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Abstract 

Sexually selected ornaments are highly variable and the factors that drive variation in 

ornament expression are not always clear. Rare instances of female-specific ornament evolution 

(such as in some dance fly species) are particularly puzzling. While some evidence suggests that 

such rare instances represent straightforward reversals of sexual selection intensity, the 

distinct nature of trade-offs between ornaments and offspring pose special constraints in 

females. To examine whether competition for access to mates generally favours heightened 

ornament expression, we built a phylogeny and conducted a comparative analysis of Empidinae 

dance fly taxa that display female-specific ornaments. We show that species with more female-

biased operational sex ratios in lek-like mating swarms have greater female ornamentation, and 

in taxa with more ornate females, male relative testis investment is increased. These findings 

support the hypothesis that ornament diversity in dance flies depends on female receptivity to 

mates, which is associated with contests for nutritious nuptial gifts provided by males. 

Moreover, our results suggest that increases in female receptivity lead to higher levels of sperm 

competition among males. The incidence of both heightened pre-mating sexual selection on 

females and post-mating selection on males contradicts assertions that sex-roles are 

straightforwardly reversed in dance flies. 

 

Keywords: operational sex ratio (OSR), polyandry, female ornaments, dance flies, premating, 

postmating, sexual selection, Empidinae 

 

Introduction 

There is a striking diversity of sexual ornaments across animals, even between closely 

related species (Ord and Stuart-Fox 2006; Pomfret and Knell 2008), but the causes of this 

diversity are often unclear. An increase in ornamentation is expected to accompany increased 

sexual selection on the more sexually competitive sex (e.g. Andersson and Iwasa 1996)); for 

example, if access to receptive mates becomes limited in a species, intense contests for mating 

opportunities may arise, increasing variation in mating success (Emlen and Oring 1977) and 

favouring the expression of exaggerated secondary sexual traits that increase attractiveness and 

mating success (Andersson and Iwasa 1996). What drives increased variation in mating success 

and whether interspecific variation can fully explain diversity in ornament expression across 

species is the subject of ongoing debate (e.g. Janicke et al. 2016; Janicke and Morrow 2018).   

One critical factor affecting mating system transitions is the intensity of competition for 

access to mates.  When premating competition intensity is high, variance in mating success 

increases and can provide strong selection pressures to improve attractiveness in the 

competing sex.  Because access to mates is generally a more strongly limiting factor for the 

reproductive success of males than it is for females, (Trivers 1972), males tend to be more 

sexually receptive to mates, which often leads to male biases in the measure of operational sex 

ratio (OSR; the relative proportion of receptive males and females) (Emlen and Oring 1977; 

Kvarnemo and Ahnesjo 1996) in most animal species (Janicke et al. 2016).  When measures of 

OSR are male-biased and females are scarce, selection will typically favour traits (such as 

armaments or ornaments) that improve a male’s access to females. Less is known about how 
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sexual selection operates on females, and whether female-biased sex ratios and increased 

female competition for males will similarly favour the evolution of attractive female ornaments. 

In fact, recent work synthesizing studies of many species suggests that while the OSR predicts 

sexual selection intensity in males, it does not similarly do so for females (Janicke and Morrow 

2018). 

Female-specific ornament evolution 

Sexual selection in females is a well-documented phenomenon (Clutton-Brock 2009; 

Shuker 2010; Hare and Simmons 2018).  However, female-specific ornament evolution remains 

uncommon, even among taxa in which females experience relatively strong sexual selection 

(Amundsen 2000). In the rare cases when female-specific ornaments do evolve (Funk and 

Tallamy 2000; Charlat et al. 2007; Tobias et al. 2012; Liker et al. 2013; Murray et al. 2017), they 

are hypothesized to improve attractiveness to mates or as signals in intrasexual competition, 

just as they do in males (Amundsen 2000).  However, there are several theoretical reasons to 

expect that selection on females need not necessarily directly mirror the situation for males 

with a male-biased OSR (Gwynne and Simmons 1990; Forsgren et al. 2004; Silva et al. 2010).  

Unlike in males, female gamete production is typically very costly (but for a review of 

variation in spermatogenesis costs see Parker and Pizzari 2010), reproductive success is limited 

more by gamete production than by access to mates (Trivers 1972), and the expression of 

expensive ornamental traits could come at a cost to fecundity (Fitzpatrick et al. 1995).  Females 

can overcome any costs associated with ornamentation if they receive direct benefits from 

mating, such as nutritious nuptial gifts (Vahed 1998; South and Lewis 2012) that compensate 

for resource investment in ornament expression.  However, males might still prefer females 

who invest less in ornamentation (Fitzpatrick et al. 1995), because by increasing their 

attractiveness to potential mates, ornamented females are more likely to be polyandrous.  Males 

mating with attractive females are therefore more likely to encounter increased risk or intensity 

of sperm competition within those females (Herridge et al. 2016). The fact that selection on 

females might heighten postcopulatory sexual selection on males (McDonald and Pizzari 2016) 

may help explain why sex differences in sexual selection for female-biased dimorphic traits are 

not consistently associated with contest intensity as measured by female-biased OSRs (Janicke 

and Morrow 2018). 

Polyandry and female ornaments 

Increased levels of polyandry should produce predictable changes in the reproductive 

morphology of males, including, for example, increased relative testis investment (Simmons 

2001).  Relative testis size covaries with rates of female polyandry across diverse taxa (Parker 

et al. 1997; Vahed et al. 2011). Two complementary hypotheses are frequently invoked to 

explain this relationship: numerical sperm competition (Gay et al. 2009) and male mating rate 

(Parker and Ball 2005); for a review see Vahed and Parker (2011). However, the cause-and-

effect relationship between polyandry and testis size may not be as straightforward as 

originally thought (Simmons 2001); population traits, such as the sex ratio, can influence how a 

male allocates resources during copulation as well as his relative testis size (Reuter et al. 2008).  

