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ABSTRACT

This study investigated several important aspects of reproductive physiology in the 

Nile tilapia (Oreochromis niloticus). Although tilapias have been cultured for several 

decades, there has been a rapid increase in production by aquaculture over recent years. 

Tilapia have thus become one of the main teleosts contributing significantly to world 

aquaculture. However, significant problems exist that constrain the efficient management 

of reproduction in these fish. These include low fecundity, and the asynchronous, and 

hence unpredictable, nature of spawning cycles. Manipulation of photoperiod has proved 

to be a powerful tool in the control of reproductive cycles in various other fish species, and 

has become an established aspect of the culture of certain species. We know very little 

about the ways in which photoperiod might be involved in the control of reproduction in 

tilapiine species, especially the hormonal rhythms associated with this regulatory 

mechanism. In addition, manipulation of environmental parameters such as photoperiod 

has often been reported to influence fertilization rates in some teleosts. Spawning induction 

using the application of exogenous hormones, a technique often used in aquaculture to 

produce predictable spawning patterns, is also associated with problems concerning 

fertilization. It is clear from the literature that there is very little information available 

concerning the precise mechanisms involved with fertilization and egg activation in fish. 

Thus, the research described in this Thesis falls into two main sections. The first section 

investigates how photoperiod may impart a regulatory role over reproduction in O. 

niloticus broodstock, how circulating levels of the hormone melatonin vary in this species, 

and describes the isolation and partial characterization of a melatonin receptor from this 

species. In the second part of this Thesis, I have made a preliminary investigation of the 

precise mechanisms that might be involved at egg activation in fish using tilapia as a
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research model; these studies were then extended to three other commercially-important 

fish.

Tilapia are now a major aquaculture species with production levels of over a million 

tonnes annually. The hatchery production of fry however, remains very inefficient due to 

relatively low fecundity and lack of spawning synchrony. Any methodology that enables 

farmers to synchronise the reproductive cycles of their broodstock would have immense 

practical advantages. Light is already known to play an important role in the initiation of 

gonad maturation in other fish species. In this investigation the reproductive performance 

of 32 sibling Nile tilapia was evaluated under four different photoperiods: short daylength 

(6L:18D), normal daylength (12L:12D), long daylength (18L:6D), and continuous 

illumination (24L:0D). Significantly larger eggs (P < 0.05) were produced under normal 

daylength (12L:12D) compared to other treatment groups. Fish reared under long 

daylength (18L:6D) exhibited significantly higher (P < 0.05) total fecundity (2408 ± 70 

eggs spawn'1) and relative fecundity (7.2 ± 0.2 eggs g' 1 body weight) concomitant with a 

significant reduction in inter-spawn-interval (ISI, 15 ± 1 days) in comparison with the rest 

of the trials. This investigation shows that long daylength (18L:6D) helps improve some 

important reproductive traits in Nile tilapia, and suggests that such methodology may be 

used to alleviate the production problems caused by low fecundity and poor spawning 

synchrony, and thus play a valuable future role in tilapia culture.

Plasma melatonin levels were determined by radioimmunoassay (RIA) in fish kept 

under controlled photo-thermal conditions to investigate how the hormone melatonin 

varies with environmental change. Six melatonin profiles were described, the first over a 

24 hour period (diel cycle), the second describing only changes in melatonin during the 

night-time, and four further profiles describing the melatonin levels of fish under four 

different experimental light regimes: short daylength (6L:18D), normal daylength
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(12L:12D), long daylength (18L:6D), and continuous illumination (24L:0D). Results 

showed that in tilapia, melatonin is produced in a rhythmic way; melatonin profiles showed 

that maximal levels of melatonin were reached as soon as the light went off, then these 

levels remain high throughout the dark phase and just after the onset of the light phase, 

melatonin levels were suppressed to base levels. Studies also demonstrated that melatonin 

levels were very low in O. niloticus (50 -  100 pg/ml) compared with salmonids and other 

species, in which much higher production of melatonin (600 -  1000 pg/ml) has been 

reported.

Experiments showed that a negative correlation exists between melatonin levels and 

reproduction in tilapia. Those fish exposed to long daylength (18L:6D) exhibited the 

lowest melatonin levels but highest fecundity, and lowest ISI; fish reared under short 

daylength (6L:18D) exhibited the highest melatonin levels but much reduced fecundity and 

longer ISI. Although, it appears that photoperiod thus seems to play an important role in 

the reproduction of O. niloticus, and is certainly known to impart a strong regulatory effect 

upon reproduction in other fish, the present investigation also shows that those fish reared 

under continuous illumination produced the second highest fecundity and exhibited 

reduced Inter-Spawning-Interval (ISI). However, melatonin levels in these fish were kept 

constant at very low levels (20 -  30 pg/ml). Interestingly, these observations might suggest 

that melatonin may not be exerting a strong effect upon reproduction in O. niloticus.

Results also showed that the role of melatonin in the reproduction of O. niloticus is 

not as well-defined as in other species of fish. There was clearly a negative relationship 

between melatonin level and reproductive activity in our experiments; although the results 

of the continuous illumination treatment produced data that suggested that melatonin might 

not play a major role in the regulation of reproduction in this species. It was clearly 

important therefore, to further elucidate the role and function of melatonin in this species.
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In a further series of experiments, the melatonin receptor from O. niloticus was 

successfully cloned (Mella), and a partial sequence of this receptor was obtained. This 

partial sequence was generated using primers based upon known sequence information for 

the melatonin receptor in rainbow trout. The tilapia melatonin receptor was highly 

expressed in the brain. However, no expression was found in either gonadal or somatic 

tissues other than brain after 25 cycles of PCR amplification. In the present study, 

photoperiod was shown to enhance various reproductive parameters in tilapia, melatonin 

profiles were defined throughout known periods of lightidark, and a melatonin receptor 

isolated and partially characterised. However, further research is required to fully 

characterise the precise function of melatonin in the regulation of tilapia reproduction, 

especially in terms of its interaction with other endogenous factors, and its relationship 

with exogenous factors other than photoperiod.

Studies in a variety of organisms including amphibians, fish, ascidians, nemerteans, 

echinoderms, mammals, and even a species of flowering plant, clearly demonstrate that an 

increase in intracellular egg calcium is crucial to the process of egg activation at 

fertilization. Mammalian studies suggest that calcium is released from internal egg stores 

at fertilization by a sperm-derived cytosolic protein factor. Recent studies in the mouse 

have identified this sperm-derived factor as being a novel sperm-specific phospholipase C 

(PLC) isoform (PLCQ. Homologues of PLC^ have since been isolated from human and 

monkey sperm. In addition, sperm factor activity has been detected in non-mammalian 

species including chicken, Xenopus, and a flowering plant. In this thesis, I report novel 

evidence for the existence of a similar sperm-derived factor in a commercially important 

species of teleost fish, the Nile tilapia. Using an established bioassay for calcium release, 

the sea urchin egg homogenate, it was clearly demonstrated that protein extracts obtained 

from O. niloticus spermatozoa exhibited PLC activity similar to that seen in mammalian
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sperm extracts, and also induce calcium release when added directly to the homogenate. 

Further, sperm extracts prepared from O. niloticus induced calcium oscillations when 

injected into mouse oocytes, suggesting that O. niloticus sperm contained a similar 

calcium-mobilizing molecule to that found in mammalian sperm. The same bioassay was 

used to assay the calcium-releasing properties of sperm extracts prepared from three 

further commercially important aquaculture species: Atlantic halibut (Hippoglossus 

hippoglossus), African catfish (Clarias gariepinus), and rainbow trout (Onchorhynchus 

mykiss). All three of these species exhibited the ability to release calcium in the bioassay, 

suggesting that the four species of teleost tested in this Thesis appear to use a similar 

mechanism of egg activation as that reported for mammalian species. However, it was not 

possible to identify the specific sperm-specific molecule involved, nor the precise cell 

signalling system used, although present data would support the involvement of a PLC 

molecule. Several attempts were undertaken to isolate a possible PLC£ homologue from O. 

niloticus, using molecular techniques such as the Polymerase Chain Reaction (PCR) and 

screening of a tilapia bacteria artificial chromosome (BAC) library. However, within the 

time frame imposed by this Thesis, I was unable to successfully isolate a PLC£ homologue 

from O. niloticus, although research effort in this area is gathering pace and now involves 

cDNA library screening, and genomic technology. Nevertheless, the results presented 

herein have provided a valuable insight into the process of egg activation in fish and 

should provide a stable foundation for future research. Further elucidation of this crucial 

biological process in fish may help in the reduction of commercial loss post-fertilization, 

and during early embryonic development.
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1.1 Introduction
Aquaculture production has shown significant growth in recent years, with a 

continuous increment of 9.2% since 1970; there has been an expansion of aquaculture in 

which more than 210 different farmed species have been reported in the last few years. In 

2000, total aquaculture production was in the region of 11 millions tonnes (Without 

China’s inputs) (FAO, 2002). On average, this represents consumption of 2.3 kg of fish per 

person per year, with a nutritional contribution of 15% of the total animal protein intake 

(FAO, 2002). In 2002, tilapia production by aquaculture alone increased to 1.5 million 

tonnes. This increase was solely due to the high popularity and acceptance of tilapias 

around the world. The highest production of tilapias was reported in developing countries 

such as Taiwan, Bangladesh, Thailand, and Ecuador, (FAO, 2002).

Nile tilapia, Oreochromis niloticus is considered to be the most important species of 

tilapia used in aquaculture; this species was responsible for 70% of total tilapia production 

in 2000. Other species of tilapia with high potential for aquaculture are the blue tilapia, 

(Orechromis aureus) and the Mozambique tilapia (Oreochromis mossambicus). Tilapia 

culture has been broadly distributed and introduced into more than 100 countries and now 

occurs in most continents (Balarin and Hatton, 1979; McAndrew, 2000)

Tilapia consumption has increased in the last years, largely becauset tilapia is a rich 

source of animal protein, and that the price of this fish protein is far lower than that other 

livestock such as cattle, poultry, pork and sea food (Mair, 1993). Tilapias are cultured in 

both developed and developing countries, and under tropical and temperate conditions, 

including most aquatic environments such as fresh, brackish and sea water and culture 

systems including lakes, ponds, earth ponds, concrete thanks, raceways, hapas, etc (Balarin 

and Haller, 1982). They, therefore, represent a highly versatile species for aquaculture.
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Tilapia exhibits a series of positive attributes, such as high growth rate, and a high 

tolerance to parasites, diseases, and low water quality. These attributes facilitate the 

husbandry of tilapia and their management under farmed conditions. Collectively, these 

attributes have allowed the tilapia to become one of the most successful species in 

aquaculture (Cross, 1976; Guerrero, 1982). Nevertheless, tilapia culture suffers from some 

constraints regarding reproductive biology. These predominantly include early sexual 

maturation, lack of spawning synchrony, and low fecundity (Little et al., 1993; Mair and 

Little, 1991; Macintosh and Little, 1995; Coward and Bromage, 1998, 2000; Coward et al., 

1998). Early or precocious maturation triggers significant unwanted reproduction and leads 

to overcrowding of on-growing tanks (Mair and Little, 1991; Macintosh and Little, 1995).

To overcome this problem, fish farmers have adopted a mono-sex culture approach, 

using just male populations. Many investigations have demonstrated that male tilapia grow 

faster than females (Guerrero III, 1975, 1982; Guerrero III and Guerrero, 1988; Mair and 

Little, 1991; Mair et al., 1995, 1997; Bhujel et al., 1998). All-male culture is often 

routinely applied, and various strategies have been described to achieve this. The first real 

alternative to all-male culture was the manual segregation of male and females in a normal 

mixed population. This method is, however, time consuming and often unreliable. 

Furthermore, this method required a large number of well-trained personnel and reasonable 

sized fish for sexing to be practical (Guerrero III, 1982; Macintosh et al., 1988; Mair et al., 

1991; Me Andrew, 1993)

Hormonal sex reversal is the most common method for achieving mono-sex 

populations in tilapias (Guerrero III, 1975; 1982); this method involves the administration 

of 17a-methyltestosterone in the diet. The recommended dose required for successful sex 

reversal ranges between 25 - 60 mg of 17a-methyltestosterone per kilo of feed. The 

feeding regime lasts for one month. This practice requires high numbers of first-feeding fry
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to generate the desired level of seed production, as well as special facilities (i.e. culture 

tanks and laboratories) to achieve positive results. As discussed previously, tilapia culture 

is also limited by spawning asynchrony and low fecundity. This makes it difficult, if not 

impossible, for the farmer to produce adequate numbers of similar-sized fish for market, 

thus creating a significant problem in production. To solve this problem, huge numbers of 

broodstock are needed to guarantee constant production of similar sized first feeding fry 

suitable for subsequent hormone treatment (Bhujel, 2000; Coward and Bromage, 2000). 

Hormone sex reversal has been successfully used in large scale hatcheries, which generate 

and subsequently sell large numbers of seed suitable for on-growing. Hatcheries that adopt 

the hormonal sex reversal method appear to receive a better acceptance in the consumer 

market, which allows an increased price per fry (Bhujel et al., 1998). The price of 

hormone-treated fry is three-fold higher that that of normal fry; they also exhibit superior 

quality (Bhujel et al., 1998).

In mixed-sex culture, harvest generally results in the capture of low weight fish, 

usually lower than 200 g. This has been attributed to the diversion of energy which 

although originally destined to be used in somatic growth, instead becomes channelled into 

reproduction, thus, generating a constant supply of new fry every two or three weeks 

(Campos-Mendoza et al., 2003, 2004). This results in overcrowding of on-growing tanks, 

resulting in marked competition for food and space. To alleviate this, farms sometimes 

utilize a piscivorous fish to predate the small fry. This is a good way to reduce 

overcrowding problems, although the precise ratio between prey and predator in this 

situation has not yet been evaluated. The predator fish species used varies according to 

geographical regions. The most common species utilised for such a task are snakehead 

(Chanos chanos), Nile perch {hates niloticus), largemouth bass {Micropterus salmoides), 

and peacock cichlid (Cichla ocellaris). Nevertheless, this practice generates further
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constraints regarding the availability and size of predators, sometimes even with 

piscivorous control, the harvest yield is not satisfactory (Guerrero III, 1982; Mair and 

Little, 1991).

Other methods to generate an all-male culture have been proposed, such as the 

production of hybrids (e.g., O. mossambicus ( 9 )  X O. urolepis homorum  (cJ); O. niloticus 

(? )  X O. urolepis hrmorum  ((? ); O. niloticus ( 9 )  X O. macrochir (cJ) and O. niloticus ( 9 )  

X O. aureus (cJ)). These crosses produce a very high percentage of male populations, or 

sterile male or females when pure strains are used. However, this approach involves the 

manipulation of unmixed strains, a task that in many cases is impossible or difficult to 

achieve (Hulata et al., 1983; McAndrew, 1993).

The production of monosex male production by genetic manipulation has been 

reported by Penman and McAndrew, (2000), using the hormone sex reversal methods, it 

was possible to invert the phenotype sex of tilapia, resulting in the production of neomales 

(genetically females but phenotypically male) or neofemales (genetically males but 

phenotypically females), using those neomales or neofemales in combination with 

chromosome-set manipulation, the production of gynogenesis or androgenesis was 

achieved. This has allowed the production of genetically male tilapias (GMT) by Mair et 

al., (1997) and super males ‘YY’ by Scott et al. (1989). The production of gynogenesis 

involved the UV irradiation of the sperm, then a heat of pressure shock is applied to 

prevent second polar body extrusion, this result in a diploid gynogenetic fish. This fish will 

present just the maternal chromosomes. However, UV irradiation of unfertilized eggs 

followed by fertilization with normal sperm results in a haploid, androgenetic embryo, 

after that temperature or pressure shock is applied to restore the diploidy in the developing 

embryo, resulting in androgenetic male.
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1.2 Reproductive biology of tilapias
Tilapias exhibit a high degree of parental care over their progeny, this has evolved

from ancestral substrate spawners with guarding behaviour (Trewevas, 1983; Rana, 1988). 

The biogeographical isolation of tilapia populations has resulted in marked differences in 

the kind of parental care and breeding behaviour evolved (Trewevas, 1983; Rana, 1988). 

The role of each sex in the brood care provided differs among species, this parental care is 

geared to provide effective protection for eggs and fry against predators. The physiological 

mechanisms controlling such parental care behaviour remain poorly understood (Jalabert 

and Zohar, 1982).

Trewevas (1983) classified the tilapiine group on their reproductive behaviour, 

feeding habitats, and biogeography. According to this classification, all Oreochromis 

species are maternal mouthbrooders, Tilapia species are biparental, substrate spawners, 

and Sarotherodon species are all mouthbrooders in which the male or both parents 

incubate the eggs (Trewevas, 1983; Macintosh and Little, 1995; Turner and Robinson,

2000) (Table 1.1).

Table 1.1 Reproductive characteristic of the tilapiine genera and the main species of 
importance in aquaculture_______________________________________________________
Genus Mode of reproduction Important species in 

aquaculture
Tilapia Substrate-spawners T. zillii

(Guarded nests) T. rendalli
Sarotherodon Paternal or bi-parental 

Mouthbrooders
S. galilaeus

Oreochromis Maternal mouthbrooders 0. niloticus 
0. mossambicus 
O. aureus
0. urolepis homorum  
O. andersonii 
0. macrochir 
0. spilurus

(Source Macintosh and Little, 1995)
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According to the above classification, the highest potential for aquaculture belongs to 

the Oreochromis genus. In this group, males build and defend territories within a defined 

spawning area; this area is defined as a “Lek” or “arena” (Fryer and lies, 1972; Macintosh 

and Little, 1995; Turner and Robinson, 2000). The lek or arena is built by the fish; pushing 

sediment to the side using the snout to create a small nest or fanning the area with pectoral 

fins, cleaning a large area, and then ejecting and removing sediments using the mouth 

(Turner and Robinson, 2000). Once the lek is prepared, a receptive female enters and starts 

a nuptial courtship with a male. After a few hours of courtship, the female releases small 

batches of eggs. After that, the male realising milt and fertilises the eggs. The female takes 

the eggs in to her mouth as soon as they are fertilised. Once the spawning and fertilization 

of eggs is finished the female leaves the lek and moves to special nursery areas where 

incubation takes place (Trewevas, 1983).

The incubation period lasts about 10 days and the maternal care of the fry after 

hatching lasts for further 1 to 4 days. After that time, the female begins a recuperation 

period, in which, she shows intensive feeding behaviour that continues for 2 or 4 weeks 

(Macintosh and Little, 1995). The mouthbrooding tilapia have adopted the anti-predator 

tactic of rearing their eggs and fry in the relative safety of the parental buccal chamber 

(Rana, 1988). However, this has considerable effect on the total fecundity in tilapia, 

reducing total fecundity, which is governed by the size of the buccal cavity, which dictates 

the number of eggs that the fish can incubate in its mouth.

Most Oreochromis species exhibit a significant degree of sexual dimorphism and 

dichromatism, males are longer than females at the same age and they present a bright 

colour when breeding (Macintosh and Little, 1995; Oliveira and Almada, 1995).

Under natural conditions, tilapia have a tendency for seasonality in their reproductive 

activity. Under controlled conditions, however, this seasonality is eliminated. Fryer and
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lies (1972) observed that in general, tilapias under natural conditions matured in 1 - 3 

years, but the age of maturation is strongly influenced by the size of the water body within 

they live. It was reported that O. niloticus matured at 17 cm in Lake Edward, however 

maturation was reached at 39 cm in a larger water body such as Lake Rudolf (Currently 

Lake Turkana).

The onset of maturation in tilapia under favourable conditions occurrs at early stages, 

usually when fish have reached an average weight of 15 to 100 g, or within the first 2 to 4 

months of age (Mires, 1983; Alvenida-Casauay and Carino, 1988; Mair and Little, 1991; 

Macintosh and Little, 1995; de Graaf et a l, 1999). As soon as sexual maturity is reached, 

and environmental conditions are favourable, most tilapias are able to produce a series of 

spawns, producing new cohorst at intervals of 4 to 6 weeks (Jalabert and Zohar, 1982; 

Macintosh and Little, 1995; Campos-Mendoza et a l, 2003, 2004).

1.3 Factors involved in tilapia reproduction
Fish reproduction is influenced by different internal or external factors, the internal

factors are related with the endocrinology of the fish. The external factors however, 

involve a variety of environmental variables, which play an important role in fish 

reproduction. These include water temperature, salinity, photoperiod, nutritional status of 

the fish, and in some cases the rain season (Coward and Bromage, 2000; Bromage et al.,

2001). These factors (external and internal) will be briefly described in the following 

section with particular emphasis upon tilapia species.

1.3.1 External factors
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1.3.1.1 Temperature
The tropical origin of tilapias is clearly expressed in their ecological physiology, 

especially in terms of temperature preference during the reproductive period (Chervinski, 

1982). Tilapias become inactive in water temperatures below 16°C, which is the minimal 

temperature reported for normal growth. Reproduction occurs successfully above 22°C, 

this is the reason why the natural distribution of tilapias is restricted to tropical and sub

tropical regions (Chervinski, 1982). In some specific areas in subtropical regions, low 

temperature can inhibit tilapia reproduction during certain parts of the year. In these cases, 

the duration of reproduction season is constrained and the breeding occurs within the 

hottest months of the year (Philippart and Ruwet, 1982).

In tropical and subtropical climates at higher altitudes (1300 - 2500 meters above sea 

level), O. niloticus shows a different pattern of reproduction. The age of first maturity is 

higher under these conditions; an example of this was reported by Hanson et al. (1988), in 

which O. niloticus first matured after 6 to 9 months or approximately 231 g in weight. 

Thus, it seems that temperature is playing a crucial role in the regulation of tilapia 

reproduction (Lam, 1983).

Temperatures higher than 20°C are required to stimulate tilapia reproduction, 

however, a variety of temperatures have been reported in some tilapias: 20 - 30°C in the 

case of the O. niloticus and O. aureus, and 20 - 35°C for O. mossambicus (Rothbard and 

Pruginin, 1975; Philippart and Ruwet, 1982; Rana, 1988). The reproduction of O. niloticus 

in places with temperatures of 33 -  35°C was affected considerably. High temperature led 

to reduction in spawning activity, egg quality and hatching success in a hapa-based culture 

(Little and Hulata, 2000).

Cridland (1962) reported that early maturation and high growth rates could be 

attributed to high temperatures of around 31.5°C. This author also reported that cold water
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temperatures of 19.8°C resulted in immature fish. It was also reported that cold water 

temperatures of between 19.8 and 22.8°C delayed sexual maturation in the substrate 

spawner Tilapia zillii under controlled conditions. Behrends and Smitherman (1983) 

reported that, although males of O. mossambicus, O. homorum, O. aureus and O. niloticus 

reared at 16°C still underwent spermatogenesis, gonadal recrudescence in females was 

inhibited at temperatures below 22°C.

Terkatin-Shimony et al. (1980) reported that O. aureus reared under controlled 

conditions at temperatures of 28°C exhibited increased gonadosomatic index (GSI) in 

females after three weeks of culture compared with those values reported for fish reared at 

17°C.

The physiological limitation on tilapia of breeding at temperatures below 20°C limits 

tilapia aquaculture in the Southern United States to five or eight months only. Under these 

circumstances, strains of O. aureus and O. niloticus are currently cultured successfully, but 

broodstock need to be over-wintered in heated facilities with a minimum water temperature 

of 16 to 18°C (Behrends et a l, 1990).

1.3.1.2 Salinity
As a general rule, fecundity in tilapias decreases as salinity increases. During a six 

months period in sea water, O. aureus failed to spawn, or build a nest, and a sharp 

reduction in GSI was observed. Most tilapia species are sensitive to high salinities and 

reproduction is clearly inhibited by high salinities. Possible reasons for this might be due to 

osmotic stress on the eggs (Balarin and Hatton, 1979). On the other hand, Chervinski 

(1982) reported that several species of tilapia can breed successfully at high salinities. An 

example of this is Tilapia zillii and O. mossambicus, both species are able to reproduce at 

high salinities of 10 - 26 and 35 parts per thousand (%o) respectively.
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Philippart and Ruwet (1982) reported that several species of tilapias are euryhaline 

and are able to live and reproduce at salinities greater than 30%o. Tilapias have been found 

in estuaries and coastal lagoons along the coast of West and East of Africa. Some species 

are endemic of high salinity lakes such as Lake Magadi, Lake Natron, and Lake Manyara. 

Some tilapia species such as T. sparrmani, O. andersonii, O. macrochir and T. rendalli are 

less tolerant to salinity and when salinity levels increases these species moves to rivers or 

tributaries of lakes or water bodies in order to avoid salinity stress (Philippart and Ruwet, 

1982). 0. mossambicus is the most tolerant species of tilapia and is considered a euryhaline 

organism; O. mossambicus grows and reproduces normally in fresh, brackish and seawater 

(Chervinski, 1982; Villegas, 1990).

Watanabe et al. (1997) reported that Florida red tilapia (hybrid of O. urolepis 

hornorum 2 X 0 .  mossambicus <$) is capable of reproducing in sea water at 36%o, but 

optimum seed production requires waters with lower salinities. Fertilisation and hatching 

success and survival of pre-juveniles declined at salinities higher than 18%o. In this species, 

there is a marked reduction in fertilisation and hatching success at salinities between 27 

and 36%o.

Female tilapia broodstock can be kept in saline water during the time of low seed 

demand. This is a helpful alternative when fish are re-stocked into ponds; thus, 

reproduction is suppressed in fish held at high salinities, but an increase spawning activity 

was observed just after fish were re-stocking in fresh water (Balarin and Haller, 1982; 

Pullin, 1982; Bhujel, 2000).

Finally, Al-Ahmad et al. (1988) reported that O. spilurus is able to reproduce in 

brackish ground waters ( 3 - 4  %o), and seed production is better than in seawater (38 - 

41%o). It was found that fecundity was two to five times higher in brackish waters than in

11



Chapter One

seawater; hatching rates of eggs, and survival rate of fry, were also twice as high in 

brackish ground water.

In summary, there isvariation in the salinity tolerance in tilapias, in which this ability 

to tolerate salinity seems to be species specific. In general, there is a tendency to reduce 

reproduction as salinity increases. However, there are some species capable of reproducing 

at high salinities (e. g. O. mossambicus).

1.3.1.3 Light and photoperiod
Photoperiod is an important factor controlling the seasonal reproductive cycle of 

many fish species (Lam, 1983, Wootton, 1998; Bromage et al., 2001). Little information is 

available, however, on the influence of photoperiod and light intensity on reproduction in 

tilapias. Historically water temperature has been considered to be the most important 

environmental factor controlling reproduction in tilapia (Rothbard and Pruginin, 1975; 

Jalabert and Zohar, 1982; Philippart and Ruwet, 1982). However, light intensity and 

photoperiod are known to influence early maturation in tilapias, although the physiological 

process involved remains poorly understood (Balarin and Hatton, 1979; Balarin and Haller,

1982). Balarin and Hatton (1979) suggested that further investigation was both necessary 

and important to understand and use photoperiod manipulation in the control of 

reproduction in tilapias.

There are reports which suggest that light intensities originated with bulbs of 60 - 

100 watts caused inhibition of reproduction in T. zillii and that a period of strong 

illumination delayed sexual maturation in this species (Cridland, 1962). On the other hand, 

there are also reports that recommend photoperiods of 12L:12D or 14L:10D, with light 

provided by 100 watt fluorescent bulbs, to improve tilapia reproduction (Rothbard and 

Pruginin (1975).
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Gonad development and subsequent spawning activity in tilapias are strongly 

correlated with the duration of daylight in natural conditions (Guerrero III, 1982). Pruginin 

et al. (1988) reported that keeping adult fish at temperatures optimal to reproduction (26- 

28°C) enabled the production of fry all year-round, but that highest production was 

observed from April to August, corresponding to the months with the greatest amount of 

daylight. The use of additional light (hours) during December to February when daylength 

is short could improve reproduction in tilapias (Galman et al., 1988).

Spawning frequency increases as temperature and photoperiod increase. In 

accordance with this, Behrends and Smitherman (1983) reported that mean GSI in O. 

mossambicus and O. urolepis homorum  decreased through November -  January, 

concomitant with a reduction in temperature and photoperiod. However, during this same 

time period, GSI in O. aureus and O. niloticus increased, perhaps due to increasing 

photoperiod through January. It took an additional month for O. mossambicus and O. 

urolepis homorum to exhibit increasing GSI; this coinciding with clear increase in both 

temperature and photoperiod (Behrends and Smitherman, 1983).

Smith et al. (1991) reported that extension of normal short daylength during winter 

months, by using additional illumination (100 Watt lamps) had no significant effect on 

seed production and these authors suggested that water temperature probably played a 

more dominant role than photoperiod in tilapia reproduction. On the other hand, Al-Ahmad 

et al. (1988) reported that an observed reduction in fecundity of O. spilurus did not seem to 

be related to temperature. He reported that a slight decrease in photoperiod during August 

might have contributed to the observed reduction in fecundity, and suggested that 

manipulation of photoperiod might provide a means of manipulating fecundity.

Photoperiod manipulation has been applied in order to increase seed production in O. 

spilurus. In Kuwait, reproduction of 0. spilurus was much reduced during the winter time,
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this was attributed to low water temperature and reduced daylength. Using three different 

photoperiods (13 and 14 hours light and ambient photoperiod) using 4 fluorescent lamps of 

60 watts per tank, located 1.8 m above the water surface and a water temperature of 29 ± 

2°C. Ridha et al. (1998) reported, that seed production was higher under 14 h days with 

production of 24,724 fry, followed by the ambient spawning conditions with 18,356 fry. 

The lowest seed production was under 13 h days with just 12,021 fry. This study was the 

first to provide experimental evidence to suggest that photoperiod did indeed affect tilapia 

reproduction.

It was not until the year 2000, when the first detailed investigation of the effect of 

photoperiod and light intensity on tilapia reproduction was reported. Ridha and Cruz 

(2000) reported a series of experiments using 18L:6D, 15L:9D and 12L:12D with two light 

intensities, 2500 and 500 lux. The results of this investigation showed that maximum seed 

production and spawning synchrony were achieved at 18L:6D at both light intensities. 

These results indicate that photoperiod plays a more important role in seed production than 

light intensity. These authors suggested that seed production could be improved using a 

combination of light intensity and photoperiod manipulation.

There is a direct effect of light perception and photoperiod on the blood melatonin 

levels in fish species (Bromage et a l, 2001). This changes in melatonin levels has been 

suggested to be a key element in fish reproduction, thus in this Thesis the plasma 

melatonin levels in tilapia will be described.

1.3.1.4 Water exchange
Regular changes of water within the breeding systems tend to lead to improved 

reproductive activity in tilapias, possibly due to the flushing of metabolite build-up and 

subsequent increase in dissolved oxygen levels, (Rothbard and Pruginin, 1975; Billard and 

Breton, 1978; Mires, 1982; Bhujel, 2000). Guerrero, (1982) reported that there is a

14



Chapter One

hormone like substance in tilapia’s mucus which inhibits reproduction; this has been 

particularly observed under high density culture. Bhujel (2000) further reported that higher 

seed production can be obtained from ponds filled with fresh water compared with those 

ponds maintained with the same water for long periods of time. This author also suggested 

that partial water exchanges of 50% of the total volume of water at regular bases of 3 -  4 

weeks could help to improve the spawning activity, thus increasing seed production.

1.3.1.5 Rainfall
In tropical and subtropical regions, in which the change in daylength is not strongly 

marked, tilapia reproduction seems to be influenced by rainfall; in some cases reproductive 

activity is reported to occur just after the rainy season (Philippart and Ruwet, 1982; Lam,

1983). Bhujel (2000) further reported that observed increases in seed production during the 

rainy season, was most probably due to cool temperatures, increasing water levels, and 

dilution of hormones, or chemical, and waste metabolites. Hyder (1970) reported that long 

periods of heavy rainfall had a negative effect upon spawning activity. However, artificial 

rain, produced by sprinklers in spawning hapas has been reported to increase spawning 

activity, especially during dry and hot months.

1.3.1.6 Nutritional status of fish and food availability
In tilapia culture, the quantity and quality of food affects both the frequency of 

spawning and the total seed production per spawn (Hughes and Behrends, 1983; Rana and 

Macintosh, 1988; Macintosh and Little, 1995; Little and Hulata, 2000).

O. niloticus broodstock fed with protein levels of 20 - 25% of dry weight, exhibit 

early spawning as well as an improvement in spawning frequency. It is also known that 

low ration of food have induced early maturation and spawning frequency (De Silva and 

Radampola, 1990). Dietary protein and lipids levels influence oocyte development and egg
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quality (Brooks et al., 1997). The quality of broodfish diet plays an important role in larval 

production, quality and performance (Gunasekera et al., 1996a,b). O niloticus fed with 35 

and 20% of crude protein spawned significantly higher numbers of eggs than those fish fed 

10% crude protein levels in the diet. No differences were found in the size of the eggs 

between treatments, but larval quality was significantly higher in the females fed on 35% 

of crude protein than those females fed on 20%. The dietary protein levels also affected 

Inter Spawning Interval (ISI), fish fed with protein levels 35% of dry weight spawned 

every 16 -  20 days (Gunasekera et al., 1996a).

Food availability has been reported to have considerable effect upon tilapia 

reproduction. Tilapia hybrids (0 . niloticus x O. aureus) were fed with four different rations 

(0.5, 1, 2, and 3% of body weight per day). Results showed that total fecundity and relative 

fecundity (expressed as egg number per cm of female length) decreased with decreasing 

food ration size. Food availability also plays an important role in first maturation; it was 

reported that females fed on low ration size (0.5% of body weight per day) spawned more 

frequently than those fish fed with higher rations (Siddiqui et al., 1997a).

In T. zillii, two food ration size were provided from first feeding until first maturity. 

Total fecundity was higher in those fish fed with high rations than those fed low rations. 

No differences were found regarding GSI, egg size, or spawning periodicity. However, 

after histological evaluation of the gonads, it was reported that those females fed at low 

ration exhibited high proportion of oocytes in stage 2 and 3, corresponding to early and late 

perinuclear stage of oocyte development, and fewer oocytes in stage 6 or 7, corresponding 

to late vitellogenic and maturing oocyte, than those ovaries of fish fed at higher ration. No 

differences were found regarding proportions of atretic eggs (Coward et al 1999a).

Bhujel et al. (2001) compared three different types of feed in a hapa based system; 

two feeds were catfish pellets (small pellet, 30% crude protein; large pellet, 25% crude
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protein. The third diet was an herbivorous fish feed with just 15.5% of crude protein. The 

number of spawns produced by O. niloticus was higher in those fish fed the catfish diets 

(i.e. higher protein). Results suggested that increased reproductive activity and seed 

production was probably attributed to the high levels of crude protein of the catfish pellet, 

which best fitting the optimum protein level required for tilapia broodfish, in that the 

higher protein diet (small pellet) was perhaps more palatable, and resulted in increased 

reproductive activity. Therefore, most of the hapa; based hatcheries utilize diets containing 

25 - 30% of crude protein levels for broodstock. This level of protein in the diet is 

nutritionally adequate, as well as being cost effective (Bhujel et al., 2001).

1.3.1.7 Broodstock size and age
The size and number of eggs produced by tilapias is affected by female age and size 

(Jalabert and Zohar, 1982; Rana and Macintosh, 1988). According to Rana (1988), large 

females tend to produce larger eggs; female age rather than weight is more important in 

determining egg size. Larger tilapia produce larger eggs as well as higher number of eggs 

than smaller females (Jalabert and Zohar, 1982; Galman et al., 1988; Rana and Macintosh, 

1988; Macintosh and Little, 1995).

Rana (1988) reported that there was no correlation between egg size and female 

weight in one year old females of O. niloticus and O. mossambicus. Egg size is more 

probably correlated with the age of fish in these species (Rana, 1988). Bigger eggs were 

positively correlated with larger fry at hatching time, which exhibited a greater survival 

rate. There is a strong correlation between egg size and fry length, suggesting that big eggs 

will produce large fry at hatching time (Rana, 1985). O. niloticus and O. mossambicus fry 

produced by large eggs have larger yolk reserves, and are able to grow a greater size by the 

beginning of exogenous feeding. These fry exhibited high survival rates during starvation
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compared with fry produced by small eggs (Rana and Macintosh, 1988; Macintosh and 

Little, 1995).

Total fecundity in tilapias was defined by Rana (1988) as the number of eggs in a 

freshly spawned clutch. Relative fecundity is defined as the number of eggs per kg of 

female body weight. Relative fecundity in tilapia decreases as female size increases (Siraj 

et al., 1983; Rana and Macintosh, 1988; Smith et al., 1991).

In O. niloticus, relative fecundity can increase over a successive spawns (Hughes and 

Behrends, 1983; Behrends and Smithermann, 1983; Siraj et al., 1983). Although, relative 

fecundity, expressed as seed per kg of female, is larger in younger and smaller tilapia 

females, total or absolute fecundity is greater in older and larger females (Hughes and 

Behrends, 1983; Rana and Macintosh, 1988; Rana, 1988).

Siraj et al. (1983) reported an Inter-Spawning-Interval (ISI) of 7 and 21 days for fish 

of one and two years old females respectively. However, three year old fish spawned at 

intervals of between 10 and 20 days. Total fecundity was greater in one year old fish, 

followed by two and three year old fish respectively; egg size was higher in two and three 

year old fish. A similar pattern was reported by Smith et al. (1991), who reported that seed 

production of the hybrid of 0. urolepis homorum x O. mossambicus was significantly 

higher in one year old females than in two year old females. Fecundity is also thought to be 

strongly influenced by genetic factors, as well as, environmental conditions (Macintosh 

and Little, 1995; Rana and Macintosh, 1988).

In tilapias, higher seed production is normally generated by smaller broodfish (150 -  

200 g), using fish of this size collectively produce more eggs and fry per culture unit. 

However, bigger females produce more eggs and fry on an individual basis than smaller 

ones. The higher productivity reported for smaller broodstock is largely explained by their
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rapid recovery after spawning, thus resulting in shorter inter-spawning-intervals 

(Macintosh and Little, 1995).

Hatchery operators normally prefer medium size tilapia broodstock (150 to 200 g), 

and discard females larger than 250 g due to husbandry difficulties associated with seed 

collection. Also, larger broodstock require more space and food, thus affecting the seed 

production cost (Balarin and Haller, 1982; Little and Hulata, 2000; Bhujel, 2000).

1.3.1.8 Stocking density
High stocking densities are known to have an adverse effect upon tilapia 

reproduction (Balarin and Haller, 1982). Siddiqui et al. (1997b) reported that total 

fecundity of O. niloticus x O. aureus hybrid females decreased as stocking density 

increased. The maximum fecundity was observed in females reared at 50 fish per m2 and

'y

lower fecundity observed in fish reared at 200 fish per m .

High seed production was obtained in O. niloticus at low stocking densities (5 fish 

m2) with low male to female ratios (1:2) (Hughes and Behrends, 1983). Low stocking 

densities have been reported to improve broodstock productivity; seed production 

increased compared with those fish stocked at high densities in pond culture (Little and 

Hulata, 2000). It is worth mentioning that high densities lead to increased pressure on 

males to find females also restrict hierarchies such that spawning becomes inhibited, this is 

due to males are unable to make and guard any spawning territory or arena (Little and 

Hulata, 2000). Under crowded conditions in T. zillii, levels of 17(3-oestradiol (E2) and 

testosterone (T) become suppressed. This reduction of steroid concentration resulted in 

considerable reduction in spawning activity (Coward et al., 1998b). Moving fish from 

crowded conditions to individual aquaria caused steroid levels to rise dramatically, 

followed by a resumption of spawning activity (Coward et a l, 1998b). Coward and 

Bromage (1999c) reported that 42 days of deprivation of adjacent contact between males

19



Chapter One

and females of T. zillii caused a significant increase in circulating levels of T, but not 

changes of E2.

1.3.2 Internal factors
In fish, as well as many other vertebrates, environmental information, also known as 

external factors or cues, are perceived by the brain, then this information is translated into 

neural impulses which stimulate the endocrine pathway of the brain-pituitary-gonadal axis 

(BPGa), the BPGa responds in appropriate way. The response to these stimuli, involves the 

production and secretion of different forms of hypothalamic gonadotrophin-releasing 

hormone (GnRH), pituitary gonadotrophin (GTH1 and GTH II), sex steroids and 

prostaglandins (Coward and Bomage, 2000). There are three different groups of 

gonadotrophin-releasing hormone (GnRH) neuronal group inervating the pituitary gland; 

these are the terminal nerve, preoptic region and midbrain. The preoptic group appears to 

be the main innervator of tilapia pituitary (Yamamoto et al., 1998). The GnRH, has several 

functions in fish, some of them include the regulation and secretion of gonadotrophins and 

growth hormone (GH).

There are two gonadotrophin hormones in fish: GTH I and GTH II hormones. These 

hormones are homologues to the mammalian follicle-stimulating hormone (FSH) and 

luteinizing hormone (LH) (Prat et a l, 1996). GTH I stimulates ovarian growth and GTH II 

is responsible for the subsequent ovarian maturation (Prat et al., 1996). GTH I is also 

involved in the secretion of the sex steroid oestradiol (E2), then E2 induces the hepatic 

production of vitellogenin (VTG). This VTG is then released into the blood stream and 

sequestered by developing oocytes (Yaron et al., 1983; Wallace et al., 1987).

Profiles of E2 in tilapias are similar to those already reported for annual spawners 

such as the rainbow trout (Bromage and Cumaranatunga, 1988). E2 shows high levels
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during vitellogenesis and low levels are reported after the spawning season. It was reported 

by Rothbard et al. (1991) that testosterone (T), but especially (E2) increased gradually 

during the onset of nuptial colouring and courtship, however, these high levels decreased 

during spawning and mouthbrooding. Under crowded conditions in T. zillii, steroid levels 

of 17(3-oestradiol (E2) and testosterone (T) become suppressed. This reduction of steroid 

concentration resulted in a considerable reduction in spawning activity (Coward et al., 

1998b). Moving fish from crowded conditions to individual aquaria caused steroid level to 

rise dramatically concomitant in resumption of spawning activity (Coward et al., 1998b).

In O. niloticus, Srisakultiew, (1993) reported blood levels of total calcium (as an 

indication of vitellogenin concentration), E2 and T over a succesive spawning cycles (2 -3). 

This information was then correlated with histological development of the gonads. Results 

demonstrated that within each spawning cycle, the proportion of maturing oocytes 

increased from 0 -  15% just a day after spawning to up to 65% by day 10 post-spawning. 

This increase in oocyte maturation coincided with high levels of total calcium, E2 and T.

1.4 Spawning induction
Several authors have reported asynchrony in the breeding behaviour of maternal

mouthbrooding tilapias, in particular, those species belonging to the Oreochromis group. 

These species exhibit low fecundity and asynchronous spawning behaviour. These are 

considered to be serious problems for the mass production of eggs and fry (Srisakultiew 

and Wee, 1988; Mair, 1993; Macintosh and Little, 1995; Little et a l, 2000; Coward and 

Bromage, 1998a, 2000).

Synchronous spawning within a broodstock population would improve broodstock 

productivity by increasing total egg production over a particular period of time, and make 

it much easier for farmers to meet market demand as production would be predictable. In
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tilapias, various different approaches of hormone manipulation have been attempted to 

synchronise spawning activity. Srisakultiew and Wee (1988) first reported that no real 

effect was obtained after hypophysation protocols involving doses of 0.1, 0.25 and 0.50 mg 

of pituitary gland homogen ate (PG) per 100 g of body weight. This first attempt to use 

hormone induction in tilapias was unsatisfactory and no positive results were found. In a 

second attempt, this time using human chorionic gonadotropin (HCG), injections of 25 

and 50 IU per 100 g of body weight of females successfully induced spawning, although, 

no spawning was obtained when higher doses were used (100 IU).

Behrends and Smitherman (1983) reported that changes in temperature increased the 

level of spawning synchrony in tilapias, and this could help in the mass production of eggs 

and fry. They found that an increase of water temperature from 20°C to 28°C caused 

improvement in spawning synchrony. In a similar way, manipulation of water temperature 

could be used to improve spawning activity in O. niloticus. For example, synchronised 

spawning activity was achieved after fish were exposed to 22°C for 6 hours followed by a 

rise in water temperature to 28°C; this strategy induced a large number of fish to spawn 

(Srisakultiew and Wee, 1988).

Further study showed that a combination of pregnant mares serum gonadotropin 

(PMSG) and (HCG) could be used in order to stimulate spawning activity in T. zillii. Doses 

of 500 IU per kg of body weight were injected into the dorsal muscle. Coward et al. (2000) 

recommended that one injection of PMSG should be given a day after spawning of the 

female and five days later inject HCG. In this study, 8 of 9 females tested were 

successfully induced to spawn and none of the control females spawned during the 

treatment (Coward et al., 2000); however, the egg quality was affected and this resulted in 

a considerable reduction in fertilization rates.
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Several other methods to improve spawning synchrony and seed production have 

been described. These approaches involve (1) total exchange of females after the spawning 

period by fresh females previously conditioned (females that have been allowed to recover 

for two to three months) in separated tanks. (2) The exchange of just spawned females by 

conditioned ones, and 3) return of females to the spawning tank after removal of eggs for 

female mouth. According to these procedures, the exchange of spawned females for 

conditioned fish stimulates early spawning, but the exchange of all broodfish was more 

effective than just the exchange of spawned ones. The removal of eggs and fry from 

incubating females, as well as exchange of spawned female O. niloticus after spawning 

have increased the number of eggs, as well as improved spawning synchrony (Little et al., 

1993). In a similar way, Macintosh and Little (1995) reported that removal of eggs and fry 

from incubating females increased seed production, compared with undisturbed 

females.The replacement of spawned females by newly conditioned females, as well as the 

total exchange or replacement of females every 10 days for previously conditioned females 

was an efficient technique to improve seed production. However, there are some 

constraints on this approach. This technique involves the use of three groups of broodstock 

in which, two groups are maintained in a conditioning tank, while the other is in the 

spawning tank. Thus, this procedure increases operation costs as well as the requirement 

for adequate tanks and other facilities.

