47

THE EFFECT OF INTERTRIAL DEPENDENCE ON SOME SENSITIVITY AND BIAS STATISTICS

Ranald R. Macdonald

Ph.D. Thesis (1968-1972) University of Stirling ProQuest Number: 13917071

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13917071

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

> ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 – 1346

ACKNOWLEDGEMENTS

I should like to express my thanks to Mr. M. F. Moore, M.A., M.Ed., for supervising this work.

Thanks are also due to Mr. A. Annan (Senior Experimental Officer, Psychology Department) and his staff for their technical assistance, Mr. J. Teale (Computer Manager) and his staff for their forebearance in my use of computer time, and Mrs. Weber for tackling a rather fearsome typing task so expeditiously.

na a bha ta ta ta

1.693

Teresiaine Merese Merese

antig the first

Apparatue

Ranald R. Macdonald August 1972

CONTENTS

Acknowledg	gements	2
Summary		5
Introducti	ion	6
(1)	The Basic Experiments	7
(2)	Detection and Recognition Models	9
	(a) Preamble	9
	(b) Parametric Models of Detection and Recognition	9
	(c) Theoretical Variances of Parameters	19
	(d) Memory Recognition Models	30
	(e) Nonparametric Approaches	31
	(f) Extension to Rating Experiments	33
(3)	Experimental Variables	35
	(a) Stimulus Probability	35
	(b) Feedback	36
	(c) Stimulus Difficulty	37
	(d) Payoffs and Instructions	37
	(e) Sequential Effects	38
	(f) Feedback and Sequential Effects	43
(4)	Relevant Reaction Time Findings	45
	(a) Experimental Results	45
	(b) Reaction Time Theories	52
(5)	Methods of Characterising Dependences	62
	(a) Preamble	62
	(b) Manifest Markov Models	62
	(c) Information Theory Analysis	64
	(d) Latent Markov Models	66
	(e) Autoregressive Processes	69
Materials	and Method	72
(a)	Preamble	72
(b)	Method	73
(c)	Design	74
(d)	Layout	78
(e)	Apparatus	78

Results		81
Introduct	ion	81
Descripti	ve Results	82
(a)	Tests for Stationarity	83
(b)	Information Theory Statistics	9 0
(c)	χ^2 analysis of relations between RS & L	95
Character	ising Dependences	99
(a)	Manifest Markov Processes	99
(b)	Autocorrelations and Autoregression Processes	107
(c)	Latent Markov Analysis	111
Effect of Statistic	Experimental Variables on Descriptive s	123
Detection	and Recognition Models	137
(a)	Estimation of Parameters	137
(Ъ)	Effects of Experimental Variables	149
(c)	ROCT Analysis	158
Simulatio	ns	163
Conclusions		180
an a		
en e		

a the second second

The state of the second se

The second second second is a second se

SUMMARY

An investigation of the intertrial dependencies in detection and recognition tasks was undertaken at different levels of a priori stimulus probability, intertrial interval, feedback, and task difficulty in a number of experiments. The effects of these experimental variables on the data are reported.

After preliminary tests for stationarity the dependences were characterised using 0, 1st and 2nd order manifest Markov processes, an autoregressive process and a latent Markov process. Although none of the models described all the data it appeared that the autoregressive process was the least helpful and that to obtain a reasonable fit of the latent Markov model a numerical minimum χ^2 estimation procedure had to be employed.

Estimates of the parameters of various detection and recognition models were found based on all the data and based on data which was preceded by a particular type of trial. From such evidence it appeared that the value of these estimates depended on the state on the last trial. In particular the bias statistics were dependent on the immediately preceding response and the sensitivity statistics appeared dependent on whether the immediately preceding trial was correct or wrong. Neither Atkinson's (1965) model nor the model proposed by Tanner Rauk & Atkinson (1971) was found to adequately describe the observed dependences.

Statistical tests have been developed for a number of the detection and recognition models used in the above study. These tests assume intertrial dependence. Simulations of the Markov process estimated from the experiments were used to examine the robustness of such tests against violations of the independence assumption. The tests were found to be relatively robust but large biases were found when the test statistics were based on small samples. This effect was shown to be able to account for some of the earlier findings.

1. INTRODUCTION

The aim of this project was to examine the effects of the trial by trial dependences on various signal detection and recognition models (Tanner Swets Green Peterson Birdsall Treisman Luce Atkinson, etc.). Most of the models assume independence although some e.g. Atkinson Kinchla, postulate some dependences on certain types in certain situations. Here an attempt is made to discover the extent of the dependences in the usual types of psychophysical experiments, how they vary with experimental conditions, and what effects they have on the models. To do this several experiments will be described involving detection and recognition tasks in which the variables stimulus probability feedback intertrial interval and task difficulty were systematically varied. Estimation of the dependences in each of these conditions was then undertaken. An attempt to measure the robustness of the recognition and detection models could then be attempted by simulating experiments with the observed amounts of dependence and observing the effects on the models. In short the aim was to characterise the intertrial dependence in this situation and examine the effect of this on the detection and recognition models.

Thus the review will consist of five sections. The first dealing with existing models, methods of estimation of their parameters and statistical tests which have been derived on the basis of some of the models.

After this there follows a discussion on models for describing a series of discrete events in time which are dependent. These models will be used to show what the nature of the dependences is in the situations we shall be examining. Having a model which describes such a time series enables similar series to be simulated on a computer. The differences between signal detection models applied to such series and to independent series can be examined. The models discussed for this purpose include an information theory approach, observable and latent Markov models and autoregressive processes. An attempt will be made to review the main effects of varying the experimental conditions as have been reported in the literature for comparison at a qualitative level with the present investigation. Findings from reaction time studies will also be included since a choice reaction time experiment is a very easy recognition situation.

Up to this point the main emphasis is on the Yes/No experimental situation. A further discussion of Rating scale task will be given and results from the technique examined and compared with RTROC curves (Meyers 1970), so that the effect of latency dependencies can also be examined.

(1) The Basic Experiments

Before examining some different classes of models it might be useful to describe the sort of data to which they have been applied.

In the Yes/No detection situation a subject S is presented with a stimulus which could be either a burst of white noise (N) or a burst of white noise into which a signal (S) has been added. The subject's task is to indicate the presence or absence of a stimulus by responding R_S or R_N respectively. When this is repeated a number of times the results can be summarised by the conditional probabilities of the subjects response given what the stimulus was on that trial. The table of these figures is often referred to as a confusion matrix.

		Stimulus	Presented
		Noise	Stimulus
	R _S	p(R _S N)	p(R _S S)
Subj.Resp.	R _N	p(R _N N)	p(R _N S)

Often the models used in this situation can be used on recognition data. Here the S is required to respond R_{S_1} or R_{S_2} depending on whether he was presented with stimulus 1 or 2 rather than detecting the presence of a stimulus.

Other sorts of experimental techniques can be used than the Yes/No situation. In the Forced Choice experiment the subject is presented with two stimuli at known times. In the detection situation he must state which of the two contained the signal and in the recognition task the subject is required to state which stimulus was which. In a Rating procedure with the detection task the subject not only responds indicating the presence or absence of a signal he indicates his degree of certainty on a n point scale. These three methods are the standard psychophysical techniques that have been used in experimental work in signal detection (Green and Swets 1966). In all but one of the experiments undertaken in this project the set up was the Yes/No design. The subject was presented with one of two known stimuli and required to say which it was the cycle being repeated for several hundred times.

2. SIGNAL DETECTION AND RECOGNITION MODELS

(a) Preamble

Different types of models have appeared from time to time in the literature over the last 20 years (Peterson Birdsall Fox, 1954; Green & Swets, 1966; Krantz, 1969; Atkinson, 1963; Luce, 1963; Thomas, 1970, etc.)

Attempts have been made to formalise the statistical properties of these models (Gourevitch & Galanter, 1967; Abrahamson Levitt & Landgraf, 1967; Dorfman & Alf, 1968; Abrahamson & Levitt, 1968 & 1969; Bush, 1963). Other recent developments in this area include the postulation of a memory recognition model (Tanner Rauk & Atkinson, 1971), and several attempts to produce a nonparametric analysis of signal detection and recognition data (Pollack and Hsieh (1969), Hodos (1970).

The following section will attempt to summarise the above models and methods of analysis.

(b) Parametric Models of Signal Detection and Recognition

In the basic model of Swets Tanner & Birdsall (1961) an observer is required to distinguish between being presented with a signal in a background of noise (S + N) or with noise alone (N). They assume that repeated presentation of the same stimulus gives rise to a distribution of values f(x) on the subject on some psychological continuum, i.e. f(x|N) or f(x|S + N) depending whether the signal was added to the noise or not. The subject uses his knowledge of f(x|N)and f(x|S + N) to decide from which of the distributions the stimulus has arisen. Indeed, in this model it is supposed that the subject decides to respond.

> R_{N} if the likelihood ratio x < C and R_{S+N} if the likelihood ratio x > C

In the normal equal variance case when

$$f(x|N) = N(\mu_N \sigma^2)$$
 and $f(x|SN) = N(\mu_{S_N} \sigma^2)$

the likelihood ratio of SN as opposed to N is

$$\ell(x) = \frac{\frac{1}{2\pi\sigma^{2}} \exp \frac{1}{2\sigma^{2}} (X - \mu_{SN})^{2}}{\frac{1}{2\pi\sigma^{2}} \exp \frac{1}{2\sigma^{2}} (X - \mu_{N})^{2}}$$

$$= \exp \frac{1}{2\sigma^2} (2\mu_{\rm SN} - 2\mu_{\rm N}) x$$

-
$$(\mu_{\rm SN}^2 - \mu_{\rm S}^2)$$

as the units and location are arbitrary we can put σ = 1 and let

$$\mu_{\rm SN} = \frac{d!}{2} \qquad \mu_{\rm N} = -\frac{d!}{2}$$

When

$$l(x) = exp(d'x)$$

thus l(x) and x are monotonically related and we can use an equivalent decision rule to describe S's behaviour

respond
$$R_{SN}$$
 if $f(x) = \frac{(x | SN)}{(x | N)} > K$
or R_{SN} if $f(x) = x > C$

if C and K are chosen appropriately.

If in experiments (e.g. Tanner, Swets, Green 1956) we induce the subject to vary k, we obtain different estimates of k but E(x|S + N) - E(x|N) usually called d' when expressed in units corresponding to the variance of the underlying distributions should be constant. If we were to plot $P(R_S|S) \vee P(R_S|N)$ we obtain a curve characteristic of the subject, i.e. for each value of d' there is one such curve. If all the above assumptions are met. When plotted on double probability graph paper $P(R_S|S) \vee P(R_S|N)$ should give a straight line slope.

This basic formalisation was developed by its originators (Green & Swets 1966) to include a number of variations on the original theme.

(1) They considered the case of unequal variance. This no longer results in a monotonic ROC curve if $\sigma_{\rm S} > \sigma_{\rm N}$ ($\sigma_{\rm S+N}$ is sd.of f(x|S+N) then the ROC curve is like:

To detect this difference however is very difficult, e.g. Swets & Green claim if $\sigma_S / \sigma_N = 2:1$ then to detect the rapid acceleration at the top of the curve requires at least 3 place accuracy.

If the assumptions of the above model hold except $\sigma_{S+N} \neq \sigma_N$ then the effect is more easily measured using double probability paper.

 $Z_{Y} \text{ is now } (k - E(x|S+N))/\sigma_{S} \& k = \sigma_{S}Z_{Y} + \mu_{S}$ and $Z_{X} = (k - E(x|N))/\sigma_{N} \& k = \sigma_{N}Z_{X} + \mu_{N}$ $Z_{x} = \frac{\sigma_{S}Z_{Y} + \mu_{S} - \mu_{N}}{\sigma_{N}}$

i.e. the slope of the line is $\sigma_{\rm S}/\sigma_{\rm N}$ and its intercept with

the y axis is $\frac{\mu_S - \mu_N}{\sigma_N}$. We can thus estimate the ratio of

standard deviations from the slope of the ROC curve. However, the model as it now stands begs the question that if the decision axis is no longer monotonic to the likelihood ratio the observer should be able to learn two criteria so that he restores signal to very low values of x.

(2) An alternative way of describing the data is to assume an exponential distribution.

$$f(x|N) = e^{-x}$$

$$f(x|S+N) = e^{-x}$$

$$P(R_{S}|N) = \int_{\kappa}^{\infty} e^{-x} = e^{-k}$$

$$P(R_{S}|S) = \int_{\kappa}^{\pi} e^{-ax} e^{-ka} = (e^{-k})^{a}$$

$$P(R_{S}|N) = P(R_{S}|S)^{1/a}$$

i.e. the ROC curve is given in equation (\dot{X}). This gives the freedom of another parameter and implies that the slope decreases with increasing k.

(3) By assuming
$$f(x|N) = \frac{1}{(1+x)^2}$$

(X)

X

$$f(x|SN) = \frac{1/\eta}{(1/\eta + x)^2}$$
 $\eta < 1$

Swets and Green produce identical results as those obtained by Luce's choice model (Luce 1963a).

i.e. in $P(R_S|N) = \frac{1}{k+1}$ in a Yes/No experiment $P(R_S|S) = \frac{1/\eta}{1/\eta+k}$. The above equation can be solved for η and k. (η being the sensitivity parameter). In fact this model differs from the choice model in that eq. (X) although giving equivalent Yes/No predictions does not also predict the forced choice equation as choice theory. Other models with different premises are:

Luce's Choice model (1963)a

He assumes that two ratio scales n_1 and n_2 exist defined on the set of all stimuli used in the experiment ϕ (in the detection case S and N) and b is a ratio scale defined on the set of all responses in experiment ψ . He then assumes

$$p(R|S) = \frac{n(S, S(R)) b(R)}{\Sigma n(S, S(R') b(R')}$$

$$\forall R' \in R$$

where η is the similarity between the presented stimulus S and the one S(R) for which R is the correct response. He also assumes

 $n(S_1S_2) = n(S_2S_1) \text{ for } S_1 + S_2 \in \phi$ $n(S_1S_1) = 1 \qquad S_1 \in \phi$

$$\eta(S_1S_3) \ge \eta(S_1S_2) \times \eta(S_2S_3)$$

Consider the Yes/No detection situation. Let $\eta(S, N) = \eta(N, S) = \eta$ and $b(R_S)/b(R_S) = b$, then the confusion matrix is

R_N

RS

$$N = \frac{\eta(N_S) b(R_S)}{\eta(N_S) b(R_S) + \eta(N,N) b(R_N)} = \frac{\eta(N,N) b(R_N)}{\eta(N_S) b(R_S) + \eta(N,N) b(R_N)}$$

s
$$\frac{\eta(S,S) b(R_S)}{\eta(S,S) b(R_S) + \eta(S,N) b(R_N)}$$
 $\frac{\eta(S,N) b(R_N)}{\eta(S,S) b(R_S) + \eta(S,N) b(R_N)}$

by appropriate division of the numerators and denominators we reduce the above to

$$\begin{array}{c} R_{S} & R_{N} \\ N & \frac{1}{1 + hb} & \frac{b}{hb + 1} \end{array}$$

S
$$\frac{\eta}{\eta + b}$$
 $\frac{b}{b + \eta}$

 $\boldsymbol{\eta}$ and \boldsymbol{b} can then be found directly from the confusion matrix

i.e.
$$\eta = \left(\frac{P(R_N|S) - P(R_S|N)}{P(R_S|S) - P(R_N|N)}\right)^{\frac{1}{2}}$$

and
$$b = \left(\frac{P(R_N|S) - P(R_N|N)}{P(R_S|S) - P(R_S|N)}\right)^{\frac{1}{2}}$$

Threshold theories

<u>Classical</u>:- This assumes that there exists some cut-off level of sensory excitation. If this is excluded the subject 'detects' a stimulus. In practice it is noticed that the same stimuli repeatedly presented to the subject may sometimes be detected and sometimes not. This can be explained by proposing that the sensory effect produced by the same stimulus varies or that the cut-off value (threshold) varies. For any stimulus S however there is a fixed probability p(s) of detecting it. If however the signal is not detected the subject may guess that it was presented with a probability g, i.e. we can characterise the situation in two matrices.

	Stim.	State			
	D	Đ		R _S	R _N
8	p(s)	1-p(s)	D	1	0
N	0	1	Đ	g	1-g

thus the resulting confusion matrix is the product of the two above.

经需要的需要了 网络小麦香菇 化二氯乙酸 经运行法

	RS	R _N
S	p(s) + (1-p(s))g	(1-p(s))(1-g)
a M	8	(1-g)

We can thus estimate g from $p(R_{s}|N)$ and then find p(s)

$$p(R_{S}|S) = p(S) + (1 - p(S))p(R_{S}|N)$$

i.e.
$$p(S) = \frac{p(R_S|S) - p(R_S|N)}{1 - p(R_S|N)}$$

Another performance measure used classically in the probability of being correct statistic p(c). If the number of response alternatives is m then

p(c) = p(c)* +
$$\frac{1}{m}(l - p(c)*)$$

where p(c)* is the underlying probability of being correct once the effect of guessing on the observed probability has been removed

$$p(c)* = \frac{p(c) - 1/m}{1 - 1/m}$$

Luce's two state threshold analysis: - Luce modified the above formulation to make it symmetric. He assumes an activation matrix, one of two decision matrices (Luce 1963).

	D	Đ		₽ _S	R_{N}		R _S	RN
S	p(s)	1 - p(s)	D	1	0	or	l-g	g
N	p(n)	1-p(n)	D	g	l-g		0	l

This relaxes two assumptions of classical theory as there is a possibility of going into either state if noise alone is presented and, depending on whether the subject wishes to reduce his miss rate or his false alarm rate, he would choose decision matrix 1 or 2, thereby producing a confusion matrix of

	₽ _S	R_{N}	or	R _S	R _N	
S	p(s)+(l-p(s))g	(l-p(s))(l-g)		p(s)(l-g)	p(s)g + (l-p(s))
N	p(n)+(l-p(n))g	(l-p(n))(l-g)		p(n)(l-g)	p(n)g + (l-p(n))

As there are three parameters in this model, ns, nn and y the model is not immediately testable from two independent probabilities.

<u>Atkinson (1963)</u>:- Further extended threshold theory by postulating detection states corresponding to each stimulus condition. The probability of entering either of these states given signal or noise is specified by an activation matrix

	DS	D _O	D_{N}
S	σ	l-σ	0
N	0	l-σ	σ

Thus σ is a measure of the subjects sensitivity and a decision matrix depending on trial n

	R _S	^{R}N
DS	l	0
D _O	₿n	l-p _n
D _N	0	1

Thus ρ_n is an estimate of the bias on trial n. So the resulting confusion matrix is the product of the activation and decision matrices

	R _S	R _N
S	σ + ρ _n (1-σ)	(1-ð)(1-p _n)
Ν	(1-σ)ρ _n	σ + (l-σ)(l-ρ _n)

This is the only model so far considered which allows for non independence between trials. As Atkinson in Atkinson, Bower & Crothers, 1965 postulates that

	= $\rho_n + \theta(1-\rho_n)$	if D_0 and feedback S_
0n + l	= (1-0')0 n	if D_0 and feedback N
	= ^ρ n	otherwise

^pn changes only with feedback. It is shown (Atkinson, Bower & Crothers, 1965)

$$\underset{n \rightarrow \infty}{\mathbb{L}} (\rho_n) \rightarrow \rho_{\infty} = \frac{\gamma}{\gamma + (1 - \gamma)\phi}$$

where
$$\gamma = P(S)$$

and $\phi = \frac{\theta'}{\theta}$

Thus ϕ and σ can be estimated from the confusion matrix. Sandusky (1966) and (1971), proposed a model

with a similar activation and decision matrix. In this model if neither signal is recognised on a trial the response depends on the sensory state on the immediately preceding trial. If the signal was not recognised on the preceding trial then the subject repeats his last response with a probability v. If the last signal was recognised he assumes a change has occurred and modifies his strategy in favour of response alternation, i.e. he repeats his last response with a probability w where w < v. Thus ρ_n is independent of n and if the probability of a true recognition is a constant α for each of the stimuli

$$\rho_{n} = \rho = \frac{\gamma \alpha v + (1-\gamma)\alpha(1-v) + (1-\alpha)(1-w)}{1 - (1-\alpha)(2w-1)}$$

To estimate the parameters Sandusky uses a numerical technique. Krantz (1969) postulated a non-symmetric decision model for detection experiments. His activation matrix was

		D ₂	D ₁	D ₀
А	Sη	ⁿ 2	'nı	٩ ₀
	N	0	ql	d ⁰

and decision matrices depending on the point on ROC curve were:-

		Y	Ν			Y	Ν
P _{neg}	D ₂	1	0	Ppos	D ₂	1	0
	Dl	Ъ	1 - b		Dl	l	0
	D ₀	0	1		D ₀	a	<u>1</u> -a

and the response matrices R = AD

and the ROC curve is

lower level $P(R_S|S) = \frac{\eta_1}{q_1} P(S|S_N) + \eta_2$

and

higher level
$$P(R_S|S) = \frac{n_0}{q_0} P(S|S_N) + 1 - \frac{n_0}{q_0}$$

Thomas and Legge (1970) have proposed a different approach to signal detection. Following Parks (1966) the basic proposition is the subject responds so that $P(R_S)$ the probability that the subject responds S is given by $P(R_S)$ = minimum (kq,1)

where k is a constant depending on the payoff matrix and q is the probability of (S). It is thus assumed

$$kq = qP(R_{S}|S) + (1-q) P(R_{S}|N)$$
$$P(R_{S}|S) = k - \frac{1-q}{q} P(R_{S}|N)$$

so that if q is fixed for all data points over generation on an ROC curve, then these points should lie on a straight line through (0, k) with slope $-(1-q)/_q$. Given two points on this line the point closer to (0, k) corresponds to a larger hit and smaller false alarm rate and this reflects more sensitivity. However, the model does not yield a measure of sensitivity on an interval scale.

(c) Theoretical Variances of Parameters

Some of the above models to be considered can be conceived as producing a number of independent binomial processes. Let there be J such processes. Bush (1963) considers some of the estimation problems involved. Let p_j and n_j be the probability of success and the number of trials on the jth process respectively. Finally let X_{ij} be a random indicator variable showing the state on the ith trial of the jth process. Thus the likelihood of a set of observations is given by

$$L = \prod_{j=1}^{J} \prod_{i=1}^{n_j} P_j^{X_{ij}(1-p_j)}^{1-X_{ij}}$$

n

and $lnL = \sum_{j=1}^{\infty} \sum_{ij=1}^{\infty} ln p_j + (l-X_{ij})ln(l-p_j)$. Thus to find the ML estimate of a parameter (0) where p_j is a function of 0 we differentiate lnL with respect to 0 and set it equal to 0.

i.e.
$$\frac{\partial \ln L}{\partial \theta} = \frac{\partial \ln L}{\partial p_{j}} \frac{\partial P_{j}}{\partial \theta} = 0$$

$$= \sum_{j=1}^{\Sigma} \sum_{i} \left(\frac{X_{ij} - 1 - X_{ij}}{P_{j}} \right) \frac{\partial p_{j}}{\partial \theta}$$

$$= \sum_{j=1}^{\Sigma} \sum_{i} \left(\frac{X_{ij} - p_{j}}{P_{j}(1 - p_{j})} \right) \frac{p_{j}}{\partial \theta}$$

$$= \sum_{j=1}^{\Sigma} \frac{\sum_{i=1}^{X_{ij} - n_{i}p_{j}}{P_{j}(1 - p_{j})} \frac{\partial p_{j}}{\partial \theta}$$

$$\sum_{j=1}^{X_{j} - p_{j}} \frac{\partial p_{j}}{P_{j}(1 - p_{j})} = 0$$
where $\overline{X}_{j} = \sum_{i=1}^{\Sigma} \frac{X_{ij}}{n_{i}}$

A solution is $p_j = \bar{X}_j$ and as $p_j = f(\theta)$ the ML estimate of θ is $f^{-1}(X_j)$

Note:

$$E(\sum_{i=1}^{X} \frac{ij}{n_{j}}) = \sum_{i=1}^{E(X} \frac{ij}{n_{j}}) = \frac{p_{j}n_{j}}{n_{j}} = p_{j}$$

It can be shown (Kendall & Stewart (1963)) that ML estimations are best asymptotically normal (BAN) with an asymptotic variance equal to the Minimum Variance Bound (MVB). The MVB is established by the Cramer Rao Inequality (Kendall & Stewart, vol.2, p.13).

vart <
$$\frac{1}{-E} \frac{\partial^2 \ln L}{\partial \theta^2}$$
 or $\frac{1}{E} \frac{\partial \ln L}{\partial \theta}$

where t is the estimate of a population parameter θ and L is the likelihood function of observation made on the population. In this case therefore the asymptotic variance of θ is

A var
$$(\hat{\theta}) = \frac{1}{-E} \frac{1}{\frac{\partial^2 \ln L}{\partial \theta^2}} = \frac{1}{\sum \frac{n_j}{p_j (1-p_j)}} \frac{1}{\frac{\partial p_j}{\partial \theta}^2}^2$$

$$E \frac{\frac{\partial^2 \ln L}{\partial \theta^2}}{\frac{\partial^2 \theta^2}{\partial \theta^2}} = E \frac{\frac{\partial \sum \sum \frac{X_{ij} - p_j}{p_j (1-p_j)} \frac{\partial p_j}{\partial \theta}}{\frac{\partial p_j}{\partial \theta}} \frac{\frac{\partial p_j}{\partial \theta}}{\frac{\partial \theta^2}{\partial \theta^2}}^2$$

$$= E \sum \frac{\sum \sum \frac{p_j (1-p_j) - (X_{ij}-p_j)(1-2p_j)}{h_j^2 (1-h_j)^2} \frac{\frac{\partial p_j}{\partial \theta}}{\frac{\partial \theta^2}{\partial \theta^2}}^2$$

$$= E \sum \frac{\sum \sum \frac{-X_{ij} + 2p_j X_{ij} - p_j + 2p_j A_{ij} - p_j + 2p_j A_{ij}}{p_j^2 (1-p_j)^2} \frac{2}{\theta^2}^2$$

as E(X_{ij}) = p_j we have

$$\frac{\partial^2 \ln L}{\partial^2 \theta} = \frac{\sum -p_j(1-p_j)}{ji-p_j^2(1-p_j)^2} \frac{\partial p_j}{\partial \theta}^2$$

$$= -\Sigma\Sigma \frac{1}{p_j(1-p_j)} \frac{\partial p_j}{\partial \theta}^2$$

$$= -\sum_{j} \frac{n_{j}}{p_{j}(1-p_{j})} \frac{\partial p_{j}}{\partial \theta}^{2}$$

Thus

A var
$$(\hat{\theta}) = \frac{1}{\frac{p_j^2}{p_j(1-p_j)}} \frac{\partial p_j^2}{\partial \theta}$$

Luce's Choice Model

Here we have two processes operating one when a signal is present and the other when the stimulus is noise alone. A solution to the ML estimation equation is

$$P(R_{S}|S) = \frac{1}{nb+1} = \bar{X}_{S} \quad \therefore \quad \frac{\partial P(R_{S}|S)}{\partial n} = \frac{1}{n} P(R_{S}|S)(1-P(R_{S}|S))$$

$$P(R_{S}|N) = \frac{n}{n+b} = \bar{X}_{N}$$

and the ML estimates of η and b

$$\hat{n} = \sqrt{(1 - \bar{x}_{S})/\bar{x}_{S}} \frac{\bar{x}_{N}/(1 - \bar{x}_{N})}{\bar{x}_{N}} = \sqrt{\frac{P(R_{N}|S)P(R_{S}|N)}{P(R_{S}|S)P(R_{N}|N)}}$$
$$\hat{b} = \sqrt{(1 - \bar{x}_{S})/\bar{x}_{S}} \frac{(1 - \bar{x}_{N})/\bar{x}_{N}}{(1 - \bar{x}_{N})/\bar{x}_{N}} = \sqrt{\frac{P(R_{N}|S)P(R_{N}|N)}{P(R_{S}|S)P(R_{S}|N)}}$$

Their asymptotic variances are

A V
$$(n) = \frac{n^2}{N(P(R_S|S)(1-P(R_S|S)) + P(R_S|N)(1-P(R_S|N))}$$

A V (b) =
$$\frac{b^2}{N(P(R_S|S)(1-P(R_S|S)) + P(R_S|N)(1-P(R_S|N))}$$

In the threshold model we have as a solution of the ML estimation equation:

$$P(R_{N}|S) = (1 - p(s))(1-g) = \overline{X}_{S} \frac{\partial P(R_{N}|S)}{\partial p(s)} = -P(R_{N}|N)$$

$$P(R_N|N) = 1 - g = \overline{X}_N$$

$$g = 1 - \overline{X}_N$$

and
$$p(s) = 1 - \frac{X_S}{\overline{X}_N}$$

are the required ML estimations and

$$A \ V \ (p(s)) = \frac{\frac{1}{N \ P(R_N | N)^2}}{\frac{P(R_2 | S)(1 - P(R_2 | S))}{P(R_2 | S)(1 - P(R_2 | S))}}$$

is the asymptotic variance of the threshold p(s).

We can also use the probability of being correct as an index of sensitivity. The equation for the observed probability of being correct is

$$P(c) = P(c) + \frac{1}{2} - P(c)^{2}$$

where P*(c) is the true probability; of being correct and the other responses are guesses from m alternatives.

Thus

$$P(c)* = \frac{P(c) - 1/m}{1 - 1/m}$$

Assuming independence of trials then from the binomial distribution

In Luce's threshold model there are as we saw three parameters to be estimated. We therefore need more data than is in one confusion matrix to estimate these parameters. However, it is possible to obtain two confusion matrices differing only in g, i.e. the subject is required to detect the same signal in two situations where experimental conditions are arranged to make the subject change his bias parameter. Let the two bias parameters and let the variables in the second situation be denoted by a prime. Then the estimation equations are:

 $P(R_{N}|N) = (1 - p_{n})(1 - g)$ $P(R_{N}|S) = (1 - p_{s})(1 - g)$ $P(R_{N}|N)' = (1 - p_{n})(1 - g')$ $P(R_{N}|S)' = (1 - p_{s})(1 - g')$

Gourevitch and Galanter (1967) derived an approximation to the sampling distribution of d' when

$$f(x|N) = (\mu_N, \sigma^2) \text{ and}$$

$$f(x|SN) = N(\mu_{SN}, \sigma^2).$$

Let

$$p_1 = P(R_N|N) = \int_{\infty}^{C} f(x|N) dx$$

$$P_2 = P(R_N | SN) = \int_{\infty}^{C} f(x | SN) dx$$

Normally we estimate p_1 and p_2 empirically i.e. obtain \hat{p}_1 and \hat{p}_2 and then convert these to z scores using a table of areas under a ND curve to give z_1 and z_2 . The estimate of d' = $\mu_{sn} - \mu_n$ is $d_1 = z_1 - z_2 = est(c - \mu_N) - est(c - \mu_{SN})$. If $\sigma = 1$ we can write

$$P_{i} = \int_{-\infty}^{C} \frac{1}{\sqrt{2\pi}} e^{-\frac{(x - \mu_{i})}{2}} dx$$

$$= \int_{0}^{C} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

$$= \int_{-\infty}^{Z_{i}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$= \int_{1}^{Z_{i}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

$$e \cdot P_{i} = \phi(z_{i})$$

$$z_{i} = \phi^{-1}(p_{i}) = g(p_{i})$$

Now expanding g(p) about the point p = p

$$g(p) = g(p) + (p - p)g'(p) + \dots$$

Differentiating * we have

i

$$\frac{dp}{dz} = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} = \text{ord } z$$

where ord z means the ordinate of the normal curve at standard score z.

$$g'(p) = \frac{dz}{dp} = \frac{1}{ord z}$$

 $z = z + \frac{p - p}{ord z}$ substituting into equation #.

Thus
$$\hat{d} = \hat{z}_1 - \hat{z}_2 = z_1 = z_2 + \frac{\hat{p}_1 - \hat{p}_1}{\text{ord } z_1} - \frac{\hat{p}_2 - \hat{p}_2}{\text{ord } z_2}$$
 and
 $\operatorname{var}(\hat{d}) = \frac{\operatorname{var} \hat{p}_1}{(\operatorname{ord} z_1)^2} + \frac{\operatorname{var} \hat{p}_2}{(\operatorname{ord} z_2)^2}$

as p_1 , p_2 , z_1 and z_2 are constant.

We assume p_j is estimated from n_i independent observations distributed binomally.

Thus
$$\operatorname{var}(d) = \frac{p_1(1-p_1)}{n_1(\operatorname{ord} z_1)^2} + \frac{p_2(1-p_2)}{n_2(\operatorname{ord} z_2)^2}$$

 $\operatorname{var}(d) = \frac{p_1(1-p_1)}{n_1(\operatorname{ord} z_1)^2} + \frac{p_2(1-p_2)}{n_2(\operatorname{ord} z_2)^2}$

we can thus test H_0 : $\hat{d}_1 - \hat{d}_2 = 0$ using

$$Z = \frac{\hat{d}_{1} - \hat{d}_{2}}{\frac{\hat{p}_{1}(1-\hat{p}_{1})}{n_{1}(\text{ord } z_{1})^{2}} + \frac{\hat{p}_{2}(1-\hat{p}_{2})}{n_{2}(\text{ord } z_{2})^{2}}}$$

when the Z distribution is N(0, 1).

Recently Abrahamson & Levitt (1969) have extended this approach to an examination of a number of different points on the same ROC curve. They define

$$F(x|N) = \frac{x}{6} f(t|N) dt and F(x|SN) = \frac{x}{6} f(t|SN) dt$$

These have inverses F_N^{-1} and F_{SN}^{-1} respectively.

$$P(R_S|SN) = P(hit) = 1 - F_{SN}(c) = P(c)$$

 $P(R_S|N) = P(false alarm) = 1 - F_N(c) = p(c)$ thus eliminating c we have the equation for the ROC curve

$$F^{-1}_{N}(1-p) = F^{-1}_{SN}(1-p)$$

if we assume
$$f(x|N) = \frac{1}{\sigma} f(\frac{x}{\sigma})$$

and
$$f(x|SN) = \frac{1}{\sigma_s} f(\frac{x-s}{\sigma_s})$$

where σ^2 is the variance of the noise distribution and σ_{c}^{2} the variance of the signal plus noise distribution. Note how much less restrictive this is than the equal variance normal condition previously considered,

$$P(c) = 1 - F(\frac{c-s}{\sigma_s}) \quad p(c) = 1 - F(\frac{c}{\sigma})$$

and the ROC curve

$$F^{-1}(1-P) = \frac{\sigma}{\sigma_s} F^{-1}(1-p) - \frac{s}{\sigma_s}$$

if $\sigma = \sigma_c$ this depends only on s/ σ which we call d'.

By changing the probability of the signal P(S) on the rewards the estimate of (c) and P(c) can be obtained for several values of c. Suppose n; trials are made at c;. For i = 1....N we can estimate

$$\hat{p}(c_i) = \hat{p}_i = \frac{\text{no } R_s \text{ given SN}}{P(S_i)n_i}$$

$$\hat{P}(c_i) = \hat{P}_i = \frac{\text{no } R_s \text{ given S}}{(1-P(S_i))n_i}$$

where $P(S_i)$ is the a priori probability of a signal being presented and asymptotically

$$(n_{i})^{\frac{1}{2}} \begin{pmatrix} \hat{P}_{i}^{-P_{i}} \\ P_{i}^{-P_{i}} \end{pmatrix} \sim N \begin{pmatrix} 0 & \frac{P_{i}(1-P_{i})}{1-P(S_{i})} & 0 \\ 0 & \frac{P_{i}(1-P_{i})}{P(S_{i})} \end{pmatrix}$$
now if $X_{i} = F^{-1}(1 - \hat{P}_{i}) \xi_{i} = F^{-1}(1 - P_{i})$
 $Y_{i} = F^{-1}(1 - \hat{P}_{i}) \eta_{i} = F^{-1}(1 - P_{i})$
and $\gamma_{i} = \frac{P_{i}(1 - P_{i})}{(1-P(S))f(\xi_{i})} \quad \delta_{i} = \frac{P_{i}(1 - P_{i})}{P(S_{i})f(\eta_{i})}$

ð

If $f(\xi_i)$ and $f(\eta_i)$ are normal γ_i and δ_i are probit weights (Finney 1952)

$$X_{i} - \xi_{i} = \frac{\hat{P}_{i} - P_{i}}{f(\xi_{i})}$$
$$Y_{i} - \eta_{i} = \frac{\hat{P}_{i} - P_{i}}{f(\eta_{i})}$$

and asymptotically

 $(n_{i})^{\frac{1}{2}} \begin{array}{c} X_{i} - \xi_{i} & 0 & \gamma_{i} \\ \gamma_{i} - \eta_{i} & N & 0 \end{array} , \begin{array}{c} 0 & \delta_{i} \\ 0 & 0 & \delta_{i} \end{array}$ if $z_{i} = X_{i} - M_{i}$ $n^{\frac{1}{2}}(z_{i} - \frac{s}{\sigma}) \sim N(0, \tau_{i})$ where $\tau_{i} = \gamma_{i} + \delta_{i}$

note: $X \sim N(\mu, \Sigma)$ means vector X is multivariate normal will mean vector μ and covariance matrix Σ .

They then considered an estimate of $d'(\frac{s}{\sigma})$ from a number of estimates from different points on the ROC curve $(\hat{d}_1^!)$. They obtain a solution which they claim is asymptotically unbiased and efficient:-

with variance

var
$$\hat{d}^{\dagger} = \Sigma n_i / \text{var} \hat{d}^{\dagger}_i = 1$$

where n_i are the number of observations for each data point. The estimates of the individual cutoffs are found from the maximum likelihood equation

$$t(\mathbf{d}^{*}, \frac{\mathbf{c}_{\mathbf{i}}}{\sigma}) = \frac{\pi}{\mathbf{i}} \left(1 - F(\frac{\mathbf{c}_{\mathbf{i}}}{\sigma} - \frac{\mathbf{S}}{\sigma}) \right)^{n_{\mathbf{i}}(\mathbf{S} \mid \mathbf{NS})} F(\frac{\mathbf{c}_{\mathbf{i}}}{\sigma} - \frac{\mathbf{S}}{\sigma}) \times \left(1 - F(\frac{\mathbf{c}_{\mathbf{i}}}{\sigma}) \right)^{n_{\mathbf{i}}(\mathbf{S} \mid \mathbf{NS})} F(\frac{\mathbf{c}_{\mathbf{i}}}{\sigma})^{n_{\mathbf{i}}(\mathbf{NS} \mid \mathbf{NS})}$$

n_i(S|S) is the number of hits in condition i.

27:

$$K_{1} = \sum_{i=1}^{N} \frac{P_{i} - (1 - F(\hat{c}_{i}/\hat{\sigma}))^{2}}{F((\hat{c}_{i} - S)/\hat{\sigma}) 1 - F((\hat{c}_{i} - S)/\hat{\sigma})} n_{i}(1 - P(S_{i}))$$

+
$$\sum_{i=1}^{N} \frac{P_{i} - 1 - F((\hat{c}_{i} - S)\hat{\sigma})^{2}}{F((\hat{c}_{i} - S)/\hat{\sigma})^{1} - F((\hat{c}_{i} - S)/\hat{\sigma})} n_{i}P(S_{i})$$

where $\hat{\sigma} = S(S/\sigma)$ and $c_i = \hat{\sigma}(\frac{c_i}{\sigma})$

 K_1 is distributed as χ^2 with N-1 degrees of freedom.

If the n_i's are allowed to increase so that $n_i / \sum_{j} \rightarrow a$ limit v_i and the models assumptions hold then $K_1 / \sum_{j} n_j$ will converge to 0. Otherwise it will reach a minimum for some values σ° and C° ($C_1^{\circ} \dots C_N^{\circ}$). In such a case K_1 is roughly distributed as $A^{-1} \chi^2_{2N} (\Delta^2)$ where A is a constant

$$A = M \qquad M \qquad \frac{P_{i}^{\circ}(1 - P_{i}^{\circ})}{P_{i}(1 - P_{i})}, \qquad \frac{P_{i}^{\circ}(1 - P_{i}^{\circ})}{P_{i}(1 - P_{i})}$$

 $\chi^2_{2B}(\Delta)$ is a non central chi square with 2N degrees of freedom and non centrality parameter Δ

$$\Delta = \Sigma n_{i} \frac{(P_{i} - P_{i}^{\circ})^{2}}{P_{i}(1 - P_{i})}(1 - P(S_{i})) + \frac{(P_{i} - P_{i}^{\circ})^{2}}{P_{i}(1 - P_{i})} P(S_{i})$$

To achieve a power of at least β against a specified set of P_i 's and P_i 's n_i should be large enough to satisfy

$$P(\chi^{2}_{2N}(\Delta) > A \chi^{2}_{N-1}) \neq \beta$$

From this they showed that to test the goodness of fit of a logistic model against a normal one with power .5 and significance level .05 well over 5,000 observations would be required. They also considered the case where $\sigma_s \neq \sigma$ and showed estimates for σ/σ_s , S/σ_s , c_i/σ_s and the covariance matrix of these parameters could be found from the maximum likelihood equation

$$\ell\left(\frac{\sigma}{\sigma}, \frac{S}{\sigma_{s}}, \frac{C}{\sigma_{s}}\right) = \prod_{i} 1 - F\left(\frac{\sigma}{\sigma_{s}}, \frac{C}{\sigma_{s}}, -\frac{S}{\sigma_{s}}\right) = \frac{n_{i}(S|S)}{x}$$

$$F\left(\frac{\sigma}{\sigma_{s}}, \frac{C}{\sigma_{s}}, -\frac{S}{\sigma_{s}}\right) = \frac{n_{i}(NS|S)}{x} = 1 - F\left(\frac{C}{\sigma_{s}}\right) = \frac{n_{i}(S|NS)}{x}$$

$$F(\frac{c}{\sigma_s})$$
 $n_i(NS|NS)$

أجترون وال

Unfortunately there is no explicit solution to this equation and solutions have to be generated numerically.

In, however, the case where $\sigma = \sigma_s$ they reach the same solutions as Gourevitch and Galanter using different notation.

where and is the integral of the unit moreal density functions $(1)y^4$ dy $(2)x^4 = (1)y^4$ dy

(d) The Memory Recognition Model

Tanner Rauk and Atkinson (1970) proposed a model of signal amplitude recognition which predicts sequential dependences and the effect of feedback.

The model supposes two signals S_0 and S_1 are presented to a subject in a Yes/No signal recognition, experiment. γ is the a priori probability of S_1 and A_0 and A_1 are the responses corresponding to S_0 and S_1 .

When a stimulus S is presented to a subject an image I of it is set up. I is normally distributed $I_0 \sim N(s_0, \sigma_1^2) I_1 \sim N(s_1, \sigma_1^2)$. For scaling purposes s_0 is set equal to 0 and s_1 to 1. At the end of the trial I is stored and becomes trace T. $T_0 \sim N(t_0, \sigma_T^2) T_1 \sim N(t_1, \sigma_T^2)$.