Therefore, given the complexity of the link between polyandry and relative testis investment, 

and the rarity of taxa displaying female-specific ornaments, to our knowledge predictions about 

the relationships between female contest intensity, ornamentation, and male testis investment 

have never been empirically tested.    
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In this study, we address these gaps in knowledge by building a molecular phylogeny of 

some dance fly taxa for which lek-like swarm sex ratios have been measured.  We then use a 

comparative approach to ask 1) how contest intensity (as measured by OSR) covaries with 

female ornament expression, and 2) how female ornament expression covaries with male 

relative testis investment. Because male dance flies provide nutritious nuptial gifts to their 

mates, we expect to find that competition among females for access to males can be intense.  We 

also expect to find that in species where female intrasexual competition is strongest (i.e. female-

biased OSRs), attractive, sex-specific ornaments may have evolved to increase access to males 

and the nuptial gifts they provide.  Finally, if females gain benefits from obtaining more nuptial 

gifts during matings, we would also expect that more attractive (i.e. highly ornamented) females 

would be polyandrous and potentially influence the morphology of male traits important for 

postcopulatory sexual selection, such as male relative testis investment.  

Methods 

Study Species 

Dance flies from the subfamily Empidinae (Diptera: Empididae) include species with 

almost no sexual dimorphism – typically taxa with male biased mating swarms – as well as 

species with progressively more numerous and elaborate female-specific ornaments in typically 

female biased mating swarms (Collin 1961; Cumming 1994; Murray et al. 2017). In many dance 

fly taxa, populations form lek-like mating swarms at specific ‘swarm markers’ throughout the 

breeding season (Funk and Tallamy 2000; Svensson and Petersson 2000).  In most species, 

regardless of the swarm sex ratio (Collin 1961; Cumming 1994), male dance flies approach 

displaying females in the mating swarm (Murray et al. 2018) to offer a nuptial gift (often a prey 

item) in exchange for copulation.  The provision of nuptial gifts appears to be basal for the 

subfamily and is present for both ornamented and unornamented dance fly species (Collin 

1961; Cumming 1994). The male passes the nuptial gift to the female prior to copulation, either 

in flight away from the mating swarm (e.g. Funk and Tallamy 2000; Murray et al. 2019) or after 

landing on vegetation (e.g. LeBas and Hockham 2005). 

Approximately one third of species from the genera Rhamphomyia and Empis display 

female-specific ornamentation (Collin 1961; Cumming 1994). There are three main categories 

of ornaments: pinnate leg scales, inflatable abdominal sacs and dimorphic wings (in size, colour 

or both). Pinnate leg scales (also described as hairs, bristles or ‘pennate’ leg scales) are the most 

common form of adornments: hair-like bristles that extend laterally on a female’s legs and are 

completely absent in male dance flies (Figure 1); they can vary in size and the number of legs on 

which they occur (e.g. Collin 1961; Cumming 1994; Gwynne and Bussière 2002; LeBas et al. 

2003). Inflatable abdominal sacs are less common (or potentially more difficult to observe), but 

can also vary considerably in their size and shape (e.g. Figure 2; Collin 1961; Cumming 1994; 

Turner 2012). Sexual dimorphism in wings is reasonably common and highly variable (in both 

size and colour) across dance fly species. The best-studied examples of exaggerated female wing 

ornamentation are the enlarged and patterned female wings of Rhamphomyia marginata (Miller 

and Svensson 2014) and the enlarged and darkened wings of Empis borealis (Svensson and 

Petersson 2000).  
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Sample collections for phylogenetic inference 

Although dance flies are common in many parts of the world, swarming behaviour and 

swarm sex ratios in most species have not been described. We sampled (using sweep nets) 18 

species with known swarming sites from Scotland, UK and Ontario, Canada (Table S1).  Empis 

borealis samples were collected in the Cairngorms National Park near Aviemore, UK in March 

2012 and Hilara litorea samples from Edinburgh, UK in July and August 2012.  All other UK 

species were collected from May-July 2011 from the woodland and farmland along the West 

Highland Way on the eastern side of Loch Lomond between the Scottish Centre for Ecology and 

the Natural Environment (SCENE) and Rowardennan, Scotland. Rhamphomyia longicauda 

samples were collected in June 2012 from an island in the Credit River near Glen Williams, 

Ontario, Canada.  

Morphological measurements 

Morphological measurements were taken using a dissecting microscope connected to a 

camera and analyzed using ImageJ (version 1.48) digital imaging software (Abràmoff et al. 

2004).  To quantify continuous variation in leg and wing dimorphism across species, we used 

flies collected for OSR measures and in sweeps of vegetation and took the following external 

morphological measurements: femora and tibia lengths, wing lengths, thorax lengths, femora 

and tibia areas, and wing areas. For paired characters we measured both right and left sides and 

took the mean. When this was not possible because of damage to one side, we measured only 

the undamaged side. 

To estimate sexual dimorphism in pinnate leg scale for each species we took the square 

root of total leg area (femora and tibia) for each leg (hind, mid and front) and scaled by total leg 

length. We summed the scaled leg dimorphism values for hind, mid and front legs in each sex.  

We then subtracted the male value from the female value such that higher positive values of leg 

dimorphism indicate more pinnation on female legs for that species. Similarly, to quantify wing 

size dimorphism within each species, we took the square root of wing area and standardised by 

thorax length for each species. We subtracted the male value from the female value to compute 

an index of wing size dimorphism for each species.   

