.
- 504 23. Haff G, Ruben R, Lider J, Twine C. and Cormie P. A comparison of methods for determining
 505 the rate of force development during isometric midthigh clean pulls. *Journ of Strength and*506 *Cond Research, 2015;29:* 386–395.
- 507 24. Nuzzo J, McBride J, Cormie P. and McCaulley G. Relationship between countermovement
 508 jump performance and multi-joint isometric and dynamic tests of strength. Journ of strength
 509 and cond research 2008;22 699–707.
- 510 25. Kraska J, Ramsey M, Haff G, Fethke N, Sands W, Stone M, et al. Relationship between
 511 strength characteristics and unweighted and weighted vertical jump height. *Inter Journ of*512 *Sports Phys & Perf 2009;4* 461–473.
- 513 26. Beckham G, Lamont H, Sato K, Ramsey M, Haff G. & Stone, M. Isometric strength of
- 514 powerlifters in key positions of the conventional deadlift. *Journ of Trainology 2012;*1: 32–35.
- 515 27. Guppy S, Brady C, Kotani Y, Stone M, Medic N. & Haff, G. The Effect of Altering Body Posture
- and Barbell Position on the Between-Session Reliability of Force-Time Curve Characteristics
- 517 in the Isometric Mid-Thigh Pull. *Journ of Strength & Cond Research 2018;*6: 162.
- 518 28. Morris R, Jones B, Lake J, Clarke N. & Till, K. The Relationship Between the Isometric Mid-
- 519 Thigh Pull and Dynamic Performance in Elite Youth Soccer Players. *Conference: International*520 *Conference of Strength Training (Japan, Kyoto)* 2016.
- 521 29. Morris R, Jones B, Myers T, Lake J, Emmonds S, Clarke N, et al. Isometric Midthigh Pull
- 522 Characteristics in Elite Youth Male Soccer Players. *Journ of Strength & Cond Research* 2019;

523 Epub ahead of print.

- 30. Kuki S, Sato K, Stone M, Okano K, Yoshida T & Tanigawa, S. The relationship between
 isometric mid-thigh pull variable, jump variables and sprint performance in collegiate soccer
 players. *Journ of Trainology* 2017;6:42-46.
- 527 31. Northeast J, Russell M, Shearer D, Cook C. & Kilduff, L. Predictors of linear and
- 528 multidirectional acceleration in elite soccer players. J. Strength Cond. Res. 2017;33: 2.
- 32. Keogh C, Collins D, Warrington G. & Comyns T. Intra-trial reliability and usefulness of
 isometric mid-thigh pull testing on portable force plates. *Journ of Human Kinetics* 2020;71
- 531 33–45.
- 532 33. Halperin I, Williams K, Martin D. & Chapman, D. The effects of attentional focusing
- 533 instructions on force production during the isometric mid-thigh pull. *Journ of Strength &*534 *Cond Research 2019;30:* 919–923.
- 535 34. Dos'Santos, T, Jones P. & Comfort, P. Effect of different onset thresholds on isometric mid-536 thigh pull force-time variables. *Journ of strength and cond research 2017;31:* 3463–3473.
- 35. Roe G, Darrall-Jones J, Black C, Shaw W, Till K. & Jones B. Validity of 10 HZ GPS and Timing
 gates for assessing maximum velocity in professional Rugby union players. Inter Journ of
- 539 Sports Phys & Perf, 2016;12 836–839.
- 36. Heishman A, Daub B, Miller R, Freitas E, Frantz B. and Bemben M. Countermovement jump
 reliability performed with and without an arm swing in NCAA division 1 intercollegiate
 basketball players. *The Journ of Strength & Cond Research 2020;34* 546–558.
- 54337. Waldron M, Worsfold P, Twist C. & Lamb K. Concurrent validity and test-retest reliability of a544global positioning system (GPS) and timing gates to assess sprint performance variables.
- 545 *Journ of Sports Sci 2011;29* 1613–1619.
- 546 38. Taylor J, Cunningham L, Hood P, Thorne B, Irvin G. & Weston M. The reliability of a modified
 547 505 test and change of-direction deficit time in elite youth football players. Sci & Med in
 548 Football 2019;3 157–162.

549	39.	Gabbett T, Kelly J. & Sheppard J. Speed, Change of Direction Speed, and Reactive Agility of
550		Rugby League Players. The journ of strength & cond research 2008 22: 174–181.
551	40.	Amrhein V, Trafimow D, & Greenland, S. Inferential Statistics as Descriptive Statistics: There
552		Is No Replication Crisis if We Don't Expect Replication. The American Statistician 2009;73
553		262-270.
554	41.	Amrhein V, Greenland S, & McShane, B. Retire Statistical Significance. Nature 2019;5 305-
555		307.
556	42.	McShane B, Gal D, Gelman A, Robert C, & Tackett, J. Abandon Statistical Significance. The
557		American Statistician 2019;73 235-245.
558	43.	Revelle W. psych: Procedures for Personality and Psychological Research. Northwestern
559		University, Illinois. R Package version 2.0.8, <u>https://cran.r-</u>
560		project.org/web/packages/psych/index.html
561	44.	Rafi Z, & Greenland, S. Semantic and Cognitive Tools to Aid Statisitcal Science: Replace
562		Confidence and Significance by Compatibility and Surprise. Applied Statistics 2020;8.
563	45.	Hopkins, W. Measures of reliability in sports medicine and science. Sports Med 2000; 30: 1-
564		15.
565	46.	Viechttbauer, W. Conducting Meta-Analysis in R with the metaphor Package. Journ. of
566		Statistical Software 2010;36.
567	47.	Higgins J, & Green, S. Cochrane Handbook for Systematic Reviews of Interventions. Cochrane
568		Book Series. Wiley-Blackwell 2011.
569	48.	Verheul J, Warmenhoven J, Lisboa P, Gregson W, Vanrenterghem J. & Robinson M.
570		Identifying generalised segmental acceleration patterns that contribute to ground reaction
571		force features across different running tasks. Journ of Sci & Med in Sport 2019;22 1355–
572		1360.
573	49.	Maffiuletti N, Aagaard P, Blazevich A, et al. Rate of force development: physiological and
574		methodological considerations. European journ of applied phys, 2016;116 1091-1116.