The relation postulated between s and t is linear and depends on γ i.e. $t_1 = \alpha + (1 + \alpha)\gamma$

$$t_0 = (1 + \alpha)\gamma$$

where a is a const.

Let S_{g}^{j} be the presentation of stimulus t on trial j. When S_{g}^{j} occurs I_{g}^{j} is set up and compared with t_{m}^{j-1} the trace of the stimulus S_{m} presented on the last trial. The decision on what to respond depends on $d_{j}^{j-1} = S_{g}^{j} - t_{m}^{j-1}$.

The decision process may be specified thus

if

dj j-1 > ôRespond Adj j-1 < ô</td>thenRespond AotherRepeat last response.

Thus

$$P(A_{1}^{j}|S_{t}^{j}A_{m}^{j-1}S_{n}^{j-1}) = \phi \frac{S_{t} - t_{n} - s_{m}}{\sigma D}$$

where $\phi(x)$ is the integral of the unit normal density function i.e. $\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(\frac{1}{2})y^2} dy$ If feedback is present then the decision process becomes

 $d_{j} j-1 > \delta_{0} \qquad \text{Respond } A_{1}$ if $d_{j} j-1 < \delta_{1} \qquad \text{then } \text{Respond } A_{0}$ other $\qquad \text{Repeat last stimulus}$ Thus $P(A_{1}^{j}|S_{m}^{j-1}S_{n}^{j-1}) = \Phi \frac{S_{\ell} - t_{n} - \delta_{m}}{\sigma D}$

Tanner et al. propose when feedback is present the actual process is a weighted average of the two decisions i.e. Subjects do not make full use of feedback in this case

$$P(A_{1}^{j}|S_{\ell}^{j}A_{m}^{j-1}S_{n}^{j-1}) = w\phi(\frac{s_{\ell}^{-t}n^{-\delta}n}{\sigma D})$$

+
$$(1 - w)\phi(\frac{s_{\ell} - t_n - \delta_{ii}}{\sigma D})$$

Thus there are five unknowns $\sigma_D \delta_0 \delta_1$ w and α .

(e) Non-Parametric Approaches to Signal Detection

Recently attempts have been made to overcome the difficulty of having to choose which model you must use to obtain a measure of a subject's sensitivity. The solution for psychologists less interested in examining the models than in using them was to develop simple statistics which approximated to estimates of the various models.

The sampling distribution of these measures provides a fairly intractible analytic problem. Pollack & Hsieh (1969) attempted to find it empirically by simulating a forced choice experiment on a computer. They specified the distribution of noise f(N) and signal + noise f(S + N) and calculated P(f(N) < x)and P(f(S + N) < x) for all values of x. From this they obtained the area under the ROC curve (A_g) . They found that for a given value of d' varying the σ_{SN}/σ_N ratio affected A_g and σ_{Ag} . For a value of A_g however σ_{Ag} was relatively constant with an underlying normal distribution. Analogous results were obtained using uniform and negative exponential underlying distributions for noise and signal + noise. Correlating the samples from f(N) and f(NS) did not appear to affect A_g or σ_{Ag} . That is to say they found that the sampling variability of the area measure was dependent on its mean value and relatively independent of the complex conditions which led to the given mean value.

They also attempted to use the intersection of the ROC curve with the negative diagonal P(I) as a measure of performance similar to A_g or d'. Again for a given value of d' the parameters P(I) and $\sigma_{P(I)}$ are related to σ_{SN}/σ_N . However the sampling variability of Ag is less than the sampling variability of P(I).

Pollack and Norman (1964) suggested a model-free analysis of a subject sensitivity based on a single point $P(R_S|S)$, $P(R_S|N)$ on a ROC curve. The straight line from the point (0,0) and (1,1) to $P(R_S|S)$, $P(R_S|N)$ divides the ROC curve into four regions (see diagram).

According to all models discussed points in the area I represent inferior performance that the point $P(R_S|S)$, $P(R_S|N)$. Similarly the area S contains only the points representing superior performance. Points lying in other areas are ambiguous. Thus, Pollack and Norman (1964) suggested the measure A' equal to the area I plus half the ambiguous area as a measure of performance. A non-parametric measure of bias was introduced by Hodos (1970). Using the same diagram as Pollack he suggested a percentage bias parameter equal to one hundred (y - x)/y where x is the intercept on the y axis of the line passing through the point (1,1). Isobias lines based on this assumption appear similar to those developed by Luce (1959) using his model.

(f) Extension to Rating Experiments

Although originally developed for the Yes/No experimental set up signal detection models were soon applied to the results of rating scale experiments (e.g. Watson Rilling and Bourbon (1964)), as this procedure enables more information about subjects ROC curves to be obtained from a similar amount of experimental effort. The rating task implies that the subject must use several decision criteria simultaneously. He must place each observation in a category that corresponds to his degree of certainty as to which stimuli had occurred. The probabilities of $P(R_{S}|S)$ and $P(R_{S}|N)$ can be found assuming that the subjects responds signal present only when he was most certain that it was present or when he is most and second most certain that the signal is present, etc. Thus for n categories n - 1 data points on a ROC curve can be derived.

Abrahamson and Levitt (1969) have studied the statistical properties of a Tanner Swets Green type model in this situation. The degrees of certainty are $c_1, c_2 \cdots c_k$. The subject responds c_r when the psychological representation of the stimulus lies between c_r and c_{r+1} on the decision axis where $c_1 = - \alpha$ and $c_{r+1} = \alpha$.

$$P(c_{i}|SN) = Q_{i} = \int_{c_{i}}^{c_{i+1}} f_{SN}(x) dx$$

$$P(c_i|N) = q_i = \int_{c_i}^{c_{i+1}} f_N(x) dx$$

Again, estimates of Q_i and q_i are easily obtained, and the random vector $(Q_1 \dots Q_k)$ and $(q_1 \dots q_k)$ are independent estimates of a multinomial process. The hit probabilities if the subject uses criterion c_i are

 $P_i = f_{SN}(x)dx = \sum_{j \ge i}Q_j = 1 - F \frac{(c_i - s)}{\sigma}$

and the corresponding false alarm probabilities are

$$P_{i} = \sum_{j>i}^{E} q_{j} = 1 - F(\frac{c_{i}}{\sigma})$$

Therefore the ROC curve is as before

$$F^{-1}(1-P_i) = \frac{\sigma}{\sigma_s} F^{-1}(1-P_i) - \frac{s}{\sigma_s}$$

Under the assumption $\sigma_s = \sigma$ they define an approximation to the minimum variance estimator of s and its variance

$$\frac{s}{\sigma} = \sum_{ij} \hat{\tau}^{ij} Z_{j} / \sum_{ij} \hat{\tau}^{ij}$$
where $\tau^{ij} = \frac{\hat{P}_{i}(1 - \hat{P}_{j})}{(1 - P(S))f(F^{-1}(1 - P_{i}))}$

$$+ \frac{\hat{P}_{i}(1 - \hat{P}_{j})}{P(S)f(F^{-1}(1 - P_{i}))}$$

and by approximating to a solution of the maximum likelihood equation they derive a goodness of fit statistic. They state that in the case of $\sigma_{c} = \sigma$ is intractible.

Meyers (1970) suggested defining the categories $c_1 \cdots c_k$ in a Yes/No experiment in terms of the latencies. That is to say the frequency of the same responses at different latencies are grouped together and ordered from fast Yes to slow Yes to slow No to fast No and treated as if they were Yes certain Yes uncertain No uncertain No certain. Meyers then proposed a model similar to that of Krantz (1969) be applied to data in this situation.

(3) Experimental Variables

The main independent variables that have been investigated in detection or recognition systems are stimulus probability, payoffs, instructions, inter response time, feedback, stimulus difficulty and the nature of the stimuli. Some of these variables may very well effect the nature of the sequential effects.

(a) Stimulus Probability

This is one of the most common independent variables to be studied as the subject's sensitivity as measured by most models is assumed independent of this variable. For example, Tanner Swets and Green (1956) varied the a priori stimulus probabilities using values of .1, .3, .5, l.7, and l.9. They then obtained an ROC curve as described in Chapter 1. Some observers in this situation did not produce ROC curves which were symmetrical about the negative diagonal and their data was better fitted when the assumption $\sigma_{\rm N} = \sigma_{\rm SN}$ is not made. In general, however, it was found that increasing the a priori stimulus probability had the effect of raising the point representing the subject's performance on the ROC curve. That is to say it increased simultaneously both the probability of a hit and a false alarm.

Recently Tanner Haller and Atkinson (1967) and Parducci and Sandusky (1965) in auditory and visual recognition studies produced rather contradictory results. Tanner et al. experimental situation involved a auditory amplitude recognition task. Subjects were run for 400 trials at each stimulus probability on each of three sessions. The order for presentation of each session was determined randomly. In this case subjects were given no feedback and were not informed of the a priori probabilities. The results are shown in the diagram below.

Fig. 1. Probability of hits, false alarms, and the A_1 response averaged over observers.

They found that the probability of a hit $P(R_1|S_1)$ and false alarms $P(R_1|S_2)$ decreased as the probability of stimulus 1 $P(S_1)$. The probability of response 1 $P(R_1)$ only increased largely with $P(S_1)$. Summarising the results of the two experimental situations one can say that increasing a priori stimulus probability has its greatest effect on the bias of the subject. The direction of the effect is determined by the amount of information the subject has of the value of $P(S_1)$.

(b) Feedback

Green and Swets (1966) state that trial by trial feedback helps to bring about a rapid approach to asymptotic behaviour. This effect however is small when presession training is given. This was demonstrated by Grundy (1961). Kinchla and Atkinson (1964) varied the probability of giving feedback in a Yes/No detection situation. They found that this had an effect on the subject's bias parameter but not on the sensitivity one. They used an Atkinson type model, see section on signal detection models.

Kinchla (1966) and Tanner et al (967) showed that feedback effects the relationship between the relationship between the a priori stimulus probability and the hit and false alarm probabilities. That is to say subjects have a greater tendency to probability match when they have feedback. The difference between the feedback and non-feedback condition is even more noticeable in the case where subjects have no information about the a priori stimulus probabilities

:36.

(Tanner Rauk and Atkinson (1970)). The effect of feedback on sequential dependencies in pooled data was also studied in the above paper. They predicted and found that in the no feedback condition the sequential dependencies would affect only the bias of the subject and not his sensitivity i.e. the points $(P(R_1|S_1R_1S_1), P(R_1|S_2R_1S_1))$, $(P(R_1|S_1R_1S_2), P(R_1|S_2R_1S_2)), (P(R_1|S_1R_1S_2),$ $P(R_1|S_2R_1S_2))$, $(P(R_1|S_1R_2S_2)$, $P(R_2|S_2R_2S_2))$, all lie on the same ROC curve. While if feedback is presented they predict that only the points $P(R_1|S_1R_jS_j)$, $P(R_1|S_2R_jS_k)$ where j = k lie on the curve. They claim that the data generally bears out their predictions. Although a glance at the graphs suggests that the points $P(R_1|S_1R_jS_k)$, $P(R_1|S_2R_jS_k)$ where j = k appear if anything to be on a more sensitive ROC curve than the others. They also found that feedback reduced the total amount of dependence on the last trial.

(c) Stimulus difficulty

McGill (1957) used a four signal auditory frequency recognition task and varied the difficulty by varying the intensities of the signals against a background of white noise. He used an information theory analysis and found that as the task became easier the information shared between a response and a stimulus which evoked it increased while the information shared between this response and the response on the immediately succeeding trial decreases. This is really saying that as the probability of the correct response increases the other factors affecting the response must simultaneously decrease.

(d) Payoffs and instructions

It was discovered early that payoffs could influence the bias of the subject without affecting his sensitivity. E.g. Tanner Swets and Green (1956) show that a subject can be made to change the value of his bias parameter by varying the

payoffs dependent on the outcomes of each trial. The extent to which the subject does this is smaller than would be predicted by a normative Bayesian type analysis. This however is a common enough finding in decision making, c.f. Peterson and Beach (1968). The same effect can be observed by varying the instructions to a subject. Egan Schulman & Greenberg1959 instructed subjects to use a "strict", "medium" and "lax" criteria. Feedback was given to subjects if the criterion they were using fell outwith a specified range. Again the sensitivity was found to remain constant while the bias changed.

(e) Sequential effects

This is the area in which this project is mainly interested. Fechner (1860) found a "negative time error" in his experiment on lifted weights. That is to say if two equal weights are presented to a subject then the second weight is judged greater than the first. Fechner postulated a fading memory trace to account for this mechanism. Thus when a subject lifted the first weight he formed an image which was then compared to the second. As this trace fades so the second is judged as heavier. Contemporary introspectionists did not like this idea. Thus Kohler (1923) postulated a hypothetical physiological process as an explanation instead.

Postman (1946) studied this effect for tones differing in either pitch or intensity. He found little time error for pitch but with the intensity variable he found a time error the nature of which depended on the interstimulus interval (ISI). Averaging over subjects and frequencies he obtained the following graph for intensity judgments and

a straight line for pitch judgment

A distinction is made by Stevens (1939) between discriminations which depend on the addition of excitation to excitation (e.g. intensity judgment) and those which depend on differential patterns of excitation. The former appeared to lead to systematic time errors while the latter do not.

Needham (1934) found that the time error reversed itself after extensive practice becoming negative after a short interval and positive after a longer one. Similar after effects are common in visual studies.

In the 1950's some work was carried out into sequential effects by presenting a constant stimulus around threshold to a subject for a large number of trials and asking the subject to detect the presence of the stimulus, e.g. Verplank, Collier and Cotton (1952) used a light at the 50% threshold.

This stimulus was presented to sixteen subjects on 300 successive trials during four separate sessions. They found significant auto correlations up to about lag ll (representing about one minute real time) and no significant dependence over lag 20. Day (1956) presented a continuous 1000 cps tone to the right ear of each of five subjects at a sensation level of 70 db. Subjects were instructed to respond by pressing a key whenever they could detect an increment in the loudness of the tone. From 300 to 600 increments in intensity each 0.1 second in duration were added regularly to the tone at a fixed interstimulus interval. A response of Yes or No was recorded for each increment. Day varied the interstimulus interval and found that the subjects' responses did not conform to a random series as measured using a runs test (see Siegel (1956)). He also found that as the interstimulus interval increased so the departure from randomness decreased, although some subjects showed marked degrees of non-randomness even at the longest interstimulus intervals.

Other experimenters (Senders and Sowards (1952), Senders (1953) and Wagnaar (1968) presented a constant stimulus to a subject asking him to respond as to whether it fell into one of two categories. Wagenaar states that in these experiments no real pressure was involved as the subjects' task was to state which of two stimuli presented came first. As both stimuli were presented simultaneously the author claimed that threshold fluctuations could not serve as an explanation for the strong response dependencies found in all cases. He preferred to postulate a sequential response bias to account for the response dependencies which in most cases corresponded to a tendency to repeat the same response on the part of the subject. The main findings were that strong dependencies existed together with wide individual subject differences.

Wertheimer (1953) took successive measurements of auditory visual and pain thresholds on a series of three subjects. These were obtained at 6 second, 1 minute, 3 minute and 1 day intervals. An analysis of the data revealed significant auto correlation between successive measures of thresholds. An analysis of variance showed that in the last experimental condition where the inter threshold determination time was one day, this variable the inter thresh old determination time was found to have a significant effect on the threshold obtained.

Matrices used

Tn+l Tn+l T_{n+l} S₁ S₂ s₁ s₂ s₁ s₂ S₁ .5 .5 Tn $B = T_n S_1 = 2 \cdot 8 \cdot 2 \cdot 2 \cdot T_n$ S₁ .2 .8 А S₂.5.5 S₂ .8 .2 S₂ .2 .8 T_{n+l} T_{n+l} T_{n+l} s₁ s₂ s₁ s₂ S₁ S₂ S₁ .8 .2 E T_n S₁.2.8 F T_n S₁ .8 .2 Tn D S₂.2.8 S₂ .8 .2 S₂ .8 .8 T_{n+l} T_{n+1} ^Tn+l $s_1 s_2$ S₁ S₂ $S_1 S_2$ T_n S₁.2.8 H T_n S₁.5.5 I T_n S₁.5.5 G S₂ .8 .2 S₂.2.8

More recently work has concentrated on detection and recognition situations. Speeth and Mathews (1961) in a four interval forced choice signal detection experiment found that a subject's current response was effected by his immediately preceding response, his past performance level and an indication of what his last response should have been. This effect decreased as the signal increased, i.e. the task became easier. Carterette and Wyman (1962) in a Yes/No detection experiment found that the trial frequencies were not a zero order Markov process.

We shall now see how more recent studies have revealed some of the relationships between the independent variables and sequential effects. Freidman and Carterette (1964) varied the stimulus probability by making the presentation sequence of stimuli a first order Markov process. A forced choice detection task was used and subjects were not informed of the nature of the stimulus dependencies nor the purpose of the experiment. The transition matrices used are given on the following page. In A, B and C the probability of the first stimulus S_1 on trial n is independent of the stimulus on trial n - 1. In D, F and H the probability of a stimulus repetition is increased while in E, G and I the probability of a stimulus alteration is decreased. For the most part the data points were well fitted by a traditional ROC curve. The a priori probabilities appeared to effect the placing of They also examined the effect the data points on the curve. of run length on the probability of a correct response P(c) and the results are shown in the diagram below.

FIG. 2. Proportion of correct responses [P(C)] averaged over the three observers as a function of run length for the various Markov-chain generators.

FIG. 2. Proportion of correct responses [P(C)] averaged over the three observers as a function of run length for the various Markov-chain generators. In experimental conditions A, B and C the probability of a correct response increased with run length. In conditions D and E which had the greatest amount of stimulus dependence run length had a dramatic effect on P(c). In condition D P(c) went from .45 on the first trial of a run to .8 on the second while in A the corresponding values were .70 and .58. The observed dependencies of responses on responses were small. The authors suggest that this was due to the provision of feedback following every trial without which more dependency on the immediately preceding response to a given trial might have been noted.

(f) The Effect of Feedback on Sequential Effects

Freidman and Carterette (1964) state that from their research feedback is an important determiner of response dependencies. If feedback is given then the largest response dependencies are on the stimulus presented on the immediately preceding trial. If no feedback is given then the largest effect is of the immediately preceding response. Parducci and Sandusky (1965) in a recognition task of the special position of lights found the effect of feedback was to reduce the accuracy after a stimulus alternation but to increase it after a stimulus repetition. Both these effects cancelled each other out when the probability of a correct response was taken as a performance measure. This perhaps explained the findings of Grundy (1961) who found that the provision of feedback did not appear to effect the probability of a correct response. Also in both these studies the a priori stimulus probability was .5 . Kinchla (1966) in a signal recognition task showed that subjects in a feedback condition tended to match the probability of the responses whilst in a non-feedback condition they did not. Thus the probability of each of the responses without feedback regressed to .5 .

The effect of feedback on stimulus alternation was examined by Tanner Haller and Atkinson (1967) who found subjects were more accurate after a stimulus alteration than after a stimulus repetition in a no feedback signal recognition experiment. This is interpreted by assuming that the subject compares the stimulus on one trial with some "memory" of the stimulus on the immediately preceding trial. Thus if the subject is wrong on one trial he will compare the stimulus on the next with a wrongly labelled "memory" and thereby increasing the chances of him making a wrong response. The effect of feedback in decreasing the probability of a correct response after a stimulus alternation is less easy to explain unless it is postulated that feedback in some way interferes with the comparison process.

We can therefore conclude that sequential effects are observable over a wide variety of detection and recognition tasks. As the task becomes easier so these effects decrease. The same thing happens when the interstimulus interval is increased. Feedback appears to increase the probability of a correct response after a stimulus repetition but has the opposite effect after a stimulus alternation.

4. RELEVANT REACTION TIME FINDINGS

(a) Experimental Results

The literature on reaction time is of direct relevance to the task we are considering as the task facing a subject in a Yes/No recognition situation is very similar to that in a choice reaction time experiment.

Smith (1968) has reviewed the literature of choice reaction time and defines a choice reaction time experiment as follows:-

- (a) The stimulus and responses are known at the start of the experiment.
- (b) The error rate is low less than 10% wrong responses occur and no comparison stimuli are presented.
- (c) Latency is the major dependent variable.

In the signal recognition task used in the current investigation the error rate was often higher than the 10% stipulated by Smith as characteristic of the reaction time experiment. It is usually more difficult and the experimenter is interested in other dependent variables than latency. There is also a difference in the instruction normally given to the subjects. The similarity of the two experimental procedures however makes the findings of choice reaction time experiments of direct relevance to those interested in signal recognition.

The major variables found to effect the choice reaction time (CRT) experiment are given below.

(i) CRT and stimulus uncertainty.

The relation choice reaction time is proportional to stimulus uncertainty has been found to hold good whether stimulus uncertainty is varied by changing the number of equiprobable alternatives or varying the probability of occurrence of individual stimuli Hick (1952) and Hyman (1953) and subsequent studies. This is in cases where the task is one one i.e. there is one and only one distinguishable response for each stimuli. Whether this relationship still holds when the one : one relationship is altered is open to question, e.g. Rabbitt (1959) and Pollack (1963). Stimulus uncertainty however cannot entirely explain the finding of Broadbent and Gregory (1965) who showed that the CRT's to a stimulus that occurred on 75% of the trials were longer when this stimulus was part of a four alternative choice reaction time experiment than a two choice task. Thus the number of stimuli has an effect on the latency which is independent of the probability of that stimulus.

(ii) CRT and payoff.

Fitts (in Smith (1968)) showed that where payoffs were greater to the subject following fast accurate responses to some stimuli choice reaction times were shorter to the more highly valued stimuli. Laberge (1964) also found that the effect of increasing the payoff associated with the particular response had the effect of decreasing the latency of that response.

(iii) CRT and sequential effects.

Bertleson (1961) showed that the choice reaction time to a stimulus increase is the number of intervening trials since the last occurrence of the stimuli. Although data produced by Hyman (1953) do not appear to confirm this in a two choice reaction time experiment they do with four, six or eight choices. Bertleson and Rankin (1966) found the effect reversed when the interval between the stimulus was long, i.e. 12 - 15 seconds.

Laming (1968) studied sequential dependencies in reaction time experiments. He used the multiple regression analysis technique whose basic equation is as below.

$$E_{i} = e + a_{0}(S_{i} - \frac{1}{2}) + \Sigma a_{j}(Q_{ij} - \frac{1}{2}) + \sum_{k=0k}^{\Sigma} (S_{i} - \frac{1}{2})(Q_{ik} - \frac{1}{2}) + \sum_{j=1}^{\Sigma} (S_{j} - \frac{1}{2}) + \sum_{j=1}^$$

S_i equals 1 if stimulus 2 is presented on the trial otherwise zero.

 R_i equals 1 if response 2 is made on the trial otherwise zero.

; equals $|S_i + R_i|$.

 Q_{ij} equals $|S_i + S_{i-j}|$.

a₀ is the effect of the stimuli on the current trial on the error rate.

a; is the effect of the stimulus on trial i-j.

- a_{ij} is the effect of the combination of stimuli on trials i and j.
- b_j is the effect of a mistake of the same sort on trial i-j.

c_j is the effect of a mistake of a different sort on trial i-j. The values of a, b and c are the regression coefficients and provide some measure of the sequential effects. If the coefficient of a similar regression analysis using the response of the dependent variable was also performed. Also the latencies were analysed using the regression equation

$$T_{i} = t + \sum_{j=1}^{\infty} h_{j} T_{i-j} + \sum_{j=1}^{\infty} f_{j} \left(\begin{bmatrix} R_{i} + R_{i-j} \end{bmatrix} - \frac{1}{2} \right) \left(T_{i-j} - \mu \right)$$

$$+ g_{j} \left(Q_{ij} - \frac{1}{2} \right) \left(T_{i-j} - \mu \right)$$

$$+ s_{0} E_{i} + s_{1} \left(S_{i} - \frac{1}{2} \right) + s_{2} \left(R_{i} - \frac{1}{2} \right)$$

$$+ \sum_{j=1}^{\infty} U_{j} \left(Q_{ij} - \frac{1}{2} \right) + \sum_{j=1}^{\infty} \sum_{j>k} u_{jk} \left(Q_{ij} - \frac{1}{2} \right) \left(Q_{ik} - \frac{1}{2} \right)$$

$$+ \sum_{j=1}^{\infty} V_{j} E_{i-j} Q_{ij} + \sum_{j=1}^{\infty} W_{j} E_{i-j} \left[Q_{ij} + 1 \right] + \tau_{i}$$

t is the average reaction time.

- k_{i} gives the effect of times on preceding trials.
- f gives the effect of times of responses for R and R_{i-i} being equal or not.
- u_j gives the effect of the difference in reaction time between the events S_{i-j} is not equal to S_i and S_{i-j} equals S_i .
- u_{jk} gives the effect of the events Q_{ij} and Q_{ik} which are not included in the u_j.
 - w_j this represents the increase in reaction time on a trial when the signal involved in an error on trial i - j is presented again.
 - v_j represents the increase in reaction time when the alternative signal is presented.

Laming estimated the above regression equation using data from several experiments in the same analysis. He reported where the regression coefficients differed depending on the conditions. One of his findings was that the order in which

subjects were run in different experimental conditions was important. Analysing the effects of run length he found that during a run of one of the stimuli S_A the reaction time and probability of an error both decreased. While during a run of the other stimuli, however, the opposite happened. Laming postulated a random walk model to explain the latencies construed that this effect was due to a shift in the starting point of the random walk. The effect of adding a bias parameter to the regression equation was to reduce the difference between the constants in the regression equation. From the regression coefficient our general finding is that a_2 and u_2 are greater than a_1 and u_1 . The graph showing how the coefficients vary with distance from the current trial is shown below.

Median values of the a_i regression coefficients in Experiments 1, 2 and 3.

Another find is the importance of the inter-trial interval on the sequential dependencies. He found that the interaction regression coefficients became more important as the inter-trial interval decreased below .5 of a second. He interprets this by claiming that the speed of extraction of information is less after an alternating sequence of signals than after a run during short inter-trial interval conditions. Too much weight however must not be placed on the absolute value of the

regression coefficients since they may be serving to suppress some variation in another dependent variable rather than to predict the dependent variable directly.

Bertleson (1963) used an experimental situation involving four stimuli in which two were associated with each response. In this way it was possible for him to study the effect of stimulus and response repetition on reaction time independently. He concluded that response repetition led to the greatest effect on latency. It could also be argued that this effect can explain the results showing that stimulus uncertainty is proportional to latency. The more probable a stimulus is the more repetitions of the response to it will be involved. This however cannot account for all of the experimental findings.

(iv) CRT and discriminability.

Increased discriminability decreases CRT for a given number of stimuli Sternberg (1964). However it appears that the way the changes in discriminability occur changes the effect of varying the number of stimuli. In Sternberg's task the stimulus was changed by the addition of noise to it. If the relation between reaction time and number of stimuli (s) is CRT = k(s) + c where k and c are constants then decreasing discriminability by the addition of noise has the effect of altering c. Crossman (1955) and Thrumound and Alluisi (1963) varied the similarity of the stimuli directly and found that they changed the slope of this function i.e. k.

(v) CRT and compatibility.

Fitts (1959) found that the "naturalness" of SR relations e.g. spacial orientation were related to CRT. This stimulated attempts to see if the effects of the number of stimuli disappeared with very compatible stimulus-response relations. Leonard (1959) found that when the stimuli where the tactile vibration of the fingers and the response was depression of the stimulated finger that the number of stimuli had no effect on the response time. (vi) CRT and Intertrial Interval.

The effect of intertrial interval on the intertrial dependence has been studied by a number of investigators. The experimental findings, however, lead to rather unclear conclusions. Bertleson (1961), Bertleson and Rankin (1966), and Hale (1967) found that introducing a delay between trials of more than a second had the effect of reducing or abolishing the "repetition" effect. Indeed Hale (1967) showed a transition from positive to negative recency as the intertrial interval was increased. This finding was replicated by Williams (1966). Keele (1969) found no change in the repetition effect over intertrial intervals of 2, 4 and 8 seconds in a six-choice lights-buttons task and no effect of interpolated arithmetic tasks in the 4-second intertrial interval. Schvaneveldt and Chase (1969) found a negative recency effect occurred in both 2 and 4 choice (S-R) compatible tasks and the negative recency increased as the intertrial interval decreased. With less compatible S-R tasks a positive repetition effect was found and the intertrial interval did not appear to affect it.

(vii) CRT and practice.

Some studies e.g. Mowbray and Rhoades (1959) and Davis Moray and Treisman (1961) found that practice could eventually reduce the effect of increasing the number of stimuli to the subject. The two studies combined, however, used only four subjects in total.

(Viii) CRT and instructions.

It is possible to reduce the latency at the expense of accuracy by varying the instructions e.g. Fitts (1966) and Hick (1952).

(b) Reaction Time Theories

Theoretical analysis of such studies has developed along a number of different lines. There is the "psychological model" of Selfridge, Neisser etc. who are concerned with the nature of the psychological process rather than developing parametric models. There are mathematical models of the reaction time process e.g. Hick Luce Falmange Laberge Stone Laming etc. In these cases the psychological process is formalised into a mathematical model. Finally there is the approach of McGill who seems concerned mainly with specifying the reaction time distribution statistically and who pays less attention to the psychological process.

Smith (1968) provides a comprehensive verbal review of the cognitive approaches starting with Donders and leading to an extended discussion of the differences between feature testing versus template matching models. Since this approach is not particularly relevant to the present topic the interested reader is referred to this review for a summary of the above work.

Recently the use of Markov chains and random walks came to the notice of psychologists and they have been applied to a number of different situations. A distinction should be made between the "Macro" Markov models discussed in the section on characterising dependencies where each event is a trial i.e. the process continues throughout the whole experiment without absorption, and the more common "micro" model in which each trial is represented by an absorption of a Markov

process i.e. the process starts and absorbs during each trial. Looking at the micro model first we see that this was originally applied to choice theory. The unobservable events being referred to as "implicit processes" or some similar concept. If the events are seen as corresponding to observable responses then these criteria for reaching the absorbing state can be studied. Bower (1959) and Estes (1960) considered two successive events corresponding to the same response and Audley (1960) extended this from two to k. Bower also considered using as an absorption criteria the number of events corresponding to one of two responses being greater than k. While Laberge (1962) considered using the criterion k not necessarily successive events corresponding to each course. Although mainly concerned with the response probability such models can equally be made to have latency applications if one postulates the distribution of events in time.

Probably the first application of Markov models to the study of response latencies was by Stone (1960). He made use of the sequential probability ratio test developed by Wald (1947) to relate the mean and variance of the latencies to the error rates and the relative frequencies of the stimulus presentation. Stone postulated that the subject is operating on a stream of random variables $x_1, x_2 \dots x_n$ separated by a constant time t. $p_0(x)$ and $p_1(x)$ are the probabilities of the random variable taking the value x when the stimulus s_0 and s_1 respectively have been presented. The probabilities are assumed to be constant for all observations. The subject transforms each observation x to c(x) and cumulates the transformed observation over the decision period to give a total c_T .

Constants log A and log B are chosen where A > B, so that the subject decides s_1 is present when c_T > log A and s_0 when c_T < log B. Wald's sequential probability ratio test shows that the optimum choice for c(x) is

$$c(x) = \log p_1(x) - \log p_0(x)$$

This implies that the subject is familiar with $p_0(x)$ and $p_1(x)$.

Less restrictive assumptions were used by Stone in the formulation of his model. He postulated that the subject only assumed symmetry of the probability distributions, i.e. that $p_1(x)/p_0(x)$ when x is distributed as $p_0(x)$ has the same distribution as $p_0(x)/p_1(x)$ when x is distributed as $p_1(x)$. If n_i and v_i are the mean and variance of the sample size of observations necessary to decide s. is present then Stone showed

$$\frac{n_1}{\bar{n}_0} = J(\beta, \alpha)/J(\alpha, \beta)$$

and

$$J(\alpha,\beta)v_{1} - J(\beta,\alpha)v_{0} =$$

$$\frac{4 J(\alpha,\beta)\alpha(1-\alpha)\bar{n}_{1}^{2} - J(\alpha,\beta)\beta(1-\beta)\bar{n}_{2}^{2}}{(1-\alpha-\beta)}$$

 $J(\alpha,\beta) = \alpha \log \alpha/(1-\beta) + (1-\alpha)\log (1-\alpha)/\beta$

and α and β are the probabilities of s₀ and s₁ respectively. If the pure decision time T_d can be measured directly then T_{di} can be substituted for n_i and var T_{di} for v_i in the above equations.

Stone's model did not specify the distribution of the small x's. However Laming (1968) extended this by postulating the distribution for the x given S_0 .

$$f(x|S_0) = N(\mu_0\sigma^2)$$

and $f(x|S_1) = N(\mu_1 \sigma^2)$

i.e. they are both normally distributed with equal variances.

In applying his model to the 2 choice situation Laming denotes the a priori information

$$I_{AP}$$
 where
 $I_{AP} = \log \frac{P(S_1)}{P(S_0)}$

The information obtained by the rth observation

$$\delta Ir = \log \frac{x_r | S_1}{x_r | S_0}$$

and the total information cumulated after n observations

$$I_{n} = I_{AP} + \sum_{l=1}^{n} \delta I_{n} = \log \frac{P(S_{l})P(x_{1}...x_{n}|S_{l})}{P(S_{0})P(x_{1}...x_{n}|S_{0})}$$

As soon as $I_n = I_i$ when i = 0 or l response R_i is made. Thus:-

$$I_{0} = \log \frac{P(S_{1})}{P(S_{0})} \frac{P(R_{1}|S_{1})}{P(R_{0}|S_{0})}$$

and

$$I_{1} = \log \frac{P(S_{1})}{P(S_{0})} \frac{P(R_{1}|S_{1})}{P(R_{0}|S_{0})}$$

If n is the number of responses before a response is made then the expectation of n is

$$E(n) = P(S_0)E(n|S_0) + P(S_1)E(n|S_1)$$

Using the properties of the normal distribution Laming is able to derive an explicit solution for both $E(n|S_0)$ and $E(n|S_1)$.

In this model it is assumed that the subject minimises the latency subject to a minimum error rate. This is to say he minimises E(n) subject to the condition. $P(S_0) P(R_1|S_0) + P(S_1)P(R_0|S_1) < \epsilon$ We see that the minimum is obtained when

$$I_0 = \log \frac{\varepsilon}{1 - \varepsilon} \text{ and}$$
$$I_1 = \log ((1 - \varepsilon)/\varepsilon)$$

but
$$I_0 = \log \frac{P(S_1)P(R_0|S_1)}{P(S_0)P(R_0|S_0)} - \log \frac{P(S_1|R_0)}{P(S_0|R_0)}$$

 $\epsilon = P(S_1|R_0)$

similarly it can be shown

$$\varepsilon = P(S_0 | R_1)$$

Laming derives the following main consequences for this model:-1. The ratio of the errors given S_1 as opposed to S_0 approaches an optimal value $(P(S_1) - \epsilon)/(P(S_0) - \epsilon)$. 2. The signal that elicits the faster reaction has the smaller probability of error.

3. For a given response the distribution of reaction times is the same whether the response is correct or not.

Predictions 1 and 2 were borne out in a series of experiments, Laming (1968). Prediction 3 however was demonstratably found not to be true. Laming therefore modified the models so that the subject begins sampling the information from the blank display at some time before the signal is presented. The information so sampled is irrelevant to the discrimination between the signals. This leads to the prediction that in a two choice reaction time the errors are faster than the same response made correctly.

Falmagne (1965) developed a choice reaction time model which is an interesting special case of the latent class Markov models discussed in the next section. He postulated that a subject is either in a state of preparedness or not for each stimulus for each trial. If the stimulus presented on one trial was in the prepared state then it remains in the subject's prepared state for the next trial. However, if the stimulus in the prepared state was not presented on a trial then it goes into the unprepared state with the probability I - c' and the stimulus in the unprepared state goes into a prepared state with a probability of c. When a subject is in a prepared state his reaction time distribution is K(x)and in the unprepared state it is $\overline{K}(x)$. This model is in fact a latent Markov process with the states of preparedness being the latent states.

Falmagne's model postulates that $S_n(S)$ is a random variable defined for each trial n. The reaction time to stimulus j depends on K_{in} . At trial n the state of the subject can be represented by a vector

$$K_{n}(s) = K_{r}(s)$$

If the subject is prepared his reaction time distribution is K(x) otherwise $\overline{K}(x)$. He also postulated a random indicator variable $E_{in}(s) = 1$ if stimulus i has been presented to subject s on trial n or 0 if i has not been presented to subject s on trial n. So the stimuli presented to the subject can be represented by a vector

 W_n is the outcome to trial n.

 $W_n = \langle E_n(s)K_n(s), \dots E_2(s)K_2(s), E_1(s)K_1(s) \rangle$

The theoretical cumulative distributions of RT to stimulus i at trial n, given the state the subject is in are given below.

$$J(x_n | E_{in} = 1, K_{in} = 1, W_{n-1}) = K(x)$$

 $J(x_n | E_{in} = 1, K_{in} = 0, W_{n-1}) = \overline{K}(x)$

$$P|K_{in+1}(s)|E_n(s), K_n(s), W_{n-1}| = f(E_{i,n}(s), K_{in}(s))$$

and the values of f are given in the table below

$$K_{in}(s) E_{in}(s) = 0$$

 $1 = 1 = 0$
 $0 = 0$
let $P_{in}(s) = P(K_{in} = 1|W_{n-1})$

 $\pi_{i} = P(E_{in} = 1)$

The theoretical cumulative distributions of RT on trial n given the presentation of stimulus i is

$$J_{in}(x) = \sum_{W_{n-1}}^{\Sigma} J(x_n | E_{in} = 1, W_{n-1}) P(W_{n-1})$$

$$= P_{in}K(x) + (1 - P_{in})\bar{K}(x)$$

Falmagne shows

(1) $P_{in+1} = (1-c)P_{in} + c$ $P_{in+1} = (1-c')P_{in}$

(2) The transition of the Markov chain latent states

$$K_{in} K_{in+1} \qquad 1 \qquad 0$$

$$1 \qquad 1 - (1-\pi_{i})c' \qquad (1-\pi_{i})c'$$

$$0 \qquad \pi_{i}c \qquad 1-\pi_{i}c$$

$$P_{i} = \lim_{n \to \infty} P_{in} = \frac{\pi_{i}c}{\pi_{i}c + (1-\pi_{i})c'}$$
(3) If $E_{in}(s) = 1$

$$J_{in+1}(x) = (1-c) J_{in}(x) + cK(x)$$
if $E_{in}(s) = 0$. $J_{in+1}(x) = (1-c')J_{in}(x) + c'\bar{K}(x)$.

We also find a number of implications, e.g. sequential effects on moments.

Let

$$E(X_{in}^{V}) = fx^{V}J_{in}(x)$$

$$E(X_k^V) = \int x^V k(x)$$
 and $E(X_{\overline{k}}^V) = \int x^V \overline{k}(x)$

then

$$E(X_{in+1}^{v} | E_{in} = 1) = (1-c)E(X_{in}^{v}) + cE(X_{k}^{v})$$

=
$$(1-c')E(X_{in}^{V}) + c'E(X_{k}^{V})$$

this can be estimated also can use different

Falmagne also postulates a linear model.
(1)
$$P(K_{in+1}(s) = 1|E_{in}(s) = 1, K_{in}(s) = 1, W_{n-1}) =$$

 $(1-c)P(K_{in}(s) = 1|W_{n-1}) + C$
(2) $P(K_{in+1}(s) = 1|E_{in}(s) = 0, K_{in}(s), W_{n-1}) =$
 $(1-c')P(K_{in}(s) = 1|W_{n-1})$

Falmagne also reported experimental data from R/T studies which are generally in accord with his main predictions. The fit is less good as the predictions get smaller.

Since much work has been done on reaction time studies it would be useful to see if we can find anything in the literature relevant to detection and recognition situations. However, the reaction time experiment is a recognition task where subjects make few mistakes we should find a relationship between such work and that under present consideration.

McGill (1963) reviewed the nature of a probability mechanism for generating latencies (L). The probability density function of the latencies is f(t) (P(t₁ < L < t₂) = $f_{t_1}^{t_2}f(t)dt = F(t_2) - F(t_1)$ where F(t) is the cumulative density. Of the possible densities he considers Exponential distribution. Random events occurring in time with an equal probability will produce an exponential distribution

$$f(t) = \lambda e^{-\lambda t}$$

2. Geometric. If we have a device making two responses A with probability p and \overline{A} with probability q = 1 - p then the probability of a run of k A responses is given by

$$p(k) = q^k p$$

which is a geometric distribution with moment generating function

$$m_{k}(\theta) = \int_{0}^{\infty} e^{\theta t} q^{k} p = \frac{p}{1 - qe^{\theta}}$$

Suppose each response takes time δt and as δt decreases then the number of \overline{A} increases as δt decreases. We assume

$$\lim_{\delta t \to 0} \frac{P}{\delta t} \to \lambda \quad (a \text{ constant})$$

Let $t = k\delta t$

$$M_{t}(\theta) = \frac{p}{1 - p e^{\theta \delta t}}$$

 $\lim_{\delta t \to 0} M_t(\theta) = \frac{\lambda \delta t}{1 - (1 - \lambda \delta t + \theta \delta t)}$

$$=\frac{\lambda}{\lambda - \theta}$$

This is the moment generating function of the exponential distribution. However most reaction time studies have yielded data which shows systematic departures from the constant probability functions of McGill (1961). McGill went on to consider that the response latency was the sum of a number of different components. He postulated that the response latency t equals $\sum_{k=1}^{N} t$ in which t_k is a random variable which is

$$f(t_k) = e^{-\lambda t k}$$

$$M_{tk}(\theta) = (1 - \theta/\lambda)^{-1}$$

$$M_t(\theta) = (1 - \theta/\lambda)^{-n}$$

which turns out to be the moment generating function of a gamma distribution.

$$f(t) = \frac{\lambda^{n}}{(\lambda \theta)^{n}} \int_{0}^{\infty} \frac{1}{(n-1)!} \mu^{n-1} e^{-\mu}$$

Thus for any given k number of elemental responses we can generate a gamma distribution. Suppose k is distributed geometrically

$$M_{t}(\theta) = \Sigma q^{k} p (1 - \theta/\lambda)^{-k+1}$$
$$= \frac{p}{1 - \theta/\lambda} \sum_{k=0}^{\infty} \left(\frac{q}{(1 - \theta/\lambda)^{k}}\right)^{k}$$
$$= \frac{p}{1 - \theta/\lambda} \frac{1}{1 - q/(1 - \theta/\lambda)}$$
$$= 1/(1 - (\theta/\lambda) p)$$

This still gives an exponential distribution of t and is apparently insensitive to the random duration of the sub-response elements.

If we consider the latency has two elements t_1 and t_2

$$f(t_1) = \beta e^{-\beta t_1}$$

$$f(t_2) = \alpha e^{-\alpha t_2}$$

$$m_t(\theta) = \frac{\alpha \beta}{(\alpha - \theta)(\beta - \theta)}$$

The function

$$f(t) = \frac{\alpha\beta}{(\beta-\alpha)} e^{-\alpha t} - e^{-\beta t}$$

has the above mg.f.