We constrained the dimorphism measures of legs and wings to positive values because 

we are interested only in female sexual ornament expression (rather than other causes of leg 

dimorphism) and within these species none of the males are ornamented. Therefore, negative 

values of leg dimorphism are presumed to be unrelated to ornamentation. We show the results 

from the analyses including negative values of dimorphism in the supplementary materials 

(Tables S2, S3; Figures S1-S3). Finally, we summed continuous measures of leg and wing 

dimorphism to produce an ‘ornament score’ measure for each species that we used for our 

ornament measure in the analyses described below.  We note that there is no relationship 

between female-specific leg and wing ornament size measures across species; however, some 

dance flies do have multiple ornamental traits and we reasoned that taxa with more or larger 

adornments (regardless of type) are ‘more ornate.’   

Wing colour and inflatable abdominal sacs as female ornaments were not measured as 

continuous traits in this study. We scored wing colour and abdominal sac ornaments as binary 

(present/absent) traits based on descriptions from the literature (Collin 1961; Cumming 1994). 

We mapped these discrete traits on to the phylogeny for illustrative purposes, but because of 

their rarity within our samples and the difficulties in quantifying their expression in the field 
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and across species, we did not include binary ornamentation traits from wing colour or 

abdominal air sacs in our continuous measures of ‘ornament score’ described above.  

To estimate morphological changes reflecting increases in sperm competition that may 

arise from heightened polyandry, we dissected and measured the two-dimensional area of the 

testes for ten males per species. For two species, Hilara Beckeri and H. interstincta, we did not 

have 10 intact males at the time of measurement, and excluded these species from this analysis 

(Table 1).  We standardized mean testis area by dividing by an individual male’s thorax length 

(as a proxy for body size) to produce a relative testis size measure for each male. We then took 

the mean relative testis size of all ten males to use as a species estimate.   

OSR measurements 

We estimated the OSR in each species as the number of males swarming divided by the 

total number of swarming flies. Previous work suggests that mating swarms are often 

predictable and occur at the same location for the duration of a swarming season (Funk and 

Tallamy 2000; Svensson and Petersson 2000), and that the mating swarm OSR can vary both 

spatially (between populations) and temporally (within populations; Funk and Tallamy 2000; 

Svensson and Petersson 2000; Wheeler 2008; Murray et al. 2017).  We measured multiple 

swarming events in several species to capture some of the spatial and temporal variation, and to 

account for sampling error that is especially notable in smaller swarms. In our analyses we 

computed OSR as a measure of contest intensity in several ways: by summing the total number 

of swarming OSR tallies for males and females across all swarming events (to derive an “overall 

swarm sex ratio”), by taking the mean proportion of males across swarming events (i.e., 

considering each swarm as an independent sample unweighted by swarm size), or by weighting 

swarms according to the number of swarming flies (to account for the fact that variance is 

inversely proportional to sample size for binomial samples). Ultimately, we found no qualitative 

difference in the results regardless of how we summarize our OSR data.  The MCMCglmm 

package in R (Hadfield 2010; R Core Development Team 2014) does not allow for a ‘weights’ 

argument (as in the lme4 library (Bates et al. 2014)) to account for swarm size.  Therefore to 

account for phylogenetic uncertainty using the MCMCglmm package and the number of animals 

that were measured to make up each mating swarm sex ratio, below we present analyses that 

use the summed total number of swarming OSR tallies across each swarming event for each 

species.   

Sequencing of CAD for phylogeny estimation 

To estimate the evolutionary relationships amongst the 18 fly species of morphological 

and behavioural interest for this study, we chose the phylogenetic marker gene CAD (Moulton 

and Wiegmann 2004). CAD is a fusion protein encoding the first three enzymes of the de novo 

pyrimidine biosynthetic pathway. This gene has proven useful for resolving phylogenetic 

relationships in Diptera (and particularly in the superfamily Empidoidea) because it is single 

copy, and possesses moderate levels of non-synonymous divergence (Moulton and Wiegmann 

2004, 2007). DNA was isolated from individual flies using DNeasy animal tissue extraction kits 

(Qiagen, Valencia, CA) according to the manufacturer’s instructions.  We amplified a ~1200bp 

partial coding sequence from the carbomoylphosphate synthase (CPS) domain of CAD using 

Empididae degenerate PCR primer sequences obtained from personal communication with 

Brian Cassel from the Wiegmann research group at North Carolina State University 

(empCAD292F: AGYAATGGNCCNGGHGATCC and empCAD695R: 
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GGRTCYARRTTYTCCATRTTRCA). PCR amplifications were carried out in 20µL reactions with 

4.0µL ddH2O, 4µL 5X Taq Polymerase Buffer, 1.8–2.1µL of 25 mM MgCl2, 2 µL of each primer 

(2.5µM), 1µL of 10 mM dNTPs, 1 unit of Taq polymerase, and 2-4µL of template DNA. All 

reactions were carried out using a 3-step touchdown PCR modified from Moulton and 

Wiegmann (Moulton and Wiegmann 2004): 4 min denaturation at 94°C followed by 4 cycles of 

94°C for 30s, 52°C for 30s, 72°C for 2m, 6 cycles of 94°C for 30s, 51°C for 30s, 72°C for 2m, and 

36 cycles of 94°C for 30s, 45°C for 20s, 72 °C for 2m30s. PCR amplicons were visualised on 1% 

agarose gels to ensure that the PCR was successful and generated only a single band. Each PCR 

fragment was directly sequenced on both strands on an ABI 3730 capillary Sanger sequencing 

instrument at the Edinburgh Genomics Sequencing facility (Edinburgh, UK). We assembled the 

forward and reverse strands using Sequencher 4.7 and edited chromatograms manually to 

ensure that all base calls, and variant sites were reliably scored. In our molecular sequencing, 

we included Rhamphomyia albohirta, a species collected from SCENE, UK (Table S1) that was 

excluded from the morphological and behavioural analyses because of low sample size. We also 

included the partial CAD sequence of Hilara lugubris, which is the only Empidinae species in 

NCBI Genbank identified to the species level (accession number: DQ369299.1). Our outgroup 

was Heterophlebus versabilis (accession number: HM062728.1) from the related Empididae 

subfamily, Trichopezinae. This outgroup was chosen because it is closely related to Empidinae 

based on previous phylogenetic work on the Empidoidea (Moulton and Wiegmann 2007). In 

addition, the uncorrected pairwise genetic distance between Heterophlebus versabilis and each 

ingroup sequence was always greater than the genetic distance between any pair of ingroup 

sequences. We aligned all the sequences using their translated amino acid sequences in MUSCLE 

v 3.8.31 (Edgar 2004) before back converting to a DNA alignment.  