Holding separate sex stocks of broodstock at high densities in hapas or tanks with 

adequate feeding regimes and good food quality, improved the synchrony of spawning 

when both sexes were restocked together at low densities in spawning hapas or tanks 

(Little et al., 2000).

Coward and Bromage (1998b) reported that the substrate spawner T. zillii, under 

crowded conditions, exhibited reduced levels of sex steroids 17p-oestradiol (E2) and
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testosterone (T), but as soon as these fish were moved to individual aquaria steroid levels 

increased dramatically. In this work, under crowded conditions fish were conditioned due 

to inhibition of reproduction, this allowed ovarian cycles to become much more 

synchronous.

Little et al. (2000) recommended the use of exchange methods in hapa-based systems 

to increase and maintain constant seed production in Nile tilapia. These authors used 

steroid levels as an indicator of good quality and condition in terms of spawning activity. 

They found that females exchanged at intervals of 7 days had higher levels of 17(3- 

oestradiol (E2) and produced larger clutches than females changed at 3.5 days intervals. 

They observed that the continuous manipulation of broodfish, if changed every 3.5 days 

incurred spawning interruption and caused reduction in steroid levels.

1.5 Gamete quality and fertilization
One of the major factors governing reproductive success in tilapia, and of course, all

other species of fish, is the quality of the gametes involved. Factors affecting egg quality 

are intrinsic properties of the egg itself and the environment in which the egg is fertilized 

and subsequently incubated (Brooks et al., 1997). Some of the factors governing egg 

quality are known, but most, are unfortunately, not known. Some of the more well known 

factors affecting egg quality are diet, photoperiod, physiochemical properties of water, 

husbandry practices. A substantial factor controlling egg quality is the genotype of the 

female. These factors are discussed at length by Brooks et al. (1997).

It is of major concern that the manipulation of photoperiod can cause problems with 

egg quality in a wide variety of teleosts in which photoperiod has been used to advance or 

delay spawning, to gain a year-round production of eggs. Thus, light manipulation has 

resulted in high mortalities (60 -80% of the eyed stage egg) in pink salmon (Oncorhynchus
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gorbuscha), when spawning has been delayed by light manipulation (Brooks et a l, 1997). 

In contrast, Gillet (1994), reported that egg quality was improved in the Arctic charr 

(Salvelinus alpinus) after delay in ovulation using changes in photoperiod. This 

improvement in egg quality could be explained by the fact that oviposition occurred at low 

water temperatures (2°C colder than normal).

Factors affecting sperm quality in fish include seasonal variation, the nutritional and 

endocrinological status of the fish, and also genetic make up (Billard, 1990a; Billard et al., 

1995; Pustowka et al., 2000). In terms of sperm quality, which is defined as being the 

ability of sperm to successfully fertilise an egg (Rurangwa et al., 2004), there are two 

principal variables that should be considered: those variables involving sperm motility, and 

those concerning duration of movement (Billard et al., 1995; Kime et al., 2001).

It is clear, therefore, that there are a multitude of factors controlling gamete quality in 

teleost fish, and our knowledge of these factors in tilapiine species remains scant at best. 

Above all others, perhaps the mechanism most crucial to reproductive success in fish is 

that occurring when the two gametes unite at fertilization. However, the fertilization and 

activation of fish oocytes are vital, but unfortunately overlooked, processes in fish 

research. This is surprising given that the commercial culture of many important 

freshwater, but especially marine, teleosts is beset by problems associated with 

fertilization, hatching and early embryonic development (Coward et al., 2002). These 

problems have been particularly acute in certain species leading to the application of 

spawning induction technologies in an effort to optimize production. Although successful 

in some species, spawning induction experiments have not generally proved satisfactory in 

the tilapias. For example, the asynchronous nature of spawning in T. zillii could be 

controlled using a combination of pregnant mares serum gonadotropin (PMSG) and human 

chorionic gonadotropin (HCG) administered at specific times during the ovarian cycle, but
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unfortunately appeared to result in very poor fertilization rates (Coward et al., 2000). Other 

commercially important fish species, notably marine species, suffer from low fertilization 

and hatching rates; examples include Atlantic halibut (Hippoglossus hippoglossus) 

(Norberg et al., 1991, 2001; Holmefjord et al., 1993; Bromage et al., 1994), sole (Solea 

solea) (Houghton et al., 1985), turbot (Scophthalmus maximus) (Bromley et al., 1986), 

gilthead seabream (Sparus auratus.), (Carrillo et al., 1989), and some salmonids (Bromage 

et al., 1992). Furthermore, similar problems often arise when fish are held captive in 

artificial environmentally controlled conditions. These problems have serious ramifications 

for successful and profitable culture.

However, our present knowledge concerning the key intracellular and molecular 

events accompanying fertilization and egg activation in fish is limited solely to small 

laboratory species that have no real commercial importance but represent useful laboratory 

models for developmental biology; these species include zebrafish (Danio rerio), medaka 

{Oryzias latipes) and bitterling (Rhodeus ocellatus ocellatus). In contrast, decades of 

research in other animal species has revealed much about the chemical messengers and 

mechanisms involved in fertilization and egg activation (Swann and Parrington, 1999). 

Most recently, the focus has been on uncovering the molecular identity of the signalling 

proteins involved (Parrington, 2001).

As manipulative techniques such as photoperiod regulation and hormonal induction 

become more common place in tilapia culture, such strategies might inadvertently 

influence gamete quality and/or the mechanisms involved with fertilization. A further aim 

of this Thesis therefore, was to make a preliminary investigation into the process of 

fertilization in tilapia applying the lessons learnt from the far more advanced mammalian 

research, and the mechanisms discovered therein.
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1.6 Aims and structure of this Thesis
The underlying remit behind this Thesis was the obvious lack of detailed research

into the possible role of photoperiod in the control of reproduction in tilapia, and the 

mechanisms involved in the synchronization and optimization of egg production. It was 

also evident from the literature that manipulative techniques such as photoperiod 

manipulation can, in other species, cause decline in gamete quality. Earlier work on tilapia, 

using the application of hormones to induce spawning, has already shown a significant 

adverse effect on egg quality and fertilization success. In view of the paucity of 

information concerning fertilization in tilapia, and other teleosts generally, a further aim of 

this Thesis was to make a preliminary investigation into the mechanism (s) underlying 

fertilization in tilapia and a selection of other commercially-important species, using 

mammalian research as a guideline. Specific objectives are outlined below.

1. To evaluate the effects of photoperiod upon the reproductive performance of 

Nile tilapia, O. niloticus

2. To investigate and describe the variation in plasma melatonin levels in tilapia 

reared under controlled environmental conditions.

3. To isolate and characterize a receptor for melatonin in O. niloticus.

4. To investigate and describe the tissue-specificity of the melatonin receptor 

Mel la  in O. niloticus.

5. To make a preliminary investigation of the mechanisms involved in egg 

activation at fertilization in tilapia, and a selection of other commercially- 

important specie
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Chapter Two

2.1 General materials and methods
Only details of those materials and methods commonly utilized throughout this study

are given in this Chapter. Further details of materials and methods specific to discrete 

sections are given in each chapter.

2.2 Fish aquaria design and fish maintenance

2.2.1 Fish
The Nile tilapia Oreochromis niloticus, were obtained from pure broodstock (free 

from hybridization with other species or genus) held at the Tropical Aquarium, Institute of 

Aquaculture, University of Stirling, Stirling, Scotland, U.K. Further details of age and size 

of fish are given in the methods section of relevant experiments.

2.2.2 Stock system
Fish were kept in a gravity-fed recirculation system, which consisted of sixteen 

square fibreglass tanks (1.20 m2). These tanks were connected to each other with a PVC 

pipeline. The system had four settling tanks filled with biorings which act as biofilters. The 

water was pumped to a header tank in which the water was heated and redirected to the 

main culture tanks.

2.2.3 Experimental system
Fish were maintained in a gravity-fed recirculation system incorporating eight glass 

aquaria (105 cm x 46 cm x 46 cm) linked to four settling tanks and a filtration unit 

appropriate to the system size and capacity. Settling tanks incorporated bio-rings (Dryden 

Aquaculture, U.K.) to aid particulate filtration and improve biofiltration. Water was
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pumped from system settling tanks to header tank (200 1 capacity) via a water pump 

appropriate to the system capacity (Beresford Pumps Ltd. U.K ).

The system was covered with a special frame built with iron and PVC foam, the light 

source was provided with a lamp (60 watts bulb) attached to the ceiling of the frame 

(Figure 2.1). All light were controlled with digital timers (Smiths Industries, U.K.) in order 

to obtain the desired photoperiod.

Light intensity in each aquarium was evaluated with a lux meter (Photometric 

sensor SKL310, Skye Instruments, Llandrindod Wells). Measurements were taken 

centrally at the surface of the water column. Light intensity was constant at 530 lux in each 

chamber over the full experiment.

2.2.4 Fish maintenance
All systems experienced a constant daily photoperiod regimes as dictated by the 

experiment being undertaken and a water temperature of 27 ± 1°C. The water was 

oxygenated via airstones attached to a low pressure air blower. The fish were fed ad 

libitum twice a day with a commercial pelleted trout feed (Trouw Aquaculture Ltd., U.K), 

pellet size number 4 (see Table 2.1). Water quality was monitored twice a month; Levels 

of pH, nitrate, nitrite and ammonia were evaluated with aquarium water quality test kits 

(C-Test kits, New Aquarium Systems, U.K). Water quality was maintained satisfactorily 

by the biofilters and other filter systems. Nevertheless, a water change (10% of total 

volume) was performed once a week and the system refilled with fresh, aerated and 

preheated water.
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Header tank
220L Sand filter

120L
White blown PVC frame

60 watts bulb
Staled pipe

Glass tank 
200L

.Drainage "channel

Collector 
tank 2201

Settling tanks + bio-rings 
220LPump

Figure 2.1 Lateral view of the closed recirculation system used to hold experimental fish.

Table 2.1 Proximate analysis of the diets used in this research. (IU = international units)

Feed stuff Proportion

Oil 8.0%

Protein 40.0%

Ash 8.0%

Fibre 2.0%

Phosphorus 1.2%

Copper 10 mg/kg

Vitamin A 12000 IU/kg

Vitamin D3 2000 IU/kg

Vitamin E 100 IU/kg

Source: Trouw Aquaculture, Ltd.
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2.3 General husbandry

2.3.1 Fish handling and anaesthesia
All procedures requiring fish handling such as stripping, tagging, weighing and blood 

sampling were undertaken under anaesthesia to minimize stress and scale damage. All the 

procedures were carried out under personal and project licence according to Home Office 

regulations. Fish were anaesthetised by immersion in a 10% (w/v) solution of ethyl 4- 

aminobenzoate (Sigma Chemicals, Ltd U.K.) diluted in ethanol. The working 

concentration was 1:10,000 in fresh water. After the sampling procedure, fish were 

allowed to recover completely in clean aerated water. Once the fish were totally recovered 

they were returned to the tanks.

2.3.2 Fish identification
Each fish were individually tagged with a Passive Integrated Transponder (PIT) tag 

(Trovan, Ltd., Koln, Germany). Tags were implanted through a special syringe with a 

modified needle directly into the peritoneal cavity. All the material utilized in the tagging 

process was previously sterilized with absolute ethanol. All the tagging procedure was 

carried out under anaesthesia.

2.3.3 Fish production
In order to produce stock fish required for this research, five two year old females 

(all sisters) were transferred into large a glass aquarium and allowed to breed with one 

male. This male was taken from a different stock totally unrelated to the females. Three 

days after the fish were stocked, three females spawned. The eggs were robbed (removed 

from the buccal cavity of mouth-brooding females) and incubated artificially to provide fry 

for subsequent experiments.

32



Chapter Two

2.4 Blood samples collection

2.4.1 Blood collection procedure
Blood samples were taken from the caudal dorsal aorta by using 23G sterile 

hypodermic needles and 1ml sterile syringes (Terumo Europe N.V., Belgium) that had 

been previously rinsed with heparin ammonium salt from porcine intestinal mucosa (4 

mg/ml, 140 units/mg: Sigma Chemicals, Ltd. UK). Blood samples (1 ml) were removed 

from the fish. Immediately after sampling, the needle was removed from the syringe and 

the blood sample expelled into a clean Eppendorf microcentrifuge tube (Fisons Scientific 

Equipment, U.K) and placed on ice until sampling had been completed. Blood samples 

were spun at 2500 rpm for 15 minutes at 4°C in a chilled centrifuge (Jouan, CT422). The 

resultant plasma (supernatant) was removed and transferred to clean Eppendorf tubes and 

stored at -70°C for future analysis.

2.5 Determination of total fecundity, relative fecundity, egg size and estimation of
spawning periodicity

2.5.1 Determination of total fecundity
Eggs were removed from the fish’s mouth under anaesthesia. The eggs were 

manually counted with the aid of a tally counter (B.D.H./Merck Ltd., U.K) according to 

Coward (1997) with this method 1000 eggs could be counted within 10 minutes. To 

evaluate consistency and accuracy of this technique, the total fecundity of one female was 

counted a total of 10 times allowing calculation of a coefficient of variation (CV). The CV 

for this method was 0.34 %.

2.5.2 Determination of relative fecundity
Relative fecundity (expressed as number of eggs per gram of female weight) was 

calculated using the following equation:
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TFRF= —  
W

Where: RF: Relative fecundity (Eggs/g)

TF: Total fecundity (number of eggs in a freshly spawned clutch) 

W: Female body weight (g)

2.5.3 Determination of mean egg size, diameter and validation of egg 
measurement procedure

The eggs of O. niloticus have an ovoid shape. Therefore, in order to evaluate egg size 

and diameter of the eggs, two variables were measured: egg long axis and egg short axis. 

Egg long axis refers to the length of the longest axis of the egg and egg short axis is the 

maximum width of the egg, perpendicular to the longest axis. The diameter of the eggs was 

easily calculated by this method. All egg measurements were carried out according to the 

method reported by Coward and Bromage, (1999b).

2.5.3.1 Determination of mean egg size and mean diameter
The maximum length of both short and long axes in a sub-sample of 50 randomly

chosen eggs from each spawned egg batch were measured to the nearest 0.01 mm with a 

dissection microscope (Olympus Optical Co. Ltd., U.K.) incorporating a calibrated eye 

piece graticule. The mean egg diameter was calculated as follow: 

d = 1 + s a  

Where: d = Egg diameter (mm)

1 = Mean length of egg long axis (mm) 

s = Mean length of egg short axis (mm)
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2.5.3.2 Validation of egg measurement procedure
Maximum length of both long and short axes of a sub-sample of 50 randomly chosen 

eggs from a water-hardened egg clutch was measured to the nearest 0.01 mm as described 

earlier (Section 2.5.3.1). The same sub-sample was re-measured a further four times 

allowing calculations of the coefficient of variation (CV). The CV of this method was 0.85 

% and 0.44 % for the long and short axes respectively.

2.5.4 Estimation of spawning periodicity
Spawning periodicity was estimated using the parameter Inter-Spawning-Interval

(ISI) which is based upon completed reproductive cycles of repeat spawning fish, (i.e. the 

time between one spawn to the next one).

2.6 Determination of mean egg volume and total egg volume

2.6.1 Determination of mean individual egg volume
Mean egg volume was calculated using the following equation:

v = 7t x 1 x h2 / 6 

Where: v = Volume of egg (mm3)

1 = Mean length of egg long axis (mm) 

h= Mean length of egg short axis (mm)

2.6.2 Determination of total egg volume
Total egg volume (mm3) was calculated according to the following equation:

TEV = TF x MEV 

Where: TEV = Total egg volume (mm3)

TF = Total fecundity

MEV = Mean egg volume (mm3)

35



Chapter Two

2.7 Melatonin radioimmunoassay
Plasma samples were analysed for melatonin by a direct radioimmunoassay adapted

from the method designed by Randall (1992) for the measurement of melatonin in rainbow 

trout and salmon.

2.7.1 Assay buffer
The following buffer was made up in 150 ml of nanopure water (Millipore®, 

Incorporation, USA), in a sterile polystyrene container (Sterilin Ltd., Hounslow, Middx., 

UK):

Tricine (N-tris(hydroxymethyl)methylglycine) 2.68 g

Sodium chloride 1.35 g

Gelatine 0.15 g

The buffer was submerged in warm water (~ 40°C) for 30 minutes in order to

dissolve the gelatine. The solution was hand shaken to enhance gelatine incorporation in 

the buffer. After that, the buffer was kept in the refrigerator at 4°C until required. All 

reagents were supplied by BDH Chemicals Ltd.

2.7.2 Antiserum
Sheep anti-melatonin antiserum (Guildhay Antisera Ltd./Stockgrand Ltd., Guildford 

Surrey, UK) was raised against N-acetyl-5-methoxytryptophan conjugated through the side 

chain to bovine thyroglobulin. Two batches were available; batch number 704/6483 was 

used for all measurements described in this Thesis. Comparative percentages cross 

reactions (melatonin taken as 100%) are 0.91% for N-acetyltryptamine, 0.33% for 6- 

hydroxymelatonin, 0.22% for N acetyltryptophan, and <0.06% for all other structurally-
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related compounds (Randall, 1992). Supplied freeze-dried, the antiserum was dissolved in 

2 ml of nanopure water to provide an intermediate dilution of 1:10. Aliquots of 100 pi 

were transferred into polystyrene tubes (LP3, Luckhams Ltd) and stored at -20°C. The 

working solution was prepared by diluting one 100 pi aliquot in 20 ml of assay buffer. This 

provided sufficient reagent for 100 tubes with a final dilution of 1:2000.

2.7.3 Radiolabel
The radiolabel was obtained from Amersham, Pharmacia Biotech, Ltd, UK. The 

radiolabel, [0-methyl-3H]melatonin, with a specific activity of 13.1 GBq/mg, and a 

radioactivity concentration of 37 MBq/ml, and it was 99.0% pure radio-chemically. An 

intermediate solution was prepared by diluting 20 pi of stock label to 2 ml of absolute 

ethanol (Fisher Scientific International), the intermediate solution in a 20 ml glass vial 

(Packard, BioScience, B.V. Groningen, The Netherlands). The stock and intermediate 

solution was stored at -20°C. The working solution was freshly prepared for each assay by 

further diluting the intermediate solution with assay buffer to give approximately 4000 

dpm in 100 pi.

2.7.4 Standards
A stock standard solution of 1 mg/ml was prepared by dissolving 10 mg of melatonin 

(N-acetyl-5-methoxytryptamine, Sigma Chemicals, Ltd U.K) in 10 ml absolute ethanol. 

This solution was stored at -20°C. The standards were freshly prepared for each assay as 

follows:

Stansard A) 100 pi of 1 mg/ml made up to 10 ml with assay buffer (= 10 pg/ml)

Standard B) 100 pi of standard A made up to 10 ml with assay buffer (= 100 ng/ml)

Standard C) 100 pi of standard B made up to 10 ml with assay buffer (= 1 ng/ml)
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Standard D) 100 pi of standard B made up to 5 ml with assay buffer (= 2 ng/ml)

A serial dilution (1:1) of 250 pi of standard C with 250 pi of assay buffer provided 

several standards in the range of 3.9 to 250 pg/tube for the standard curve. Standard D was 

used to allow the inclusion of 500 pg/tube.

2.7.5 Melatonin-free plasma
Melatonin-free plasma was prepared by charcoal stripping of plasma collected from 

fish during the light period according the protocol described by Randall, (1992).

Briefly:

1.- Prepare a 10% (W/V) suspension of charcoal (Activated, untreated, Sigma 

Chemicals, Ltd U.K) in serum plasma in 150 ml polystyrene universal containers 

(Sterilin Ltd., Hounslow, Middx., UK)

2.- Shake for 1 hour on ice in a magnetic stirrer.

3.- Centrifuge at 1500 rpm at 4°C for 30 minutes (Centrifuge Jouan, CT422).

4.- Decant supernatant and resuspend in charcoal 10% (w/v).

5.- Repeat steps 2 and 3.

6.- Decant supernatant and centrifuge at 3000 rpm at 4°C for 15 minutes.

7.- Decant supernatant and centrifuge at 20,000 rpm at 4°C for 30 minutes. 

(Centrikon, T-1170 Ultracentrifuge, Kontron Instruments)

8.- Filter supernatant through Millex-GV 0.45 and 0.22 pm filter units (Millipore,

S.A., Molshelm, France).

9.- Divide pooled plasma into sterile containers with a 6 ml portions (sufficient for 

one standard curve) and store at -20°C.
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Before use, each pool was checked against the previous pool to ensure the plasma 

was free of melatonin (percentage binding should be indistinguishable from that of the zero 

standard)

2.7.6 Melatonin radioimmunoassay (RIA)
Standard curve and samples were analyzed in duplicate according to the following 

protocol.

2.7.6.1 Standard curve
Tube N° Standard (pg) + Standard (pi) + Buffer (pi)

1 & 2 500 250 (Std D) none

3 & 4 250 250 (Std C) none

5 & 6 125 250 (Std C) 250

7 & 8 62.5 250 (5 & 6) 250

9 & 10 31.3 250 (7 & 8) 250

11 & 12 15.6 250 (9 & 10) 250

13 & 14 7.8 250 (11 & 12) 250

15 & 16 3.9 250 (13 & 14) 250 (remove 250)

17 & 18 0 none 250

19 & 20 NSB none 450

(NSB = ]Mon-specific binding)

2.1.62 Assay protocol

1.-Add 500 pi of plasma sample to each sample tube.

2.- Add 250 pi of melatonin free plasma to each of the standards and non-specific binding 

tubes (start from tube 20 backwards). Vortex tubes.

3.- Add 200 pi of antiserum to all tubes except non-specific binding tubes (19 and 20). 

Vortex and incubate at 20°C for 30 min.

4.- Add 100 pi of tritiated melatonin to all tubes, vortex tubes and incubate at 4°C for 18 

hrs including 2 scintillation vials (totals).
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5.- Dissolve 0.48 g dextran-coated charcoal (Sigma Chemicals, Ltd U.K) in 50 ml buffer 

and stir on ice for 30 minutes.

6.- Add 500 pi charcoal to each tube, vortex and incubate at 4°C for 15 minutes.

7.- Centrifuge at 2000 rpm at 4°C for 10 min.

8.- Transfer 1 ml supernatant to scintillation vials (6 ml Polyethylene vials, Packard, 

BioScience, B.V. Groningen, The Netherlands) with 4 ml scintillation fluid (Packard, 

BioScience, B.V. Groningen, The Netherlands) and vortex. Include a blank containing only 

4 ml scintillation fluid.

9.- Vortex vials and count radioactivity for 10 minutes in a scintillation counter (Canberra, 

Packard) including 1 blank and 2 total counts.

2.7.6.3 Calculation of melatonin levels
1.- Multiply the mean total dpm by 1/1.3 in order to correct the differences between the

total reagent volume per tube and the volume of the supernatant counted.

2.- Subtract the mean non-specific binding dpm from that of the standards and samples.

3.- Calculate the percentage binding of standards and samples relative to the corrected total 

counts (% binding = (standard of sample dpm/mean total dpm) x 100)

4.- Plot the percentage binding of the standards against concentration on log linear graph 

paper (Figure 4.1 in Chapter Four) and read the concentrations of the samples from the 

standard curve.

5.- Correct to pg/ml plasma

The sensitivity of the assay was defined as the smallest quantity of melatonin 

statistically distinguishable from the zero standards; this was 3.9 -  7.8 pg/tube.

40



Chapter Two

2.7.6.4 Quality control
Aliquots of pooled plasma taken from one year old O. niloticus during the dark phase 

and containing approximately 90-100 pg/ml of melatonin were used as quality controls. 

The intra-assay coefficient of variation was 5.6% and the inter-assay coefficient of 

variation was 7.3%.
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Chapter Three

3.1 Introduction
The reproductive physiology of tilapias has been reviewed extensively (Babiker and 

Ibrahim, 1979; Balarin and Haller, 1982; Jalabert and Zohar, 1982; Rana, 1988; Baroiller 

and Jalabert, 1989; Macintosh and Little, 1995; Coward and Bromage, 2000; see Chapter 

One). In brief, females tilapia exhibit individual patterns of ovarian recrudescence, thus in 

breeding populations they tend to spawn asynchronously every three to four weeks, 

depending upon environmental conditions (Coward and Bromage, 2000). Low fecundity 

and asynchronous spawning behaviour are the most important economic constraints on 

tilapia seed production (Mires, 1982; Rana, 1988; Macintosh and Little 1995; Coward and 

Bromage, 1998b; Baroiller and Jalabert, 1989; Bhujel, 2000; Little and Hulata, 2000).To 

optimise tilapia seed production and obtain homogeneous stocks of first-feeding fry 

suitable for sex reversal, farmers have tended to resort to simply increasing the number of 

broodfish (Macintosh and Little, 1995; Little et al., 1997; Coward and Bromage, 2000; 

Bhujel et al., 1998; 2001; Bhujel 2000). In Thailand, for example, a commercial hatchery 

operator required over 60,000 broodfish in order to guarantee production of 10 million fry 

per month and thus satisfy market demand to on-growing farms (Bhujel and Suresh, 2000). 

Although the use of increased numbers of broodfish helps overcome the problems created 

by low fecundity and poor spawning synchrony, this method is far from ideal. Maintaining 

increased numbers of broodstock incurs significantly higher costs.

Photoperiodic manipulation has been applied successfully in several fish species in 

order to control their reproductive cycle (Bromage et al., 2001). Using these techniques, 

for example in rainbow trout (Oncorhynchus mykiss) culture, hatchery operators are able to 

control the reproductive cycle with great precision and thus produce sufficient numbers of 

eggs and fry at desired times, thereby ensuring all-year round production. In the case of 

tilapias, the effect of photoperiod on reproduction is very poorly understood although
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several authors have reported that photoperiod and light intensity might play important 

roles (Cridland, 1962; Hyder, 1970; Rothbard and Pruginin, 1975; Balarin and Haller, 

1982; Jalabert and Zohar, 1982; Bhujel, 2000). Currently, only two published papers report 

the use of photoperiod on tilapias. Ridha et al. (1998) first showed that photoperiodic 

manipulation improved seed production in O. spilurus using 14L:10D light regimes. 

However, Ridha and Cruz (2000) reported that longer and brighter days (18L:6D with light 

intensities of 2500 lux) produced more fry and improved spawning synchrony in Nile 

tilapia compared with short days (12L:12D; 15L:9D) and lower light intensity (500 lux). 

Considering the constraints currently imposed upon tilapia culture by poor spawning 

synchrony, any method that helps to improve hatchery efficiency should be investigated.

3.1.1 Photoperiod
In most living organisms, reproduction occurs in relation to seasonal changes in the 

environment as well as food availability. In fish, these seasonal changes occur according to 

geographical location to generate a specific pattern in reproductive activity such that 

progeny are produced at the most suitable times. In teleosts, the synchronisation of 

reproduction is affected by several environmental factors such as photoperiod, temperature, 

rainfall, and food availability (Bromage et al., 2001). Both photoperiod and temperature 

are considered to be the most important environmental cues in the control of reproduction 

in finfish (Billard, 1983; Bye, 1984; Bromage and Cumaranatunga, 1988).

Daylength is the principal factor regulating reproduction in salmonids, bass, flatfish, 

breams, mullet, sciaenids, cyprinids and serriolids (Bromage and Cumaranatunga, 1988; 

Poncin, 1989; Bromage et al., 1993a, b, 2001). In those species that are important for 

aquaculture, the seasonality of spawning is one of the major constraints, due to the 

consequent restriction on the supply of eggs and fry. On-growing farms require a
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continuous supply of fry in order to produce a marketable size-fish throughout the year 

(Bromage, 1995). According to this, hatchery operators should artificially control the 

spawning times of their broodstock to produce eggs and fry all year round (Bromage and 

Cumaranatunga, 1988; Bromage et a l, 1992, 1993a, b).

The control of reproduction using photoperiod is a common practice in order to get a 

continuous supply of eggs and fry (Bromage and Cumaranatunga, 1988; Bromage et a l, 

1992, 1993b, 2001). Photoperiod is reported to be a relatively cheap and simple method to 

install on commercial farms, and shows several advantages compared with other methods 

used to induce spawning (i.e. hormone treatment), due to the reduced levels of broodstock 

handling involved. In photoperiod manipulation, the pattern of daylength is changed, 

allowing with this, the synchrony of gonad recrudescence, oocyte ovulation and spawning 

times (Bromage et a l,  1992). Using photoperiod manipulation, it was possible to advance 

or delay the maturation of fish on a commercial scale in several species (Bromage and 

Cumaranatunga, 1988; Bromage et a l, 1992, 1993b, 2001).

3.1.2 Photoperiod in salmonids
3.1.2.1 The rainbow trout
Most of the information currently available on photoperiod has been generated from 

salmonid species; in these species, photoperiod has become a powerful tool to produce a 

continuous supply of egg and fry (Bromage et a l, 1992, 1993b, 2001), and is used 

extensively in the commercial culture of salmonid species.

In rainbow trout, the use of long daylength at the beginning of the reproductive cycle 

followed by short daylength just before the summer solstice triggered spawning time 

within 3 or 4 months. However, the opposite was found when fish were exposed to short 

daylength in the first few months of the reproductive cycle, or long daylength after the 

summer solstice resulting in delays in gonadal development. Spawning season, however,
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could be predictably advanced with the use of 10L:14D (Light:Dark) photoperiods, 

followed by a change to short photoperiods of 6L:18D (Duston and Bromage, 1986; 

Bromage et al., 1992; Alvarino et al., 1993). In similar way, fish exposed to long 

daylength at the beginning of the reproductive cycle followed by short daylength spawned 

two months in advance, but in contrast, fish exposed to short daylength followed by 

constant long daylength delayed ovulation by 4 months (Bromage et al., 1984).

Duston and Bromage (1986) and Bromage et al. (1992) reported that photoperiod 

history, and the direction of photoperiod changes are the most important factors compared 

with the duration of daylength, in the onset of reproduction in rainbow trout. This species 

exhibits a peculiar spawning behaviour, in which some fish respond to photoperiod 

changes such as 6L:18D changing to 22L:2D. When fish were exposed to total darkness 

(DD) or continuous illumination (LL), fish continued to spawn. These results suggested 

that rainbow trout have an internal “clock” or endogenous rhythm (Duston and Bromage, 

1986; Davies et al., 1991). Under controlled conditions and over several reproductive 

cycles, the rainbow trout clearly shows the presence and stimulation of the endogenous 

rhythm or clock. This clock is believed to control the onset of reproduction, so under these 

conditions, the internal clock exerts strong periodicity over the year, demonstrating that 

this internal clock is running in a circannual mode (Bromage et al., 1992). This 

endogenous rhythm or “clock” is thought to be entrained by photoperiod under natural 

conditions. However, this entrainment could be adapted under controlled conditions 

(Bromage and Cumaranatunga, 1988; Duston and Bromage, 1986; Randall et a l, 1991a, b; 

Randall et al., 2000).

In rainbow trout, the spawning season can be advanced through photoperiod 

manipulation, the use of long daylength in February and then short daylength in May 

advanced the spawning season by three to four months (Davies and Bromage, 1991). It was
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also reported that water temperature did not play an important role in the control of 

rainbow trout reproduction. The effect of photoperiod upon total fecundity and egg size has 

been reported in rainbow trout; fish exposed to photoperiodic manipulation produced 

significantly smaller eggs compared with those fish reared under natural conditions, but 

total fecundity was not affected (Davies and Bromage, 1991).

It has been reported that short photoperiods and continuous light could also advance, 

and delay spawning in rainbow trout as required. Randall (199lab) reported the use of two 

months of continuous illumination during mid January to mid March; this resulted in an 

advancement of spawning activity under farming conditions. On the other hand, two 

months of continuous illumination throughout July to September caused a delay in 

spawning activity. In further investigations, it was demonstrated that one month of 

continuous illumination during January was enough to trigger an advance in spawning 

activity in 80% of the rainbow trout females subjected to these conditions (Randall, 1991a, 

b). Thus, the use of additional light in the middle of winter, just after the spawning season, 

has the power to trigger a subsequent spawning season in the following summer, creating 

two spawning seasons within the space of just one year (Randall, 1991a). Previous 

investigations reported that three reproductive cycles could be obtained in a 16 month 

period when fish were exposed to constant long days (Bromage et al., 1984), without 

compromising total fecundity or egg quality.

Photoperiodic manipulation thus has the power to alter gonad recrudescence, but 

several adverse effects have been reported in this respect. Bon et al. (1999) reported a 

reduction in spawning activity in rainbow trout when fish were exposed to a long 

photoperiod. This was caused by a reduction in the early and middle stages of gonadal 

development. Thus, photoperiod is clearly the main modulating factor affecting the 

biochemical processes involved in reproduction in rainbow trout, but in contrast, the late
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stage of the reproductive cycle was governed by an endogenous biological clock in 

rainbow trout.

3.1.2.2 Other salmonids
Light manipulation has also been used in other salmonid species. Photoperiod caused 

either an advancement or delay in spawning activity in the in brook trout (Salvelinus 

fontinalis) (Carlson and Hale, 1973), pink salmon (Oncorhynchus gorbuscha) (MacQuarrie 

et al., 1979; Beacham and Murray, 1993), Masu salmon (O. masou ishikawae) (Takashima 

and Yamada, 1984; Amano et al., 2000). Photoperiod manipulation has also been used to 

improve growth rates and reproduction in Atlantic salmon (Salmo salar) (Endal et al., 

1991, 2000; Hansen et al., 1992, 2001; Taranger et al., 1991, 1995; Duncan et al., 2000). 

In Atlantic salmon, photoperiod manipulation has been used in order to reduce grilsing 

(precocious maturation) in in sea cages; the additional light reduced the grilse from 63% 

in untreated fish groups to just 6% in fish exposed to additional nightime illumination 

(Porter et al., 1999).

3.1.3 Use of photoperiod in non salmonid species
The use of light manipulation to improve fish reproduction has been growing in

popularity over the last ten years; this is the result of significant research taking place in 

the salmon and trout industry. Light manipulation has now been expanded to several non- 

salmonid species with high potential to aquaculture.

In European sea bass (Dicentrarchus labrax), several studies involving photoperiodic 

control have been reported by Carrillo and co-workers, (Zanuy et al., 1986, 1991; Carrillo 

et al., 1989). These authors reported that photoperiodic manipulation delayed maturation 

by three months in this species, although, hormone manipulation was needed in order for 

this fish to complete spawning (i.e. Luteinizing Hormone Releasing Hormone analogue
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(LHRHa) and Human Chorionic Gonadotropin (HCG)). Sea bass react positively to light 

manipulation. Fish were maintained under constant long daylength for six months after the 

summer solstice and then transferred to short daylength. This caused a delay in spawning 

activity by at least 3 months. If fish are maintained under constant short photoperiods 

(9L:15D), spawning activity is advanced (Carrillo et al., 1989, 1991). The use of light 

manipulation has not yet been shown to cause any detrimental effect upon egg quality in 

sea bass, and no hormone treatment was needed for these fish to complete spawning 

(Carrillo et al., 1989, 1991).

Zanuy et al. (1991) reported a similar pattern to that of Carrillo (1989), in which D. 

labrax were exposed to different photoperiods. Results showed that fish held under 

constant long daylength (15L:9D) for two months and then transferred to constant short 

daylength (9L:15D), resulted in an advance of spawning by 3 - 4 months. On the other 

hand, those fish exposed to constant long daylength (15L:9D) for two months in the second 

half of the reproductive cycle, exhibited a delay in spawning by up to 4 months. In this 

study, the use of constant long daylength (15L:9D) or short daylength (9L:15D) throughout 

the entire reproductive cycle resulted in delay or advance in spawning time of about 1 .5 -2  

months. These studies demonstrated that photoperiod was the most important 

environmental cue in the reproduction of sea bass (Carrillo et al., 1989) and that this 

species responded to an endogenous rhythm or internal “clock” that is entrained by 

photoperiodic information (Carrillo et al., 1989, 1993).

The use of photoperiod to improve growth has been used in some species such as the 

turbot (Scophthalmus maximus) and Atlantic halibut (H. hippoglossus). Photoperiod is also 

used to advance or delay maturation in the Atlantic halibut (Imsland et al., 1997; Bjomsson 

et a l, 1998; Simensen et al., 2000; Jonassen et al., 2000), Atlantic cod (Gadus morhua) 

(Norberg et al. 1995, 2001; Dahle et al., 2000). The use of photoperiod is also reported to
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enhance reproduction in some fish species, for example, the three-spined stickleback, in 

which reproductive activity is stimulated by the use of continuous illumination, this 

allowed the study of reproductive performance in this species (Wootton, 1973 a, b; 

Wootton and Evans, 1976).

The aim of this chapter therefore was to further investigate the effects of 

photoperiodic manipulation on the reproductive performance of O. niloticus broodstock to 

see whether this might identify possible broodstock management strategies that may be 

adopted by hatcheries to improve egg production rates and improve spawning synchrony.
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3.2 Materials and methods

3.2.1 Fish supply
Thirty two sibling of O. niloticus were taken from the tilapia collection (McAndrew 

and Majumdar, 1983) held at the Tropical Aquarium, Institute of Aquaculture, University 

of Stirling. Fish were 18 months old at the beginning of the experiment.

3.2.2 Experimental system
The fish were maintained in eight (114x 45x 42 cm) glass aquaria. Each glass 

aquarium was sub-divided into four individual areas with Perspex sheets. The system was 

sub-divided into four individual chambers with two aquaria in each chamber (see Chapter 

Two for further explanation, Section 2.2.4).

3.2.3 Fish husbandry
Before starting the experiment, fish were anaesthetised, measured, weighed and 

implanted with a PIT tag (Section 2.3.2). The fish were checked daily (every two hours 

during daylight) for the evidence of spawning. Tilapia display a swelling of the genital 

papillae just before spawning, fish were also observed for brooding behaviour which 

involves an over-extension of the lower jaw; the brooding fish hardly open its mouth. 

Spawning fish were carefully transferred with a fine mesh net into a bucket and gently 

forced to expel the eggs. Eggs were washed, individually counted, and a sub sample of 50 

eggs per clutch measured for egg long axis, short axis, diameter, and volume (Section 2.5.3 

and 2.6). The Inter-Spawning-Interval (ISI) was determined (Section 2.5.4.). Feeding 

regimes and water quality were maintained as described previously Section 2.2.4.
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3.2.4 Photoperiod
In this experiment, four photoperiods were studied. First one consisted of 6 hours 

light and 18 hours dark (6L.T8D), this trial was identified as the shorter daylength. The 

second photoperiod consisted of 12 hours of light and 12 hours of dark (12L:12D), this 

trial was identified as the normal daylength assuming that in the tropics, under natural 

conditions, this will be the most common light regime, in which just a minor variation 

occurred throughout the year (Philippart and Ruwet, 1982). The third photoperiod 

consisted of 18 hours light and 6 hours dark (18L:6D); this trial was identified as the long 

daylength treatment. Finally, the fourth photoperiod consisted of 24 hours of continuous 

illumination (24L:0D). All the above photoperiods were kept constant in accordance with 

Section 2.2.3. A summary of the light regimes used in this investigation are given in Table 

3.1. The duration of this experiment was six months (180 days).

Table 3.1 Light regimes used in this investigation.

Trial general description Photoperiod Number of tanks 
(Replicates)

Number of fish per 
tank replicate

Short daylength 6L: 18D 2 4

Normal daylength 12L:12D 2 4

Long daylength 18L:6D 2 4

Continuous illumination 24L:0D 2 4

L= hours light, D= hours dark

3.2.5 Statistical analysis
Statistical analyses were performed using MINITAB (version 13.1). Statistical 

significances between treatments were evaluated at the 5% probability level. General linear 

model (ANOVA), (ANCOVA) and regression analyses (linear) were used to further 

analyse data. Data were logio or Arcsine transformed as appropriate. Values are expressed 

as the mean ± standard error of the mean (S.E.M).
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3.3 Results

3.3.1 Fish growth
In relation to fish size (weight and length), no differences were found among 

treatments (P > 0.05; Figure 3.1). The fish weight at the beginning of the experiment varied 

between 255 ± 20  to 305 ± 40 g, and total length ranged from 23 ± 1 to 24 ± 1 cm. At the 

end of the experiment, the final weight observed was 560 ± 50 g in short daylength 

treatment (6L:18D), 537 ± 40 g under normal daylength (12L:12D), 477 ± 40 g under long 

daylength treatment (18L:6D) and finally, 577 ± 40 g under continuous illumination 

(24L:0D). According to the mean total length observed at the end of the experiment, these 

results showed that short daylength treatment (6L:18D), normal daylength (12L.T2D), and 

continuous illumination (24L:0D) all resulted in the same final length of 30 ± 1 cm. The 

small fish were found in the long daylength treatment (18L:6D) these fish exhibited a final 

length of 29 ± 1 cm. No differences were found between photoperiods in relation to fish 

weight and length. Nevertheless, strong differences were found in terms of growth rates (P 

> 0.05).

In the case of the absolute growth rates (AGR) (Final weight -  Initial weight), 

significant differences were found. Fish under the short daylength (6L:18D) treatment 

increased by a total of 305 ± 25 g, under normal daylength (12L:12D) this increment was 

281 ±25  g, in weight. The long daylength photoperiod (18L:6D) showed the lowest AGR 

with just 201 ± 22 g. Fish under continuous illumination (24L:0D) exhibited a total weight 

increase of 272 ± 28 g (Figure 3.2 -A)

Relative growth rate (RGR) is a parameter that expresses the total increase of weight 

as a percentage of the initial weight (Hopkins, 1992). In the present experiment, significant 

differences were detected between photoperiods in terms of RGR (P < 0.05).
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Figure 3.1 A) Mean initial and final weight of experimental fish, B) Mean initial and final 
total length of experimental fish. Values are Mean ± S.E.M.
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Figure 3.2-B shows that the short daylength (6L:18D) exhibited the highest RGR 

which reached 122 ± 8%, for the case of normal daylength (12L:12D) RGR was 114 ± 2%, 

for the case of the long daylength treatment (18L:6D) the RGR was just 74 ± 8% and was 

the smallest RGR recorded across the groups, and finally, the continuous illumination trial 

(24L:0D) exhibited an RGR of 101 ± 16%.

Specific growth rate (SGR), which is calculated using this equation, (Log final 

weight -  Log initial weight) / time (days), also showed significant differences between 

photoperiods, (P < 0.05; Figure 3.2-C). The results obtained here showed that the short 

daylength (6L:18D) SRG was 0.47, normal daylength (12L:12D) SGR was 0.51, the long 

daylength (18L:6D) exhibited 0.31, and continuous illumination (24L:0D) exhibited a 

SGR of 0.38. This result was confirmed with analysis of covariance, using the initial 

weight as a covariate, in which there was no effect of the initial weight on the SGR (P > 

0.05).

Both RGR and SGR exhibited significant differences amongst treatments, however. 

As an additional way to compare growth differences the daily weight gain was evaluated, 

according to the method described by Bhujel et al. (2001b). This was estimated using the 

final weight substracted by the initial weight and then divided by the number of culture 

days.

Significant differences were detected in daily weight gain (DWG) between the 

groups. A significantly higher DWG (1.9 ± 0.2 g fish-1 day-1) was observed under normal 

daylength (12L:12D) treatment compared with long daylength (18L:6D) treatment (1.1 ± 

0.1 g fish-1 day-1) over the 180 day experimental period (Figure 3.2-D).
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Figure 3.2 Growth rates of O. niloticus exposed to different photoperiods. A) Absolute 
growth rate (AGR), B) Relative growth rate (RGR), C) Specific growth rate (SGR) and D) 
Daily weight gain (DWG). Values are mean ± S.E.M. Annotation with different 
superscripts indicate statistically significant differences (ANOVA, Fisher’s comparison 
test, P<0.05).
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3.3.2 Spawning, fecundity and egg size
A total of 291 spawns were observed during the six months of experiment (180 

days); 65 spawns were observed under short daylength (6L:18D) (22% of total spawns), 61 

spawns reported under normal daylength (12L:12D) (21%), 90 spawns (31%) under long 

daylength (18L:6D), and 75 spawns (26%) were recorded under continuous illumination 

trial (24L:0D) (Figure 3.3). Figure 3.4 shows the number of spawns per month; it is clear 

that most spawns were obtained under long daylength.

No significant differences were found in terms of mean spawns per month between 

photoperiods (P > 0.05). The short daylength (6L:18D) produced 11 ± 1 spawns, The 

normal daylength (12L:12D) produced 10 ± 1 spawns, the long daylength (18L:6D) 

produced the most spawns with 15 ± 1 spawns, and continuous illumination trial (24L:0D) 

produced 12 ± 1 spawns per month.

If we compared the mean number of spawns per fish per month. However, significant 

differences between photoperiods were observed (P < 0.05; Figure 3.5). The short 

daylength trial (6L:18D) produced 1.6 ± 0.1 spawns, the normal daylength (12L:12D) 

produced the least number of spawns (1.5 ± 0.1 spawns), the long daylength (18L:6D) 

produced the highest number of spawns with 2 ± 0.1 spawns, and finally the continuous 

illumination trial (24L:0D) produced 1.9 ± 0.01 spawns per fish per month.