McGill (1965) went on to extend this approach to k elements.

5. Methods of characterisation of the dependencies

(a) Preamble

As this project is an attempt to study the effect of dependencies on some standard models a major problem consists in adequately describing the dependencies. For this purpose each trial can be considered as a discrete event in time. For most purposes each trial can be classified by $R_i S_j$ i.e. on this trial the subject responded R_i to stimulus S_j . In the two stimulus Yes/No situation there are only four types of trial R_1S_1 , R_2S_2 , R_1S_2 , and R_2S_2 . Each trial may yield more information - latencies confidence ratings etc. but can still be approximated to using discrete states.

(b) Manifest Markov models

Probably the most obvious method of describing such data is using a manifest Markov chain cf. Carterette and Wyman (1962) and Macdonald (1968). Let the state on the j trial be S_j and let A equal $(a_1a_2 \ \cdots \ a_n)$ be the set of all possible outcomes on a particular trial. The results of an experiment of n trials are therefore W equal to $(X_1, X_2 \ \cdots \ X_n)$. We can now classify different properties of the outcome of such experiments regarded as stochastic processes.

(i) W is an independent process if for all j equal to

1 n and k equal to 1 n

 $P(X_{j} = a_{k} | X_{j-1} \dots X_{l}) = P(X_{j} = a_{k})$

i.e. the probability that $X_j = a_k$ is unrelated to the observed states on the previous trials.

(ii) W is a Markov chain of order c if for all j equal to l n and for all small k equal to l n

 $P(X_{j} = a_{k} | X_{j-1} | X_{j-2} \cdots X_{l}) = P(X_{j} = a_{k} | X_{j-1} \cdot X_{j-c})$ i.e. the probability that $X_{j} = a_{k}$ given the observed states $X_{j-1} \cdots X_{j-c}$ is independent of all states earlier in the process.

(iii) W is a stationary Markov chain of order e if for all k and e

 $P(X_1X_2 \dots X_e) = P(X_{k+1}, X_{k+2} \dots X_{k+e})$

i.e. the probability of a trial being in a particular state is independent of the trial number. A higher order Markov chain can be transformed into a first order one of many more states. For example if we have a chain $(X_1...X_n)$ of order c we can define a constant state b_k as the ordered c tuple $(X_k...X_{k-c+1})$. Thus if Y_j is the outcome of trials X_j , $X_{j-1}...X_{j-c+1}$ then

$$P(Y_{j} = b_{k}|Y_{j-1}, Y_{j-2} \dots Y_{l}) = P(Y_{j} = b_{k}|Y_{j-l})$$

and $Y_1 \dots Y_{n-c}$ is a first order Markov chain. We can test to see how the data conformed to this stationarity assumption and the assumption of different orders using a χ^2 analysis. If the stationarity assumption is broken then the proportion of trials in different states should depend on which section of the data we are looking at. Let us break the data down into T sections when $p_{ij}(t)$ is the observed probability of being in state i on one trial and j on the succeeding trial in section t. To test the stationarity assumption we assume $p_{ij}(t)$ is independent of t equal to p_{ij} the same probability as measured over all the sections. If there are $n_i(t)$ trials on state i and section t, the stationarity assumption is tested by

$$\chi^{2} = \sum \sum n(t-1)(p_{ij}(t) - p_{ij})^{2}/p_{ij}$$

With degrees of freedom equal to n(n-1)(t-1).

Let n_{ijk} be the number of times a trial is in state k when it was in state j on the immediately preceding trial and state i on the trial before that. Let $n_{ij} = \sum_{k}^{\Sigma} n_{ijk}$ and $n_i = \sum_{j}^{\Sigma} n_{ij}$. The n_{ijk} are sufficient statistics for estimating p_{ijk} (the maximum likelihood estimate is n_{ijk} divided by n_{ij}) in a second order Markov chain and the n_{ij} are sufficient for estimating the p_{ij} in a first order one, cf. Anderson and Goodman (1954). We may test to see whether a chain corresponds to first or second order by

$$\chi^{2} = \sum_{i} \sum_{j} n_{i} (p_{ij} - p_{j})^{2} / p_{j}$$

df = (n-1)²

or whether a chain is second or third order by

$$\chi^{2} = \sum_{i j k} \sum_{k} n_{ij} (p_{ijk} - p_{jk})^{2} / p_{ik}$$

df = n(n-1)²

Indeed the test can be extended to find whether a chain is adequately described by a cth or a c+lth order one. This test does not require the stationarity assumption to be upheld. This technique will enable us to completely characterize the process by a cth order Markov chain if the χ^2 for the cth versus higher order is not significant. The problem here is obtaining enough data to obtain accurate estimates of the higher order transition probability. To test the hypothesis of third versus fourth order we require to have 256 probabilitie to estimate and it is difficult to make a subject perform more than 1000 trials in one session. In order to estimate the above probabilities therefore one would be forced either to average over sessions or subjects.

(c) Information theory analysis

Information theory analysis enables one to measure the absolute size of the sort of dependencies which we are considering. The theory on which it is based is much the same as the Markovian analysis (see Garner (1962) and Attneave (1959)). Let us again assume we have a series of trials $(X_1...X_n)$ each resulting in one of n discrete states $(a_1....a_n)$. Making the stationarity assumption as defined in the last section implies that $p_i = P(X_j = a_i)$ is independent of j. Having made this assumption the amount of information given when we know $X_j = a_i$ is defined as $-\log_2 p_i$ and the expected value of the information on any trial $j - E(H_j)$ is simply

$$E(H_{j}) = - \sum_{l=1}^{N} p_{l} \log_{2} p_{l}$$

This is estimated by

where

$$p_i = \frac{n_i}{n}$$

Another name for this statistic is entropy or uncertainty.

A value of this approach is that it enables us to examine the extent to which different events are independent of each other. Supposing we consider another series $(Y_1...Y_N)$ when Y can assume any one of the states $(b_1...b_n)$ and $q_i = p(Y_j = b_i)$ which does not depend on j. We now find

$$(H_{X}) = - p_{i_{1}}^{\Sigma \log_{2}} p_{i_{1}}$$
$$(H_{Y}) = - q_{i_{1}}^{\Sigma \log_{2}} q_{i_{1}}$$

We can also consider the series $(X_1Y_2X_2Y_2...X_nY_n)$ and define $p_{ij} = p((X = a_i) (Y = b_j))$. If X and Y are independent then

$$P_{ij} = P_{iq}$$

$$(H_{XY}) = (H_X) + (H_Y)$$

which is easily verified. However, we can find ${\rm H}_{\rm XY}$ by considering the composite series

$$\hat{H}_{XY} = \sum_{ij}^{\Sigma} P_{ij} \log_2 P_{ij}$$

and can estimate the information shared between X and Y in the statistic $\mathrm{T}_{_{\rm X}\mathrm{Y}}$

$$\hat{T}_{XY} = \hat{H}_X + \hat{H}_Y - \hat{H}_{XY}$$

This shows the proportion of the entropy that is shared between the two series. This idea is easily extendable to a three simultaneous series case where we can specify all the dependencies by estimating the statistics $\hat{H}_{X_{i}}\hat{H}_{Y_{i}}\hat{H}_{Z_{i}}\hat{T}_{XY}$, \hat{T}_{XZ} , \hat{T}_{YZ} and \hat{T}_{XYZ} . There is a simple relation between T and the equivalent χ^{2} in the Markovian analysis. Attneave (1959) stated the relationship as

$$\chi^2 = (\log_2 2) n \hat{T}$$

However, this is only an approximation to the χ^2 analysis discussed above. The former method is preferable for significance testing as informations statistics are biased, see MacRae (1970).

(d) Latent Markov models

Both the above techniques are descriptive of any series of events in time and do not really form an analogue of any psychological process. If it were possible to show that data from the sorts of experiments we have been discussing could be fitted by a latent state Markov model then this result would tell us something about the processes involved. Such models have been used mainly by sociologists looking at a large number of a few repeated observations rather than small numbers of long series of observations.

Wiggins (1955) was the first to use such models and Coleman (1964a), (1964b) used latent Markov models during studies of attitude change. A comprehensive text on this and related classes of models was written by Lazarsfeld and Henry (1968).

Let us examine in more detail the latent model used in subsequent analyses. Let us assume that on any trial a subject is in one of n latent classes (α, β, \ldots). The states that a subject enters on each trial form a first order Markov process specified by the transition matrix $M = |m_{\alpha,\beta}|$ where $m_{\alpha,\beta}$ is the probability of the state α on trial n and β on trial n + 1. Corresponding to each state there is a response vector giving the probability of responding in each of n response categories $(R_1...R_n)$. This can be summarised in a response matrix Q equal to $|a_{\alpha i}|$ where $q_{\alpha i}$ is the probability of the subject responding R_i on a trial when he was in state α . At each trial t there is a row vector V(p) equal to $v_{\alpha}(p)$ where $v_{\alpha}(t)$ is the probability of being in state α at time t. We define V(t)

as the diagonal matrix whose diagonal elements are the elements of V(t). As the process is ergodic then $\lim_{t \to \infty} v_{\alpha}(t)$ exists and is denoted by v_{α} and similarly $\lim_{t \to \infty} V(t)$ is denoted by V. We denote the observed probabilities by P(t) equal to $p_i(t)$, P(t,s) = $p_{ij}(t,s)$ etc. where $p_{ij}(t,s)$ is the probability of responding R_i on trial t and R_j on trial s. Similarly $p_i(t)$ is the probability of responding R_i on trial t.

We now have the first order probabilities defined

$$P(1) = V(1)Q \text{ i.e. } p_i(1) = \sum_{\alpha \neq \alpha} (1) p_{\alpha i}$$

$$P(2) = V(2)Q = V(1)MQ \text{ i.e. } p_i(2) = \sum_{\beta \alpha \neq \alpha} (1)m_{\alpha\beta}p_{\beta i}$$

$$P(t) = V(t)Q = V(1)M^{t-1}Q$$

We will see that it is very useful if Q is square and has an inverse in each case

$$P(t) = V(1) Q Q^{-1} M^{t-1} Q$$

= $P(1) R^{t-1}$ where $R = Q^{-1} MQ^{2}$

Similarly the second order probabilities

as

 $P(12) = Q'V(1)MQ \text{ i.e. } P_{ij}(12) = q_{\alpha i}v_{\alpha}(i)m_{\alpha\beta}q_{\beta j}$ $P(1t) = Q'V(1) M^{t-1}Q$ and $P(t t+n) = Q'V(1) M^{N}Q = Q'V(1)QQ^{-1}M^{N}Q$ $= Q'V(1)QR^{N}$ $P(13) = QV(1)MQQ^{-1}MQ = P(12)R$ $R = P(12)^{-1} P(13)$

To find the third and higher order probabilities we introduce the diagonal matrix X_k which has as its diagonal elements the kth column of Q, and the notation $P_k(13;2) = |P_k(i,j)|$ where $P_k(i,j)$ is the probability of responding i at time 1 and j at time 3 having responded k at time 2.

$$P_{k}(13;2) = Q'VMX_{k}Q$$

And in a similar way we can obtain the higher order probabilities

$$P_{kl}$$
(14;23) = Q'VMX_kMX₀MQ

It should now be possible given enough data to obtain estimates of QV & M. However in practice an analytic solution may prove slightly intractible. In the case where Q is square and has an inverse a solution does exist

 $P_{k}(13;2) = Q'VMQQ^{-1}X_{k}QQ^{-1}MQ$ but $R = Q^{-1}MQ = P(12)^{-1}P(13)$

```
and Q'VMQ = P(12)
```

we have $P_k(13;2) = P(12)Q^{-1}X_kQP(12)^{-1}P(13)$

 $Q^{-1}X_kQ = P(12)^{-1}P_k(13;2)P(13)^{-1}P(12)$

As X_k is diagonal its elements are the latent roots of the right hand side of the above equation. The other columns of Q can be found from the corresponding characteristic column vectors or by using other values of k.

The two response two latent state case is therefore immediately solvable. However psychologically speaking restricting the number of latent states to the number of responses does not appear particularly meaningful.

We should be able to start with two states and then if the model does not fit be able to extend this number. It is also useful if the model places no restrictions on the number of responses in the system under examination. One way this might be circumvented would be by considering different partitions of the total response set. For example, suppose there are n responses. We can now divide the n responses into a two response set, e.g. (R_1) and $(R_2 \ldots R_n)$ and we can estimate q_{11} and $1-q_{11}$. Similarly we may estimate q_{11} and $1-q_{11}$. By different partitions we should be able to obtain estimates of (q_{li} + q_{li}) which should be consistent with q_{li} and q_{li}. This approach of reducing the number of response categories equal to the number of latent states should work for any number of latent states m in a situation with n observable responses where n is greater than m.

(e) Autoregressive processes

Autoregressive functions cf. Cox and Miller (1965) provide an alternative way of characterising a stationary time series. Suppose (X_n) is a discrete Gaussian process, i.e. one for which the distribution of X_{n1}...X_{nc} is multi variate normal. Then the process is stationary if (1) $E(X_i) = U$ a constant for all j and (2) the covariance matrix $\tilde{\gamma}(n_1n_2)$ equal $C(X_{n1}, X_{n2})$ is a function of $n_1 - n_2$ only, i.e. $C(X_{n+h}, X_n) = \gamma(h)$. $\gamma(h)$ is the autoregressive function where $\gamma(0)$ = the variance of X_n and $\rho(h)/\gamma(0)$ is the auto covariance function.

Cox and Miller describe a class of such stationary processes which might prove useful in describing subjects' response sequences. Let $X_{(n)}$ be a discrete time series. Z(n) be a series of uncorrelated random variables such that $E(Z_n) = 0$ and $Var(Z_n) = \sigma_z$. We assume $E(X_n) = 0$. In this case a finite moving average series (X_n) is defined as the process

$$X_n = a_0 Z_n + \dots + a_n Z_{n-n}$$

If we introduce the further restriction that Za = 1 then (a...a,) are the weighting constants.

 $E(X_n) = 0$ $Var(X_n) = (a_0^2 + \dots a_r^2) \sigma_z^2$

> r-h $\Sigma = a_{s}a_{s+h} \sigma_{z}$ (for 0 < h < r) 0

(for h > r)

If Ia = 1 we could solve the above for the a's and σ_z .

An ith order autoregressive process is defined by the relation

$$X_n = \lambda_1 X_{n-1} + \cdots + \lambda_i X_{n-i} + Z_n$$

Multiplying throughout by X_{n-1} we have

$$x_n x_{n-1} = \lambda_1 x_{n-1}^2 + \cdots + \lambda_i x_{n-1} x_{n-i} + z_n x_{n-i}$$

and taking expectations

$$\gamma(1) = \lambda_1 \gamma(0) + \dots + \lambda_4 \gamma(n-1) \text{ as } (X_{n-1} Z_n) = 0$$

Multiplying by X_{n-h} we have

$$\gamma(h) = \lambda_1 \gamma(h-1) + \dots + \lambda_i \gamma(h-i)$$

and dividing by $\gamma(0)$

$$\rho(h) = \lambda_1 \rho(h-1) + \dots + \lambda_k \rho(h-1)$$

This gives a set of equations which can be solved for $\lambda_1, \dots, \lambda_j$ from the autocorrelation coefficients. In the special case of the first order autoregressive process we see

$$p(0) = \frac{\gamma(0)}{\gamma(0)} = 1$$

$$p(h) = \lambda_1^{h}$$

A common modification mentioned by Cox and Miller is to have a random term superimposed at each trial e.g. an error of observation. If $X_{(n)}$ is an ith order autoregressive process we can produce (Y_n)

$$Y_n = X_n + U_n$$

where $E(U_n) = 0$ and $Var(U_n) = \sigma_u$. Thus U_n is a series of uncorrelated random variables as

$$C(Y_n Y_{n+h}) = C(X_n X_{n+h})$$
 (h = 12 ...)

we still have

 $\gamma(h) = \lambda_1 \gamma(h-1) \dots \lambda_i \gamma(h-i)$

and $\rho(h) = \lambda_1 \rho(h-1) + \dots + \lambda_i \rho(h-i)$

the only difference being

$$Var(V_n) = \sigma_{\lambda}^2 + \sigma_u^2$$

Now we have examined several ways of describing stationary discrete series which enable us later to describe the sorts of sequences of events existing in a detection or recognition experimental setup. Thus hopefully we have described at least one statistical technique capable of characterising the dependencies present in the experimental setup we are considering.
MATERIALS AND METHOD

(a) Preamble

Having reviewed the literature dealing with sequential dependencies it is now of interest to examine what data might most usefully describe this phenomenon. Of the possible paradigms the one most susceptible to dependencies is probably the Yes/No design. In this situation the subject is presented successively with one of two stimuli and each time required to state which stimulus was presented. It has been suggested by Tanner Atkinson and others (see previous section) that the subject compares what he hears on every trial with the image of the immediately preceding stimulus. This means that if feedback is not given errors will tend to be perpetuated where the same stimulus is presented following an error. Thus one might expect feedback to alter the sequential dependencies in this way. The effect of feedback can be studied where feedback is given all the time and when it is only given sometimes within the same session.

If the memory recognition process suggested by Atkinson et al. is correct one might expect that the time between successive presentations should affect the "accuracy of the image of the stimuli on the immediately preceding If correct this should have the effect of reducing trials. the extent of the dependencies on each trial to the immediately preceding stimuli (although not necessarily the response on the inter-response dependencies). If the time between trials can be shown to be important it raises a further complication to the situation as the response latencies are subject-controlled. Thus the times between the stimuli are variable and this may interact with other experimental variables, for example if feedback is present the subject may take longer between trials as he has no information to process or, alternatively, if the a priori stimulus probabilities are unequal then one might expect differential latencies to each of the stimuli which could have quite complicated effects on the dependencies present. That this is quite likely to happen is suggested by the work in reaction time experiments.

One way of reducing the dependencies might be to present subjects with one of the stimuli before each trial. This should make the "image" of the previous stimuli less important and could remove the effect of feedback. Apart from any interference with the subject memory process of previous trials it also provides a constant stimulus for reference. The presentation of a supposed irrelevant noise, for example white noise in a signal recognition task between each trial, might enable one to study the interference effect without providing the constant standard.

In a rating experiment subjects might expect the sequential dependencies to be more complex and perhaps more pronounced. It would be interesting to examine their effects and compare them with those derived from a RTROC analysis of the data in a Yes/No situation.

(b) Experimental Method

The subjects who were students at the University of Stirling were all volunteers. If they participated in more than two sessions they were paid at the rate of 6/- (30p) per session. Each session lasted approximately for an hour. Two subjects who agreed to participate in one of the longer experiments (18 sessions) stopped attending before having completed ten sessions. They were not paid and their data is not included in the analysis.

In all sessions subjects were allowed to familiarise themselves with the signals, the response box and the response signal sequence by performing 100 practice trials with feedback before the experimental session proper started. They were also told under what conditions they would be run i.e. given information about the stimulus probability and the occurrence of feedback, but nothing about the purpose of the experiments for fear that this might influence their performance. A typical set of instructions to a subject in a recognition task without feedback was as below.

"This is an experiment in signal recognition and you will be presented successively with one of two tones. Your job is to tell me which one of the two occurred on each trial. Initially in order that you can learn the tones you will be told which of the tones has appeared later it will be left to you to decide which tone has been presented. If you put the earphones on and press either of the two buttons in front of you you should hear a tone after a short delay. Now if you press either response button in front of you it will activate either light 1 or light 2 depending on which of the stimulus was presented. After a delay another stimulus will occur and again you should respond but this time press the button corresponding to the tone you think was presented. This cycling will continue for several trials to enable you to familiarise yourself with the experimental task.

After this the experiment proper will begin. Your task is then exactly the same as the practice one but this time the light will not work. That is to say, you will be given no information as to which stimulus has occurred on each trial. Each of the two signals is equally likely to occur on each trial and there are no sequences or patterns in the presentation as the order has been generated by a randomising procedure on a computer. After a few minutes I shall stop you to see if you fully understand the task. Have you any questions?"

These instructions were written out on a piece of paper and the experimenter attempted as far as possible to stick to a standard wording.

(c)The experimental design

The subjects were required to perform 100 practice trials prior to each session in the hope of reducing the amount of learning present during the session. In the session proper they performed 500 (in the first experiment) or 740 (in subsequent experiments) trials. Each trial consisted of the presentation of a stimulus to which the subject responded. This response could cause either feedback or a constant stimulus or both to be produced and always resulted in the presentation of the next stimulus (see diagram)

On each trial the stimulus response latency and presence or absence of feedback was recorded on paper tape. This raw data was subsequently fed into the computer and stored on magnetic tape. All the analyses were performed calling data from the magnetic tape.

The experiments

(1)

(a) In this experiment 15 subjects performed for one session each. They were given a signal recognition task in which the stimuli were two tones one of 1000 cycles per sec. and one of 1010 cycles per second. They were randomly assigned to one of three conditions in which the a priori stimulus probabilities was .25, .5 and .75. In this experiment no feedback was given.

(b) This was followed by running 10 subjects for one session each in a signal detection task with a priori signal probability .5 . This experiment was really a pilot one and was conducted while some of the control equipment used in subsequent experiments was still under development.

(2) Here five subjects performed 18 experimental sessions. The first two of which attempted rather unsuccessfully in the event using the method of constant stimuli to determine the stimulus that the subject could respond to correctly about 75% of the time. This was to reduce the colossal individual differences between subjects.

(a) The order of sessions was randomised. All subjects performed the recognition and detection task at three levels of stimulus probability (.25, .5 and .75), and with the presence

and absence of feedback, making twelve sessions in all.

(b) Also randomised within these sessions subjects performed the above task at the .5 stimulus probability level with a burst of white noise being presented to the subject prior to each stimulus. This data therefore gave two different designs some of it common to both (the main effects in the first one being task stimulus probability and feedback and in the second task presence or absence of white noise and presence or absence of feedback).

(3) Here five subjects (different ones from the last experiment) performed in 19 experimental sessions. The task was a detection one in which the a priori stimulus probability was set at .5 . Each subject performed the task with 100%, 50% and 0% feedback. In the 50% feedback condition feedback was given randomly throughout the session. The task involved three levels of difficulty again chosen on the basis of the subject's performance to a constant stimulus psychophysical task on the first two sessions and at two levels of delay before the presentation of the stimulus following a response. This made 18 conditions in all the order of which was randomised. In the 50% feedback condition the occurrence of feedback was randomised within the session. Again the first two sessions were attempts to obtain psychometric functions for the subjects to determine stimuli they would get correct 60% and 85% of the time. In the very easy condition the stimuli were set so far apart that the difficulty of the task was similar to that in a choice reaction time experiment.

(4) In this experiment a detection task with a priori signal probability of .5 was used. 15 subjects were allocated to each of three experimental conditions, 100%, 50% and 0% feedback with short delay. The difference in this case was that subjects were asked to respond on a 5 point scale which stimulus they thought had occurred. The responses were labelled as sure signal, think signal, do not know, think noise, sure noise.

A summary of these experiments is given in the table below.

	o Sessions	25	08	0 6	15	77.
	No. Subject No	25	ى م	ى	15	
XPERIMENTAL DESIGNS				ГОО		
			D • 75 100			
			D 75 0	ощо		
			а 20 а р	гво		
				A C O		
			0 10 10	L D 50		
			D 25 100	N D 20		
			ч ч ч ч ч ч ч ч	Г 20		
	A	• •	. 25 0	о ц u		
	Ř	.75	R .75 100	Г 70 Г	0	
	Ц	.	R 75 0	50 S	50	
	Ъ	• 25	. 5 100 В	100 L	100	
			• 5 100	D S		
			к v o	100 Г		
			R 25 00	о 900 900		
			• H • K • O A	L J VE		
			R. 25. 0	100 1 VE S		
	TASK	STIM PRO B	TASK STIM PROB FEEDBACK % NOISE BURST	FEEDBACK % DIFFICULTY DELAY	FEEDBACK	
	Exp	-1	2	ო	#	

LAB IN WHICH THE EXPERIMENTS WERE CONDUCTED

(d) Experimental layout

The experiment was conducted in a laboratory designed for communications experiments. The plan of the room is given below (figure 1). The cubicles in which the subjects were seated were semi-soundproof. The control equipment was placed in the centre of the laboratory as it could not be placed in another cubicle for reasons of temperature control. The noise from the paper tape punch was just audible to the subjects. The ambient sound level was 29 db in the cubicle and 33 db in the lab.

(e) Apparatus

Basically the equipment consisted of four audio sources:- two signal generators (Muirhead 205A) and two white noise generators (Dawes 419C), a paper tape reader (GNT24), a 6-digit timer counter (Racal 835), a data transfer unit (hereafter referred to as DTU) (Solatron) a 80-character/second paper tape punch (Facit), a response box and control logic. The signals were standardised using a frequency meter (Racal 9520) and a valve sensitive voltmeter (TF 2600).

The cycle of operations was initiated by a response which is stored and sends a signal to the DTU which stops the timer counter (clock), inputs all the information on its register and outputs it on paper tape via the punch. This signal also initiates a delay which produces a signal from the reader to read a character and advance. Depending on which character has been read one of two audio outputs is presented to the subject (see figure 2).

Different aspects of the control logic will now be examined in more detail.

SIMPLIFIED OVERALL SYSTEM

1. Stimulus control (see figure 3)

When a subject responds this starts a delayed unit which after some time (the size of the delay was an experimental variable) produces a signal which reads in advance of the paper tape reader. The character read is then stored and depending on which of the two used in the experiment it was activates one of two audio channels controlled by an analogue switch and a timer set at 100 milliseconds. While the audio signals contain no white noise, i.e. in the recognition experiment, zero detectors were used to ensure that both signals started in phase. These give a logic signal one when there is an input which is audio and has zero phase.

Record data system

Here it may be useful to explain the function of the DTU. This has nine binary coded decimal (BCD) i. e. 8-4-2-1 codes decodes as input. On receiving a sample instruction the DTU outputs a signal which stops the clock at its next count and dumps the current content into the paper tape punch in two words, one of six decades and one of four. The DTU and the punch were supplied as a package from the manufacturers and no interfacing was required. The Racal timer which was the experimental clock was supplied with the BCD output.

Figure 4 shows the recording system and noise control logic. A signal from the response box sends a sample signal to the DTU which stops the clock and samples its current inputs. The inputs to the DTU are

(1) the content of the clock - word one - six decades

(2) the response (the BCD conversion logic is not shown) word two - decade two

(3) the state of the reader's store - word two decade three(4) whether feedback is present or not - word two decade one.

After a short delay provision was made to present a burst of white noise to the subject (see experiment 2) after a longer delay a signal was given to the tape reader to read, advance and channel input to the DTU.

Feedback system (see figure 5

Here a trigger pulse from the response line (see figure 5) is gated with a free running astable. When the astable is in one state the response is able to produce feedback while in the other state it is not because of the AND gate. The appropriate feedback light is selected by gating the feedback pulse from the output from the reader store.

)

The signals were subject to some drift due to temperature and because of this stimulus frequency and intensity values were checked before and after each session. Providing the equipment had been switched on for two hours prior to the experiment any drift was below the level that could be detected by a human subject. The frequency drift was of the order of + or - .1 cycles per second. The intensities were checked on a valve sensitive voltmeter. This means that the intensity cannot be quoted in absolute units however the drift appeared to be small relative to the differential threshold.

FEEDBACK SYSTEM

RESULTS

Introduction

The computation following the experiments described above can be broken down into roughly three major headings. The first is descriptive, the second estimation of detection and recognition models, and the third simulation.

The descriptive section involves the calculation of summary statistics from the data and analyses of variance on the summary statistics to see if the experimental conditions had any effect on that aspect of the data. Most of the procedures used in this section were incorporated in a program which was given the name OVERALL.

The second section estimated the parameters of five different detection models for each session and for each session given the state on the immediately preceding and the immediately preceding two trials. Another program determined whether the parameters were affected by any of the experimental conditions or whether the dependence of the parameters on the preceding trials were affected by the experimental conditions. The programe in this section were called ESTIMATE and SEST.

In the final section a program called SIMLUC simulated experimental data with different degrees of dependence, depending on the model used to measure the inter-trial dependence. The procedures from ESTIMATE were then applied to the simulated data. It was therefore possible to measure the effect the dependencies had on the detection and recognition models. In particular the sampling distributions of the estimates of the model's parameters were examined to see how they compared with the same sampling distributions when more dependencies existed in the data.

RESULTS

Introduction

The computation following the experiments described above can be broken down into roughly three major headings. The first is descriptive, the second estimation of detection and recognition models, and the third simulation.

The descriptive section involves the calculation of summary statistics from the data and analyses of variance on the summary statistics to see if the experimental conditions had any effect on that aspect of the data. Most of the procedures used in this section were incorporated in a program which was given the name OVERALL.

The second section estimated the parameters of five different detection models for each session and for each session given the state on the immediately preceding and the immediately preceding two trials. Another program determined whether the parameters were affected by any of the experimental conditions or whether the dependence of the parameters on the preceding trials were affected by the experimental conditions. The programe in this section were called ESTIMATE and SEST.

In the final section a program called SIMLUC simulated experimental data with different degrees of dependence, depending on the model used to measure the inter-trial dependence. The procedures from ESTIMATE were then applied to the simulated data. It was therefore possible to measure the effect the dependencies had on the detection and recognition models. In particular the sampling distributions of the estimates of the model's parameters were examined to see how they compared with the same sampling distributions when more dependencies existed in the data.

Descriptive Results

The first thing a researcher should do with a set of data is to examine the raw data rather than fit preconceived models. This prevents one from ignoring important though unexpected aspects of the data. A print-out of all the data corrected in all the experiments was obtained. The first 740 numbers are latencies of each of the trials in one particular session. The next 740 are the stimuli presented while the next indicate the responses made to the stimuli and the final 740 numbers indicate the presence or absence of feedback. As there were 185 experimental sessions similar to the above and 25 more on which only 500 trials were given a print-out of all the raw data would be far too large to include even in an appendix. The raw data, however, still exists in this form on four I.B.M. compatible magnetic tapes.

Let us consider the analysis of the experiments as output by the OVERALL program.

1 To the contract work and shown in the statement and the statement of the test of the statement of the s

is in the repeated after the Singt 150 provided to over The action and legate After the Singt 200 cm that work responsed to plinkness the posertifier of the Sectoring

(a) Tests for Stationarity

One of the first things to be tested was whether a subject's performance had remained constant throughout each session. The data was grouped into five equal sections and the number of correct responses in successive blocks of ten trials was obtained. An analysis of variance was then performed on this data and a value of F obtained for each session. The table below gives the number of wrong responses in successive blocks of 100 trials for each of the 25 sessions of experiment 1, together with the F value testing the stationarity assumption. Out of 25 sessions only four showed significant amounts of non-stationarity on the F test at the .05 level.

A similar analysis was performed on the number of Rl responses in each of the five successive blocks of trials. A significant F in this case would imply some change in the bias of the subject throughout the experimental session. The table giving the F values calculated for each experimental session is given below. Also included are F values testing the stationarity of the sequences of latencies generated by each subject on each trial. Each session was broken down into five equal parts and an analysis of variance performed on the latencies generated in each of the parts to see whether the trial number had a significant effect on the latencies generated by the subjects. If, for example, a subject had got progressively faster throughout the session then this would have resulted in a significant F value. This process was repeated after the first 100 trials had been discarded and again after the first 200 trials had been discarded to eliminate the possibility of early learning.

We can conclude from the above table that by far the greatest indication of non-stationarity lies in the latency sequences and that even removing the first few hundred trials there still remains a significant degree of non-stationarity. Little evidence of non-stationarity was found in the analysis of correct wrong sequences although

Number of	X response	es in suc	ccessive b	locks of	100 trial	.8	
Condition	Subject	1-100	101-200	201-300	301-400	401-500	F
	1	28	20	12	22	25	1.3
	2	41	41	36	44	40	. 3
.25R	3	43	22	34	33	27	2.3
	4	49	7 0	25	57	63	4.8
	5	33	33	41	51	44	1.4
	6	36	32	45	it it	39	.9
	· 7	56	52	50	36	44	1.7
.5R	8	15	18	19	16	9	• 6
	9	50	46	50	38	46	1.1
	10	50	45	45	46	33	1.4
	11	36	37	44	48	. 50	1.1
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	12	45	45	53	41	31	1.7
•75R	13	14	12	11	13	12	.1
	14	25	24	11	14	22	1.6
	15	24	18	25	14	21	1.3
	16	12	15	13	11	17	.5
•	17	48	56	53	53	48	• 6
	18	19	9	9	13	4	2.9
	19	47	49	27	24	12	10.7
• 5D	20	39	48	50	39	43	.8
	21	53	48	38	29	32	4.2
e A de la	22	39	44	41	57	41	2.0
	23	40	39	45	32	26	1.7
	24	26	28	20	17	16	1.1
	25	54	42	40	46	35	1.2

df

4,45

X = Wrong

F values	testing s	tationar	vity of err	or and	latency.	
Condition	Subject	Errors	Response	L	L - 100	1 - 200
	1	1.3	1.7	8.5	• 7	. 8
	2	. 3	2.0	45.0	21.5	24.6
+25R	3	2,3	2,9	25.6	6.1	3.9
	4	4.8	2.8	20.5	3.3	2.1
	5	1.4	1.0	24.6	14.7	6.8
Ĭ.	6	. 9	5.2	3.0	1.3	2.0
	7	1.7	1.3	45.3	6.3	4.0
• 5R	8	, 6	. 7	7.5	1.4	1.6
	9	1.1	. 6	2.8	3.5	1.2
	10	1.4	5.4	26.0	13.0	5.5
• • •	11	1,1	1.1	8.8	11.3	6.5
	12	1.7	2.3	16.0	1,1	1.1
,75R	13	•1	1.2	1.1	22.2	13.0
	14	1.6	4.4	11.1	15.5	10.6
	15	1.3	.6	20.7	6.0	5.6
	16	. 5	1.2	1.0	5.6	7.1
	17	. 6	2.6	2.8	2.0	3.8
	18	2.9	.7	1.9	1.6	1.8
	19	10.7	3.3	3.2	3.8	3.6
.5D	20	. 8	.7	7.3	4.5	3.6
	21	4.2	2.0	1.3	15.6	3.0
	22	2.0	2.8	5.3	12.8	17.0
	23	1.7	. 9	. 5	1.2	2.8
	24	1.2	2.0	6.9	6.4	2.6
	25	1.2	.6	5.8	.9	1.0
	df.	4/45	4/45	4/495	4/395	4/295

from subsequent analysis it will be found that many subjects were not discriminating very well between the stimuli. In these cases the correct wrong sequences should approximate to random binary sequences. That significant response sequences should be obtained may be in part due to subjects responding equally to the two stimuli presented as the session wears on. The subject is informed that stimulus 1 appears 75% of the time and stimulus 2 25% of the time. However, no feedback is given in the experiments and as time wears on the effect of the initial instruction may decrease.

Turning again to the latency data the table below gives the mean latency in the five equal parts of the session for each subject. A Kruskal Wallis non-parametric analysis of variance was performed on this data and a significant value of H equal to 45.8 was obtained on the differences between the five blocks. However, when the first block was ignored and the analysis repeated on the last four this H value was no longer significant. Thus, it appears that in the first 100 trials subjects take longer to respond than in subsequent trials but that the changes in latency with trial number which occur after the first 100 trials vary with the different subjects and there appears to be no consistent pattern of increasing or decreasing latencies.

Thus, although we have shown that there are significant differences between blocks even if the first 200 trials are ignored these differences are not consistent across sessions. Looking at data from all the sessions (i.e. different subjects) the only significant consistency in the latencies for the different blocks is that the first 100 trials had longer latencies.

The same type of analysis was performed on the subsequent experiments. A summary of all these analyses is presented in the table below which gives the number of significant F ratios for each experiment for each type of sequence. In the case of Experiment 4 where the subject had five responses available to him in order to make the results

Mean Latencies for Experiment 1 (seconds).

Ì

Condition	Session	Block]	L Block 2	Block 3	Block 4	Block 5
	1	.95	.64	.62	.69	.61
	2	1.58	1.12	1.05	.75	.64
+25R	3	3.49	.86	1.06	1.36	1.46
	4	1.87	.52	.69	.72	•98
	5	1.08	.96	.85	.51	.71
	6	1.38	.87	.90	.84	.94
	7	1.90	.93	1.22	.99	1.03
. 5 R	8	1.15	.73	.75	.71	.69
	9	1.81	.85	1.14	.85	.89
	10	.99	.73	.70	.77	.72
	11	1.29	.64	.49	.41	. 87
·	12	1.29	.67	.54	.59	.74
.75 R	13	3.08	.47	.71	.53	.52
	14	3.03	. 8 0	.76	.70	.57
	15	1.12	.80	.82	.79	.70
-	16	1.23	.75	.81	.75	.70
	17	2.50	1.22	1.07	1.08	1.39
	18	.87	.58	.59	.66	.68
	19	1.41	1.19	1.03	1.16	.89
.5D	20	2.09	1.13	1.17	1.14	1.00
۵	21	3.46	2.01	1.70	1.48	1.44
	22	1.71	1.69	1.21	1.59	2.07
	23	1.18	1.42	.83	.92	1.19
	24	1.68	.74	.88	.79	.71
	25	2.19	.98	1.26	.72	.84

. .

Ą.

*

. .

comparable response 1 and 2 was treated as response 1 and 3, 4 and 5 as being response 2. Approximately the same amount of non-stationarity appears in the correct wrong sequences in all of the experiments. In Experiments 1 and 4 where naive subjects were used the amount of non-stationality in the response sequences appears to be somewhat greater than for the practice subjects. Perhaps the most unusual finding is that the number of significant non-stationary latency sequences are increased if the first hundred trials is ignored in experiments 2, 3 and 4. This result seems very strange when we consider the evidence presented for Experiment 1 that in the first 100 trials the subjects are taking significantly longer than in the later part of the experiment. This finding appears replicated in Experiments 2, 3 and 4. The result can be more easily understood when one examines the summary tables of each of the individual analysis of variance. It appears here that the within mean square is greater in the total analysis than when the first 100 trials have been dropped. In Experiment 3, for example, the mean square within groups for the analysis ignoring the first 100 trials is less than the equivalent statistic for the analysis over all the data in 69 out of 90 sessions. This indicates that during the first trial not only is there a longer main latency but there is also a greater variability in the latencies produced by the subject. This greater within block variance appears to have the effect of reducing the number of significant between block effects, thereby accounting for the proportionately fewer non-stationary sequences including the first 100 trials than when the first 100 trials has been dropped.

Analyses of variance were performed on these F statistics to test whether the experimental conditions manipulated in the different experiments had any effect on the degree of non-stationarity.

(b) Information Theory Statistics

In an attempt to study the nature of the interrelation of the three measures taken at each trial, namely, stimulus, response and latency, the latencies were divided into quartiles and an information theory analysis was undertaken. This meant the calculation of the average information at each trial given by the response, stimulus and latency, together with the shared information between each pair of these measures, and finally the shared information between all of these measures. The results are shown in the accompanying table.

These results may be more easily comprehended by averaging the information over sessions. A diagram is drawn for each of the experimental conditions used in the first session. This is a diagram of overlapping circles where each circle represents one of the measures and the numbers in the shared areas represent the shared information between these measures. The value of the information theory analysis of the data is that it shows the proportion of information in the measure that is shared between it and another.

The same analysis was performed on the results of Experiments 2, 3 and 4. A detailed table of the average information contained on each trial by the various measures There is little point in producing was circulated as before. all that information here, however. It will probably suffice to reproduce the diagrams giving the average information contained in the measures stimulus, response and latency, and how it is shared between them for each of the subsequent experiments. In Experiment 2 the main analysis was performed on the data including the bursts and the data not including bursts, accordingly the average information is given for each of these two analyses (see section on effect of experimental The only comments that may be made from these variables). diagrams is that in experiments 2 and 3 the subject's performance is much better than on experiments 1 and 4 where the subjects were naive. This can be seen from the

Average Information Experiment No. 1

,

Session	Latency(L)	Stimulus(S)	Response(R)	LS	LR	SR	LSR
l	2.00	.83	.98	.03	.08	• 24	.00
2	2.00	.79	.93	.00	.00	.00	.00
3	2.00	.84	.90	.00	.04	.04	01
4	2.00	.77	.89	.02	.03	03	 03
5	2.00	.80	.98	.01	.00	.01	.00
6	2.00	1.00	.99	.00	.01	.03	.00
7	2.00	1.00	1.00	.01	.01	.00	.00
8	2.00	1.00	.98	.02	.02	.38	01
9	2.00	1.00	.90	.00	.01	.01	01
10	2.00	.99	.99	.00	.01	.01	01
11	2.00	.80	.98	.00	.07	.00	01
12	2.00	.85	1.00	.00	.02	.02	01
13	2.00	.78	.52	.07	.16	.25	.07
14	2.00	.86	.82	.01	.01	.18	04
15	2.00	.77	.93	.00	.01	.20	03
16	2.00	1.00	.99	.08	.09	.43	.02
17	2.00	1.00	.77	.00	.01	.00	.00
18	2.00	1.00	1.00	.01	.01	.51	02
19	2.00	1.00	1.00	.01	.01	.10	03
20	2.00	1.00	.99	.00	.01	.01	.00
21	2.00	.99	1.00	.01	.00	.03	03
22	2.00	1.00	.93	.00	.01	.01	.00
23	2.00	1.00	.97	.00	.05	.06	01
24	2.00	1.00	1.00	.05	•04	• 25	.00
25	2.00	1.00	1.00	.00	.00	.01	02

amount of shared information between the S and R measures. It also appears that the amount of information shared between the response and the latency is greater than that between the stimulus and the latency. This is what we would expect as both response and latency are subject controlled.

rei finites between primules and caspines and ware (AND REPAIRED BE SERVER BERE SERVER THERE SHARE SERVER THERE SHARES exactions the country for these your subjects the only Fignill cast extensions is one significant /? Detwee suspanse and the . These schults agree with the infor theory statistics suggesting that the biggest relation between response fulleyed by between resi and infincy followed by that between stimulus and late In the briversation analysis the stimulus by response 1 Larency inframation static the static static static as a supposite of two is (1) the suspect (eformation between the three mash they (1) the arteristion term. There would be a short from istance of it. say, subjects sespended faster ones th responsed were correct than the responses were us W. - CEMELALANDER - FRANK MERKANA AT INCOME and wrong twopeders interest that in fact with a result accided. The ease enabysis was repeated on the data f Experiments : ; ; and the number of significant in such of the conditions is given in the table being. the promise the pattern is similar is all the different esperiments. In Experiment 2 one subject di and discussions algorithmatly on eight of the sension I. Papertaint I is only our session did a subject not exectiminate eleviticantly. The relationship between

$(O_{\chi^2} \text{ analysis of dependencies between stimulus, response and latencies}$

An equivalent χ^2 analysis was also performed on the same data and the values of χ^2 on the independence of the different sequence measures are given in the table below.