Phylogenetic Inference 

We conducted a Bayesian MCMC phylogenetic analysis of CAD sequences in MrBayes v 

3.2.4 (Ronquist et al. 2012). Because the CAD sequence we analysed is protein coding, we used a 

‘codon’ model of evolution to capture the heterogeneity of mutation rate and selective 

constraint on sites across the sequence. We also ran simpler models to ensure that we had not 

over-parameterised the model; we ran one model in which the first, second and third codon 

positions were partitioned (parameter estimation for each partition was unlinked) and another 

model where there was no partitioning of sites. For each model we allowed MrBayes to select 

the best base substitution scheme with a reversible jump MCMC (nst =mixed). We compared the 

fit of the models by approximating the marginal likelihood with the stepping stone estimator; 

these marginal-likelihoods were then evaluated using Bayes factors to assess the fit of the data 

to the three models. For each model we ran three independent runs for 3.5 million cycles, each 

with four Markov chains. We allowed for a burnin such that the average standard deviation of 

split frequencies dropped below 0.01 before we began sampling (burnin = 0.5-1.5 million). To 

ensure convergence, we checked that Potential Scale Reduction Factor (PSRF) for all parameters 

converged to 1.0 and that the average Estimated Sample Size (ESS) for all parameters exceeded 

200. To account for uncertainty in the phylogenetic tree in our statistical analysis, we randomly 

sampled 1300 topologies from the posterior probability of trees (see below).  

For simplicity, we mapped binary (discrete) ornament traits (see Table 1) onto the 

consensus tree by delineating the most parsimonious transitions in character states.  We note 

that using binary characters is an oversimplification of the data because even between closely 

related species that share the same ‘type’ of ornament, there can be substantial variation in 
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ornament expression. In all statistical analyses described below, we use only continuous 

measures of ornamentation.   

Statistical analyses 

All statistical analyses were carried out in R (R Core Development Team 2014).  Within 

each species, all continuous morphological traits were standardized (by subtracting the mean) 

and scaled (by dividing by two standard deviations) so that each trait was measured on a 

common scale (Gelman and Hill 2007).  The OSR was measured as the logit-transformed ratio 

(Warton and Hui 2011) of the proportion of males in the mating swarm.  

We employed a standard comparative approach (Felsenstein 1985; Harvey and Pagel 

1991) to test for an effect of contest intensity (as measured by OSR) on female ornamentation 

and whether the degree of female ornament expression covaried with male relative testis 

investment. We used MCMCglmm (Hadfield 2010) to perform comparative analyses using 

phylogenetic mixed models. We fit two models that initially included fixed effects and their 

quadratic terms: one with continuous measures of ‘ornament score’ as a response (sum of leg 

and wing size dimorphism described above) and mean-centred OSR and OSR2 as fixed effects, 

and one model that fit testis size as the response predicted by continuous measures of female-

specific ornamentation; we did not include OSR measures in our second model (looking for 

association between male testis investment and female ornaments) because our a priori 

prediction was that ornaments should mediate any relationship between the OSR and testis size, 

and we wanted to avoid interfering with estimates of that relationship by including a collinear 

predictor. We fit quadratic terms for sex ratio because contest intensity is predicted to select for 

ornament expression primarily for the supernumerary sex: as swarms become female biased, 

we expect ornaments to evolve through female contests for males and their nuptial gifts. 

However, as the swarm sex ratio becomes male-biased, we predict selection for ornaments to 

disappear because all females should be able to find mates; the degree to which the swarms are 

male biased need not covary with ornament expression in this case, since no ornaments are 

predicted for any male-biased swarm sex ratio. To test for the effect of phylogenetic ancestry, 

we calculated the phylogenetic heritability (an analogue to Pagel’s lambda), which estimates the 

proportion of between-species variance explained by the phylogeny (Hadfield 2010).   

To correct for uncertainty in the phylogeny during our comparative analysis, we 

marginalized over the posterior distribution of trees created during phylogenetic inference 

above. We sampled a tree at iteration t, ran 1000 iterations of the MCMC comparative analysis 

and then saved the last MCMC sample. The values from the variance components in the saved 

MCMC sample were then used in the analysis for starting values at iteration t+1 and a new tree 

from the posterior distribution was taken. This process was repeated 1300 times (i.e. using 

1300 trees randomly sampled from the posterior probability of trees) and the first 300 

iterations were discarded as burn-in, as in (Ross et al. 2013) while retaining a sample size of 

1000.   

Our MCMCglmm models assumed a Brownian model on the logit probability scale for the 

phylogenetic effects (Hadfield 2010). We corrected for phylogenetic non-independence by using 

the CAD phylogeny as a random effect and the tree sampling method described above. For all 

models we used a weakly informative parameter-expanded prior. We report the significance of 

our fixed effects as pMCMC, which is twice the posterior probability that the estimate is positive 
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or negative (whichever is smallest), and can be considered the equivalent of the frequentist p 

value (Hadfield 2010).   