- 575 50. Rodriguez-Rosell D, Pareja-Blanco F, Aagaard P, & Gonzalez-Badillo J. Physiological
- 576 methodological aspects of rate of force development assessment in human skeletal muscle.
 577 Clin Physiol Funct Imaging, 2017;38 743-762.
- 578 51. Waugh C, Korff T, Fath F, et al. Rapid force production in children and adults: mechanical and
 579 neural contributions. Med Sci Sports Exerc, 2013;45 762-771.
- 580 52. Kubo K, Kanehisa H. & Fukunaga T. Effects of different duration isometric contractions on
- 581 tendon elasticity in human quadriceps muscles. Journ of Physiol 2001;536 649-655.
- 582 53. Nimphius S, Callaghan S, Bezodis N, & Lockie R. Change of Direction and Agility Tests:
- 583 Challenging our current measures of performance. Strength & Cond Journ 2018;40 26–38.
- 584 54. Townsend J, Bender D, Vantrease W, et al. Isometric Midthigh Pull Performance Is
- 585 Associated With Athletic Performance and Sprinting Kinetics in Division I Men and Women's
- 586 Basketball Players. *Journ of strength & cond research, 2019;33* 2665–2673.
- 587 55. Sole, C. Analysis of Countermovement Vertical Jump Force-Time Curve Phase Characteristics
 588 in Athletes. ETSU Dissertation 2015:
- 589 <u>https://dc.etsu.edu/cgi/viewcontent.cgi?article=3926&context=etd,</u>
- 590 56. Secomb J, Nimphius S, Farley O, Lundgren L, Tran T. & Sheppard J. Lower-body muscle
- structure and jump performance of stronger and weaker surfing athletes. Inter journ of
 sports phys and perf 2016;11: 652–657.
- 59357. Bridgeman L, McGuigan M, Gill N. Relationships Between Concentric and Eccentric Strength594and Countermovement Jump Performance in Resistance Trained Men. Journ of strength and
- 595 cond research 2016;32 255–260.
- 596 58. McErlain-Naylor S, King M. & Pain M. Determinants of countermovement jump
- 597 performance: a kinetic and kinematic analysis. *Journ of Sports Sci 2014*;32 1805–1812.
- 598 59. Suchomel T, Nimphius S. & Stone M. The Importance of Muscular Strength in Athletic
- 599 Performance. *Journ of Sports Med 2016;46:* 1419–1449.

- 600 60. Kubo K, Kanehisa H, Kawakami Y. & Fukunaga T. Elasticity of tendon structures of the lower
 601 limbs in sprinters. Journ of Physiol 2000;168 327-335.
- 602 61. Kubo K, Ikebukuro T, Yata H, et al. Morphological and Mechanical Properties of Muscle and
 603 Tendon in Highly Trained Sprinters. Journ of applied biomech 2011;27 336-344.
- 604 62. Kuitunen S, Komi P, Kyrolainen H. Knee and ankle joint stiffness in sprint running. Med Sci
- 605 Sports Exerc 2002;34 166-73.

175.

606 63. Meckel Y, Atterbom H. & Grodjiovsky A. Physiological characteristics of female 100 metre
607 sprinters of different performance levels. *Journ of Sports Med, Phys & Fitness 1995;35* 169–

608

	Mean ± SD	Minimum	Maximum	CI (95%)	CV (%)	ICC(3,1) (95% CI)
F50 (N)	886 ± 93	810	1117	831–941	10.55	0.089 (-0.18-0.46)
F100 (N)	1267 ± 199	1055	1418	1196.7–1337.3	9.42	0.51 (0.20-0.78)
F150 (N)	1705 ± 148	1446	1910	1617.6–1792.4	8.68	0.48 (0.17-0.76)
F200 (N)	1987 ± 201	1688	2350	1868.3–2105.7	10.09	0.90 (0.79-0.96)
PF (N)	2522 ± 242	2267	3038	2379–2665	9.58	0.90 (0.79-0.96)
5 m Acceleration (s)	1.02 ± 0.09	0.93	1.23	0.97–1.07	9.10	0.85 (0.72-0.94)
10 m Acceleration (s)	1.75 ± 0.06	1.65	1.83	1.71–1.79	3.58	0.85 (0.72-0.94)
MSS (m·s⁻¹)	9.22 ± 0.38	8.60	9.80	9.00–9.44	4.08	0.76 (0.57-0.90)
CMJ (cm)	43.96 ± 2.12	41.20	47.00	42.71–45.21	4.83	0.78 (0.60–0.91)
COD505 (s)	2.34 ± 0.17	2.04	2.56	2.24–2.44	7.46	0.97 (0.94-0.99)

Table 1. Descriptive Statistics for IMTP variables, accelerations, maximum velocities, CMJ and COD505 ability.

F50

F100

F150

F200

PF

Scatter plots of body weight relative isometric mid-thigh pull variables with (A) 5m accleration, (B) 10m acceleration, (C) max sprint speed, (D) counter movement jump, and (E) change of direction.

Linear regression lines (blue) with 50%, 80%, and 95% CI ribbons (grey bands) are included.