A total of 647,976 eggs were collected during the experiment. The least number of 

eggs were produced by the normal daylength group (12L:12D) with 124,675 eggs 

(representing 19% of total egg production), followed by the short daylength treatment 

(6L:18D) with 129,269 eggs (20%), the continuous illumination treatment (24L:0D) 

produced a total of 177,331 eggs (27.5%), and finally the long daylength treatment 

(18L:6D) which exhibited the highest production of eggs with a total of 216,701 eggs 

(33.5%) (Figure 3.6). The total egg production per month for each treatment for the whole 

experiment (180 day) is presented in Figure 3.7., and in a cumulative way in Figure 3.8.
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Figure 3.7 shows that the long daylength group (18L:6D) consistently produced the highest 

number of eggs per month over course of the experiment, with the exception of October. 

Mean egg production was significantly reduced under the normal daylength (12L:12D) 

with a mean of 20,347 ±3,188 eggs month'1, while the highest was in the long daylength 

treatment (18L:6D) with 36,988 ± 1,667 eggs month'1.

Total fecundity showed significant differences between photoperiods (P < 0.05). 

Short daylength (6L:18D) produced a mean fecundity of 2020 ± 80 eggs, normal daylength 

(12L:12D) exhibited a mean fecundity of 2043 ± 70 eggs, the long daylength treatment 

(18L:6D) produced the highest fecundity of 2408 ±70 eggs, and finally the continuous 

illumination treatment (24L:0D) exhibited a fecundity of 2396 ± 80 eggs (Figure 3.9). The 

analysis of covariance (ANCOVA) using fecundity as a dependent variable, photoperiod as 

a categorical variable and fish weight or total length after spawning as a covariate showed 

that in this experiment fish weight and length are higly significant on fish fecundity (P< 

0.001) in both cases.

Significant differences were found between photoperiods in relation to relative 

fecundity, it was defined as the number of eggs per gram of body weight (P < 0.05; Figure 

3.10). Fish reared under short daylength (6L:18D) and normal daylength (12L:12D) 

exhibited similar relative fecundity with 6.0 ± 0.2 eggs/g in both cases. The long daylength 

treatment (18L:6D) exhibited the highest relative fecundity with 7.2 ± 0.2 eggs/g, and the 

continuous illumination (24L:0D) produced 6.4 ± 0.2 eggs/g.

As far as egg size is concerned, strong differences were found in egg diameter 

between photoperiods (Figure 3.11, P < 0.05). In the short daylength treatment (6L:18D) 

mean egg diameter was 2.40 ± 0.03 mm, in the normal daylength treatment (12L:12D) the 

biggest eggs were found, with a mean diameter of 2.47 ± 0.02 mm. In contrast, the long 

daylength treatment (18L:6D), and the continuous illumination (24L:0D) treatment
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exhibited the lowest egg diameter with 2.37 ± 0.01 mm and 2.36 ± 0.02 mm respectively. 

The analysis of covariance (ANCOVA) using egg diameter as a dependent variable, 

photoperiod as a categorical variable and fish weight and total length after spawning as a 

covariate showed that in this experiment fish weight and length are not significant on egg 

diameter (P > 0.05) in both cases.

Similarly, results for mean egg volume showed significant differences between 

photoperiods, and showed the same pattern as that found with egg diameter (P < 0.05, 

Figure 3.12). The short daylength treatment (6L:18D) produced an egg volume of 6.6 ± 0.3 

mm3. On the other hand, the normal daylength treatment (12L:12D) produced the highest 

egg volume with 7.0 ± 0.2 mm3. The long daylength treatment (18L:6D) and the 

continuous illumination treatment (24L:0D) both exhibited similar egg volumes with 6.2 ± 

0.1 mm3 and 6.1 ±0.1 mm3 respectively. The analysis of covariance (ANCOVA) using egg 

diameter as a dependent variable, photoperiod as a categorical variable and fish weight and 

total length after spawning as a covariate showed that in this experiment fish weight and 

length are not significant on egg volume (P > 0.05) for both cases.

No differences were found regarding total egg volume (P > 0.05). This value was the 

product of mean egg volume and mean fecundity per fish. All the photoperiods presented 

similar values of total egg volume. The short daylength treatment (6L:18D) produced a 

total egg volume of 13,173 ± 620 mm3, the normal daylength (12L:12D) produced 14,058 

± 476 mm3, the long daylength treatment (18L:6D) produced 14,804 ± 376 mm3 and 

finally, the continuous illumination treatment (24L:0D) produced a total egg volume of 

14,348 ±496 mm3.

57



Chapter Three

3.3.3 Spawning periodicity
Significant differences were found in relation to Inter-Spawning-Interval (ISI) 

between photoperiods (P < 0.05; Figure 3.13). In the case of the short daylength treatment 

(6L:18D) mean ISI was 19 ± 2 days. In the normal daylength treatment (12L:12D) mean 

ISI was 20 ± 1 days. However, in the long daylength trial (18L:6D), the shortest ISI was 

observed at only 15 ± 1 days. Finally the continuous illumination trial (24L:0D) produced 

a mean ISI of 16 ± 1 days.

3.3.4 Correlation and regression analyses
Correlation and regression analyses were performed between fish size (length and 

weight) and various egg production variables (fecundity, relative fecundity, egg long axis, 

eggs short axis, egg diameter, egg volume and total egg volume). The results for all 

correlation and regression analysis are showed in Tables 3.2. to 3.5.

Correlation and regression analysis were performed using both untransformed (raw) 

and transformed data (Logio). The transformation of data failed to improve the strength of 

the relationship (with exception of total fecundity and total egg volume) when it was 

compared with the untransformed data. In all cases in which data was transformed, the 

coefficient of correlation (r) and coefficient of determination (r2) were similar values. Data 

transformation is strongly recommended in certain cases, such as, fecundity, ISI and total 

egg volume, which after show row data to be distributed in a manner that is not normal. 

Under these circumstances, the data transformation significantly improved the strength of 

the relationship (Fig. 3.14 and 3.15).

3.3.4.1 Total fecundity
Highly significant positive relationships were found between total fecundity and fish 

weight in normal, long daylength and continuous illumination treatments (r2 = 0.24; r2 = 

0.28 and r2 = 0.16, P < 0.001 for all cases respectively). Nevertheless, no significant
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relationship was found in the short daylength treatment (P > 0.05). The strongest 

relationship was detected in the long daylength treatment (18L:6D) in which 28% of the 

data were covered by the regression line (Figures 3.13 - 3.14). On the other hand, the 

poorest relationship was found in the short daylength treatment (6L:18D). A very similar 

pattern was found in the relationship between total fecundity and fish length. Strong and 

positive relationships were found in normal daylength (12L:12D), long daylength 

(18L:6D) and continuous illumination (24L:0D) treatments (r2 =0.16, P < 0.01; r2 = 0.35 

and r2 =0.21, P < 0.001 in the latter two values). The best relationship was found in the 

long daylength treatment, in which, 35% of the data reported were covered by the 

regression line. In contrast, no relationship was found in the short daylength treatment 

(Tables 3.2 -  3.5). The analysis of covariance (ANCOVA) using fecundity as a dependent 

variable, photoperiod as a categorical variable and fish weight or total length after 

spawning as a covariate showed that in this experiment fish weight and length are higly 

significant on fish fecundity (P< 0.001) in both cases.

3.3.4.2 Relative fecundity
Highly significant relationships were found in all photoperiods in relation to relative 

fecundity when compared to fish weight and fish length. In all cases, the probability value 

P was less than 0.001, with the exception of the long daylength treatment (18L:6D), in 

which, the P value for the relationship between relative fecundity and fish length was less 

than 0.01 (Tables 3.2 -  3.5).

3.3.4.3 Egg long axis
A significant positive relationship was found between egg long axis and both fish 

weight (P <0.01) and length (P < 0.05) in the normal daylength treatment. No significant 

relationships were found in the other photoperiods. Nevertheless, in the particular case of
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the long daylength treatment (18L:6D) a negative relationship was detected with fish 

weight and length, although, these relationships were not statistically significant (P > 0.05), 

(Tables 3 .2 -3 .5).

3.3.4.4 Egg short axis, diameter and volume
The relationship fund between these three parameters and fish weight and length 

exhibited the same general pattern as that described above (P < 0.001) (Tables 3.2 -  3.5).

3.3.4.5 Total egg volume
Significant positive relationships were found between total egg volume and fish 

weight and length in normal, long daylength and continuous illumination treatments (P < 

0.001). In the case of the continuous illumination treatment, the relationship between egg 

volume and fish weight exhibited a probability value of 0.05. No relationship was found in 

the short daylength treatment (Tables 3.2 -  3.5).

3.3.4.6 Relationship between ISI and total fecundity
A significant negative relationship was found between ISI and total fecundity in the 

continuous illumination treatment (24L:0D) (P < 0.05). Nevertheless, no significant 

relationships were found in the other photoperiods (Table 3.6; Figures 3.16 -17). The 

analysis of covariance (ANCOVA) using ISI as a dependent variable, photoperiod as a 

categorical variable and total fecundity as a covariate showed that in this experiment the 

total fecundity is higly significant on the ISI (P < 0.05).

3.3.4.7 Relationship between ISI and mean egg volume
A significant positive relationship was found between ISI and mean egg volume in 

short (6L:18D), normal (12L:12D), and long (18L:6D) daylength treatments (P < 0.001 for 

short and normal daylength treatments, P < 0.05 for long daylength treatment). No
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significant relationships were found in the continuous illumination treatment (24L:0D) (P 

> 0.05; Table 3.7). The analysis of covariance (ANCOVA) using egg diameter and egg 

volume as a dependent variable, photoperiod as a categorical variable and ISI as a 

covariate showed that in this experiment the ISI is higly significant on egg sieze (diameter 

and volume (P < 0.001).
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Figure 3.4 Number of spawns produced per month by O. nilo ticus  reared under four 
different light regimes.
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Figure 3.5 Number of spawns per month produced by O. nilo ticus  reared under four 
different light regimes. Values are mean ± S.E.M. Annotation with different superscripts 
indicate statistically significant differences (ANOVA, Fisher’s comparison test, P<0.05).

Figure 3.6 Total number of eggs per treatment produced by O. n ilo ticus reared under four 
different light regimes.
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Figure 3.7 Number of egg per month spawned by O. nilo ticus  exposed to four different 
photoperiods.
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Figure 3.8 Cumulative egg production by O. nilo ticus  exposed to four different 
photoperiods.
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Figure 3.9 Total fecundity of O. niloticus exposed to different photoperiods. Values are 
mean ± S.E.M. Values are mean ± S.E.M. Annotation with different superscripts indicate 
statistically significant differences (ANOVA, Fisher’s comparison test, P<0.05).
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Figure 3.10 Relative fecundity of O. niloticus exposed to different photoperiods. Values 
are mean ± S.E.M. Annotation with different superscripts indicate statistically significant 
differences (ANOVA, Fisher’s comparison test, P<0.05).

65



Chapter Three

3.0 -|

2.5 -

E
E

c d

CD
E
CO
~o
O)a>
LU

0.0
6L:18D 12L12D 18L:6D 24L:0D

Figure 3.11 Mean egg diameter of O. nilo ticus  exposed to different photoperiods. Values 
are mean ± S.E.M. Annotation with different superscripts indicate statistically significant 
differences (ANOVA, Fisher’s comparison test, P<0.05).
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Figure 3.12 Mean egg volume of O. niloticus  exposed to different photoperiods. Values 
are mean ± S.E.M. Annotation with different superscripts indicate statistically significant 
differences (ANOVA, Fisher’s comparison test, P<0.05).
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Figure 3.13 Mean inter spawning interval (ISI) of O. nilo ticus  exposed to four different 
photoperiods. Values are mean ± S.E.M. Annotation with different superscripts indicate 
statistically significant differences (ANOVA, Fisher’s comparison test, P<0.05).
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Figure 3.14 Relationship between fecundity and weight (untransformed data) in fish held 
under long daylength (18L:6D).
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Figure 3.15 Relationship between fecundity and weight (Logio transformed data) in fish 
held under long daylength (18L:6D).
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Table 3.6 Regression analyses of ISI vs. total fecundity
Photoperiod Independent value (X) Dependent value (Y) Test result

Short daylength ISI Total fecundity Ns

(6L:18D) Logio ISI Log 10 Total fecundity Ns

Normal daylength ISI Total fecundity Ns

(12L:12D) Logio ISI Log 10 Total fecundity Ns

Long daylength ISI Total fecundity Ns

(18L:6D) Logio ISI Log 10 Total fecundity Ns

Continuous ISI Total fecundity *

(24L:0D) Log10 ISI Log 10 Total fecundity *

Level of significance ns= non significant; * = P < 0.05; **= P < 0.01; ***= P < 0.001

Table 3.7 Regression analyses of ISI vs. egg volume
Photoperiod Independent

(X)

value Dependent value (Y) Test result

Short daylength ISI Mean egg volume ***

(6L:18D) Logio ISI Log 10 mean egg volume ***

Normal daylength ISI Mean egg volume ***

(12L:12D) Logio ISI Log 10 mean egg volume ***

Long daylength ISI Mean egg volume Ns

(18L:6D) Logio ISI Log 10 mean egg volume *

Continuous ISI Mean egg volume Ns

(24L:0D) Logio ISI Log 10 mean egg volume Ns

Level of significance ns= non significant; * = P < 0.05; **= P < 0.01; ***= P <  0.001
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Figure 3.16 Regression analyses of ISI vs. fecundity (untransformed data) in the 
continuous illumination treatment (24L:0D).
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Figure 3.17 Regression analyses of ISI vs. fecundity (Logio transformed data) in the 
continuous illumination treatment (24L:0D)
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3.4 Discussion and conclusion
This study set out to further investigate the possibility of optimising commercial

production of tilapia by manipulation of photoperiod. Four photoperiod regimes were 

chosen to mimic short, normal and long daylengths as well as a further light regime 

including continuous illumination.

3.4.1 Growth
Although we analysed growth rates in our experiment using conventional growth 

measures such as absolute growth rate (AGR), relative growth rate (RGR), and specific 

growth rate (SGR) each showing significant differences between treatments. Additionaly, 

to compare growth differences in this experiment, the daily weight gain (DWG) was 

evaluated, according to the method described by Bhujel et al. (2001b). This information 

allowed us to successfully compare the differences in weight gained by those fish reared 

at different light regimes.

There were significant differences in DWG between the four photoperiods which 

changed the relative ranking of the mean weights and length of the short (6L:18D), 

normal (12L:12D) and long (18L:6D) daylength treatment groups over the 180 days of 

the experiment. Fish in this experiment received excess food, and the change in body size 

appears to be related to the amount of energy given over to reproduction.

At the beginning of this study, fish were 18 months of age and had been sexually 

mature for about 10 to 12 months. Sexually active tilapia partition more energy into 

reproduction than somatic growth, (Mair and Little, 1991; Macintosh and Little, 1995). 

Although there were no significant differences between the mean weights of the fish in 

the treatment groups at the beginning of the experiment, the means could be ranked. Fish
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in the continuous illumination (24L:0D) trial remained the largest mean weight but the 

relative ranking in size of the 6L:18D, 12L:12D and 18L:6D groups had reversed by the 

end of the experiment, suggesting that the fish on the short and normal daylength 

(6L:18D, 12L:12D) were growing more quickly. The 18L:6D treatment was growing at 

the slowest rate; this group contained smaller broodstock but exhibited the highest 

reproduction performance. The results suggest that the diet was adequate to maintain both 

growth and reproductive capacity in these fish for the duration of the experiment. 

Wootton (1973a, b,) reported that in the three-spined stickleback (Gasterosteus 

aculeatus) the amount of food available could be determinant in the spawning activity of 

this species, when food supply was adequate, the fish could produce more spawns and the 

ISI was shorter.

3.4.2 Egg production and spawning periodicity
Figure 3.7 shows that fish under the long day photoperiod (18L:6D) consistently 

produced more eggs per month than all other treatments, some 58% more eggs than the 

normal daylength (12L:12D). Fish under the long day (18L:6D) treatment exhibited 

significantly increased total and relative fecundity concomitant with significantly reduced 

ISI, thus resulting in more frequent spawning and a greater clutch size than the other 

treatments. These findings are in accordance with those of Ridha and Cruz (2000), who 

compared seed production (egg, sac fry and swim-up fry) under three photoperiods 

(12L:12D, 15L:9D, and 18L:6D) and two light intensities (2500 and 500 lux). The 

highest number of seed were observed under a 18L:6D photoperiod (Ridha and Cruz, 

2000); the 2500 lux treatment gave the highest number of seed but not significantly more
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than the 500 lux treatment, which is close to that used in the present experiment. Ridha 

and Cruz (2000) did not show any significant effect of light intensity on any spawning 

activity; spawning data appeared to be periodic, probably related to the sampling 

procedure used. They also found no statistical difference for mean ISI between their six 

treatment groups; ISI ranged from 14 to 55 days and the lack of statistical significance 

was most likely due to the lack of data pertaining to individual fish. The shortest ISI 

observed by Ridha and Cruz (2000) was 14 days in fish under 18L:6D with 500 lux, 

which is almost identical to the shortest ISI of 15 days in our experiment (also in the long 

day (18L:6D) group).

The present experiment effectively ‘robbed’ eggs (removed eggs from the buccal 

cavities of mouth-brooding females) within a few hours of spawning, or resulted in fish 

being stripped. Both of these techniques have been shown to reduce ISI in tilapia 

(Fishelson, 1966; Dadzie, 1970; Siraj et al., 1983; Rana, 1988, Little et al., 1993; Tacon 

et al., 1996; Coward and Bromage, 2000). The similarity in ISI between the results of 

Ridha and Cruz (2000) and this present study would suggest that we are getting close to 

the minimum ISI using these techniques. It is known that ISI is normally shorter in 

smaller tilapia (Siraj et al., 1983). The fish used in this experiment were two to three 

times bigger than those females used by Ridha and Cruz (2000) and it would also suggest 

that the rapid removal of eggs from actively brooding females might have helped to 

reduce the ISI. Egg robbing is, however, time consuming and labour intensive and may 

therefore only be a useful contribution to broodstock management on a very intensive 

commercial scale.
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The fish under continuous illumination treatment (24L:0D) were not significantly 

different to the long daylength (18L:6D) for most of the reproductive triats measured. 

They produced fewer eggs than the (18L:6D) trial, mainly because of the drop in monthly 

egg production after the third month that characterised the other treatments (Figure 3.7). 

This suggests that the use of a long daylength photoperiod (18L:6D) helps to extend 

spawning activity.

Under natural conditions, and some geographical distributions, tilapias in equatorial 

regions do not have any seasonality in their reproductive activity. However, under 

subtropical conditions, seasonality is present with a well defined pattern. These changes 

in reproductive seasonality are controlled by environmental cues such as water 

temperature and daylight. The environmental conditions exhibit little variations 

throughout the year in equatorial regions, but do show considerable variations in 

subtropical regions, particularly in terms of light and temperature (Lowe-McConnell, 

1958, Philippart and Ruwet, 1982).

3.4.3 Egg size and fecundity
Photoperiod manipulation had an effect on egg size. Significant differences in egg 

size were observed between photoperiods. The largest eggs (diameter and volume) in this 

experiment were produced by fish under the normal daylength (12L:12D) (Figures 3.11 - 

12). This group exhibited the lowest number of spawns and total fecundity, and the 

longest ISI. Significant relationships were detected in this group, between ISI and egg 

size (Table 3.7). This might simply imply that because ISI was longer, eggs had more 

time to sequester vitellogenin from the bloodstream, hence resulting in a larger final egg
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size. In contrast, fish from the long daylength treatment (18L:6D) exhibited the shortest 

ISI but produced the smallest eggs (Figures 3.11 - 12). This is the first clear evidence that 

ISI directly effects egg size in this species. In previous studies, egg size in tilapia has 

been related to genotype, nutritional condition, age and size of the broodstock (Rana, 

1985).

In this study, it appears that those fish reared under long daylength showed 

advancement in gonadal recrudescence, producing discrete batches of smaller eggs 

quickly compared to those fish reared under shorter daylengths. This is in accordance 

with Wootton (1979), who suggested that in fish, the ovaries have the capability to 

produce many small eggs or few large eggs suggesting that in fish variations in fecundity 

could also be reflected in egg size variations. This effect was clearly observed in 

salmonids and is discussed at length by Bromage and Cumaranatunga (1988), but the 

impact on ISI is unlikely to be as profound as in a species that can spawn as frequently as 

tilapia, due to salmonid spiecies use to spawn once a year. The advantage of producing 

high numbers of smaller eggs has to be balanced against the fact that bigger eggs produce 

larger and stronger larvae at hatching, with consequent improved chances of survival 

under some farming regimes (Rana and Macintosh, 1988; Rana, 1985, 1988). It is unclear 

whether this advantage would outweigh the loss of production associated with having to 

use larger females or extending the ISI to get larger eggs.

Highest mean total fecundity was recorded in fish experiencing long daylength and 

continuous illumination in the present study. It is well documented that total fecundity is 

more related to tilapia size rather than age (Rana, 1988; Coward and Bromage, 1999a). In 

the case of the substrate spawning Tilapia zillii, Coward and Bromage (1999a) reported a
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strong relationship between fish size (weight and length) and fecundity but did not find 

any significant relationship between egg size and maternal weight and length. In the 

present experiment, all fish were of the same age and were of similar size. The long 

daylength treatment (18L:6D) produced the highest relative fecundity (7 ± 0.2 eggs g-1), 

which is very similar to that reported by Bhujel et al. (2001a), who reported relative 

fecundity of 7,331 ±618 eggs kg’1 in a shaded hapa system suspended in outdoor tanks 

under tropical conditions of light and temperature. It is still unclear why long daylength 

and continual illumination resulted in increased total fecundity in our experiment.

A further explanation as to why fecundity varied between photoperiods might be 

simply basic reproductive strategy. The population of 0. niloticus (Manzala, Egypt) is the 

most northerly occurring natural population of this species and as such would experience 

seasonal changes in day length. It would be interesting to see whether species with a 

much more restricted equatorial distribution respond in the same way to longer 

daylength. This study, however, also demonstrates that fecundity and egg size may be 

determined, at least in part, by the ISI, confirming the earlier findings of Coward and 

Bromage (1999a). The basic mechanisms underlying the dynamics of ovarian 

development in a substrate-spawning species of tilapia were described in a highly 

quantitative manner by Coward and Bromage (1998a, 1999b). Further research, however, 

is needed to assess how these basic dynamics might be influenced by exogenous (e.g. 

temperature and photoperiod) and endogenous (e. g. melatonin, gonadotropins, sex 

steroid hormones) factors.

In conclusion, this study has shown that photoperiodic manipulation appears to be a 

reliable and powerful tool for tilapia broodstock management. Further research is needed
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to fully understand how photoperiod imparts such an effect upon tilapia reproduction. 

Particular areas of concern include the effects of ‘biological’ and ‘reproductive’ age, the 

precise effects of light intensity, the possible interactions of photoperiod and temperature, 

and how photoperiod/light intensity might influence the reproductive endocrinology of 

tilapia, and thus affect the dynamics of ovarian development.
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4.1 Introduction

4.1.1 The pineal gland
The pineal, is a photosensitive organ which, over the course of 500 million years

vertebrate evolution, has become an endocrine gland. It is formed as an evagination of the 

dorsal roof of the diencephalom, resulting in a small structure which is attached to the 

telencephalon by a small slander stalk. The lumen of the pineal gland is an extension of the 

third ventricle of the brain; however, it is still unknown if there is an active circulation of 

cerebrospinal fluid into the pineal lumen (Figure 4.1 A and B) (Davies et al., 1991; Randall 

et al., 1991a; Zachmann et al., 1992c; Ekstrom and Meissl, 1997; Vanecek, 1998; Falcon, 

1999; Bromage et al., 2001). The size of the pineal organ varies broadly amongst fish 

species. In some species the pineal organs are large and cover most of the telencephalon 

(e.g. pike or salmon) (Ekstrom and Meissl, 1997). In other species such as the cod, sea bass 

and tilapia, the pineal gland is less conspicuous and lacks its characteristic vesicle form 

(Migaud, personal communication).

The wall of the pineal organ is formed by unistratified epithelium, which is strongly 

folded and almost obliterates the central lumen of the pineal. The pineal epithelium is 

formed from different cell types, including photoreceptor cells, neurons, ependymal 

interstitial cells (best known as supportive cells), interstitial cells or glial cells, some 

oligodendrocytes have been found surrounding neural axons and macrophages are found in 

the central lumen of the pineal (Zachmann, et al., 1992c; Ekstrom and Meissl, 1997; 

Vanecek, 1998; Falcon, 1999), (Figure 4.1 C). It has been reported that melatonin is 

produced by the photoreceptor cell within the pineal epithelium (Zachmann, et al., 1992c; 

Ekstrom and Meissl, 1997). In non mammalian vertebrates like fish, the pineal gland 

translates or transduces photoperiodic information into a hormonal signal (melatonin)
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which then serves as a messenger to every organ in the body (Reiter, 1991, Zachmann, et 

al., 1992c; Reiter and Tan, 2003).

4.1.2 Melatonin hormone
Melatonin is mainly secreted by the pineal gland in all vertebrates and is produced in

large quantities during the dark phase (at night); production is reduced by the onset of the 

light phase (day). The melatonin hormone is synthesised by the pineal gland, and it is 

formed by synthesis from amino acid tryptophan, which then after a process of 

hydroxylation and decarboxylation is transformed into serotonin and then transformed into 

melatonin by the enzyme N-acetyl-transferase, (Axelrod, 1974; Klein, 1985; Zachmann, et 

al., 1992c; Ekstrom and Meissl, 1997; Falcon, 1999; Mazurais et al., 1999) (Figure 4.2).

The rhythmic biosynthesis of melatonin is thought to be controlled by the 

suprachiasmatic nucleus of the brain (SCN), this SCN or “internal clock” is located in the 

hypothalamus of most mammals studied so far. The SCN contains an endogenous 

circadian clock which controls the rhythmic synthesis of melatonin (Axelrod, 1974; Klein, 

1985; Zachmann, et al., 1992c; Gillette and McArthur, 1996). This rhythmic secretion of 

melatonin has an important role in the control and synchronisation of many physiological, 

biochemical and behavioural rhythms such as locomotor activity, sleep-awake cycles, body 

temperature, and feeding behaviour (Reiter, 1991; Zachmann, et al., 1992c; Vanecek, 

1998; Falcon, 1999). However, melatonin has the ability to reset the activity of the SCN 

neurons, thus melatonin may act as a clock by itself (Ekstrom and Meissl, 1997; Falcon

1999). This may suggest that the SCN is regulated and entrained by photoperiodic signals 

perceived from the environment and also by melatonin (Davies et a l, 1991; Randall et al., 

1991a; Ekstrom and Meissl, 1997; Falcon, 1999; Bromage et al., 2001).
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Melatonin exhibit a high lipophilic property, which allows it to be transferred in 

short period of time to fluids other than plasma, including: cerebrospinal fluid, ovarian 

follicular fluid, saliva, seminal fluid, eye fluid, milk and amniotic fluid (Reiter, 1991).

4.1.3 Melatonin production in fish
In fish, as well as all vertebrates, melatonin shows an increase in blood levels during

the night and then a sharp reduction during the day (Matty, 1978; Gem et al., 1978a,b; 

Delgado and Vivien-Roels, 1989; Kezuka et a l, 1989; Zachmann et al., 1992a,b,c; 

Alvarino et a l, 1993; Davies et al., 1994; Randall et al., 1995a; Falcon et a l, 1996; 

Yanez and Meissl, 1996; Porter et al., 1995, 1996, 2000a,b, 2001; Gasser and Gem, 1997; 

Ekstrom and Meissl, 1997; Mayer et a l, 1997a, 1998; Vemadakis et a l, 1998; Mazurais 

et a l, 1999; Pavlidis et a l, 1999; Bromage et a l, 1995, 2001; Amano et al., 2000).

In the particular case of the rainbow trout (O. mykiss), melatonin secretion is 

controlled by the light cycle of the day rather than the internal clock or pace marker 

(Duston and Bromage, 1986; Gem and Greenhouse, 1988; Bromage et al., 2001).

Melatonin level varies between species of fish, high night time levels of melatonin 

have been reported in most salmonids studied thus far. However, lower levels of melatonin 

have been reported during the night in some other species (Table 4.1).

As a consequence of such alteration in melatonin secretion during light and dark 

phases, several studies report the use of additional light in order to reduce melatonin levels, 

which are strongly related to maturation in salmonid species (Bromage et al., 1995, 2001). 

It was reported that the application of continuous illumination for 5 months (January to 

May) resulted in an increment in fish weight, but decrease in sexual activity in Atlantic 

salmon reared in seawater (Taranger et al., 1995).
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Figure 4.1 (A) Overview of the major subdivision of the teleost brain (Salmonid): olf. B., 
olfactory bulb. (B) mid-sagittal section of the pineal (Shown inside the rectangle in A), 
showing the location of the pineal gland with respect to the dorsal diencephalon (habenula 
and habenular commisure, he), midbrain optic tectum, and telencephalon: ds, dorsal sac; 
pc, posterior commissure; SCO, subcommisural organ. (C) schematic representation of the 
cell types in the epithelium of the pineal end-vesicle (circular frame in B), a, axon of pineal 
neurons, gathered in a bundle; bl, basal lamina; c, capillaries; e, erythrocytes; eic, 
interstitial cell; is, photoreceptor inner segment with mitochondria; 1, pineal lumen; n, 
centrally projecting neuron, ‘ganglion cell’; nu, nucleus; os, photoreceptor outer segment; 
prc, photoreceptor cells; pvs, perivascular spac; sr, synaptic ribbons; arrows indicates 
photoreceptor basal process that terminates on the basal lamina; arrowheads indicate tight 
junctions that form a barrier against the cerebrospinal fluid of the pineal lumen. (Taken 
from Ekstrom and Meissl, (1997))
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Figure 4.2 Pathways of the indole metabolism in the photosensitive pineal cells. Enzymes: 
AAAD, aromaticamino acid decarboxylase; AA-NAT, arylalkylamine N-acetyltransferase; 
DeAc, deacetylase; HIOMT, hydroxyindole-O-methyltransferase; MAO, monoamine 
oxidase; TPOH, tryptophane hydroxylase. Indoles: N-ac-serotonin, N-acetylserotonin; 5- 
HIAA, 5-hydroxyindole acetic acid; 5-HTL, 5-hydroxy- tryptophol; 5-MIAA, 5- 
methoxyindole acetic acid. The chemical structure of melatonin is given in the upper part 
of the drawing. On the right hand of the scheme, the drawings indicate whether the 
corresponding compound, or enzyme, peak during day (square on the left), or during night 
(square on the right), or display no rhythm (horizontal line), (Taken from Falcon, 1999).
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The use of additional illumination has also been applied to reduce melatonin levels in 

Atlantic salmon. Additional light for a 9 month period (November - July) resulted in the 

secretion of lower levels of melatonin during the night (303.1 ± 6.3 pg/ml) compared with 

those fish held under natural illumination (600 ± 53 pg/ml). Grilsing rates were reduced to 

6.1% in those fish exposed to additional light. However, 61.5% of those fish kept in 

normal photoperiod underwent a precocious maturation (grilsing). Thus, the additional 

light triggered a reduction in melatonin levels of 50% concomitant with a remarkable 

reduction in grilsing (Porter et al., 1999). In a similar attempt to reduce grilsing using 

submersible lights (400 watts), night melatonin levels were decreased and precocious 

maturation was observed in just 2% of the fish exposed to additional illumination.The use 

of additional illumination also enhanced fish growth (Porter et al., 2000b). In Masu 

salmon, melatonin is responsible for transduction of photoperiodic information and that 

this information is then sent to the brain-pituitary gonadal-axis, resulting in the onset of 

fish reproduction (Amano et al., 2000).

To identify the amount of melatonin produced by the pineal gland, a surgical 

technique known as pinealectomy has been applied. In this procedure, the pineal gland is 

surgically removed and then plasma melatonin levels assayed. Thus, any melatonin 

detected must come from an alternative source. Melatonin is also produced by the retina, or 

even in the intestinal tract. However, these melatonin levels are not significant and will not 

produce a considerable effect upon the blood stream concentration (Delgado and Vivien- 

Roels, 1989; Zachmann, et al., 1992c ; Ekstrom and Meissl, 1997).

Pinealectomy was first reported by Kezuka et al. (1989) using the goldfish 

(Carassius auratus) as a research model. The pinealectomized fish ovulated during the 

day. This was a surprising result, because in the goldfish, spawning never occurs during 

the day; spawning only ever occurs during the night. Thus, this investigation revealed that
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the pineal gland is involved in determining ovulation time in goldfish. The melatonin 

levels of this species are strongly regulated by an endogenous rhythm or “internal clock” 

(Kezuka et a l, 1989).

Removal of the pineal gland in Atlantic salmon resulted in reduced night-time 

melatonin levels. Pinealectomized fish exhibited a night-time melatonin level of 96 ± 6.5 

pg/ml. On the other hand, control fish showed far higher melatonin levels of 598 ± 19.3 

pg/ml (Porter et a l, 1995, 1996). These results suggested that removal of the pineal gland 

may help to overcome the precocious maturation already reported in young salmon.

In rainbow trout, pinealectomy has delayed spawning activity. Fish, in which an 

incision was made, but the pineal gland was left intact (sham pinealectomy), spawned 

earlier compared with pinealectomised fish. Pinealectomized fish did not respond to 

changes in photoperiod, but spawned in advance of those fish held under long days or 

ambient photoperiods (Randall et a l, 1995b).

Pinealectomy and melatonin levels are also reported for a non-salmonid fish. The 

European sea bass (.Dicentrarchus labrax) exhibited a similar pattern of melatonin 

production, with high levels during the night and low levels during the day; melatonin 

levels of 195 ± 5.7 pg/ml and 73.86 ± 5.7 pg/ml were reported for night and day 

respectively. Night-time melatonin levels were reduced in pinealectomised fish with values 

of 97.65 ± 4.4 pg/ml. No differences were found in melatonin levels during the day in both 

pinealectominsed fish and control ones (Porter et a l, 2000a).
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Table 4.1 Diurnal variation of melatonin concentration in a variety offish species
Common name Melatonin levels 

pg/ml
Culture conditions References

Rainbow trout 750-550 (D) 
50-60 (L) 
750 -500 (D) 
25 -  100 (L)

18L:6D F.W.

8L:16D F.W. in vivo 
7.5 -8°C

Randall et al., 1992

Rainbow trout 152.6 (D) 
81.2 (L)

12L:12D F.W. in vivo 
11°C

Gem et al., 1978ab

Rainbow trout 204.6 (D) 
48.4 (L)

10L:14D F.W 
In vivo sham operated

Mazurais et al., 1992

Rainbow trout 120 -  230 (D) 
2 0 -4 0

12L:12D F.W. in vivo Futter et al., 2000

Atlantic salmon 200 -  350 (D) 
125 -  175 (L)

Year round F.W. 
in vivo

Randall et al., 1995a

Brook trout 600 -  1000 (D) 
150 -  250 (L)

16L:8D F.W. in vivo 
12°C

Zachmann et al., 
1992b

Atlantic salmon 600 (D) 
60 (L)

12L:12D S.W. in vivo Porter et al., 1996

Atlantic salmon 580 -  650 (D)
100 -  280 (L)
300(D)(Additional
light)
90 (L)

10L:14D S.W. in vivo 

24L:0D S.W. in vivo

Porter et al., 1999

Cherry salmon 700 (D) 
100 (L)

16L:8D F.W. in vivo Amano et al., 2000

Catfish 20 - 40 (D) 
5 - 2 0  (L)

12L:12D F.W. in vivo 
22°C

Iigo et al., 1997

White sucker 10 - 40 ng/3h (D) 

30 - 50 ng/3h (D)

12L:12D F.W 
in vitro 10°C 
12L:12D F.W. 
in vitro 20°C

Zachmann et al., 
1992a

European sea bass 195(D) 
73.8 (L)

12L:12D S.W in vivo Porter et al., 2000a

European sea bass 23 (D) 
30(D) 
101 (D) 
144 (D) 
25 (L)

autumn S.W. in vivo
winter
spring
summer
year round

Garcfa-Allegue et 
a l, 2001

European sea bass 150 (D) 
10-20 (L)

12L:12D S.W. in vivo 
23 °C

Bayarri et al., 2002

Common dentex 384.3 (D) 
54.4 (L)

S.W. in vitro Pavlidis et a l, 1999

F.W =Fresh water; S.W. = Salt water; (D) = Dark phase; (L) = Light phase
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The effects of light intensity and temperature in vivo have also been reported. In the 

Atlantic salmon, melatonin levels respond in different ways to variations in light intensity 

and temperature. Melatonin secretion was lower in fish held at 4°C (253.3 ± 16.8 pg/ml) 

compared with fish reared at 12°C (566 ± 34.8 pg/ml). There is a negative relationship 

between blood melatonin levels and light intensity, in which, melatonin levels decrease as 

light intensity increases during the night time. Therefore, high light intensities are 

recommended in order to reduce the melatonin levels of Atlantic salmon (Porter et al., 

2001).

Plasma melatonin levels have also been described in the river lamprey, (.Lampetra 

fluviatilis). This species even when this is not a fish, exhibited a similar pattern of 

melatonin secretion of that already described in other species of fish; high levels (80 

pg/ml) were found just 1.5 hours after the onset of the dark period. Base melatonin levels 

during day time were 12 pg/ml (Mayer et ah, 1998).

Melatonin profiles in vivo and in vitro have been described in several fish species. In 

vivo profiles are reported for rainbow trout (Randall et al., 1991; Gem et al., 1978ab; 

Mazurais et ah, 1992; Futter et ah, 2000), Atlantic salmon (Randall et ah, 1995ab; Porter 

et ah, 1996, 1999), brook trout (Zachmann et ah, 1992b), cherry salmon (Amano et ah,

2000), European river lamprey (Mayer et ah, 1998), European sea bass (Porter et ah, 

2000a; Garcfa-Allegue et ah, 2001; Bayarri et ah, 2002), and catfish (Iigo et ah, 1997). In 

vitro studies are described for the white sucker (Zachmann et ah, 1992a), the goldfish 

(Kezuka et ah, 1989), the lamprey (Bolliet et ah, 1993), the rainbow trout (Yanez and 

Meissl, 1996), the ayu (Mizusawa et ah, 2001), and the common dentex (Pavlidis et ah, 

1999)

In vitro studies describing melatonin production by the pineal gland has been 

reported in the white sucker (Catastomus commersoni). In this investigation it was reported
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that both photoperiod and temperature controlled melatonin production. Melatonin 

production was lower at 10°C; higher melatonin levels were found in pineal culture at 

20°C. In the white sucker, the secretion of melatonin in vitro showed a free-running 

circadian rhythm under constant darkness at 20°C, but a pineal culture at 10°C failed to 

release melatonin in a rhythmic manner. Thus, this investigation suggested that 

temperature is involved in the control of pineal melatonin production (Zachmann et al., 

1992a). Temperature has a strong influence on melatonin rhythm in the lamprey 

(Petromyzon marinus). The rhythm of melatonin secretion by pineal glands incubated at 

10°C decreased in comparison with those pineals kept at 20°C. In both cases melatonin 

was released in a rhythmic way, even without any input from the central nervous system. 

Pineal glands cultured under constant darkness failed to show any pattern in melatonin 

release. Thus, this investigation reported that light and temperature have a strong effect on 

melatonin secretion (Bolliet et al., 1993).

The effect of light intensity on in vitro experiments has also been reported. In 

rainbow trout, pineal glands were responded by light intensities and the highest production 

of melatonin was observed at low light intensity (Yanez and Meissl, 1996). Meissl et al. 

(1996) reported that in vitro, rainbow trout pineal glands have a robust irradiance- 

dependent manner, in which, low light irradiance enhanced melatonin production, whilst 

an increase in light intensity resulted in a clear reduction in melatonin production.

Investigations in the ayu {Plecoglossus altivelis), have helped to confirm that 

melatonin secretion by the pineal gland is regulated and entrained entirely by the diurnal 

rhythms of light. In ayu, light pulses in pineal culture maintained under constant darkness 

were able to suppress melatonin release (Mizusawa et al., 2001). Even in tropical teleosts, 

the pineal organ is able to maintain a rhythmic production of melatonin. The sailfin molly 

(.Poecilia veliferata) is able to maintain at least four multiple circadian oscillations. It has
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also been demonstrated that these circadian oscillations are fully functional in new bom 

animals (Okimato and Stetson, 1999). Similar rhythmic production was reported in the 

zebrafish, in which a self-sustaining circadian oscillator is present, and this oscillator 

regulates melatonin production in the pineal gland (Cahill, 1996).

Melatonin was originally thought to be synthesised only in the pineal gland, but 

several recent studies have demonstrated that melatonin is present and probably also 

synthesised, in areas other than the pineal (Delgado and Vivien-Roels, 1989; Zachmann et 

al., 1992c; Ekstrom and Meissl, 1997). High melatonin levels have been reported in ocular 

tissue in the common frog (Rana perezi). These melatonin levels exhibit diumal variation 

like that reported for the pineal gland. This ocular melatonin production was regulated by 

the environmental temperature (Delgado and Vivien-Roels, 1989). In a similar manner, 

high melatonin levels have been reported in the gastrointestinal tract in several organisms 

including fish, amphibians and reptiles. The highest melatonin levels were found in the 

reptile (Thamnophis sirtralis) with a concentration of 2284 pg/g of stomach tissue. The 

lowest value was reported in the axolotl (Ambystoma mexicanum) with just 30 to 33pg/g of 

tissue. Fish melatonin levels lie within a range that is intermediate between reptiles and 

amphibians (Bubenik and Pang, 1997).

4.1.4 The role of melatonin in reproduction
4.1.4.1 Mammals

The role of melatonin in mammalian reproduction has been partially elucidated with 

seasonal rhythms of fertility driven by changes in the production and release of 

gonadotropin-releasing hormone (GnRH). This GnRH regulates the release of 

gonadotropic hormones from the pituitary gland, and thus controls function in the 

reproductive organs. In all mammals, the adaptation to seasonal changes in ambient 

conditions depends on the presence of intact pineal glands. Melatonin has the ability to
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inhibit leuteinizing hormone (LH) and follicle stimulating hormone (FSH) release from the 

pituitary gland (Venecek, 1998). Thus, the major role of melatonin is the regulation of 

seasonal reproduction through alteration of the release of gonadotropins (Nakazawa et al., 

1991; Venecek, 1998).

4.1.4.2 Fish
The only studies suggesting that melatonin could be involved in fish reproduction 

were reported by Khan and Thomas (1996). These authors suggested that melatonin 

enhanced the stimulation of gonadotropin II (GtH II) secretion via the preoptic anterior 

hypothalamic area (POAH), and the pituitary itself to stimulate GtH II release in the 

Atlantic croaker (Micropogonias undulates). Melatonin inhibits the production of the 

leuteinizing hormone-releasing hormone analogue (LHRHa), thus, resulting in GtH II 

release during the night in a dose-dependent manner (Khan and Thomas, 1996). In Masu 

salmon, melatonin is responsible for the transduction of photoperiodic information and this 

information is then sent to the brain-pituitary-gonadal axis, resulting in the onset of fish 

reproduction (Amano et al., 2000).

Although there has been much research into how melatonin and the pineal gland 

might influence reproduction in fish, there is still much speculation as to whether 

melatonin plays a pivotal role in reproduction. Indeed, Mayer, (2000) suggested that the 

pineal and circulating melatonin may not play an important role in the seasonal 

reproduction in fish.

Photoperiodic manipulation is known to have a positive effect upon Nile tilapia 

reproduction (Campos-Mendoza et al., 2003, 2004); egg production can be improved and 

inter spawning interval (ISI) reduced under a photoperiod involving long daylength. The 

reproductive response to long day photoperiod strongly suggested that tilapia responds to 

light manipulation, even though this species is naturally distributed in tropical and
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subtropical regions. This is the first evidence that light manipulation could be applied to 

the management of tilapia broodstock. To further investigate the relationship between 

photoperiod and tilapia reproduction, the hormone melatonin (N-acetyl-5- 

methoxytryptamine) was evaluated in blood samples taken from tilapia held under 

experimental conditions.

The use of environmental factors such as photoperiod could improve spawning 

synchrony as well as seed production in several species. The relationship between 

photoperiod, melatonin and the control of reproduction could become useful tools in the 

control of tilapia reproduction. Tilapia reproduction suffers from low fecundity as well as 

low spawning synchrony. This disadvantage is a major problem in the supply of seed for 

on-growing farms, which require a year-round supply of fry to maintain continuous 

production of market sized fish. This experiment was therefore designed to further 

investigate the findings of the previous chapter (Chapter Three), in which photoperiod 

manipulation was shown to improve egg production rate in tilapias. In this chapter, 

experiments have been undertaken to determine whether photoperiodic manipulation 

imparts its effect over reproduction in tilapias by melatonin. To answer these questions, the 

blood melatonin levels of Oreochromis niloticus reared under controlled conditions of light 

intensity, photoperiod and temperature were measured and analysed.
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4.2 Materials and methods

4.2.1 Fish
One year old O. niloticus females were used in this experiment for the 24 h plasma 

melatonin profile (Section 4.3.2) and night-time melatonin levels (Section 4.3.3) mean 

average fish weight was 216.22 ± 4.70 g. However, comparison between day and night 

blood melatonin levels, and melatonin profiles under different photoperiods, were 

performed in those fish used and already described in Chapter Three.