Results 

Morphological traits and operational sex ratio 

We measured the OSR, two continuous measures of female ornamentation (legs and 

wings), four binary female ornaments and relative testis size across 18 Empidinae dance fly 

species (Table 1). We found 11 female-specific ornaments among seven dance fly species (the 

remaining 11 species showed no female ornamentation). The number of mating swarms we 

sampled per species varied from 2 to 50. Mean OSR measures ranged from very female biased 

(e.g. Rhamphomyia longicauda: 0.24) to very male biased (e.g. R. longipes: 0.71). Similarly, 

standardized leg and wing dimorphism measures ranged from male biased in some species to 

very female biased (e.g. legs: R. longicauda; Figure 1; wings: E. borealis; Figure 2).  Relative testis 

size was also variable with a 3-fold increase between the smallest (R. crassirostris) to the largest 

(E. aestiva) species measures.  

Empidinae phylogeny 

We successfully amplified and sequenced the partial CAD coding sequence for all species 

included in this study. The chromatograms of E. stercorea and R. stigmosa were truncated and 

therefore only partial sequences were included (478bp and 734bp, respectively).  All ambiguous 

bases were marked with an ‘N’ to avoid poor quality nucleotide calls influencing the phylogeny. 

The alignment of sequences was straightforward with a single 6bp deletion in the ancestor of 

the Hilara species included in our study. We assessed three models of sequence evolution, and 

found the data fit the ‘codon’ model better (ln(marginal likelihood) = -5988.72) than both 

simpler models: three codon positions partitioned (ln(marginal likelihood) = -6162.19), and no 

partitioning (ln(marginal likelihood) = -6516.24). Bayes factor (BF) calculations indicated 

strong support for the codon model over the partitioned (BF = 2.2 × 1075) and unpartitioned (BF 

= 1.3 × 10229) models.  

The phylogeny inferred using CAD included 22 species, five Empis, six Hilara, 10 

Rhamphomyia and the outgroup Heterophlebus versabilis. The outgroup rooted the tree on the 

branch connecting Hilara to the paraphyletic genera Empis and Rhamphomyia, consistent with 

Moulton and Wiegmann (2007). The consensus tree displayed in Figure 3 was well resolved: 15 

of 19 nodes had a posterior probability >0.95, and only two nodes were unresolved (<0.5), 

which created a polytomy among R. crassirostris, R. longicauda and the well-supported sister 

pair R. stigmosa and R. sulcata. Some of these ambiguities could be resolved by including more 

sequence from CAD and other phylogenetic markers or by sampling more species. However, 

uncertainty in the exact topology of the unresolved nodes in our CAD tree was accounted for by 

marginalizing over the posterior probability of tree topologies in our statistical analysis (see 

below).  

Our mapping of binary character states, while conservative, does estimate multiple 

origins of female ornament evolution even within our sample of dance fly species (Figure 3).  

Pinnate leg scales show three independent origins, wing colour dimorphism and abdominal sacs 

show two origins, and wing size dimorphism shows a single origin.  



 

 

 

This article is protected by copyright. All rights reserved. 

 

10 

Comparative analysis 

If the evolution of female-specific ornaments coevolves with the strength of competition 

for access to males (or their nuptial gifts), we predicted that increased female ornamentation 

should positively covary with an increase in female-biased OSR. We fit a phylogenetically 

controlled generalised linear mixed effects model, with ornament score (the sum of wing and 

leg dimorphism indices obtained for each species) as the response, OSR and OSR2 as fixed 

effects and the phylogeny as a random effect. We found a significant linear (pMCMC=0.018) and 

quadratic (pMCMC=0.026) association between OSR and female ornamentation after correcting 

for phylogeny (Table 2): the linear term indicates that as predicted, species with more female-

biased swarms had higher levels of ornament expression, while the negative quadratic term 

indicated a gradual reduction of this effect as the swarm sex ratio approached 0.5. For male 

biased swarms (OSR >0.5) there was no discernible relationship between the sex ratio and 

ornament expression (Figure 4). We calculated the phylogenetic heritability (analogue to 

Pagel’s lambda) as 0.25, indicating a low degree of phylogenetic structure in ornamentation 

after accounting for variation in OSR measures. The above analysis assumes that the predictors 

are sampled without error because the MCMCglmm package does not allow for a weighting of 

the fixed effects (i.e. by number of swarms sampled or sample size within each swarm for our 

OSR measures). To verify that our estimates were not biased by this assumption, we fit a GLMM 

in the lme4 package and included number of swarms sampled and separately, number of 

individuals, per species as ‘weights’ arguments in the models. The results of both models were 

qualitatively similar (data not shown) to the phylogenetically controlled model.   

We tested for an association between female ornaments and male testis across dance fly 

species. We hypothesized that heightened ornament expression to attract males (Murray et al. 

2018) might signify a greater level of polyandry, which would in turn select for sperm 

competition traits in males (including increased relative testis investment). We fit a MCMCglmm 

mixed model with relative testis size as the response, and continuous measures of female leg 

and wing dimorphism as fixed effects; the quadratic term for ornament expression was 

removed during model simplification. We also fit phylogeny as a random effect. We found that, 

as predicted, female ornament expression and relative testis size had a significant positive 

linear association (pMCMC=0.020). We calculated the posterior probability of phylogenetic 

signal (mixed model equivalent of Pagel’s lambda; (Hadfield and Nakagawa 2010)) as 0.28, once 

again indicating a low degree of phylogenetic structure in relative testis size after accounting for 

variation in ornamentation measures. 