From the above data we can see that in eight of the sessions there is a significant relationship between the stimulus and the latency. On 14 of the sessions there is a significant relationship between the response and the latency and on 21 of the sessions there is a significant relationship between stimulus and response. On 11 of the sessions there is a significant interaction between all three measures. Thus, we can conclude that four subjects showed no significant relationship between stimulus and response and were therefore not discriminating significantly better than chance. On examining the results for these four subjects the only significant relationship is one significant χ^2 between response and time. These results agree with the information theory statistics suggesting that the biggest relation is between stimulus and response followed by between response and latency followed by that between stimulus and latency. In the information analysis the stimulus by response by latency information statistic was a composite of two factors, (1) the shared information between the three measures, and (2) the interaction term. There would be a significant interaction if, say, subjects responded faster when the responses were correct than when the responses were wrong. An examination of the histograms of latencies of correct and wrong responses revealed that in fact such a relation The same analysis was repeated on the data from existed. Experiments 2, 3 and 4, and the number of significant χ^2 in each of the conditions is given in the table below. This table reveals that the pattern is similar in all the different experiments. In Experiment 2 one subject did not discriminate significantly on eight of the sessions. In Experiment 3 in only one session did a subject not discriminate significantly. The relationship between the

response and latency appears greater than that between the stimulus and the latency as one might expect, and both these dependencies appear greater in Experiment 2 where a priori stimulus probability was an experimental variable, than in Experiment 3 where the a priori stimulus probability was .5 throughout the experiment. The significant SRL χ^2 is presumably an indication that correct responses have a shorter latency than incorrect ones.
χ^2 testing	g relation	nship bet	ween fol	lowing m	easures.
Condition	Subject	LS	LR	SR	LSR
	1	21.2	54.4	157.7	9.76
	2	2.00	2.9	.7	1.17
.25R	3	4.7	28.4	28.5	6.38
	4	3.1	10.5	19.0	17.30
	5	5.9	1.6	7.7	2.05
	6	. 8	8.4	23.6	1.35
	7	4.1	5.9	1.2	2.36
•5R	8	13.8	11.6	240.1	4.82
	9	2.9	8.2	3.9	8.66
	10	1.6	4.2	8.7	9.10
,	11	1.8	33.3	2.7	6.80
	12	2.4	11.2	14.6	7.43
.75R	13	54.1	119.4	198.1	259.48
•	14	4.1	3.9	132.2	11.61
	15	• 3	3.5	142.6	14.73
•	16	54.8	57.6	268.9	9.27
	17	3.0	3.7	.7	1.75
	18	8.3	10.2	310.4	7.69
-	19	8.4	7. 5	69.0	18.70
.5D	20	2.9	6.6	7.2	1.01
• • •	21	8.2	. 8	21.6	20.54
	22	2+6	5.4	6.1	.12
а (23	1.1	35.2	43.0	5.59
	24	33.1	24.6	165.8	14,98
• •	25	2.0	4.1	8.8	11.18
•	df.	3	3	1	3
					t,

•

,

Number of Significant χ^2

e registra de cala

승규는 영국에 가장 문제가 다

. 일로를 확진 말 같은 것 같은 것 같이 한다.

11. A.S.

to, collega, an active, -

nadional de la constante de la En el médica de la constante de

Experiment	No.Sessions	SR	RL	SL	SRL
1	25	21	14	. 8	11
2	80	7.2	61	47	43
3	90	89	50	17	26
1999 - 4 199 - 1999	15	12	9	7	8
	df	1	3	3	3

4.14

while this is not divide the ot divide the

Farbertes Broughter Bather Farm in the set warder of the set of the

i substitutes, the SR sequences, the R sequences, such the contest

The billing the probability of the table below. The billing the table to the table below x^2 is chosen in the table below. The billing the table below x^2 is chosen in the table below.

ter:

teritie resigning of the line of strategy with

- present to be a great deal of the strugg of the which discover and

Wesselles shows a significant Markes dependency filler

inguances this appears makely actual strates as ingenderate

The service styres was prepared on the approximation of the

en regenerate The still be begenere for the best

Characterising dependences

(a) <u>Manifest Markov Processes</u>

As mentioned in the Introduction the inter-trial dependences can be measured by fitting Markov processes of different orders to the stimulus, response sequences. The depth of the dependences are measured by the highest Markov process necessary to describe the sequence. As χ^2 statistic tests the hypothesis of a nth order Markov process versus a n + 1 th or higher order. Owing to the data available it was only practical to test the hypothesis of a zero versus a first order dependence and a first order dependence versus a second or higher order dependence. To test the hypothesis of a second versus a third order dependence would involve determining the relative frequency of four successive events. Even if the probability of occurrence of the least likely event was .1 then the probability of four successive of these events would be of the order .0001. This could be expected to occur once in a session of ten thousand trials and to obtain an estimate of this probability accurately should therefore involve several tends of thousand trials. To run a subject in a session lasting this length of time is really impractical. Such a process would have to be estimated by averaging over sessions.

In the analysis of the first experiment there appears to be a great deal of inter-trial dependence in the sequences. All of the latency data when discretised into four quartiles shows a significant Markov dependency higher than first order. While this is true in all but one of the SR response sequences this appears mainly attributable to dependences in the response sequences rather than in the correct wrong sequences. The Markov analysis was performed on the latencies discretised into quartiles, the SR sequences, the R sequences, and the correct wrong sequences. The stimulus sequences from a zero order Markov process as they were generated by a pseudo random number generator which was tested for randomness using various tests such as runs test, χ^2 test, autocorrelations, etc. The number The suffixes of significant χ^2 is shown in the table below. indicate the hypothesis being tested, for example, R2 indicates

 χ^2 testing and zero and first order dependences

Condition	Session	Latency]	l Latency 2	2 SR 1	SR 2	Response 1	Response 2	Correct Wrong l	Correct Wrong 2
		61	41	38	34	ວິ	4	18	ო
	2	278	102	32	30	25	Ч	Ч	2
.25R	ო	188	84	32	.882	25	7	ຕ	ო
	đ	303	87	159	h 6	125	37	55	10
	ഹ	190	125	211	45	201	2	21	ß
	G	36	37	38	.61	ĘJ	42		#
	6	139	74	94	54	34	15	4	H
• 5R	00	77	45	101	19	19	3	30	Ч
	თ	168	74	221	. 29.	212	3		7
	10	119	54	8	tt	0	σ	ч	80
	11	196	73	29	32	23	œ	0	2
	12	5 h T	113	48	e 3	75	12	ັ ຕ	14
.758	13	118	57	18	25	Ø	м	-1	00
	74	128	86	9 1	39	0	œ		6
	15	119	72	04	29	11	Ч	m	• •••

100.

table continued:

Ъ
e
đ
5
•
نب
C
Ö
Ŭ
-
6)
Ē
Å
85

Condition	Session	Latency 1	Latency 2	SR 1	SR 2	Response 1	Response 2	Correct Wrong l	Correct Wrong 2
	16	17	51	06	29	0	a	Ч	5
	17	29	E ti	011	34	186	Ч	0	2
-	18	47	64	13	23	19	ო	н	0
	19	116	6 9	24	011	0	Ø	13	9
• 5D	20	79	16	20	52	, 1	21	н	0
	21	52	52	11	94	г	0	0	7
	22	113	11	t 11	54	म १	11	Ч	Ч
	23	119	57	103	37	79	4	ග	0
	24	63	1 16	11	57	0	17	M	4
	25	182	19	106	24	100	H	n	o
<u>.</u> ~~		£)							
	df.	O	36	S S	36	, 1	, A	r-t	2

101.

No. Sig χ^2 testing $% \chi^2$ lst and 2nd order Dependence Experiment 1.

	Ll	^L 2	Rl	R ₂	cl	с ₂	SRl	SR2
No Sig	24	21	18	11	9	5	21	8
Total No•	25	25	25	25	25	25	25	25

No.Sig χ^2 testing $% \chi^2$ lst and 2nd order dependence Experiment 2.

SEE APPENDIX

	Ll	^L 2	Rl	R ₂	cl	с ₂	SRl	SR ₂
Sl	14	14	14	10	6	5	15	7
s ₂	14	5	4	2	4	1	8	4
s ₃	15	7	7	4	5	6	9	6
s ₄	6	5	2	1	1	1	1	0
s ₅	16	11	5	3	2	2	3	5
No. Sig(65 05)	42	32	20	18	15	36	22
Total No.	80	80	80	80	80	80	80	80 80

No. Sig χ^2 testing lst and 2nd order dependence $S \in E \wedge PPC NO(\gamma B)$ Experiment 3.

	Ll	L ₂	Rl	R ₂	cl	с ₂	SRl	SR2
S ₁	17	8	5	5	l	1	8	-
^S 2	17	14	5	2	1	1	8	-
s ₃	17	13	3	0	4	1	5	1
s ₄	18	14	3	2	4	2	7	2
s ₅	17	9	4	3	5	3	10	3
No.Sig ('05)	86	58	20	12	15	8	38	6
Total No.	90	90	90	90	90	90	90	90

No.Sig χ^2 testing $% \chi^2$ lst and 2nd order dependence Experiment 4.

	^L l	L ₂	Rl	^R 2	cl	c2	SR1	SR ₂
No• Sig (۱۰۵۶)	13	9	7	5	2	1	1	3
Total No.	15	15	15	15	15	15	15	15

The Charles Dependencies of the Lotte Carters .

a bargende stand sin and son son and sons light of the second second second and an a A stand sons second s A standard second se

Addition through the expension of The Addition (Addition) (Ad

 χ^2 testing the hypothesis of a zero versus a second or higher order process on the 25 response sequences. We can thus see that the greatest dependencies exist in the latencies and that 20 of the SR sequences are first order dependent while 8 are second order or higher dependent. It also appears that the observed dependence in the SR sequences are attributable to dependencies in the response rather than in the correct wrong although significant dependencies do exist even in the correct wrong sequences.

The same analysis was performed on the data obtained in Experiments 2, 3 and 4. The following tables show the number of significant χ^2 obtained in each of the experiments. For Experiments 2 and 3 these are displayed for each subject as well as over all sessions. From this it appears that there are marked differences between the dependencies produced by different subjects. The pattern that emerges is fairly consistent through the experiment. The sequence of latencies is by far the most dependent although large numbers of the SR sequences also exhibit first order dependence. Only about 20% of these sequences, however, show significant dependence of a second or greater order. We also find that the dependences that exist in the response sequences are greater than the dependences existing in the correct wrong sequences, although significant dependencies occur in both cases.

These ends of even the very out personal to the end of the second of the second second of the second second

a a bha a sharanna anna a sharan anna galala a aga balan a sharan a shekaran a shekaran a shekaran a shekaran

(b) Autocorrelations and autoregressive processes

Another method of characterizing the dependences was using autocorrelation. The first 20 autocorrelations were calculated for the latencies in each session and the results are shown graphically in the accompanying diagrams which plot autocorrelation against lag. Attempt to obtain similar diagrams for the response and correct wrong sequences used an estimate of the tetrachoric coefficient, namely, $r_{cos\pi}$. Following the discussion on autoregression processes a first and second order regression analysis was undertaken on the autocorrelation coefficients where the latency data and the results are given in the table below. In some cases the multiple correlation coefficient on one variable is greater than when two variables are used. This appears self-contradictory. However, the analysis of one variable is based on a slightly different sample. Thirty autocorrelations being used in the first analysis while only 29 were available for use in the second.

A similar analysis was performed on the sequences of responses and on the sequences of correct wrongs. Estimates of the autocorrelations were obtained and a regression analysis performed on these autocorrelation coefficients. The results of this analysis are given below.

As most of these multiple correlation coefficients are not perfect or anything like it we cannot really say that the sequences have adequately been described by the autoregressive process.

These statistics, however, do show up some of the features of the data, for example the dependencies in the latency sequences appear much greater than in the correct wrong sequences as we have seen already in the χ^2 analysis. This is hardly surprising since for at least part of the time some of the subjects are responding at little better than chance level. The subject is not discriminating the correct wrong sequence must be random by definition. On looking at

Coeffici	lents of	f Multi	ple Reg	ression	on La	atency I	Data
Subject	Condit:	ion Fi	rst ord	er Anal	vsis	Second	order

Subject	Condition	First order	Analysis	Second	order	Analysis
1		.49			.58	
2		.93			.93	
3	.25R	.07			.26	
4		.60			.66	
5		. 84			.86	
6		.25			. 30	
7		.97			.97	
8	.5R	• 86			.86	
9		-62			.66	
10		.93			.95	
11		.58			.62	
12		.50			.55	
13	.75R	.65			.76	
14		.66			.66	
15	•	.37			.38	
16		.60			.59	
17		.58			.56	
18		.77			.78	
19		. 84			.87	
20	. 5D	.46			.54	
21		. 64			.73	
22		.21			.34	
23		.99			.91	
24		.16			• 30	
25		.70			.70	e d

-38 -36

Coefficients of Multiple Regression on Response and Correct Wrong Data

Session	Condition	Resp	onse	Correc	t Wrong
		lst Order Analysis	2nd Order An alysis	lst Order Analysis	2nd Order Analysis
1		.55	.59	.39	.40
2		•42	. 44	.16	.52
3	.25R	.69	.67	.02	.13
4		•96	.96	.87	. 87
5		. 89	• 89	.54	.61
6		.62	.67	.30	.45
7		. 84	.85	.27	.29
8	.5R	.60	.61	.56	.57
9		.97	.97	.16	.27
10		.47	.42	.15	.20
11	,	.45	.45	• 56	. 57
12		.94	.94	•46	.51
13	.75R	.36	.42	.21	.25
14		.19	.20	•22 ·	. 32
15		.41	.42	.29	.29
16		•17°	.22	.24	.25
17		.92	.93	•13	.17
18		.46	. 49	.24	. 30
19		.24	.23	.21	. 37
20	• 5D	.79	.81	. 32	.34
21		.18	. 34	.28	• 30
22		.66	.73	.26	.32
23		.86	. 86	.22	.23
24		.53	.56	. 35	. 35
25		.90	.91	. 39	.40

the graphs of the autocorrelations it is clear that the autocorrelations are positive and decrease with order except in the response case where some subjects appear to show a negative relationship between responses differing by about ten trials. This suggests that they tend to maintain responding on the same button for five or six trials and then switch to responding on the other. While this effect is noticeable the size of it is very small.

Finally, the effect of the second order regression analysis, i.e. taking into consideration the two previous correlations, does not appear to affect the predictive value of the model except in perhaps a few cases of correct wrong sequences. Thus, the more complicated analysis did not explain very much more of the data. It could be seen from looking at the graphs of the autocorrelations that the autoregressive process was not likely to describe the data particularly well. We have shown this to be the case for the data in Experiment 1. Subsequent analyses were performed on Experiments 2, 3 and 4 and similar results were found. However, we shall confine ourselves here to including only the graphs of the autocorrelation for each session in each of the experiments from which it can be seen that consideration of the autoregressive process is not likely to prove very fruitful.

والمراجع المراجع المحاربة والمحاصر معرضه فللمراجع والمراجع ومحراط والمراجع والمراجع والمراجع والمراجع والمراجع

Experiment 2 Plot of Autocorrelations of latencies Y axis autocorrelation 0-1 X axis log 1-20

Experiment 4

Plot of Autocorrelations of Correct Wrongs

Y axis autocorrelations 0-1 X axis log 1-20

Experiment 2 Plot of Autocorrelations of Responses Y axis autocorrelations 0-1

Experiment 3

Plot of Autocorrelations of Responses

Y axis autocorrelations 0-1 X axis log 1-20

(c)Latent Markov Analysis

A number of analyses of the dependences using a latent Markov model as a base were undertaken (see Introduction). The two latent state Markov process was fitted to sequences of respknses and to sequences of correct wrong trials. This method of estimation is as given in the Introduction. The results of this analysis produced in certain cases values of parameters supposedly representing probabilities outwith the bounds of zero to one. When this occurred the program was made to substitute the probability of zero or one depending on which was nearest the estimate of that probability. The results, using the same terminology as in the Introduction, are given in the table below for the analysis of responses and correct wrong sequences.

As can be seen from these results there are a number of occasions where impossible parameter values were obtained. In an attempt to provide an alternative method of fitting the model to the data a numerical hill-climbing procedure was adopted. From the initial estimation procedure values of parameters M(1,1), M(2,2), Q(1,1) and Q(2,2). From these values the other elements of the M and Q matrices and the values of the V matrix could be determined. With these values a χ^2 measure of goodness of fit with the observed third order conditional probabilities was obtained. The four original parameters were then modified systematically by adding or subtracting an increment of .1 and after each transformation another χ^2 goodness of fit statistic was determined and the parameter was changed back to its initial state. After this had been done to all the parameters the change which resulted in the greatest improvement in the goodness of fit statistic was adopted and the procedure was then repeated. The process was then continued until the χ^2 statistic did not improve after any of the transformations. The size of the increment added or subtracted from each of the parameters at each iteration was then changed from .1 to .01 and the process again repeated until no more improvement

		ē	M	~	-		•	•	59		~		, . ,	• 0	• u	1	*	י גע	N M			- -	• ·	- LC	- 10	•		• •
		^	.57	.81	.56	50.5	. 4 .	.08	00	.86	.03	00.	5.5	0.0	100	20.				00-	.30	.16	10,		74		\ 0 1 •	~ 7 •
			.49	.57	2	.87	64	4 2	39	89 4	48	43	56				62.	~		10	4	25	.40	.47	- -	24		1
			5.	• 43	.57	.13	.36	5.8	.61	.16	.52	.57	44	00.	88	00.	.71	00	.12	.90	.55	.43	• 60	53	.00	74	46	}
		C	00.	.37	2.0	18	.06	00.	• 00	• 05	• 0 0	00.		20 M	00.	17	00	00.	53	.00	00.	00.	1 1 1 1	0.0	.10	.00	00.	i I F
			1.0	.63	.77.	83	46	1.0	1.0	.95	- - -	1.0	.69	.62	1.0	. 83	1.0	1.0	.47	1,0	1.0	1.0	.87	1.0	. 06 .	1.0	1.0	, , ,
			. 65	.00	1.0	.86	83	1.0	1.0	.52	.98	1,0	1,0	.66	1.0	.74	.54	1.0	00.	1.0	. 65	84	1.0	66.	. 32	.97	. 83	
•	NCES		• 35	1.0	00.	,14	17	00	00.	43	.02	00.	00.	.34	00.	.26	.46	00.	1.0	00.	,15	.16	00.	.01	,68	• 03	.17	
	WRONG SEQUE	Σ.	.27	50	00	5	4	00.	1.0	.08	51	0.1	00.	03	0	.01	0.1	00.	00.	0.1	5 M	53	00.	80 20 20	8 2 9	13	70	
			. 73	200	1.0	. 85	.76	1.0	00.	.92	.49	000	1.0	.97	00.	66.	00.	1.0	1.0	. 00.	. 65	.17	1.0	.72	.72	.87	.30	
	AND CORRECT	СН	.02	15	3.0	.00	.00	.02	• 00	.01	2.6	9.7	.03	.02	7.5	8.2	T	3.7	.06	9.1	7.6	16	. 68	2.9	1.9	17	1.3	
		>	.27	.30	. 33	. 65	.41	.64	.43	- 62	. 69	.01	.57	.46	.28	1.0	.00	00.	.76	.89	. 99	0.1	.28	.59	.67	00.	. 55	
	NSES		.72	.93	,82	.78	98.	• 93	.77	,73	1.0	45	,72	85	,16	. 36	• 00	• 54	,96	.90	1.0	• 60	2 9 ·	1.0	0	• 40	1.0	
	ESPO	_	.28	.07	.18	23 23 23	.02	.07	. 23	22.5	00.	5 10	28	.15	. 64	.14	1.0	.46	• 0 •	010	00.	• •	 8 .	.00	00.	, v ,	00.	
	N N	e	. 23	.00	62.	.05	• 05	.16	23	.16	.01	.16	.20		00.	.26	00.	5 5 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	00.	.50	• • •		2	. 41		52.	.03	
1	YSIS	4	. 77	1.0	.61	.95	.98	.84	. 77	.84	. 99	. 84	.80	.89	1.0	.74		. 75	1.0	2.1	0 t 0 t		0 C L) /) /			
	ANAL	I	25	. 55	1 . 0	• 92	.87	20.	.94	70	.76		.87	.87	.74	ч Ч	0,	- -	s/.		- - (5 U • U		-+ 14		- C	n / •	
DN N	RKOV		• 0 %	50.	00.	•08	•13	•93	• 0 •	. 3	N -	0	•13	1	-20	00.	00.	00	12.	0 0 • 0			• • •	N 1 N 1 •	0 0 0			
N N N	T MAI	Σ	- 50	• 19	00.	.05	.19	• 54	• 0 0	• 13		00.	01	5	• • • •		6 / 6	л. Г	• 0 • 0)) •	⊃ : • (-				67.	
X L L X	ATEN	ļ	0 0 0	12.	- -	۰ ب	• 81	• 46	4 0 4 4 7	त छ छ	א יע יי	0. • •	3 5 •	α Ω	04 % M	- -	-1 (-1 (22		0 c • •	्र • •	5 C • C • C	ວ ເວັດ •	א כ ס ס י) c 0 • T	⊃ Ц • ľ •		
¥1	1																						•					

RESULTS OF FITTING 2-STATE LATENT MARKOV MODEL TO RESPONSES AND CORRECT WRONG SEQUENCES FROM EXPERIMENT 1

(after min χ^2)

x 2	.27	• 33	.22	ł	-01	.14	1 0 0	00.	.61	7.4	00.	2.13	4 . 1	Ŀ.	•03	3.2	2.4	.29	• 56	.05	1.8
Λ	• 30	• 50	• 50	• 50	. 4 J	.11	• 00	• 86	.07	• 06	. 50	• 88	.01	.97	• 34	.31	.84	• 06	.37	.19	00.
	• 55	.51	.44	.87	.64	. 44	.48	.84	• 50	.40	Ч	1.0	.11	1.0	.31	.13	• 08	• 08	.50	.54	.40
	• 45	.49	. 56	.13	• 36	• 56	.52	.16	.50	.60	0	0	• 89	0	• 69	.87	.92	.92	. 50	.46	.60
ď	0	с •	• 2	.18	• 06	0	0	.05	•	Ч	0	.35	Ч	.17	Ō	.14	.60	н ц.	. 00	10.	00.
	ч	.7	°.	.82	. 94	Ч	гH	.95	1.0	0	Ч	.65	0	• 83	1	.86	. 40	.56	1.0	.99	1.0
	.67	0		.85	• 83	66 .	Ч	.52	• 9 8 9 8	• 9 8 9	• 56	. 80	1	.75	.47	.74	.29	.96	.85	.85	1.0
	• 33	1.0	0	.15	.17	.01	0	• # 8	.02	.02	.44	.20	0	.25	• 53	.26	.71	. 04	.15	.15	00.
М	.21	1.0	0	.15	.24	•00	0	• 08	.23	. 31	• 30	•03	.37	0		.57	.13	.69	.25	.64	00.
	.79	0	Ч	. 85	.76	-0- -	Ч	.92	.77	.69	.70	.97	.63	щ	0	.43	.87	.31	.75	• 36	1.0
ײ	· OI	• 6 5	3.4	I	I	10.	1	00.	л. ц	9.4	IO.	.02	1.2	8.2	1.1	2.1	• 03	.81	9 . 5	9 . 5	• 03
Λ	.27	• 30	. 50	• 35	.41	.65	• 48	.62		00.	.57	• 46	• 48	1.0	.61	.02	.76	.60	1.0	. 50	.31
	.72	.93	თ •	.78	• 98	.93	.77	.78	1.00	44	.73	. 85	.22	1.0	б •	• 55	.96	.73	1.0	.73	.64
~	.28	• 07	-1 •	.22	• 02	.07	.23	.22	00.	.56	.27	.15	.78	0	Ч	.45	•0•	.27	00.	.27	.36
0	.24	0.0	• 46	• 05	•02	.16	.23	.16	.01	0	. 20	.11	0	.26	0	. 00	. 00	.41	.47	.40	.25
	.76	1.0	• 54	.95	• 98	. 84	.77	•84	66 •	Ч	. 80	• 89	Ч	.74	Г	1.0	1.0	. 59	• 53	• 60	.75
	.92	.61	ч.	.92	.87	TO.	•94	•69	.78	Ч	.87	.87	.82	Ч	.28	1.0	.73	00.	1. 0	1.0	. 55
	• 08	• 39	0	• 08	.13	6 6.	• 06	.31	.22	0	.13	.13	.18	0	.72	. 00	.27	1.0	00.	00.	• 45
Я	.20	.90	0	.05	.19	.54	• 06	.19	.10		.10	.15	. 20	0	.46	• 00	• 08	.68	. 00	.00	1.0
	. 80	.10	ч	.95	.81	• 46	. 94	.81	06.	0	.90	.85	• 80	-1	.54	1.0	.92	.32	1.0	1.0	00.

113.

A DESCRIPTION OF A

× 2	• 06	.16	.24	.15	
Λ	.07	.66	.25	.24	
	.47	. 88	.28	.57	
	• 53	.12	.72	• 43	
Q	00.	.10	00.	00.	
	л. О. Г	. 90	1.0	1.0	
	• 99	.46	.97	• 83	
	. 01	.54	•03	.17	
M	.19	• 28	•00	• 53	
	.81	.72	. 91	.47	
×2	1. 2	• # 8	17	• 33	
Λ	. 55	.67	00.	• 55	
	1.0	1. 0	.49	1.0	
	• 00	• 00	.51	00.	
ð					
	.37	• 09	00.	• 03	
	.63 .37	.91 .09	1.0 .00	.97 .03	
·	.78 .63 .37	.68 .91 .09	1.0 1.0 .00	.71 .97 .03	
	.22 .78 .63 .37	.32 .68 .91 .09	.00 1.0 1.0 .00	.29 .71 .97 .03	
Ψ	.18 .22 .78 .63 .37	.16 .32 .68 .91 .09	.00 .00 1.0 1.0 .00	.24 .29 .71 .97 .03	

Table continued

经营业汇票 医皮肤肉状的 法法法公司 ar i shere i sheri i ar an diselected for the state of the and the second first second second iluniteres. The star a ser en la compañía de parte here into a state of a state of a state of the strety with a way with a torne (Carl War 1988) in the obened alter the state 28 988 2000 (11) L MA GARL ا مەربىيە مەربىيە

in the value of χ^2 could be obtained. The output of this procedure is given in the table below. From the results it can be seen that this procedure has increased the goodness of fit of the model in the cases where the χ^2 values differed from zero. It should be noted that in this case the number of parameters is equal to the degrees of freedom for the χ^2 so that if the model fitted one should expect a χ^2 value of zero. Combining the two estimation methods appears to lead to sensible estimates for the parameters.

The next stage was to develop an analysis of data involving the four observable states. This is to analyse the sequences of trials each trial being denoted by the stimulus and response which occurred at that time.

An analysis of such a sequence done as per the Introduction involves a solution of a quartic equation. A computer program was written to solve such an equation however the initial values obtained as estimates of the parameters included several imaginary solutions which were very difficult to interpret. An alternative approach therefore making use of more information was used in this case.

It proved possible here to use the information available about the stimulus sequence alone. The stimulus sequence was generated by simulating the independent zero order Markov process given the a priori stimulus probability values. As mentioned before this was done using a standard pseudo random number generator. If we denote the a priori probability stimulus one as ST1 and the a priori probability stimulus two as ST2 we can use the following equation for the response matrix Q.

$$Q = \begin{pmatrix} X_{1} & STI - X_{1} & X_{3} & ST2 - X_{3} \\ X_{2} & STI - X_{2} & X_{4} & ST2 - X_{4} \end{pmatrix}$$
$$M = \begin{pmatrix} M_{1} & 1 - M_{1} \\ 1 - M_{2} & M_{2} \end{pmatrix}$$
$$V = \begin{pmatrix} V_{1} & O \\ O & 1 - V_{1} \end{pmatrix}$$

We denote the observed transition probability matrix between time T = 1 and time T = 2 by P(1,2) and between time T = 1 and time T = 3 as P(1,3). We will also introduce the stratified matrix P_k(1,3;2) as being the matrix whose ijth elements are the probability of being in state i at time 1 and j at time 3, while at time 2 being in state k. We also introduce X_k as being the diagonal matrix whose diagonal elements are the kth column of Q.

Thus $X_1 = \begin{cases} X_1 & 0 \\ 0 & X_2 \end{cases}$ and $X_2 = \begin{cases} STI - X_1 & 0 \\ 0 & STI - X_2 \end{cases}$ $x_{\mu} = \begin{pmatrix} ST2 - X_{3} & O \\ O & ST2 - X_{\mu} \end{pmatrix}$ $\mathbf{x}_3 = \left(\begin{array}{c} \mathbf{x}_3 & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_1 \end{array} \right)$

We can now aake use of the theoretical relations mentioned in the Introduction.

P(1,2) = Q'VMQ $P(1,3) = Q'VM^2Q$ $P_{1}(1,3;2) = Q'VMX_{1}MQ$ $P_2(1,3;2) = Q'VMX_2MQ$ $P_{3}(1,3;2) = Q'VMX_{3}MQ$ $P_{\mu}(1,3;2) = Q'VMX_{\mu}MQ$

Taking determinants we have

$$\frac{P_{1}(1,3;2)}{P(13)} = X_{1} = X_{1}X_{2}$$

$$\frac{P_{2}(1,3;2)}{P(13)} = X_{2} (ST1 - X_{1})(ST1 - X_{2})$$

On rearranging the above we obtain the following quadratic equation

$$x_2^2 - \frac{ST1^2 + x_1 - x_2}{ST1} x_2 + x_1 = 0$$

The two values of X_1 and X_2 are therefore the two rates of the above equation. A similar analysis involving the last two states gives the following equations:-

$$\frac{P_3(1,3;2)}{P(1,3)} = X_3 = X_3 X_4$$

$$\frac{P_4(1,3;2)}{P(1,3)} = X_4 = (ST2 - X_3)(ST2 - X_4)$$

And the quadratic equation

 $x_{4}^{2} - \frac{ST2 + X_{3} - X_{4}}{ST2} x_{4} + x_{3}$

The results of this analysis in no case produced estimates of all the probabilities within the range 0 to 1.

)

The minimum χ^2 procedure was therefore written analogous to the minimum χ^2 procedure used in the latent state two observable response case. However, it was found that this procedure took too long to find a solution in order that it could be used on all the individual sessions. Unfortunately all that could be done was to combine the data together and fit the model to the combined data. The original estimates of the parameters of the model are given in the table below along with the values of the parameters after using the minimum χ^2 procedure. It can be seen here that the minimum χ^2 procedure gives sensible answers for the model.

This approach for characterising the dependences was used in Experiments 2, 3 and 4. The two latent state two

ESTIMATES OF THE PARAMETERS OF THE LATENT MARKOV MODEL (ANALYTICALLY DETERMINED AND NUMERICALLY)

EXPERIMENT	1						
V				Q		М	
1		0.499	0.50	1		1	0
0		0.499	0.50	1		.19	.81
	x ²	= 5.5	x 10 ²⁴				
after min.	x ²						
V				Q		М	
• 56		•46	.04	.33	.17	. 87	.13
• 44		.21	.29	.03	.47	.16	.84
	x ²	= 46.5					
						· ·	
EXPERIMENT	2						
V				Q		М	
1.		0.50	0.5	0		1	0
0		0.50	0.5	0		.22	.78
	x²	= 9.9	x 10 ²⁴				
after min.	x²						
.92		•42	.08	.14	.36	.98	.01
•08		.07	.43	.04	•46	• • 11 *	.89
						· · ·	
EXPERIMENT	3	x ²	= 86.7				
V				Q		M	
1		21	29	0	5	1	0
0		0	5	0	5	1	0
	x²	= 7.7	$x 10^{15}$. ·
after min.	χ ²		•				
V				Q		M ^a	
.75		.47	.03	.03	• 47	.10	.10
.25		.25	.25	.25	.25	. 30	.70
	χ ²	= 7.5					
		Alter Conservation	an a	n an	na dheann an Alta Na ann an Alta an A	n na serie de la serie de Esta de la serie	ree in the
E.a.			and the second sec	en Alexander e			4

observable state model was applied directly to the response and correct wrong sequences and the results of this are given in the tables below. As in Experiment 1 if the probability parameters fall outwith the zero to 1.0 bound they were set to either zero or one. On looking at the data it can be seen that this was necessary in practically every case. These estimates should therefore be improved by using the minimum χ^2 procedure described in the analysis of Experiment 1. The above values could be taken as starting points. Unfortunately the time taken to reach a solution would make finding a minimum χ^2 190 times too expensive in computer time to be worth the effort. We would, however, imagine that the improvement resulting from the use of the minimum χ^2 technique would be of the same order as that found in the analysis of experiment 1.

Analysing the SR sequences in terms of a latent state model produced the same problem in that the time taken to run minimum χ^2 procedures which would have been necessary to obtain sensible parameter estimates would have proved prohibitive. As a result all the experimental data for each experiment was combined and the combined data was analysed using the latent Markov process described above. The results are given in the tables below.

We can thus see that the results show considerable improvement in the estimates of the parameters after the use of a minimum χ^2 procedure. Any χ^2 value at all still means that the model does not fit but at least the degree to which it does not fit is considerable improved. These estimates were then used in the simulation procedures which will be described later on.

Of the models the best fit is in Experiment No. 3.

The data on Experiment 1 included much data in which the subjects were not discriminating between the stimuli as mentioned above. Experiment 2 averaging the data involved

averaging the data with different a priori stimulus probabilities which would make the fitting of any statistic model difficult. Averaging the data for Experiment 3 involved averaging easy, medium and difficult discriminations. An interesting finding is the values of the parameters obtained after the minimum χ^2 analysis in Experiment 3. This is very much aligned with the Falmange model. In this model the subject alternates between two states. When the subject is in one state he discriminates well when in the other he does not. From the values found in the O matrix it appears that the subject is doing just that. In one state the subject is equally likely to respond with either of the alternatives while in the other state he responds with the correct alternative in the ratio of 47 : 2.5. We must be careful, however, to realise that this result may be due to the averaging of easy, medium and difficult sequences of discrimination rather than the validity of the two latent state type model.

A contract of the proving response to avoid the second of the second of

The effect of the dependencies on the signal detection models

The probabilities of the subjects responding R_1 given the stimulus presented and the SR combination on the last trial was determined and then $P(R_1|S_1S_iR_i)$ versus $P(R_1 | S_2 S_i R_i)$ was plotted for all i's and j's. Thus, if the commonly held independence assumption is true then these points should be independent of the SR combination on the immediately preceding trial. As no feedback was given in any of the sessions in this experiment (1) Atkinson's model (in Atkinson Bower and Crothers (1965)) also predicts that these points should be the same. While the Tanner and Rauk model predicts that the points should lie on an ROC curve. On examining the graph we see that the points do not appear to be randomly distributed around some particular value, nor do they appear to lie on ROC curve. The main effect on the points appears to be a change in bias related to the response on previous trials. This point will be more fully made when the parameters of the various signal detection models are estimated for each of these four points. Here we would expect to find the major effect on the bias parameter. The results indicate a large amount of individual variation between sessions. As different subjects performed in each session it is not possible to say whether this variability is between subjects or between sessions. If the same subjects perform on the same session twice one could say whether the effect of these dependences were relatively constant. As previously noted the main effects appear to be a change in bias depending on the preceding response. However, this effect varies from subject to subject. In the majority of cases the effect is due to an apparent increase in probability of maintaining the same response although in at least one case the opposite effect is seen and the subject tends to alternate his response from trial to trial. The other effect is that there appears to be a tendency for the sensitivity to be increased when the subject was correct on the last trial. This is the sort of result one would expect to obtain if the subject was performing as in a latent Markov state model where one of the states corresponds to a better performance
level from the other. That is to say this result would be predicted if one assumed that the subject's state of performance varied throughout the trials and his performance was more likely to be like that on the immediately preceding trial than on any other trial. This effect, however, will be obscured by the fact that in some cases the subjects were only marginally responding better than chance. In such cases any effects like this would be difficult to observe.

We are mainly concerned with the effect of the dependency on the sensitivity and bias statistics of the detection and recognition models. It is therefore useful to estimate not only the overall parameter value of these models but also to estimate the parameter value looking at data following a particular trial event. The results of this analysis will be considered in the section dealing with the analyses of the detection and recognition models.

The equivalent results for experiments 2, 3 and 4 are given in the following pages. Again, changes in bias and sensitivity appear in all the experiments depending on the state on the immediately preceding trial, and it does not appear that saying the points lay on the same ROC curve is a particularly good approximation to the observed points.

·龙·秋馨·老子之 主义

122.

Experiment 1 SEE (R8 for condition (Plot of $P(A_1|S_1A;S_K) P(A_1|S_2A;S_K)$ for preceding trials $S_1R_1 - + S_1R_2X$ $S_2R_1 - \diamond S_2R_2M$

		+ •	•
	-		+
	•		
+ ×			.*
•	×		Dq
	+ × *	+ × × ×	+ × × × ×

× X	+	M	45	. 14
+ •,	ہ لا	×		тбу Х

+*	+ *		х Х	× ¤♥ +
[™] .	×	•		

×+***		1274	₩ >	H 2	24 * *		
¥ #	148	vgto X	× •		×**	bi ♦	14
	•	, the second sec	MQS X	A ×	₩ _×	Þ i	+ ∲ ×́м
.	×#	*	**************************************	**	*	*	*
(M + *	×	X4-54 S	×	¥\$	**	*	
t ∎	м ^e х	y , sm	×	2	×* ×	NX *	* * ×
р н Х	\$ #	**	400	a ×	, X 4	ф ¥м	*
M ⁺ Øx	*	HAR B	M+ \$	*	#×	* •	∦ ×
**	*** + *	×, +	ж ж	+ × •N	M× +	+ • ×	×.
•	*+	Exper-	riment 2 t of P(A ₁)	н‡ S ₁ A;S _K) Р(•	×	x +
		for ; S ₁ R ₁ S ₂ R ₁	preceding * -+ \$ -\$	trials 1 ^R 2 ^X 2 ^R 2 ^M			

× ⁺ *	* *	Mot	+ 1 11	, ₩ + 0 ×

*.	X	. pa d X	** **	• X
	~~			

			•
*	*+ %	* *	*

و از ایک دوریک در ایریک میشو و وارو این وی ور ایک ور ایک		
Experiment	4	
Plot of P(A	$ S_1 S_1A;S_K) P(A_1 S_2A;S_K)$	
for precedi	ng trials	
S ₁ R ₁ - +	S ₁ R ₂ X	
S ₂ R ₁ - ♦	S ₂ R ₂ p	

ر

The effect of the experimental variables on the descriptive statistics

Much of the descriptive analysis discussed in the previous section was performed by the program OVERALL. This program derived the following statistics:-

(1) The average information in each stimulus.

(2) The average information in each response.

(3) The average information shared between latency and stimulus.

(4) The average information shared between latency and response.

- (5) The average information shared between latency, stimulus and response.
- (6) The χ^2 measuring relationship between latencies and stimuli.
- (7) The χ^2 measuring the relation between latencies and responses.
- (8) The χ^2 measuring the relationship between stimuli and responses.
- (9) The χ^2 measuring relationship between stimuli responses and latencies.
- (10) Variances of the total latencies in each 1/5th of the experiment.

(11) Variances of the total errors in each 1/5th of the experiment.

(12) Variances of the total responses in each 1/5th of the experiment.

- (13) The χ^2 measuring the first order dependancy for the latency sequences.
- (14) The χ^2 measuring the second order dependance of the latency sequences.
- (15) The χ^2 measuring the first order dependancies of the response sequences.
- (16) The χ^2 measuring the second order dependencies of the response sequences.
- (17) The χ^2 measuring the first order dependencies of the correct wrong sequences.
- (18) The χ^2 measuring the second order dependencies of the correct wrong sequences.
- (19) The χ^2 measuring the first order dependencies of the SR sequences.

(20) The χ^2 measuring the second order dependencies of the SR sequences. (21) The mean latency.

Each statistic was then used as the dependence variable in an analysis of variance to see how the experimental conditions affected each statistic. Tables of the raw data input into these analysis appear in the appendix. In the results of Experiment 1, two completely randomised designs were used. In design 1 the levels of the main effects were recognition task at probability .25, .5 and .75, and detection task at stimulis probability .5. In design 2 the levels were recognition at stimulus probabilities .25, .5 and .75. In design 2 the detection data were omitted. See table in the appendix of sample analysis. The results of this first experiment showed very little, in fact the only significant effects were:-

(1) The average information of each stimulus in both designs was significant. As this was under the control of the experimenter and deliberately manipulated in the experiment we had hoped that this result would have been obtained.

(2) The χ^2 value testing the first order dependencies of the latencies proved significant at the .05 level in design 1. This indicated that the recognition sessions showed less dependence for the latencies.

In conclusion, it appears that little was found about the effects of the experimental variables and the data in Experiment 1. A better design is required to enable one to make a precise study of the experimental effects. In particular, controlling the subject differences might be expected to increase the precision of the experiment. The The first form was an analysis of the experiment No. 2 took two forms. analysis of four factors, recognition versus detection, stimulus probability, presence or absence of feedback, and subject. While some of the same data was used in the second analysis, again using A x B x C x S design where the factors are recognition or detection task, presence or absence of burst of white noise between trials and presence or absence of feedback. The results of the first analysis on the 22 statistics mentioned above are summarised in the table below. This table shows the F statistics

F Values Computed in Experiment 2

EF

F

ЕСТ

(Ignoring Burst Data)

Task Stim. Prob. Feedback ТхР ΤxΓ ΡxΓ TxPxF Subj. Stat. .35 •00 .02 .53 413.34 .17 .43 4.76 AV I.S. 3.12 AV I.R. 3.05 36.00 26.67 .26 5,05 1,28 1.84 .46 2.87 .18 3.87 1.93 2.28 .01 1.56 I.L.S. .25 3.97 2.30 1.19 .09 2.47 I.L.R. 6.16 3.65 .91 .98 I.S.R. 1.09 1.27 4.34 .52 1.70 36.56 .25 2.63 14.05 1.43 .53 .78 1.30 I.L.S.R. .98 .22 .52 4.00 Ch.L.S. 1.96 2.14 2.45 .01 1.44 .33 2.97 Ch.L.R. 4.13 2.49 1.19 .06 1.30 3.49 .32 1.11 2.07 3.79 .37 1.15 5.10 34.59 Ch-S.R. 2.29 7.25 .01 1.21 .38 4.00 1.30 1.04 Ch.L.S.R. .00 .27 .45 .59 .66 1.64 Var. L 2.32 .26 .56 .83 2.10 Var. E 2,53 .3.08 .08 .33 .99 • 30 1.07 .90 Var. R 2.20 3.69 .78 2.21 6.57 .81 .28 .55 42.55 ChLdep.1 3.37 2.62 .65 .83 .27 .33 .49 ChLdep.2 .00 2.35 5.04 1.38 40.09 1.43 .56 .46 .55 .76 5.81 ChRdep.1 4.53 1.76 .31 4.08 1.52 .44 1.63 1.32 ChRdep.2 1.62 1.22 .79 2.47 7.83 3.26 ChEdep.1 6.02 1.75 1.57 5.20 1.40 •03 4.32 3.07 .01 1.50 .55 ChEdep.2 .00 .37 .62 32.0 ChSRdep.1 1.53 ;52 1.56 .50 3.58 4.81 .15 .18 .98 ChSRdep.2 2.53 3.70 96 1.65 2.17 .41 .13 4.70 .00 4.40 8.67 1.06 4,8 DF 2,8 2,8 1,4 2,8 1,4 2,8 1,4 CritF 7.71 4.46 4.46 3.84 7.71 7.71 4.46 4.46 (.05) CritF 21.20 8.65 8.65 7.01 8.65 21.20 8.65 21.20 .01

신물일 공부에서 물건이 좋다.