A detailed description of fish husbandry and blood sampling is presented in Chapter 

Two (Section 2.3 -  2.4). Briefly, blood samples were collected at different intervals of time 

during the light phase and dark phase. Blood was sampled from the caudal aorta of fish 

anaesthetised in 1:10,000 ethyl 4-aminobenzoate (Sigma Chemicals, Ltd U.K.). In order to 

carry out the blood sampling during the dark phase, a dim red light (> 650 nm; Kodak Ltd.) 

was used to aid vision. Blood samples were collected using 1 ml syringes that had been 

previously rinsed with 4 mg/ml heparin (Sigma Chemicals, Ltd U.K.).

4.2.2 Diel profile of plasma melatonin
Five fish were sampled at hourly intervals in order to characterize the diel (24 hr)

profile of plasma melatonin. Thirteen sample points were performed at the beginning of the 

experiment (29/08/02). After that, fish were allowed to recover and 11 sample points were 

taken a week after the first sampling (4/09/02).

4.2.3 Plasma melatonin levels during the night phase
Tto confirm the night phase plasma melatonin levels obtained in the diel profile, 45

fish were sampled at nine sampling points including two light base levels at 11:00 and 

17:00 h. The night-time sample points were collected as followed: 20:00, 21:00, 23:00,
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01.00, 02.00, 03.00, 05:00, 07:00, and 08:00 h, respectively. Each sample point consisted 

of five fish.

4.2.4 Comparison of day and night levels of plasma melatonin
In this experiment, melatonin levels of plasma samples taken at midday and midnight

were compared, using fish exposed to different light regimes. Samples were collected at 

midday (n = 4) and midnight (n = 4) in each light regime (4 light regimes in total). In all 

photoperiods, the light went on at 08:00 and was turned off at different times according to 

the photoperiod regime. Sample points are described in Figure 4.3.

08:00 14:00 08:00

____

20:00
12L :12D  ! . ■ i

A A

02:00
18L:6D Q I I

A

20:00

A

24L:0D  Q X / / / / / / / / / Z / / / / / / / / / / / Z / / A
A A

Figure 4.3 Sample points for melatonin comparison between day and night using fish held 
at different light regimes. (Bold numbers in the left side indicates the treatments, arrow 
heads indicate the sample point, open bars indicate day-time, grey bars indicate the night
time, and lined bar indicates the subjective night-time, numbers on the middle of the bars 
indicate the onset of the night-time)

97



Chapter Four

4.2.5 Melatonin profiles of fish exposed to different light regimes
This experiment was designed to investigate how photoperiod manipulation could

influence the levels of plasma melatonin. Four photoperiods were designed and have been 

previously described in Chapter Three: Briefly, four photoperiods were evaluated in this 

experiment: 6L:18D, 12L:12D, 18L:6D and 24L:0D. Fish were exposed to these light 

regimes for one year. In this particular case, samples were limited at each sampling point 

(n = 2 or n =3 individuals) due to the small number of fish available in each treatment 

(eight fish).
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4.3 Results

4.3.1 Melatonin validation
An established melatonin assay (previously used for salmonid species) was validated

for its use in tilapias following an RIA method according to Randall (1992), (Figure 4.4). 

Figure 4.5 shows parallelism of a pool of plasma extracted from fish during the middle of 

the night and a standard curve made up from a well known melatonin concentration. The 

intra-assay coefficient of variation was 5.67% and the inter-assay coefficient of variation 

was 7.34%.

4.3.2 Diel profile of plasma melatonin
Plasma melatonin levels were observed during a 24 h cycle. Significant differences

were found between day and night levels of melatonin (P < 0.05), in which the highest 

level was detected at 21:00 (dark phase) with levels of 74.5 ± 10.7 pg/ml. The lowest level 

was found at the middle of the light phase at 16:00 with a basal level of 5.0 ±1 .4  pg/ml. 

Figure 4.6 shows the melatonin profile throughout a 24 h cycle; those sample points 

marked with an asterisk indicate that no melatonin levels were detected. This is likely to be 

due to very low concentration levels of melatonin, which were below the detection limit of 

this assay.

4.3.3 Plasma melatonin levels during the night phase
Night-time melatonin levels are shown in Figure 4.7. Significant differences were

found between day and night plasma melatonin levels (P < 0.05). Day melatonin levels 

ranged between 22.2 ± 3.7 pg/ml at 11:00 and 13.7 ± 3.2 pg/ml at 17:00 h. However, 

melatonin levels increased soon after lights were turned off. Night-time melatonin levels 

varied between 99.4 ± 6.6 pg/ml at 23:00 h and 62.2 ± 4.7 pg/ml at 07:00 h.
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Figure 4.4 Typical standard curve from a radioimmunoassay (this example is from a 
melatonin assay performed during validation of the RIA for tilapia. The concentration of 
hormone in a sample is obtained by intersecting the standard curve at the point 
corresponding to the percentage binding (percentage of radiolabel bound to antibody) in 
the sample.
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Figure 4.5 Parallelism of an inhibition curve obtained from a dilution curve (1:2) of 500 fi\ 
aliquots of pooled tilapia plasma (collected during the dark phase) with the melatonin 
assay standard curve. The two curves have been linearised by logit transformation (see 
Rodbard and Lewald, 1970): logit b = ln(b/100-b) were b represents the proportion of the 
tritiated hormone bound to antibody expressed as a percentage of that in zero standard (% 
maximum binding). Each point represents the mean of duplicated samples. The scale on 
the x -  axis denotes the natural log (In) of the melatonin content in the satandars.
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Figure 4.6 D ie l p lasm a  m elaton in  p rofile  o f  Oreochromis niloticus reared under  
(1 2 L :1 2 D ) photop eriod . T im es are g iv en  in 2 4  hr form at. V a lu es  are ex p ressed  as m ean  ±  
S .E .M ., (n = 5). (13  sam p les p ints w ere  in itia lly  taken (2 0 :0 0  -  0 8 :0 0 )  after a w eek , a 
se c o n d  sam p e w as carried out, this co n sisted  on 11 sam p le  ponts (0 9 :0 0  -  19:00).
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4.3.4 Comparison between day and night levels of plasma melatonin
Comparisons of midday and midnight plasma melatonin levels of fish exposed to

different light regimes are shown in Figure 4.8. Significant differences were found between 

day and night melatonin levels in all photoperiod treatments (P < 0.05); levels during the 

night were consistently higher than those during the light phase. Day-time melatonin levels 

of 20.7 ± 3 .3 , 14.2 ±1.1, 14.7 ±1.1 pg/ml were recorded in the 6L:18D, 12L:12D and 

18L:6D photoperiod treatments respectively, night-time levels were 65.5 ± 6 .1 , 69.7 ± 

12.3, 35.0 ±3.4 pg/ml. However, no significant differences were found (P > 0.05) between 

night and day melatonin levels in the continuous illumination treatment (24L:0D) in which 

day and night values was reached as 17.5 ± 2.0 and 19.1 ±6.1 pg/ml respectively (P > 

0.05).

4.3.5 Plasma melatonin profiles of fish exposed to different light regimes

4.3.5.1 Short daylength (6L:18D)
The melatonin profile exhibited by fish held under short daylength is described in

Figure 4.9 A. The highest plasma melatonin levels were recorded at 23:00 h with a mean 

value of 77.4 pg/ml. The lowest value was obtained at 13:00 h with a value of 15.7 pg/ml. 

(Note: there was a considerable variation in these values, this was due to the low number 

of fish sampled in every sample point (n = 2 - 3 fish).

4.3.5.2 Normal daylength (12L:12D)
The melatonin profile of fish experiencing a normal daylength is given in Figure 4.9

B. Under this light regime the highest melatonin concentration was found at 03:00 h with 

47.0 pg/ml. However, the lowest value of 13.2 pg/ml was detected at 10:00 h.
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Figure 4.7 Night-time plasma melatonin profile of O. nilo ticus  reared under normal 
daylength (12L:12D). Values are expressed as mean ± S.E.M (n = 5). Bars annotated with 
different superscripts indicate statistically significant differences (ANOVA, Fisher’s 
comparison test, P <0.05), (n = 5).
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Figure 4.8 Midday and midnight plasma melatonin levels in fish held under different light 
regimes. Values are expressed as mean ± S.E.M., (n = 4).

103



Chapter Four

4.3.5.3 Long daylength (18L:6D)
The melatonin profile of fish held under long daylength is described in Figure 4.9 C.

This light regime is characterized by short night conditions. Despite these short nights, the 

maximum melatonin level was exhibited at 14:30 h with 48.9 pg/ml. Baseline plasma 

melatonin levels were obtained at 10:00 h with a concentration of 12.1 pg/ml.

4.3.5.4 Continuous illumination (24L:0D)
The melatonin profile of fish held under continuous illumination is shown in Figure

4.9 D. This profile, in which a subjective night-time is represented by an open bar, showed 

that melatonin production was suppressed by this light regime. The highest melatonin 

concentration was obtained at 08:00 h with 19.5 pg/ml. Baseline melatonin levels were 

observed at 14:00 and 16:00 h with 10.2 pg/ml respectively.
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Figure 4.9 Plasma melatonin profile of O. niloticus reared under different light regimes: 
A) Short daylength (6L:18D); B) Normal daylength (12L:12D); C) Long daylength 
(18L:6D); D) Continuous illumination (24L:0D). Solid bars represent the dark phase and 
the lined bar represents the subjective night phase. Values are expressed as mean ± S.E.M., 
(n = 2 -3). (Note: Scale in the (X) axes shows different sampling times).
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4.4 Discussion and conclusion
In the present study, an established RIA for melatonin in salmonid species was

adapted for use in tilapia. Subsequently, it was possible to demonstrate, for the first time in 

tilapias, how melatonin varies in the blood throughout a 24 h period. Furthermore, this 

allowed measurement of melatonin in plasma samples from the experiment described in 

Chapter Three, and thus gave an indication of how photoperiod alters melatonin in this 

species.

Melatonin assays have been successfully performed and described with high 

accuracy in temperate species (Bromage et al., 2001). However, when this well established 

assay was applied to tropical species, such as tilapias a series of difficulties arose. Firstly, 

circulating melatonin levels are lower in tilapia compared with other temperate species 

such as salmon or rainbow trout (Bromage et a l, 2001). The low concentration of 

circulating melatonin in tilapias meant that a larger volume of plasma (500 /rl) was 

required in the melatonin assays rather than the 250 [x\ typically used in rainbow trout or 

salmon (Randall, 1992). Reduced melatonin levels bring further complications in the sense 

that replication and statistical analysis becomes difficult, especially when low number of 

individous is available for sampling. Secondly, tilapias possess highly pigmented plasma, 

due to the presence of pigments in the diet, as well as high concentrations of blood 

vitellogenin, which both cause interference in the RIA evaluation (Randall, personal 

communication).

These problems were solved with the production of melatonin-free plasma, which 

was used in the standard curve of the RIA protocol. Melatonin free-plasma allowed us to 

successfully evaluate melatonin levels in tilapia. However, other problems were 

encountered, for example, the high variability and quick degradation of radiolabel ([O- 

methyl-3H] melatonin), that produced some variation between assays in the melatonin 

profile, especially those profiles carried out on fish exposed to different light regimes, even
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when the inter or intra assay coefficients of variations showed that the assay was reliable 

and reproducible. However, the major problem found in this study was the low number of 

fish sampled per sampling point in those profiles made with fish held under different light 

regimes.

Despite these problems found during the melatonin assay evaluation, the results 

showed that tilapia melatonin levels clearly responded to light regimes. In tilapia, plasma 

melatonin levels reached their maximum point just after the onset of the night phase, these 

levels remain high throughout the night and then just after the onset of light phase, 

melatonin levels were suppressed. These results were in total accordance with Randall 

(1992), who, using a non validated melatonin radio-immunoassay reported night-time 

melatonin levels of ~ 80 pg/ml, however, day-time samples were undetectable. This was 

the first indication suggesting that melatonin levels vary significantly in tilapia. In a 

subsequent analysis, night-time melatonin levels dropped to 25 pg/ml. This reduction in 

melatonin concentration was attributed to radiolabel degradation, as shown by changes in 

the slope of the standard curve (Randall, 1992). Tilapia exhibited typical diel changing 

melatonin levels, as broadly reported in most species investigated so far (Zachmann et al., 

1992c; Mayer et a l, 1997a; Bromage et a l, 2001).

Reiter (1991) classified mammalian melatonin profiles into three categories. In Type 

A (or I) melatonin levels remain low for several hours after the dark phase, and then 

increase to reach a low peak during the second part of the dark phase, then melatonin 

levels decrease to base levels just before the onset of the light phase. In Type B (or II), 

melatonin levels start to increase just after the onset of darkness and reach maximum levels 

during the middle of the night; however, melatonin secretion then gradually decreases to 

base levels by the onset of the light phase. In Type C (or III), melatonin levels increase as 

soon as the dark phase begins to reach a maximum level which remains constant through
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the entire dark period; melatonin subsequently decreases to basal levels just before the 

onset of the light period. If we apply this mammalian classification to fish species, then a 

typical example for a Type A profile is given by the Atlantic cod (Gadus morhua), the 

Type B has not been clearly identified yet in fish species, and finally, the Type C which is 

well represented by the rainbow trout (Oncorhynchus mykiss), and the Atlantic salmon 

(,Salmo salar), (Randall, 1992; Randall et al., 1995a Bromage et a l , 2001; Porter et a l , 

2001).

Melatonin profiles in tilapia are more likely to follow the type C pattern, 

characterised by a rapid increase in melatonin production just after the onset of the dark 

phase, then this melatonin levels remain high throughout the night and then decrease as 

soon as the light phase is reached. Thus, plasma melatonin profiles in tilapia are similar to 

those ones reported for the rainbow trout and Atlantic salmon (Randall, 1992; Randall et 

a l, 1995a; Bromage et a l, 2001). Nevertheless, the pattern of plasma melatonin exhibited 

by fish held under different light regimes may suggest in a preliminary way, that a possible 

type A profile could be present in tilapia, however, further investigations are needed in 

order to confirm these findings.

Melatonin levels in tilapia ranged from 5.0 pg/ml during the light phase to a 

maximum of 99.4 pg/ml during the dark phase and large variability was observed between 

fish held under the same photoperiod. Several hypotheses could explain this variability. 

First, these results might have been affected by tilapia size and age as it was indicated that 

rainbow trout broodstock displayed lower plasma melatonin levels in comparison to 

fingerlings (Guerrero-Tortolero et a l, 2003).

Gem et a l  (1978a, b) also reported that melatonin levels were affected by age in 

rainbow trout; one year old fish exhibited 596 pg/ml at night in comparison to only 254 

pg/ml in two year old fish. However a marked reduction was observed in four year old
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rainbow trout with 153 pg/ml. In this study, tilapia were of different size and age, the fish 

used in the diel melatonin profile and in the night melatonin profile were one year old. 

Those fish exposed to different light regimes were two and a half year old.

Secondly, although plasma melatonin levels secreted by the pineal gland are similar 

in all fish from the same species at a given time (season and stage of development), 

Randall (1992) suggested that it is likely that there is a negative relationship between 

plasma melatonin concentration and the amount of blood in the fish in relation to fish size. 

This means that the lower the blood volume the higher the melatonin concentration in the 

fish would be (Randall, 1992). Another possible influence upon melatonin concentration is 

the amount of vitellogenin present in the blood, as this may cause interference with the 

antibody used in the RIA (Randall, personal communication).

In tilapia, melatonin was secreted soon after lights were turned off, then a plateau 

was reached. These high plasma melatonin levels seemed to be constant throughout the 

night, then melatonin concentration decreased and reached basal levels just after the onset 

of the light phase. In the particular case of those fish held under different light regimes, the 

maximum plasma melatonin levels during the dark phase could be attributed to differences 

in night duration. In the short daylength trial (6L:18D), midnight occurred nine hours after 

lights went off. However, for the normal daylength (12L:12D), midnight was reached six 

hours after lights turned off, and for the long daylength trial (18L:6D), midnight occurred 

just three hours after light was turned off. Thus, the highest melatonin levels were 

exhibited in those fish held under the short daylength (6L:18D) and the normal daylength 

trials (12L:12D). These two trials exhibited the longest dark periods, thereby, allowing 

melatonin levels to reach maximum levels, by simply allowing longer secretion and longer 

accumulation times in the blood stream. In the long daylength trial (18L:6D) (the shortest 

dark period), melatonin concentration was significantly lower because the dark period was
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short and hence melatonin levels did not reach levels equivalent to those observed during a 

long dark phase.

Bromage et al. (2001) reported that the duration of the nocturnal increase in plasma 

melatonin levels is directly proportional to the length of the night and hence provides a 

direct transduction of night duration. This may explain why these variations in melatonin 

levels were found in those fish exposed to different light regimes. These results indicate 

that in tilapia, as well as most fish species, melatonin production by the pineal gland is 

under the direct control of photoperiod (Zachmann et a l, 1992c; Bromage et al., 2001).

The continuous illumination treatment (24L:0D) showed a suppression in plasma 

melatonin levels. There was no variation between melatonin concentrations detected at 

midday and midnight in this particular treatment. However, fish spawned and produced the 

second best egg production and shortest ISI. These findings may indicate that melatonin is 

not directly involved in the control of tilapia reproduction and suppression of daily 

melatonin rhythms did not affect the timing of spawning. These results are in accordance 

with Bomestaf et al. (2001) and Mayer et al. (1997b) in which melatonin was given to 

three-spined stickleback (Gasterosteus aculeatus) in two different doses (20 -  80 pg of 

melatonin / 1 of water). These doses had no effect upon fish reproduction, thus these 

authors concluded that melatonin plays a relatively minor role in the control of the 

stickleback reproduction.

The results presented herein are similar to those reported for tilapia by Randall 

(1992), however on this occasion the assay was fully validated in order to obtain reliable 

and reproducible information. Melatonin levels in tilapia were similar to those values 

reported by Mayer et al. (1998) for the European river lamprey (non teleost) with 

maximum melatonin levels of 80 pg/ml using a light regime of 16L:8D in fresh water. 

However, the temperature used by Mayer et al. (1998) was very different (4°C) from the
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temperature used in the present experiment (27°C). Similar melatonin levels were reported 

by Iigo et al. (1997) for the catfish (Silurus asotus), with maximum melatonin levels 

around 30 or 40 pg/ml under a 12L:12D photoperiod in fresh water culture. Garcia-Allegue 

et al. (2001) reported similar melatonin levels in the European sea bass (Dicentrarchus 

labrax). These values varied little during the winter at around 30 pg/ml, a similar value 

was found in the present experiment in those tilapia reared under normal daylength 

(12L:12D) where maximal melatonin level was around 48 pg/ml. The melatonin 

concentration reported for spring time in sea bass was around 100 pg/ml, this value is 

similar to our night-time melatonin levels of tilapias reared under the normal photoperiod 

(12L:12D) in the diel cycle (99.4 pg/ml). Similar values were reported by Bayarri et al., 

(2004) in which night melatonin levels in sea bass were found to be 85 pg/ml and 10 pg/ml 

during the day.

In the three-spined stickleback, some plasma melatonin has been reported. In fish 

under short daylength (8L:16D), plasma melatonin levels were high at the middle of the 

dark phase, reaching 311 ±23 pg/ml and melatonin levels were below the assay detection 

limit at midday (Mayer et a l, 1997b). These levels are much higher compared with those 

reported in this present study in the middle of the dark phase. However, Bomestaf et al. 

(2001), reported daytime melatonin levels ranging from 1 1 - 3 0  pg/ml from stickleback 

females held under short (8L:16D), long daylength (16L:8D) and continuous illumination 

(24L:0D), the values were similar in all the light regimes with values ranging from 11 -  30 

pg/ml. Thus, daytime plasma melatonin levels observed in the present study in tilapia 

seems to be in accordance with those already reported in the literature for the three-spined 

stickleback.

Through examination of the existing literature and the present results, there seems to 

be a tendency for some temperate fish species to produce more melatonin in the pineal
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gland than tropical species. This was clear when tilapia melatonin levels were compared 

with those produced by the rainbow trout or salmon, in which melatonin concentration was 

six to tenfold higher than tilapia (Randall, 1992; Randall et al., 1995a; Bromage et al., 

2001). There would be also strong indication that pineal melatonin production has changed 

in fish species and adapted to the environment. As Menaker et al. (1997), mentioned, 

pineal activity dramatically changed during phylogeny and the 500 millions years of 

evolution to the many environments occupied by the vertebrates during that time (Menaker 

et al., 1997).

Temperate fish species experience large seasonal photoperiodic variations in 

comparison to tropical species and it is not surprising that they produce higher quantities of 

melatonin. Melatonin secretion is characterized by two characteristics according to Garcfa- 

Allegue et al. (2001); the duration of the nocturnal increase, and the amplitude of the 

night-time rhythm. In tilapias, duration of melatonin secretion (duration and amplitude) is 

clearly regulated by photoperiod. As for the night time amplitude, these results suggested 

that night time melatonin levels in tilapia were higher in those fish exposed to short 

daylength photoperiods (6L:18D) rather than long daylength photoperiods (18L:6D). In the 

case of the European sea bass, melatonin profiles are also controlled by the duration of the 

photoperiod; however, amplitude was related to a combination of water temperature and 

photoperiod. In sea bass, higher melatonin concentrations were found during long 

photoperiods (spring and summer) and lower melatonin concentrations found during short 

photoperiods (autumn and winter); it was clear that increased melatonin concentration was 

related to water temperature and photoperiod. However, in the present study fish were 

reared under constant temperature, thus the only variable was the changes in photoperiod.

Melatonin production is modulated by water temperature in such a way that 

melatonin is secreted in high concentration at higher temperatures and secretion is reduced
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by low temperatures (Randall et a l, 1995a; Bromage et a l, 2001; Porter et a l, 2001; 

Garcia-Allegue et a l, 2001). The melatonin profiles reported in the present work were all 

generated under controlled conditions with a water temperature of 27 ± 1°C. However, 

further investigations are required in order to assess the relationship of between melatonin 

production and water temperature in this tropical species.

The results obtained in Chapter Three suggested that long daylength is the most 

suitable to improve tilapia reproduction; under this photoperiod fecundity was increased 

and ISI decreased. However, the melatonin levels of those fish reared under long daylength 

(18L:6D) were the lowest. This may suggest that a negative relationship between 

melatonin concentration and reproductive performances in tilapias is present. However 

further investigations are needed to elucidate this findings. It appears that melatonin levels 

would have to remain below certain “threshold” level in order to stimulate reproductive 

activity in tilapia. From these results, the threshold could be around 30 or 40 pg/ml. The 

opposite effect was observed in those fish reared under short photoperiods (6L:18D) and 

(12L:12D), which produced the highest levels of melatonin concomitant with reduced 

reproductive performance. A similar result has been reported for the three-spined 

stickleback. This species has a better spawning activity when it is reared under continuous 

illumination in captivity, and under natural conditions this fish shows a better reproductive 

performance in longer days. This species matures under long days rather than short days. 

However, no effect of melatonin was observed when fish were treated with melatonin, 

suggesting that melatonin is not playing any functional role in stickleback reproduction and 

that these effects shown for photoperiod are largely mediated by mechanisms other than 

circulating melatonin levels (Mayer et al., 1997b; Bomestaf et a l, 2001). There is a 

possibility that the same mechanism might have evolved in tilapia. However, this requires 

further investigation to confirm this preliminary hypothesis.
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However, the real mechanism behind the control of reproduction by photoperiod in 

fish reproduction remains to be elucidated. There are some important factors which might 

be playing a key role in the link between melatonin and reproduction: the environmental 

conditions (temperature, salinity, etc) and the geographical origin of the species under 

study (temperate or tropical). It is evident that melatonin secretion differs significantly 

between species and these differences appear to be regulated by the environment. For 

instance, high melatonin levels are reported for the rainbow trout. This species has a 

particular preference for clean, low turbidity waters, thus this may have an effect on light 

penetration, causing with this a different answer on melatonin production by the pineal 

gland.

The strain of O. niloticus used in the present study was originally collected from 

Lake Manzala, Egypt in 1979 (McAndrew, personal communication). The reproductive 

biology of this species shows that there is a tendency for seasonality in the breeding 

season. Thus, reproduction occurs all year round in equatorial populations, but as the 

distribution of this species moved from the tropics, a marked variation in reproductive 

seasonality was observed, with higher reproductive peaks during the longer days of the 

summer months, this is also related with high water temperature. The photoperiodic 

variation in Lake Manzala (31.5° N) is considerable in comparison to that of the equator. 

The photoperiod variation reported for the Manzala region is 14L:10D during the summer 

and 10L:14D during the winter. This photoperiodic variation induces seasonality in the 

breeding behaviour in the natural populations of tilapia within this region, but this may be 

also related to changes in water temperature. However, it is highly possible that those fish 

used in the present experiment still possess genetic information inside their internal clock, 

and this could be the reason for similarities found in the natural conditions in Lake 

Manzala and the longer photoperiod investigated here.
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To fully understand and explain our results, further investigations are required in 

which a similar experiment is carried out with this species from a different geographical 

origin, for example a tilapia strain collected at the equator and a further strain from a very 

different latitude.

Although, more studies are required to fully understand the relationship between 

melatonin and reproduction in tilapia, possible clues could be discovered using other 

sources or tools such as the molecular technology that is now readily available to further 

investigate and correlate these two important physiological aspects of fish reproduction. 

Here, we have detected melatonin in Nile tilapia using a validated assay and shown how 

this hormone varies according to photoperiodic manipulation. This findings could have 

huge importance for the efficiency of future efficient culture of this species, but important 

key questions still remain to be asked: These involve the precise role of melatonin in 

tilapia reproduction; the precise cellular location of the melatonin receptor; the precise 

functional role of the melatonin receptor, and finally, how the melatonin receptors are 

related to fish reproduction.
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Chapter Five

5.1 Introduction

5.1.1 Melatonin receptors
The first melatonin receptor was cloned from Xenopus laevis melanophores by 

Ebisawa et al. (1994). Since then, melatonin receptors have been isolated from several 

vertebrate species (Reppert et al., 1995a; Reppert, 1997). However, initially these 

melatonin receptors were named without any strict standardization. It was only in 1995 that 

the first classification scheme was proposed by Dubocovich (1995), with subsequent 

reviews (Dobocovich et al., 1998, 2000). Nevertheless, in this new classification only the 

mammalian melatonin receptors were dealt with and the other melatonin receptors (non

mammalian) kept their original names. The melatonin receptors now belong to a new 

subfamily of seven transmembrane domain G protein-coupled receptor (GPCR’s) 

(Dubocovich, 1995: Dubocovich et al., 1998) (see below for further explanation). In the 

mammalian classification, two of these melatonin receptors (M T i and M T 2 ) are members 

of the G protein-coupled receptor super-family. However, a third subtype was found, M T 3, 

which does not fit in the GPCRs super family. The M T 3 belongs to the quinine reductase 

enzyme family (Witt-Enderby et al., 2003). To avoid confusion with early nomenclature, 

the melatonin receptors cloned thus far are described individually herein, according to the 

relevant taxonomic grouping.

5.1.2 Melatonin receptors in mammals
MT] (formerly called Melia, MELia or MLia) is expressed in the suprachiasmatic

nuclei of the hypothalamus (SCN), the hypophyseal pars tuberalis, cerebral artery, 

leptomeninges and was also found in the dorsal and ventral horn of the spinal cord and 

cardiac vessels (Reppert et al., 1995a; Reppert, 1997; Drew et al., 1997; Dubocovich et al., 

1998; Gauer et a l, 1998; Sugden et a l, 1999; Hunt et a l, 2001; Chucharoen et al., 2003;
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Dardente et al., 2003; Zahn et al., 2003). The role of MTj essentially involves the 

modulation of circadian rhythm and MTi mediates reproductive responses to melatonin in 

mammals (Reppert, 1997; Weaver et al., 1996). The MTi receptor is involved in the 

reduction and inhibition of the cyclic adenosine 3’ 5’ monophosphate (cAMP) transduction 

cascade, which results in decreased levels of protein kinase A (PKA), a reduction of cAMP 

responsive element binding-protein (CREB) phosphorylation and potentiation of 

phospholipase activation (Godson and Reppert, 1997; Barrett et al., 2003). The protein 

structure of the human MTi receptor is shown in Figure 5.1 A.

The MT2 gene (formerly called Melib, MEL]B or MLiB) is expressed in the 

cerebellum, the SCN, retina, kidney, ovary, cardiac vessels and spinal cord in hamster. 

This receptor has not been found to be expressed in rat brain or pituitary. However, using 

RT-PCR a transcription factor has been found in human retina and brain (Reppert, 1997). 

MT2 is involved in retinal physiology as well as modulation of circadian rhythms. It may 

also play an important role in the neurobiological effects of melatonin, works as a dilator in 

the cardiac vessels (Dubocovich, 1995; Dubocovich et al., 1998; Reppert et al., 1995b; 

Reppert, 1997; Hunt et a l, 2001; Witt-Enderby et al., 2003; Zahn et al., 2003). The protein 

structure of the human MT2 receptor is shown in Figure 5.IB.

The MT3 gene (formerly called ML2) is expressed in the hamster brain, kidney, testes 

and mouse brain (Dubocovich, 1995; Dubocovich et al., 1998) but has not been cloned yet. 

However, MT3 has been pharmacologically characterised in mammals (Dubocovich, 

personal communication).

A similar gene has been identified and shows strong similarity in amino acid 

sequence (40 -  57 %) to the melatonin receptor, but the receptor does not bind with the 

hormone melatonin. This gene has been named ‘melatonin-related receptor (MRR)’ and is 

also known as H9. This receptor has been characterised and isolated in human, rat and
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sheep. The expression sites of MRR are located in the hypothalamus, preoptic area, 

peribranchial nuclei, olfactory bulb, pituitary, retina and retinal pigment epithelium, 

kidney, adrenal gland, intestine, stomach, heart, lungs skin, testis and ovary suggesting that 

this receptor is involved in some neuroendocinological process. Some expression sites are 

similar to those already reported for the MTi gene (Reppert et al., 1996a; Reppert, 1997; 

Drew et al,. 1998, 2001; Conway et al., 2000; Barrett et al., 2003).

5.1.3 Melatonin receptors in amphibians and birds
In the African clawed frog X. laevis, three different melatonin receptor genes have 

been cloned and identified as Melia, Mel lb  and Mellc. The first two receptors are 

homologous to mammalian MTi and MT2. Although, Mellc has not been cloned in 

mammals yet, it does have pharmacological and functional characteristics similar to those 

of mammalian MTi and MT2. The Mellc was the first melatonin receptor cloned, marking 

the beginning of investigations in this field (Ebisawa et al., 1994). The Mellc protein 

structure is graphically represented in Figure 5.1C. These three melatonin receptors are 

expressed in brain, neural retina and retinal pigment epithelium (RPE), and also non- 

pigmented ciliary epithelium and retina photoreceptors (Ebisawa et al., 1994; Reppert et 

al., 1995a; Wiechmann et al., 1999; Wiechmann and Smith 2001, Wiechmann and Wirsig- 

Wiechmann 2001). A high number of melatonin binding sites were observed in the 

common frog (Rana perezi), especially in the neural retina and brain areas such as the 

telencephalon, diencephalon and optic tectum. These binding sites were confirmed to be 

part of the M elia subtype (Isoma et al., 2004).

Two melatonin receptors were cloned in chicken (Gallus domesticus) by Reppert et 

al. (1995a) and named CKA and CKB respectively. Chicken CKA has strong homology 

(80% at the amino acid level) with human MTi. However, chicken CKB shares similarities
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with the Xenopus Mellc receptor and they exhibit 80% homology in their amino acid 

sequence. It appears that in birds, the homologue of the mammalian MT2 receptor is absent 

or it has yet to be cloned (Reppert et al., 1995a). The CKA receptor is expressed in the 

optic tectum and retina, but has also been found in reduced levels in the neostriatum, 

hypothalamus, and thalamus. The CKB receptor is expressed in the optic tectum, 

neostriatum, hypothalamus, thalamus and pineal gland, low numbers have also been 

reported in the cerebellum and retina (Reppert et al., 1995a).

5.1.4 Melatonin receptors in fish
After the isolation of the first melatonin receptor by Ebisawa et al. (1994) in 

Xenopus, a series of attempts were made to isolate a melatonin receptor in fish. In 1995 

Reppert and co-workers isolated three partial sequences of melatonin receptor in the 

zebrafish (Danio rerio). These partial sequences were named as Z1.4, Z1.7 and Z2.6 

(Reppert et al., 1995a). Four years later Mazurais et al. (1999) cloned three partial 

sequences in rainbow trout (O. mykiss); these were designated RT1.4, RT1.7 and RT2.6. 

These rainbow trout partial sequences showed high amino acid homology (84%) with those 

already reported in zebrafish by Reppert et al. (1995a).
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Figure 5.1 A) Amino acid sequence and proposed membrane structure of the human 
melatonin MTi receptor. B) Human MT2 receptor, amino acids that are shaded are 
identical between MT2 and MTi. C) Mellc from Xenopus. T  = potential linked N-linked 
glycosylation site. Solid circle = consensus sites from protein C phosphorylation. Taken 
from Reppert et al. (1995b, 1996b) and Ebisawa et al. (1994).
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The rainbow trout partial sequences RT1.4 and RT1.7 are both members of the 

M elia subtype (i.e. are homologous to the mammalian MTi), whilst RT2.6 forms part of 

the M ellb (homologous to the mammalian MT2) subtype (Mazurais et al., 1999). Both of 

these melatonin receptors have similar patterns of expression in rainbow trout brain, as 

demonstrated by in situ hybridization. These receptors were highly expressed in the 

stratum periventriculare of the optic tectum, the posterior pretectal nucleus, as well as the 

molecular and granular layer of both corpus and valvula in the cerebelli (Mazurais et al., 

1999; 2000). Gaildrat and Falcon (2000) reported two partial cDNA sequences in pike 

(Esox lucius). These sequences were designated PI.4 and P2.6. The names of these 

sequences arose due to the high homology between these pike sequences and the partial 

sequences already reported for rainbow trout and zebrafish (Reppert et al., 1995a; 

Mazurais et a l, 1999). Northern blots and RT-PCR analysis demonstrated high levels of 

P I.4 and P2.6 in the optic tectum. However, lower levels were detected in the pituitary 

using RT-PCR. This was the first time in which receptors of this kind had been detected in 

the pituitary, suggested that melatonin may have a direct effect upon this tissue and may 

therefore be involved in reproductive function (Gaildrat and Falcon, 2000).

Gaildrat et al. (2002) subsequently cloned the whole sequence of the previous partial 

clone P2.6 from pike using RACE (Rapid amplification of cDNA ends) and brain cDNA 

(Optic tectum) as a template. This finding allowed full characterization of a novel 

melatonin receptor. These interesting results suggested that this full-length melatonin 

receptor P2.6 sequence (1101 bp) belonged to a different group of melatonin receptors, to 

that previous proposal (i.e. Mellb thought to be homologous to the mammalian MT2) 

(Gaildrat and Falcon, 1999). According to phylogenetic analysis, the new P2.6 (full 

sequence) was allocated to the second lineage within the vertebrate melatonin receptor 

family, in a branch near to the M elia and Mellc receptors. The mRNA distribution of pike
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P2.6 was evaluated using Northern blot analyses; the results demonstrated the presence of 

one transcript (5.4kb) which was expressed in the optic tectum. Expression was not 

detected in the pituitary gland, liver or other brain areas. This was further investigated by 

RT-PCR and Southern blot analyses; expression was confirmed in the optic tectum, but 

also in pituitary gland (as reported before by Gaildrat and Falcon, 2000), olfactory bulbs, 

telencephalon, diencephalon, cerebellum and retina. However, no expression was detected 

in the ovaries, liver and intestine.

The final work available in the literature concerning gene expression of melatonin 

receptors in fish came from Shi et al. (2004), who demonstrated expression of the M elia 

and Mellb receptors using RT-PCR and real time PCR. They cloned M elia and M ellb in 

the chum salmon (Oncorhynchus keta), using the methodology of Mazurais et al. (1999). 

Expression sites for these two chum salmon receptors were the optic tectum, thalamus, 

hypothalamus, and cerebellum. Expression of the M ellb was also detected in the eyes 

using RT-PCR.

5.1.5 Melatonin binding sites in fish
2[125I] Iodomelatonin is a melatonin analogue, which allows autoradiography and 

radioligand studies on melatonin receptors in fresh or fixed tissues (Pang et al., 1998). In 

fish, several melatonin binding sites have been demonstrated using this technique. These 

binding sites are widely distributed in the brain, however, the highest concentration was 

found in the visual region located in the optic tectum, nucleous rotundus, pretectum and 

dorsal thalamus. Binding sites were also found in the gustatory regions in the 

hypothalamus, preoptic area and cerebellum. Melatonin receptors have now been found in 

a variety of fish species including rainbow trout, masu salmon, pike, goldfish, catfish and
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zebrafish, (Davies et al., 1994; Iigo et a l, 1994, 1997; Ekstrom and Meissl, 1997; Gaildrat 

et a l, 1998; Mazurais et al., 1999, 2000; Amano et al., 2003a, 2003b).

5.1.6 G Protein-coupled receptors
G Protein-coupled receptors (GPCRs) are a super family of integral membrane 

proteins. These receptors are formed from seven membrane spanning helices 

(transmembrane domains), three periplasmic loops (extra-cellular), three cytosolic loops 

(intra-cellular), a periplasmic N- terminal and a cytosolic C- terminal domain. The extra

cellular loops and the N-terminal domain are glycosylated. However, the C terminal 

domain generally contains a cysteine residue attached to a lipid group (Horn et a l, 2000; 

Barrett et a l, 2003; Figures 5.1 A-C.). GPCRs are involved in the communication between 

the cell and its surrounding; they detect signals on the outside of the cell. These receptors 

essentially respond to different signals, which might be a protein, a peptide, a small 

organic molecule, an ion or even a photon that causes a structural change in a retinal cell. 

Once the signal is received it is transmitted by the seven transmembrane helices to the 

inner part of the cell (cytosolic side), where the trimeric G protein becomes activated and 

triggers the relevant or appropriate response in the cell.

Any malfunction of these GPCRs could trigger disease such as Alzheimer’s, 

Parkinson’s, diabetes, dwarfism, colour blindness, retina pigmentosa, and asthma (Horn et 

al., 2000). Furthermore, these GPCRs are also involved in depression, schizophrenia, 

sleeplessness, hypertension, impotence, anxiety, stress, renal failure, cardiovascular 

disorders and inflammation (Horn et al., 2000). For these reasons, the GPCR family has 

been the subject of much research and remains a valuable target for pharmaceutical 

companies (Horn et al., 2000).
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To further investigate the specific location at which melatonin is acting, and its 

precise function in reproduction, is was first necessary to investigate the possible existence 

of tilapia melatonin receptors. The aims of this chapter were to attempt to isolate a 

melatonin receptor in 0. niloticus, and to evaluate the specific expression of the melatonin 

receptor gene in several tissues from this species.
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5.2 Materials and methods 

5.2.1 Fish tissue
For tissue specific expression of the melatonin receptor, fish were killed by an 

overdose of Ethyl 4-aminobenzoate (Sigma Chemicals, Ltd U.K.) with a working 

concentration of 1:10000 in fresh water. The liver, spleen, intestine, gonad, kidney, gills, 

heart, eyes, brain, red muscle and white muscle were carefully dissected out. On one 

occasion, one fish was dissected and samples were kept on ice for immediate RNA 

extraction. When a second fish was culled, tissue samples were taken and immediately 

frozen in liquid nitrogen and kept at -70° C for further RNA extractions.

5.2.2 DNA extraction
DNA was extracted from blood samples of O. niloticus using the protocol described 

by Taggart et al. (1992). Briefly, blood samples were spun at 2500 rpm for 15 minutes. 

The supernatant plasma was discarded and the remaining pellet (red cells) was retained in a

1.5 ml Eppendorf tube. Then, 375 /d of a solution composed of 0.2 M EDTA (pH 8.0) and 

0.5% sodium lauroylsarcosine was added along with 10 [i\ proteinase K (20 mg/ml). 

Samples were mixed and incubated overnight at 55 °C in a hybridization cylinder in a 

hybridization oven. After that, 10 /d of RNase was added and the samples were vigorously 

shaken and then incubated for 60 min at 37°C. Then, 400 /d of phenol was added and the 

samples were vigorously shaken for 10 sec. Then, samples were gently mixed for 15 to 20 

minutes in a rotary mixer. 400 /d of chloroform was then added to the samples and they 

were vigorously shaken for 10 sec followed by gentle mixing in a rotary mixer for 15 to 20 

min. Samples were then centrifuged at 10,000 g for 5 min. Then, 300 /d was carefully 

removed from the aqueous layer and transferred to a fresh Eppendorf tube. 900 /d of 92 % 

ethanol was then added and the samples were vigorously shaken 5 to 6 times in order to
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precipitate the DNA. Samples were left on the bench for a few minutes and then the 

ethanol was carefully discarded. The DNA pellet was then washed with 1 ml of 70% 

ethanol and the samples were gently mixed for 30 minutes (or overnight) at room 

temperature in a rotary mixer. Ethanol was then carefully discarded and samples were 

allowed to dry at room temperature. DNA pellets were resuspended in TE buffer (10 mM 

Tris, 1 mM EDTA) (pH 8.0). Then, DNA concentration was estimated by using optical 

density measured by spectrophotometry. DNA concentration was double checked by 

agarose gel electrophoresis (1 %).

5.2.3 RNA extraction
Total RNA was extracted using the TRIzol® Reagent (GIBCO-BRL®) which is 

based upon the method proposed by Chomczynski and Sacchi (1987). Fresh tissue was 

homogenized using a mechanical tissue homogeniser in 1 ml Trizol solution per 100 mg of 

tissue. After that, a phase separation was carried out, in which the samples were incubated 

at room temperature (15 - 25°C) for 5 minutes and then 0.2 ml of chloroform was added 

for each ml of Trizol. Samples were carefully capped and shaken vigorously for 15 

seconds and then incubated at room temperature for two or three minutes. Samples were 

then centrifuged at 12,000 g for 15 minutes at 2 - 8°C. The upper layer (aqueous phase) 

was transferred to fresh tube. For RNA precipitation, 0.5 ml of isopropanol was added for 

each 1 ml of Trizol used. Samples were incubated at room temperature for 10 minutes and 

then centrifuged at 12,000 g for 10 minutes at 2 -  8°C. After centrifugation, the 

supernatant was discarded and the RNA pellet washed once with 75% ethanol. Samples 

were then vortexed and centrifuged at 7,500 g for 5 minutes at 2 - 8°C. Finally, the 

supernatant was discarded and the RNA pellet allowed to air dry. For RNA precipitation, 

RNase-free water was added and the samples mixed and incubated for 10 minutes at 55 to
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60°C. At the end of this procedure, RNA concentration was estimated by 

spectrophotometry and samples checked by agarose gel electrophoresis (1 %).

5.2.4 cDNA synthesis
To generate first strand cDNA, 5 /xg of total RNA was transferred to a sterile RNase- 

free tube, along with 0.5 /xg of Oligo (dT)15 and made up to a total volume of 14 /xl with 

RNase-free water. Samples were heated to 70°C for 5 minutes then quickly transferred to 

ice for 5 minutes. After that, 5 /xl of M-MLV-RT 5X buffer (250mM Tris-HCL pH 8.3, 

375 mM KCL, 15mM MgC12, 50mM DTT), 1.25 /xl dNTP mixture (dATP, dCTP, dGTP, 

dTTP, lOmM each), and 0.5 /xl (100 units) of M-MLV RT (H-) and 4.25 /xl of RNase free- 

water were added. The reagents were gently mixed and incubated at 40°C for 10 minutes, 

then the temperature was increased to 55°C and the samples were incubated for 50 

minutes. After that, the reaction was inactivated by heating to 70°C for 15 minutes. At this 

point, the new cDNA could be used for PCR amplification and RT-PCR. All the reagents 

used for this protocol were from Promega (Madison, WI. USA).

5.2.5 Polymerase Chain Reaction (PCR)
In order to use PCR to amplify the melatonin receptor gene a search was done on the 

NCBI homepage (http://www.ncbi.nlm.nih.gov), in order to get the most complete and up- 

to-date information in this gene. Once the sequences were identified, they were aligned and 

then primers were designed from the most conservative regions using the Primer3 

programme (V0.2) fhttp://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi/).

128

http://www.ncbi.nlm.nih.gov
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi/


Chapter Five

5.2.5.1 Melatonin receptor
The following melatonin receptors sequences were aligned: rainbow trout Mel la  

mRNA (accession number AF156262) and pike P2.6 Mel lb mRNA (accession number 

AF188871). A set of degenerate primers were designed based on this alignment. The 

forward primer sequence was as follows: 5’- ATG GG(C/T) (C/G)TC AGC GTA ATC GC 

-3’ and the reverse primer sequence was: 5’-GAA GTT CTG GTT GAG CA(G/C) (G/C)C- 

3’. This pair of primers generated a PCR product of ~ 520 bp using tilapia genomic DNA.

Another set of primers previously reported by Mazurais et al. (1999), for the rainbow 

trout melatonin receptor 1.4 (accession number AF178538), were also used in this 

experiment. The sequence of these degenerate primers was as follow: 5’-TG(C/T) CAC 

AGC CT(C/T) AAG TA(C/T) GAC AAG CT -3’in the forward sense and 5’-ATG AAG 

TT(C/T) AA(C/T) GG(A/T) GCC CAG CA(A/C/T) -3’ for the reverse. This set of primers 

allowed the amplification of ~ 300 bp PCR product using genomic tilapia DNA.