Discussion 

Dance flies from the subfamily Empidinae display highly variable female sexual 

ornaments, ranging from species with multiple female-specific ornaments to those that display 

very little dimorphism in secondary sex characters (Figure 1, 2).  We set out to test two 

predictions about female ornament evolution: (1) contest intensity (as measured by female-

biased OSR) covaries with elaborate female ornament expression, and (2) female ornament 

expression covaries with relative testis investment.  Our phylogeny of 21 species supports 

multiple origins of female-specific ornaments across species (Figure 3) in line with previous 

assessments (Cumming 1994; Watts et al. 2016). Comparing taxa in a phylogenetic context we 

found that (1) pre-mating contest intensity covaried with the degree of female ornamentation 

and, in line with predictions, only when mating swarms were female-biased (Table 2, Figure 4), 
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and (2) that increased female-specific ornamentation positively covaried with male relative 

testis investment (Table 3, Figure 5).  

Empidinae phylogeny supports multiple origins of female ornaments 

Our phylogeny is consistent with a recent, broad scale tree of the empids (Watts et al. 

2016). While the two trees only overlap in 2 species ((Watts et al. 2016) and Figure 3), we do 

find the same general patterns: all species in the genus Hilara are members of a well-supported 

monophyletic clade, while the genera Rhamphomyia and Empis are paraphyletic, and form a 

clade distinct from Hilara.  We also find that there are multiple independent transitions, both 

from unornamented ancestors to extant taxa with one or multiple female-specific ornaments, 

and within each ornament class (pinnate leg scales, abdominal sacs and wing size and colour 

dimorphism; Table 1, Figure 3) It is important to note that this tree represents only a small 

fraction of the species diversity in the Empidinae (Watts et al. 2016) and more complete 

taxonomic sampling could alter the mapping of these traits and our inferences about how many 

times ornamentation has evolved (see review by Nabhan and Sarkar 2012). However, given that 

we report four distinct sexually dimorphic traits that all appear to have arisen independently, it 

seems likely that female-specific ornamentation has arisen multiple times within the dance flies. 

In addition, the pinnate scales of R. longicauda and R. tibiella, which appear as separate 

transitions, are morphologically distinct and unlikely to be homologous traits (Collin 1961); 

Figure 1). Indeed, even for R. longipes and R. albohirta, which our tree identifies as sister species 

that share the same origin of leg pinnation (Figure 3), the degree of ornamentation is different; 

R. longipes displays hind leg pinnation, while R. albohirta females have pinnation on their hind 

and mid legs (Collin 1961). Therefore, by simplifying continuous ornamental traits into binary 

characters on the phylogeny we are being conservative in estimating the extent of ornament 

evolution in the dance flies. Indeed, given the variation in traits coded as the same in Table 1 

and Figure 3, it is likely that each class or ornament is quite labile through evolutionary time. A 

complete comparative analysis with more thorough phenotypic sampling of the Empis and 

Rhamphomyia clade would provide valuable insights into the evolution of different forms of 

female-specific ornamentation. 

Female-biased contest intensity and female ornamentation  

For the first time, we combine phylogenetic analyses with observations of swarm 

attendance by males and females to estimate female contest intensity and its role in driving 

ornament expression. We found a significant nonlinear relationship between the amount of 

female-female competition for access to mates (as measured by the OSR) and the amount of 

female-specific ornamentation (Table 2, Figure 4), but note the nonlinear relationship is present 

only when our measures of ornamentation are constrained to show female ornamentation 

positive values (Table S2, Figure S2). Our results show that ecological processes observable at 

the species level (contest intensity in mating swarms) reflect patterns at the macroevolutionary 

scale: on average, species with more intense intrasexual contests for mates possess more 

exaggerated female-specific ornaments. Furthermore, we document that this relationship 

appears to be constrained to female-biased swarms: the relationship between female contest 

intensity and ornament expression dissipates as the sex ratio approaches 0.5. This finding is 

notable not least because recent work by Janicke and Morrow (2018) found no evidence for 

nonlinearity in a deeper macroevolutionary analysis of how sex ratio covaries with the intensity 

of sexual selection; clearly the prediction of nonlinearity can hold within some groups even if it 

is absent across a wider survey of animals.  
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Our finding that female-biased OSR measures associate with female ornaments is 

qualitatively similar to a study by Pomfret and Knell (2008) in male Onthophagus beetles; they 

observed that an increase in intrasexual competition was associated with the presence of male 

weaponry. Our study supports the idea that sexual selection on females can result in similar 

outcomes to those observed in males (reviewed by Hare and Simmons 2018); females evolve 

ornaments when they are involved in intense intrasexual competition. Interestingly, a recent 

meta-analysis by Janicke and Morrow (2018) that investigated the predictive power of the OSR 

for estimating sexual selection in both males and females across all animals found that the OSR 

is a useful predictor of the opportunity for sexual selection in males, but not females. Our 

findings differ from the meta-analysis results not only because we found a relationship between 

OSR and sexually selected female-specific ornamentation (Table 2; Figure 4) but also because 

we found a low phylogenetic signal (0.25) for the relationship between OSR and ornamentation 

(suggesting that ancestral relationships between dance fly taxa are not responsible for the 

patterns observed), while Janicke and Morrow (2018) found a strong phylogenetic signal 

(Pagel’s lambda: 0.42-0.95 depending on the metric of sexual selection measured). This 

difference in phylogenetic signal between studies, as well as the conclusion that the OSR is not 

predictive of sexual selection in females, might be related to differences in the evolutionary 

timescales of these studies (i.e. Empidinae subfamily compared to Animal kingdom), and/or due 

to the diversity of dance fly mating behaviour that makes these taxa more labile in female 

ornamentation.   