Story Alexandra Martin

Live any inspect Maria Sector and the Mark

1

calculated and their degrees of freedom - a sample analysis appears in the appendix.

Looking at this table we find stimulus probability has an effect on the average amount of information contained in each stimulus. This result is similarly found in the first experiment, and is simply a reflection of the manipulation of the experimental variable stimulus probability. As one might expect this effect also affects the average information contained in the response to each of the stimuli. A .05 sig. effect of the S factor must be attributed to chance factors. That is to say, the maximum amount of information is obtained when the responses are equally likely. When the stimulus probabilities are not the same the responses are not equally likely. There is also a significant effect of feedback on the average information contained by a response. It appears that in both the .25 and .75 stimulus probability conditions the effect of feedback is to reduce the average information in the response. This could be attributed to the result that probability matching was greater in the presence of feedback as opposed to the no feedback condition where subjects usually show a greater tendency to respond equally to each of the two alternatives. This conclusion is supported by the presence of a significant P x F interaction, see table.

	0	F	
.75	8,98	8.00	total average information
• 5	9.77	9.83	of responses in P x F table.
.25	9.17	8.70	

A significant $T \times P \times F$ interaction effect is found in the average information shared between S and R.

		R			ע	
	.75	.5	. 25	. 75	•2	.25
0	1.0	.8	1.3	.9	1.3	.6
F	1.1	1.6	1.0	1.1	1.1	, . 9

total average information shared between $S \times R$ in $T \times P \times F$ table It appears in the 0 feedback recognition condition subjects do better when the a priori stimulus probability are equal while the reverse is true in the detection task.

Feedback appears to affect the shared information between LS and R.

0 F -.319 .04 12:

total average information shared between TS and R In the absence of feedback there appears to be an interaction effect between TS and R cancelling out any shared information, (i.e. a relation between correctness and latency.)

When the analysis is repeated on the equivalent χ^2 a significant T x P x F interaction effect was found in the SR dependence as was described above. However, on the χ^2 measuring the second order interdependence of SR and T no significant Feedback effect was found although a significant stimulus probability effect was observed, indicating a much higher inderdependence in the .75 S condition.

It is possible that the variance in total response one's errors and latencies might be related to non stationability. Accordingly this statistic was used in this analysis. The only significant experimental effect was a P x F interaction on the variance of the errors.

	0	F
	*	
.75	24	25
• 5	52	29
.25	32	25

total variance of total errors in each 1/5th of the experiment

Feedback appears to reduce the variance in this .5 stimulus probability condition.

Analysis of variance were then run on χ^2 measuring first and second order markov dependence. The only significant effects were found on the correct wrong sequences where it was found that the lst order dependence was greatest in the absence of feedback.

total χ^2 df3 measuring 1st order dependence in correct wrong sequences (each figure is the total of 30 χ^2 .

F 91.4

0 1 78 .8 Finally a significant T x P interaction was found on the total latencies.

	.25	• 5	.75	
total latencies	6515	9373	7729	R
	9102	8027	7916	D

It appears that the total latency in the equi-variable stimulus condition is greatest in the recognition task - this is not true in the detection task.

ter Beach

and the second second

1. A.B. (1)

고문 영왕

We shall now consider an analysis of the results of the same experiment this time ignoring the unequal stimulus probability condition. (For a sample analysis see appendix.) The table below gives the computed F values and their degrees of freedom.

On examining an analysis of the information statistics the significant (0.5) effects are:-

a T x B interaction effect on the shared information between T and S.

	R	D	
O B	.13 .12	.19 .10	total average information shared between S and T

It appears that the addition of a burst of white noise reduces the relation between stimulus and latency on a trial in the detection task but not in the recognition task. There is also a significant $T \ge F$ interaction in the shared information between S and R.

> 0 F R 2.03 2.92 total average information D 2.29 1.99 shared between S and R

Feedback appears to help the recognition task but not the detection. It may be worth remembering that in this experiment some of the Detection task have bursts of white noise between trials. A significant effect of Feedback on information shared between SR and L.

> 0 F -.28 -.17

total average information shared between LS and R This is similar to the effect noted in the last analysis. When the same analysis was performed on the χ^2 equivalent to the information statistics the T x B and T x F interaction reported above were found to be significant (.05). The effect of feedback on the information shared between LS and R was not found.

The only effect of an experimental variable on the variances of the totals for each 1/5th of the sessions was in the error variance where ^a significant F x B effect was observed.

F Values Computed in Experiment 2

(Ignoring unequal Prob. condition)

	Task	Feedback	Burst	ΤxΓ	ТхВ	FхB	ТхГхВ	Subj
AV I.S.	.0	.1	.5	1.9	1.7	3.0	.0	1.8
Av I.R.	4.3	•0 -	4.5	.1	1.2	1.8	•8	5.4
I.L.S.	•3	•4	•4	•5	17.2	.1	1.5	9.8
I.L.R.	•3	•7	.1	1.8	•5	.4	•1	.9
I.S.R.	•6	1.3	•2	12.8	6.9	1.9	4.7	53.2
I.L.S.R.	•3	7.8	• 3	1.5	8.1	T*6	•8	.5
Ch.L.S.	.3	•5	•4	.5	18.2	• 1	T•03	10.2
Ch.L.R.	•2	•6	•1	1.6	.3	• • 4	•1	
Ch.S.R.	•6	1.5	•2	11.8	5.0	⊥•8 Г !!	5.0	01.2
Ch.L.S.R.	.1	1.5	•3	1.0	2.5	5.4	•2	.9 1 7
Var.L	•0		•⊥	T•0	5.0	07	.0	⊥•/ ⊥•/
Var.E	.2	1.0	4.8	•9	±•/	ð./ 2 1	•U	9.0
Var.R	0	.0	2.0	Z•1	.4	Z•⊥ 11	1.0 7.7	21 0
ChLdep.1	1.9	2.0	4.0	1.4 2 0	4.0 1.0	•4	26	53
Chidep.2	1.3	1.5	• 2	3.2	1.2	.3	2.0	7 6
ChRdep.1	2.2	1.1	1.3	•/ 	2.2	7.0	1.1	<u>щ</u> , 8
ChRdep.2	1.0		• 2	工+3 5 h	• ~ 3 6	10.5	1.4	3.8
	2.7	0.4	• /	27	3.0	.3	-5	.3
Cheap.2	• <u>1</u>	Z•3	•U 2 1	· · · ·	0.0	5	••	1.8
Chorden 2	1.2	•4	10	1 5	.1	.0	.0	4.4
	4.2	5.2	15	1.5	9.2	5.1	1.0	15.3
	2.3	• 0	T • O	TeO		•••		
					•			
DF	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4
CritF (205)	7.71	7.71	7.71	7.71	7.71	7.71	7.71	6.39
CritF (.01)	21.2	21.2	21.2	21.2	21.2	21.2	21.2	15.52

0	22.8	52.3	variance of total errors
F	41.9	28.7	in each 1/5th of the session

This indicates that the presence of a burst decreases the error variance in the 0 feedback condition and increases it in the feedback condition.

0

In the analysis performed on χ^2 measuring markov dependence in sequences of errors responses latencies and SR combinations. The experimental variables were shown to affect dependence only in the error sequences. Here Burst has the effect of increasing first order dependence.

> 0 B 33.3 75.7

В

total $\chi^2 df_1$ measuring 1st order dependence (20 χ^2 in each condition)

Burst x Feedback interaction is also found

	0	В	
0	20.6	66.3	7
F	12.7	9.0)

total $\chi^2 df_1$ measuring 1st order dependence

It appears feedback has the effect of reducing the dependence in the Burst condition.

A similar analysis was performed on statistics calculated from experiment three. A sample analysis is reproduced in the appendix. The F ratios and their degree of freedom are reproduced in the table below.

We find a significant effect $T \ge D$ on the average information contained in each stimulus. The stimuli were randomly generated however we have performed 17 significant tests on this statistic and we might expect to get one significant (.05 level) by chance. A significant Difficulty effect was found on the average information contained in each response.

> E M D 29.95 29.67 29.45

total average information in each response

Since in the easy condition subjects were getting almost all trials correct they had no opportunity to show response preferences. Also, a massive effect was obtained on the effect of difficulty on information shared between S and R, as one would expect.

> E M D 25.86 11.21 4.14

The effect was reproduced in the test on the equivalent χ^2 s. A significant (.05) effect was also obtained of the effect of Difficulty on χ^2 measuring the second order interaction between SR and L. It should be noted that in many cases in the easy condition there were too few frequencies for the estimated χ^2 statistic to be distributed as χ^2 .

On examining the effect of experimental variables on the variances of totals for each half of a session Difficulty appeared to increase the error variance. This is probably due to the fact that it had a large effect on the total number of errors.

> E M D 8.61 104.65 143.16

variances of total errors in each 1/5th of the session

F Values Computed in Experiment 3

	Time	Feed back	Diffi culty	ΤχϜ	ΤχD	FxD	ΤχΓχD	Subj
AvI.S. AvI.R. I.L.S. I.L.R. I.S.R. I.L.S.R. Ch.L.S. Ch.L.S. Ch.L.S.R. Ch.L.S.R. Var.L Var.E Var.E Var.R ChLdep.1 ChLdep.2 ChRdep.1 ChRdep.2	.6 1.4 3.1 3.8 .0 2.7 3.2 4.0 2.2 1.1 .5 1.4 2.4 4.7 .0	back .1 2.2 1.3 1.2 .9 1.3 1.3 1.1 .8 .5 1.1 .2 1.7 1.7 .7 .7 .7 2.1	culty 1.8 6.3 1.8 1.4 116.6 2.4 1.8 1.4 103.5 6.0 .2 9.3 .6 .4 1.9 7.1 1.9	.5 .4 .9 1.7 .4 1.4 .8 1.7 .0 1.8 1.4 1.3 .9 1.4 .9 1.4 .9 1.4 .0 1.8 1.4 .9 1.7	4.9 .9 1.4 1.2 1.3 1.1 1.3 1.1 1.3 1.3 1.3 1.3 2.9 1.9 6.5 1.7	.8 1.3 2.3 2.3 1.8 2.4 2.3 1.8 2.4 2.3 .8 1.0 1.0 1.2 4.5 1.5 .7 .5 .7	1.21 1.5 1.9 1.5 1.8 1.5 2.0 1.5 1.7 .1 .7 1.0 1.6 1.4 .9 1.0 1.7	.6 3.3 16.1 12.1 3.5 2.7 19.3 13.1 2.2 15.8 1.6 .9 2.6 1.8 2.0 1.4
ChEdep.1 ChEdep.2 ChSRdep.1 Ch SRdep.2 L	.5 1.5 2.1 .2 9.3	1.0 .1 1.5 1.0 .3	1.2 .2 4.6 12.3 9.2	2.2 1.2 2.2 .8 .7	.6 2.2 1.8 2.2 1.0	1.2 .5 .2 .9 .0	.8 1.1 .8 1.0 1.1	1.4 1.6 1.5 2.2 3.9
DF	1,4	2,8	2,8	2,8	2,8	4,16	4 , 16	4,16
Crit F(05)	7.71	4.46	4.46	4.46 8.65	4.46	3.01 4.77	3.01 4.77	3.01 4.77

- Supervisions in the response pervet

1872 - ABANA

e tak to kun di Clarge

3.55

ارز، الاتراعي الم المراجع المراجع المراجع

why is of the second in it in the

n tean think intractor

Carl Contraction (State

An F x D interaction was found on the variances of the total responses.

	E	М	D
0	38	30	59
V T	29	47	24
r	24	28	40

variance of total response one's in each 1/5th of the session

Variable feedback appears to increase the observed variance in the medium difficulty task and reduce it in the difficult condition.

In examining the effect of experimental variables on χ^2 measuring 0 and first order dependencies. The most important factor appears to be task difficulty. Obviously if the subject is responding 100% correctly his response sequence is an 0 order markov if the stimulus sequence is an 0 order markov. We thus find significant effects of difficulty on χ^2 measuring the first order dependencies in the response and SR sequences and in the χ^2 measuring second order dependencies in the SR sequences. There is also a significant (.05) Times x Difficulty interaction on the χ^2 measuring the first order dependencies in the response sequences.

> E M D S 13.6 58.6 141.9 L 23.1 24.7 35.1

total $\chi^2 df_1$ measuring first order dependencies in response sequences 1 (each total contain 15 $\chi^2 s)$

It seems that apart from in the easy condition a longer dead period between trials reduces the dependence in the response sequences.

Finally in the analysis of the latencies it appears that the subjects take longer if the task is more difficult

E M D 18249 24005 26929

and that a longer dead period between trials increases the subjects' latency.

31461 37722

S

total latency

total latency

Analysis performed on the results of experiment four showed no significant effect of the only experimental variable feedback. As there were only 15 sessions all using naive subjects it is not a very powerful test. It was again a simple randomised design as experiment one. Since so many F tests were performed it seems likely that some apparently significant Fs are due to chance. However, bearing that in mind one can tentatively draw the conclusion that separating sequential effects into response dependencies and correct wrong dependencies is useful as difficulty and intertrial period appear to affect the former while feed-back and the introduction of a burst of noise between trials affect the latter.

Also worthy of mention is the frequency of large subjects' differences found when the MS subjects were tested against the MSA $x \ B \ x \ C \ x \ S$ interaction.

Detection and Recognition Models

(a)Estimation of parameters of detection and recognition models

This analysis was performed using a program called ESTIMATE. It contained five estimation procedures. These procedures estimated the parameters for each model for all the data collected in one session. For the same data divided into four groups depending on the state on the immediately preceding trial and for all the data grouped into 16 parts depending on the state on the immediately preceding two trials. These latter estimates were not very useful since the data involved in each estimation was very small, or even non-existent. In this case it was proved possible to obtain estimates of these parameters depending on the immediately two preceding trials. The five estimation procedures were (1) Luce (this estimates the sensitivity and bias parameters of Luce's choice model), (2) DP (this estimates the sensitivity d' and the bias parameter B for Tanner Swets and Green's model), (3) Classical (this estimates the threshold statistic and the probability of being correct statistic), (4) ATK (this estimates the sensitivity parameter sigma and the bias parameter of Atkinson's model), and (5) NP (this estimates the non-parametric statistics A' and percentage bias). The results of this program on the data for Experiments 1, 2, 3 and 4 are given in the tables below.

The values given are that for each statistic for each session, together with the values of the statistic depending on the immediately preceding trial. In cases where not enough data was available to estimate the statistic in a certain condition, the value given in the table is zero. It is important to realise that these are not parameter estimates, merely blanks indicating that no estimation was possible. The values of the statistic depending on the immediately preceding two trials are not quoted for each session, however the mean values of these parameters over each experiment are available, and will appear for a different purpose in the simulation section. The program

137.

ESTIMATE also performed the Friedman two way analysis of variance on the estimates of each parameter depending on the immediately preceding trials. A significant χ^2_{r} value obtained in one of these analyses indicated that a particular statistic was dependent on the immediately preceding trial and that the nature of the dependency was consistent over all the subjects in that particular session. The mean value of each statistic depending on whether the last trial was S1 or S2 was calculated from the same data and again a Friedman analysis performed to see whether the stimulus on the last trial had any effect on this statistic. This method was applied to test the hypothesis at the response on the immediately preceding trial affected each statistic and that the correctness of the immediately preceding trial also affected the statistic. The results of experiment 1. are summarised in the tables below. The other experiments were analysed in the same way but the detailed results are not included for lack of space.

In Experiment 1 we find that all the sensitivity parameters were dependent on the state on the immediately preceding trial. A more detailed analysis revealed that the two threshold statistics and the non-parametric measure depended on whether the subject was correct or wrong in the immediately preceding trial. That is to say, an estimate of his sensitivity following a correct trial was higher than that following a wrong trial. The threshold value was also significantly related to what response was present on the last trial. He was more likely to be correct following a response signal present than following a response noise alone. On looking at the bias parameters we find a slightly different pattern of results. Again, all the bias parameters studied were significantly related to the state on the immediately preceding trial and they were also related to the response on that trial. This indicates an overall tendency on the part of the subjects to maintain the response on the immediately preceding trial. The Luce-bias parameter shows a significant effect relating to the stimulus on the last trial. The Tanner Swets and Green bias parameter was

	Æ																														139).
	0000	2676			± • ± 3	. 858	. 442	.784	.198	3.89	.603	.983	.338	1.59	,764	.305	5.92	3,30	2,62	.765	.466	1.24	1.41	• 4 9 08	1.20		- C U - F	.383			nere and a second second of second	
		+			7 3.83	4 252	9 1.02	7 15.0	4 5,78	.981	9 1.67	000. 65	12.12.1	0 1.26	56 2.04	17 4.21	000.00	17 9.30	00.4.00	16.000	39 13,0	00.000	1 1.31	141 141 141	100. 67		000	37 3.20		20 Z		
	04 04 04				1.42 .57	333 55	1.07.20	000 257	3,32,25	594 2.2	1.77 .58	5.71 .26	7.54 .27	1.26 1.0	1.69.79	1,55 .3	16.2.00	1.90 .5	549 .6(• 685 • 3 [,]	8,80,3	.667 .01	1.30.6		1.007.		2 × 2 × 2	2.67 3		- PICDMV		
	0				L. 49	563	574	S. 29	.816	1.34	946	1.88	2.13	1.29	1.22	,785	14.2	2.16	898	, 725	3.41	.786	1.21	200	540		1.05					
					[98	888	478	109	580	420	030	192 1	930	590	15	469	169	471	278	145	885	104	446	010	102		202	533	C 11			
	CE MODE	170 177		A manufacture of the second	.306 .1	1.01	• 679 •	.577 .	. 559	.773 .5	1.25 .9	000.	.532 .	.791 .0	983 1	,950 .	.000 .	. 258	.333	• 000	1.07	000	.730 .	C		• • • •	343	. 893	e n u n	R I R DM AN		
	ES CHOI	0 2210		and the second se	1.289	166.0	8 1.04	0.577	5.637	8.682	6 1.13	1.346	3 758	8.953	4 .794	80.779	55.000	18 . 261	960.60	59.115	53 1.17	15.000	211.21	V//. VU	004 00	840° 0	88 .367	77 .816	AL FDT			
	1LUC			and the second se	0 .17	3.50	3 . 65	3.00	1.90	3 . 42	5 .63	8.04	6 . 59	3 . 65	3.70	9.56	4 .05	.20	12 . 2(1	.1.	80 I 1 1 1 1	01				0	54 .6	DVED.	8008		
10					.22	. 91	• 58	54	.75	• 63	06.	.16	. 82	.76	. 83	.67	• 0 7	28	.24	un (+++					- C •	- U		.76	ARANETE	FDMAN		
2 EXPERIMENT	4 ESTIMATION	CLAST TRIAL	SESSION		20	2	22	4	5	9	25 7	80	20 9	10		12		14	C	16		18	52 19	07	40 c1	21	24		END FIDST D	STIM FRI		

		2				69 million and a second s	89 - Martin - Ma	91.	16	28 ⁻	34	8.5°	23 ⁷ ····································	85	74	30	62		07	0.3	49	40.	78	83 .	69 "	49	96	68	22			
		R2 S2R1 S2R			583 1.09 1.	001-,002 ,0	009 .244 .2	253 . 633 . 4	130 . 507 .1	327 .160 .6	055-174 .0	319 .000 .9	075 ,711 .0	030 .164 .2	124 ,015-,0	081 .052 .2	000.000 1.	613 1.38 .7	.13 1.03 1.	819 .000 1.	055083 .0	.1 000.000	129 .223 .5	142 .073 .1	281 .136 .1	125-,169 .1	110	549 .834 .9	071 .108 .2		AN 3.20	
		LL S1R1 S1			05 1.19 .	41 ,223 ,	48	73 .000 .	62 ··· 097 ·	26 .401 .	61 .358	30 2,36 .	63 , 568 .	90 .290 .	25	13 .410 .	30 2.49 .	94 1.17 .	22	93 .912 .	83 320	15 1.09	31	36 ,106 ,	53 .330 .	98 .145 .	83 .826 .	11 .735 .	79 .352 .		WR FRIEDM	(a) A second se Second second seco
	REEN MODEL	S2R2 OVERA			1.95 1.	.149 .0	.913 .2	1.10 .5	.674 .1	. 799 . 3	.091 .0	1.98 1.	.091 .1	.464 .1	170 .1	. 933 2	2.03 2.	.926 .9	1.55	2.28	.1540	2.62 . 1,	5. 666.	545	. 307 2	.629 .0	1.17 .4	2.93	.780 .1	¢ U	AN: .800COR	
	NER SWETS G	RIME S1R2 S2R1			0 1.51 1.42	7.003008	3052 .483	0.684.678	6.561.718	5.477.323	4157279	8 1.29 .000	7.346.775	2.060.294	9.289.022	9.313.064	6.000.000	8 1.62 1.58	8 2,68 1.33	1 2,48,000	7194089	2.000.000	9.320.393	5.313.126	2 . 663 . 342	9.447313	/ 489 761	2 1.24 1.31	6.254.142	11-501CDM1	P FRIEDN	
	2TAN	ERALL SIRI			1.83 2.1	.114 .85	,673 ,52	.756 .00	.359 .12	.571 1.0	.120 .56	2.11 3.3	.240 .54	.338 .52	.228 .43	.483 .67	2.72 2.9	1.51 1.8	1.72 1.8	2.24 2.1	-,107 -,35	2.50 2.5			. 504 58	.281 .27	./01 1.0	G.1.22.1.5	, 33/ , 48	METED-NVCDA	IAN 200RES	•
	I HAT I ON																						and an and the second				And a lo bound billing over successing a composition of			FIRST PARA	W FRIEDM	
8	10 EST	12 STA	14 SES	10		S	ک	25 4	5	22 22 22	7	24	6	2: 20		21	13		72	32 16	17	34				30	SN	4.0	G >		44 STI	

140.

h

(

SIRI SIR2 SZRI SZR2	.652 .647 .200 .652 .511 .178 .271 .100 .194 .412 .187 .456 .000 .375417 .464 .258 .333208 .515	.206062028 .040 .830 .364 .000 .678 .169 .101 .000 .033 .197 .024 .111 .124 .286 .033 .148133 .337114 .375 .044 .785 .000 .000 .607	.695 .429 .519 .494	-726 (755 500 674 -703 752 000 738 -011-033-066 019 -787 000 000 807 -566 152 143 373	-266 -235 -133 -141 -104 -167 -117 -182 -289 -172 -115 -435 -552 -462 -444 -665 -185 -057 -046 -222 FRIEDMAN 7.20	
RESHOLD MODEL P(C) 1 S2R2 OVERALL S	59 .818 .570 33 .104 .189 23 .371 .362 43 .547 .057 27 .169 .193 .25 25 .640 .216	21.053.048 10.806.690 37.036.129 31.366.120 23-125.140 79.307.137 00.944.752	08.631.613	11 253 1291 11 253 1291 11 253 1291 11 253 129 12 253 129	95 .237 .205 10 .212 .114 28 .551 .276 47 .807 .574 58 .299 .136 AN 11.3 DMAN 5.00COR WR	
JCLASSICAL TH THRESHOLD L S1R1 S1R2 S2R:	9 867 611 83 3 300 002-00 3 351-014 3 7 143 188 68	2 .43809132 991400 .00 991400 .00 9991 .113 .68 2 .372 .047 .26 2 .357 .180 .01 9 .994 .000 .01	9 . 862 . 530 . 9	1 - 0 0 1 - 670-091-1 1 - 670-000 0 1 - 670-091-1 1 - 670-000 0 1 - 186 3 6 767 186 3	3 411 363 1 5 207 180-3 10 699 589 7 6 699 589 7 8 0VERALL FRIEDM 200RESP FRIEDM	
40 ESTEMITION OVERAL 40 STATE ON OVERAL LAST TRIAL	5 5 5 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	60 89 11 13 13 13 13 13 13 13 13 13		11 11 12 13 13 13 14 15 15 15 15 15	21 .33 22 .14 23 .54 .73 .73 .73 .74 .73 .73 .73 .73 .73 .73 .73 .73 .73 .73	

ť.

141.

LS EST

S S1R1 S1R2 S2H1 S2R2	-39.2 44.9-72.4-15.4	49.0.151.7891.81 -2.735.3171842.3 .00025.0-61.618.4	33.6-24.7 .502-52.6 -21.9 7.44-10.5 3.53 -95.4 66.7 .100 2.24	-24.0 6/105-5.33-15.5 -9.03-005-5.33-15.5 -16.4 6.19-1.19 3.57 -20.0 21.5-6.08 54.2	-78.6 .000 .000-89.2 -56.1 50.0-87.3-54.1 53.7 56.6-71.0-64.4 41.4 80.3 .000 32.9 -36.5 12.7-11.5 8.55	-26.1 9.51-8.12-22.8 8.31 4.44-3.33 25.0 3.62 15.0 10.6-4.97 -1.75 27.2-3.78 41.4	-62.1 35.1-52.6 26.3 8.42 20.6-45.4-8.79 -29.6 16.4-11.2 42.1 R FRIEDMAN 3.20	
ETRIC ANALYSIS BIA S2R1 S2R2 OVERALL	.814 .901 -39.5	497 .556 4.96 660 .752 24.9 678 .794 -47.1 607 604 -67	. 614 . 720 - 12.2 . 401 . 535 . 551 . 000 . 904 - 58.8	605 654 -6.58 509 437 -3.54	.796 .746 -56.1 800 .842 12.3 000 .926 37.7 467 557 -8.91	619 608 4.51 12.8	.711 .805 -26.0 .821 .899 -4.97 .553 .723 -3.25 EDMAN 15.3 -3.25 XIEDMAN .200C0R WI	
4 NONPARAM 4 NONPARAM APRIME ERALL S1R1	.887 .912 .649	.543 .736 .501 .706 .671 .480 .714 .000 .708	.683 .782 .655 .546 .679 .441 .908 .950 .800	618 670 523 583 647 603 660 708 608	844 887 861 844 887 861 923 912 922 460 338 429	611 595 610 674 711 705 600 600 646	./30 .766 .654 .865 .356 .815 .613 .656 .590 .METER OVERALL FRIE AN .800RESP FF	
EXPERIMENT NO ESTIMATION STATE ON OV	SESSION 1	2 4 •	6 	10 12 12	115 16 16 18	20 21 22 22 22	23 25 50 FIRST PARA STIM FRIEDM	

142.

1 S1R2-S2R1 S2R2	44 1.42 .039 .285 35 .561 1.23 .365 26 1.72 .362 1.08 00 .567 .012 .384 90 1.22 .036 2.35 80 .376 .965 .190 96 2.07 .763 1.95	97 8,62 ,000 1,33 62 4,23 .054 3,02	17 427 558 509 70 4.18 1.52 4.00 54 8.50 596 12.3 05 000 000 661 52 3.92 129 495 13 7.84 790 698 14-8.05 000 1.08	43 2.36 (061 2.20 62 000 000 523 75 1.52 695 563 51 1.12 645 2.04 39 1.76 2.02 932 80 2.68 635 3.94	39 4.05 162 1.44 20 1.64 .450 .780 49 3.16 .332 3.82 JED'AN 7.20 JED'AN 7.20
ATKINSONS MODEL IGMA I S1R2 S2R1 S2R2 OVERALL S1R	97 .524 .386 .668 .189 .2 57 .001002 .059 .566 1. 06012 .191 .306 .747 .3 00 .250 .067 .414 .065 .0 36 .158 .128 .152 .396 .0 79 .163 .128 .210 .667 1.	04 .364 .000 .678 .4000 10 .093 .093 .028 .431 .0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	69 135 191 433 475 1 52 458 453 664 96 <u>3 1</u> 54 081 041 248 972 3 ALL FRIEDMAN 20.8 SP FRIEDMAN 000COR WR FR
EXPERIMENT NO EXPERIMATION 5 ESTIMATION 5 S E. STATE ON OVERALL SIR LAST TRIAL 51R	6. 3 1 625 6 3 . 1 . 625 6 3 . 2 . 625 6 . 2 . 144 . 144 . 220 . 3 . 246 . 2 . 246 . 2 . 246 . 2 . 246 . 2 . 210 . 246 . 200 . 200 . 200 . 300 .		11 13 13 142 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	10 030 030 19 .785 .785 20 .372 .5 21 .123 .1 20 .21 .210 21 .20 .210	22 24 .574 .5 25 .133 .1 24 .5 25 .133 .1 24 .5 26 FIRST PARAMETER OVER 25 STIM FRIEDMAN .800RE

		ment	Ы						
		Experi	ŝ						
			0						
				÷			e je		
			CW	×	×	×	×	×	×
		ო		• .		.*	÷ .	• •	
		ment	ጜ			×			
-		xperi	ഗ	×	×	×	×	×	×
TRIAI		ы	0	X	X	×	×	X	×
CEDING			CW	×	×		×	×	×
PRE		2							
TELY		iment	ሥ			×			
IMEDIA	ល	Exper:	လ						
NU IN	RIMENT		0			×	×	×	×
JISTIC	EXPEI		CW			X	×	×	
TAT	ALL	Ч	Ŭ		÷				
5 OF 5	•	ment	አ			×			
NDENCI	LTON	zperi	S						
EPE	OND	щ							
ľ	U		0	×	×	×	×	×	X

Stat n d' Th P(c) A

ъ

. the threspold is	a in ta	×
ance by the supject	1 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	25 T
	en e	
	and the second sec	•.
1941 - 194 8 - 1 94		
	e governe daar be	ы
		LOI
	a da ser de la companya de la	τ ε
· 是一个人的问题。 1995年1月1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	a tha said a tha t	e e
and a great defining the	an a' fairte i	JUO
$\times \times \times \times$		
이 있는 것 이 가지 가지만 수선 수소가 가슴이 있는다. 		M
anti e postatati anti	gi Barila in ar Sa	
, e. congest related .	14. dieto e 2. N	
n (sedar orthobies) i e seel X X X X X N I e		
		- - - - - - -
·승규 승규가 가 가 가 가장 관계 이 이 가락 가지 		
terate il it Kitaka a		
en a selectro da tracajo da Antesa. A composito da compo		
		ល ល
n an		all ulu ons
		ver tim ssp
		ဝ်ပ်ဆို
	· • • • • •	။ ။ ။ ວິທິ ແ
v v u v		
(TS: AT)		
р С С С С С С С С С С С С С		

and the state of the state 2019 ちかが しゃ しゅしもりとむ

 $\gamma \sim 2$

92 the

家主义的专用 支持

S . $\frac{1}{2}$

ोट्ट

1. Clarke

 $\frac{1}{2} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1$

李角枝 华长深的人来说。

1.41

1

ł.,

and the

33

СW \approx \times \times

#

.05 level

at

4.3

Sig ,

11

¢

÷.

found to be related to the correctness on the immediately preceding trial. This could have been expected in the case of this parameter as the measure of bias was taken to be the distance between the mean of the noise distribution to the cut off or criterion, and must be related to sensitivity as well as to bias.

Looking at the results of the second experiment we again have fairly clear cut results. Four of the sensitivity parameters are found to be significant though dependent on the immediately preceding trial, while five out of six of them are dependent on whether the state on the last trial was correct or not. The threshold statistic is again related to the response made by the subject on the immediately preceding trial. The bias parameters are all significantly related to the last trial, and in particular to the response made on the last trial. This indicates a tendency of subjects to maintain the response they made on the immediately preceding trial.

In Experiment No. 3 a slightly different pattern emerged. All the estimates of the parameters were found to be related to the immediately preceding trials. However, the sensitivity parameters as well as being related to the correctness of the immediately preceding trial were also found to be related to the stimulus presented on that trial. And the bias parameters were no longer related to the response on the last trial but were related to the stimulus present In this experiment two-thirds of the conditions on that trial. involve feedback and it might be that the more feedback the more the bias parameter tended to be related to the feedback (i.e. the stimulus on the immediately preceding trial) rather than the immediately preceding response.

In the final experiment No. 4 the only significant result found was that the sensitivity statistics were related to the correctness of the subject on the immediately preceding trial.

From this analysis we have now found that both sensitivity and bias statistics are affected by inter-trial dependence. In the case of the sensitivity statistic the

145.

- *6*-3

most important effect appears to be whether the subject was correct or wrong on the immediately preceding trial. This is what was expected as if the subjects were alternating between two or more states of different performance levels then we would expect this result. More surprising result is the dependence of the sensitivity statistics on the stimulus presented on the immediately preceding trial as found in experiment No. 3. On examining the results of the bias parameter we find that they tend to be related to the response made by the immediately preceding trial but again in Experiment 3 the bias parameter is related to the stimulus present in that trial. Another difference between Experiment 3 and the others which might have been responsible for this difference is that it involved only the detection task. In Experiment 2 the only other involving large number of sessions by the same subject half the time the task was recognition and half the time it was detection.

The only other detection or recognition model applied to this data was the one by Tanner Rauk & Atkinson. A program MEMREC was written to perform a minimum χ^2 procedure and estimate the parameters of the model in the no feedback situation. As already stated (see Introduction) the prediction made by the model is that the ROC points calculated depending on the state on the immediately preceding trial should all lie on the same ROC curve. We saw in the previous section that this was not the case. It is therefore not surprising that the fits obtained by the model were not particularly good. This program took as starting values the parameter values found in the Tanner Rauk and Atkinson paper. It systematically varied each of the parameters and measured the goodness of fit of the model until no change in the parameters produced any better fit. The procedure was repeated until the χ^2 obtained did not change by more than .01 when any of the parameters were changed. The degrees of freedom in the second order probabilities from which the model's parameters were estimated are twelve. There were four

Condition	Session	Min. χ^2
	1	166.5
	2	39.9
.25R	3	38.9
	4	91.0
	5	114.4
a - 1	6	18.2
	7	31.7
• 5R	8	298.0
	9	57.2
	10	16.5
	11	37.3
	12	31.6
.75R	13	377.1
	14	185.3
,	15	166.2
	. 16	89.3
	17	163.0
•	18	203.0
	19	8.1
• 5D	20	12.2
	21	25.5
·	22	14.3
. •	23	28.4
	24	13.6
	25	36.4

parameters estimated leaving eight degrees of freedom if the parameters were all independent. Using this conservative estimate of the degrees of freedom in the situation we find that out of the 25 sessions in Experiment 1 only six are not significant at the .05 level. The Table below gives the parameter values of the model and the final minimum χ^2 for each of the 25 subjects. Unfortunately this procedure took a very long time to obtain a minimum solution. As a result of this it was impossible to use the program on the results of experiments 2, 3 and 4.

Laborately proceeding trial. Differences in the variance distinction between difference aperlanntal conditions will be incorpreted as implying that the dependence of the standaric on the insediately preceding trial changed of a result. A he experimental ponditions. The results of Experiments 1. 1. 1 and 4 are conversed in the tables below.

1.5. 1.5.5

We use that for the results of Experiment 1 is a consistent evenled any significant results. As before chalvess of the data in Experiment 2 was divided into the consistent of the data in Experiment 2 was divided into the probability by teadback by subject, and the paper of the probability by teadback by subject, and the paper chalves of the scalysis of task by feedback by here by subject. The scales of the lask by feedback by here by subject. The scales of the lask by probability by feedback by subject shows that there is a significant subject on all the scaling of the lask by probability by its her the consistivity properties and a significant is spect interaction on the out of six of them. This is that the differences between subjects when MC what we the beginning of the experiment. It is is the the that both the thrownold and probability correct

(b) The Effects of Experimental Variables on the Parameters of the Detection and Recognition Models

The analysis of the effects of the experimental variables on the estimates of the parameters of the models was performed using a program SEST. This program was a composite of ESTIMATE and OVERALL. In this program each of the estimates of the parameters of the model were re-derived and analyses of variance were performed on the overall estimates for each session to examine the effect of the experimental variables. In order to give an idea as to whether the dependence of the estimate on the immediately preceding trial was related to the experimental condition, an estimate of the variance of the estimated parameters was found from the statistics based on data preceded by the same trial. This variance statistic was an estimate of the standard error of the estimate of the parameter together with a sizeable component due to the fact that the estimate depended on the state on the immediately preceding trial. Differences in the variance statistic between different experimental conditions will be interpreted as implying that the dependence of the statistic on the immediately preceding trial changed as a result of The results of Experiments 1, the experimental conditions. 2, 3 and 4 are summarised in the tables below.

We see that for the results of Experiment 1 none of the analyses revealed any significant results. As before the analysis of the data in Experiment 2 was divided into two sections. One involving an analysis of task by a priori stimulus probability by feedback by subject, and the other involving an analysis of task by feedback by burst by subject. The results of the analysis of the task by probability by feedback by subject shows that there is a significant subject effect on all the sensitivity parameters and a significant task by subject interaction on four out of six of them. This indicates that the differences between subjects were not well controlled at the beginning of the experiment. It is interesting to note that both the threshold and probability correct statistics are affected by a priori stimulus probabilities. This was the original justification for signal detection models in that they enabled sensitivity statistics to be derived which were independent of the experimental conditions. Here we find that all the sensitivity parameters based on the signal detection models are unrelated to the experimental conditions ignoring subject differences while the classical ones are not. Looking at the bias statistic we find that all the statistics are affected by the stimulus probabilities. Again, this is a classical finding. For three of the parameters there are differences between subjects. There is a significant probability by feedback interaction in all the bias statistics. This shows that where no feedback is given and the stimulus probabilities are not equal subjects tend to respond more equally than when feedback is given, i.e. in the presence of feedback subjects tend to probability match and in its absence they tend to respond equally on all the different alternatives. Related to this interaction we find that for two of the estimates of the parameters there is a significant probability by feedback by subject interaction, a probability by subject interaction, a feedback by subject interaction, and one significant feedback effect on its own. The results of a task by subject interaction effect in one of the conditions.

This analysis of variance was then applied to the statistic variances which were estimates of the degree to which the statistic was dependent on the immediately preceding trial. These results showed a significant subject effect in all bar one case indicating the dependence of the bias statistic on the immediately preceding trial in all bar one case was related to the individual subject. It was also found in all bar one case that the task was related to the dependence of the sensitivity statistic. It appears that the dependence between trials is greatest in a recognition rather than a detection task. Two task by subject interactions were also observed. In the consideration of the variance of the probability correct statistic we find that the probability and probability by subject interaction effects are significant. This was one of the sensitivity statistics which were found to be related to

CONDITION EXPERIMENT NO 2

Stat.	Task	Prob	Feed back	S	TP	TF	TS	PF	PS	FS	TPF	TPS	TFS	PFS
n .				$\langle \mathbf{x} \rangle$			х							· .
d'				\mathbf{x}		•	х				х			
Th		х		(\mathbf{X})			х							· .
P(c)		х	х	\bigotimes										•
A'				\mathbf{x}			x							
σ				X			-							
ην	Х			Х					. •	X	en en en 19 - 19 - 19 19 - 19 - 19			
d'v						X						*		
Thŷ						•								
P(c)ν	\mathbf{x}	x		X			х		х				•	
Α'ν	X			х						X	•			1
σν	•			х		X					. •			
⊢ b(Luce)		(\mathbf{x})				•		x						
b(TSG)		x		$(\bar{\mathbf{x}})$		•		x						
Bias %		Ŕ	·	x			х	$\widehat{\mathbf{X}}$	(x)	X	•	· · · ·	\odot	
b(ATK)		(\tilde{x})	$(\hat{\mathbf{x}})$	X	•			X	x	X			X	
		\smile	<u> </u>											
b(Luce)v									· . •					•
b(TSG) ν														
Bias % v)	,				·-								
b(ATK) v														
df	1,8	2,8	1,8	4,8 2	2,8	1,8	4,8	2,8	8,8	4,8	2,8	8,8	4,8	8,8
· · · ·				1.+						- 				
					X	sig a	t 05	leve	1	. '				
	Sig at 01 level													

CONDITION EXPERIMENT NO 2

	Stat	Task	Feed back	Burst	S	TF	ΤB	TS	FB	BS	FS	TFB	TBS	TFS	FBS
	η				\bigotimes							•		2	
	d'				(\mathfrak{X})										
	Th			•	\otimes										
	P(c)				\bigotimes			x							
	A'				X			х		•	*** -		•		
	σ				(\mathbf{X})			Х		•					
	עת										,				
	d'V				х										n an
	Thv														
P	P(c)v	х	х	X	х	\bigotimes	х	(\mathfrak{D})	X		X	X	X	eg dis Ter	
	Α'ν										· ·				
	σν	X	X	х	х	\otimes	•	x	х		X	X			
	b(Luce)										2 The A			4.944	
	B(TSG)				(\mathbf{x})							in Milita Milita			
	Bias %			x	(\mathbf{X})	•							X		
	b(ATK)	x			\otimes			X				4	X		
	b(Luce)v										• • •				
	b(TSG)v		•	•								-			
	Bias %v											• •	•		
	b(ATK)v														
	df	1,4	1,4	1,4	4,4	1,4	1,4	4,4	1,4	4,4	4,4	1,4	4,4	4,4	4,4
					•										
					Х	sig	at	05	lev	rel		•			

$\widehat{\mathbf{X}}$	sig	at	01	level

a priori stimulus probability. As the value of the probability increases so does its variance. In Luce's model and in the non-parametric analysis a significant feedback by subject interaction was found on the variance of the sensitivity statistic and in Atkinson's model a significant task by feedback interaction was also found. To summarize then the major effect on the dependence of the sensitivity statistics of detection and recognition models are subject variables and task variables. The recognition task showed more inter-trial dependence from When we examine the effect of the detection task. experimental conditions on the dependence of the bias statistic on the immediately preceding trial no significant results were found.

The results of the second analysis performed on Experiment 2 involving the task by feedback by burst by subject design is given in the table above. We find first of all that the sensitivity parameter is dependent on the subject, thus the individual subject differences were not entirely controlled for in the setting up of the experiment. A significant task by subject interaction was found in three of the sensitivity statistics and this indicates that even within subjects performance on two tasks was not entirely standardised as had been the intention.

Looking at the bias statistics we find that for all models except Luce's there is a subject effect, i.e. the subjects have different biases. Other significant effects are less consistent. There is a significant task effect on Atkinson's bias parameter, a significant burst effect on the non-parametric bias measure, a significant task by subject effect in Atkinson's measure, and a significant task by burst effect in both Atkinson's and the non-parametric estimate of the bias parameter. On examining the raw data this appears to be due to a very small bias in the detection task when a burst is present, the other conditions being very much the same.