These two sets of primers were used to produce two PCR products (520 and 300 bp). 

These PCR products were sequenced and the resultant sequences were aligned to allow the 

design of a further set of primers. The resultant forward primer was: 5’-TAG CTG GCC 

ACG AAC AAC CAC -3’ and the reverse primer: 5’-AGC GTA ATC GGC TCC ATC 

TTC-3’. This set of primers allowed the amplification of a PCR product of around 520 bp.

5.2.6 Cloning of desired PCR products
Once the desired PCR products had been obtained, they were first purified using a 

glass fibre matrix column (PCR purification columns, Amersham Pharmacia). The clean 

PCR products were then sub-cloned into a T vector, which was modified from pBluescript 

11+ vector (Stratagene): the vector was opened by digestion with EcoR V to blunt the ends 

of the plasmid and then dTTP added to produce 3’ overhanging ends. Transformation of 

the ligated vector-PCR insert was performed using E. coli XL-Gold Ultracompetent cells
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(Stratagene). The transformed cells were plated onto LB agar previously treated with 

ampicillin. These plates were further treated with IPTG (Isopropyl-l-thio-(3-D- 

galactopyranoside) and X-gal (5-bromo-4-chloro-3-inodlyl- p-D-galactopyranoside) to 

enhance blue and white colour selection. The white colonies were picked up and screened 

by PCR with gene specific primers or M13 primers. The resultant positive clones were 

further inoculated into 4 ml of LB broth medium in order to generate a large scale plasmid 

preparation. After that, the plasmid DNA was extracted using the GFXTM Micro Plasmid 

Prep. Kit (Amersham Biosciences, Piscataway, N.J. USA). The final plasmid DNA was 

used as a template for further PCR amplification and sequencing.

5.2.7 DNA Sequencing
DNA sequencing was carried out using the ABI Prism Dye-Deoxy terminator 

sequencing kit (Perkin Elmer). Samples were run and analysed using an Applied 

Biosystems DNA Automated Sequencer (Model 377, Applied Biosystems, Foster City, 

CA). The resultant sequences were analysed and aligned using a BLAST search from the 

National Centre for Biotechnology Information home page (http://www.ncbi.nlm.nih.gov). 

Sequences were aligned and a phylogenetic tree was prepared using GeneBee 

(http://www.genebee.msu.su/services/malign_reduce.html) multi-sequences alignment and 

ClustalW (http://www.clustalw.genome.ad.jp) programs.
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5.3 Results

5.3.1 Identification of the melatonin receptor gene and tissue specific gene 
expression

5.3.1.1 Identification of the melatonin receptor gene in tilapia
PCR amplification from genomic tilapia DNA produced an appropriate fragment of

around 520 bp (Figure 5.2). This PCR product was sub-cloned into pBluescript II and 

sequenced (For more details see Chapter Two). In order to confirm these findings, total 

RNA was extracted from tilapia brain and reverse transcribed. This new single strand brain 

cDNA was then used as a template in a PCR reaction and the resultant products sequenced 

directly. The tilapia brain cDNA PCR product had 100% homology with the tilapia 

genomic DNA sequence. The resultant brain cDNA sequence presented a total length of 

492 bp. The amino acid and nucleotide sequence is shown in Figure 5.4. Four 

transmembrane domains were found in the partial sequence obtained from tilapia brain 

cDNA. These transmembrane domains correspond to the IVth, Vth, Vlth and Vllth 

conservative regions of the G protein structure (Figure 5.4). The highest level of homology 

between these transmembrane domains (80%) was found in the Vlth transmembrane 

region when all the sequences were aligned.

In order to compare the phylogenetic relationship of the O. niloticus brain melatonin 

receptor with other melatonin receptor sequences already reported for vertebrates, a 

phylogenetic tree was constructed using the Neighbour-Joining method of Clustal W and 

GeneBee programmes (Figure 5.5). The information generated by this phylogenetic tree 

indicated that the tilapia brain cDNA sequence belongs to the MTi melatonin receptor 

subtype in the mammalian classification, or the Mel la  subtype in the non-mammalian 

classification. This was deduced because the tilapia partial sequence was clustered in the 

same lineage as the rainbow trout Mel la sequence. Furthermore, all the
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M l  2 3

Figure 5.2 PCR product of melatonin receptor (520 bp) using tilapia genomic DNA (Lines 
1 and 2) and cDNA (Lines 3 and 4), line 5: negative control, M: 100 bp DNA marker.

T W Y  S I N R Y C Y I C H S L K Y D K L 2 0  

ACACCTGGTATAGCATCAACCGATACTGTTACATCTGCCACAGCCTCAAATACGATAAAC 6 0 

Y S D K N S V C Y V L L I W A L T V V A 4 0  

TGTACAGCGACAAAAACTCCGTCTGCTATGTGTTGTTAATCTGGGCGCTGACTGTTGTTG 12 0 

I V P N L F V G S L Q Y D P R V Y  S C T 6 0  

CCATCGTGCCCAACCTGTTTGTGGGCTCGCTTCAGTACGACCCGCGGGTTTATTCCTGCA 1 8 0  

F V Q S A S S A Y T I A V V F F H F I L 8 0  

CATTTGTTCAGTCAGCCAGCTCCGCGTACACCATCGCCGTGGTCTTCTTCCACTTCATTT 2 4 0  

P I M I V T Y C Y L R I W I L V I Q V R  10 0  

TACCCATCATGATTGTCACCTACTGCTACCTGCGCATTTGGATATTGGTCATACAGGTAA 3 00 

R R V K P D N R P K L T P H D V R N F V  1 2 0  

GGAGACGGGTCAAGCCAGACAATCGACCCAAGCTGACGCCACATGACGTTAGGAACTTTG 3 60 

T M F V V F V L F A V C W A P L N F I G  1 4 0  

TTACCATGTTTGTGGTGTTTGTGCTCTTTGCCGTGTGCTGGGCACCGCTAAACTTCATCG 42  0 

L A V A I K P E V V I P L I P E W L F V  1 6 0  

GACTGGCTGTAGCGATCAAACCGGAGGTTGTGATTCCCCTCATCCCTGAGTGGTTGTTCG 48 0 

A P K 163  

TGGCCCCTAAAA 4 9 2

Figure 5.3 Partial amino acid and nucleotide sequence of tilapia brain melatonin 

receptor cDNA.
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rv
Tilapia 
Zebrafish 1.4 
Zebrafish 1.7 
Zebrafish 2.6 
Zebrafish 2.3 
Human MT1 
Xenopus Mellc 
Chicken Mellc 
Chicken MT1 
Rainbow trout 2 . 6 
Rainbow trout Mella 
Pike 2.6

CHSLKYDKLYSDKNSVCYVLLIWALTWAIVPNLFVGSLQYDPRVYSCTFVQSASSAYTI 
CHSLKYDKLF SNKNTVC YVILVWALTVLAIVPNWF VE SLQYDPRVF SCTFAQSVS S LYTI 
CHSLKYDKLYSDKNSVCYVLLIWALTVLAIVPNLFVGSLQYDPRVYSCTFEQSASSAYTI 
CHSFAYGRLCSFRNTLLLVALIWALTVLAILPNFFVGSLSYDPRVYSCTFTQTASSSYTV 
CHSLRYDRLYSRRNTCLYLLLTWMLTALATVPNFLVGSLKYDPRVFSCTFTQTASSSYTV 
CHSLKYDKLYSSKNSLCYVLLIWLLTLAAVLPNLRAGTLQYDPRIYSCTFAQSVSSAYTI 
CHSLRYDKLYNQRSTWCYLGLTWILTIIAIVPNFFVGSLQYDPRIFSCTFAQTVSSSYTI 
CHSLRYDKLFNLKNTCCYICLTWTLTWAIVPNFFVGSLQYDPRIYSCTFAQTVSTSYTI 
CHSLKYDKLYSDKNSLCYVGLIWVLTWAIVPNLFVGSLQYDPRIYSCTFAQSVSSAYTI 
CHNLKYDKLFSNQNTVCYVILVWSLTVLAIVPNWFMESLQYDPRVYSCTFAQSVSSSYTI 
CHSLKYDKLYSDKNSVCYVLLIWALTIVAIVPNLFVGSLQYGPRVYSCTFEQSASSAYTI 
CHSFSYDKFYSYRNTLLLVALIWLLTILAIIPNFFVGSLQYDPRVYSCTFAQAVSTSYTI

Consensus CH L W LT A PN LQY PR SCTF Q S YT

V

Tilapia 
Zebrafish 1.4 
Zebrafish 1.7 
Zebrafish 2.6 
Zebrafish 2.3 
Human MTl 
Xenopus Mellc 
Chicken Mellc 
Chicken MTl 
Rainbow trout 2.6 
Rainbow trout Mella 
Pike 2.6

AWFFHFILPIMIVTY CYLRIWILVIQVRRRVKPDNRPKLTPHDVRNF VTMFWFVLFAV 
MWWHFIVPIGIVTYCYLRIWILVIQVPRRVKPDSRPKIKPHDFRNFLTMFWFVLFAV 
AWFFHFI LP IMI VTY CYLRI WVLVIQVRRRVKNDNRPKITPHDVRNF VTMFWFVLFAV 
VWWHFLVPIAWTFCYLRIWVLVIQVRRKVKSEERSRVRPSDLRNFVTMFWFVLFAI 
CWLIHFLVPLGWSFCYLRIWTLVIRVKGRVRP--NPKVRAADLRNFLTMFWFVLFAV 
AVWFHFLVPMIIVIFCYLRI WI LVLQVRQRVKPDRKPKLKPQDFRNFVTMFWFVLFAI 
TVWVHFIVPLSWTFCYLRIWVLVIQVKHRVRQDFKQKLTQTDLRNFLTMFWFVLFAV 
TWWHFIVPLSIVTFCYLRIWILVIQVKHRVRQDCKQKIRAADIRNFLTMFWFVLFAV 
AWFFHFILPIAIVTYCYLRIWILVIQVRRRVKPDNNPRLKPHDFRNF VTMFWFVLFAV 
TVWIHFFVPIAWTFCYLRIWILVIQVRRKVKSEVKSRLKPSDMRNFITMFWFVLFAI 
AWFFHFILPIMIVTYCYLRIWILVIQVRRRVKPDNRPKLTPHDVRNFVTMFAVFVLFAV 
TVWIHFI VP IAWTFCYLRI WI LVIQVRRKVKSEVRPRLKP SDMRNFVTMFWFVLF AI

Consensus W  HF P V CYLRIW LVIQV V D RNF TMF VFVLFA

VI VII

Tilapia 
Zebrafish 1.4 
Zebrafish 1.7 
Zebrafish 2.6 
Zebrafish 2.3 
Human MTl 
Xenopus Mellc 
Chicken Mellc 
Chicken MTl 
Rainbow trout 2 . 6 
Rainbow trout Mella 
Pike 2.6

CWAPLNFIGLAVAIKPEWIPLIPEWLFVA- 
CWAPLNFIGLAVAIHP-RLGQSIPEWLFTA- 
CWAPLNFIGLAVAIS PERWPLIPEWLF VA- 
CWAPLNLIGLWAINPEVMAPRVPEWLFW- 
CWAPLNFIGLAVAINPAKVAPNIPEWLFVT- 
CWAPLNFIGLAVASDPASMVPRIPEWLFVP- 
CWAPLNFIGLAVAINPFHVAPKIPEWLFVL- 
CWGPLNFIGLAVSINPSKVQPHIPEWLFVL- 
CWAPLNFIGLAVAVDPETIIPRIPEWLFVS-
CWAPLNFIGLAVAIDPETVAPRIPEWL---
CWAPLNFIGLAVAINPEVWPLIPEWLFVA-
CWGPLNFIGLAVAIDPERVAPRIPEWLFW-

Consensus CW PLNFIGL V PEWL V

Figure 5.4 Multiple alignment of tilapia O. niloticus brain melatonin receptor amino acid 
sequence with sequences of other melatonin receptor subtypes for different vertebrates. 
The four transmembrane domains (IVth -  VII ) are dash lined.
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Tilapia

Rainbow trout M el la

— Zebra fish 1.7

Chicken M el la

Human M T l

Zebra fish 1.4

Pike 2.6

Rainb ow trout 2.6

Xenopus M el lc  

Chicken M el lc

Zebra fish 2.3

Rat p. opioid
o 0.3 0.6 0.70.1 0.2 0.4 0.5 0.8 0 .9 1

M T l
M e l la

MT2 
M el lb

M e l lc

Figure 5.5 Phylogenetic analyses of vertebrate melatonin receptors (Accession numbers 
used are as follows [from top to bottom] AY569971; AF156262; U31822; U31820; 
U14108; U31823; U31824; AF188871; AF178929; U09561; U31821; U31825; Rat p  
opioid provides an out group for the tree)

Table 5.1 Homology of melatonin receptor amino acid sequences of different vertebrates 
by pair-wise comparison (Values expressed as percentage)

Z F 1 .4 Z F 1 .7 Z F 2 .6 Z F2.3 H(MT,) X(Melic) C(Mellc) C(Mclta) R T 2 .6 RT(M ella) P 2 .6

T 77.3 94.6 68.0 64.0 76.0 69.3 70.0 88.6 73.4 96.0 72.0
Z F 1 .4 78.0 62.6 62.0 68.0 68.0 70.6 75.3 76.1 75.3 68.0
Z F 1 .7 68.6 64.0 74.6 69.3 69.3 85.3 72.8 94.0 72.0
Z F 2 .6 66.6 63.3 65.3 62.6 66.6 73.4 66.6 79.3
Z F 2 .3 60.6 72.0 69.3 60.6 63.3 63.3 63.3
H(MT1) I S c tS i 66.0 66.0 80.0 70.7 75.3 70.0
X(Mellc) ; . i "; ; 82.6 69.3 70.1 69.3 70.0
C(Mellc) 70.0 69.4 68.7 68.7
C(MT1)

' , •! r  i 1} *'' •.. '• 76.2 86.0 74.7
R T 2 .6 W: %|8 3 f c '! 71.4 82.3
RT(M Ti) 71.3
T: Tilapia O reochrom is niloticus, ZF: Zebrafish D anio rerio, H: Human H om o sap iens , X: 
Xenopus X enopus laevis , C: Chicken, Gallus ga llus , RT: Rainbow trout O ncorhynchus  
m y kiss.
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sequences surrounding the tilapia partial sequence in the phylogenetic analysis belong to 

the same subtype (Mella or MTj). The homology of melatonin receptor amino acid 

sequences between several vertebrate species is shown in Table 5.1.

5.3.1.2 Tissue specific gene expression of the tilapia melatonin receptor
The tissue expression of tilapia melatonin receptor mRNA was investigated in adult

tissues using an RT-PCR approach (Figures 5.6 and 5.7). After 25 cycles of PCR, the 

melatonin receptor mRNA was highly expressed in the brain of tilapia and no expression 

was detected in other tissues (Figure 5.6A). However, after an increase of just 5 cycles 

during the PCR amplification (i.e. 30 cycles in total), the melatonin receptor mRNA was 

found to be expressed in liver, spleen, gonad, kidney, gills, heart, brain, red muscle and 

white muscle. No expression was detected in the intestine or eye cups (Figure 5.6). In this 

experiment, the highest expression was found in the brain tissue, confirming the results 

found in the previous experiment (25 cycles of PCR). In both experiments (3-actin primers 

were used as a control for gene expression. (3-actin mRNA was expressed in most of the 

tissues evaluated in both experiment, with the exception of the eye cups (Figures 5.6B and 

5.7B). This lack of expression in the eyes suggested that the resultant cDNA generated by 

reverse transcription was not enough to express the expected melatonin receptor. This was 

confirmed by the lack of expression with (3-actin primers.
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Figure 5.6 Tissue specific melatonin receptor gene expression in several tissues of O. 
n ilo ticus  exposed to 25 cycles of PCR. A) Melatonin receptor products. B) p-actin 
products. Samples number are: 1 liver, 2 spleen, 3 intestine, 4 gonad, 5 kidney, 6 gills, 7 
heart, 8 eye (1), 9 eye (2), 10 brain (1), 11 red muscle, 12 white muscle, 13 brain (2), 14 
negative control, M size marker 100 bp, arrows shows the PCR product band. (Note: no 
brain cDNA was loaded in the p-actin gel in line B 13)
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Figure 5.7 Tissue specific melatonin receptor gene expression in several tissues of O. 
nilo ticus  exposed to 30 cycles of PCR. A) Melatonin receptor products. B) p-actin 
products. Samples number are: 1 liver, 2 spleen, 3 intestine, 4 gonad, 5 kidney, 6 gills, 7 
heart, 8 eye (1), 9 eye (2), 10 brain, 11 red muscle, 12 white muscle, 13 negative control, 
M size marker 100 bp.
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5.4 Discussion and conclusion

5.4.1 Identification of the melatonin receptor gene in tilapia
This study reports the cloning and isolation of a fragment of the tilapia melatonin

receptor sequence, which has been submitted to GenBank with the accession number 

AY569971. This partial amino acid sequence contains four transmembrane domains which 

are characteristic of the G-protein coupled melatonin receptor super-family. The alignment 

of this partial amino acid sequence with other previously reported sequences for melatonin 

receptors (Ebisawa et al., 1994; Reppert et a l, 1995a; Mazurais et al., 1999; Gaildrat and 

Falcon, 2002) suggested that this partial amino acid sequence exhibits high homology to 

the rainbow trout (Mella) mRNA and the zebrafish Z1.7 mRNA with 96% similarity. The 

degree of homology between the human MTi and the new tilapia fragment was 76%; a 

higher degree of homology was found with the chicken (88.6%). However, at the 

nucleotide level, the similarity of the tilapia fragment to those already reported for rainbow 

trout and zebrafish was only 82% and 83% respectively. Furthermore, a higher degree of 

homology between these sequences was found within the transmembrane domains, 

especially in the Vth and Vlth domain, which suggests that these domains are the most 

conserved regions over the evolutionary period in these four classes of vertebrates, and that 

further changes between species have since occurred outside of these transmembrane 

domains (Reppert et al., 1995a)

A phylogenetic tree was constructed with 12 sequences (partial and completed) of 

melatonin receptors already reported for at least four different classes of vertebrates, and it 

clearly suggested that the partial sequence of the tilapia melatonin receptor belongs to the 

M ella receptor subtype. This was confirmed by the high level of homology found between 

this sequence and the Mella sequence already reported for zebrafish and rainbow trout 

(Reppert et a l, 1995a; Mazurais et al., 1999). Furthermore, this tilapia fragment was
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located in the same branch of those sequences previously reported for chicken and human 

within the MTj and Mella subtypes (Reppert, 1995a). The degree of homology found 

between the tilapia and the human is low, however, there is a better location of the chicken 

melatonin receptor, and this may suggest that there has been considerable change in this 

gene in humans but not so much divergence between birds, fish and amphibians.

The fragment of the tilapia sequence reported herein contains four transmembrane 

domains. This was obtained because the primers used for the PCR and RT-PCR were 

designed using sequences from these transmembrane domains in which the first 

intracellular loop was avoided. According to the protein structure of previously reported 

melatonin receptors, these genes are formed by two exons separated by an intron. The 

intron is located in the first intracellular loop and could be as long as 8 Kb in length 

(Reppert et al., 1995a, 1996b; Reppert, 1997).

5.4.2 Tissue specific gene expression of tilapia melatonin receptor
Expression of the novel tilapia melatonin receptor cloned herein was observed in

most of the tissues evaluated, with the exception of the eyes. In the first experiment (after 

25 cycles of PCR), expression was only noted in the brain; this was in accordance with the 

literature, which indicates that strong transcription appears to occur in the brain, with 

particularly high levels in the suprachiasmatic nucleus, optic tectum, thalamus, pretectal 

area and cerebellum (Mazurais et al,. 1999, 2000a; Gaildrat and Falcon, 2000, Gaildrat et 

al., 2002; Shi et al., 2004). These expression areas in the brain were also reported using the 

2-[125I] iodomelatonin binding site method in several fish species such as the rainbow trout, 

the goldfish, salmon, lamprey, catfish and skate (Iigo et a l, 1994; Davies et al., 1994, 

1995; Mazurais et al., 1999, 2000a; Iigo et al., 1997; Vemadakis et al., 1998; Amano et 

al., 2003a,b). In the present investigation, whole brain was dissected for RNA isolation, as
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it was difficult to elucidate which region of the brain contributed the highest amount of 

mRNA expression. To further investigate the precise location of mRNA expression of this 

particular gene, in situ hybridization methodology should be applied in further studies, as 

well as detailed dissections of the brain for more precise RNA extraction. However, this 

experiment has shown the way for future investigations on tilapia melatonin receptors: 

many questions remain to be elucidated.

In the second experiment, using a higher number of amplification cycles in the PCR 

(i.e. 30 cycles), it was possible to obtain positive mRNA signals for tilapia M ella in most 

of the tissues tested, with the exception of the eyes. This experiment confirms that with a 

large number of cycles it was possible to detect better expression in a wider range of 

tissues. However, no expression was found in tilapia eyes, even under high cycle 

amplification. It may have been that the RNA obtained from the eye cups was insufficient 

to generate good quality cDNA. However, all RNA samples were previously assayed in 

order to confirm RNA quality. Besides these quality controls, these experiments failed to 

demonstrate expression in eye tissue, despite a variety of experimental conditions (25 and 

30 cycles using both set of primers, specific primers for the melatonin receptor and control 

primers for p-actin). This suggests that the eye cDNA was not capable of amplifying 

expression of the transcript. The retina is one of the tissues exhibiting the highest 

expression of melatonin receptor mRNA in other vertebrate species, such as the claw frog 

X. laevis and the zebrafish D. rerio, chicken G. gallus and human H. sapiens (Reppert et 

a l, 1995a, b; 1997; Wiechmann et a l, 1999; Wiechmann and Smith, 2001). However, 

most of the information reported in which melatonin receptors are highly expressed in the 

retina correspond to the MT2 (Mellb) subtype, which is 60% similar to the human MTi 

(Mella). This may suggest that, in contrast to other animal groups, the melatonin receptor 

in tilapia is not playing a fundamental role in the retina. In the case of the amphibians (i.e.
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Xenopus), melatonin receptors have been detected in both the neural retina and retinal 

pigment epithelium (REP), however, the expression of these melatonin receptors 

corresponded to the Mel lb and Mellc subtypes; Mella was not detected. The lack of 

detection of M ella using RT-PCR in Xenopus suggests that M ella is not expressed in these 

tissues (Wiechmann et al., 1999; Wiechmann and Smith, 2001). Similar results were found 

in tilapia in the present study, and this may suggest that limitations of the PCR technique 

may be involved in the failure to detect M ella subtype expression. However, after a second 

attempt to detect the expression of M ella in Xenopus, Wiechmann and Smith (2001) 

reported, for the first time, the expression of Mella in the neural retina and pigment 

epithelium (REP). A higher number of melatonin binding sites were observed in the 

common frog {Rana perezi) especially in the neural retina and brain areas including 

telencephalon, diencephalon and optic tectum. These binding sites were confirmed to be 

part of the M ella subtype (Isoma et a l, 2004).

Wiechmann and colleagues have demonstrated that melatonin receptors in Xenopus 

(Mellb and Mellc) have rhythmic oscillations and the mRNA expression was higher 

during the light phase and considerably lower in the dark phase (Wiechmann et al., 1999; 

Wiechmann and Smith, 2001). This may indicate that both receptors are controlled by a 

circadian clock. On the other hand, Sugden et al. (1999) reported a lack of melatonin 

receptor (MTi) oscillation in the SCN in rats, and suggested that in this particular case, 

MTi was not regulated by an internal clock, at least in rats. Nevertheless, a controversial 

result was reported by Neu and Niles (1997), who reported a strong rhythmic oscillation in 

the expression of the MTi mRNA in rats. This discrepancy in results was attributed to the 

different techniques used in these investigations, even though both teams have used the 

same RT-PCR approach. The detection of melatonin receptor expression in retina is 

difficult and some techniques have failed to achieve the required sensitivity. This problem
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was previously reported by Wiechmann and Smith (2001), when they failed to detect any 

difference in expression levels of melatonin receptors in Xenopus retina using Northern 

blots.

There are some reports in which the numbers of melatonin receptors have been 

evaluated in terms of ontogeny. The results suggest that higher numbers of melatonin 

receptors are found in younger stages, and the levels of mRNA decrease in advanced 

stages. This has been confirmed in fetal human brain in which high expression of MTi was 

detected in the leptomeninges; these results were further confirmed by investigating 

melatonin binding sites in which the concentration of binding sites was higher in younger 

stages (Drew et al., 1997). Similar results were reported by Gauer et al. (1998) working 

with Syrian hamsters. They reported higher levels of MTi mRNA expression and larger 

numbers of melatonin binding sites in the pars tuberalis (PT) and suprachiasmatic nucleus 

(SCN) in newborn hamsters than in eight days postnatal animals. On the other hand, 

Masana et al. (2000) demonstrated the expression of the MTi receptor in the C3H/HeN 

mouse SCN is strongly regulated by an internal biological clock and by the direct effect of 

light. This investigation reported a higher amount of MTi mRNA expression in the dark 

phase and lower levels in the light phase, in mice exposed to a lightidark regime. Mice 

exposed to continuous darkness expressed higher levels of mRNA in the subjective dark 

phase and lower levels in the light phase. This suggested that the expression of MTi 

mRNA was regulated by an internal biological clock. These results were correlated with 

the secretion of the melatonin hormone, which had higher levels during the night and lower 

concentrations during the day. However, a different pattern of expression was found in the 

in situ hybridization, in which low levels were reported during the dark period and high 

levels during the light period. Similar results were found by Poirel et al. (2002), who also 

reported a rhythmic oscillation of the MTi mRNA in the SCN in rats and that this mRNA
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oscillation was not totally correlated with the melatonin binding sites. This also suggested 

that the expression of the MTi receptor in rat is controlled by the circadian activity in the 

SCN or by an internal biological clock. This also indicates that the expression of MTi 

mRNA is not playing a functional role upon the amount of melatonin binding sites. All the 

above investigations may suggest that melatonin was playing an important role in the early 

growth and development of mammalian brains.

Regarding the expression of the melatonin receptors in fish eyes, Shi et al. (2004) 

were able to detect mRNA expression of the Mella receptor in chum salmon. They used 

real time PCR and their results suggested that levels of mRNA expression were high in 

small embryos (9 to 2 days before hatch), but low levels were found in small fry (180 day 

post hatch). However, no significant rhythm was detected in ocular mRNA expression (Shi 

et al., 2004). Using a different approach (reverse transcription), mRNA expression was 

detected in salmon eyes and this time the Mellb receptor was identified (Shi et a l, 2004). 

On this occasion, a clear rhythm in the mRNA expression was observed in fish 180 days 

post hatch. This may indicate that in the case of Mella in tilapias, the expression of this 

receptor in eyes might be lost in the development of the fish (in this experiment adult fish 

were dissected for RNA extraction). Further investigation is therefore required in order to 

confirm this finding and clarify our results. Currently, more advanced technology is 

available, in which more sensitive assays may be used in order to detect small variations in 

mRNA expression. This investigation has only just marked the beginning of a broad 

research area in melatonin receptor research in tilapia and more sophisticated approaches 

should be adopted in order to fully understand the precise spatial and temporal expression 

of these receptors in tilapia.

The expression of the tilapia Mella subtype in peripheral tissues suggested that this 

receptor might be transcribed but perhaps not translated in these structures or it maybe
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possible that this receptor has been translated into a non functional truncated protein as 

previously suggested by Reppert et al. (1995a) for birds and fish. A similar process may 

have occurred in tilapia in which some expression was detected in peripheral tissues; 

however, expression in these tissues was not found in other species reported so far 

(Reppert et al., 1995a). However, Naji et al. (2004) reported the expression of melatonin 

receptors in different peripheral tissues, brain, liver and kidney; these results were 

confirmed using Southern blot hybridization along with weak expression in heart and lung 

tissue. Conway et al. (1997) reported expression and localizations of binding sites of the 

MTi subtype in embryonic kidney cells. Vera et al. (1997) reported melatonin receptor 

binding sites in immature rat testis. Furthermore, high levels of melatonin receptor mRNA 

were found in human fetal kidney by Drew et al. (1998). The expression of melatonin 

receptors was analysed by RT-PCR. High levels of expression were obtained for the MTi 

receptor subtype. Nevertheless, the MT2 receptor subtype was expressed in lower 

concentrations and detected only by Southern blot. These findings were confirmed by in 

situ hybridization and melatonin binding sites.

It may be that the peripheral tissue Mella expression in tilapia is real and that these 

melatonin receptors are playing some function in these tissues. Alternatively, it may be that 

the expression of the Mella in tilapia peripheral tissues was an artefact due to the high 

number of amplification cycles used for the PCR, in which a considerable amount of DNA 

was produced. This might have served as a template for further amplification and resulted

in non-specific results.

The melatonin receptor MTi, or the non-mammalian Mella, is the only melatonin 

receptor found in all vertebrates studied so far. The expression sites of this melatonin 

receptor mRNA are wide ranging and has been discussed earlier in this chapter.
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The precise role of these melatonin receptors in mammals has been widely discussed, 

and it is argued that MTi is playing an important role in the endocrine systems within the 

pituitary gland, particularly in the pars tuberalis, in which the secretion of pituitary 

gonadotropic hormones are regulated by melatonin. The literature suggests that the 

melatonin receptor MTi is directly involved in the function of the hypothalamic-pituitary- 

gonadal axis in mammals, as well as in the circadian response to melatonin (Weaver et al., 

1996; Reppert et a l, 1996b; Dubocovich et a l, 1996; Pang et al., 1998; Goldman, 1999; 

Johnston et al., 2003).

Nevertheless, the same suggestion cannot be applied in fish, in which the highest 

levels of melatonin receptor expression and melatonin binding sites occurred in areas 

totally related with vision, rather than reproduction. These results therefore suggest that 

melatonin is directly involved in the processing of visual information (Davies et al., 1994; 

Ekstrom and Meissl, 1997; Mazurais et al., 1999, 2000). The only evidence of the 

expression of melatonin receptors in fish pituitary have come from the pike in which 

transcription of the M ella and Mel lb subtypes was demonstrated by RT-PCR and 

Southern blot hybridization. These results may suggest possible interaction between the 

melatonin receptor and the reproductive physiology of fish (Gaildrat and Falcon, 2000, 

2002).

In conclusion, the present study has demonstrated that the melatonin receptor 

subtype M ella is present in tilapia, with high levels of mRNA expression in the brain. 

However, further investigation will be required to elucidate with more accuracy the 

specific spatial distribution of the Mella receptor in tilapia. More sophisticated techniques 

are required for the characterisation of this receptor, such as real time PCR, in situ 

hybridization or melatonin binding site assays. Another question which remains unsolved 

is the identification of any rhythm in the expression of Mella in tilapia. This may help
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elucidate the role of the hormone melatonin in the reproduction of this tropical species. 

This investigation has opened a whole world of future investigations and many questions 

remain to be addressed, such as: Do tilapia contain Mellb and Mellc receptors or just 

contain the Mella subtype? Where are the precise expression sites of Mellb and Mellc 

receptors in tilapia? Do these exhibit a rhythmic expression throughout the day, or do they 

remain constant during the day? Finally, where is the precise spatial location of the 

melatonin receptor genes in the tilapia chromosomes?
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6.1 Introduction
Many species of farmed fish exhibit problems associated with reproduction. In 

females for example, there are often problems associated with final oocyte maturation, 

ovulation and final spawning (oviposition). As far as males are concerned, problems are 

usually involved with spermiation, low milt quality, or poor sperm production (Bromage, 

1995; Zahor and Mylonas, 2001).

The Nile tilapia (Oreochromis niloticus) has become an important species for 

aquaculture; it is also an important species for research (i.e. as a research model) (Maclean 

et a l, 2002), in a similar manner to zebrafish (Danio rerio) and medaka (Oryzias latipes). 

Tilapia exhibit certain reproductive traits that collectively make them ideal candidates for 

research into reproductive physiology; for example short spawning cycles, relatively large 

eggs, and resistance to disease (see Coward and Bromage, 2000, Coward et al., 2002). 

Above all, tilapias are able to breed all year round under controlled conditions, allowing 

the production of significant numbers of eggs and larvae. This is an important issue, 

especially in genetics research; it allows the production of several generations in small 

periods of time and easily allows family comparison (genotyping) (Coward and Bromage, 

2000, Coward et al., 2002).

Unfortunately, under farmed and hatchery conditions, tilapias tend to breed in an 

asynchronous manner. This is considered to be the most significant problem associated 

with tilapia aquaculture at present. To circumvent these problems, hatchery operators tend 

to utilize large numbers of broodstock, which undergo strict rotation on a time to time basis 

(i.e. every six months) in order to guarantee the production of a certain number of eggs and 

fry (Macintosh and Little, 1995; Little et al., 2000, Bromage, 1995, 1992; Coward and 

Bromage, 2000, Coward et al., 2002).
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Tilapias are multiple spawners, with high degrees of parental care and reasonable 

fertilization rates; fertilization rates can often reach as high as 70 or 80% under controlled 

conditions according to some authors (Coward et al., 2000), though we do not have 

accurate data from wild fish to allow comparison. The high fertilization capacity of 

tilapias, coupled with their role as reliable research models, could be utilised in order to 

further investigate and perhaps help alleviate known problems encountered in the 

reproduction efficiency of other species with high potential for aquaculture such as gilt- 

head sea bream {Spams aurata) (Zohar et al., 1995), red sea bream {Pagrus major) 

(Watanabe and Kiron, 1995), sea bass {Dicentrarchus labrax) (Carrillo et al., 1995), turbot 

(Scophthalmus maximus) (Suquet et al., 1998), Atlantic halibut {Hippoglossus 

hippoglossus) and Atlantic cod {Gadus morhua) (Kjprsvik and Holmefjord, 1995), and red 

drum {Sciaenops ocellatus) (Thomas et a l, 1995). All of these species exhibit some kind 

of problem in their reproductive activity under culture conditions (Bromage, 1995; Carrillo 

et ah, 1995; Kjprsvik and Holmefjord, 1995; Zanuy et al., 1999, 2001; Dahle et al., 2003; 

Vermeirssen et al., 2004), which unfortunately might have severe consequences upon their 

success as aquaculture species. Many of the problems encountered with these species relate 

to fertilization and early embryonic development (Coward et al., 2002), this is particularly 

so in marine species.

In the present study, we used tilapia as a research model to undertake preliminary 

investigations into the process of egg activation at fertilization to further understand the 

mechanisms involved with this vital developmental process. At present we know little 

about the precise mechanisms involved in the activation of fish eggs at fertilization. It 

might be possible to apply lessons learnt with this model to other finfish species that are 

more difficult to work with but exhibit known problems associated with fertilization, seed 

production, and low survival under culture conditions. Such strategies might also help all
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year-round production, as well as help producers to avoid the collection of wild seed from 

natural stocks, thus damaging natural populations (Bromage, 1992). Presently, the 

commercial culture of many important freshwater, but especially marine, teleosts is beset 

by problems associated with fertilization, hatching and early embryonic development. 

These problems have been particularly acute in certain species leading to the application of 

spawning induction technologies in an effort to optimize production. Increased knowledge 

of the processes of egg activation and fertilization in these groups of fish is likely to make 

a significant contribution to commercial aquaculture (Coward et al., 2002).

6.1.1 Fertilization and egg activation in teleost fish
Problems related to reproduction often arise in cultured fish. These problems are 

sometimes caused by asynchrony between male and female gonadal development 

reproductive behaviour, but are sometimes unexplained. The most common problem 

encountered appears to be the low quality of gametes (sperm and eggs), the lack of 

synchrony between gamete productions, or the inability to achieve oocyte final maturation 

(OFM) and ovulation. A problem associated with any of these processes would inevitably 

result in low fertility rates and poor hatching rates (Bromage, 1995, Bromage and 

Cumaranatunga, 1988). Such problems are often caused by environmental, nutritional or 

culture conditions. Furthermore, increases in mortality are often found during embryonic 

development and larval rearing. Presently, to overcome these problems, farmers rely on the 

use of high numbers of broodstock such that the production of a specific number of fish 

suitable for on-growing farms or market-demand is guaranteed (Bromage, 1995).

Certain commercially important fish species, notably marine species, suffer from low 

fertilization and hatching rates; examples include Atlantic halibut H. hippoglossus 

(Norberg et a/., 1991; Holmefjord et a l , 1993; Bromage et al., 1994), sole S. solea
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(Houghton et ah, 1985), turbot S. maximus (Bromley et ah, 1986), gilthead seabream, S. 

auratus (Carrillo et al., 1989) and some salmonids (Bromage et ah, 1992). Furthermore, 

similar problems often arise when fish are held captive in artificial environmentally 

controlled conditions. These problems have serious ramifications for successful and 

profitable culture. There are numerous possible explanations for these observations.

The success of fertilization is totally dependent on the quality of spermatozoa and 

oocytes. In fish, the egg and sperm quality is determined by several factors such as 

seasonal variation, the nutritional and endocrinological status of the fish, and also genetic 

make up; these are discussed at length elsewhere (Billard, 1990a; Billard et al., 1995; 

Brooks et ah, 1997; Pustowka et ah, 2000). In terms of sperm quality, which is defined as 

being the ability of sperm to successfully fertilise an egg (Rurangwa et ah, 2004), there are 

two principal factors that should be considered: those variables involving sperm motility, 

and those concerning duration of movement (Billard et al., 1995; Kime et ah, 2001). 

However, there are several other variables that should also be considered such as 

spermatocrit, sperm density, osmolarity and pH of seminal plasma, chemical composition 

of seminal plasma, enzymatic activity, adenosinetriphosphate (ATP) concentration, 

motility, morphology and ultrastructure, and fertilising capacity (Rurangwa et al., 2004).

One of the major problems encountered at fertilization time is the short life-span of 

spermatozoa, which is less than a minute in freshwater. In fish, egg activation is enhanced 

by the seminal and ovarian media, which accompanies the gametes. This fluid plays an 

important role in sperm motility and also stabilises osmotic pressure and pH (Billard, 

1990b, Kime et al., 2001; He et ah, 2004; Rurangwa et a l, 2004). In fish, spermatozoa 

remain immotile within the seminal plasma in those species that have external fertilization. 

The spermatozoa become motile at spawning when they are expelled into the surrounding 

media (water, sea water and ovarian fluid). Changes in the ionic and osmotic environment
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of the sperm cells have been identified as two critical external factors that may be 

responsible for initiating motility in fish spermatozoa (Billard, 1990b; He et al., 2004). In 

the Pacific herring (Clupea pallasi), sperm is activated when it reaches the chorion surface, 

particularly near the micropyle (Griffin et al., 1996). In Arctic charr (Salvelinus alpinus), 

sperm exhibit a short activation period of less than 24 seconds; during the first 30 seconds 

post-activation, swimming speed varied between 106 to 21 pm/s. Ovarian fluid enhances 

sperm motility in this species and increases the chances of fertilization success and the 

outcome of sperm competition (Turner and Montgomerie, 2000). In the black bream 

(Acanthopagrus butcheri), fertility and motility rates decrease in freshwater, and these 

rates tend to gradually increase concurrent with increasing salinity (Haddy and Pankhurst,

2000). Teleost fish exhibit an extremely diverse array of reproductive strategies ranging 

from mass spawning in open water to pair-mating in enclosed spaces, as well as internal 

fertilisation (Kime et al., 2001). Although the sperm of externally-fertilizing fishes usually 

exhibits a brief life span of up to a few minutes, in the particular case of the three-spined 

stickleback (Gasterosteus aculeatus), the spermatozoa move for several hours in brackish 

water, and up to at least 10 hours in the presence of ovarian fluid (Elofsson et al., 2003). In 

brackish water, sperm motility in the three-spined stickleback lasted for 165-270 minutes; 

in seawater however, sperm motility lasted for only up to 65 minutes. In the presence of 

ovarian fluid some stickleback sperm remained active for up to 24 hours (Elofsson et a l, 

2003).

In the majority of teleosts, eggs are fertilized externally; this process requires large 

numbers of spermatozoa. The spermatozoa must travel long distances to find the micropyle 

of the egg. Sperm have low swimming capacity in the external environment ( ~ 2 mm at 55 

pm/s on average). In the African catfish (Clarias gariepinus), sperm swimming velocity 

can reach 120 - 140 pm/s and last for 30 seconds in water, and 40 seconds in NaCl
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solutions (Mansour et al., 2002). In sea bass, sperm motility lasts for only 40 seconds and 

the required number of sperm was estimated to be around 66,000 spermatozoa per egg to 

guarantee a maximum fertilization rate (Fauvel et al., 1999). In the common carp 

(Cyprinus carpio), sperm motility lasts for more than one minute, with a swimming 

velocity ranging from 70 -  90 pm/s (Wamecke and Pluta, 2003). In the Atlantic salmon 

(Salmo salar), mean sperm swimming speed varied between 18-127 pm/s and was active 

for 18 to 78 seconds (Gage et al., 2002). In the red porgy (Pagrus pagrus), a species with 

protogynous hermaphroditism, sperm motility lasted from 2 to 4 minutes (Mylonas et a l,

2003). In turbot, sperm motility in fresh sperm lasted 60 seconds with a swimming speed 

of 190 pm/s at 10 seconds post-activation, and 120 pm/s at 60 seconds post-activation 

(Suquet et al., 1998).

In fish with large eggs (i.e. salmonids), the duration of sperm motility is so low that 

the sperm is not able to swim round even half the circumference of the egg (Kime et al.,

2001). Even minor reductions in sperm motility, whatever the cause, could therefore have a 

profound effect on its ability to fertilise the egg (Kime et al., 2001). These factors are 

thought to be the underlying reason for fish species producing large numbers of 

spermatozoa (Billard, 1990b), without such large numbers, fertilization success would be 

reduced dramatically.

Studies on the composition of fish spermatozoa indicate that there is large intra and 

inter-specific variation in sperm concentration, as well as seminal plasma concentration 

(Billard et al., 1995; Rana, 1995; Suquet et a l, 2000; Casselman and Montgomerie, 2004). 

This variation in sperm concentration is thought to be due to genetic variability, 

seasonality, breeding status and reproductive strategy, sampling location (testes or genital 

pore), contamination with urine, or fish age (Scott and Baynes, 1980; McAndrew et al., 

1983; Fauvel et al., 1999; Suquet et al., 2000). Changes in sperm quality, motility and
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seminal plasma composition have been reported during a spawning season in some species 

such as the sea bass and some salmonids (Fauvel et a l, 1999; He et al., 2004). In rainbow 

trout, the source of dietary lipids has been shown to have considerable effect on sperm 

viability and quality after cryopreservation. High levels of cholesterol and 

monounsaturated fatty acids (MUFA) appeared to provide the spermatozoa with greater 

resistance to damage during the freeze-thaw process (Pustowka et al., 2000). The 

nutritional status of sea bass and its effect on reproductive performance has been described, 

in which broodstock growth, duration of spermiation, milt production, milt spermatozoa 

density, sperm motility, milt lipid composition, and fertilization rates, were compared 

during the reproductive season (Navas et a l, 1998; Bruce at al., 1999; Asturiano et al., 

2000, 2001).

In the European sea bass, fish fed with highly unsaturated fatty acid diets exhibited 

long spermiation periods, producing higher milt volumes and milt spermatozoa densities as 

compared with fish fed with un-enriched diets. Although, no differences were found in 

sperm motility and quality, the results from this study demonstrate that male European sea 

bass fed two commercial PUFA-enriched diets exhibited enhanced reproductive 

performance as compared to fish fed a wet diet.

Variations in sperm concentration generally involve a gradual reduction as the 

breeding season progresses, although spermatocrit in rainbow trout has been reported to 

increase over the spawning season (Scott and Baynes, 1980). There is a significant 

variation in sperm quality between virgin- and repeat-spawning cod (Trippel and Neilson, 

1992); these authors also report that hatching success was more variable in virgin 

spawners.

One of the major concerns about marine aquaculture is the “capacity to fertilize” of 

certain species (Bromley et al, 1986; Carrillo et al., 1989; Norberg et al., 1991; Bromage
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et al., 1994). In captivity, fertilization and hatching success rates are often lower than those 

observed under natural conditions. This problem increases when eggs and sperm are 

stripped from broodstock to achieve artificial fertilization. Similar problems are observed 

in freshwater species. In catfish for example, there is a limitation to the hand stripping of 

male gametes, in which spontaneous semen release does not occur and hand-stripping 

becomes practically impossible. To overcome this problem, testicular semen must be used. 

There are some reports of sperm viability in different catfish species such as the African 

catfish (Clarias gariepinus) (Viveiros et al., 2000, 2003; Mansour et al., 2003; Rurangwa 

et al., 2004), the bagrid catfish (.Mystus nemurus) (Muchlisin et al., 2004), the Asian 

catfish (Clarias macrocephalus) (Tan-Fermin et al., 1997), the blue catfish {Ictalurus 

jurcatus), and the channel catfish (Ictalurus puctatus) (Bart and Dunham, 1996). In these 

species, sperm concentration and hatching rates obtained with stripped fluid were very low 

compared to those obtained with intra-testicular semen (Bart and Dunham, 1996; Tan- 

Fermin et al., 1997; Viveiros et al., 2000, 2003; Mansour et al., 2003; Rurangwa et al.,

2004)

Atlantic cod and halibut both inhabit North Atlantic waters, and are both 

commercially important species of fish. However, both species suffer from problems 

associated with fertilization and embryonic development. In cod, spawning activity occurs 

naturally and fertilization rates are reasonably high, but increased fish handling and stress 

results in irregular spawning patterns and low fertilization rates, concomitant with a high 

number of deformities and abnormal embryos (Kjesbu, 1989). Production of Atlantic 

halibut fry is currently based upon artificial fertilization, which involves the manual 

stripping of eggs and milt from mature broodstock. The stripping time in relation to 

ovulation time is important to guarantee a maximum egg yield and ensure good 

fertilization rates (Norberg et al., 1991; Bromage et al., 1992; Holmefjord et al., 1993).
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Even considering ovulatory rhythms from individual broodstock, fertilization rates and egg 

viability remain highly variable in hand stripped halibut (Norberg et al., 1991; Bromage et 

al., 1994; Holmefjord et al., 1993); hatching rates under these circumstances can be as low 

as 1% (Norberg et al., 1991). Similar variation in fertility has been reported for sole and 

turbot reared under captive conditions, under these conditions, fertilization rates for these 

species can be just 50% of the annual egg production (Houghton et al., 1985; Bromley et 

al., 1986).