Operational sex ratio as a measure of contest intensity in dance flies 

As measures of the OSR become increasingly biased toward one sex, the intensity of both 

intra- and intersexual selection on that sex is expected to rise (Emlen and Oring 1977; Gwynne 

1990; Clutton-Brock and Parker 1992; Johnstone et al. 1996; Kvarnemo and Ahnesjo 1996, 

2002), and several studies have shown that the OSR as a measure can accurately reflect levels of 

intrasexual competition (Jirotkul 1999; Berglund and Rosenqvist 2008; Silva et al. 2010; 

Monteiro and Lyons 2012; Monteiro and Vieira 2013; Janicke and Morrow 2018).  One 

assumption for the OSR to reliably indicate the intensity of sexual selection is that an increase in 

the bias of the OSR increases mate monopolization by the more common sex (Emlen and Oring 

1977). However, mate monopolization, while potentially very important for male reproductive 

success (but see Janicke and Morrow 2018), is unlikely to be tightly linked to female 

reproductive success. Instead, females are more likely to be limited by access to resources than 

sperm (Trivers 1972). Male dance flies provide nutritious nuptial gifts to their mates at 

copulation (Collin 1961; Cumming 1994). Recently, Hunter and Bussière (Hunter and Bussiere 

2018) showed that females of an ornamented dance fly species could only mature their eggs if 

they mated (and received a nuptial gift), while this was not the case for an unornamented 

species. Therefore, the sometimes-intense contests for mates we observe among females (Table 

1, Figure 4) are very likely associated with selection to obtain nutritious nuptial gifts to promote 

ovarian maturation (Hunter and Bussiere 2018). The skewed swarm sex ratios that arise due to 

these contests therefore reliably predict the degree of female-specific ornamentation in most 

(but not all) species; e.g. R. longipes appears as a clear outlier in our dataset as an ornamented 

species with a strongly-male biased sex ratio (Table 1), that potentially represents a recent 

transition in mating system.    
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Female-specific ornamentation and male relative testis investment 

Our study supports the idea that in dance flies there is a strong relationship between pre-

mating sexual selection on females and post-mating sexual selection on males.  We show that 

taxa where females with more intense levels of competition for access to mates are more likely 

to evolve sexually selected, attractive ornaments and males in these taxa have relatively larger 

testes.  Beyond the present study, there is a body of work that supports the hypothesis that 

female ornaments are under sexual selection in this group e.g. (Funk and Tallamy 2000; LeBas 

et al. 2003; Bussière et al. 2008; Murray et al. 2018) and no other supported hypotheses apart 

from sexual attraction to explain the morphology of the ornamental traits observed in the dance 

flies (Murray et al. 2017; Murray et al. 2019).  We found a positive association between female-

specific ornamentation and male relative testis size across species (Table 3, Figure 5). One of the 

most consistently observed patterns relating to increased testis size is a positive covariance 

with polyandry; to be more specific, testis size increases when females mate with more than one 

male (Pitnick 1996; Pitcher et al. 2005; Montgomerie and Fitzpatrick 2009; Soulsbury 2010; 

Vahed et al. 2011). Two hypotheses (reviewed in Vahed and Parker (2011)), that may be 

interrelated, can account for the testis size-polyandry covariance. The numerical sperm 

competition hypothesis posits that larger testes will allow males to produce more sperm per 

ejaculate thus competing more effectively (Parker et al. 1997), while the male mating rate 

hypothesis predicts that males with larger testes will be able to increase the number of 

copulations they engage in. Further studies examining the relationship between ejaculate 

investment (in terms of number of sperm per ejaculate), male mating rate (measured as the 

number of males a female mates with; i.e. measured polyandry) and female ornamentation 

would be necessary to identify which hypothesis is more likely to explain the relationship 

observed in the dance flies. Critically, male dance flies are likely limited in how often they can 

mate by how quickly they are able to acquire a new prey-item nuptial gift (Cumming 1994; 

LeBas et al. 2014) and return to the mating swarm (See (Kokko et al. 2012)). The ‘time away’ 

from the mating swarm that males require to collect nuptial gifts could limit the likelihood that 

male mating rate is contributing to the increased relative testis size observed in ornamented 

species of dance flies.  

The existence of the relationship between increased female ornaments and increased 

relative testis investment in dance flies is additionally notable because of the uncertainty in how 

ornament expression covaries with female mating frequency. While female ornaments are 

known to improve attractiveness in some species (Funk and Tallamy 2000; LeBas et al. 2003; 

Murray et al. 2018), in other cases, the relationship between female ornament size and female 

probability of mating (Wheeler et al. 2012) or number of mates (Herridge 2016) is not as clear. 

One possible explanation for the discrepancy between attractiveness and mating success in 

dance flies is coevolutionary sexual conflict; ornamented females are eager to accept nuptial 

gifts, while discriminating males are reluctant to mate with highly polyandrous females because 

they pose an increased risk of sperm competition. Our results suggest that female ornaments 

evolve in species with the highest mating rates whatever the current status of coevolution 

between the sexes in any particular species. 

Our work shows that female contest intensity covaries with female ornament expression 

and that females with larger ornaments are likely polyandrous.  Within the dance flies these 

elaborate female traits appear to be highly labile; multiple evolutionary origins of variable sizes 

and types of ornaments.  Importantly, OSR predicts ornament expression even in systems with 
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female ornaments, but there might not be an overall sex difference in sexual selection because 

the very process that favours ornaments in females also promotes postcopulatory sexual 

selection in males. This key difference may help explain otherwise perplexing patterns that 

emerge from comparisons across the animal kingdom 

 

 

Tables 
 
Table 1. Summary table of morphological traits and operational sex ratio (OSR) across 18 Empidinae dance 
fly species from three genera (Empis, Hilara and Rhamphomyia). Continuous traits are displayed as trait 
mean ± standard error*.  OSR is measured as the proportion of males with upper and lower binomial 
confidence intervals.  N=10 for leg, wing and testis measures.  Discrete ornament values are displayed here 
for simplicity; however, all statistical analyses use continuous measures of female ornaments (see Methods 
for details). 