If we look at the variance of the sensitivity statistics confounded with the effects of the immediately

153.
CONDITION EXPERIMENT NO 3

Stat	Task	Feed back	Diffi culty	S	TF	TD	TS	FD	FS	DS	TFD	TFS	TDS	FDS
n d'			X							•		• • • • • • • •	• •	
Th P(c)			\otimes											
A'			8											
ט				•			2							
d'v			x											
Thν Ρ(c)ν				· · · · · · · · · · · · · · · · · · ·										
Α'ν σν				•	•									
b(Luce)			X	\otimes	-									
b(TSG) Bias %			\otimes	x (X)						$ \mathbf{S} $				
b(ATK)			X	$\widetilde{\otimes}$									7. 2	
b(Luce)v			x X	•										
Bias % v	\bigotimes		\otimes	X						(X			
b(ATK)v				. •			•		• • • • • • • •		a Maria		•	

đĘ

1,16 2,16 2,16 4,16 2,16 2,16 4,16 4,16 8,16 8,16 4,16 8,16 8,16 16,16

c İ

ù

Ŕ

X sig at 05 level

154

preceding trial we find significant subject effects in three of the sensitivity statistics, namely, Luce's data, the probability of correct statistic and Atkinson's sigma. In both the probability of correct statistic and Atkinson's sensitivity measure a large number of significant effects were obtained. Going back to the original data we find that this is largely due to a significant three way task by feedback by burst interaction. This in turn appears to be due to the very high value for one of the conditions. In the case where the subject is given a recognition task without feedback and without a burst it appears that the dependence on the immediately preceding trial is greatest by a very large extent. The only other main effect very much larger than this is the task by feedback effect where we find that in the recognition task when no feedback is present the dependence is much larger than in any of the other conditions. The other significant effects can be traced back to these conditions. It might be advisable to put in a word of caution but perhaps it would have been more appropriate to have performed these analyses on the square root of the variants rather than on the variances themselves. No significant effects were found for the bias variances which indicated that the dependency of the bias parameter on the immediately preceding trial was not greatly related to the experimental conditions.

Looking now at the results of Experiment No. 3 we find that any differences in the sensitivity parameter have been completely swamped by the large differences due to the different levels of task difficulty.

The only significant result from the analysis of variance on the statistic variances measuring the dependence on the immediately preceding trial from the sensitivity statistics is that of d' in which the difficulty effect is insignificant. As the task difficulty is affecting the main d' value it is not surprising that it could affect the variance of the d' depending on the state on the immediately preceding trial.

This same analysis was performed on the bias statistics and here we find that the subject variable is significant in all four cases, the difficulty variable is significant in three cases, and there is one difficulty by subject interaction. We must remember here that in the easy task subjects were performing at almost the 100% correct level. Under these conditions the bias would be virtually negligible. In the last two experiments no experimental effect has found to affect the dependency of the biases on the preceding trial. Here in Experiment 3, however, we find that for three of the bias statistics the difficulty condition is significant. Again the same comment can be made here since in all of the conditions the subject is getting practically all of them correct and the measurable effect of bias is pretty small as opposed to the difficult condition when the subject may be making 20% errors. The Atkinson's bias statistic also shows a significant subject effect, a time effect, and a time by feedback by difficulty interaction. Looking at the original data we find although the situation appears complicated increasing the amount of feedback appears to have the effect of increasing the dependence in the short easy condition and decreasing the dependence in the difficult long condition. We should note that the analysis performed here differs slightly from the analysis performed by OVERALL as the extremely easy condition had to be omitted. In that particular condition not enough errors were made to enable the estimation of the detection and recognition parameters following a trial in which an error had occurred. This would have the original analysis inappropriate.

In Experiment No. 4 the only experimental condition varied was the feedback and the subject made one of five possible responses. If this response is dichotomised we complete the data as in the other experiments. Having done this we can examine the data for the effect of feedback on the statistics of the models. On so doing we find no significant differences in sensitivity bias or dependence of the bias parameters. However, in the Atkinson and the

Tanner, Swets and Green model feedback appears to have the effect of increasing the dependence of the sensitivity parameter. Looking at the original data it appears that what is happening is that the dependence is the same when feedback or no feedback is present but when variable feedback is introduced the dependence on the immediately preceding trial is increased.

ter e**stand** and the second of the

and the second of

n en general de la secola de presidente de la secola de la

(c)ROCT analyses

Following Meyer's suggestion of using the latencies to produce rating type data a ROCT analysis was performed for all the experiments. Thus for every session the latencies were divided into fast and slow depending on which side of the median they lay. The responses were then grouped as follows - fast signal present, slow signal present, slow signal absent and fast signal absent. Using a rating scale type analysis we obtained three points on a ROCT curve which can be specified by their sensitivity and bias. The results of this analysis were analysed using a Luce choice reaction time model, see tables below for Experiment 1. The same sort of results were obtained from analysis of the other experiments but the detailed reactions are not included from lack of space. The programme which performed this analysis also calculated the range of the estimates of the parameters of the models for each of the sessions. Other analyses of variance were performed on this statistic to see whether the experimental conditions affected the departures of the points from an isosensitivity curve.

On looking at the results two things appear Firstly, the bias increases with each of fairly clear. the three points as one would expect that the different cut offs should correspond to three different bias positions. Also the sensitivity of the middle point appears greater than the sensitivity of either of the other two points indicating that by using the latencies as a measure of confidence we are in fact underestimating the performance of the subject. These comments apply to the results of all experiments. Analysis of variance testing the effects of experimental variables on the range of the estimates of the sensitivities were performed. We find that in Experiment 1 there is a significant effect. Looking at the raw data this appears largely due to an increase in the range of the sensitivity values as the stimulus probability changes from .5. This suggests that the underestimation caused by using latencies as confidence ratings is least when

EXPERIMENT NO. 1

ROCT ANALYSIS USING LUCE'S MODEL

Condition	Session		Z			В	
	1	.24	.22	.27	.13	.28	2.4
	2	.85	.91	. 87	.13	. 32	1.8
.25R	3	.57	.58	.51	.19	.43	2.3
	4	.31	.55	1.1	.06	.21	1.6
	5	.72	.75	1.0	.13	.32	1.7
	6	.75	.64	.85	.31	.89	2.8
	7	. 89	.91	.78	.34	1.1	3.6
.5R	8	.88	.17	.29	.20	.75	4.9
	9	.87	.83	.99	.29	.92	3.2
	10	.98	.76	. 84	.28	.80	2.7
	11	1.3	. 84	1.4	.60	3.0	8.6
	12	.81	.68	.78	.54	2.7	7.1
.75R	13	.25	.07	1.4	.15	.48	20
-	14	.69	.29	.35	.46	1.7	5.0
	15	.78	.24	.17	.59	3.7	14
	16	.31	•15	.08	.39	1.2	8.9
	17	1.0	1.1	.96	.36	1.1	2.8
	18	.27	.12	.17	.28	1.1	5.5
	19	.74	.46	.47	.33	. 87	2.9
.5D	20	. 84	.78	.74	.32	.95	3.1
	21	1.0	.65	.58	.36	1.2	3.9
	22	.96	.79	.94	.32	1.0	3.0
	23	. 89	.53	.65	.29	.78	2.9
	24	.47	.27	. 31	.36	1.0	3.3
	25	. 78	.76	.88	.36	1.1	3.2

 $\gamma \dot{\phi}$

the stimulus probability equals .5.

This result is confirmed in the second experiment where there appears to be a large difference in the range dependent on the a priori stimulus probability. There also appears to be a subject difference and a task by feedback interaction. Feedback also apparently has the effect of reducing the range of the sensitivity statistic. The analysis of the second experiment using the task by feedback by burst design shows that we have a significant subject effect and significant feedback by burst by subject interaction and a significant task by subject interaction. On looking at the raw data we find this is due to the fact that the range is considerably smaller than there is feedback but no burst.

Looking at the analysis of the third experiment we find that the most significant effect is that of task difficulty. The more difficult the task the larger the range of sensitivity. This may be an effect of the position on the sensitivity scale as it is much more difficult to improve the sensitivity of .01 than it is to improve on a sensitivity of .91. These results also indicate a significant difference between subjects, the results of the significant task by subject interaction and the difficulty by subject interaction.

The analysis of the third experiment revealed that the experimental conditions had no effect on the range of sensitivity values of Luce's model calculated as above.

The results of the ROCT analysis may perhaps be more easily understood if we look at them in the following way. The speed of response was the same as confidence when we should expect all the points to have the same sensitivity value. The wider the range of the sensitivity values the less the latencies related to the subject's confidence. We knew from previous analysis that latency is related to a priori stimulus probability. It would therefore appear that when the stimuli were not equiprobable the effect of the stimulus

probability on the latency would obscure relationship between the latency and confidence. This would have the effect of increasing the range of the sensitivity values calculated in the ROCT analysis. This sort of reasoning may be able to explain certain of the other results post hoc. For example, time is most closely related to confidence in the feedback condition where no bursts are present which could explain the feedback by burst interaction.

It was possible to use the same program as was used in the ROCT analysis to analyse the results of the rating scale data, see Experiment No. 4. Here what was wanted was an estimate of the sensitivity and bias parameters corresponding to each of the response cut outs. The subject was in this case allowed five responses. Certain signal present, uncertain signal present, don't know, uncertain signal absent, certain signal absent. This normally gave fewer data points on an ROC curve. The sensitivity and bias parameters were calculated according to Luce's model for each of the four data points. This analysis was then repeated using data following a one or a two response with stimulus 1, a one or a two response with stimulus 2, a three, four or five response with stimulus 1, and a three, four or five response with stimulus 2. It was not possible to estimate the parameters for all possible stimulus response combinations as there were too many of them. This analysis is made more complicated by the fact that some subjects did not use all the available response alternatives. On looking at the data we notice that differences exist in the bias The bias increases with the parameter as we would expect. position on the ROC curve. If all the points lay on the same ROC curve then the sensitivity values for each of the points should be the same. A Friedman non-parametric analysis of variance was performed on sensitivity data and showed that the data value being in fact dependent upon the point being considered. The middle two points appeared to give the highest sensitivity. On looking at the frequency distribution of responses it was noticeable that subjects seemed reluctant

to use the two more extreme responses. Perhaps if the subjects had not been naive this effect would not have been so marked. As it was the χ^2_r was found to be equal to 19.8.

As mentioned before the ROCT analysis was repeated following each of four types of trial. A non-parametric of variance was performed on the sensitivity value at each of the cut off points to see if there was a difference depending on the state in the last trial. None of the resulting χ^2_n values were significant. This, however, does not mean that dependences did not exist where rating scale data was used or even that dependences are less under these circumstances. It must be remembered that only fifteen sessions were analysed on naive subjects. In the analysis of the non-rating experiments the number of sessions were 25, 80 and 90 respectively. When Experiment 4 was analysed in the estimate program treating it as a non-rating scale experiment the overall effects were not significant. However, dependencies on the sensitivity parameters of a number of different models depended on the correctness of the immediately preceding trial were found.

(2) Miller construct to the mode data start (22,00) received different subjects operating in several different experimental conditions.

A Low Street Brooks

and the analysis of the second second

Differences in the mean velues cystall are proceeding due to the differences in averaging every statistic all a second detection madel at "Holing The references the probability and the colorestic the second state differences between the simulation models with

Simulation

The final part of this work consisted in simulating sequences of SR events with the same dependences that had been observed in the aforementioned experiments. The data from the whole of Experiment 2 was averaged and zero first and second order Markov processes fitted to the SR sequences. А two-state latent Markov model was also fitted using a minimum χ^2 procedure to improve upon the initial estimates as described above. A program SIMLUC was written which simulated the SR sequences with the parameters of the zero first and second order Markov processes and the latent Markov process estimated above. SIMLUC also contained the ESTIMATE procedures and estimates of the signal detection and recognition models were determined for each of the simulated sequences. This process was repeated ten times and estimates of the parameters of the detection and recognition models discussed earlier were thereby obtained. The following table consists of the averages and variances of the estimates of the parameters of each of the models. Together with estimates of these parameters dependent on the state on the immediately preceding trial and on the immediately two trials. Finally included are the empirically obtained estimates as discussed earlier.

The differences between the real and the simulated data are due to at least two factors. (1) Differences between the simulated performance of the subject and his real performance.

(2) Differences due to the real data being averages of several different subjects operating in several different experimental conditions.

Differences in the mean values overall are probably due to the differences in averaging every statistic of a signal detection model and finding the rated average of the probability and then calculating the same statistic. Differences in the mean values of the statistics depending on the state on the immediately preceding trial showed the differences between the simulation models used.

The empirically obtained variances, theoretical variances (where they exist) and the simulated variances for each of the ten statistics for each of the experiments are given in the tables below.

It appears that the empirical variances are by far the largest. This we would expect as we have shown before that the sessions are not homogeneous. The theoretical variances is usually the smallest.

As the simulated experiments were all based on a sample of only ten sessions the estimates of the standard errors of the statistics cannot be very accurate. Thus the conclusions drawn above can only be tentative on this data. There also is an indication that as the order of the estimated Markov process increases so does the variance of the statistics.

Another finding is that the sensitivity of the subjects as estimated from the simulated data appears better than when the estimate is derived from the mean of each of the subjects sensitivity statistics. This is probably due to the different averaging techniques. Extremely good performances of, say, ten errors out of 740 trials are less heavily weighted when all the sequences are lumped together and then the sensitivity calculated than when the sensitivity is calculated for each sequence and then the sensitivities averaged.

The dependencies observed in the simulated data do not appear to be of the same magnitude as in the real data. Increasing the order of the Markov sequences from 0 to 2 appears to have the effect of increasing the dependency of the model's statistics on the last two trials. Some dependency of the statistic on the last two trials is observed even in the zero order condition. More will be said of this effect later.

The first order Markov model gets the direction of the first order effects on the sensitivity parameters correct. If anything, however, it appears to over-estimate the effect of the immediately preceding trial on the sensitivity parameter and under-estimate the effect on bias. The second order effect again appears to over-estimate the effect of the immediately preceding trial on the sensitivity statistics. It also gets the relative order of the bias

EXPERIMENT 1

STATISTIC

Variances

		Mode	l simulat	ced	
,	ThV	OM	lM	2M	LM
Luce z	.0024	.0023	.0034	.0055	.0063
b	.0025	.0057	.0021	.0098	.0035
Non P A'		.0011	.0012	.0016	.0009
D%		2.3	4.7	.23	1.36
Classic Pc	.0013	.0063	.0021	.0026	.0030
Th	.0003	.0026	.0003	.0025	.0030
ΑΤΚ σ		.0012	.0012	.0007	.0016
b		.0009	.0055	.0013	.0036
TSG d'		.0045	.014	.0024	.0042
Ъ		.0011	.0027	.0006	.0007

EXPERIMENT 2

		Mode	l simulate	d	
	ThV	OM	lM	2M	LM
Luce z	.0004	.0009	.0009	.0004	.001
Ъ	.005	.016	.013	.004	.010
	• ···· - ······························			·	
Non P A'		.0001	.0003	.0016	.00014
D%		69.3	49.5	47.3	54.1
Classic Pc	.0004	.0015	.0003	.0004	.0004
Th	.0014	.0010	.001	.004	.001
ΑΤΚ σ		.0016	.0016	.0007	.0014
b		.0014	.006	.003	.009
					<u></u>
TSG d'		.009	.012	.044	.0024
Ъ		.003	.005	.95	.0006

Variances Model simulated

EXPERIMENT 3

			Variances		
		Mode	el simula	ted	
	ThV	OM	lM	2M	LM
Luce z	.0002	.0002	.0003	.0003	.0004
b	.005	.008	.026	.007	.007
Non P A'		.00008	.0001	.00004	.00009
b%		148.6	125.7	137.7	73.7
Classic Pc	.00025	.0003	.0003	.0009	.0002
Th	.0013	.0014	.0006	.002	.0006
ΑΤΚ σ		.0005	.001	.0007	.001
b		.005	.009	.010	.012
TSG d'		.011	.009	.009	.008
b		.003	.006	.003	.003

the second was fitted as and have found but as the second was fitted as and have to we want to second the second of the second of the second to a single with the second in head to improve the second the second second second be second to a single second second second to be second to a single second second second to be second to a single second second second to be second to a single second second second to be second to a single second second second second second second to be second statistics depending on the immediately preceding trial wrong.

As a result of these simulations some potentially interesting effects have become apparent. However, it is difficult to make more than tentative conclusions owing to the smallness of the number of simulated sessions. A major constraint was the amount of computing time required to perform a simulation and it was decided that it was not possible to extend the number of sessions looked at in any but one particular case. The problem was then to decide on which experiment to use as the estimates for the Markov models which were to be simulated. Experiments No. 1 and 4 were ruled out as they used naive subjects whose performance varied very greatly. Experiment No. 3 was also eliminated as it contained sequences where the subjects almost got 100% correct together with sequences where they were responding at little better than chance. This left Experiment 2 where the experimental independent variables were whether the task was detection or recognition a priori stimulus probability presence or absence of feedback and the inclusion or non-inclusion of a burst of white noise between trials. It was decided therefore to use the data from the second experiment after the sessions involving non-equal a priori stimulus probabilities had been removed, thereby hopefully producing a reasonably homogeneous selection of sequences.

From th is data, therefore, zero first second and a latent Markov model were fitted to this data as had been done to each of the experiments mentioned previously. When the latent model was fitted as had been found before probabilities outwith the range of zero to one were obtained. Again, a minimum χ^2 procedure was used to improve the estimates of the model within the usual bounds for probabilities and the results are shown in the table below. The minimum χ^2 improved to a final value of 20.29 and the values of the m, v and q matrix obtained show some evidence of a Falmange type model operating on this system. With this data, therefore, 50 sequences were simulated for each model and estimates of the

MAIN SIMULATION (MEANS)

		1	nodel	
Statistic	0	1	2	LM
Z	.361	.359	.354	.361
b	1.188	1.208	1.18	1.20
A'	.823	.846	.821	.819
Bŧ	-16.07	-12.86	-14.95	-14.7
P(c)	.670	.674	.669	.667
Th	.404	.412	.396	.405
đ	. 466	.473	.468	.475
Ъ(А)	.887	. 889	.890	.904
d†	1.259	1.258	1.262	1,259
b(TSG)	.677	.681	.683	.678

MAIN SIMULATION (VARIANCES)

model

Statistic	Th	0	1	2	LM
Z	.00045	.0010	.0010	.0009	.0010
b	.0002	.007	.0111	.009	.010
A'		.00022	.00019	.00021	.00025
B%		48. 4	72.2	41.9	50.1
P(c)	.0005	.00081	.0010	.0008	.0011
Th	.001	.0028	.0021	.0020	.0025
σ		.0009	.0009	.0010	.0010
b(A)		.002	.003	.003	.003
ď	.0087	.0113	.0085	.0108	.0111
b(TSG)		.0039	.0028	.0035	.0034

0 Order Markov Simulation

SlRI	S ₁ R ₂	S2 ^R 1	s2R2
58	6	23	46
7	[,] 5	1	7
15	8	8	8
40	17	16	36
12	2	. 3	9
12	3	3	3
5	3	4	8
12	4	2	13
8	4	4	12
4	3	. 2	6
3	3	3	6
12	5	4	16
41	6	9	41
7	6	3	6
12	10	13	7
33	13	11	30
	S ₁ R ₁ 58 7 15 40 12 12 5 12 5 12 8 4 1 3 12 41 7 12 33	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1st Order Markov Simulation

	SlRl	S1R2	S ₂ R ₁	S2R2
S ₁ R ₁ S ₁ R ₁	47	17	23	33
S ₁ R ₁ S ₁ R ₂	19	6	5	11
S ₁ R ₁ S ₂ R ₁	5	3	7	17
S ₁ R ₁ S ₂ R ₂	46	9	19	35
S ₁ R ₂ S ₁ R ₁	18	2	7	12
S ₁ R ₂ S ₁ R ₂	7	l	3	5
$S_1R_2S_2R_1$	7	. 2	0	5
$S_1R_2S_2R_2$	12	3	4	13
$S_2 R_1 S_1 R_1$	12	2	2	14
$S_2 R_1 S_1 R_2$	9	2	4	. 3
$S_2R_1S_2R_1$	5	l	3	4
$S_2R_1S_2R_2$	9	4	4	11
$S_2 R_2 S_1 R_1$	42	4	17	31
$S_2R_2S_1R_2$	19	2	2	10
$S_2R_2S_2R_1$	13	5	8	11
$S_{2}R_{2}S_{2}R_{2}$	34	9	8	33

2nd Order Markov Simulation

ne o por contra de mesta da

ter na toli a la ngatin Atlandi a la la la la Naka sa sa la ngatin Atlandi a la sa sa la la

	SlRI	S ₁ R ₂	S2R1	S2R2
S ₁ R ₁ S ₁ R ₁	53	4	11	28
S ₁ R ₁ S ₁ R ₂	7	2	3	7
S ₁ R ₁ S ₂ R ₁	19	7	6	15
S ₁ R ₁ S ₂ R ₂	45	12	15	44
S ₁ R ₂ S ₁ R ₁	14	6	4	14
S ₁ R ₂ S ₁ R ₂	2	1	2	4
S ₁ R ₂ S ₂ R ₁	5	5	6	0
S ₁ R ₂ S ₂ R ₂	6	7	2	9
S ₂ R ₁ S ₁ R ₁	19	3	6	15
S2R1S1R2	4	3	0	. 3
S ₂ R ₁ S ₂ R ₁	10	3	6	7
S2R1S2R2	11	5	10	7
S ₂ R ₂ S ₁ R ₁	42	11	15	. 38
S ₂ R ₂ S ₁ R ₂	8	12	1	4
S2R2S2R1	10	5	5	11
S2R2S2R2	45	10	11	

2

and the second
signal detection models were obtained from these sequences. The results are comparable to those obtained in the smaller simulation.

The results indicate that the variances of the statistics are greater if dependences are assumed in the simulated data. The size of this effect, however, is relatively small. A more important difference is the extent to which the empirically obtained variances are higher than the minimum variances calculated theoretically, assuming large sample sizes, i.e. as the sample size to infinity. Surprisingly the statistic which has an empirical variance close to the asymptotic variance is d'. The main values for the parameters were calculated for each of the simulations and are given in the table below. As can be seen from th is table all the simulated data approximate reasonably well to the empirical.

As well as calculating the results for the overall parameters the value of the parameters following a specific trial and a specific two trials were calculated as in programme estimate. A very surprising finding was the results for the zero order Markov simulation, see table below. Here it appears that the values of the parameters are dependent on the immediately preceding trial even though the data was simulated according to a zero order Markov process. The programme was re-run and the sample sizes on which each of the estimates of the parameter had been calculated was obtained and the results are given in the table below. As can be seen the sizes of the samples varied tremendously, the smaller sample sizes occurring when there are more errors preceding the This means that in a zero order estimation than correct. Markov process the number of corrects followed by correct were much greater than the number of wrongs followed by Therefore the estimate of the sensitivity following wrongs. two corrects is based on a much larger sample than when you are looking at the value of the parameter following two The nettresult of this is successive wrong responses. therefore to confound the state in the immediately preceding trial with any effects of biases in the estimates.

Accordingly the biases in the parameters were studied in more detail. It proves difficult to work out an explicit formula for the biases of the parameters therefore a programme bias was written to calculate numerically the expectation of each of the parameters, because the difference between the expected value of the parameter and the population parameter gives the measure of the bias of the statistic. Thus, bias works out the probability of every possible result within a sample of size N given the population parameters. For each possible result it calculates the observed value of the statistic that would be found and the product of this value and its probability summed over all the possible observations gives you the expected value of the statistic. This programme was first run using Luce's model and it gives This is because when no observations an expectation of infinity. are obtained in certain categories the estimates value of the statistic is, in fact, infinity. However, such instances were removed from the sample being considered in programme estimates. Accordingly, programme bias was amended so that the expectation of the various statistics were derived excluding outcomes which contained no observations in a particular category from the sample space. The results are given in the tables below when the probabilities of being correct are .5, .6, .7, .8 In all cases there are biases. As can be seen and .9. from the table the statistics in Luce's model are biased. This effect was very large when the sample sizes are less than ten. However, by the time sample sizes of 45 or more are obtained the statistic values have almost reached their asymptotic levels. Equivalent tables are given for the other models and these appear below.

This bias effect confounds the differences between statistics depending on data following particular sequences of trials. It is possible therefore that some of the results obtained earlier could have been the result of this bias effect. Accordingly programme estimate was re-run with a minor modification in that the estimates of the signal detection statistics were all based on samples of size 100, the rest of the data being discarded. Thus for every sequence LUCE'S MODEL (z)

n	5	15	25	35	45	œ
Pc						
• 5	1.06	1.17	1.11	1.07	1.05	1.00
• 6	.99	.78	.71	.69	.69	.67
.7	.92	.51	.71	.44	.43	.43
• 8	.85	.35	.27	.25	.25	.25
.9	.78	.23	.16	.13	.12	.11
Non P	(A')					
	5	15	25	35		α
Pc						
• 5	• 5	• 5	.5	• 5		. 5
• 6	.53	.63	.65	.65		.66
.7	.55	.74	.77	.78		.79
. 8	.59	.82	.86	.87		.88
. 9	.62	.88	.92	•93		.94
P(c)	5	15	25	35		æ
Pc						
• 5	0	0	0	0		0
• 6	.04	.18	.20	.20		.20
.7	.08	.35	.39	.40		• 40
. 8	.12	.51	.57	.59		.60
• 9	.16	.63	.73	.76		. 80
Th	5	15	.25	35		œ
Pc						
• 5	06	18	11	07		
• 6	.008	.21	.28	.30		• 33
• 7	.08	.17	.54	.56		.57
• 8	.15	.65	.72	.74	••• •	.75
.9	• 22	.76	.84	.86		.88

σ	5	15	25	35	œ
Pc					
.5	•02	.09	.10	.10	.1
• 6	.04	.17	.20	.20	• 2
.7	.06	.25	.29	.30	. 3
.8	.08	.32	.36	.38	• 4
.9					
d'*	n	5	10		œ
d'* Pc	n	5	10		œ
d'* Pc .5	n	5 O	10 0		œ 0
d'* Pc .5 .6	n	5 0 • 08	10 0 .34		∝ 0 .507
d'* Pc .5 .6 .7	n	5 O .08 .16	10 0 .34 .66		∝ 0 .507 1.05
d'* Pc .5 .6 .7 .8	n	5 O .08 .16 .25	10 0 .34 .66 .95	· · ·	∝ 0 .507 1.05 1.68

* The data for larger n was not collected as the estimation procedure took much more computer time than the others.

strandarted of the principle birs affect.

177.

some data following correct trials was discarded and some sequences were discarded as they did not have 100 wrong trials. When this was done for Experiment 2 out of the 80 sessions only about 20 remained, and this was not really enough to make very powerful tests of the hypothesis that the statistics depended on the state of the immediately preceding trial. As a result the programme was again amended this time insisting that the sample sizes on which the statistics depending on the immediately preceding trial were based was 45 in all cases. Having done this 51 sessions out of the 80 remained in the sample for analysis and the reliability of the estimates had been reduced.

The results of this analysis are given in the On the overall test to see whether the statistic table below. depends on the immediately preceding trial none of the sensitivity statistic showed a significant dependence while all the bias statistics did. On the analysis to see whether they depended on the stimulus on the last trial the response on the last trial or whether the last trial was correct or wrong the only significant finding was that the bias statistic of Atkinson's model did depend on the response on the last It thus appears that by ensuring equal numbers in the trial. samples from which the statistics are calculated one is reducing the power of the test. The only conclusion that one can draw is that the bias statistics depend on the state the subject was in on the last trial and that the sensitivity statistics as calculated using all the data depend on the state in the last trial, in particular they depend on whether the correct was correct or wrong or not. This effect, however, is contaminated with a possible bias effect.

Dependence of statistics on Immediately Preceding Trial (all based on sample size N = 45)

hast filde characterised by					
Statistic	Overall S-R	S	R	Correct/	Wrong
η					
d'					
Th				E de la companya de la	
P(c)				• •	
Α'					
σ			n de X de de	e i pre parte	
					<u>.</u>
		n an		e en la cére	
bias(Luce)	X	1. 84 (1977) - C		an an an an Anna an An Anna an Anna an	
bias(TSG)		and the second	gaad ta di si	ser inta -	
Bias %	X	a Maran Ang	X		
bias(ATK)	n an an Angel 🕺 🕺 an Angel	1. 35 - 1. G	X X	he regrane	
	n an	्रम् संस्थान्द्रे			
			lat sietes		•
	and the second	ings the			
	,1943年1月1日, 1949年1月1日 1949年1月11日 1949年1111111111111111111111111111111111	eren inter-	an tha chiến đ		
		n fachfel	ter de s	s hereaster	
	da organization	at the the	. Laterial		
States and the second	, and the state of the state		esta d		
	and the series		act yard	stife, tark	•
		par la far	Bar Santy		
diye katar ka iştək	· Late Ther-Ist			ulfrate.	
u Lukudo nadiętan					
		e ^l andar a ^b elina	Ster Ma	dessettere	
	through water for a the				
실행국용, 이 가능한 기가					
	in si suite (the second		A Constraint of the second sec	an a	
y ar an an					

Last Trial Characterised by

Conclusions

In the Introduction several signal detection models were summarised and major experimental findings in the area reported. It was also pointed out that although the phenomenon of inter-trial dependence was well established none of the models appeared adequately to account for this phenomenon. Indeed, the existence of this effect would, it was suspected, reduce the accuracy of some of the more quantitative predictions of the models.

The experiments reported were designed to estimate the effect of inter-trial dependence in a number of common types of experimental conditions. The experimental variables were chosen as those commonly varied in recognition detection and reaction time tasks. Out of the 210 sessions studied 105 showed significant first order SR dependences while 39 showed significant second order or higher dependences. On breaking the SR sequences down into sequences of responses, sequences of correct wrongs, and sequences of stimuli it was found that the response sequences showed the greatest number of dependences. The inter-trial dependences of the latencies appeared larger than those measured from the SR sequences.

On examining the sessions for non-stationality it was found that after the first 100 trials had been discarded the effect was negligible on the SR sequences although it was more apparent in the latency data. The experimental variables found most to affect the χ^2 measuring inter-trial dependence were the subject variable, task difficulty and a priori stimulus probability. Perhaps this is due to the fact that these variables also affected the total number of correct and wrong responses.

Attempts were made to describe the dependences using zero, first and second order Markov models, a two state latent Markov model, and autoregressive processes. A low order autoregressive model proved incapable of adequately describing the inter-trial dependence. None of the Markov models fitted exactly and the latent model gave a sensible approximation to the data only when its parameters were estimated using a iterative procedure.

The parameters of the signal detection models were then calculated depending on the SR state of the immediately preceding trial. This was found to affect the value of both the bias and the sensitivity parameters, the bias parameter depending particularly on the immediately preceding response while the sensitivity parameter appeared to depend on whether the immediately preceding trial was correct or wrong. As there were more correct responses than wrong ones the sample size on which the estimate was based following the correct response was greater than that following a wrong response. The estimates of the sensitivity parameters of the models were shown to be biased. This bias could account for the dependence of the sensitivity statistic on the immediately preceding trial. The significant dependences found in the sequences of correct wrongs both of first and second order indicate that at least in some cases an unbiased estimate of the sensitivity would depend on whether the last trial was correct or not. The degree of this dependence was estimated by calculating the variance of the estimates of the parameters depending on the immediately preceding trial. The major experimental variable found to affect this statistic was task difficulty, and this result could be explained by an effect of bias.

The Markov models used to characterise the dependence were then used in a large number of simulations in order to find out the effect of such dependence on the theoretical variances of the estimates of the parameters of the models. It was found that the dependence did have the effect of increasing the variances of the statistics. However, this effect was quite small when compared to the bias present in a number of the statistics due to the small sample size. When the sample sizes are larger (over 100) the bias effect disappears although the small effect of non-independence remains. To sum up, sequential dependences were measured in a number of tasks. The most important aspect of bias on detection or recognition models assuming trial independence was dependence of a response on the immediately preceding response.

Dependence on the accuracy of the immediately preceding trial was also present. The most critical factors affecting the dependence were subject differences and task difficulty. The effect of the dependence is greater on the bias than on the sensitivity parameters. It was also shown that statistical tests developed for sensitivity statistics were robust against the observed violations of the independence assumptions.

Anneave (Leos) (Applications of approximation openy (Prychology" Holt Reinhart & Winwood & Y. Anney (1980) "A Statistical Ander for individual their

.Lehavioar" Phych. Rev., V.67 pp.1-15.

Barcleson (lett) "Sequential Redundancy and Speed in a Serial Two Choice Responding Task" Quantufflyp.Feyd 2.12 pp.30-1011

Harden (1963) "S-R Relationenips and Reaction Time Har Vermus Repeated Signals in a Serial Peak" J.M., Payen, V.S5 pp.473-488,

Leson & Lankin (1966) "Reaction Time to New Corsus and Signals in a Serial Task as a Pudecfor of Explore Signal Time Interval" Acts Psych., V.25 pp. Same (1953) "Choice Point Behaviour" in Euch R. and E addes in Mathematical Learning Theory" Stanford and

in others & freg**ory (1965) "O**n the fuctors of by Competatibity with other Variables Affantic, Securic Reised, Poych., 1,55 pp.81-66

بالشقي والمشر

- Abrahamson & Levitt (1968) "Statistical Analysis of Data from Experiments in Human Signal Detection" Unpublished Report Bell Telephone Laboratories.
- Abrahamson & Levitt (1969) "Statistical Analysis of Data from Experiments in Human Signal Detection" J.Math.Psych., V.66 pp.391-417.
- Abrahamson, Levitt, & Landgraf (1967) "Statistical Estimation of Parameters of Decision Theory Models"

J.Accoust.Soc.Amer., V.42 p.1195.

- Atkinson (1963) "A Variable Sensitivity Theory of Signal Detection" Psych. Rev., V.70 pp.91;106.
- Atkinson, Bower & Crothers (1965) "An Introduction to Mathematical Learning Theory" J. Wiley & Sons N.Y.
- Anderson & Goodman (1957) "Statistical Inference about Markov Chains" Ann.Math.Stat. V.28 pp.89-110.
- Atteneave (1959) "Applications of Information Theory to Psychology" Holt Reinhart & Winston N.Y.
- Audley (1960) "A Statistical Model for Individual Choice Behaviour" Psych. Rev., V.67 pp.1-15.
- Bertleson (1961) "Sequential Redundancy and Speed in a Serial Two Choice Responding Task" Quart.J.Exp.Psych., V.12 pp.90-102.
- Bertleson (1963) "S-R Relationships and Reaction Time to New Versus Repeated Signals in a Serial Task" J.Exp.Psych., V.65 pp.478-484.
- Bertleson & Rankin (1966) "Reaction Time to New Versus Repeated Signals in a Serial Task as a Function of Response Signal Time Interval" Acta Psych., V.25 pp.132-136. Bower (1959) "Choice Point Behaviour" in Bush R. and Este W.K. "Studies in Mathematical Learning Theory" Stanford University Press.
- Broadbent & Gregory (1965) "On the Interactions of SR Compatibility with other Variables Affecting Reaction Time" Brit.J.Psych., V.56 pp.61-68.

- Bush (1963) "Estimation and Evaluation" in Luce, Bush and Galanter "Handbook of Mathematical Psychology" V.l. J. Wiley N.Y.
- Carterette & Wyman (1962) "Application of a Simple Markov Model to a Simple Detection Situation Involving Social Pressure" in Creswell Solomon & Suppes. "Mathematical Methods in Small Group Processes" Stanford University Press.
- Coleman (1964)a. "Introduction to Mathematical Sociology" The Free Press N.Y.
- Coleman (1964)b. "Models of Change and Response Uncertainty" Prentice Hall Inc.
- Cox & Miller (1965) "The Theory of Stochastic Processes" Methuen London.
- Crossman (1955) "The Measurement of Discriminability" Quart.J.Exp.Psych., V.7 pp.176-195.
- Davis Moray & Treisman (1961) "Imitative Responses and the Rate of Gain of Information" Quart.J.Exp.Psych., V.13 pp.78-89.
- Day (1956) "Serial Non-Randomness in Auditory Differential Threshold as a Function of Inter Stimulus Interval" Amer.J.Psych., V.69 pp.387-394.
- Dorfman & Alf (1968) "Maximum Likelihood Estimation of Parameters of Signal Detection Theory" Psychometrika V.33, pp.117-124.
- Ega Schulman & Greenberg (1959) "Operating Characteristics Determined by Binary Decisions and Ratings" J.Accoust.Soc.Amer., V.31 pp.768-773.
- Estes (1959) "A Random Walk Model for Choice Behaviour" in Arrow Karlins Suppes edn. "Mathematical Methods in the Social Sciences" Stanford University Press.
- Finney D.J. (1952) "Probit Analysis A Statistical Analysis of the Sigmoid Response Curve" Cambridge Univ. Press., London.
- Fitts (1959) "Information Handling in Speeded Tasks" Research Report RC-109 IBM New York.
- Fitts (1966) "Cognitive Aspects of Information Processing III - Set for Speed versus Accuracy" J.Exp.Psych., V.71 pp.849-857.
- Falmange (1965) "Stochastic Models for Choice Reaction Time with Application to Experimental Results" J.Math.Psych., V.12, pp.77-124.

Fechner (1860) "Elements Der Psychophysik" Leip.Breithoff & Hartel. Friedman & Carterette (1964) "Detection of Markovian Sequences of Signals" J.Acoust.Soc.Amer., V.36 pp.2334-2339. Garner (1962) "Uncertainty and Structure as Psychological Concepts" J. Wiley & Sons N.Y. Gourevitch & Galanter (1967) "A Significance Test for One Parameter Isosensitivity Functions" Psychometrika V.32 pp.25-33. Green D.M. & Swets J. (1966) "Signal Detection and Recognition Theory" J. Wiley & Sons N.Y. Grundy (1961) "Auditory Detection of an Unspecified Signal" J.Acoust.Soc.Amer., V.33 pp.1008-1012. Hale D. (1967) "Sequential Effect in a Two Choice Serial Reaction Task" Quart.J.Exp.Psych., V.19 pp.133-141. Hick (1952) "On the Rate of Gain of Information" Quart.J.Exp.Psych., V.4 pp.11-26. Hodos (1970) "Nonparametric Index of Response Bias for Use in Detection and Recognition Experiments" Psych.Bull., V.74 pp.351-352 Hyman (1953) "Stimulus Information as a Determinant of Choice Reaction Time" J.Exp.Psych., V.45 pp. 188-196. Keele (1969) "The Repetition Effect: A memory dependent process" J.Exp.Psych., V.80 pp.243-248. Kendall & Stuart (1963) "The Advanced Theory of Statistics" Vols.1, 2 and 3. C. Griffin & Co., London. Kohler (1923) "Zur Theorie Des Sukzessivergleichs and den Zeilfehler" Ps.Ford., V.4 pp.115-175. Krantz (1969) "Threshold Theories of Signal Detection" Psych.Rev., V.76, pp.308-324. Kinchla (1966) "A Comparison of Sequential Effects in Detection and Recognition" Experimental Psychology Series New York University Technical Reports No. 1. Kinchla & Atkinson (1964) "The Effect of False Information Feedback on Psychophysical Judgments" Psychon.Sci., V.l pp.317-318. Laberge (1962) "A Recruitment Theory of Simple Behaviour" Psychometrika V.27 pp.375-396.

Laberge (1964) "Attention Factors and Latency in Simple Choice Situations" Unpublished paper presented at Ann Arbor University. Laming (1968) "Information Theory of Choice Reaction Times" Academic Press, London. Lazarfeld & Henry (1968) "Latent Structure Analysis" Houghton Mifflin Co., Boston. Leonard (1959) "Tactual Choice Reactions. I." Quart.J.Exp.Psych., V.11 pp.76-83. Luce (1959) "Individual Choice Behaviour" J. Wiley N.Y. Luce R. (1963) "A Threshold Theory for Simple Detection Experiments" Psych. Rev., V.70 pp.61-79. Luce R. (1963) a "Detection and Recognition" in Luce R., Bush & Galanter "Handbook of Mathematical Psychology", Vol.1, J. Wiley N.Y. Macdonald (1968) "Sequential Effects in a Signal Recognition Task" Unpublished M.Sc. Report University of Stirling. McGill (1957) "Serial Effects in Auditory Threshold Judgments" J.Exp.Psych., V.53 pp.297-303. McGill (1961) "Loudness and Reaction Time" Acta.Psych., V.19 pp.193-199. McGill (1963) "Stochastic Latency Mechanisms" in Luce, Bush & Galanter ed. "Handbook of Mathematical Psychology" J. Wiley N.Y. McGill W. & Gibbon J. (1965) "The General Gamma Distribution and Reaction Times" J.Math.Psych., V.2 pp.1-18. Meyers (1970) "Models for Response Times in Detection Experiments" Unpublished paper read to B.P.S. Math. and Stat.Psych. Section. Mowbray & Rhoades (1959) "On the Redundancy of Choice Reaction Times with Practice" Quart.J.Exp.Psych., V. 11 pp.16-23. Parducci & Sandusky (1965) "The Time Error in Auditory Perception" Amer.J.Psych., V.59 pp.193-219. Parks T. (1966) "Signal Detectability Theory of Memory Recognition and Performance" Psych. Rev., V.73 pp.44-58. Peterson & Beach (1967) "Man as an Intuitive Statistician" Psych.Bull., V.68 pp.29-46.

Peterson Birdsall & Fox (1954) "The Theory of Signal Detectability" Trans. I.R.E. Group on Information Theory P.G.I.T.-4 pp.171-212. Pollack (1963) "Speed of Classification of Words in Superordinate Categories" J.Verbal Learning and Verbal Behaviour V.2 pp.159-165. Pollack I. & Hsieh R. (1969) "Sampling Variability of the Area Under the ROC Curve and of d'" Psych.Bull., V.71 pp.161-173. Pollack & Norman (1964) "A Nonparametric Analysis of Recognition Experiments" Psychon.Sci., V.1 pp.125-126. Postman (1946) "The Time Error in Auditory Perception" Amer.J.Psych., V.46 pp.558-567. Rabbitt P. (1959) "Effects of Variability in Stimulus and Response Probability" Nature V.183 p.1212. Sandusky (1966) "A Two Choice Recognition of Stimuli in Markovian Sequences - A Test between Two Models" Unpublished Ph.D. Dissertation University of California L.A. Sandusky (1971) "Signal Recognition Compared Models for Random Markov Probability Sequences" Perception and Psychophysics V.10 pp.339-347. Schwaneveldt & Chase (1969) "Sequential Effects in Choice Reaction Time" J.Exp.Psych., V.80 pp.1-8. Seigel (1956) "Nonparametric Statistics" McGraw Hill. Senders (1953) "Further Analysis of Response Sequences in the Setting of a Psychophysical Experiment" Amer.J.Psych., V.66 pp.215-228. Senders V. & Sowards (1952) "Analysis of Response Sequences in the Setting of a Psychophysical Experiment" Amer.J.Psych., V.65 pp.358-374. Smith T.E. (1968) "Choice Reaction Time - An Analysis of the Major Theoretical Positions" Psych.Bull., V.69 pp.77-110. Speeth & Mathews (1961) "Sequential Effects in the Signal Detection Situation" J.Acoust.Soc.Amer., V.33 pp.1046-1054. Stevens (1939) "On the Problem of Scales for the Measurement of Behavioural Qualities" J.Unif.Sci., V.9 pp.94-99. Sternberg (1964) "Two Operations in Character Recognition -Some Evidence from Reaction/Time Experiments" Paper presented at AFCRL Symposium Boston Nov. 1964.