In sea bass and gilthead seabream, hatching rates are often just only 10 -  15% of the 

total number of eggs spawned (Carrillo et al., 1989). In salmonids, losses of up to 50% are 

common (Bromage et a l, 1992). However, it is important to remember that wild stocks of 

fish also demonstrate high variability in fertilization rates. In the Baltic herring (Clupea 

harengus membras), there is variation from one year to the next one. This may be due to 

variations in the food supply available and other environmental conditions (Laine and 

Rajasilta, 1999). There are also age-related effects upon fertility and sperm quality in some 

teleosts. For example, in the stripped bass (.Morone saxatalis), a three years old fish 

exhibited far superior sperm quality to that 1 or 2 year old fish, both in terms of higher 

sperm production and increased sperm longevity (Vuthiphandchai and Zahor, 1999).

In view of the problems associated with reproduction in many cultured species of 

fish, manipulative techniques are often used to induce spawning, especially in those 

species which exhibit reduced spawning activity under culture conditions, or demonstrate 

pronounced asynchronous spawning periodicity. In some species, the induction of 

spawning is becoming a vital part of their management and it is usually necessary to 

artificially induce ovulation in females by use of hormones. In males, it is also often 

advantageous to stimulate spermiation by hormonal manipulation so that sperm is available 

in plentiful supply at the same time as the eggs. It is also often beneficial to store sperm,
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either refrigerated or frozen, until the female can be stripped, or for transport to other 

establishments (Kime et a l, 2001).

The silver perch {Bidyanus bidyanus) is a freshwater fish native to Australia with 

high potential for aquaculture due to its rapid growth under diverse conditions. This 

species does not spawn naturally under the captive culture conditions encountered in Israel. 

As a result, hormone manipulation is the only viable alternative to allow the completion of 

the life cycle of this species under culture conditions, thereby allowing the constant 

production of eggs and fry (Levavi-Sivan et a l, 2004). In the case of the Asian catfish (C. 

macrocephalus) females complete vitellogenesis within the first year under culture 

condition. However, final maturation and ovulation does not occur unless, hormone 

manipulation is applied (Tan-Fermin et a l, 1997).

The dusky grouper (Epinephelus marginatus) is a commercially and recreationally 

important species in many areas of the Mediterranean Sea. This fish exhibits protogynous 

hermaphroditism, which makes it difficult to obtain a sexually balanced broodstock. There 

is also some reproductive dysfunction in wild dusky grouper maintained in captivity; 

females fail to complete vitellogenesis, resulting in the failure to undergo final oocyte 

maturation (FOM), ovulation and spawning (Marino et a l, 2001, 2003).

The implantation of testosterone pellets into tissues of the European sea bass results 

in an advancement in male gonad maturation, thus indicating the possible participation of 

sex steroids in the acceleration of gonadal differentiation and the stimulation of 

spermatogenesis in pre-pubertal sea bass (Zanuy et a l, 1999). In this species, spawning is 

especially problematic under winter temperatures and changing photoperiods (Carrillo et 

a l, 1995; Zanuy et a l, 1995, 2001). As a consequence, it is important to develop methods 

to control reproductive processes in European sea bass, especially those that concern 

oocyte maturation, ovulation and spawning. Another example of hormone manipulation is
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that reported for the European eel (Anguilla anguilla). This species cannot be bred under 

farming conditions, thus farms base their annual production on the capture of eels from 

river mouths during autumn and winter months. Thus, hormone manipulation studies are 

warranted to develop techniques to induce European eel reproduction for the reliable 

supply of larvae (Perez, 2000).

The failure of cultured fishes to undergo oocyte maturation, ovulation and spawning 

is predominantly due to lack of leuteinizing hormone (LH) release from the pituitary 

during the spawning season. Therefore, exogenous hormone manipulations have proven 

very effective in controlling the reproductive processes of fish in captivity and contributed 

significantly to the efficiency of the aquaculture industry (Zohar and Mylonas, 2001). One 

of the most commonly used treatments includes synthetic agonists of gonadotropin- 

releasing hormone (GnRHa), which stimulate pituitary synthesis and release of LH, thus 

inducing ovarian steroidogenesis and oocyte maturation (Nagahama, 1994). Since GnRHa 

is rapidly cleared from the bloodstream with a half-life of only 10-23 min (Gothilf and 

Zohar, 1991), the elevation of plasma LH is short-lived after a single GnRHa injection. 

Consequently, GnRHa injections are often administered at multiple times over the course 

of a few hours (Prat et a l, 2001) or days (Mylonas et a l, 1992; Dabrowski et a l, 1994). 

Sustained-release GnRHa-delivery systems, that eliminate the need for multiple GnRHa 

injections, have been developed over the last two decades, and have been successfully 

used to induce oocyte maturation, spermiation and spawning in various cultured fishes 

(Fomies et a l, 2001; Zanuy et a l, 2001; Mylonas et a l, 2003).

Spawning induction techniques involve temperature and photoperiod manipulation, 

injection or implantation of exogenous hormones. These techniques, although useful, tend 

to have detrimental effects upon subsequent fertilization, for example, in brown trout 

(Mylonas et a l, 1992), sea bass (Carrillo et a l, 1995), Japanese eel (Anguilla japonica)
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(Ohta et a l, 1996) and the red bellied tilapia Tilapia zillii (Coward et a l, 2000). In brown 

trout injected with gonadotropin releasing hormone analogue (GnRHa), premature 

ovulation occurred with a significant reduction of fertility thought to be due to a disruption 

of final oocyte maturation and ovulation (Mylonas et a l, 1992).

Problems associated with sperm and egg quality contribute greatly to the difficulties 

encountered in the culture of some commercially important fish. Many of the factors 

contributing to these problems are being investigated and addressed. Perhaps one of the 

greatest unknowns in fish reproductive biology is the precise nature of fertilization, the 

union of egg and sperm. We know from the literature that many fish species exhibit 

problems associated with low fertilization rates; in some cases these problems can be 

explained, in other cases not. An increased knowledge of the processes involved in egg 

activation at fertilization in these groups of fish is likely to make a significant contribution 

to commercial aquaculture. Studies of a wide variety of animal species has demonstrated 

that development at fertilization is triggered by an increase in intracellular calcium (Ca2+) 

concentration within the egg that occurs as either a single transient or a series of distinctive 

oscillations depending upon the species under investigation. This increase in intracellular 

Ca2+ activates the egg and also appears to play an important role in later embryonic 

development. Currently, studies of egg activation in teleosts are confined to laboratory 

species such as medaka (O. latipes) and zebrafish (D. rerio). In zebrafish, the egg is 

activated by the presence of spawning fluid; when mature eggs are discharged from the 

ovarian stroma and come in contact with the spawning medium, they are spontaneously 

activated. Even in the absence of sperm, these activated eggs undergo a programmed series 

of developmental steps. These parthenogenetically activated eggs then proceed to elevate 

their chorions, and undergo normal cytoplasmic segregation. After several abortive 

cleavages, however, eggs stop further development (Lee et a l, 1999). In medaka, egg
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activation is achieved by the simple union between gametes. When a sperm reaches the 

egg? both cells fuse and the egg starts a series of biochemical and structural changes in 

both the cytoplasm and chorion. These changes include the resumption of meiotic division, 

exocytosis of cortical alveoli (vesicles) changes in the egg envelope (chorion), oscillatory 

contractions with the accumulation of cortical cytoplasm and the migration of oil droplets 

and pronuclei (Iwamatsu et al., 1995; Iwamatsu, 1998). These findings may suggest that a 

sperm-specific mechanism is involved in medaka egg activation, but not in zebrafish eggs. 

In both cases (zebrafish and medaka), at the moment of egg activation, a calcium transient 

was observed and it appears that this might be the key element in fish egg activation, as it 

is in other animal groups (Gilkey et al., 1978; Fluck et a l, 1991; Lee et al., 1999). The 

present study makes a preliminary investigation into the processes that might occur at egg 

activation in teleost fish, using tilapia as a research model, and using findings and theories 

emerging from other animal groups.

6.1.2 Calcium and its role in egg activation
The calcium ion (Ca2+) is an important component in the physiology of all 

organisms. It has an important role in cell signalling and general metabolism (Parrington,

2001). Ca2+ controls and regulates most of the vital functions in the body. It is required for 

the maintenance of cell structures, control of ion permeability (i.e. Na+ and K+), and plays 

an important role in the regulation of cell mobility and contraction. One of the most vital 

roles of Ca2+ is as a second messenger; a molecule that relays signals received at the cell 

surface such as the arrival of a protein hormones, or growth factor at cell surface receptors, 

to target molecules in the cytosol or nucleus. In this way, second messengers control a 

significant portion of the changes in biochemical activity within cells (Morgan, 1989).

159



Chapter Six

In all species studied thus far, the egg activation is characterised by a remarkable 

increase in Ca in the egg at the moment of cell fusion. This Ca2+ increase is considered to 

be the activator of cell division and further embryonic development (Whitaker and Swann, 

1993; Miyazaki et al., 1993; Strieker, 1999; Parrington, 2001; Saunder et a l, 2002) in that 

it re-activates the oocyte, which has previously been arrested in meiosis. It is broadly 

accepted that this Ca2+ is released by intracellular egg stores (i.e. endoplasmic reticulum, 

ER) (Jones et a l, 1998a, 1998b, 2000; Rice et a l, 2000; Parrington 2001; Howell et a l, 

2003; Swann et a l, 2004 ). The abolition of such Ca2+ increases within the egg by the use 

of chelators (substances that block the passage of Ca2+) results in the inhibition of egg 

activation, and the abolition of cortical granule release, which prevents polyspermy; which 

then causes a failure in the meiotic resumption and subsequent embryonic development 

(Parrington, 2001).

The increase of Ca2+ within the egg is a universal observation during egg activation 

in all living organisms studied thus far. However, the patterns of these Ca2+ signals are 

different between species. In sea urchins, starfish, frogs, and fish (zebrafish), just a single 

Ca2+ wave (or transient) is observed crossing the egg from one pole to the other (Gilkey et 

a l,  1978; Fluck et a l, 1991; Deguchi and Osanai, 1994; Busa and Nuccitelli, 1995; Creton 

and Jaffe, 1995; Strieker, 1996; Fontanilla and Nuceeitelli, 1998; Sardet et a l, 1998; Lee et 

a l, 1999; Strieker 1999; Jaffe et a l, 2001; Bugrim et a l, 2003;). On the other hand, in 

mammals, nemertean worms, annelids and ascidians, the Ca release is characterised by a 

series of periodic increments known as Ca oscillations (Miyazaki et al., 1993, 

Whitaker and Swann, 1993; Swann and Ozil, 1994; Eckberg and Miller, 1995; Strieker, 

1996 1997 1999; Kyosuka et al., 1998; Sardet et a l, 1998; Strieker et al., 1998; 

Dumollard et a l, 2002, 2004). The duration of these oscillations is variable. In mammals 

they last between two and six hours post-fertilization (Swann and Ozil. 1994; Jones et al.,
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1995). These oscillations are suggested to be an essential part of ongoing egg development, 

although the precise nature of their role in development has yet to be fully elucidated. 

Activation rates were improved when multiple Ca2+ oscillations were artificially triggered 

in eggs by means of electroporation (Ozil, 1990; Vitullo and Ozil, 1992; Ozil and Swann, 

1995; Jones, 1998b). To demonstrate the efficacy of Ca2+ oscillations at egg activation, 

Lawrence et al. (1998) used the heavy metal chelator N,N,Nl,Nl-Tetrakis-(2- 

pyridylmethyl) ethylenediamine (TPEN) to reduce the number of oscillations, and 

demonstrated that just a few Ca2+ transients were required to activate the eggs. Hence, it

was demonstrated that these Ca2+ oscillations were indeed important for the egg activation.

21
However, the role of these Ca oscillations in embryonic development remains uncertain 

(Ozil and Swann, 1995; Jones, 1998b; Ozil, 1998). Saunders et al. (2002) further 

demonstrated that Ca2+ oscillations were indeed necessary for egg activation and 

subsequent embryonic development in mouse eggs.

The role of Ca2+ in embryonic development has been investigated by several authors 

and findings suggest that gene activation is highly sensitive to Ca2+ levels and Ca2+ 

signalling patterns within the cell. This suggested that various transcription mechanisms 

are also sensitive to Ca2+ oscillations in terms of amplitude and frequency, and that these 

mechanisms could help to translate Ca2+ signals into gene expression, with further 

consequences on the developing embryo (Dolmetsch et al., 1997, 1998, Leung et al., 1998; 

Gilland et al., 1999).

6.1.3 Models of egg activation
For several decades it has been well accepted that Ca2+ has a vital role in egg 

activation. However, the precise mechanism by which sperm trigger this Ca2+ release was 

only discovered very recently. Prior to this discovery, three main theories were originally

161



Chapter Six

proposed, the Ca bomb or conduit” theory, the “membrane receptor” or “contact” 

theory, and the “sperm factor” or “content” theory (Jaffe, 1991).

6.1.3.1 “Ca2+ Bomb” or “conduit” model
This theory suggested that Ca2+ is introduced into the egg by the sperm. The sperm 

was thought to work as a transporter or channel, which allows the introduction of 

extracellular Ca2+ into the egg (Jaffe 1991; Creton and Jaffe, 1995; Jones et a l , 1998b) as 

shown in Figure 6.1 A. This theory was supported by the fact that the fusion of sperm and 

egg is followed by the release of intracellular calcium in the egg; this might be caused by 

Ca2+-induced-Ca2+ release (CICR) inside the egg caused by a “calcium bomb” initiated by 

the sperm (Jaffe, 1991). These findings have been demonstrated in sea urchin and mouse 

eggs (McCulloch and Chambers, 1992; Lawrence et al., 1997). This theory has major

2_j_
limitations, however, such as the fact that an injection of Ca into sea urchin, ascidian and 

mouse eggs failed to cause any Ca2+ oscillations within the these eggs (Whitaker and 

Swann, 1993; Swan and Ozil, 1994). Furthermore, the removal of extracellular Ca2+ failed 

to block Ca2+ release in the mouse egg (Jones et a l, 1998b). In view of these findings, this 

theory is largely dismissed by the research community.

6.1.3.2 “Membrane receptor” or “contact” model
This model suggested that a ligand on the sperm surface binds to an egg membrane 

receptor and that this receptor then activates a signal cascade by the activation of an egg 

phospholipase C (PLC). This PLC then generates inositol 1,4,5 trisphosphate (IP3) by the 

hydrolysis of phosphatidylinositol 4 ,5-bisphosphate (PIP2). The IP3 released then triggers 

Ca2+ release through the inositol trisphosphate receptor (IP3R) on Ca2+-containing 

intracellular organelles such as the endoplasmic reticulum (Jaffe, 1991; Myles, 1993; 

Lawrence et a l, 1997; Jones et al, 1998b; Parrington, 2001; Coward et a l, 2002). Figure

162



Chapter Six

6 . IB shows a diagrammatic representation of this model. Some studies have supported this 

theory, although to date despite the advances in molecular and genomic biology, a receptor 

of this nature has yet to be identified on the egg of any organism (Kevin Coward, personal 

communication). However, currently there is some convincing research evidence to 

support the existence of the receptor theory in sea urchins (Kevin Coward, personal 

communication), which might also be true of other non-mammalian organisms.

6.1.3.3 “Sperm factor” or “content” model
This theory proposed that a sperm component (“sperm factor”) is responsible for the 

Ca2+ release in the egg at fertilization (Whitaker and Swann, 1993; Swan and Ozil, 1994; 

Swan and Lai, 1997; Fissore et al., 1998; Jones et al., 1998b; Parrington et al., 1998; 

Strieker, 1999; Swann and Parrington, 1999; Coward et a l, 2002, 2003). Figure 6 .1C 

shows a graphic representation of this novel mechanism of egg activation. In the sperm 

factor model, the fusion of the sperm and the egg is followed by an increase of Ca2+ 

release. In the sperm factor model, it is suggested that a sperm-specific PLC enters the egg 

at fertilization and that this PLC hydrolyses PIP2 inside the egg, which creates IP3, which 

in turn releases Ca2+ from intracellular egg stores.

Clinical studies support the “sperm factor” model through an indirect method. Using 

a clinical procedure known as intracytoplasmic sperm injection (ICSI; a common method 

used in human fertility treatments) in humans, sperm are introduced into the centre of an 

egg by a fine needle. Despite bypassing any egg surface interaction, this procedure causes 

normal egg activation in addition to Ca2+ release in the egg, followed by distinctive Ca2+ 

oscillations (Tesarik and Sousa, 1994; Tesarik et al., 1994). Similar results have been 

observed in nemertean worms (Strieker, 1996; Strieker et al., 2000) and in mice (Nakano 

et al. 1997; Knott et al., 2003). The Ca2+ oscillations created by ICSI are identical to those 

reported during normal fertilization.
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A further indirect way to confirm and support the “sperm factor” model is through 

the injection of soluble sperm extracts prepared from boars, hamsters, or humans. Injection 

of these extracts into eggs produces a series of Ca2+ oscillations similar to those reported at 

fertilization in mouse, hamster, human, and cow eggs (Swann, 1990, 1992, 1994; Homa 

and Swann, 1994; Palermo et a l, 1997; Wu et a l, 1997; Fissore et al,., 1998; Knott et a l, 

2002). The injection of sperm extracts into eggs obviously avoids membrane-bound 

receptors and thus supports the “sperm factor” model in a convincing manner.

Sperm extracts of hamster, human, boar, mouse, pig, cow, monkey, frog, chicken, 

and ascidian, and even a flowering plant, can trigger Ca2+ oscillations when injected into 

mouse eggs (Swann, 1990; Homa and Swann, 1994; Kono et a l, 1995; Parrington et a l, 

1996; Wu et a l, 1997, 1998; Parrington et a l, 1998, 1999; Abbott et a l, 1999; Oda et a l, 

1999; Swann and Parrington, 1999; Jones et a l, 2000; Dong et a l, 2000; Parrington et a l, 

2000; Rice et a l, 2000; Strieker et al, 2000; Tang et a l, 2000; Lee et a l, 2001; Li et a l, 

2001; Ogonuki et a l, 2001; Parrington et a l, 2001; Cox et a l, 2002; Runft et a l, 2002; 

Saunders et a l, 2002; Knott et a l, 2003; Kim and Gye, 2003). In all these cases, injection 

of the sperm extract resulted in a pattern of Ca2+ release typically seen at fertilization 

(Swann and Ozil, 1994; Kyozuka et a l, 1998).

Two principal candidates were initially suggested as being the “sperm factor”. The 

first was a 33 kDa hamster sperm protein called oscillin (Parrington et a l, 1996). The 

second candidate was a truncated form of the c-kit receptor called tr-kit; this receptor was 

isolated in mouse (Albanesi et a l, 1996). Both of these candidates, however, exhibited 

certain limitations that proved that they could not be the “sperm factor”. Recombinant 

oscillin protein failed to cause Ca2+ oscillations in mouse eggs when injected (Shevchenko 

et a l, 1998; Wolosker et a l, 1998). Furthermore, tr-kit was located on the mid-piece of the
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sperm, a sperm factor should theoretically be localised immediately behind the acrosome 

in the sperm head (Sette et al., 1997)

In view of these findings, the most likely candidate responsible for egg activation in 

this model is a sperm-specific PLC (Parrington, 2001; Swann et al., 2001). Several 

experiments, using a series of combinations of intact mouse eggs and a cell free sea urchin 

egg homogenate Ca2+ bioassay, have clearly demonstrated that the sperm factor mediated 

Ca2+ release via the IP3 receptor (Parrington, 2001; Swann et al., 2001), and was thus most 

likely to be a PLC of some description.

These findings suggest the intervention of a discrete PLC component (Jones et al., 

1998a, 2000). In others words, the sperm itself contains a PLC rather than being a protein 

which activates a PLC inside the egg (Jones et al., 1998a; Rice et al., 2000). The ability of 

the sperm factor to trigger Ca2+ oscillations was clearly tissue specific, because soluble 

extracts prepared from tissues other than sperm have consistently failed to cause any Ca2+ 

oscillations when injected into eggs (Swann, 1990; Sticker, 1997; Wu et a l, 1997; Jones et 

al., 2000).

It thus appeared that the sperm introduce a specific PLC, which hydrolyses 

intracellular PIP2 to produce IP3, which then binds to the IP3 receptor located on the 

membrane of the endoplasmic reticulum, resulting in the release of Ca from the 

endoplasmic reticulum (Miyasaki et a l, 1993; Swann and Ozil, 1994; Jones et al., 1998a, 

b; Strieker et a l, 1998; Strieker, 1999; Jones et a l,2000; Rice et a l, 2000; Parrington 

2001; Swann et a l, 2001; Saunders et al., 2002; Coward et a l, 2003; Howell et al., 2003; 

Swann et a l, 2004) as shown in Figure 6 .1C.
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6.1.4 Sperm factor research; discovery of a candidate molecule
Prior to 2002, there were 11 different PLC isoforms: PLC(ll-4, PLCy 1-2, PLC51-4,

and PLCe (Dupont et al., 1996; Katan et al., 1998; Kurokawa et al., 2004). However, 

chromatographic evaluation proved beyond doubt that none of these subtypes could have 

been the sperm factor” (Wu et al., 2001). Furthermore, the injection of purified or 

recombinant PLCP, PLC yl, y2 or PLC51 proteins have failed to trigger Ca2+ release in the 

sea urchin egg homogenate, or when microinjected into mouse eggs (Jones et al., 2000; 

Saunders et al., 2002) and ascidians egg (Runft and Jaffe, 2000).

In 2002, a novel mouse PLC was isolated and described by Saunders et al. (2002). 

This new PLC was an entirely new isoform and was named PLCi .̂ This novel PLC subtype 

exhibited all of the described properties that would be characteristic of the sperm factor. 

PLC£ was 1941 bp in length and its protein sequence consisted of 647 amino acids with a 

molecular mass of 74 KDa. PLC^ is the smallest of the entire PLC family and contains a 

series of domains characteristic of PLCs: X and Y domains, which are responsible for 

catalytic activity, an EF hand domain that binds to Ca2+, and a C2 domain which binds 

Ca2+ or phospholipids. Curiously and in contrast to many other PLCs, PLC^ does not have 

a PH domain. These domains bind to polyphosphoinositides such as PIP2 or other proteins 

(Katan et al., 1998). However, this obviously does not compromise the ability of PLC^ to 

bind to PBP2 in the egg; it remains unknown at present how this mechanism occurs in the

absence of a PH domain.

To confirm that the novel PLC^ was indeed the “sperm factor”, Saunders et al. 

(2002) injected complementary RNA (cRNA) prepared from PLC£ into mouse eggs and 

this indeed triggered Ca2+ oscillations, identical to these seen at fertilization. However, the 

injection of cRNA from PLC51, which also lacks a PH domain, failed to trigger any Ca2+ 

oscillations in the egg. The injection of the PLC^ cRNA into mouse eggs resulted in further 

egg development, in which the two cell stage was reached by two days post-injection.
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Morula and blastocyst stages were reached after 4 to 5 days post-injection (Saunders et al., 

2002).

The precise amount of “sperm factor” required to trigger Ca2+ oscillations in an egg 

was previously suggested to be in the range of one to ten sperm (Swann, 1990; Wu et a l, 

1997). However, after densitometry evaluation, Saunders et al. (2002) reported that a 

single mouse sperm contains 20 -  50 fg of PLC^ protein. The minimum level required to 

produce Ca2+ oscillations in the egg similar to normal fertilization is around 4 - 7 5  fg, of 

protein. This work suggested that a single sperm is indeed sufficient to trigger Ca2+ 

oscillations similar to those reported at fertilization (Saunders et al., 2002; Rice et a l, 

2000). Therefore, these findings suggested that the novel PLC£ is by far the most attractive 

candidate to be the long sought-after “sperm factor” (Saunders et al., 2002; Cox et al., 

2002; Kurokawa et al., 2004, Yoda et al., 2004).

Recently, Cox et al. (2002) reported the isolation and identification of human and 

simian (monkey) homologues of PLC£. These sequences represent 608 amino acids and 

641 amino acids for the human and simian PLC£ respectively. Molecular weights are 

therefore 70 KDa for the human and 74 kDa for the simian. Both of these proteins have a 

similar molecular weight of that already reported for the mouse (74 KDa) (Saunders et al., 

2002). Injections of human and simian PLC£ cRNA also produce Ca2+ oscillations in 

mouse eggs (Cox et a l, 2002). These oscillations were similar to those ones already 

reported for the mouse PLC£ (Saunders et al., 2002). In a similar way, the injection of 

human PLC£ triggered cell division in the mouse egg; injected concentrations of 20, 2.0 

and 0.2 pg ml of human PLC were all successful. Cell division was achieved in all three 

concentrations, two-cell division was observed 24 hours post-injection. After that, morula 

and blastocyst stages were observed after 96 hours, but only in those mouse eggs injected 

with 2.0 and 0.2 pg ml of human PLC^ respectively (Cox et al., 2002).
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Egg receptor ■Sperm ligand
PLC
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c

Sperm Factor

Figure 6.1 The three models of egg activation: (A) Ca2+ Bomb” or “conduit model”, (B) 
“membrane receptor” or “contact model” and, (C) “sperm factor” or “content model” 
Ca2+, calcium ion; PLC, phospholipase C or PIP2, phosphatidylinositol 4,5-bisphosphate; 
IP3, inositol 1,4,5-trisphosphate, E.R., Endoplasmic reticulum; IP3R, IP3 receptor (modified 
from Swann, 1990; Parrington et a l, 2000; Parrington, 2001; Coward et al., 2002)
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Egg activation in mammals at least is triggered by a sperm-specific protein factor 

which we now know to be PLC£. It is presently unknown as to whether PLC^, or 

homologues to PLC^, exist in non-mammals. Investigations suggested that in ascidians, 

egg activation could indeed be triggered by a sperm factor, although in this case, the 

sperm factor” is thought to activate an internal egg PLC. In the ascidian model, Ca2+ 

oscillations caused by normal fertilization and injection of ascidian sperm extracts are 

inhibited by injecting the SH2 domain of PLCy (Runft and Jaffe, 2000), suggesting the 

involvement of an egg PLCy.

A “sperm factor” might be involved in the activation of ascidian eggs, although only 

via an additional internal egg PLC. Similar mechanisms involving “sperm factors” might 

be operating in other non-mammalian-species. The injection of sperm extracts prepared 

from many different organisms often has the same effects when injected into the same kind 

of egg, mouse eggs for example. The sperm factor is not species-specific, because the 

injection of sperm extracts from different organisms such as hamster, human, boar, mouse, 

pig, cow, monkey, frog, chicken, ascidian, and even a species of flowering plant, can 

trigger Ca2+ oscillations when injected into mouse eggs. This might suggest that the sperm 

factor is a conserved protein across different species, or at least these organism share 

similar mechanisms and molecules that trigger Ca2+ release in the egg (Parrington, 2001). 

Some schools of thought believe that PLC£, or something very similar, will be present in 

the sperm of all sexually-reproducing organisms. The “sperm factor”, which triggers the 

initial Ca2+ release may be the same in all species; however the molecule responsible for 

subsequent Ca2+ oscillations might be a different PLC isoform (Whitaker and Swann, 

1993). Sperm extracts from marine worms were highly effective in the hydrolysis of PIP2 

and are able to trigger Ca2+ release from intracellular stores; this was the first real evidence
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that the sperm factor mechanism in invertebrates might be similar to that reported for 

mammalians (Howell et al., 2003).

The aim of this chapter was to analyse sperm extracts prepared from a commercially- 

important, model species of fish (the Nile tilapia), and three other commercially-important 

species, and investigate these extracts for their ability to release Ca2+ in an established 

bioassay, and upon injection into a living mouse oocyte. Further analyses involve an 

investigation of whether fish sperm extracts exhibit PLC activity. Findings when related to 

mammalian data, will provide insight into the precise mechanisms operating at fertilization 

in fish eggs.
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6.2 Materials and methods 

6.2.1 Fish supply

Tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus) were obtained from 

the Tropical Aquarium (Institute of Aquaculture) rainbow trout (Oncorhynchus mykiss) 

were obtained from the “Niall Bromage” Freshwater Research Facility of the Institute of 

Aquaculture, University of Stirling. Halibut (Hippoglossus hippoglossus) samples were 

kindly provided by Dr. Carlos Mazorra de Quero at SEAFISH, Marine Farming Unit, 

Ardtoe, Argyll, Scotland.

6.2.2 Preparation of cytosolic sperm extracts
Fresh milt was collected from tilapia (n = 30, 8 ml in total), rainbow trout (n = 15, 15 

ml in total), halibut (n = 2, 25 ml in total) and catfish (n = 1, 10 ml in total). Fish were 

anaesthetized with a solution of 100 g/1 of ethyl 4-aminobenzoate dissolved in ethanol 

(working concentration in water 100 mg/1, with a final concentration of 1:10,000) in order 

to facilitate sperm collection and avoid stress. Milt was extracted by gentle abdominal 

pressure. Milt samples were collected with glass capillary tubes and assessed under a light 

microscope to detect urine contamination (for tilapia only). In tilapias, the collection of 

clean milt is very difficult. To get a clean sample, the bladder must be emptied before 

sample collection and milt must be assessed for sperm motility before use. Clean 

uncontaminated milt was collected in 1.5 ml Eppendorf tubes, (in the case of rainbow 

trout, and for halibut, a clean 50 ml Sterilin container was used) and kept on ice until 

further preparation. Milt samples were first washed m PBS (Phosphate Buffered Saline) 

pH 7.4, and then centrifuged at 800 g for 10 min. The resultant sperm pellet was 

resuspended and washed three times in PBS; in the final wash, 0.2 mM of PMSF 

(phenylmethylsulphonyl fluoride) was added to the PBS.
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Next, the pellet was resuspended in 120 mM KC1 (potassium chloride) 20 mM Hepes 

(N-[2-hidroxyethyl] piperazine—N [2-ethanesulfonic acid]) solution containing an excess 

of chelex 100 (to remove contaminating calcium). Samples were then mixed and 

transferred to a 1 ml cryovial. Samples were then carefully submerged in liquid nitrogen 

(N2). Frozen samples were then thawed at room temperature, and the freeze-thaw process 

repeated 3 or 4 times in order to produce a sperm cell lysate. Sperm lysate was transferred 

to an ultracentrifuge tube and centrifuged at 100,000 g for 1 hour at 4°C. After that, 

supernatant was transferred to a centrifugal filter unit (Centricon®) and then micro

concentration device (Microcon®, Millipore, Corporation) to concentrate the samples to 

approximately 50 pg/pl. The centrifugal filter units were used according to the user guide. 

Sperm extracts were stored at -80°C until further analysis.

6.2.3 Protein concentration
Protein concentrations were measured using a BCA assay (Pierce Chemical Co., St 

Louis, MO, USA) with BSA standards.

6.2.4 The sea urchin egg homogenate bioassay of calcium release
Concentrated fish sperm extracts were first tested for sperm factor activity (which is

the ability to cause Ca2+ release) in an established cell-free Ca2+ bioassay, the sea urchin 

egg homogenate. This assay preserves the structure of the sea urchin eggs’ membrane 

bound Ca2+ stores and utilizes a fluorescent dye (Fluo-3), which in association with a 

fluorimeter, allows the detection of Ca2+ release from internal egg stores upon the addition

of test substances.

The sea urchin homogenate system is well characterized and has been used 

extensively to study Ca2+ release patterns in eggs. Briefly, homogenates (2.5%) of

172



Chapter Six

unfertilized sea urchin (.Lytechinus pictus) eggs (Marinus, Inc., Long Beach, California, 

USA) were prepared using 250 mM potassium gluconate; 250 mM mannitol; 20 mM 

HEPES pH 7.2; 1 mM adenosine triphosphate (ATP); 10 mM phosphocreatine; 10 IU/ml 

creatine phosphokinase; 1/ig/ml oligomycin; 1 mM sodium azide, and 3 mM flou-3. The 

intracellular medium was treated with iminidiacetic acid chelating resin (1% v/v) to 

remove heavy metal contamination before the addition of 1 mM magnesium chloride 

(MgCl2) (Galione et al., 1997; Rice et al., 2000). Free Ca2+ concentration was measured by 

monitoring fluorescence intensity at excitation end emission wavelengths of 490 and 535 

nm using a Perkin- Elmer LS-50B fluorimeter. Fish extracts were injected at 17°C using 

500 p\ of sea urchin homogenate containing the appropriate amount of Fluo-3.

The homogenate system was first tested by injecting 2 pM  inositol 1,4,5-triphosphate 

(IP 3 ). An additional control test involved the injection of 3 /xl (~ 50 pg/pl) of boar sperm 

extract, which was previously shown to be extremely effective in inducing Ca2+ release in 

the sea urchin homogenate (Rice et a l, 2000). Boar sperm extract was prepared as 

described previously, using the same method used for the fish sperm extracts (Rice, et a l, 

2000). Once we had confirmed that the homogenate was responding to positive controls 

(IP 3 and boar sperm extract) in an appropriate manner, the two tilapia sperm extracts 

(Extract No. 1 and Extract No. 2) could be tested.

In each experiment, 3 (40-70 pg/fiY) of tilapia sperm extract could be injected

directly into the sea urchin egg homogenate and monitored for a total time period of 500- 

800 sec. Then the concentrated tilapia sperm extracts were tested for PLC activity. 

Concentrated Nile tilapia sperm extract (2 p\, 40-70 fig/pl) was first incubated with 2 p\ of 

1 mM phosphatidyl inositol 4 ,5-bisphosphate (PIP2) at room temperature for 1 minute. The 

cocktail was then injected into the sea urchin egg homogenate bioassay system (Jones et 

a l, 1998a; Rice et a l, 2000). Ca2+ levels were controlled in this assay by use of
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Ca /EGTA buffers (Jones et al., 1998a) such that levels remained at 160 mM. IP3 

generated via the hydrolysis of PIP2 by a potential cytosolic factor in the fish sperm extract 

would thus induce the release of Ca2+ from internal egg stores, which could be readily 

assayed using the Ca2+ sensitive Fluo-3 dye present in the homogenate.

6.2.5 Microinjection of tilapia sperm extract into mouse oocytes and imaging 
of intracellular egg Ca2+

The ability of concentrated Nile tilapia sperm extract to cause Ca2+ release in a living 

mammalian oocyte was then investigated by micro-injecting small volumes of fish sperm 

extract directly into isolated living mouse oocytes and visualizing resultant changes in 

intracellular egg Ca2+ using laser confocal microscopy. In brief, female MF1 mice were 

super-ovulated by an injection of five international units (IU) of pregnant mares serum 

gonadotropin (PMSG; Intervet). This was followed by an injection of human chorionic 

gonadotropin (HCG; Intervet) 48 h later. Eggs were collected after a further 13.5-14.5 h, 

as previously described by Lawrence et al (1997), and maintained in 100 fi\ droplets of 

Hepes-buffered KSOM media under mineral oil at 37°C. Intracellular changes in egg Ca2+ 

were measured with Fura red-AM (Molecular Probes), and oocytes were injected with 

tilapia sperm extract (Extract No. 1, 40 /xg//d) as previously described (Saunders et al., 

2002 and Swann, 1990). The volume injected (1-3% of egg volume) was estimated from 

the diameter of cytoplasmic displacement caused by the bolus injection. Control 

experiments involved the injection of a Hepes-buffered sperm-extract vehicle buffer (120 

mMKCl, 20 mM Hepes).
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6.2.6 Analysis of sperm extracts prepared from four fish species of high 
commercial value using the sea urchin egg homogenate bioassay

The sea urchin egg homogenate was the used to test sperm extracts prepared from 

four different species of teleost fish (tilapia, rainbow trout, Atlantic halibut and African 

catfish) for calcium release properties. The methodology used in this investigation was the 

same as that detailed earlier (see 6 .5 .4 .)

6.2.7 Use of PCR in an attempt to isolate a tilapiine homologue of 
mammalian PLC^

In order to isolate a tilapia PLC^ homologue, a PCR (Polymerase Chain Reaction) 

approach was carried out, using a set of degenerative primers. The primer sequence was 5’- 

CCA GAG GCA CTA AAA TTC AAA ATA TTA GT - 3’ (forward) and 5’- GTA TAA 

ATG ACA AGA TCA GAT AAG GCC A -3’ (reverse). This set of primers was designed 

using the most conservative regions of the mouse, human and monkey PLC^ (accession 

numbers AF435950, AF 532185 and AB 070108 respectively).

The PCR reaction mixture contained 1 pi of 1.5 mM MgCl2, 0.1 pi Taq DNA 

Polymerase, 2.5 pi 10X reaction buffer, 1 pi of 10 mM dNTPs, 0.5 pi each primer, 18 pi 

water and 1 pi tilapia testis cDNA as a template. PCR conditions were 94°C for 3 minutes 

for denaturation, 35 cycles of 94°C for 30 seconds, 50°C 30 seconds and 72°C for 90 

seconds, then one cycle of 72°C for 5 minutes. When PCR was completed, samples were 

run on a 1% agarose gel electrophoresis.

6.2.8 Use of a tilapia BAC library screen to isolate a homologue of 
mammalian PLC£

Using the same set of degenerative primers above described, a PCR reaction mixture 

contained 1 pi of 1.5 mM MgCl2, 0.1 pi Taq DNA Polymerase, 2.5 pi 10X reaction buffer, 

1 pi of 10 mM dNTPs, 0.5 pi each primer, 18 pi water and 1 pi mouse DNA as a template.
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PCR conditions were 94°C for 3 minutes for denaturation, 35 cycles of 94°C for 30 

seconds, 50°C 30 seconds and 72°C for 90 seconds, then one cycle of 72°C for 5 minutes.

When PCR was completed, samples were run on a 1% agarose gel. After a desired 

PCR product was obtained (2.2 kb for a full length PLC^ probe), PCR samples were 

purified and the resultant DNA used as a probe to screen a tilapia Bacterial Artificial 

Chromosome (BAC) library.

6.2.8.1 Screening of tilapia BAC library
Tilapia BAC library was generated by Katagiri et a l  (2001). Then a non-radioactive 

chemiluminescence method (DIG DNA labelling kit, Roche) was used. The 2.2 kb probe 

(mouse PLC£ probe) was labelled with biotin and was denatured at 94°C for 5 minutes 

followed by a rapid cooling on ice, prior to use in the hybridization with BAC library 

membranes as follows

Briefly, BAC library membranes were initially washed twice with 0.1% sodium 

diethyl sulphate, (SDS) at 84°C in a hot water bath before the hybridization procedure. The 

SDS was discarded and membranes left at room temperature until used. Membranes were 

pre-hybridised with hybridization buffer for 30 minutes at 55°C. Then labelled probes was 

then added and allowed to hybridize overnight with the BAC library membranes at 45°C.

The next day, membranes were washed twice at 45°C for 15 minutes (2X sodium 

saline citrate (SSC), 0.1 % SDS). After that, the membranes were rinsed with washing 

buffer (0.1 M maleic acid, 0.15M NaC12, pH 7.5 and 0.3% (v/v) Tween 20) and then 

incubated for 30 minutes in 100 ml blocking solution (5X working solution was prepared 

by diluting the 10X blocking solution 1:1 in maleic acid buffer) at room temperature in a 

rotary mixer. Then 20 ml of streptavidin solution was added and incubated for 30 minutes. 

Membranes were then washed twice with washing buffer for 15 minutes. Membranes were 

then equilibrated with 20 ml of detection buffer (0.1 M Tris-HCl, 0.1 M NaCl, pH 9.5).
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Membranes were placed with the DNA facing up in a plastic bag and 1 ml dioxetane 

(CSPD) ready-to-use was added. The membrane was then covered and the CSPD spread 

over the whole membrane and incubated for 5 minutes Excess liquid was then removed out 

with a plastic pipette, the plastic bag sealed, and the membranes incubated for 10 minutes 

at 37°C to enhance the luminescent reaction. Finally an X-ray film was exposed for 30 

minutes to the membranes and the film developed. The film was analysed and positive 

clones picked from the library plates and cultured in LB broth medium previously treated 

with chloramphenicol (12.5 pg/ml) to allow preparation of plasmid DNA.

Tilapia BAC plasmid DNA was then used as a template in a PCR using the same 

degenerative primers and PCR conditions as Seccion 6.2.8. When PCR was completed, 

samples were run on a 1% agarose gel. After a -650 -  700 bp PCR product was obtained, 

PCR samples were then purified, clonned and sequenced.

6.2.8.2 Plasmid preparation
Plasmid DNA was prepared using a QIAGEN plasmid mini kit (QIAGEN Ltd. West 

Sussex, UK) After overnight culture, the culture media was spun for 10 minutes at 10,000 

g at room temperature. The bacteria pellet was resuspended in 0.3 ml of PI buffer (50 mM 

Tris-Cl, pH 8.0; 10 mM EDTA; 100 pg/ml RNase A). Then, 0.3 ml of buffer P2 (200 mM 

NaOH, 1% SDS) was added followed by 0.3 ml of chilled buffer P3 (3.0 M potassium 

acetate, pH 5.5). Samples were mixed gently and cell debris removed by centrifugation at 

maximum speed for 10 minutes. The supernatant was then transferred to a fresh Eppendorf 

tube, and samples added to a previously equilibrated with 1 ml of buffer GBT (750 mM 

NaCl; 50 mM MOPS, pH 7.0) QIAGEN-tip 20. After that, samples were washed 4 times 

with 1 ml of buffer QC (1.0 M NaCl; 50 mM Tris-Cl, pH 7.0) and the DNA eluted with 0.8 

ml of buffer QF (1.25 M NaCl; 50 mM Tris-Cl, pH 8.5) DNA was then precipitated by 

adding isopropanol (15% of the original QF volume). Finally, samples were centrifuged at
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10,000 rpm for 30 minutes, the supernatant decanted, and the DNA pellet washed with 

70% ethanol. The DNA was left to dry for 5 to 10 minutes and then eluted in TE buffer 

(10 mM Tris-Cl, pH 8.0; 1 mM EDTA). DNA samples were left overnight at 4°C to 

enhance DNA elution. DNA concentration was estimated by optical density comparing the 

ratio at 260 and 280 nm using a spectrophotometer. Then DNA concentration was double 

checked by agarose gel electrophoresis (1%).

6.2.8.3 DNA sequencing
DNA sequencing was carried out using the ABI Prism Dye-Deoxy terminator 

sequencing kit (Perkin Elmer). Samples were run and analysed using an Applied 

Biosystems DNA Automated Sequencer (Model 377, Applied Biosystems, Foster City, 

CA). The resultant sequences were analysed and aligned using a BLAST search from the 

National Centre for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov).
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6.3 Results

6.3.1 Validation of the sea urchin egg homogenate bioassay
The sea urchin egg homogenate bioassay was successfully generated and reacted to

test samples in an appropriate manner. This bioassay has been used in many different 

investigations and has been validated on several occasions (Galione et a l , 1997; Jones et 

al,. 1998a, 2000; Parrington et al., 1999; Parrington, 2001). In order to verify that the 

bioassay was working properly, the egg homogenate was first tested with boar sperm 

extracts and IP3 injection. The sea urchin egg homogenate responded to injections of 3 /il 

of boar sperm extract (50 fig/fil of protein in a predictable manner). Injection of this sperm 

extract resulted in significant Ca2+ release within the bioassay as shown in Figure 6.2. 

Injection of IP3 also caused similar Ca2+ release (data not shown). These results clearly 

demonstrated that the sea urchin egg homogenate was working properly and it was ready to 

be used with the experimental samples.

6.3.2 Sperm extracts from Nile tilapia induce Ca2+ release in the sea urchin 
egg homogenate bioassay

Cytosolic tilapia extracts were successfully prepared; samples were rich in protein

(protein content ranged between 40 to 70 /rg/jul). Sperm extracts produced a remarkable 

release of intracellular Ca2+ when injected into the bioassay (Figure 6.3 A-B). The amount 

of calcium within the bioassay increased more than two fold just seconds after the injection 

of tilapia extracts and a peak was reached 50 or 60 seconds post-injection. This suggests 

that a sperm factor is present in the sperm of tilapia. This pattern of calcium release was 

highly consistent with those previously reported for other mammalian and worm species 

using the same bioassay (Galione et a l, 1997; Jones et a l, 1998a, 2000; Parrington et a l, 

1999; Parrington, 2001; Rice et a l, 2000).
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Figure 6.2 Calcium release in the sea urchin egg homogenate when boar sperm extract was 
injected. Arrow indicates injection time (From Coward et al., 2003). (Injections were 
carried out by Dr. Kevin Coward).
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Figure 6.3 Calcium release in the sea urchin egg homogenate when tilapia sperm extract 
was injected. A) Sperm extract No. 1 B) Sperm extract No. 2. Arrows indicate injection 
time (From Coward et al., 2003). (Injections were carried out by Dr. Kevin Coward).
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6.3.3 Identification of PLC activity in sperm extracts from the Nile tilapia
Further utilization of the sea urchin egg homogenate bioassay allowed us to

determine that Nile tilapia sperm extracts exhibit characteristic PLC activity. Tilapia sperm 

extract was able to hydrolyse PIP2 and thus create IP3 which caused release of calcium 

from the sea urchin intracellular Ca2+ stores when added to the sea urchin egg homogenate. 