Species OSR Leg dimorphism 
Wing 

dimorphism 

Relative 

testis size 

Discrete 
ornaments** 

E. aestiva 
0.34 

(0.29, 0.39) 
0.178±0.011 -0.057±0.021 0.360±0.018 PS, WC 

E. borealis 
0.44 

(0.32, 0.56) 
-0.060±0.021 0.058±0.008 0.147±0.004 WS 

E. nigripes 
0.46 

(0.30, 0.62) 
0.094±0.021 -0.025±0.007 0.232±0.015 PS, WC 

E. stercorea 
0.54 

(0.23, 0.83) 
0.036±0.031 -0.0029±0.0008 0.225±0.019 none 

E. tessellata 
0.71 

(0.61, 0.81) 
0.032±0.008 0.025±0.001 0.221±0.021 none 

H. beckeri 
0.75 

(0.35, 0.96) 
0.0027±0.001 -0.0041±0.0004 NA none 

H. chorica 
0.54 

(0.52, 0.56) 
0.030±0.011 0.017±0.006 0.326±0.011 none 

H. litorea 
0.64 

(0.62, 0.66) 
-0.009±0.007 0.011±0.002 0.252±0.012 none 

H. interstincta 
0.82 

(0.69, 0.91) 
-0.0018±0.004 -0.0024±0.001 NA none 

H. maura 
0.62 

(0.45, 0.79) 
-0.050±0.023 0.0073±0.0001 0.260±0.011 none 

R. crassirostris 
0.34 

(0.29, 0.39) 
-0.008±0.008 0.0096±0.0006 0.100±0.010 none 

R. dentipes 
0.73 

(0.46, 0.99) 
-0.065±0.009 -0.068±0.009 0.195±0.014 none 

R. longicauda 
0.24 

(0.20, 0.28) 
0.226±0.008 0.0066±0.001 0.339±0.007 PS, AS 
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R. longipes 
0.71 

(0.67, 0.71) 
0.135±0.027 0.012±0.008 0.253±0.031 PS 

R. nigripennis 
0.87 

(0.54, 0.99) 
0.011±0.011 

0.000064 
±0.000008 

0.240±0.022 WC 

R. stigmosa 
0.57 

(0.36, 0.78) 
0.021±0.009 0.017±0.002 0.219±0.006 none 

R. sulcata 
0.63 

(0.54, 0.99) 
-0.035±0.008 -0.0043±0.0007 0.249±0.012 none 

R. tibiella 
0.59 

(0.46, 0.74) 
0.070±0.004 -0.014±0.004 0.312±0.017 PS, AS 

*Continuous traits shown include negative values that were not included in the statistical models where dimorphism 
measures were constrained to positive values.  
**Ornamentation short forms: AS is inflatable abdominal sacs; PS is pinnate leg scales; WS is wing size dimorphism; 
WC is wing colour dimorphism 
 
 
 
Table 2. Estimates from a phylogenetically-controlled analysis of female ornamentation (leg dimorphism + 
wing dimorphism) predicted by operational sex ratio (OSR) estimates across Empidinae species (logit-
transformed proportion of males). The model used a Gaussian distribution as specified in MCMCglmm.  
Values were generated using the summary function in the MCMCglmm package in R. 

 posterior 
mean 

L-95% CI U-95% CI eff. samples pMCMC 

Intercept 0.038 -0.017 0.089 1000 0.150 

OSR -0.090 -0.122 -0.058 1000 <0.001 

OSR^2 0.043 0.006 0.082 1000 0.022 

 
 
Table 3. Estimates from a phylogenetically-controlled analysis of female ornaments on the relative testis 
investment by males across Empidinae species. The model incorporated a “Gaussian” error distribution.  
Values were generated using the summary function in the MCMCglmm package in R. ‘Ornamentation’ is the 
female-specific continuous measures of leg and wing dimorphism. 

 posterior 
mean 

L-95% CI U-95% CI eff. samples pMCMC 

Intercept 0.250 0.201 0.296 1000 <0.001 

Ornamentation 0.032 0.006 0.062 1000 0.020 
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Figure 1. Female-specific pinnate leg scale ornamentation variation for hind legs of three dance flies: 
Rhamphomyia longicauda, Empis aestiva and Empis tessellata.  Photos by F. Hunter and R. Murray.  
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Figure 2. Sexual dimorphism and variation in female-specific abdomen ornamentation in 

Rhamphomyia longicauda and Rhamphomyia tibiella.  Photos by F. Hunter.  
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Figure 3. Consensus Bayesian phylogenetic tree of 21 Empidinae species inferred using partial protein coding 

sequence of CAD. Estimates of the evolutionary relationships between species from the genera 

Empis, Hilara, and Rhamphomyia are displayed with the outgroup Heterophlebus versabilis. Node 

labels indicate the posterior probability of each split, and nodes with less than 0.50 posterior 

probability are displayed as polytomies. Branches coloured red represent species or clades with 

female-specific ornamentation in the form of pinnate scales. Red vertical hashes indicate the 

branch on which different female ornaments are inferred to have arisen. Four ornaments are 

shown, pinnate scales (PS), inflatable abdominal sacs (AS), wing colour dimorphism (WC) and 

wing size dimorphism (WS). Discrete ornament values are displayed here for simplicity; 

however, all statistical analyses use continuous measures of female ornaments (see Methods for 

details).  Each transition in character state was inferred using parsimony. 
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Figure 4. The nonlinear association between competition intensity for mates (measured as 

operational sex ratio (OSR); proportion of males within a mating swarm) and continuous 

measures of female-specific ornamentation across dance fly species (see text for details). Lower 

OSR values indicate female-biased swarms and an OSR of 0.5 indicates equal numbers of males 

and females.  The shaded area is the standard error around the estimate. 
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Figure 5. Linear estimate showing the association between female-specific ornamentation and 

relative testis size across dance fly species (Diptera: Empididae: Empidinae).  Shaded area 

shows the standard error.  
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