Stone M. (1960) "Models for Choice Reaction Time" Psychometrika V.25 pp.251-260. Swets Tanner & Birdsall (1961) "Decision Processes in Perception" Psych. Rev., V.68 pp. 301-340. Tanner Haller & Atkinson (1967) "Signal Recognition as Influenced by Presentation Schedules" Perception & Psychophysics V.2 pp.349-358. Tanner Rauk & Atkinson (1970) "Signal Recognition as Influenced by Information Feedback" J.Math.Psych., V.7 pp.259-274. Tanner Swets & Green (1956) "Some General Properties of the Hearing Mechanism" Univ. of Michigan Electronic Defence Group Technical Report No. 20. Thomas & Legge (1970) "Probability Matching as a Basis for Detection and Recognition Decisions" Psych. Rev., V.77 pp.65-72. Thrummond & Alluisi (1963) "Choice Time as a Function of Stimulus Dissimilarity and Discriminability" Canadian J.Psych., V.17 pp.326-337. Verplank W., Collier & Cotton (1952) "Non-independence of Successive Responses in Measurement of Visual Thresholds" J.Exp.Psych., V.44 pp.273-282. Wagenaar (1968) "Sequential Response Bias in Psychophysical Experiments" Perception and Psychophysics V.3 pp.364-366. Wald (1947) "Sequential Analysis" Wiley N.Y. Watson Rilling & Bourbon (1964) "Receiving Operator Characteristics Determined by a Mechanical Analogue to the Rating Scale" J.Acoust.Soc.Amer., V.36 pp.283-288. Wertheimer (1953) "An Investigation of Randomness of Threshold Measurements" J.Exp.Psych., V.45 pp.294-303. Wiggins (1955) "Mathematical Models for the Interpretation of Attitude and Behaviour Change" Unpublished Ph.D. Dissertatation Columbia University. Williams (1966) "Sequential Effects in Disjunctive Reaction Time: Implications from Decision Models" J.Exp.Psych.,

V.71 pp.665-672.

 $\langle \langle$

APPENDIX A

This contains the total number of errors response ones and latencies (in m.s.) occurring in 5 successive blocks of 140 trials for Experiments 2, 3 and 4.

H

1 L
	COND			TOTAL	ERRORS		
		BLOCK	l	2	3	4	5
	0.75R		51.000000	42.000000	60.000000	54.000000	57.000000
	0•50RB		69.000000	72.000000	70.000000	69.000000	72.000000
	F.75R		50.000000	46.000000	63.000000	57.000000	55.000000
	0.50R		71.000000	67.000000	61.000000	58.000000	66.000000
	F . 50R		78.000000	76.000000	78.000000	71.000000	59.000000
	F • 50RB		56.000000	71.000000	73.000000	70.000000	60.000000
	0.25R		45.000000	52.000000	57.000000	73.0000000	49-0000000
	F.25R		43.000000	57.000000	55.000000	45.000000	51.000000
	0.750	C 1	38.000000	63.000000	A7.000000	46-000000	50.000000
	0.50DB	51	36.000000	A8.000000	57.900000	49.0000000	64-000000
	F-750		34.000000	27.000000	34.000000	A1 - 600000	20 000000
	0.500		29.000000	51.000000	47.684660	50.000000	00 COMARA
	E-500		70 000000		$-43 \bullet 0.000000$	52. • 0000000	23. 000000
	F-50DB		50 000000		- 67 • 000000 - 40 - 600000	55+000000 (5 000000	51 003000
	0.250			51 - 0000000	67 • 000000	63.0000000	51.000000
	0.00 5 050		46 •0000000	51.000000	46 · 0000000	41.000000	40.000000
	r • 2.50		78.000000	22 • 5000000	23 • 666600	48 • 000000	41 • 0900000
	0.75R		36.0000000	41.000000	40.000000	51.000000	44.0900000
	0.50RB		24.000000	19.000000	37.0000000	21.000000	31.000000
	F.75R		11.003009	22.000000	10.030000	8.0000000	17.000000
	0.50R		41.000000	51.000000	52.000000	63.000000	66.000000
	F. 50R		27.000000	33.0000000	28.000000	26.000000	30.000000
	F. SOR		23.0000004	23.000000	27.0000000	16.000000	21.000000
	0.250		25-000000	14.000000	14-000000	15.000000	16.000000
•	F.25R		20.000000	14-000000	9.0000000	11.000000	11.0000000
	0.750	~ ~	20.000000	31-0000000	29.0000000	33.000000	27.0000000
	0.5008	52	98 000000	67.000000	47.000000	21.000000	72.0000000
	E-75D		70 · MADADA	36.000000	34 000000	22.000000	27.00C000
	0.500		32 · 1000000	56.000000	51.000000	52.000000	63-000000
	5000 F. 500		49.000000	10 000000	1. 0000000	57.000000	63. 0000 / 0
	F-500P		41 • 000000	50 000000	25.000000	31.000000	55.000000
	0.250		$46 \bullet 0900000$		40.000000	15-000000	50-000000
	U+250		31.000000	43.007900	42.000000	94. 000000	32-000000
	1 • 6 30		31.000000	3.3•0000000	29 • WOMMON	<.0• M0M0003	2.5. 010000000
	0.75R		12.000000	22.000000	6.0000000	13.000000	15.000000
	0.50RB		24.000000	30.000000	28.000000	20.000000	24.000000
	F•75R		7.0000000	23.000000	16.000000	25.000000	13.000000
	0.50R		24.0000000	36.000000	37.000000	36.000000	53.0000000
	F.50R		19.000000	23.000000	22.000000	16.000000	21.000000
	F.SORB		26.000000	21.000000	19.000000	26.000000	19.000000
	0.25R		27.000000	37.000000	30.000000	18.000000	15.0000000
	F.25R	C 1	28-000000	22.000000	22.000000	26.000000	32.000000
	0.750	53	1 4 0 0 0 0 0 0	19.000000	20.000000	25.000000	18.000000
	0.5008		19 000000	24-000000	20.000000	25.000000	20.000000
	F.75D		18.000000	20 000000	26.000000	16.000000	21.000000
	0.500		1.2.0000000	07.000000	30.000000	31.000000	28.000000
i. F	F.500		67 608088 07 608088	C. I • 0000000	28.000000	25.000000	47.000000
	F. 500		CI • 0000000	10 0000000	21.000000	20.000000	34.000000
	0.250		24.000000	17.000000	34-000000	29.000000	34.000000
	F.250		33.000000	20.000000	20.000000	20.000000 *	28.000000
	· • • • • • • •		*1 • 131310131010	0000000	LU UUUUUU		

(⁹)

COND

0.75R		17.000000	29.000000	27.000000	27.000000	19.000000
0.50RB		7.0900000	5.0000000	13.000000	21.000000	11.000000
F•75R		14.000000	9.0000000	11.000000	18.000000	19.000000
0.50R		19.000000	24.000000	28.000000	32.000000	20.000000
F.50R		23.000000	14.000000	26.000000	24.000000	18.000000
F.5ØRB		14.000000	14.0000000	17.000000	11.000000	13.000000
0.25R	c	1 15.000000	21.000000	13.000000	14.000000	16.000000
F•2 5R	3	, 5 8•000000	20.000000	13.000000	17.000000	30.000000
0.75D		25.000000	11.000000	11.000000	20.000000	17.000000
0.50DB		13.009000	14.000000	13.000000	14.000000	14.000009
F.75D		27.000000	14.000000	10.000000	13.000000	7.0000000
0.5ØD		15.090000	19.000000	19.000000	25*000000	08.000000
F•5ØD		19.000000	18.000000	11.000000	13.000000	20.000000
F.50DB		13.000000	18.000000	26.000000	15.000000	19.000000
0.25D		26.000000	20.000000	29.000000	25.000000	28.000000
F•25D		17.000000	32.000000	24.000000	28.000000	16.000000
0 755						
0.75R		31.030000	29•000000	18.000000	29•000000	24.000000
0.50RB		53.0000000	43•000000	61.000000	56.000000	59•000000
F•758		5 8•000000	37 • 000000	29.000000	55.000000	24.000000
0.50R		25.000000	24.000000	29.000000	44•000000	55.000000
F•50R		23.000000	33.000000	40.000000	43•000000	42•000000
F • 5ØRB	ç	5 17 · 300000	25.000000	35.000000	27•000000	17.000000
0.258	5	18.000000	22.000000	24.000000	30•000000	35-000000
F•25R		58 • 000000	23.000000	33.000000	27.000000	33•00000 0
0.750		38 • 000000	32.000000	44.000000	43•000000	32.000000
0.50DB		47 . 000000	45.000000	56*000000	53•000000	41.0000000
F.75D		58•000000	30.000000	15.000000	30.000000	25.00000
0.500		29.000000	27.000000	22.000000	23"000000	32•000000
F • 50D		29.000000	37.000000	51.000000	50•000000	55.000000
F • 50DB		34.000000	34.000000	39:000000	40•000000	41.000000
U-25D		43.000000	28•000000	40•000000	39.000000	51.000000
r •25D		25.000000	23.000000	15.000000	26•000000	15•000000M

P

TOTAL RI's BLOCK l COND . 2 3 4 5 <u>.</u> 0.75R 105.00000 114.00000 91.000000 87.000000 86.000000 0.50RB 71.000000 63.000000 89.000000 87.000000 67.000000 F•75R 110.00000 87.000000 107.00000 97.000000 101.00000 0.50R 79.000000 87.000000 96.000000 79.000000 92.000000 F . 50R 85.000000 81.000000 90.000000 82.000000 88.000000 F - 50RB 100.00000 86.000000 97.000000 102.00000 93.000000 0.25R 23.000000 29.000000 46.000000 61.000000 45.0000000 F.25R 33.000000 51.000000 43.000000 29.000000 33.000000 0.75D 102.00000 92.000000 117.00000 103.00000 92.000000 S 1 0.50DB 70.000000 51.000000 52.000000 62.000000 53.000000 98.000000 F•75D 114.00000 103.00000 105.00000 116.00000 0.50D 54.000000 63.000000 56.000000 40.000000 82.000000 F.50D 55.000000 90.000000 84.000000 93.000000 88.000000 F • 50DB 72.000000 60.000000 57.000000 43.000000 68.000000 48.000000 25.000000 0.25D 30.000000 38.000000 31.000000 F-25D 40.000000 54.000000 58.000000 44.000000 23.000000 82.000000 89.000000 92.000000 0.75R 79.000000 84.000000 77.000000 60.000000 0.50RB 62.000000 80.000000 67.000000 F•75R 102.00000 104.00000 113.00000 103.00000 113.00000 0.50R 52.000000 55.000000 57.000000 72.000000 57.000000 64.000000 76.000000 F . 50R 67.000000 65.000000 76.000000 F • 50RB 70.000000 74.000000 61.000000 69 . 000000 62 . 000000 0.25R 53.000000 36.000000 45.000000 31.000000 "37.000000 S 2 F.25R 50.000000 46.000000 40.000000 33.000000 50.000000 0.75D 96.000000 88.000000 85.000000 93.000000 94.000000 0.50DB 69.000000 75.000000 57 . 000000 64.000000 65.000000 102.00000 92.000000 95.000000 104.00000 107.00000 F•75D 0.50D 66.000000 77.000000 73.000000 69.000000 70.000000 64.000000 66.000000 64.000000 F.50D 68.000000 76.000000 F • 50DB 74.000000 72.000000 71.000000 54.000000 60.000000 0.250 51.000000 44.000000 47.000000 44.000000 45.000000 37.000000 47.000000 41.000000 46.000000 45,000000 F-25D 105.00000 101.00000 94.000000 106.00000 105.00000 0.75R 63.000000 80.000000 60.000000 68.000000 85.000000 0.50RB 111.00000 120.00000 F•75R 131.00000 131.00000 109.00000 76.000000 88.000000 89.000000 91.000000 0.50R 99.0000000 F.SAR 83.000000 70.000000 75.000000 69.000000 60.000000 76.000000 95.000000 72.000000 80.000000 F . 50RB 79.000000 S 3 0.25K 53.000000 42.000000 47.000000 55.000000 56.000000 F-25R 48.000000 40.000000 44.000000 53.000000 27.000000 0.75D 105.00000 113.00000 105.00000 108.00000 102.00000 75.000000 73.000000 81.000000 0.50DB 68.000000 75.000000 F.75D 103.00000 98.000000 89.000000 88.000000 98.000000 0.50D 71.00000A 72.000000 70.000000 72.000000 74.000000 69.000000 88.000000 100.00000 F • 50D 75.000000 63.000000 F • 50DB 71.000000 73.000000 58.000000 70.000000 67.000000 64.000000 56.000000 47.000000 0.25D 62.000000 49.000000 44.000000 20.000000 40.000000 34.000000 30.000000 F-25D

COND

0.75R		83.000000	87.000000	80.000000	83•000000	93.000000
0.50RB		66.000000	76.900000	72.000000	88.000000	79.000000
F•75R		191.00000	114.00000	98.000000	103.00000	104.00000
0.50R		49.00000.03	64.000000	75.000000	81.000000	73.000000
F.50R			72.000000	66.0000000	90.000000	74.000000
F.50RB		48.000000	76.000000	81.000000	65.000000	78.000000
0.25R	C II	52.000000	59.000000	45.000000	36.000000	49.000000
F.25R	54	53.000000	49.000000	26.000000	35.000000	46.000000
0.75D		79.000000	101.00000	94.000000	96.000000	98.0000000
0.50DB		71.000000	68.000000	72.000000	63.000000	76.000000
F•75D		97.000000	104.00000	106.00000	102.00000	111.00000
0.500		75.000000	89.000000	84.000000	82.000000	79.000000
F.50D		74.00:0000	80.000000	71.000000	66.000000	78.000000
F.50DB		43.000000	73.000000	82.000000	77.000000	77.000000
0.250		60.000000	52.000000	57.000000	60.000000	56.000000
F.25D		46.000000	52.000000	49.000000	40.000000	38.000000
						(, , - ,
0.75R		80.000000	96.000000	105.00000	108.00000	93.0000000
0.50RB		71.000000	86.000000	79.000000	92.000000	94.000000
5-75P		144-00000	110.00000	105.00000	105.00000	116.00000
0.508		708.000000	82.000000	92.000000	104.00000	97.000000
5000 E. 500		71 000000	89.000000	86.000000	95.000000	98.000000
F-SOR		9 4 000000	74.000000	78.000000	66.000000	79.0:0000
6 05 P		A2 000000	47.000000	59.000000	63.000000	68.001000
	*	4.1 • • • • • • • • • •	45.000000	37.000000	37.000000	32.000000
F • 25K		46•000000	49. 000000	93.000000	87.000000	916 • 000000
0.500	S 5	75.000000	70 400000	68.000000	80.000000	85.000000
0.5006		76.000000	12. 00000	105.00000	107.00000	103.00000
		192.00000	101.000000	78.000000	72.000000	70.000000
U-500 ·		94.000000	70 000000	73.000000	72.000000	65.000000
r • 500		77.000000	19.000000	82.000000	81.000000	83.000000
F • 500B		74.000000	50 000000	53.000000	50.000000	63.000000
0.250		58.000000	50 0000000	34-000000	32.000000	42.000000
F•25D		47 . 000000	42.000000	00.000	() C. # #) ¥/ ¥/ ¥/ ¥/ ¥/ ¥/	

а. - С TOTAL LATENCIES (MS) (ignore - sign)

COND		
	BLOCK	
0 750		-98278-000-113261-00-249842-00-125051-00-00110
0.6000		
0.50KD		
F + 75K		-88724•000-112939•00-380077•00-91218•000-68992•000
0.50R		-498073.00-531032.00-103138.00-124062.00-142543.00
F-50R		-151163.00-157247.00-127526.00-134933.00-140465.00
F•50RB	S l	-101622.00-103138.00-145623.00-81404.000-80484.000
0.25K		-83778.000-57045.000-74090.000-59540.000-70318.000
F.25k		-124158.00-91593.000-81614.000-83646.000-80066.000
0.750		-171375.00-261591.00-301250.00-135120.00-116940.00
0.5008		-134490.00-160748.00-168401.00-168263.00-158787.00
F.75D		$-189120 \cdot 00 - 161131 \cdot 00 - 123277 \cdot 00 - 100627 \cdot 00 - 92589 \cdot 000$
0.500		-176006.00-195846.00-270852.00-286218.00-143356.00
5 500		-379106-00-137444-00-138149-00-204090-00-140336-(4)
F 500		-123541.00 - 120115.00 - 100102.00 - 2209(1.00 - 10075.00)
F • 5000		
0.250		-147159.00-170787.00-162161.00-306344.00-406673.00
F•25D		-185829•00-182217•00-165718•00-120702•00-174111•00
0•75R		-131306•00-77764•000-88387•000-68960•000-56380•000
0.50RB		-107233•00-69018•000-63053•000-67883•000-64571•000
F•75R		-77053.000-66283.000-65071.000-64885.000-63499.000
0.50R		-152089.00-134841.00-157714.00-125099.00-173273.00
F.50R		-79214.000-81126.000-71934.000-75519.000-75067.000
F.50RB		-33739.000-66116.000-72722.000-68609.000-64233.000
0.258		-144761.00-80864.000-87103.000-71204.000-73872.000
F.25R		-76071.000-65579.000-69200.000-63300.000-64381.000
0.750	\$ 2	-103040.00-74185.000-67710.000-70910.000-81125.000
	52	-129852.00-07744.000-79041.000-80055.000-90944.000
0.0000 E 750		
r • 750		
0.500		-85079.000-88714.000-87378.000-69001.000-82013.000
F • 50D		-257056•00-105427•00-103515•00-98260•000-109034•00
F•50DH		-140189 • 00 - 82531 • 000 - 104077 • 00 - 114296 • 00 - 133777 • 30
0•25D		-140310.00-73082.000-71951.000-79006.000-76065.000
F•25D		-84632•000-80474•000-87495•000-76735•000-81328•000
		· •
0•75R		-94102.000-126113.00-77327.000-105966.00-86957.000
0.50RB		-142982•00-116058•00-109297•00-113088•00-120267•00
F.75R		-115307.00-316769.00-254860.00-320605.00-96125.000
0•50R		-134246.00-193426.00-183687.00-206467.00-201648.00
F•50R		-38105.000-91337.000-88981.000-79324.000-100332.00
F.50RB		-108962.00-98790.000-144624.00-103141.00-103000.00
0.25R		-111489.00-83752.000-111084.00-100142.00-76063.000
F.258	5 3	-110533.00-93208.000-104899.00-171758.00-329289.00
0.750	00	-568974.00-117908.00-163354.00-89721.000-90707.000
0.500		-150103.00-116425.00-101329.00-114716.00-186350.00
		-100717.00-83074.000-252012.00-99387.000-95238.000
		-122250 00-122245.00-105479.00-84398.000-88254.000
		-1 3 3 3 3 W M 1 3 3 7 4 3 W 1 8 3 4 1 2 W 1 8 3 4 1 2 W 1 8 3 7 - 00 - 00 - 00 - 00 - 00 - 00 - 00
F • 500		-1/30//+00-16/00/2+00-14103/+00-2330/0+00-334433+000-2 10/10 00-001775 000-051/0-000-78/89-000-8/0/7-000
r • 50DH		-113619 • 00-91775 • 000-90107 • 000-10406 • 000-04747 • 000
0.25D		-127328 • 00-168251 • 00-125635 • 00-113476 • 00-143126 • 00
F•25D		→165986•00-476507•00-121731•00-133306•00-105482•00

.

ે

COND		
0.75R 0.5ØRB F.75R 0.5ØR F.5ØR F.5ØR F.25R 0.25R F.25R 0.5ØDB F.75D 0.5ØD F.5ØD F.5ØDB 0.25D F.25D	, <mark> S 4</mark>	-114015.00-109650.00-116161.00-107897.00-007299.00 -78570.000-78238.000-83421.000-80469.000-76927.000 -93449.060-74881.000-86290.000-85864.000-94169.000 -127288.00-139180.00-126429.00-121730.00-132910.06 -87031.000-77307.000-88624.000-83579.000-88568.000 -81012.000-80836.000-99851.000-88283.000-85160.000 -97334.000-106488.00-101019.00-95970.000-96327.000 -99300.000-99406.000-99428.000-121472.00-103144.00 -102136.00-97497.000-105847.00-107725.00-102687.00 -193716.00-94163.000-110738.00-95208.000-96484.000 -189037.00-131488.00-138206.00-128973.00-111767.00 -116528.00-95264.000-113272.00-109716.00-101005.00 -99990.000-81145.000-81508.000-85054.000-87923.000 -113982.00-102708.00-109008.00-111338.00-102647.00 -227011.00-123669.00-124210.00-145607.00-142487.00
0.75R 0.5ØRB F.75R 0.5ØR F.5ØRB 0.25R F.25R 0.75D 0.5ØDB F.75D 0.5ØD	S 5	$-112937 \cdot 00 - 71291 \cdot 000 - 89773 \cdot 000 - 111257 \cdot 00 - 101031 \cdot 00$ -79797 \cdot 000 - 67668 \cdot 000 - 57713 \cdot 000 - 50805 \cdot 000 - 89416 \cdot 000 -104685 \cdot 00 - 107286 \cdot 00 - 96097 \cdot 000 - 109081 \cdot 00 - 112682 \cdot 00 -131379 \cdot 00 - 102255 \cdot 00 - 95807 \cdot 000 - 122727 \cdot 00 - 173578 \cdot 00 -115516 \cdot 00 - 106136 \cdot 00 - 146190 \cdot 00 - 145389 \cdot 00 - 132924 \cdot 00 -105509 \cdot 00 - 130104 \cdot 00 - 359154 \cdot 00 - 147475 \cdot 00 - 86244 \cdot 000 -67968 \cdot 000 - 67184 \cdot 000 - 78026 \cdot 000 - 101539 \cdot 00 - 70757 \cdot 000 -99254 \cdot 000 - 117674 \cdot 00 - 141702 \cdot 00 - 133532 \cdot 00 - 135149 \cdot 00 -119496 \cdot 00 - 123348 \cdot 00 - 118157 \cdot 00 - 150596 \cdot 00 - 114127 \cdot 00 -107046 \cdot 00 - 161073 \cdot 00 - 175081 \cdot 00 - 102229 \cdot 00 - 95614 \cdot 000 -139521 \cdot 00 - 112183 \cdot 00 - 97097 \cdot 000 - 115237 \cdot 00 - 117466 \cdot 00
F.50DB 0.25D F.25D		-104408.00-84280.000-120043.00-121571.00-158441.00 -114506.00-86787.000-85294.000-78703.000-82997.000 -95970.000-76845.000-66328.000-66548.000-71398.000 -129636.00-112278.00-98930.000-98197.000-108356.00

A second for a second se

TOTAL ERRORS

COND	BI OCK	· 1	2	2	tı.	5
005	DLUCK			5	7	5
SOR			1 2.0000000	1 • 00000000		3 • 00000000
しいた		0000000			• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
SVF.	•		• 00000040		•••••••••••	1 1.0000000
	<u>`</u> ;	2.0000000				
5rr.		1 0000000			• • • • • • • • • • • • • • • • • • • •	
	•					1 2.000000
504		21 000000	$14 \cdot 00000000$		24.00000	1 24.000000
CLOM CLOM				$18 \cdot 000000$		
574		24.000000			24.000000	1 35.000000
L VM	S 1	10 000000			28.000000	33.000000
		19.000000	► ~ A • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$16 \cdot 000000$	25.000000	23.000000
	, ,	5. 0000000	55 0000000	1.16.000000	40.000000	42.0000000
200		27 000000	07 000000	63.000000	68 • 000000	86.000000
100 CUD	· .			24.000000	an• nn nn nn nn	33.00000
מער		16.000000	23.000000	15.000000	24.000000	20.000000
		39.000000	29.000000	30.000000	43.000000	40.000000
540	•	28.000000	3.3 • 00 0000	28.000000	33.000000	31.000000
しゃり		22.000000	32.000000	36.000000	27.000000	27.000000
COC	•	1 0000000		2 0000000		
50F.	1.	6 • MONMON	4 • <i>1</i> /1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	3.0000000	8.0000000	1.0000000
	. 1	2.0000000		1.0000000	4.00000000	4.00000000
SVE.		1.0000000	• 0000000	1.00000000	• 100000000	3.9000000
	•	2.00000000	4.00000000		5.0000000	3. 10000000
555 1555		4.0000000	1 • 47/4/01/1/1/	2.0000000	8.00000000	5. 10/00/00/0
		30.0000000	01 0000000	9.0000000	7.0000000	
		30.000000	20.000000		28.000000	29.000000
		37.0000000	05 000000		42.000000	
	S. 2	28.000000	25.000000	21.000000	2.3 • 000000	26.000000
		33.000000	28.0000000	27.000000	24.000000	23.0000000
	!	27.000000	27 000000	26.000,000	23.0000000	17.0000000
		50 000000	37 • 0000000	AO 000000	38 • 9009990	29.0000000
100		50•000000	49 •0000000	05 600000	41 • 000000	19.000000
CUD		20 000000	22 0000000	96-030000	24-000000	13.0000000
טער. סער		29 • MMMMMM	50 000000	5 A 0000000	55.000000	53.000000
570 650		46.000000	34.000000	34. MAAAAA	39.000000	AQ. 000000
150		75 000000	55-000000	29-000000	51.000000	67.000000
LFD			33 • • • • • • • • • • • • • • • • • •		31.400000000	
SOF		5.0000000	7.0000000	7.0000000	8.0000000	5.0000000
LOF		6.0000000	2.0000000	6.0000000	7.0000000	6.0000000
SVE		3.0000000	1.0000000	4.0000000	6.0000000	4.03000003
LVE		10.000000	5.0000000	4.0000000	7.0200000	5.00000000
SEE		1.0000000	1.0000000	2.0000000	4.0000000	.000000000
177		2.0000000	2.0000000	9.0000000	7.00000000	6.0000000
SOM		21.000000	26.000000	19.000000	10.000000	22.000000
LOM	S 3	19.000000	19.000000	20.000000	28.000000	30.000000
SVM		60.000000	63.000000	52.000000	15.000000	15.000300
LVM		22.000000	20.000000	21.000000	14.000000	25.000000
SEM		21.000000	17.000000	17.000000	16.000000	14.000000
LFM		13.000000	12.000000	13.000000	19.000000	1,4.000000
SOD		46.000000	51.000000	45.000000	48 • 000000	42.000000
LOD		42.000000	50.000000	44.000000	44.000000	63.000000
SVD		52.000000	58.000000	46.000000	53.000000	63.000000
LVD		58.000000	53.000000	39.000000	41 • 000000	45.000000
SFD		55.000000	63.000000	66.000000	56•000000	41 • 000000
LFD		58 . 000000	55.000000	56.000000	40•000000	53•000000

	· · · · ·					
SOE	•	1.0000000	13.000000	8.000000	3.0000000	6.0000000
1.09	,	5.0000000	3.0000000	1.0000000	4.0000000	10.000000
SVE		2.0000000	4.0000000	6.0000000	6.0000000	6.0000000
LVE	:	1.0000000	1.0030000	1.0000000	2.0000000	1.0000000
SFF	·	3.0000000	6.0000000	6.0000000	2.0000000	5.0000000
L.F.E		• 00000000	2.0000000	• 00000000	1.0000000	• 00000000
SO 4	1	21.000000	29.000000	21.000000	18.000000	26.000000
L04	S 4	10.000000	18.000000	17.000400	12.000000	15.000000
SIM		36.020000	34.000000	33.000000	28.000000	32.000000
LVM		3.0990999	8.0000000	12.000000	14.000000	10.000000
SFM		23.000000	27.000000	19.000000	16.000000	21.000000
LFM		9.0000000	7.0000000	10.000000	19.000000	26.000000
SOD		44.000000	34.000000	38.000000	40.000000	39.000000
LOD	, i	33.000000	58.000000	55.000000	44.000000	64.000000
SVD		28.000000	33.000000	36.000000	38.000000	48.000000
LVD		38.000000	53.000000	48.000000	39.000000	50.000000
SED		53.000000	51.000000	68.000000	71.000000	72.000000
LFD		28.000000	16.000000	26.000000	28.000000	33.0000000
SOE		2.0000000	3.0000000	•00000000	•00000000	S•0000000
LOE		3.0000000	4.0000000	1.0000000	1.00000000	2.0000000
SVE		2.0000000	1.0000000	• (10(1000000	1.00000000	3.0000000
LVE		4.00000000	13.000000	3.0000000	1.00000000	1.0000000
SFE	*	2.0000300	1.0000000	• 00000000	1.0000000	1.0000000
LFE		1.0000000	•00000000	• 00000000	• 00000000	•000000000
SOM		16.000000	23.000000	17.000000	39.000000	19.000000
LOM	•	10.000000	30.000000	34.000000	24.000000	25.000000
SVM	S 5	10.000000	10.000000	19.000000	18.00000	10.000000
LVM		21.000000	25.000000	18.000000	16.000000	22.000000
SEM		15.000000	9.0000000	11.000000	19.000000	8.0000000
LEM		20.000000	13.000000	22.000000	7.0000000	55•0 00000
SOD		41.000000	45.000000	37.000000	38 • 000000	30.000000
LOD		56.000000	54.000000	50.000000	32.000000	38.000000
SVD		39.000000	33.000000	48.000000	55.000000	50.000000
I VD		37.000000	28.000000	21.000000	48 • 000000	40.000000
SED		46.000000	27.000000	47 . 000000	56.000000	53.000000
1.50		45.000000	56.000000	63• 0 00000	63•000000	53.000000
-						

COND

.

TOTAL RESPONSES

COND	Block	< 1	2	3	1	-
1		79.000000	53.00000	3 76.00000	4 8 8 4 - 000000	5 2 45 000000
ISOL		76.000000	68.00000	72.00000	0 66.000000	0 03•0000000
LOF		69.000000	81.00000	3 78.00000	7 68 000000 7 68 000000	$\frac{1}{2} = \frac{1}{2} + \frac{1}$
SVE		80.000000	80.000000	7 67 00000	a = a = a = a = a = a = a = a = a = a =	$74 \cdot 0000000$
LVE		71.000000	67.000000	50.000000	3 70 000000	$\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}$
SPE		72.000000	49.000000	2 37 • 000000	7	0 68.000000
LIE		68.000000	$\langle c \sigma \bullet 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0$	7 $66 \cdot 6000000$		61.000000
SOM		5 4 0000000	50.000000		53.000000	78.000000
LOM		54.000000	53.000000	53.00000	1 56.00000	1 57.000000
SVM		48.000000	62•000000	1.65.000000	1 69.000000	1 60.000000
LVM	S1	73.000000	63.000000	62.000000	3 43.000000	1 45.000000
SFM		73.000000	57.000000	72.000000	7 58.000000	8 67.000000
LFM		64.000000	61.000000	54.000000	48.0 00000	50.000000
SOD		56.000000	51.000000	54•000000	43.00000 0	49•000000
LOD		65.000000	53•000000	47.000000	51.000000	40.000000
SVD		,71•000000	56.000000	56.000000	51.000000	57.000000
LVD		48•000000	40.000000	38.000000	47.000000	55.000000
SFD		· 56•000000	59.000000	62.000000	52.000000	65.000000
LFD		67.000000	63.000000	70.000000	71.000000	50.000000
					,	
SOE		70.000000	72.000000	64.000000	67.000000	72.000000
LOF		62.000000	85.000000	68.000000	61.000000	70.000000
CVF		60.000000	69.000000	76.000000	67.000000	63.000000
LVE		69.000000	61.000000	77.000000	67.000000	79.000000
CF6		62.000000	73.000000	48.000000	57.000000	49.000000
		61.000000	42.000000	67 000000	- 31 • 000000 - 66 - 000000	70.000000
60M		70.000000	82.000000	19 000000	7/ 000000	12+000000 50 000000
1.014		70 000000	00•000000 70 0000000	50 • 0000000	16.000000	25.000000
LOM		70.000000	12.000000	18 • 0000000	69•000000	10.000000
SVM		10.000000	62.000000	62.000000	61.000000	63.000000
LVM		100.00000	72.000000	56.000000	64.000000	69 • ИИИИИИ
5r.M		77.000000	63.000000	81.000000	54.000000	77.000000
LFM		73.000000	75.000000	78.000000	76.000000	80.000000
200	S2	66.000000	68 • 000000	76.000000	84.000000	75.000000
LOD		44.000000	81.000000	67•000000	65.000000	59 • 000000
SVD		66.000000	64.000000	64.000000	65.000000	74.000000
LVD		77.000000	79.000000	83.000000	90.000000	86•000000
SFD		73.000000	69•000000	80.000000	80.000000	70.000000
LFD		60.000000	64•000000	64.000000	59 • 000000	72.000000
_		1				
SOE		42.000000	79.000000	72.000000	85•000000	61.000000
the second se		66.000000	77.000000	64.000000	65•000000	65.000000
SVE		70.000000	64.000000	65.000000	67 • 000000	70.000000
LVE		79.000000	80.000000	65.000000	70.000000	74.000000
SFE		67.000000	78.000000	70.000000	75.000000	67 • 000000
LFF		63.000000	66.000000	79.000000	75.000000	78.000000
SOM		73.000000	74.000000	76.000000	70.000000	77.000000
LOM		88.000000	78.000000	77.000000	87 • 000000	89•00000
SVM		85.000000	77.000000	72.000000	89.000000	78.000000
LVM	00	77.0000000	72.000000	72.000000	69.000000	70.000000
SFM	23	84.000000	77.000000	67.000000	67.000000	83•000000 *
LFM		75.000000	75.000000	75.000000	73.000000	74.000000
SOD		65.000000	89.000000	88.000000	83.000000	71.000000
LOD	•	75.000000	83.000000	72.000000	94.000000	71.000000
SVD		77.000000	79.000000	85.000000	76.000000	69 • 000000
LVD	• .	77.000000	16 UNUNUU	67.000000	79.000000	82.000000
SFD	•	10.0000000	14.000000	7 4. 000000	73.000000	67 • 000000
LFD	-	00.0000000	03+000000	71.000000	88.000000	84.000000
		0200000	13+000000	11.000000		

C(N)(0)		5					
SOF			64.000000	73.000000	66.000000	73.000000	78.000000
LOF			69.000000	68.000000	62.000000	77.000000	77.000000
SVE			71.000000	64.000000	70.000000	81.000000	72.000000
LVE	:		59.000000	77.000000	71.000000	65.000000	67.000000
SEE	,		63.000000	57.000000	66.000000	63.000000	60.000000
LEE			73.000000	63.000000	81.000000	76.000000	77.000000
SOM			53.000000	60.000000	66.000000	56.000000	60.000000
1.0 %	c		68.000000	62.000000	71.000000	71.000000	65.000000
SVM	5	4	90.000000	89.000000	89.000000	88.000000	85.000000
LVM			83.000000	76.000000	70.000000	79.000000	70.000000
SEM			68.000000	65.000000	73.000000	72.000000	63.000000
LFM			64.000000	71.000000	74.000000	78.000000	69.000000
SOD			86.000000	77.000000	78.000000	85.000000	84.000000
LOD			73.000000	46.000000	66.000000	75.000000	64.000000
SVD			72.000000	82.000000	70.000000	80.000000	81.0000000
LVD			91.000000	87.000000	95.000000	98.000000	86.000000
SED			90.000000	72.000000	67.000000	88.000000	84.000000
LFD			58.000000	81.0000000	74.000000	60.000000	70.000 000
SOE			63.000000	63.000000	62•000000	70.000000	72•000000
LOF			74-000000	78.000000	69 • 000000	77•000000	65•000000
SVE			63.060000	66•000000	60.000000	72.000000	72.000000
LVF			65.0000000	64•000000	61.000000	73•000000	70.000000
SFF			71.000000	73.000000	65.000000	63•000000	69•000000
LFE			56.0000000	59 • 000000	74.000000	58 • 000000	70.000000
SOM		•	73.0000000	83.000000	85-000000	82.000000	79.000000
LOM			75.000000	90.000000	91.000000	92.000000	80.000000
SVM	S S	5	71.000000	72.000000	68 • 000000	58 • 000000	69 • 000000
LVM	-		80.000000	87.000000	74.000000	78 • 000000	80.000000
SFM			83.000000	74.000000	80.000000	76.00000	78.000000
LFM			76.000000	69•000000	78.000000	79 • 000000	79.000000
SOD			73.000000	63•000000	67•000000	79 • 000000	85.000000
LOD			77.0000000	82.000000	84.000000	74.000000	65.000000
SVD			53.0000000	60.000000	48.000000	57.000000	52.000400
LVD			68.0000000	70.000000	64.000000	65.000000	53.000000
SFI)			72.000000	56.000000	63.000000	63.000000	46.000000
LFD			62.000000	56.000000	51.000000	52•000000	63•000000

Ŀ,

COND			
	BLOCK	1 2 3 4 5	
50F.		-97765.000-63760.000-72856.000-71988.000-82121.000	•
LOF:		-95214.000-71697.000-74961.000-72749.000-80784.000	
\$VE		-71528•000-71295•000-76897•000-73985•000-67864•000	
LVE	•	-79738•000-72359•000-81633•000-93852•000-104146•00	
SFE	'	-100390.00-63756.000-57906.000-57852.000-57823.000	
LFF.		-98037.000-76358.000-74975.000-87459.000-79324.000	
SOM		-120302.00-104827.00-86955.000-116693.00-101367.00	
LOM		-125374.00-107904.00-106921.00-103767.00-103929.00	
EVM		-176610.00 - 148052.00 - 171938.00 - 156477.00 - 160977.00	
VM		-146575.00-131911.00-147050.00-130632.00-159845.00	
COM S	r 2	-167739.60-89193.600-79750.600-01775.600-00175.600-00175.600-	
DEL C	-	-170 44(- 00-1922 40 - 000-1701 20 - 000-71872-00 - 00-17205 4 - 00-	
600		-1/2456.00-160349.00-160138.00-157399.00-176954.00	
500		-151894+00-151118+00-148175+00-157637+00-138648+00	
100		-210175.00-130601.00-117354.00-124215.00-122804.00	
SVD		-107657.00-108712.00-97044.000-106928.00-106897.00	
LVD		-163483.00-146602.00-162520.00-160483.00-163916.00	
SFI)		-115296.00-100335.00-96062.000-122993.00-102437.00	
LFD		-148245•00-136085•00-145426•00-148029•00-148386•00	
SOF		-71560.000-50499.000-53455.000-54009.000-54026.000	
LOE		-79033.000-77637.000-63759.000-80008.000-79197.000	
SVE		-111035.00-96874.000-111901.00-150346.00-128125.00	
LVE		-56400.000-57333.000-57003.000-61931.000-61370.000	
SFF		-38857.000-63703.000-64711.000-56153.000-55923.000	
FF		-5603% 000-59764 000-57679 000-57229 000-67413 000	
SOM		-172634.00-125674.00-122728.00-104328.00-123774.00	
OM		-152024, 00-120014-00 122720-00 104020-00 120174-00	
SVM		-00 47 (A A A A A A A A A A A A A A A A A A A	
L'VM		-77470+000-8955+000-85615+000-86170+000-78141+000	
CEM C	0	-111990+00-132142+00-136311+00-119807+00-115412+00	
	. 2	-162010.00-144567.00-123774.00-128210.00-120129.00	
LIM		-199146-00-253276-00-112331-00-115937-00-100171-00	
		-157330.00-121043.00-115082.00-120630.00-122541.00	
CARLA C		71,45066•00-303490•00-112740•00-123649•00-138888•00	
241)		-174414.00-116966.00-123119.00-111888.00-108188.00	
C ()		-193593.00-232938.00-206399.00-149647.00-156682.00	
Srp		-107175.00-126045.00-97864.000-100852.00-96075.000	1
1. F 1)		-221784.00-178043.00-145959.00-157704.00-148695.00	
505			
205		-120930.00-60895.000-62317.000-63160.000-63003.000	
LUE		-110706.00-118702.00-152021.00-176968.00-172956.00	
SVE		-221213•00-83906•000-86347•000-77528•000-73858•000	
LVR		-122962•00-73183•000-68678•000-67608•000-65030•000	
SFE	4	-140166•00-149636•00-171145•00-153347•00-130194•00	
Liriji An		-121345•00-93083•000-127288•90-130435•00-123345•00	
SOM S	3	-116062.00-122752.00-124383.00-96318.000-120096.00	
LOM	•	-160659.00-92045.000-84228.000-80618.000-80811.000	
svm		-210547.00-165820.00-148170.00-132236.00-110224.00	
LVM		-161257.00-110816.00-110031.00-121870.00-162492.00	
SFM		-100844.00-113244.00-105286.00-115849.00-103827.00	
LFM		-128-216-00-100888-00-100375-00-108064-00-105048-00	
SOD		-152077.00-109756.00-161409.00-150567.00-105866.00	
-06		-184815.00-205090.00-165902.00-98022.000-98659.000 *	
SVD		-303512.00-153036.00-127273.00-109851.00-114118.00	
-VD		-180010-00-136061-00-173763-00-164723-00-152633-00	
SFD		-220 4 4 4 . 00- 102 467 . 00- 102299 . 00- 167814 . 00- 164745 . 00	
-FD	•	-245500 00-100401 00-0000000 00-169598 00-109162 00	
		-COJDNN+NN+246081+00-207732+00 107370+00 1.1100+00	