Incubation of the tilapia sperm extracts with PIP2 resulted in the generation of large 

amounts of IP3, which when added to the homogenate resulted in very high Ca2+ release 

(within 25 seconds of injection). The amount of Ca2+ released in the bioassay was two fold 

higher than the initial concentration, as clearly shown in Figure 6.4.

6.3.4 Intracellular Ca2+ oscillations caused by tilapia sperm extracts when 
injected into mouse oocytes

Injection of tilapia sperm extracts into living mouse oocytes (n = 3) caused an initial

large Ca2+ transient, followed by a series of Ca2+ oscillations (4 -  5) within the egg (Figure 

6.5). Free Ca2+ levels within the oocytes approximately doubled within 10 - 20 seconds 

post-injection. The initial transient lasted 150 - 200 seconds and was followed by 4 -  5 

subsequent oscillations (with lower duration of 20 — 30 seconds). The initial calcium 

transient was higher in amplitude, and longer in duration than the subsequent oscillation. 

The frequency of subsequent Ca2+ oscillation declined with time. A similar pattern was 

observed in all of the injected egg (n = 3). Figure 6.6 shows that a control injection of 120 

mM KC1 and 20 mM Hepes was not able to induce Ca2+ release in the mouse oocyte.
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Figure 6.4 Confirmation of PLC activity in tilapia sperm extract. Incubation of fish sperm 
extracts with PIP2 for one minute at low concentrations of calcium, allowed the production 
of large amounts of IP3, which then resulted in a dramatic release of Ca2+ when added to 
the sea urchin egg homogenate bioassay (From Coward et al., 2003). (Injection was carried 
out by Dr. Kevin Coward).

183



Chapter Six

3
V i

"O<L>
V iicS
V i3
CL.

2

1

0
100 200 300 400 500 600 700

B
<DO3
<DO
GO
<D!-<
o3

B
a_3
o
13o
W)txooVioJ
3
13ocdVi

2

1

0
0 100 200 300 400 500 600 700

2

1

0
400200 300100 500 6000 700

Figure 6.5 Oscillations of intracellular calcium in mouse oocytes after injection of 
concentrated tilapia sperm extract (each trace represent a different mouse oocyte) (From 
Coward et a l, 2003). (Injections were carried out by Dr. Mark Larman).
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Figure 6.6 Control injection of Hepes-buffered sperm extract vehicle buffer, showing only 
a single artefact shortly after injection. Arrows indicate injection time (From Coward et al., 
2003). (Injections was carried out by Dr. Mark Larman).
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6.3.5 Induced Ca release in the sea urchin egg homogenate bioassay by 
sperm extracts prepared from a variety of species

The experiments described suggest the existence of a molecule similar to the 

mammalian “Sperm Factor” (PLCQ in tilapia sperm. Evidence for this include the fact that 

extracts were able to release Ca2+ in the sea urchin egg homogenate, that a molecule 

present in fish sperm extract was able to convert PIP2 to IP3, and also that injection of 

sperm extract into mouse eggs caused Ca2+ oscillations. To further investigate the possible 

presence of sperm factor activity in other farmed fish species of high importance to 

aquaculture, sperm extracts were prepared and assayed in an identical manner from four 

different species: tilapia, catfish, rainbow trout and halibut. All of these species were able 

to generate Ca2+ release in the sea urchin egg homogenate. Figure 6.7 shows the different 

traces generated by the injection of 200 pg of protein extract of each species.The highest 

amplitude was generated by tilapia extracts followed by the catfish (Figure 6.7 a - c). The 

lowest amplitude was found in the rainbow trout samples (Figure 6.7 b - d). All four 

species contain a sperm specific molecule capable of generating calcium release in the sea 

urchin homogenate. This is the first time that potential sperm factor activity has been 

reported for these four different species of fish. These species represent different modes of 

life and very different reproductive strategies.

6.3.6 PCR amplification and screening tilapia BAC library
After several attempts to isolate a PCR product using degenerative primers and

tilapia cDNA as a template, no fragment of predicted size was obtained (300 bp) (Data not 

shown). A 2.2 Kb probe was generated of the full length PLC£ in mouse (Figure 6 .8). Once 

this PCR product was purified, it was used as a probe to screen the tilapia BAC library.
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Figure 6.7 Calcium release in the sea urchin egg homogenate induced by different teleost 
sperm extracts: A) Tilapia, B) Halibut, C) Catfish, and D) Rainbow trout. Arrows indicate 
when the injections were made. (Injection was carried out by Dr. Kevin Coward).
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After screening, three positive clones were found in the BAC library membranes 

(data not shown). These clones were picked from their respective BAC plates and then 

plasmid DNA prepared. The tilapia BAC plasmid was used as a template in a PCR. The 

PCR produced a product of around 650 -700 bp. This PCR product was subcloned and 

sequenced. Unfortunately the sequences obtained from this investigation were not related 

to PLC^ or any other signalling molecule. Indeed, sequences obtained appeared to be 

related only to cloning vector (data not shown). However a considerable amount of time 

and effort was spent in this approach and research efforts continue at the University of 

Oxford to attempt to isolate a fish PLC^ homologue. Current strategies include cDNA 

library screening, screens of zebrafish (.Danio rerio) and Fugu (Fugu rubripes) genomes 

and use of zebrafish testis EST (expressed sequence tags) database.

Figure 6 8 Gel electrophoresis showing the 2.2 Kb PCR product used for the tilapia BAC 
library screening. M = DNA ladder (1Kb). Lanes 1- 4 are mouse DNA and lane 5 is the 
negative control.
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6.4 Discussion and conclusion

6.4.1 General overview
This investigation was a preliminary investigation of the possible mechanisms 

involved during egg activation in fish. Egg activation has been extensively researched in 

mammals. However, this investigation allowed the partial elucidation of some of the events 

which take part in the egg activation mechanism in tilapia and make preliminary 

conjectures concerning three other fish species. Currently the knowledge of egg activation 

is little in biology of fish, and existing research only concerns laboratory models like 

zebrafish and medaka. We do know, however, that Ca2+ appears to play a vital role in the 

activation of fish eggs. Calcium waves have been described at egg activation in medaka 

eggs (Gilkey et al., 1978; Fluck et al., 1991) and zebrafish eggs (Lee et al., 1999; Gilland 

et al., 1999). Injections of IP3, Ca2+ and cADPR, caused regenerative Ca2+ release in 

medaka eggs (Lee et al., 1996; Fluck et al., 1999). Injection of cADPR caused Ca2+release 

in egg homogenates prepared from gilthead sea bream (Sparus auratus) (Polzonetti et al.,

2002). This investigation provided the partial characterization of potential sperm factor 

activity in four important aquaculture species. Further research might help to alleviate 

some of the problems observed in egg activation and fertilization in other species of 

cultured fish.

6.4.2 Sea urchin egg homogenate bioassay
The sea urchin egg homogenate bioassay is a well established bioassay which has 

been used to demonstrate Ca2+ release and PLC activity in several different organisms 

(Galione et al., 1997; Jones et al., 1998a; Parrington et al., 1999; Jones et al., 2000; Rice et 

al., 2000; Saunders et al., 2002). This bioassay operates at low Ca2+ conditions (160 mM), 

and provides conditions suitable for the sperm factor, but avoids the activation of other 

PLC subtypes (Rice et al., 2000). A similar bioassay was used by Howell et al. (2003) to
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demonstrate Ca2+ release produced by boar and the marine worm (Chaetopterus 

pergamentacetus) sperm extracts when injected into homogenates prepared from C. 

pergamentacetus eggs. These authors further demonstrated that a sperm PLC might be an 

important mediator for egg activation at fertilization in C. pergamentacetus.

Galione et al. (1997) suggested that Ca2+ release is activated in the sea urchin egg 

homogenate via two mechanisms. The first involves the IP3 receptor mechanism and the 

second utilizes a mechanism involving ryanodine receptors. Galione’s investigation further 

suggested that Ca2+ release is independent of the second messenger IP3 or cyclic adenosine 

diphosphate ribose (cADPR) and that this might suggest that sperm extracts caused Ca2+ 

release by an enzymatic step rather than second messengers (IP3 and cADPR). However, 

Rice et al. (2000) demonstrated that sperm extracts exhibit PLC activity, which is an 

important component for egg activation, and that this PLC activity regulates the production 

of IP3 within the sea urchin egg homogenate.

6.4.3 Identification of PLC activity in sperm extracts from the Nile tilapia
PLC activity is a key element in egg activation. However, PLCs’ involved could be

present in either the egg or sperm cells (Dupont et al., 1996; Carroll et al., 1999; Jones et 

a l, 1998a; Parrington et al., 1999; Shearer et al., 1999; Ciapa and Chiri, 2000; Jones et al., 

2000; Rice et al., 2000; Saunders et al., 2002; Cox et al., 2002; Howell et al., 2003;

Kurokawa et al., 2004).

The present results demonstrate that Nile tilapia spermatozoa do indeed exhibit PLC 

activity, by the sperm extracts’ capacity to hydrolyse PIP2 to IP3 and thus cause Ca2+ 

release in the sea urchin egg homogenate. The same tilapia extract was able to induce Ca2+ 

release in living mouse oocytes.
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Sea urchin eggs also exhibit PLC activity (Rice et a l, 2000). Consequently, Ca2+ 

levels within the assay were controlled by Ca2+/EGTA buffers, as previously used by Jones 

et al. (1998b). Thus, the amount of Ca2+ was constant in the bioassay at all times and that 

the concomitant increment in Ca2+ was caused by PLC activity within the sperm extract 

rather than egg PLC activity (Jones et a l, 1998a, 2000; Coward et a l, 2003.) PLC activity 

was confirmed to be present in tilapia sperm extract; similar results were previously 

reported for both mammalian and invertebrate sperm extracts (Jones et a l, 1998a; Howell 

et a l, 2003). Similar levels of PLC activity have been observed in sperm extracts of the 

marine worm C. pergamentacetus’, this was the first demonstration of PLC activity in 

invertebrate sperm (Howell et a l, 2003).

Mammalian studies show that the ability of sperm extracts to generate Ca2+ release in 

the sea urchin homogenate is sperm-specific. This was clearly demonstrated after injection 

of different extracts prepared from several other tissues such as brain, liver or kidney; these 

extracts consistently fail to generate any Ca2+ release in the bioassay (Jones et a l, 2000).

The most recent studies of PLC subtypes demonstrate that the sperm from some 

mammals contains a novel PLC isoform, PLC^. This novel PLC^ has been cloned in 

mouse, human and monkey (Saunders et a l, 2002; Cox et a l, 2002) thus far. PLC^ was 

identified as the physiological trigger of egg activation and further embryonic development 

in mammals. However, further investigations are required in order to isolate a non

mammalian homologue of PLC^. Efforts are already well underway, particularly with 

regard to the isolation of homologue of PLC^, or similar molecule in fish sperm, as this 

will make a significant contribution to our understanding of egg activation in teleost fish, 

which at present, is scant at best.
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6.4.4 Tilapia sperm extracts cause oscillation in intracellular Ca2+ when 
injected into mouse oocytes

Sperm extracts prepared from tilapia triggered a series of Ca2+ oscillations in 

cultured mouse oocytes. This is the first evidence to show that Ca2+ oscillations can be 

triggered in mouse eggs by a species of fish (Coward et a l, 2003). The pattern of these 

Ca2+ oscillations (i.e. amplitude and frequency) were similar to those previously reported 

when mouse eggs were injected with a variety of sperm extracts generated from boar, 

mouse, hamster, bovine, monkey, chicken, pig, frogs, ascidians, marine worms and even 

plants. Mouse eggs can be activated by sperm from several different species including 

hamster, rabbit, pig human and fish (Kimura et a l, 1998). Similar Ca2+ transients were 

observed when somatic cells (i.e. rat hepatocytes) were injected with hamster sperm 

extracts (Berrie et a l, 1996), or when porcine sperm extracts were injected into nemertean 

or bovine oocytes (Strieker et a l, 2000; Knott et a l, 2002). Similar results have also been 

observed in ascidians (Kyozuka et a l, 1998; Runft and Jaffe, 2000). Jones et a l  (2000) 

further demonstrated that boar sperm extract, when injected into intact mouse eggs, caused 

a series of six Ca2+ transients; these transients were observed from 600 seconds post

injection.

When injected into mouse oocytes, tilapia sperm extracts exhibited initial Ca2+ 

transients which lasted for ~ 150 - 200 seconds; these were similar to those initial Ca2+ 

transients produced by extracts of bovine, boar, chicken, frog and plant origin (Dong et a l, 

2000; Li et a l, 2001). A larger initial Ca2+ transient was reported when hamster and 

porcine extracts were injected into mouse oocytes; the duration of the initial transients 

lasted 5-6 minutes for the hamster extract, and more than 10 minutes for the porcine extract 

respectively (Oda et a l  1999; Lee at al., 2001). Nevertheless, the subsequent transients 

were similar in amplitude but smaller in frequency. Similar Ca2+ transients were observed 

when mouse oocytes were injected with cRNA isolated from spermatogonia cells of
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mouse, hamster, human and monkey (Parrington et a l , 2000; Saunders et a l, 2002; Cox et 

a l, 2002). The injection of mRNA from hamster liver, skeletal muscle, brain and liver 

failed to produce Ca2+ transients when injected into mouse oocytes, suggesting that the 

ability to cause Ca2+ release, or Ca2+ transients, is found only in spermatic cell or testis 

tissue (Parrington et a l, 2000). Our present findings were in total accordance to those Ca2+ 

traces already reported in other studies (Oda et a l, 1999; Dong et a l, 2000; Li et a l, 2001) 

using sperm extracts prepared from other organisms.

6.4.5 Induced Ca2+ release in the sea urchin egg homogenate bioassay in 
response to the injection of sperm extracts prepared from a variety of commercially 
important fish

In this study, four different teleost species were tested for their ability to cause Ca2+ 

release in the sea urchin egg homogenate. Rainbow trout, halibut, and catfish also have the 

ability to release Ca2+ in the cell free bioassay, thus concurring with the tilapia results 

discussed earlier (Coward et a l, 2003). The four sperm extracts caused a rapid increment 

in Ca2+ when injected into the sea urchin egg homogenate. The pattern of Ca2+ release was 

similar to those traces previously reported for hamster, human, boar, mouse, monkey, 

ascidians (Swann, 1990; Parrington et a l, 1996; Galione et a l, 1997; Jones et a l, 1998a; 

Parrington et a l, 1998, 1999; Swann and Parrington, 1999; Jones et a l, 2000; Rice et a l, 

2000; Cox et a l, 2002; Saunders et a l, 2002).

A similar mechanism of egg activation is likely to exist amongst the four teleost 

species investigated. The capacity to generate Ca2+ release in the sea urchin bioassay was 

similar when the four species were compared, despite the fact that these species exhibit 

different reproductive strategies, and have different modes of life. All four of these species 

share a similar pattern of egg activation, in which egg activation is likely to be triggered by 

a sperm-derived PLC in a manner similar to that seen in mammalian sperm. However,
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more investigations are required to totally understand the precise mechanism involved in 

these species. PLC activity must be assayed in these species to confirm that a PLC 

molecule is involved. Further studies might include the use of pharmacological inhibitors 

to investigate whether the calcium release seen in the homogenate in response to our fish 

sperm extracts is due to signalling mechanisms including IP 3 , cADPR, or nicotinic acid 

adenine dinucleotide phosphate (NAADP), or indeed whether we are dealing with an 

entirely new Ca2+ mobilising molecule.

6.4.6 PCR approach for tilapia PLC£ isolation and tilapia BAC library 
screening

Intense investigation involving degenerate PCR and tilapia BAC library screening 

failed to isolate a homologue of PLC£, from tilapia. Several attempts were made to isolate 

this novel molecule in tilapia. This investigation is still on-going and has been carried out 

as an on-going collaborative project with researchers at the Department of Pharmacology, 

University of Oxford. Present strategies include cDNA library screening, screens of 

zebrafish and fugu genomes and the use of zebrafish EST database.

In conclusion, tilapia sperm contains a molecule that exhibits PLC activity, is able to 

release Ca2+ in the sea urchin egg homogenate bioassay, and induces Ca2+ oscillations 

when injected into mouse oocytes. Sperm extracts from Atlantic halibut, African catfish 

and rainbow trout also had the ability to release Ca2+ in the bioassay. Collectively, these 

data suggest that these fish species, particularly, the tilapia, possess a molecule similar to 

the mammalian PLC£, although further pharmacological test are required to show whether 

the signalling mechanism involved in fish used IP 3 receptor or not. Additional attempts to 

elucidate a PLC^ homologue from tilapia have failed, thus far, but research continues to 

address this. Isolation of a homologue of PLC^ in fish is likely to make a significant
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contribution to both general reproductive biology, and our knowledge on egg activation in 

fish.
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This Thesis describes the effects of the photoperiod on the reproductive biology of the 

Nile tilapia Oreochromis ?iiloticus, the melatonin profiles in these fish reared under controlled 

conditions under different light regimes. To fully understand the relationship between 

photoperiod, melatonin levels and tilapia reproduction, the molecular characterization of the 

melatonin receptor was described and its tissue distribution analysed. This investigation has 

opened up an interesting research area in which tilapia has become an important species as a 

research model that obviously responded to light. This is the first information on plasma 

melatonin levels, melatonin receptors identification and distribution and its relationship with 

the environmental conditions (i.e. photoperiod and light intensity) in this species. The 

characterization of melatonin receptors has given us an insight into the link between light 

perception and reproductive physiology in a tropical fish species. This study is also of 

practical significance for the aquaculture industry. The photoperiod results could be directly 

transferred to the hatchery operators and should help to increase the efficiency of seed 

production of this species.

Furthermore, this multidisciplinary doctoral study also contributed to understand the 

process of egg activation in several species in collaboration with the Department of 

Pharmacology, University of Oxford. Results have shown for the first time the presence of 

sperm factor and PLC activity in tilapias and other important species for aquaculture, such as 

the rainbow trout, the Atlantic halibut and the African catfish. These results support further 

our understanding of the egg activation mechanism in fish species and will help to improve the 

reproduction and performance of such species. Moreover, this investigation provides new 

tools that can be used in ploidy manipulation.
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7.1 The effect of photoperiod on tilapia reproduction
In this study, four different light regimes were investigated, these included short

(6L:18D), normal (12L:12D), and long daylength (18L:6D) and continuous illumination 

(24L:0D). The reproductive performance of tilapia was enhanced by light manipulations. Long 

daylength (18L:6D) significantly improved egg production (58%), increased fecundity and 

relative fecundity in fish. However, egg size was smaller than those produced by fish exposed 

to normal daylength (12L:12D). The egg production reported as a number of eggs per month 

or accumulated over the time showed that long daylength was producing a constant supply of 

eggs. Spawning activity was also studied, using the Inter-Spawning-Interval (ISI) as an 

indicator of spawning synchrony. The shortest ISI was found in fish held under long 

daylength, these fish spawned every two weeks, and this resulted in a constant spawning 

production of 15 spawns per month in this treatment (i.e. 2 spawns per fish per month). The 

longest ISI was obtained in fish held under normal daylength (20 days). In this study, the 

environmental conditions and especially temperature was constant for all treatments, thus the 

only variable that could have an effect on tilapia reproduction was the daylength. This study 

reported that fish reared under normal daylength produced significantly bigger eggs and were 

characterised by the longest ISI. This was suggested to be attributed to the fact that these eggs 

have spent more time in the gonad, increasing the duration of the vitellogenesis and also the 

accumulation of vitellogenin from the liver. On the other hand, eggs produced by fish held 

under long photoperiod remained in the gonad for a shorter period of time, which could 

explain why they accumulated less vitellogenin and were smaller. Thus, this is the first study 

to suggest that egg size is directly influenced by the ISI.

Photoperiod manipulations have been successfully applied in many important fish 

species for aquaculture. For example: in pink salmon, initial spawning and spermiation

197



Chapter Seven

activity was advanced by six months, when fish were exposed to long days (18L:6D) during 

March (1990) and January (1991) and short days (6L:18D) during September (1990) and April 

(1991) respectively (Beacham and Murray, 1993), in Masu salmon, the use of long daylength 

(18L:6D) or continuous illumination at the beginning of the reproductive cycle followed by a 

change to short daylength (6L:18D) advanced maturation and additionally one month of 

photoperiod manipulation was necessary to trigger maturation in this species (Takashima and 

Yamada, 1984), in Atlantic salmon, long daylength or continuous illumination are commonly 

used to arrest oocyte development and thus avoid gonadal maturation (Taranger et al., 1998, 

1999), in Atlantic halibut and cod the use of constant illumination was used to advance, delay 

or inhibit maturation depending of the time of exposure (Bjornsson et al., 1998). Use of 

constant long daylength in sea bass resulted in 2 -3 months delay of spawning activity 

(Carrillo et al., 1989), and carp matured within 3 -4 months of exposure to long daylength 

(16L:8D). However maturation was delayed when fish were exposed to normal daylength 

(12L:12D). Additionally, the use of long daylength increased fish maturation at any time of 

the year (Davies, 1986), and finally, the use of extended photoperiod during the first winter in 

turbot resulted in a significant increment of fish growth and maturation (Imsland et al., 1997)

In tilapia, Ridha et a l, (1999) and Ridha and Cruz (2000) reported that long daylength 

with strong light intensity is required to enhance tilapia seed production. However, no reliable 

information was reported regarding total fecundity and ISI. In Ridha’s investigation, fish were 

reared in groups, making the assessment of individual female performance difficult. In the 

study, tilapia broodstock were individually tagged and stocked allowing an accurate record of 

all individual spawning activity and egg production. Our results are in total accordance with
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Ridha and Cruz (2000), in which a greater number of eggs were obtained under long 

daylength.

The information generated in this study could be easily transferred to hatcheries, 

allowing a more reliable seed production. The use of photoperiod as a tool to enhance 

spawning activity may help to overcome the problems reported in some places, in which due 

to changes in temperature and photoperiod, the spawning activity is characterised by a marked 

seasonality. In tilapias, to avoid problems associated with early maturation, several methods 

have been described, such as hand sexing, the use of predator fish, and hormone sex reversal. 

However, the most successful method currently used to generate all-male populations in 

tilapia culture is the hormone sex reversal; this method has some limitations, such as the 

necessity of high numbers of same age first-feeding fry suitable to hormonal treatment. To 

overcome this problem, hatchery operators rely on large numbers of broodstock in order to 

guarantee a large supply of the same age first-feeding fry. Thus the use of photoperiod could 

be an effective tool to reduce the broodstock requirement by increasing individual 

performance to produce a desired number of fry suitable for hormonal treatment.

7.2 Plasma melatonin levels in tilapia
Plasma melatonin levels were also studied in tilapia in order to investigate how fish

perceived photoperiod variation. There was variation in the shape of the melatonin profiles 

reported, especially when fish were reared under different light regimes. The variation 

encountered in these profiles was attributed to low numbers of fish were sampled at each 

sampling point (2 or 3 fish). However, the long daylength regime (18L:6D) was characterised 

by low plasma melatonin night time concentrations in comparison to the other treatments.
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Although, some variation in melatonin levels had been observed, most of the profiles 

generated under different light regimes displayed maximum night time levels of 50-80 pg/ml 

with a quick increase within 1 or 2 hours after the onset of the dark period.

Overall, results have shown that melatonin levels in tilapia are low compared with other 

fish species and especially, salmonid species. The melatonin production in tilapia is clearly 

regulated by the diurnal variation of light. The patterns of melatonin production in tilapia are 

similar to those already reported, in which a high melatonin biosynthesis is reached just after 

the onset of the night period, and then levels remains constant throughout the night and finally 

decrease to basal levels soon after of the start of the light phase. Fish perceived light and that 

melatonin levels responded to that light perception. However, the involvement of melatonin in 

the control of tilapia reproduction is still uncertain and needs to be further investigated. 

Interestingly, the fish that exhibited the highest melatonin levels during the night, produced 

the lower fecundities, and spawned less frequently than fish that exhibited low melatonin 

levels (18L:6D). This may suggest that other internal factors are linked to this process. This 

research allowed us to partially understand the melatonin rhythmicity in tilapia, however, this 

study suggested that further research is needed, using a higher number of fish and also a more 

reliable assay.

The possible explanation of this variation of melatonin levels and tilapia reproduction 

could be attributed to the natural distribution of this fish. In tropical species, the onset of the 

reproductive season is basically triggered by changes in water temperature, water quality or 

may be influenced in some cases by the rainy season. In this study, we used tilapia as a 

research model; this is a typical tropical species. It is possible that this fish has no answer to
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photoperiod variations under natural conditions because photoperiod variations in the tropics 

are low.

However, in this study, fish reared under short daylength (6L:18L) exhibited low 

reproductive performance and high melatonin levels. This may suggest that fish have 

experienced a very strong change in photoperiod and made them secrete more melatonin and 

this could be an issue in the internal regulation of reproduction. However, on the other hand, 

fish exposed to long daylength (18L:6D) have not shown the same effect. In this case 

melatonin levels were lower and their reproductive performance was far better. This may 

indicate that tilapias are more sensitive to short days than long days. Another possible cause 

was the history of this fish. Before the beginning of this experiment, fish were kept under 

controlled conditions of temperature and photoperiod, however, this original photoperiod was 

(12L:12D). This may explain why fish exposed to short daylength were more affected by 

photoperiod than fish exposed to long daylength (18L:6D). High melatonin levels were 

reported in fish exposed to short days and low melatonin were exhibited by fish reared in long 

daylength treatments. Thus, this high level of melatonin may have some effects on tilapia 

reproduction in the sense that fish have interpreted this short photoperiod as inappropriate time 

for reproduction.

A similar pattern in egg size was observed in which fish reared under short daylength 

produced bigger eggs than fish reared under long daylength. Bigger eggs will result in higher 

levels of fry survival. Variation in photoperiod is accompanied by variation in water 

productivity (phytoplankton and zooplankton). In this way under short days the productivity is 

lower and the opposite will occur under long days. This may suggest that tilapia exposed to
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short photoperiod may have produced low numbers of fry, but these fry will have better 

chances of survival. However, those fish exposed to long photoperiod produced more eggs but 

of smaller sizes which result in small fry, however these fry are produced under long days and 

high quantities of food are more likely to be available.

In this Thesis the comparison was made with salmonids, because little information on 

photoperiod, melatonin and reproduction in tropical species is available. However, the 

salmonid species show a totally different reproductive strategy and habitat preferences. 

Salmonid species are temperate species, which present just one reproductive cycle in a year. 

These species are naturally distributed in temperate regions in which pbotoperiod changes are 

very strong. Thus these (salmonid) use the light information to synchronise the spawning 

activity (Bromage et al., 2001), and the melatonin levels exhibited by this species are higher 

than tropical species.

A reduction in melatonin levels during the night-time, is highly efficient in reducing 

grilsing in Atlantic salmon (Porter et a l 1999), although the link between melatonin and 

reproductive physiology had not yet been discovered. Salmon held under night imposed 

illumination exhibited just 6% grilsing, however, those fish reared under ambient condition 

presented 61.5% grilsing. The use of continuous light increased the growth in these fish. This 

suggests that melatonin levels have to be above a certain threshold in order to initiate fish 

reproduction. Low melatonin levels reported by Porter et al, (1999) m Atlantic salmon, could 

be part of the signalling pathway by which reproduction had been suppressed in most of the 

fish. This study, using a totally different species as a research model, suggests that melatonin 

may not play a crucial role in the control of reproduction. Fish held under continuous 

illumination, with low melatonin levels (10 -  20 pg/ml) throughout the experiment and which
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have exhibited a lack of rhythmic variation in melatonin levels between day and night, 

produced the second highest fecundity, spawn numbers and short ISI. Overall this light regime 

was successful enhancing reproductive activity, compared with short and normal daylength 

trials. These results may suggest that melatonin production in this fish was not necessary to 

maintain spawning activity. The melatonin levels reported for those fish held under continuous 

illumination were different from Porter et al., (1999). There is a large variation in melatonin 

production between species and this variation may be related to the environmental background 

of each species and its evolution.

Tilapia may possess a similar mechanism controlling reproduction than that reported for 

the stickleback fish, which like tilapia shows a better reproductive performance on longer 

days. However, when melatonin was used to see whether it has any effect on its reproduction, 

no positive results were found. This may indicate that in the three-spined stickleback, 

melatonin is not playing any direct role upon fish reproduction, although, this species 

exhibited a great response to light stimuli (Wootton, 1973 ab, Wootton and Evans, 1976; 

Mayer et al., 1997b, Bornestaf et al., 2001).

Thus, further investigations are needed in order to elucidate the importance of melatonin 

in tilapia reproduction. Studies investigating the effect of constant darkness for example on 

spawning activity are needed in order to confirm the present results and further understand the 

relationship between melatonin and tilapia reproduction. This study suggests that some other 

molecules and genes at the pineal, retina and brain are probably involved in the transduction of 

light stimuli, which control or regulate reproduction levels in tilapia and other species. Also 

further investigations are needed in order to elucidate the relationship between melatonin, sex 

steroids and tilapia reproduction.
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7.3 Melatonin receptor
A partial sequence of the Mel la  receptor was isolated in tilapia; this allowed us to

further investigate the specific tissue distribution in tilapias. Mel la  was shown to be highly 

expressed in the brain, however, it was difficult to determine in which precise region of the 

brain this receptor was more abundant as the brain was studied as a whole. However, using the 

in situ hybridization technique in fish, several melatonin binding sites have been 

demonstrated. These binding sites are widely distributed in the brain, however, the highest 

concentration was found in the visual region located in the optic tectum, nucleous rotundus, 

pretectum and dorsal thalamus. Some binding sites were also found in the gustatory regions in 

the hypothalamus, preoptic area and cerebellum. (Davies et al., 1994; hgo et al., 1994, 1997; 

Ekstrom and Meissl, 1997; Gaildrat et al., 1998; Mazurais et al., 1999, 2000; Amano et al., 

2003a, 2003b)

Our study also revealed that the gonad did not show any expression of Mel la, similar 

results were found for most of the peripheral tissues. This investigation supported the results 

on plasma melatonin levels and together suggested that in tilapia, there is no real effect of 

melatonin in reproduction. There was a lack of Mel la  expression in gonads. The high 

expression of Mel la in the brain may suggest that the possible link between melatonin and 

fish reproduction is a complex process, which may involve some other biochemical pathway 

in the fish brain. Additionally, Mazurais et al. (2000a) also reported that melatonin has no 

direct effect on the liver estrogen receptor (ER) and vitellogenin in rainbow trout. These 

authors also reported that the Mel la and Mel lb receptors are not expressed in the liver.
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The only study in which a melatonin receptor has been found in fish pituitary came from 

Gaildrat and Falcon, (2000), they reported the expression of melatonin clone 2.6 in pike 

pituitary gland. However, no expression was detected in the ovaries, liver and intestine.

More investigations are needed in order to physically localise expression of the 

melatonin receptor and some others hormones receptors such as the GnRH. The in situ 

hybridization approach may help to elucidate the exact location of these receptors and their 

relationship to other signalling pathways that might influence fish reproduction. Thus, a series 

of investigations involving both reproductive physiology experiments and molecular biology 

assays may help to understand in a better way the relationship between melatonin, the brain 

and reproduction. It may be helpful to try to demonstrate if there is any increase in melatonin 

receptors in the day or during the night and then extrapolate this to GnRH receptors and see 

whether these is a direct relationship between receptors oscillation and their abundance in the 

fish brain.

Recent genomic advances mean it is now possible to identify and characterize patterns 

of gene expression among the site of gene that control circadian rhythms in relation to photo 

stimulation and regulate the physiological response such as reproduction.

The relationship between melatonin -  melatonin receptors and reproduction is not 

simple, and complex pathways are involved in this regulation. Another possible factor playing 

part in this is the clock gene, which is responsible for several physiological functions, such as 

the regulation of body temperature, sleep-awake mechanisms and reproduction. It is also 

believed that the clock gene is also involved in the regulation of biological rhythms in the 

organism, including melatonin activity (Delaunay et al., 2000).
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7.4 Mechanisms of egg activation in commercially important species of teleost fish
A continual growth in aquaculture activity has been observed over the last two decades,

yet the mechanism of egg activation and fertilization is still unclear. In aquaculture, many 

species suffer problems associated with low fertilization, hatching and early embryonic 

development. However, the most common problem is low fertility, for example in Atlantic 

halibut it was reported that only 1% of the fertilized eggs hatched (Norberg et al., 1991). 

Similar levels of fertility have been reported for sole and turbot reared under captive 

conditions, in which fertilization rates can be reduced to 50% of the annual egg production 

(Houghton et al., 1985; Bromley et al., 1986). In this study we try to describe the mechanisms 

of egg activation in tilapia. After this was achieved this investigation was extended to three 

other important species for aquaculture. This investigation will increase the knowledge of the 

mechanism of fertilization and egg activation in fish and could help to overcome some of 

these problems.

The use of the sea urchin egg homogenate bioassay, allowed us to partially elucidate the 

mechanisms of egg activation in tilapia. Results demonstrated that tilapia sperm contain a 

molecule which triggers the release of calcium in the bioassay. This was confirmed by the 

PLC activity found in tilapia sperm extract, this extract has the ability to hydrolyze PIP2 into 

PI3, and when injected into the bioassay has triggered calcium release. The tilapia sperm 

extract also has the ability to trigger calcium oscillation when injected into live mouse 

oocytes. These patterns of calcium oscillation were similar to those reported for different 

organisms such as marine worms, ascidians, sea urchin, chickens and amphibians.

In order to expand this investigation, additional extracts were made from the Atlantic 

halibut, African catfish and rainbow trout. Sperm extract of these species also had the ability 

to trigger calcium release, when injected into the bioassay. Although a lack of information is
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observed regarding PLC activity in these species. A similar mechanism of egg activation is 

thought to be present in these three species.

The molecule responsible for egg activation has been isolated in mice, humans and 

monkeys. This novel molecule was named PLC^. In this investigation, several unsuccessful 

attempts were made to isolate a PLC^ homologue in tilapia. This was the first attempt to 

isolate a non-mammal homologue of PLC^.

The isolation of non-mammal PLC^ in particular a teleost one, may make a large 

contribution to the development of aquaculture, this novel molecule can be used to trigger egg 

activation without the physical sperm. This will be of great interest in the further development 

of aquaculture biotechnology, especially in the ploidy manipulation such as the production of 

gynogenetics organisms. In this case, the UV irradiation of the sperm will be eradicated from 

this protocol and just a single injection of a novel molecule will trigger the egg activation 

without the paternal genetic information or the inconvenience of any male nuclear organelle.

Another possible application could be the optimization and enhancement of fish sperm 

and thus an increment in fertilization rates which could be possible once the total structure and 

function of this novel molecule has been elucidated and described.

More investigations are needed to further isolate this novel molecule in teleost, and its 

possible implication in reproductive physiology, not just in fish. This research has many 

possible applications and could be applied in order to solve infertility problems in humans, in 

which there is more information and technology and commitment is greater.
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Abstract

Established studies in a variety of organisms including amphibians, fish, ascidians, nemerteans, echinoderms, mammals, and even 
a species of flowering plant, clearly demonstrate that an increase in intracellular egg calcium is crucial to the process of egg acti
vation at fertilization. In echinoderms, egg activation appears to involve an egg phospholipase C gamma (PLCy). However, nu
merous studies in mammalian species suggest that calcium is released from internal egg stores at fertilization by a sperm-derived 
cytosolic protein factor. Recent studies in the mouse have identified this sperm-derived factor as being a novel sperm-specific PLC 
isoform with distinctive properties (PLCQ. Homologues of PLCC, have since been isolated from human and cynomolgus monkey 
sperm. In addition, sperm factor activity has been detected in non-mammalian species such as chicken, Xenopus, and a flowering 
plant. Here we report evidence for the existence of a similar sperm-derived factor in a commercially important species of teleost fish, 
the Nile tilapia Oreochromis niloticus (L). Using an established bioassay for calcium release, the sea urchin egg homogenate, we 
demonstrate that protein extracts obtained from tilapia spermatozoa exhibit PLC activity similar to that seen in mammalian sperm 
extracts, and also induce calcium release when added directly to the homogenate. Further, tilapia sperm extracts induced calcium 
oscillations when injected into mouse oocytes.
© 2003 Elsevier Science (USA). All rights reserved.
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Activation of the egg at fertilization, in practically all 
species studied thus far, is initiated by a sperm induced 
increase in free cytosolic calcium (Ca2+) concentration 
in the egg [1]. This Ca2+ rise is essential for successful 
activation of the egg and for early embryonic develop
ment [2]. In sea urchins, frogs, and fish (developmental 
model species such as medaka and zebrafish), the union 
of a sperm and an egg leads to a single explosive wave of 
Ca2+ traversing the egg from one pole to the other 
[1,3,4]. In contrast, in mammals, nemertean worms, and 
ascidians, a series of periodic increases in Ca2+ known as 
oscillations are observed [1,5,6].

’ Corresponding author. Fax: +44-1865-271853.
E-mail address: kevin.coward@pharm.ox.ac.uk (K. Coward).

The primary mechanism of Ca2+ release in the egg 
appears to involve increased levels of inositol 1,4 ,5-tri
phosphate (IP3) subsequently activating IP3 receptor- 
mediated Ca2+ release from intracellular egg stores [5,7]. 
Although the IP3 pathway appears to play the primary 
role in egg activation, it is important not to dismiss the 
possible involvement of other naturally occurring cal
cium release agents such as cyclic ADP-ribose (cADPR) 
and nicotinic acid adenine dinucleotide phosphate 
(NAADP) [8-10], Along with cADPR, nitric oxide (NO) 
and cyclic GMP (cGMP) pathways are also thought to 
be involved at fertilization in sea urchin eggs [11]. The 
mechanism by which sperm initiate the signalling cas
cade resulting in calcium release at fertilization remains 
a hotly debated issue [12], In mammals, there is now
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doi: 10.1016/S0006-291 X(03)00753-8

http://www.sciencedirect.com
http://www.elsevier.com/locate/ybbrc
mailto:kevin.coward@pharm.ox.ac.uk


300 K. Coward et al. I Biochemical and Biophysical Research Communications 305 (2003) 299-304

good evidence to suggest that a soluble ‘sperm factor’ is 
introduced into the egg at sperm-egg fusion. This factor 
hydrolyses stores of phosphatidylinositol-4,5-bisphos- 
phate (PIP2) within the egg creating IP3. Calcium is then 
released from internal egg stores such as the endoplas
mic reticulum via the IP3 receptor [2,4,6,12-16]. The 
cytosolic factor responsible was recently identified at the 
molecular level in the mouse, human, and cynomolgus 
monkey as a sperm-specific novel isoform of phospho
lipase C (PLC), which has been named PLC£ [16,17]. 
Injection of cRNA encoding for PLC  ̂ triggered Ca2+ 
oscillations in mouse eggs that were indistinguishable 
from those at fertilization. Moreover, removal of en
dogenous PLC  ̂ from sperm extracts totally abolished 
Ca2+ release in eggs [16].

In mammals, injection of soluble sperm extracts from 
boars, hamsters, or humans, can trigger Ca2+ oscilla
tions similar to those seen at fertilization in mouse, 
hamster, human, and cow eggs [14,18-23]. Soluble 
sperm extracts have also been shown to induce Ca2+ 
oscillations in non-mammalian species including marine 
worms [24], ascidians [25], and sea urchins [26,27]. 
Sperm extracts from non-mammalian species such as 
chicken and Xenopus [28], and even a flowering plant 
[29], have also been shown to contain a cytosolic soluble 
sperm factor that can trigger calcium oscillations when 
injected into mouse eggs. Dong et al. [28] suggested that 
the discovery of sperm factor activity in non-mamma
lian species implied that the sperm factor’s ability to 
induce calcium oscillations in mouse eggs may not be 
species specific in vertebrates. The discovery of a cyto
solic sperm factor in a species of plant is particularly 
interesting since it shows that although plants and 
mammals are evolutionary divergent, the activity of the 
putative sperm factor in triggering calcium release in 
mammalian eggs may not be specific to the animal 
kingdom [29]. However, it has yet to be established 
whether a sperm factor does play a universal role during 
fertilization in animals and plants [29].

The precise physiological mechanisms involved in 
fertilization and egg activation in the bony fish (teleosts) 
remain to be determined. Uncovering the mechanism of 
egg activation in teleost fish would be of particular in
terest given that the commercial culture of many im
portant freshwater, but especially marine, teleosts 
remains constrained due to productivity problems as
sociated with fertilization, hatching, and early embry
onic development [30]. There are major concerns over 
the “capacity to fertilize” certain captive species. In 
captivity, fertilization rates and hatching success are 
often much lower than those witnessed in the wild. Our 
present knowledge about the pattern of egg activation in 
fish is currently limited to small laboratory species, such 
as zebrafish Brachydanio rerio (Hamilton) and medaka 
O ryzias latipes (Temminck and Schlegel), that, 
while being valuable experimental tools, have no real

commercial importance [31]. Even in these species, 
however, the mechanism whereby egg activation is 
triggered at fertilization remains far from clear.

Existing data from studies of teleosts do, however, 
demonstrate clear changes in Ca2+ at fertilization. 
Gilkey et al. [32] were the first to describe a free Ca2+ 
wave traversing the activating teleost egg (medaka); 
aequorin-injected eggs exhibited an explosive rise in 
free Ca2+ during fertilization, followed by a slow return 
to the resting level. This wave began at the animal pole, 
close to the site of germinal vesicle breakdown, and 
vanished at the antipode some minutes later. Similar 
results were later obtained in zebrafish eggs [33]. In
jection of IP3 and Ca2+ into medaka eggs resulted in 
Ca2+ release in a cytoplasmic region close to the egg 
surface [34]; results suggested that cytoplasmic Ca2+ 
induced Ca2+ release in the medaka egg from cyto
plasmic stores indirectly, probably via a membrane 
factor such as IP3. Lee et al. [35] further reported a 
single wave of Ca2+ traversing the zebrafish egg when 
activated by ionomycin. Microinjection of the estab
lished Ca2+-agonist, cADPR, triggered a regenerative 
wave of Ca2+ release in medaka eggs [36]. Interestingly, 
this mechanism was associated with the exocytosis of 
cortical alveoli [36]. Polzonetti et al. [37] further showed 
that cADPR can induce Ca2+ release in a homogenate 
made from Gilthead sea bream Sparus aurata  (L.) eggs, 
indicating a potential role at fertilization. One study 
has suggested that zebrafish eggs may be activated by 
contact with the spawning medium [33]; there then 
follows a short time window (5-30 s) within which 
fertilization can occur. This activation mechanism, 
however, is very different from that described in me
daka [32,38] in which sperm appear to activate the egg 
and not the external media.

In this paper we introduce some novel preliminary 
findings that suggest that the sperm of a commercially 
important species of teleost fish, the Nile tilapia (Ore
ochromis niloticus L.), may contain a sperm factor sim
ilar to that found in mammalian species. These findings 
are of significance for two reasons. First, a non-mam
malian version of PLC£ has yet to be isolated and 
characterized and our findings provide the first indica
tion that a sperm PLC may play a role in egg activation 
in fish. Second, given the current concern over fertil
ization rates of some teleost species, the present findings 
are likely to make an important contribution to our 
understanding of egg activation in fish and, hence, their 
commercial culture.

Materials and methods

Choice offish species. The Nile tilapia (O. niloticus L.) was selected 
for use in this study. While representing one of the most commercially 
important groups of cultured freshwater fish in global aquaculture, the
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Nile tilapia, by virtue of its short reproductive cycle, amenability to 
handling, and ease of maintenance, remains a highly useful teleost 
model for research on reproductive physiology [31].

Preparation o f  cytosolic fish sperm extracts. Two separately pre
pared batches of concentrated tilapia sperm extract [Extract #1 and 
Extract #2] were used in this study. For each extract, fresh milt (sperm) 
was collected from 30 male Nile tilapia held at the tropical aquarium 
suite, Institute of Aquaculture, University of Stirling. Fish were an
aesthetized with 10% (w/v) ethyl 4-aminobenzoate (benzocaine) dis
solved in ethanol and sperm were released by gentle abdominal 
pressure. Sperm samples were collected in glass micro-capillary tubes. 
Samples were checked under a light microscope to confirm that they 
were not contaminated with urine. Clean (non-contaminated) sperm 
were pooled in 1.5 ml microcentrifuge tubes and kept on ice to await 
further processing. Samples were then washed in PBS (phosphate- 
buffered saline, pH 7.4) and centrifuged at 800g for 10 min. The re
sultant pellet was then resuspended and washed three times in PBS; 
during the final wash, 0.2 mM PMSF (phenylmethylsulphonyl fluoride) 
was added to the PBS. The washed pellet was finally resuspended in a 
solution containing 120mM KC1 (potassium chloride), 20 mM Hepes 
(;V-[2-hydroxyethyl] piperazine-A1 [2-ethanesulphonic acid]), and an 
excess of chelex 100. Resuspended pellets were transferred to a 1 ml 
cryovial, carefully frozen in liquid nitrogen, and then thawed to room 
temperature. The freeze-thaw process was repeated 3-4 times in order 
to aid lysis of sperm cells. Sperm lysate was subsequently transferred to 
an ultracentrifuge tube and centrifuged at 100,000g for lh  at 4°C. 
Supernatant was concentrated by using a combination of Centricon 
and Microcon centrifugal concentrator units (Millipore Corporation) 
in accordance with the manufacturer’s instructions. Final concentrated 
sperm extracts (50-100 pg/pl protein ideally) were stored in aliquots of 
5 pi at -80 °C to await further analysis.

The sea urchin egg homogenate bioassay. Concentrated Nile tilapia 
sperm extracts were first tested for sperm factor activity (the ability to 
cause Ca2+ release) in an established cell free Ca2+ bioassay, the sea 
urchin egg homogenate. This assay preserves the structure of the sea 
urchin egg’s membrane bound Ca2+ stores and utilizes a fluorescent 
dye (Fluo-3), which in association with a fluorimeter, allows us to 
detect Ca2+ release from internal egg stores. The sea urchin homoge
nate system is well characterized and has been used extensively to study 
Ca2+ release patterns in eggs. Unfertilized sea urchin (Lytechinus pic- 
tus) egg homogenates (2.5%) were prepared as previously described 
using Fluo-3 (3 mM) fluorescence as an indicator of Ca2+ release (26). 
The homogenate system was first tested by injecting 2 pM IP3 . A fur
ther system test involved the injection of 3 pi (~50 pg/pl) of boar sperm 
extract, previously shown to be extremely effective in inducing Ca2+ 
release in the sea urchin homogenate [39]. Boar sperm extract was 
prepared as described previously [39]. Having established that the 
homogenate was responding to positive controls (IP3 and boar sperm 
extract) in an appropriate manner, a series of experiments were un
dertaken using each of the two tilapia sperm extracts (Extract #1 and 
Extract #2). In each experiment, 3 pi (40-70 pg/pl) of tilapia sperm 
extract was injected directly into the sea urchin egg homogenate and 
monitored for a total time period of 500-800 s.

Concentrated tilapia sperm extracts were then tested for PLC ac
tivity. Concentrated Nile tilapia sperm extract (2 pi, 40-70 pg/pl) was 
incubated with 2 pi of 1 mM PIP2 at room temperature for 1 min, prior 
to being injected into the sea urchin egg homogenate bioassay system 
[26,39], Ca2+ levels were controlled in this assay by use of Ca2+/EGTA 
buffers [26] such that levels remained at 160 mM. IP3 generated via the 
hydrolysis of PIP2 by a potential cytosolic factor in the fish sperm 
extract would thus induce the release of Ca2+ from internal egg stores, 
which could be readily assayed using the Ca2+ sensitive Fluo-3 dye.

Microinjection o f  tilapia sperm extract into mouse oocytes and im- 
aging o f  intracellular egg Ca?+ levels. The ability of concentrated Nile 
tilapia sperm extract to cause Ca2+ release in a living mammalian 
oocyte was then investigated by micro-injecting small volumes of 
extract directly into isolated mouse oocytes and visualizing resultant

changes in intracellular egg Ca2+ using laser confocal microscopy. In 
brief, female MF1 mice were superovulated by an injection of five 
international units (IU) of pregnant mare’s serum gonadotropin 
(PMSG; Intervet). This was followed by an injection of human cho
rionic gonadotropin (HCG; Intervet) 48 h later. Eggs were collected 
after a further 13.5-14.5 h, as previously described [40], and main
tained in 100 pi droplets of Hepes-buffered KSOM under mineral oil at 
37 °C. Intracellular Ca2+ changes were measured with Fura red-AM 
(Molecular Probes) and oocytes were injected with tilapia sperm ex
tract (Extract #1, 40 pg/pl) as previously described [16,18], The volume 
injected (1-3% of egg volume) was estimated from the diameter of 
cytoplasmic displacement caused by the bolus injection. Control ex
periments involved the injection of a Hepes-buffered sperm-extract 
vehicle buffer (120mM KC1, 20 mM Hepes).

Results and discussion

Our present knowledge of the key intracellular and 
molecular events that accompany egg activation in tel
eost fish is limited to only small laboratory species such 
as zebrafish and medaka. We know little about these key 
mechanisms in larger, commercially important teleosts. 
Previous experiments have described a wave of Ca2+ 
traversing the activating medaka egg [32] and zebrafish 
[33], and have shown that injections of IP3, Ca2+, and 
cADPR can cause regenerative Ca2+ release in medaka 
eggs [34,36]. In a more recent study, cADPR was shown 
to cause Ca2+ release in an egg homogenate prepared 
from Gilthead sea bream Sparus auratus (L.), a com
mercially viable teleost [37]. Nevertheless, the mecha
nism of egg activation in fish remains far from clear. The 
present study attempts to address this shortfall, using a 
commercially important species of teleost fish, the Nile 
tilapia.

C oncentrated sperm ex tracts derived from  N ile tilapia 
induce Ca2+ release in the sea urchin egg homogenate 
bioassay and exhibit ac tiv ity  characteristic o f  a P L C

An established bioassay for Ca2+ release, the sea ur
chin egg homogenate, was first used to test tilapia sperm 
extracts for sperm factor activity (the ability to cause 
Ca2+ release in eggs). The ability of the sea urchin ho
mogenate system to respond to IP3 and boar sperm 
extract was tested, prior to testing the tilapia sperm 
extracts. Injections of either 2 pM IP3 (data not shown), 
or 3 pi (~50 pg/pl) of boar sperm extract (Fig. 1A), re
sulted in significant Ca2+ release within the homogenate, 
demonstrating that the system was working correctly. 
Injections (n = 5) of 3 pi (40-70 pg/pl) of each tilapia 
sperm extract (Extract #1 and Extract #2) also induced 
Ca2+ release (Figs. IB and C). Levels of Ca2+ within the 
homogenate more than doubled within seconds of 
injecting the tilapia sperm extracts, reaching a peak 
approximately 50-60 s after addition.

Experiments using the sea urchin egg homogenate 
bioassay of Ca2+ release further demonstrated that
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Fig. 1. Calcium release in the sea urchin egg homogenate induced by: (A) boar sperm extract and (B,C) Nile tilapia sperm extract. Arrows indicate 
when the injections were made.

sperm extracts made from Nile tilapia exhibited char
acteristic PLC activity, in that they were able to hy
drolyse PIP2 within the egg homogenate to create IP3 
and hence cause Ca2+ release from internal egg Ca2+ 
stores when added to the sea urchin egg homogenate 
(Fig. 2). This assay has previously been used to dem
onstrate PLC activity in mammalian sperm [26,39] and 
operates at low Ca2+ conditions (160mM) under which 
the sperm factor PLC is active, but not other PLCs [39]. 
Our homogenate experiments, in which the sperm ex
tract was incubated with PIP2 at low Ca2+ concentration 
(160 mM), showed significant Ca2+ release as soon as the 
tilapia sperm extract/PIP2 cocktail was injected into the 
sea urchin egg homogenate system; within 25 s, Ca2+ 
levels within the egg homogenate had more than dou
bled. These observations were readily reproducible and 
clearly indicate that Nile tilapia spermatozoa do indeed 
contain protein(s) exhibiting PLC activity. Given that 
spermatozoa from Nile tilapia have the ability to hy
drolyse PIP2 into IP3 and cause the release of Ca2+ in an 
established bioassay system, it follows that the same
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Fig. 2. Demonstration of PLC activity in Nile tilapia sperm extract. 
Concentrated tilapia sperm extract was incubated with PIP2 (phos- 
phatidylmositol-4,5-bisphosphate) for 1 min (Cu^ in the reaction was 
buffered at 160mM) and the resultant JPi (inositol triphosphate) 
generated was assayed using the cell-free sen urchin egg homogenate 
assay. Arrow shows the point at which the fish sperm extract (fiih SB)/ 
PIP2 cocktail (previously incubated for 1 min) was injected into the 
homogenate.
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Fig. 3. (A) Oscillations of intracellular calcium in mouse oocytes fol
lowing microinjection of concentrated tilapia sperm extract. Each trace 
represents a different mouse oocyte (n -  3) and (B) control injection of 
the injection of a Hepes-buffered sperm-extract vehicle buffer (120mM 
K.CI, 20mM Hepes) (arrow represents the point of injection). Intra
cellular calcium changes were measured with Fura-Red AM as previ
ously described [12,25] and represented here as fluorescence units.
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sperm extracts may induce Ca2+ release within a living 
oocyte.

Injection o f  N ile tilapia sperm ex tract causes oscillations 
in intracellular egg Ca2+ when injected into mouse oocytes

Concentrated protein extracts prepared from tilapia 
spermatozoa were then injected into mouse oocytes. 
Micro-injection and whole cell fluorescence experiments, 
using a total of three mouse oocytes, showed that in
jection of concentrated Nile tilapia sperm extract in
duced an initial large single Ca2+ transient followed by a 
series of 4-5 subsequent oscillations (Fig. 3A). The ini
tial transient, during which egg Ca2+ approximately 
doubled, began 10-20 s after injection and lasted for 
~150s; this was then followed by 4-5 further oscilla
tions over a total subsequent period of ~400s. Control 
injections failed to induce significant Ca2+ release in 
mouse oocytes (Fig. 3B). In the present study, patterns 
of Ca2+ oscillations (e.g., amplitude and frequency) in
duced by Nile tilapia sperm extracts were similar to 
those seen previously when mouse and sea urchin oo
cytes were injected with a variety of sperm extracts 
[2,15-17,27,28,41].

Our present data indicate that tilapia sperm extracts 
contain a sperm factor activity similar to that found in 
mammalian sperm extracts. Sperm factor activity has 
been reported previously in several other non-mammals 
such as the chicken, Xenopus, and even a species of 
flowering plant [28,29]. The present data, however, 
represent the first demonstration of sperm factor activity 
in fish and provide evidence to suggest that fish egg 
activation may be triggered by a sperm derived PLC. 
Furthermore, whilst providing further support to pre
vious descriptions of sperm factor activity in non
mammalian organisms [28,29], our data provide the first 
demonstration of a sperm PLC-like sperm factor activity 
in a non-mammal. Current research is investigating 
whether sperm extracts derived from Nile tilapia can 
also cause Ca2+ release upon injection into teleost oo
cytes. Isolation and the molecular characterization of a 
sperm factor in commercially important teleosts may 
prove highly valuable in furthering our understanding of 
fertilization and egg activation in this important animal 
group, and may help improve fertilization and hatching 
rates in future commercial scenarios.
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Abstract

The reproductive performance of O. niloticus was evaluated in four different photoperiods. Results suggested that 
long days were the most suitable for egg production and reduction of inter-spawning interval.

Introduction

Low fecundity and asynchronous spawning behaviour 
are the most important constraints on tilapia culture 
(Coward and Bromage 2000). Photoperiodic manip
ulation is applied in several fish species in order to 
control their reproduction (Bromage et al. 2001). In 
tilapias the effect of photoperiod on reproduction is 
poorly understood, however, it has been reported that 
photoperiod could play an important role on tilapia 
reproduction (Ridha and Cruz 2000). The aim of the 
present work was to understand and develop pho
toperiodic manipulation of O. niloticus broodstock in 
order to improve egg production and inter-spawning 
interval.

Materials and methods

32 sibling female O. niloticus were exposed to four 
trials (6L:18D, 12L:12D, 18L:6D and 24LL) for 180 
days, eight fish per trial. Fish were fed twice daily. The 
reproductive performance was evaluated in terms of 
number of spawns, total fecundity and inter-spawning 
interval (ISI). Fish biometry was recorded and spe
cific growth rate (SGR) evaluated. This experiment 
was carried out in a closed recirculation system with

mean light intensity of 530 lux and water temperature 
of 27 ± 1 °C.

Results

No significant differences were found between the 
group mean weight and length at the beginning or end 
of the experiment. However, significant differences 
were found in the SGR (P < 0.05) between groups and 
the reproductive performance shown in Table 1.

Discussion

Our results showed that 18L:6D was the most cost 
effective way of enhancing egg production. This trial 
gave the highest fecundity and number of spawns, sug
gesting that these fish increased oogonial proliferation 
as a reproductive strategy, as well as a reduction in 
ISI. The SGR demonstrated that those fish reared un
der shorted photoperiods (6L:18D and 12L:12D) had 
the highest increase in weight but the lowest fecund
ity and number of spawns as well as the longer ISI. 
Results were similar to those reported by Ridha and 
Cruz (2000) who observed that seed production was 
enhanced more by extended photoperiods rather than

mailto:ac7@stir.ac.uk
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Table 1. Reproductive performance on Nile tilapia Oreochromis niloticus reared in four different photoperiods

Parameter 18L:6D 12L:12D 18L:6D 24LL

Total spawns* 65 61 90 75
Total eggs* 129,269 124,675 216,701 177,331
Fecundity 2019 ±  82b 2043 ±  6 8 .8 b 2407.8 ±  65.9a 2396.4 ±  77.5a
ISI d- 1 18.9 ±  1.5ab 19.8 ±  1.3b 14.7 ±  0.5C 16.3 ±  1.0ac
SGR (%/d-1) 0.47 ±  0.03bc 0.51 ±0.05c 0.31 ±0.02a 0.38 ±  0.04ab

The values are the mean ±  S.E.M., different superscript indicate statistically significant differences from each 
other (ANOVA, Fisher’s comparison test, P < 0.05).
* Indicates the total value.

light intensity. Photoperiod manipulation could be a 
reliable and powerful tool in tilapia broodstock man
agement; basically it allowed the reduction of the ISI, 
resulting in more spawns per fish in less time.
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Abstract

Nile tilapia (Oreochromis niloticus) has rapidly become an important species for aquaculture, 
although their intensive culture remains constrained by poor spawning synchrony and low fecundity, 
adding significant cost to hatchery production. Previous research has indicated that spawning 
synchrony may be improved in some fish species by photoperiod manipulation. There is limited 
information on the effects of photoperiod manipulation on tilapia. In this paper, the reproductive 
performance of 32 individually housed Nile tilapia was evaluated under four different photoperiods: 
short day (6L:18D), normal day (12L.T2D), long day (18L:6D), and continuous illumination 
(24L:0D). Significantly larger eggs {P <  0.05) were produced under normal daylength (12L:12D) 
compared to other treatment groups. Fish reared under long daylength (18L:6D) exhibited 
significantly higher ( P <  0.05) total fecundity (2408 ±  70 eggs spawn-  *) and relative fecundity 
(7.2 ±  0.2 eggs g-  1 body weight) concomitant with a significant reduction in inter-spawn-interval 
(ISI, 15 ±  1 days) in comparison with the rest o f the trials. This investigation shows that long 
daylength (18L:6D) helps improve some important reproductive traits in Nile tilapia, and suggests 
that such methodology may be used to alleviate the production problems caused by low fecundity 
and poor spawning synchrony, and thus play a valuable future role in tilapia culture.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Tilapias are now one of the most important groups of aquaculture species; 
production increased significantly over the last decade and according to FAO statistics 
had reached almost 1.5 million tonnes by 2001 (FAO, 2002). These are versatile 
species now found in almost any tropical aquatic system, from subsistence culture in 
small ponds and paddy fields to highly intensive production systems, e.g. hapas, cages 
and tanks. Furthermore, tilapia perform well in freshwater, brackish water and seawater 
environments (Chervinski, 1982; Philippart and Ruwet, 1982; Beveridge and McAn- 
drew, 2000).

Female tilapia have individual patterns of ovarian development so that in breeding 
populations they tend to spawn asynchronously every 3 to 4 weeks, depending upon 
environmental conditions (Rana, 1988; Macintosh and Little, 1995; Coward and 
Bromage, 2000). Low fecundity and asynchronous spawning behaviour are major 
constraints on mass tilapia seed production (Mires, 1982; Rana, 1988; Baroiller and 
Jalabert, 1989; Macintosh and Little, 1995; Coward and Bromage, 1998; Bhujel, 2000; 
Little and Hulata, 2000). In order to optimise tilapia seed production and obtain a 
homogeneous stock of first-feeding fry suitable for sex reversal, hatchery operators have 
tended to increase the number of broodfish (Macintosh and Little, 1995; Little et al., 
1997; Coward and Bromage, 2000; Bhujel, et al., 1998, 2001a; Bhujel, 2000). In 
Thailand, for example, a commercial hatchery maintains over 60,000 broodfish in order 
to guarantee production of 10 million fry per month and thus satisfy market demand 
(Bhujel and Suresh, 2000). Although the use of high numbers of broodfish helps 
overcome these problems, this method is far from ideal because of the increased costs 
needed to house and maintain these fish.

Photoperiodic manipulation has been applied successfully in several fish species to alter 
their reproductive cycle (Bromage et al., 2001). Using this technique, hatchery operators 
of rainbow trout (Oncorhynchus mykiss) produce sufficient numbers of eggs and fry at 
desired times, and thereby ensure all-year round production.

In the case of tilapias and other tropical species, the effect of photoperiod on 
reproduction is poorly understood, although several authors have reported that 
photoperiod and light intensity might play an important role in controlling reproduc
tion (Cridland, 1962; Hyder, 1970; Rothbard and Pruginin, 1975; Balarin and Haller, 
1982; Jalabert and Zohar, 1982; Bhujel, 2000). Ridha et al. (1998), showed that 
photoperiodic manipulation improved seed production in Oreochromis spilurus using 
14L:10D light regimes. However, Ridha and Cruz (2000) reported that longer and 
brighter days (18L:6D with 2500 lx) produced more fry and improved spawning 
synchrony in Nile tilapia compared with short days (12L:12D; 15L:9D) and low light 
intensity (500 lx). Considering the constraints currently imposed upon tilapia culture 
by poor spawning synchrony, any method that helps to improve hatchery efficiency 
should be investigated.

The aim of the present work therefore was to investigate the effects of photoperiodic 
manipulation on the reproductive performance of Oreochromis niloticus broodstock to see 
whether this identifies possible broodstock management strategies that may be adopted by 
hatcheries to improve egg production.
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2. Materials and methods

2.1. Experimental fish

Thirty two siblings of red strain O. niloticus (McAndrew et al., 1988) were taken from 
The Tilapia Reference Collection (McAndrew and Majumdar, 1983) held at the Tropical 
Aquarium, Institute of Aquaculture, University of Stirling. Fish were 18 months old at the 
beginning of the experiment.

2.2. Culture system

Fish were maintained in a gravity-fed recirculation system incorporating eight glass 
aquaria (114 x 45 x 42 cm; 200-1 capacity, Fig. 1). Each aquarium was subdivided into 
four individual holding spaces by perspex sheets (Coward and Bromage, 1999a). Aquaria 
out-flows were connected to four settling tanks and a gravel filter unit. Settling tanks 
contained large numbers of bio-rings (Dryden Aquaculture, UK) to aid particulate and 
biological filtration. Water was pumped from the system collector tank to a sand filter 
tank and then sent to a header tank (227-1 capacity) via a water pump (Beresford Pumps, 
UK). The system was covered with a special frame made with tubular steel covered in 
white blown PVC sheets to exclude all external source of light. Light in each tank was 
provided by a lamp (Lampways, Tripleplus, 60 W, EC) attached to the ceiling of the frame. 
All lights were controlled with digital timers (Smiths Industries, UK) in order to achieve 
the desired photoperiod. The system was subdivided into four individual chambers (one 
chamber per experimental group) with two aquaria in each chamber.

The water temperature was maintained at 27 ±0.5 °C (using a 3-kW thermostatically 
controlled water heater). Water was oxygenated via airstones in the header tank and each

Header tank 
220L

Sand filter 
120L

White blown PVC frame

60 watts bulbStand pipe
Glass tank 
200L

Collector
tank2 2 0 L c: n

Settling tanks + bio-rings 
220LPump

Fig. 1. Lateral view of the dosed recirculation system used to hold experimental fish.
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aquarium by a low-pressure blower. The water inflow was constant at 252 1 h” 1 tank= 1, 
Fish were fed ad libitum twice daily with a commercial pelleted trout feed (Trouw 
Aquaculture, UK). Water quality was monitored twice a month, including dissolved 
oxygen (02) and water temperature. The levels of pH, nitrate, nitrite and ammonia were 
evaluated with aquarium water quality kits (C-Tcst kits, New Aquarium Systems, UK), To 
maintain good water quality, a partial change of water (10% of total volume) was carried 
out once a week; the system was refilled with fresh, aerated, and preheated water,

Before starting the experiment, fish were measured (weight and total length) and tagged 
with Passive Integrated Transponder-PIT tags (Trovan, UK) under anaesthesia by 
immersion in 1:10000 ethyl 4-aminobenzoate (Sigma, UK). The fish were allowed to 
recover completely in clean aerated water before being returned to their respective tank, At 
the end of the experiment, fish were re-weighed in order to estimate daily weight gain 
(DWG) as described by Bhujel et al. (2001b).

Fish were checked at two hourly intervals during the light phase for the evidence of 
spawning. Signs of spawning in this species include dilation of the genital papillae, and/or 
the presence of eggs inside the buccal cavity. Fish were allowed to spawn naturally or were 
manually stripped if observed close to natural spawning. Females with broods were 
captured in a fine mesh net and transferred to a bucket containing fresh water; eggs were 
then removed and washed. Fish were then anaesthetised, measured and weighed and then 
returned to the experimental tank and all data recorded.

Fecundity in tilapia has been defined in several ways (Coward and Bromage, 1999a, 
2000) and remains a source of debate. In the present study, we used Sana’s (1918) 
definition which describes total fecundity as the number of eggs in a freshly spawned 
clutch of eggs. After counting the whole clutch, a sub-sample of  SO eggs was taken and 
each egg individually measured. Since tilapia eggs are ovoid, it was important to measure 
both axes (long and short axis). These values were used to estimate egg diameter and 
volume. Inter-spawning-interval (ISI) was also determined (time elapsed between ©me 
spawn and the next). For further details of how egg diameter, egg volume and ISI wme 
determined, consult Coward and Bromage (1999a),

2.3. Photoperiod and light intensity

Four discrete light regimes were studied (Table 1); short 'days (6L;18D), normal days 
(12L:12D), long days (18L:6D) and continuous illumination (24D;()L), Only the 12L:.12D 
and 18L:6D photoperiods are likely to be experienced by O. nitotkm m its nafaral 
geographical distribution (Fishelson, 1966; PWlippart and Ritwcf, 1982),

Table J
Bxperi.mien.tal design
General
description

Pbetoperied
fight, D * hemes dark)

Wttoifcgr ©f terafcs 
teplksiesjl

Mfflfflsfesr ©f 
par teuk

Short day 61U1ID 2 4
1211:120 2 4

Long day W L M ) 2 4
Continues light 24Lm 2 4
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Light intensity in each aquarium was evaluated with a lux meter (Photometric sensor 
SKL310, Skye Instruments, Llandrindod Wells). Measurements were taken centrally at the 
surface of the water column. Light intensity was constant at 530 lx in each chamber over 
the entire experimental duration.

2.4. Statistical analysis

Statistical analyses were performed using MINITAB (version 13.1). Statistical signif
icance between treatments was evaluated at the 5% probability level. General linear model 
(ANOVA) and regression analyses (linear and quadratic) were used to further analyse data. 
Data were log10 or Arcsine transformed as appropriate. Values are expressed as the 
mean ± S.E.M.

3. Results

3.1. Fecundity and egg size

A total of 291 spawns were recorded over the 6-month experiment, 65, 61, 90 and 75 
spawns occurring in the 6L:18D, 12L.T2D, 18L:6D and 24L;0D treatments, respectively 
(Table 2). Fig. 2 shows the distribution of these spawns over time (months); it is clearly

Table 2
Reproductive and growth performance of Nile tilapia (O. niloticus) reared at four different light regimes

Photoperiod treatment

6L:18D 12L:12D 18L:6D 24L:0D

Reproductive parameter
Total spawns* 65 61 90 75
Spawns month' 1 10.8 ±  1.3s* 10.2 ± 1 ,3 “ i s  ±  r 12,5 + 1,5*
Spawns fish-  1 month-  1 1.6 ±  0.1be 1.5 ±0.1* 2 ±0,1* 1,9 ±  0.13*
Total eggs* 129,269 124,675 216,701 177,331
Eggs month-  1 21,545 ±  3234b 20,347 ±  3 188b 36,988 +  1667“ 29,555 ±  3903*b
Fecundity 2020 ±  80b 2043 ±  70b 2408 + 70* 2396 +  80*
Relative fecundity (egg g-  ') 6 ±  Q.3b 6 ±  0.2b 7.2 ±  0,2* 6,4 ±  0,2b
Egg diameter (mm) 2.41 ±  0.03ab 2.47 ±  0.02* 2,37 ±G.01b 2,36 +  0,02b
Egg volume (mm3) 6.6 ±  0.3*b 7.0 ±  Q.2b 6 .2 ± 0 J “C 6.1 ±  Q.T
Total egg volume (mm3) 13,173 ±  620* 14,058 ±476* 14,804 ±  376* 14,348 ± 4 9 6 “
ISI (days) 19 ±  2ab 20 ±  l b 15 +  1* 16 ±  r c

Growth parameter
Initial weight (g) 255 ± 20* 256 ±  20* 276 ±  30* 305 ± 4 0 “
Final weight (g) 560 + 50* 537 ±40* 477 ±  40“ 577 ±  40“
Initial length (cm) 23 ±1*  23 ± 1* 2 4  ±  r 24 ±  1*
Final length (cm) 3 0 + 1 *  3 0 +  1“ 29 ±  1“ 30 ±  r
DWG (g fish- 1 day-  ') 1,8 +  0,2b 1 ,9 ±  Q.2b 1 .1  ± 0 ,1 * 1,5 ±  0,1ab

Values are mean +  S.E.M. Annotation with different superscripts indicate statistically significant differences 
(ANOVA, Fisher’s comparison test, P <  0.05),

* Indicates the total value for the entire experimental period.
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Fig. 2. Number of spawns per month produced by Nile tilapia reared under four different light regimes.

evident that the 18L:6D photoperiod produced the highest and most consistent number of 
spawns. There were significant differences between the mean number of spawns fish-  1 
month-  1 between the photoperiod treatments (Fig. 3A, Table 2), which varied between 
1.5 ±0.1 for the 12L:12D trial and 2 ± 0.1 for the 18L:6D trial.

A total of 647,976 eggs were collected during the experiment. The least number of 
eggs were produced by the 12L.T2D group with 124,675 eggs (19% of total egg 
production), followed by the 6L:18D group with 129,269 eggs (20%), the 24L:0D group 
with a total of 177,331 eggs (27.5%), and finally the 18L:6D group which exhibited the 
highest production of eggs with a total of 216,701 eggs (33.5%). Total egg production 
per month for each treatment for the whole 180-day experiment is presented in Fig. 4. 
This graph shows that the long day (18L:6D) group consistently produced the highest 
number of eggs per month over the experiment, with the exception of the October total. 
Mean egg production was significantly reduced under the 12L:12D treatment with a 
mean of 20,347 ±3188 eggs month-1, while the highest was in the 18L:6D group 
(36,988 ± 1667 eggs month- *).

There were significant differences in total fecundity between photoperiods. The 6L:18D 
treatment had the lowest mean total fecundity with 2020 ± 80 eggs clutch- 1 whilst the 
highest mean total fecundity was produced under the 18L:6D trial with a total of 
2408 ± 70 eggs clutch- 1 (Fig. 3B, Table 2). Consequently, there were also significant 
differences between photoperiods in relation to relative fecundity (number of eggs 
produced per gram of body weight) (Fig. 3C, Table 2); relative fecundity varied between 
6 ± 0.2 and 7.2 ± 0.2 eggs g- the 18L:6D treatment group being significantly higher 
than the others.



A. Campos-Mendoza et al. /  Aquaculture 231 (2004) 299-314 305

D 2 .5 -

0%

B  3000

x

22 io -

T " — —r  
6L:18D 12L:12D 18L:6D 24L:0D

ab

ab

I.:-

& r?f|'C

b

"

<
bw&5

Bp'
j ’s?

b

■

b ac

j;

c

.■
c ac

■:#;
■

T

6L:18D 12L:12D 18L:6D 24L:0D

Fig. 3. Reproductive performance o f  N ile tilapia cultured under four different light regimes: (A) number o f  
spawns fish-  1 month- (B) total fecundity, (C) relative fecundity, (D) egg diameter, (E) egg volum e, and (F) 
inter spawning interval (ISI). Values are mean ±  S.E.M. Annotation with different superscripts indicate 
statistically significant differences (ANOVA, Fisher’s comparison test, P < 0 .0 5 ).
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Fig. 4. Total number of eggs per month produced by Nile tilapia reared under four different light regimes.

Significant differences were also found in egg diameter and mean egg volume. Fig. 3D 
shows that in the 12L:12D treatment group, egg diameter was significantly higher than the 
18L:6D and 24L:0D treatments, but not the 6L:18D group. Mean egg volume (Fig. 3E, 
Table 2) was significantly larger (7 ± 0.2 mm3) in the 12L:12D group than the 18L:6D or 
24L:0D groups.

No differences were found in relation to the total egg volume between photoperiods. 
This value was the product of mean egg volume and mean total fecundity per fish. All 
light regimes showed similar total egg volume, which varied between 13,173 ± 620 mm3 
in the 6L:18D group to 14,804 ± 376 mm3 under the 18L:6D treatment.

3.2. Spawning periodicity

Significant differences were detected when comparing inter-spawning-interval (ISI) 
between photoperiods (Fig. 3F, Table 2). The longest ISI was found in the 12L:12D 
treatment with a mean value of 20 ± 1 days which was significantly different from the 
shortest ISI in the 18L:6D treatment with a mean of 15 ± 1 days. The 6L:18D and 24L:0D 
trials were intermediate and not significantly different from each other but the 24L:0D ISI 
was still significantly shorter than the 12L:12D treatment. Positive significant relationships 
were found between ISI and egg diameter and between ISI and egg volume in the total 
data set as well as within treatments. However, there was a strong negative correlation 
between ISI and fecundity and relative fecundity. There was no significant relationship 
between total egg volume and ISI in the data. There were also statistically significant
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Fig. 5. Daily weight gain (DWG) of tilapia cultured under four different photoperiods. Values are mean ± S.E.M. 
Annotation with different superscripts indicate statistically significant differences (ANOVA, Fisher’s comparison 
test, P<0.05).

relationships between fish size (both weight and length) and ISI in the total data set; this 
relationship was positive in all the treatment groups, but was only significant in the 
18L:6D treatment.

3.3. Growth performance

No significant differences were found between the treatment groups in terms of fish 
size (weight and total length) at the beginning of the experiment (Table 2). Group mean 
weight ranged from 255 ±20 to 305 ± 40 g and total length ranged from 23 ± 1 to 24 ± 1 
cm. At the end of the experiment, mean weight ranged from 477 ± 40 to 577 ± 40 g, 
whilst total length from 29 ± 1 to 30 ± 1 cm. No significant differences were observed 
between groups in terms of weight or length at the end of the experiment.

Nevertheless, significant differences were detected in daily weight gain (DWG) 
between the groups. A significantly higher DWG (1.9 ± 0.2 g fish- 1 day- ') was observed 
under 12L:12D compared to 18L:6D treatment (1.1 ±0.1 g fish- 1 day- 1 ) over the 180 
days (Fig. 5, Table 2).

4. Discussion

4.1. Egg production and spawning periodicity

Fig. 4 shows that fish under the 18L:6D photoperiod consistently produced more eggs 
per month than all other treatments, some 58% more eggs than the 12L.T2D photoperiod. 
Fish under the 18L:6D treatment exhibited significantly increased total and relative 
fecundity concomitant with significantly reduced ISI resulting in more frequent spawning
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and a greater clutch size (Fig. 2) than the other treatments. These findings are in 
accordance with those of Ridha and Cruz (2000) who compared seed production (egg, 
sac fry and swim-up fiy) under three photoperiods (12L:12D, 15L:9D, and 18L:6D) and 
two light intensities (2500 and 500 lx). The highest number of seed were observed under a 
18L:6D photoperiod (Ridha and Cruz, 2000); the 2500-lx treatment gave the highest 
number of seed but not significantly more than the 500-lx treatment, which is close to that 
used in the present experiment. Ridha and Cruz (2000) did not show any significant effect 
of light intensity on any spawning parameters; spawning data appeared to be periodic, 
probably related to the sampling procedure used. They also found no statistical difference 
for mean ISI between their six treatment groups; ISI ranged from 14 to 55 days and the 
lack of statistical significance was most likely due to the lack of data pertaining to 
individual fish. The shortest ISI observed by Ridha and Cruz (2000) was 14 days in fish 
under 18L:6D with 500 lx, which is almost identical to the shortest ISI of 15 days in our 
experiment (also in the 18L:6D group).

The present experiment effectively ‘robbed’ eggs (removed eggs from the buccal 
cavities of mouth-brooding females) within a few hours of spawning or resulted in fish 
being stripped. Both of these techniques have been shown to reduce ISI in tilapia 
(Fishelson, 1966; Dadzie, 1970; Siraj et al., 1983; Rana, 1988; Little, et al., 1993; Tacon 
et al., 1996; Coward and Bromage, 2000). The similarity in ISI between the results of 
Ridha and Cruz (2000) and this present study would suggest that we are getting close to 
an optimum ISI using these techniques. It is known that ISI is normally shorter in 
smaller tilapia (Siraj et al., 1983). The fish used in this present experiment were two to 
three times bigger than those females used by Ridha and Cruz (2000) and it would also 
suggest that the rapid removal of eggs from actively brooding females might have 
helped to reduce the ISI. Egg robbing is time consuming and labour intensive and may 
therefore only be a useful contribution to broodstock management at a very intensive 
commercial scale.

It is interesting to note that the fish under continuous illumination (24L:0D) were not 
significantly different to the 18L:6D trial for most of the reproductive parameters 
measured. They produced fewer eggs than the 18L:6D trial, mainly because of the drop 
in monthly egg production after the third month that characterised the other treatments 
(Fig. 4). This suggests that the use of a long day photoperiod (18L:6D) helps to extended 
spawning intensity.

4.2. Egg size and fecundity

Photoperiod manipulation had an effect on egg size. Significant differences in egg size 
were observed between photoperiods. The largest eggs (diameter and volume) in this 
experiment were produced by fish under a 12L:12D photoperiod (Table 2). This group had 
the lowest number of spawns and total fecundity and the longest ISI. Significant 
relationships were detected in this group, between ISI and egg size (Fig. 6A). This might 
simply imply that because ISI was longer, eggs had more time to sequester vitellogenin 
from the bloodstream, hence resulting in a larger final egg size. In contrast, the fish in the 
18L:6D treatment had the shortest ISI and produced the smallest eggs (Fig. 6B, Table 2). 
This is the first clear evidence that ISI directly effects egg size in this species. In previous
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studies, egg size in tilapia has been related to genotype, nutritional condition, age and size 
of the broodstock (Rana, 1985).

In this study, it appears that those fish reared under long daylength showed 
advancement in gonadal recrudescence, producing discrete batches of smaller eggs very 
quickly compared to those fish reared under shorter days. This effect was clearly 
observed in salmonids and is discussed by Bromage and Cumaranatunga (1988), but the
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impact on ISI is unlikely to be as profound as in a species that can spawn as frequently 
as tilapia. The advantage of producing high numbers of smaller eggs has to be balanced 
against the fact that bigger eggs produce larger and stronger larvae at hatching, with 
consequent improved chances of survival under some farming regimes (Rana and 
Macintosh, 1988; Rana, 1985, 1988). It is unclear whether this advantage would 
outweigh the loss of production associated with having to use larger females or 
extending the ISI to get larger eggs.

Ridha et al. (1998) compared the seed production of O. spilurus under ambient light 
and temperature conditions and controlled light intensity with 13L:11D and 14L:10D 
photoperiods with a water temperature of 29 ± 2 °C. They found that reproduction was 
reduced during winter due to a reduction of water temperature and daylength under 
ambient conditions. The longer day 14L:10D treatment gave significantly more seed than 
either ambient or 13L:11D day treatments.

Highest mean total fecundity was recorded in fish experiencing long daylength and 
continuous illumination in the present study. It is well documented that total fecundity is 
more related to tilapia size rather than age (Rana, 1988; Coward and Bromage, 1999a). In 
the case of the substrate spawning Tilapia zillii, Coward and Bromage (1999a) reported a 
strong relationship between fish size (weight and length) and fecundity but did not find 
any significant relationship between egg size and maternal weight and length. In the 
present experiment, all fish were of the same age and were of similar size. The 18L:6D 
trial produced the highest relative fecundity (7 ± 0.2 eggs g~ ’), which is very similar to 
that reported by Bhujel et al. (2001a), who reported relative fecundity of 7331 ±618 eggs 
kg- 1 in a shaded hapa system suspended in outdoors tanks under tropical conditions of 
light and temperature. It is still unclear why long daylength and continual illumination 
resulted in increased total fecundity in our experiment. Further studies are required to 
confirm and explain these observations.

4.3. Growth

There were significant differences in DWG between the four photoperiods which 
changed the relative ranking of the mean weights and length of the 6L:18D, 12L:12D and 
18L:6D treatment groups over the 180 days of the experiment. The fish received excess 
food and the change appears to be related to energy given over to reproduction, as there is 
a negative correlation between DWG and the total number of eggs produced over the 
experiment.

At the beginning of this study, the fish were 18 months of age and had therefore been 
sexually mature for about 10 to 12 months. Sexually active tilapia partition more energy 
into reproduction rather than somatic growth, (Mair and Little, 1991; Macintosh and Little, 
1995). Although there were no significant differences between the mean weights of the 
fish in the treatment groups at the beginning of the experiment, the means could be ranked 
(Table 1). Fish in the 24L:0D trial remained the largest mean weight but the relative 
ranking in size of the 6L:18D, 12L:12D and 18L:6D groups has reversed by the end of the 
experiment suggesting that the fish at the shorter and normal day (6L:18D, 12L:12D) were 
growing more quickly. The 18L:6D group was growing at the slowest rate, containing the 
smaller broodstock but the highest reproduction performance. The results suggest that the
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diet was adequate to maintain both the growth and reproductive capacity of these fish for 
the duration of the experiment.

4.4. Effect o f photoperiod on fish reproduction

It is, of course, highly likely that photoperiod directly influences the dynamics of 
ovarian development in tilapia. The precise mechanism involved has yet to be elucidated 
but is likely to be endocrine in origin. Tilapia have a similar melatonin secretion pattern 
to other vertebrates; high circulating levels by midnight which are totally abolished by 
the beginning of the light phase (Campos-Mendoza, unpublished). Photoperiod exerts 
influence on reproduction in fish by affecting the brain-pituitary-gonadal axis (for 
review, see Bromage et al., 2001). In brief, photoperiod manipulation brings about 
changes in gonadotropin releasing hormone (GnRH), and pituitary and plasma FSH 
(GtH I) and LH (GtH II) (Amano et al., 1994; Davies et al., 1995, 1999). Moreover, it is 
well established that light intensity and duration influences circulating levels of 
melatonin. Bromage et al. (1995, 2001) reported that melatonin levels are strongly 
correlated with photoperiod manipulation in salmonids resulting in the advance or delay 
of spawning time, suggesting that melatonin works as a regulator in reproductive 
behaviour. Furthermore, Amano et al. (2000) reported that melatonin is one of the 
factors that mediated the photoperiodic signals in the control of gonadal development in 
Masu salmon (Oncorhynchus masou), and that these changes in photoperiod are 
transduced by the melatonin rhythms which transfer this information to the brain- 
pituitary-gonadal axis.

A further explanation as to why fecundity varied between photoperiods might be 
simply due to basic reproductive strategy. The population of O. niloticus (Manzala, 
Egypt) is the most northerly occurring natural population of this species and as such 
would experienced seasonal changes in daylength. Light may act as an additional cue 
along with increasing water temperature to help the species to optimise and synchronise 
spawning early in the season. It would be interesting to see whether species with a much 
more restricted equatorial distribution respond in the same way to longer days. This 
study however, also demonstrates that fecundity and egg size may be determined, at 
least in part, by the ISI, confirming the earlier findings of Coward and Bromage 
(1999a). The basic mechanisms underlying the dynamics of ovarian development in a 
substrate-spawning species of tilapia were described in a highly quantitative manner by 
Coward and Bromage (1998, 1999b). Further research, however, is needed to assess how 
these basic dynamics might be influenced by exogenous (e.g. temperature and photo
period) and endogenous (e.g. melatonin, gonadotropin, and sex steroid hormones) 
factors.

In conclusion, this study has shown that photoperiodic manipulation appears to be a 
reliable and powerful tool for tilapia broodstock management. Further research is needed 
to fully understand how photoperiod imparts such a powerful effect upon tilapia 
reproduction. Particular areas of concern include the effects of ‘biological’ and ‘repro
ductive’ age, the precise effects of light intensity, the possible interactions of photoperiod 
and temperature, and how photoperiod/light intensity might influence the reproductive 
endocrinology of tilapia, and thus affect the dynamics of ovarian development.
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class of proteins, called PLC£. We have been investi
gating how PLC£ is generated in the testes and sperm 
using a novel transgenic technique, in vivo gene transfer. 
In vivo gene transfer is a new technique whereby a 
trans-gene is micro-injected directly into the seminifer
ous tubules of the testis. An electrical current is applied, 
opening pores in the spermatogenic cell membranes, 
introducing the transgenic DNA into the cell, to be 
expressed using the cells transcriptional machinery. We 
are using mammalian expression vectors to link PLC£ 
to a fluorescent marker, namely green and yellow fluo
rescent protein, allowing us to visualise and track the 
expression pattern of PLC£ within a living tissue.
The ability to assess the function of PLC£ in a living 
system is vital to our understanding of its activity during 
development, how it is regulated and how it behaves at 
fertilisation. Without the luxury of a working in vitro 
spermatogenic cell culture system the use of in vivo 
gene transfer should allow us to assess the function of 
PLC£ while bypassing traditional time-consuming and 
complicated transgenic techniques.

A5.9 
Interactions between Eph and FGF 
signalling revealed by somitogenesis in 
zebrafish
O. Ozkaya and C. Brennan, (School of Biological Sci
ences, Queen Mary University of London, London, UK)

Somites are the segmental units of the vertebrate mes
oderm and give rise to all the skeletal muscles and the 
vertebral column. They are formed periodically during 
vertebrate segmentation by the process of somitogenesis. 
It has been suggested that somitogenesis involves a 
molecular segmentation clock: gene expression oscil
lates on and off in the cells of the presomitic mesoderm 
(PSM). A wavefront of maturation then sweeps back 
through this tissue, arresting oscillation and initiating 
somite differentiation. Cells arrested in different phases 
of their cycle express different genes and give rise to 
the anterior or posterior half of a somite (1).
Eph receptors are cell surface receptor tyrosine kinases 
and, together with their membrane bound ephrin ligands, 
they have been shown to have important roles in somite 
boundary formation (2). Dismption of Eph signalling by 
injection of a dominant negative ephrin leads to dismp
tion of somite boundary formation (2). Timelapse anal
ysis showed that later in development irregular shaped 
and bigger somites are formed on the injected side. 
According to the clock and wavefront model (1), larger 
somites can be formed by either a change in the period 
of oscillation of the clock, or a delay in the operation 
of the wavefront. We investigated these possibilities 
using in situ hybridisation analysis of dominant negative 
ephrin injected embryos.

(1) Cooke and Zeeman. J Theor Biol. 1976 May 
21;58(2):455-76.
(2) Durbin et al. Genes Dev. 1998 Oct. 1; 12(19):3096- 
109.

A5.10 
Photoperiodic manipulation and its effect 
upon the reproductive performance of the 
Nile tilapia, (Oreochromis niloticus)
A. Campos-Mendoza3, B.J. McAndrew3, K. Cowardb, 
N. Bromage3, (3Institute of Aquaculture, University of 
Stirling Stirling, UK; bDepartment of Pharmacology, 
University of Oxford, Oxford, UK)

Tilapias are now a major aquaculture species with pro
duction levels of over a million tonnes annually. The 
hatchery production of fry is still very inefficient due to 
the relatively low fecundity and lack of spawning syn
chrony. Any methodology that enables farmers to syn
chronise the reproductive cycles of their broodstock 
would have immense practical advantages. Light is 
already known to play an important role in the initiation 
of gonad maturation in other fish species. In this inves
tigation, the reproductive performance of 32 siblings of 
Nile tilapia was evaluated under four different photo
periods: short day (6L:18D), normal day (12L:12D), 
long day (18L:6D), and continuous illumination 
(24L:0D). Significantly larger eggs (P < 0 .0 5 ) were pro
duced under normal daylength (12L:12D) compared to 
other treatment groups. Fish reared under long daylength 
(18L:6D) exhibited significantly higher (P < 0 .05 )  total 
fecundity (2408 +  70 eggs spawn-1) and relative 
fecundity (7 .2+  0.2 eggs g -1 body weight) concomitant 
with a significant reduction in inter-spawn-interval (ISI, 
15 +  1 days) in comparison with the rest of the trials. 
This investigation shows that long daylength (18L:6D) 
helps improve some important reproductive traits in Nile 
tilapia, and suggests that such methodology may be used 
to alleviate the production problems caused by low 
fecundity and poor spawning synchrony, and thus play 
a valuable future role in tilapia culture.

A5.11 
Studies on the biosynthesis and 
reproductive functions of novel 
eicosanoids in barnacles
A.F. Rowley, B.H. Maskrey, (School of Biological Sci
ences, University of Wales Swansea, UK); G.W. Taylor, 
(Imperial College School of Medicine, London, UK)

Barnacles are key hard fouling organisms that encase 
man-made structures submerged in the marine environ-