LUND												
SOF		-97611	.000-	11299	5.00-	88672	. 999-	98491	. 000-	87 10	2.000	2
101		-10275	9.00-	10279	7.00-	90290	.000-	96111	- 000-	1075	76.000 76.00	J A
SVE		-71902	.000-	78273	. 000-	74356	.000-	01287	• (1(3/0)-	8 400	10000 8.000	,
1 MR		-98179	.000-	80047	.000-	11160	2.00-	80346	- 000-	1208	50.00	, 1
SEE		-70232	.000-	90338	.000-	65552	.000-	72338	. 9(10)-	7683	9	ĥ
LEE		-90668	.000-	10131	4.00-	83504	.000-	94937	.000-	3786	0.000	1
SOM		-96295	.000-	11260	0.00-	91995	.000-	86550	.000-	9919	0.000	;
LOM		-94066	.000-	98493	.000-	10804	4.00-	97622	.900-	9251	6.000	J
SVM		-11881	8.00-	99291	.000-	95951	.000-	96514	.000-	9573	3.000	ļ
LVM		-11837	4.00-	10789	6.00-	113290	6.00-	11228	5.00-	12159	92.00	,
SFM		-97471	.000-	77327	. (100-	84229	.000-	88509	000-	85398	3.000	,
LFM	S 4	-10136	4.00-	97586	.000-	98486	.000-	107444	4.00-	99704	4.000	
SOD		-12643	5.00-	10831	7.00-	118942	2.00-	135335	5 . 00-	11090	53.00	
LOP		-11957	8 . (10)-	1 107 398	8.00-	94315	000-	123025	5.00-	12438	8.00	
รงก		-12399	0.00-	10515.	7 . 00-	96040.	000-	90257.	000-	11069	12.00	
LVD	,	-11741	5.00-	10622	1.00-	102903	3 . 00-	99756.	000-9	97956		
SFD	•	-98961	• (1(1)() -)	77677	.000	71102.	000-	71148.	000-0	62172		
-LFD		-10102	7 • 00-	95476	.000-9	99441.	000-	99158•	000-	11710	13.00	
						1						
SOF		-85012	•000-	79175	000-1	122655	5.00-	114954	1.00-8	36476	• 000	
LOE		154336	1.00-	101702	2•00-5	88895.	000-	106962	• 00-1	18295	0.00	
SNE		-26718	.000-1	34704.	000-1	23395	• 00-	76916•	000-1	0236	1.00	
LVE		-152399	5.00-:	321993	3.00-8	82191•	000-	130532	• 00-1	3874	18 • 60	
SFE		-86286	.000-	107315	5.00-8	13872.	000-9	95318+	000-1	0425	4.00	
LFE		-101165	5.00-	198267	1.00-1	07020	• 00-1	107002	• 00-1	2587	6.00	
SOM	•	-91595	000-1	35430.	000-1	06131	• 00-1	39 453	• 00-R	1984	• (914 G	
LOM	о г ¹	-144236	5•90-2	224095	5-00-3	194139	• 00-1	89712	• 00-8	3608	• 000	
SVM	55	-72409.	000-7	139.43•	000-8	5802.	000-8	35732.	000-8	5667	000	
LVM		-111995	5.00-1	24073	. 00-1	43626	• 00-1	34401	• 00-1	3483	7.00	
SFM		-79936-	000-7	13702.	000-9	6301•	000-9	6159 •	000-8	8919	.000	
1_F14		-150059	• • • • • •	24997	• 00-1	11673	• 00-1	00556	• 00-1	1081]•00	
SOD		-117762	2.00-1	22854	• 00-1	09469	• 00-1	04365	• 00-1	0076	7.00	
LOD		-178622	• 00-1	44654	• 00-1	53357	• 00-1	43996	• 00 = 1	2338	$\mathbf{S} \bullet \mathbf{M}$	
SVD	n in	-124663	• 00-1	11344	• 00-1	09874	• 00-1	13691	• 00-1	05114	3 • MM	
LVD		-117678	• 00-1	40868	• 00-1	42578	• 00-1	60010	• $nn = 1$	22117	1.00	
SFD		-97151.	000-1	09307	• 00-1	20365	• 00 - 1	21704	$\circ \gamma \gamma \gamma = 1$	1406	2.00	
LFD	, i	-150357	• 00-1	18281	• 00-1	99014	• 1010 - 1	10201	00-1	20100		•
		. I						•				н.
		i.	an an an taon a Taon an taon an t		-	t j	÷		···		ن ک ر در محمد میں در ا	
			-					· ·				
			•		5 - F			(•		
			• .	1	a de la			1999 - E		• •		

		2	3	11	Block	CONDITIO	พ้ •
		-1450807.4 -623421.00 -3377807.0 -1934252.6 -1711146.5 -2613615.0 -657397.00 -2539552.4 -3594951.6 -1922599.0	1290136.0- 601614.00- 3698642.0- 2133309.0- 1970543.0- 1870059.0- 673600.00- 2771315.0- 2988585.0- 1605813.0- 1813807.0-	4 -1471539.0 -646627.00 -5182675.0 -1721276.0 -1916446.0 -1964511.0 -640536.00 -3598527.0 -3094632.0 -1034050.0 -1717160.0	5 - 1009330.0 - 451882.00 - 6643910.0 - 1661423.0 - 1854466.0 - 1970286.0 - 580259.00 - 4682011.0 - 2783956.0 - 1233149.0 - 1186124.0)))))))))))))	Total latencies in S
	-1619073•0- -2513372•0- -2272289•0- -2592463•0-	-1463981•0- -2058405•0- -2512130•0- -2611962•0-	2456688 • 0- 2456688 • 0- 2463854 • 0- 2929331 • 0-	·1410743•0 ·2342159•0 ·2467095•0 ·1827022•0	-1243965•0 -2408930•0 -2451462•0 -2125939•0)) F	•
				<i>'</i> ,		•	
State in the second		•	•				
	.18.900000 70.900000 33.00020 78.000000 36.000000 31.000000	15.000000 61.000000 60.000000 76.000000 42.000000 34.000000	18.000000 61.000000 45.000000 64.000000 39.000000 30.000000	17.000000 73.000000 43.000000 90.000000 46.000000 36.000000	14.000000 77.0000000 60.000000 85.000000 45.000000 25.000000)))))	
	36-901013 42-000540 79-005005 38-001500 64-990000 64-990300	66.001.000 29.000400 80.01400 43.000000 82.000000 65.000000	71.000300 30.004000 84.000600 30.000900 63.000900 60.000000	74.000000 35.000000 61.000000 27.000000 65.000000 47.000000	67.000000 57.000000 76.000000 32.000000 61.000000 44.000000) V) V))	Total errors
	67.0992000 56.090000 62.099200	66.0000000 63.000000 57.000000	61•000000 61•000000 65•000000	67 • 000000 39 • 000000 43 • 000000	70.000000 56.000000 38.000000) F))	•
	÷		•	· · ·		· .	
and the second se	70.0000 63.0000 79.00000 84.00000 77.00000 63.00000	0 66.00000 0 62.00000 0 63.00000 0 63.00000 0 85.00000 0 88.00000	0 58.00000 0 78.00000 0 65.00000 0 72.00000 0 96.00000	0 42.00000 0 46.00000 0 42.00000 0 53.00000 0 78.00000	0 67.000000 0 79.000000 0 62.000000 0 73.000000 0 82.000000		
	73.00000 98.00000 82.000000 79.000000 94.000000 89.000000	0 72.00000 0 72.00000 0 79.00000 0 98.000000 0 73.000000 3 81.000000	0 71.00000 0 82.00000 0 86.00000 3 102.00000 3 73.000000 1 90.000000	0 57.00000 9 92.00000 9 76.00000 9 117.0000 9 63.000000 9 1.00000	0 86.0000000 0 84.000000 0 87.000000 1 10.00000 0 75.000000 0 111.00000) V))	Total responses
	111.00000 71.000000 41.0000000000000000000000000000	2 96.000000 2 96.000000 3 63.000000 3 55.000000	1 88.000000 1 104.00000 1 82.000000 1 82.000000	9 100.00000 99.000000 70.000000 67.000000	112.00000 112.00000 77.000000 73.000000)))	

APPENDIX B

This contains examples of the analysis of variance, performed on the output of program overall for each of the four experiments. This is followed by the raw data for the analyses performed on experiments 2 - 4 not given in the text.

The second second second second

Analyses of Variance in Average Information contained in a response

EXPERIMENT 1

Analysis of Recognition data only: a)

Source	df	SS	MS	F
Stim. Prob.	2	.037	.019	1.3
Within Treatment	12	.171	.014	
Total	14	.208		

Analysis of all experimental conditions: Ъ)

Source	df	SS	MS	F
Ireatments	3	•049	.016	1.6
Within Treatment	21	.215	.010	
Total	24	.264		

EXPERIMENT 2

Not including burst data: a)

Source	df	SS	MS	F
Task (T)	1	.004	.004	3.0
Stim Prob (P)	2	.176	.088	40.0
Feedback (F)	1	.032	.032	26.7
S	4	.021	.005	1.5
Τ×Ρ	2	.002	.001	.3
Τ×F	1	.002	.002	3.1
PxF	2	.027	.014	5.0
TxS	4 -	•006	.001	
PxS	8	.020	.002	<u>1</u>
FxS	4	.005	.001	
TxPxF	2	.009	.005	1.3
TxPxS	8	.023	.003	
TxFxS	4	.003	.001	
FxPxS	8	.021	.003	
TxPxFxS	8	.029	.004	

Not including unequal stimulus probability data: b)

Source	df	SS	MS	F
Task (T)	l	.0016	.0016	4.3
Burst (B)	1	.0000	• • • • • • • • • • • • • • • • • • • •	.0
Feedback (F)	-1	.0009	.0009	4.5
s	<u> </u>	.0048	.0012	5.4
ט ייע פ	, I	.0000	.0000	.1
	7	.0008	.0008	1.2
	1	.0003	.0003	1.8
		0015	.0004	
TXS	4	.0010	.0003	
BXS	4	.0012	.0002	
FxS	4	.0003	0002	. 8
ТхВхГ	1	.0002	.0002	
ΤχΒχS	4	.0009	.0002	
TxFxS	4	.0027	.0007	
BxFxS	4	.0007	.0002	
ͲϫΒϫϜϫႽ	4	.0009	.0002	

EXPERIMENT 3

Source	df	SS	MS	F
Time (T)	l	.0003	.0003	1.38
Feedback (F)	2	.0008	.0004	2.18
Difficult (D)	2	.0042	.0021	6.34
Subjects (S)	4	.0029	.0007	3.32
ΤxF	2	.0001	.0000	.36
ТхD	2	.0002	.0001	.86
FxD	4	.0008	.0002	1.25
ТхЅ	4	.0010	.0002	
FxS	8	.0015	.0002	
DxS	8	.0025	,0003	
ТхГхD	4	.0013	•0003	1.53
ТхҒхЅ	8	.0010	.0001	
TxDxS	8	.0011	.0001	
FxDxS	16	.0027	.0002	
TxFxDxS	16	.0034	.0002	

In all the above designs each main effect is tested against the interaction between itself and subjects, i.e. $F_A = \frac{MSA}{MSAS}$. The subjects effect was tested against the highest order interaction, i.e. $F_S = \frac{MSS}{MSABCS}$. In the analysis reported in pp 150 all effects were first tested against the highest order interaction.

EXPERIMENT 4

		· · · ·
Source	df SS	MS F
Treatments	.0119	.0060 1.89
Within Treatments	.0379	.0032
Total	14 .0498	

SUH1	SUB5	SUB3	SUB4	SUB5

COND

Ø.75R	•7937	•8418	•7728	•8438	•8438
F. 75R	•8239	•8155	•7532	•8091	•858 7
Ø-5ØR	•9998	•9952	•9990	•9961	1.000
F SØR	•9991	•9996	•9981	1.000	•9998
ؕ25R	•8026	•8438	•7914	•8340	•8457
F+25R	•8026	•8605	•7845	•8004	•8476
0.75D	•8218	•8239	•7868	•8218	•82.59
F•75D	•8091	•8280	•8457	•7914	•858 7
0.50D	•9995	•9996	•9995	•9981	•9999
F. 50D	•9999	•9986	•9992	•9995	•9991
0•25D	•8004	•8113	•8320	•8418	•8155
F•25D	•8113	•7655	•8399	•8259	•8340

COND	SUB 1	SUB2	SUB3	SUB4	SUB5
0.75R	•8925	•9651	•8360	•9651	•8846
F•75R	·•8457	•7868	• 5927	•8197	•7704
0•50R	•9529	•9796	.9509	•9974	•9341
F• 50R	•9017	•9986	•9816	•9985	•9924
0.25R	•8694	•8641	•9399	•9316	•9643
F•25R	-8495	•8925	•8862	•8729	•8495
0.75D	•8569	•9376	.8070	•9160	•9187
/F•75D	.7704	•8605	•9076	•8155	•8320
0•50D	- 9862	•9985	•9988	•9796	•9873
F•50D	· 9×09	•9967	•9999	•9911	•9862
ؕ25D	• 7822	•9118	•9651	•9733	•9717
F•25D	•9017	•8925	•8026	•9032	•8476

COND	SUB1	SUB2	SUB3	SUB4	SUB5
0.75R	.005	5 •0060	.0074	• 0190	• 0573
0.50R E.500	• 003 • 010	0 •0573 4 •0081	• 0391 • 0359	•0355	•0155
Ø-25R	• ØØ3 • ØØ3	1 •0123 1 •0074	·0675	•0095 •0040	• 0019
0.75D F.75D	•004 •001	0 •0195 6 •0058	•0009 •0151	• 0135 • 0282	•00000
0.50D F.50D	•007 •005	7 •0098 2 •0053	•0213 •0049	• 0333 • 0259	•0115
0.25D F.25D	•009 •009	3 •0038 3 •0061 8 •0115	•0023	•0384 •0197	•0059 •0400

Average information in S

Average information in R

Average information in T and S

	COND	SUB1 SUB2	SUB3 SU	UB4 S	UB5			
a service a strategy service statistical solution is a service service of the service service service service s	0.75R F.75R A.50R F.50R 0.25R F.25R 0.75D F.75D 0.50D F.50D F.50D F.25D	 0599 0422 0422 0491 0191 0117 0147 0148 0048 0545 	73 .0246 38 .0357 10 .0125 11 .1134 31 .0041 57 .0012 96 .0258 78 .0576 52 .0041 67 .0164 67 .0146	0042 0658 0033 0068 0018 0271 0137 0649 0143 0358 0686 0511	 1535 0836 0200 0106 1046 0453 A 0615 1057 0148 0100 0476 1144 	verage	information	in T and R
					•	, , , ,		
	COND	SUB1 SUB2	SUB3 SU	Вл си	85		•	
		1	3083 39	D4 30		i ⁱ	•	
and the state of the	0.75R F.75R 0.50R F.50R F.25R F.25R 4.75D F.75D G.50. F.50D 0.25D F.25D	.0017 .074 .0408 .370 .0046 .042 .0032 .363 .0001 .361 .0023 .439 .0071 .182 .0725 .146 .1454 .041 .0263 .094 .0139 .047 .0083 .1550	6 .3819 . 9 .2361 . 0 .2061 . 7 .4043 . 4 .2428 . 0 .1870 . 4 .2529 . 9 .3000 . 9 .2888 . 3 .3480 . 7 .1845 . 2 .1563 . 2	3409 3727 3384 5461 4438 2439 3882 3644 4785 3644 4785 3644 4785 3644 2913 4593 12913 200 2600	2044 1356 1805 3387 2894 1620 3894 2072 3078 Av 1580 3904 2748	erage i	nformation i	n S and R
1		•						
				• .		•		
						. : . : 		
	COND	SUB1 SUB2	SUB3 SUB	4 SUB	5			•
	8.75R F.75R Ø.5ØR F.5ØR 0.25R F.25R 0.75D F.50D F.50D J.25D F.25D	00090159 0018 .0437 .00020146 00630098 00510027 0057 .0047 0037 .0011 .0026 .0043 0201 .0000 .00040030 .0039 .0049 00130041	01030 0028 .0 03200 .05490 00140 01250 .01250 .0106 .0 00660 00190 0119 .00	183 .0 296 .0 7340 .0 0920 .0 1140 .0 0030 .0 1540 .0 1740 .0 5490 .0 0260 .0 155 .0	465 047 279 232 217 046 223 024 Ave 264 030 017 213	rage in	formation in	T S and R

COND	SUB1	SHB2	SHH3	SUBA	SUB5				
8					Į.				
0.75R	5.607	6.394	7.208	18.98	57.18				
F•75R	3 • 07 0	58.76	35+66	35.30	23.33				
- 59R	10.60	8.227	36.42	16.93	15.85				
F•502	3.134	12.52	66•66	9.730	8.089				
G•25R	3.064	7.616	10.50	4.053	16.64				
8-2513	4.118	19.92	•9279	13+33	8.927				
0.750	1.615	5.949	15.42	30.28	18.12	$\chi^2 df_2$	measuring	dep T a	and S
F•75D	8 • 159	10.17	21.71	31.55	45.20	. 3	5	4	
0.59D	5+323	5.430	4.977	26.29	11.79				
F• 50D	5+292	3-878	16.64	16.92	1.099				98. • 7.38
0.25D	6. 551	6.306	2.305	35.03	5.918		· ·	• •	
F.25D	6 • 7 1 0	11•19	11•46	19.64	39 • 03				

COND	SUB1	SUB2	SUB3	SUB4	SUB5	
0.75R	59•41	36.85	24.09	4.287	135.3	
F.75R	46 . 00	83.10	31.05	63.52	80.45	
p. sak	19.09	11.26	12.63	3.342	19.64	
F. 50R	1.765	-11-37	104.0	6.906	10.79	
0.25R	11.98	18.03	4.193	1.878	96.09	· · · · ·
F-25R	5.035	55.47	1.245	28.29	42.12	
Ø.75D	68 • 43	9.572	25+58	14.03	60.54	•
F.75D	147 . 6	28.43	58.06	60.76	100.3	
Ø SØD	25.10	5.346	4.218	14.50	15.25	
F 5ØD	5.(14)	11.14	16+63	36•57	10.11	x^2 df, measuring dep T and R
p-250	52.42	72.58	14.87	64.31	46 • 45	
F• ?5D	1.815	34.47	11•31	47 • 18	104.3	

COND	SUP1 SUB2	SUB3 SUB4	SUB5			
-75R -75R -50R -50R -25R -25R -25R -75D -50D -50D -50D -50D -50D	1.814 77.5 .8406 406. 4.687 42.4 3.229 339. .9708 378. 2.405 440. 7.464 189. 81.88 160. 144.0 42.5 26.81 94.6 15.11 51.1	SUB3 SUB3 SUB4 2 412.4 325. 1 292.4 403. 0 195.7 315. 6 373.0 484. 4 247.1 425. 7 202.7 263. 5 284.6 387. 5 309.9 398. 7 275.3 413. 8 327.2 416. 0 186.5 280.	5085 5218.4 6150.7 7173.7 0318.4 8282.9 3176.4 695.37 9225.0 1289.9 9156.1 093.22	x ² df ₁	measuring de	pS and R
•25D	8.782 +68.	5 173•7 272•	7 296•6			

	COND		SUB1	SUB2	SUB3	SUB4	SUB5			·		ï
	0.75R F.75R 0.50R F.50R F.25R 0.25R F.25D F.75D F.75D F.50D F.50D F.50D F.25D		1 • 2 40 1 • 8 02 1 • 0 48 6 • 2 59 4 • 499 8 • 2 6 6 3 2 • 58 2 5 • 1 3 • 9 3 9 9 1 • 8 59 1 • 1 2 2	3 17.44 2 68.25 3 14.67 3 9.534 9 12.34 5 32.58 5 4.778 3 3.476 3 .1311 9 4.204 4.344 5.796	4 13.42 5 88.11 7 33.47 4 7.688 4 6.370 8 9.046 2 18.63 5 5.030 5 5.741 4 7.021 4 5.643 5 12.02	29.71 31.58 48.60 4.965 10.12 9.777 43.59 19.77 16.13 36.13 17.81 10.63	43.66 19.99 30.11 17.50 24.34 13.73 13.53 5.859 19.84 2.353 6.873 20.22	x ^{2 df} 3	testing	3-way de TSa	ependence ind R	
	•						•	•				•
					•			•	•			
			•		•						i de la constante Constante da la constante da la	
	-										•	•
		•										
	COND		SUB1	SUBS	SUB3	SUB4	SUB5					•
									an a		*. *	
	0.75R		2.268	2.973	5.613	•2643 2•689	•7285		•		•	۰.
	Ø.50R		19.59	• 4228	4.086	2.017	3.104		•	*		
	F. SØR		3:1 - 58	1.938	4.639	8.817	33.30				•	, [,]
	F.25R		5.865	1.098	2.948	1.688	30.99	Fdf4, 7	35 testi	ng static	marity	
	0:75D	•	17.30	1.291	•8879	•7060	2.914				la	tencies
the second	F•75D		4.475	2.051	1.741	1.330	8 • 611		•			
2002	F.50D		4.496	10.50	7.263	2·554 •6543	4.538	i				
Aline	0.25D		7.015	1.856	3.937	•9597	3 • 595	•				
ι. Έ	F.25D		•8821	1•633	34.07	2.647	2•198				·	
											•	
					•				ай тар 1			
			#						•			
							•	•		•		
											•	
						1					1	•
e ĝ	COND		SUBI	SUB2	SUB3 S	SUBA S	UB5	•	•	•		
			5001	50152				•		• 	· ·	
	Ø-75R		0 001	1 05/	1 4 . 46	7063	1.098			•		
4	F.75R		8.148	1.921	10.32	4.885	•8549				*	• • •
. đ	0.50R		37.72	•8554	8 • 457 .	1.129	29.53		1		**	
	0.25R		21.39	4.671	6.275	5.738.	33+55 26+45			•		
	F.25R		10.21	13.59	23.22	4.783	1.612	Fdf4 63	5 testin	g statio	naritv	
10.00	F•75D		15.75	1.995	13.07	2.041	11.25		latenc	ies igno	ring fir	st 100
	A. 50D		37.16	6.227 17.00	1.269	10-32 6-307	2•348 6•016		•			tando
	F. 50D		7.741	1.818	17•69	1.896	2.613					words
	F•25D		5.049	7188	5.990	2.385	7 . 266					
			14•81	1•262	13+43	1 • 1 37	1 - 0 - 1					
							• 1.		· · · ·	. *	•	

COND	SUB1 SUB2 SUB3 SUB4 SUB5	
0.75R F.75R 0.50R F.50R 0.25R F.25R 0.75D F.75D 0.50D F.50D 0.25D F.25D	2.442 2.134 15.21 1.112 1.054 4.114 3.255 23.07 7.994 1.214 9.273 $.6572$ 6.337 $.7585$ 24.91 24.43 2.599 9.282 5.612 29.28 6.916 3.864 12.06 2.173 14.26 4.314 9.411 17.33 4.493 $.6848$ 30.31 2.597 7.146 1.466 4.667 24.13 2.622 $.7581$ 7.547 3.975 31.13 22.91 18.11 4.607 10.41 6.287 2.201 7.530 1.974 1.146 7.642 $.9165$ 4.501 3.333 3.634 13.27 4.927 32.73 $.6041$ 4.969	F df4, 535 testing stationarity latencies ignoring the first 200 trials
•		
		•
COND	SUB1 SUB2 SUB3 SUB4 SUB5	
0.75R F.75R 0.5ØR F.5ØR U.25R F.25R 0.75D F.75D F.75D F.50D	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ffd4, 65 testing stationarity errors
0.25D F.25D	•4876 2•237 •1405 •6179 2•212 •6584 •6583 3•023 2•418 1•757	
		•
COND	SUB1 SUB2 SUB3 SUB4 SUB5	
0.75R F.75R G.50R F.50R G.25R F.25R G.75D F.75D G.50D F.50D F.50D F.25D F.25D	$3 \cdot 232' \cdot 5032 \cdot 5922 \cdot 7785 4 \cdot 717$ $1 \cdot 122 1 \cdot 148 4 \cdot 893 1 \cdot 204 \cdot 7557$ $8204 1 \cdot 337 2 \cdot 087 \cdot 8170 2 \cdot 193$ $7240 \cdot 8775 1 \cdot 397 1 \cdot 167 \cdot 7879$ $2 \cdot 321 2 \cdot 451 \cdot 9843 2 \cdot 130 1 \cdot 500$ $2 \cdot 488 1 \cdot 834 1 \cdot 305 4 \cdot 071 \cdot 7173$ $1 \cdot 593 \cdot 7195 \cdot 3528 2 \cdot 048 \cdot 5869$ $1 \cdot 211 1 \cdot 376 1 \cdot 545 \cdot 8943 \cdot 1935$ $4 \cdot 353 \cdot 5288 \cdot 0458 \cdot 7970 2 \cdot 836$ $1 \cdot 498 2 \cdot 526 \cdot 7024 \cdot 3679 \cdot 4851$ $1 \cdot 275 \cdot 2881 1 \cdot 360 \cdot 3124 \cdot 5972$ $2 \cdot 554 \cdot 4627 2 \cdot 651 \cdot 9351 \cdot 9152$	Fdf4, 65 testing stationarity responses

Ï

	1	х.	
	COND	SUBAL SUB2 SUB3 SUBA SUB5	
	4.00	5001 5002 5000 5004 5 005	
	· .	·	
	0.750	055 g 101 0 170 1 14 go of 50	
	0.75K	255+8 121+2 172+1 16+83 91+52	
	F•75R	152.1 41.20 184.6 9.280 65.04	
	9.50R	367.9 130.4 68.62 21.03 96.34	
	F. 50R	228 • 8 24 • 67 53 • 97 41 • 86 174 • 6	
	0.25R	565+6 37+07 80+97 18+24 136+5	X ² df9 testing first order dependence
	F.25R	223.4 70.65 73.30 27.81 75.05	latencies
	0.75D	319+6 28+68 119+7 6+204 167+6	•
	F.75D	286.1 55.74 27.21 36.86 101.9	
4	0.500	112.5 40.36 72.44 44.02 75.77	
1	F. 500	170.7 47.00 33.81 11.97 68.56	
1	0.250	196.7 48.69 64.59 13.58 104.6	
	F.250	178-8 15-56 44-05 42-01 148-6	
Ś			
		· · · ·	
	(·		
	1		
		,	
	1		
19	COND	SUB1 SUB2 SUB3 SUB4 SUB5	
	1		
	0.750	95.02 (2 19 75 07 44 40 60.97	
ð	F. 75D	0J+V0 00+10 13+71 44+46 00+01	
1		14.85 54.36 43.51 48.58 55.02	
13	0.50K	161.0 38.78 55.39 33.85 56.44	X24F36 testing second orden
	1.50R	77.14 40.46 44.81 40.76 124.1	dependence latoraios
1	0.25R	196•9 44•14 47•04 42•61 59•42	dépendence ratencies
rit N	F+25R	58.33 54.28 59.83 55.43 37.35	
1	0.75D	76.00 48.49 72.67 40.78 143.9	
3	F•75D	156.3 40.81 45.73 43.83 105.7	
194	0.50D	38.85 52.92 36.58 54.61 41.00	
Sec.	F.50D	88.90 50.22 56.58 22.79 44.88	
10	0.25D	89-15 56-50 31-39 50-92 107-3	
大学	F-25D	121.0 68.67 36.35 38.12 79.33	
-			
	-	•	
	•		
	•		
		·	
Ì			
Í			
1	CONO		
	10100	SVB1 SUB2 SUB3 SUB4 SUB5	
-	/		
1	10 7-		
- 2	0.75R	65+31 8+462 8+407 +3118 5+133	
4 * 4	1.75R	133.7 3.362 1.408 .1803 .2439	
15	0.50R	20.48 .5503 3.025 2.594 2.210	W2dfl tosting first orden dependence P
÷,	1 • 50R	36.46 .4810 4.716 1.628 4.119	V-OIT CEOCHIR ITTOL OLOGI, OEDEHOENCE V
	0.25R	222.7 4.130 16.77 2.067 26.13	
	F.25R	25.82 .0616 60.31 7.550 3.317	
	0.75D	57.40 1.503 12.88 2.574 .7898	
*	E.75D	25.44 . 32/3 1.00 A . 9115 . 3254	
	9. 50D	10.50 .040 4. 400 . 2005 1.575	
	F. 50D	20.04 0 111 0.140 0.270 11995	
	0.250	CT+C4 C+[1] C+10C C+310 +1775	
	F-250	150 0 111 10500 34031 04000 150 0 1115 1050 34031 04000	
		120.3 .1112 .1723 .0210 .2071	

COND	SUB1 SUB2 SUB3 SUB4 SUB5	
0.75R F.75R	2.597 12.82 1.567 .3711 1.473 .1188 .3270 8.664 2.623 5.393	
0.50K	5.333 .6566 15.06 .0912 7 285	X ² df tooting area in a
6.25R	22.11 3.002 .9748 .0227 11.24	x-ci 2 testing second order
F125R	2.363 1.922 18.20 1.488 6.188	dependence K
0.750	25.61 5.304 .7575 2.025 1.060	
F.75D	8.267 1.999 1.471 .6470 .2773	
0.500	12.79 .0787 3.786 2.386 .8899	
F• 50D	25.37 4.556 2.918 1.228 1.501	
0.25D	4.721 1.822 .6423 1.818 4.861	
Fy25D	9.163 4.235 1.724 4.107 5.916	
•		
•		
,		
ĆOND	SUB1 SUB2 SUB3 SUB4 SUB5	
	· ·	
0.75R	7.375 12.57 9.212 .2090 .0808	
F•75R	9.136 1.800 .4772 .1035 .2519	
M-50R	• 0316 16•71 19•51 4•863 13•34	v2as
1.05P	•0569 •0488 •0562 •1237 1•519	^{x-dr} 1 testing first order dependence
0.20K		errors
0.750	14.65 • U239 34•17 • 2984 • 8618	
F.750	2 622 6260 5100 0 626 9820	
0.500	2.268 .1871 5.132 2.403 2.084	
F. 50D	3.154 1.917 1.621 .1832 .2721	
0.250	8.190 .5317 .7367 1.354 1.043	
F.250	9.068 .5187 .2410 .3345 3.888	
	· · · · · · · · · · · · · · · · · · ·	
	· · ·	
	· · · · · · · · · · · · · · · · · · ·	
	· · ·	
	· · · ·	
	1	
COND	SUBI CURO CURO CURA SUBS	
	2001 2008 2002 2004 2005	
·]	· · · ·	
19.75R	2.060 4.513 1.976 1.812 6.225	
F•75R	4.835 .4117 .7763 .0460 5.527	
10.50R	1.467 1.707 11.39 .5211 2.201	
11.30R	2•177 2•236 3•109 •5935 •0549	X ² df ₂ testing second order dependence
1.250	5.732 3.754 6.041 3.576 1.672	- errors
10.750	10.64 2.783 7.914 4.151 13.04	
F.750	3.544 5.115 .3744 2.605 2.113	
0.500	6 • 127 4 • 206 1 • 337 • 4785 2 • 125	
1.50n	7.357 .4504 6.162 .1155 4.528	
P-25D	1.012 12.02 .8698 2.209 2.612	
·25D	1.003 4.342 6.200 1.242 4.640	
	1.561 .9548 8.118 1.912 3.175	

••

;

COND	SUM SUB2 SUB3 SUB4 SUB5	
0.75R F.75R 0.50R F.59R Ø.25R F.25R Ø.75D F.75D Ø.50D F.50D Ø.25D F.25D	76.9924.9428.038.97919.12242.725.847.2155.3997.38627.5926.4340.8434.1025.25160.818.8724.325.96311.42230.419.3239.907.34665.00280.212.96109.916.7516.2268.6029.7522.184.02911.9259.809.77211.9810.949.61163.526.28524.275.4257.79541.2613.659.72713.2022.02120.99.11413.1114.1511.06206.77.3738.84414.6110.19	X ² df _g testing first order dependence SR sequences
COND	SUB1 SUB2 SUB3 SUB4 SUB5	
0.75R F.75R G.50R F.50R 0.258 F.258 0.750 F.750 F.500 F.500 F.500 F.250 F.250	A8.49 47.61 41.06 20.06 34.47 26.97 44.91 34.30 31.87 58.43 73.78 67.38 56.63 39.99 39.26 34.03 30.68 51.04 38.77 52.81 66.75 61.19 30.38 26.16 35.13 40.21 25.21 51.12 38.92 66.50 68.44 36.87 23.04 26.20 24.79 44.09 42.56 42.23 34.22 23.59 50.82 35.77 46.70 25.17 30.58 50.47 53.34 33.15 23.48 35.32 39.69 40.66 66.23 26.90 49.70 45.56 40.11 50.34 36.39 41.12	X ² df ₃₆ testing second order dependence SR sequences
COND	SUB1 SUB2 SUB3 SUB4 SUB5	
0.75R F.75R 0.5ØR F.5ØR F.25R 0.75D F.75D 0.5ØD F.5ØD Ø.25D F.25D	$\begin{array}{r} -919\cdot 3-590\cdot 1-644\cdot 9-734\cdot 8-624\cdot 7\\ -1003 -443\cdot 9-1485 -578\cdot 5-704\cdot 9\\ -1897 -925\cdot 9-1236 -879\cdot 7-815\cdot 5\\ -694\cdot 9-472\cdot 9-741\cdot 4-591\cdot 4-1118\\ -467\cdot 5-535\cdot 2-630\cdot 0-672\cdot 9-521\cdot 3\\ -604\cdot 9-443\cdot 8-1087 -702\cdot 4-849\cdot 5\\ -1319 -504\cdot 0-741\cdot 1-691\cdot 5-834\cdot 5\\ -847\cdot 9-490\cdot 1-844\cdot 4-875\cdot 0-768\cdot 3\\ -1450 -561\cdot 2-727\cdot 0-714\cdot 9-734\cdot 8\\ -1185 -719\cdot 8-625\cdot 8-715\cdot 6-593\cdot 3\\ -1618 -596\cdot 3-907\cdot 1-904\cdot 5-494\cdot 4\\ -1041 -557\cdot 9-1439 -823\cdot 1-720\cdot 6\end{array}$	Total latencies () ignoring sign

٤,

·

• 1

COND	SUBI	SUB2	SUB3	SUB4	SUB5
0.75R	3 • 407	2•236	2.379	2.086	1.979
F•75R	3.050	2.379	3.871	1.336	2.393
0•50R	1.879	7.236	7.621	2.129	13.16
F•50R	4.036	1.143	3.093	• 3357	4.086
0.25R	8 • 443	1.550	7.736	• 6929	3.229
F•25R	2.657	1•321	1.286	3.736	1.300
0•75D	5.907	•3571	1.121	2.586	2.371
F•75D	1.979	2.300	•9786	4.193	2.907
0.50D .	12.20	5.021	•8786	•9429	1.236
F• 50D	3.236	7.550	2.664	1.764	•8071
0.25D	1 • 407	3 • 479	• 3357	•8786	4.907
F.25D	2.193	1 • 129	5.371	3.414	2.086

Var total errors in each 140 trials

COND	SUB1	SUB2	SUB3	SUB4	SUB5
0.75R	10.88	1.979	1.764	1.800	8.486
F•75R	5.843	2.179	7.914	2.607	1 • 593
50R	4.164	4.307	4.879	1.943	7.771
F•50R	2.879	2.193	5.450	3.307	3.229
0.25R	16.23	5.343	2.521	5.193	8.071
F•25R	5.800	3.800	6.950	8.764	2.521
3•75D	7.550	1.479	1.236	5.236	1.521
F•75D	4.121	2.821	2.979	1.893	• 41 43
9.50D	16.79	1.250	•1571	1.979	7•629
F•50D	9.036	5.443	2.479	1.200	•9500
0.25D	5.664	. 6214	4.093	•7857	2.264
F•25D	13.44	1.229	6.200	2.400	2•443

Var total responses in each 140 trials

d

COND	SUB1	SUB2	SUB3	SUB4	SUB5 /
BØR	1.000	•9977	1.000	1.000	•9999
KJR	•9998	·9952	•9990	•99.61	1.000
BER	•9981	•9983	•9997	1.000	1.000
NFR	•9991	•9996	•9981	1.000	•9998
BOD	.•9997	•9996	•9986	1.000	1.000
NØD	•9995	•9996	•9995	•9981	•9999
BFD	1.000	•9999	•9959	•9955	•9993
NFD	•9999	• 9986	•9992	•9995	•9991

Average information S

Average information R

S

COND	SUB1	SUB2	SUB3	SUB4	SUB5
					•
BØR	•9979	•9998	•9996	•9939	•9651
NOR	•9529	•9796	•9509	•9974	•9341
BFR	•9762	1.000	•9997	•9935	•9477
NFR	•9017	•9986	•9816	•9985	•9924
BOD	.9776	•9967	•9952	•9999•	•9911
NØD	• 9862	•9985	•9988	•9796	•9873
BFD ·	•9783	•9991	•9846	•9979	•9952
₩ D	•9809	•9967	•9999	•9911	•9862

!

COND	SUBI	SUB2	SUB3	SUB4	SUB5		
BOR	.0046	.0021	• 0529	.0140	.0064	•	
NOR	.0104	.0081	•0359	•0167	•0155		
BER	• 0020	.0027	• 0162	• 008 4	•0169		
NFR	•0031	•0123	• 9675	•0095	•0079		
BOD	• 0006	.0036	.0058	.0392	•0071		· Committee II and
N9D	.0052	•0053	.0049	• 0259	.0115	Average	e information I and
BFD	• 0089	.0048	.0031	• 0293	.0177		
NFD	.0052	.0038	.0164	•0166	.0011		

	(m)						
	COND	SUB1	SUB2	SUB3	SUB4	\$11B5	
		0014	0000	0551	0150		
	BØR	• 0014	• 0032	• 0551	• 0153	•0132	
1	NOR	• 0191	• 9110	• 1120	• 0033	• 02.00	21
	Br R	• 07 17	• 0040	• 1124	• 0000 • 0049	• 0343	Avena
	Nº K	• 0017	• 0 0 0 5	• 1104	• 0000 • 0308	• 0100	,
	NGD	. 0217	.0052	.00.45	-0100	.01 /8	
	DED	• 0011	.0045	.0102	.0188	.0199	
	NED	.0049	.0110	.0164	.0358	.0100	
	INF D					••••••	1
	· ·						
	1						· ·
	1						
							•
					. ,		
	COND	SUB1	SUBS	2083	SUB4	SUB5	
							•
	bab	0000	. 2041	. 2119	. 6056	. 03 41	
	and a	• ()()(()	• 3001 • 0400	• 3110	• 0030 • 778 A	• 1805	
	UC D	• 0040	• 0420	• 2001	• 3364 • 3074	-1862	
	NED.	• 0001	• 2693	• 41 41	- 54610	• 1002	
	200	• 00560	• 0000	. 3530	-5443	• 0 7 0 7	Avera
		- 1 4 5 4	. 0.019	• 0 0 0 0 0 0	. 4785	.3078	
ł	BED	.0026	.0696	-2581	. 4916	.0861	
4	NFD	• 0263	.0943	• 3480	• 4593	•1580	
	1		ı				[
							1.
	i		•			•	· · ·
			•				
	-34		,				• •
			ł				
	4						
	4					•	•
			•				
	UND	SUB1	SUBO	SUB3	SUB4	SUB5	
		• •	•				
	ban						
	Na R	-•0038-	• 0169	•0332	• 0023-	• 1213	
	AFD .	- 2008-	• 0146-	• 0320-	•0/34=	0217	•
	JE D	- 0004-	•0157	• 10/35*	• 0040-	0000	
	an		•0098 - 0010-	•0349"	- 0012-	• WGJG	
		- 0213-	• VIVI 9*	• 97293=	* • 0014 • 017 A-	- 004J	Avera
	FD	- 0201	• N00N• - 0.0 47 -	* • ØØ66" • . Ø7 7 4	- 0114-	. 00774	
	FD	- • Ø143*	• NØ41*	· 0134	- 05 AD	. 0030	
		• 10047	• ୧/୧/ 3/0*	• • • • • • • • • •	・・センタイプー	* 0030	

Average information T and R

١

Average information S and R

Average information T S and R

	COND		SUB1	SUB2	SUB3	SUB4	SUB5	1
	1							•
				~	50 04	1 4 33	1 500	
	BØR		4.692	2.142	53.00	14.33	15.25	
	NOR	•	10.60	8.227	36+42	16+93	12+03	
	BFR		2.097	2.731	16•41	8.622	1/+14	
	NFR		3 • 134	12+52	66+66	9.730	8 • 089	X ² df ₂ measuring dependence T and S
	BUD		• 5786	3.651	5+914	39 • 40	7.238	· · · · · · · · · · · · · · · · · · ·
	NØD		5+323	5 • 430	4.977	26.29	11.79	
and the second se	BFD		9•097	4.946	3 • 153	29+56	18.06	
	NFD		2•535	3•878	16.64	16.92	1.099	
	1					•		
	<u>]</u>						•	
	1							
	Ý					,		
							•	
	ſ						•	
i								
	COND		SUB1	SUB2	SUB3	SUB4	SUB5	
							•	
	BØR		1.410	3.287	54.92	15.57	13.23	
	NOR		19.09	11.26	12.63	3.342	19.64	
	BER		22.01	4.734	14.16	8.176	34-11	
	NER		1.765	11.37	100.0	6.906	-10.79	
्य	BOD		A-077	.5774	4.658	31.15	42.57	
्य	NAD		25.10	• JOIN 5.0046	A-218	14.50	15.25	X ² df ₂ measuring dependence T and R
	BED		4.750	J#046	10.13	19.02	20.15	
	NED		5-041	11.10	16.63	36.57	10.11	
1100			34041	11014	10.00	00.01	•••••	
ļ				· •			· ·	· · · · · · · · · · · · · · · · · · ·
Π					•			
K				1 J		. ,		
							•	
4		1		,				
				•				
	2			.'				
	COND		C110 1	CUD0	C1102	SURA	SUB5	
	00110		2001	5002	3000	E)()(),		
				, , , , , , , , , , , , , , , , , , ,				
	BAD			000 0	00/.0	520.8	34.66	
	NAD		• 0000	290.0	270.0	215.7	173.7	
្ឋា	BER		4+687	42.40	173+1	27 / . 7	179-8	
	NED		•1165	250.3	382.4	01441 AQA-A	318.4	
1	Ran		3.229	339•6	313+1	40 4 V	71.26	X ² df ₁ measuring dependence S and R
	N/01 D		56.66	•0105	075.0	A12-1	289.9	
!	BEIG		144.6	42.57	213+3	41011	86-61	
1	NED		2.669	79.21	247.3	44444 A12.0	154-1	
	117") ·		26.81	94•68	321.2	41007	1 30 4 1	
ł				1 .				
,				1				
÷			**	2.1				
				•			· · · ·	• A B B B B B B B B B B B B B B B B B B

.

		1					
l co:	ND	SUBI	SUB2	SUB3	SUB4	SHB5	
						•	
50	R	3.471	7 • 382	1 • 482	1.922	25.03	
NO	R	1.048	14.67	33 • 47	48 • 60	30.11	
BF	R	• 5819	12.03	3.726	5.422	19.75	X ² df, tooting 2-tion dependence T S and P
NF	R	6+250	9.534	7•688	4.965	17.50	r org testing s-way dependence i s and k
80	D	26.24	1 1.941	14•15	11•41	8•778	
🗿 NO	D	25+13	3 • 1311	5.741	16.13	19.84	
BF	D	16.18	8 2 • 493	56.01	6.209	13.90	
NFI	D	•9399	4.204	7.021	36.13	2•353	
					•		
هيد 👔	÷-						
- T							
				•			
	•				•		
					4		
1001	ND	SUBI	SUB2	SUB3	SUB4	SUB5	
			0000	0.000			
Bai	R	-8379	1.355	.2498	1.251	2.533	
NOI	R	10.59	. 4228	4.086	2.017	3.194	
RF	R [.]	4-553	.7185	2.918	1.288	1.982	
NE	R	30.58	1.938	4.639	8.817	33.30	Fdf4,735 testing stationarity latencies
RØI		0.707	1.381	4.656	. 6782	12.49	
NA		0.755	10.50	7.263	2.554	4.538	
RE	ວ ດີ	7 1 3 3	1.454	4.117	. 78 45	5.496	
NEI	0	4.394	7 453	13.86	. 6543	5.316	
		4 • 470	• • • • • • • • • • • • • • • • • • • •	10.00	•0340	0.010	
	•	•					
						•	
	•						
						•	
							$\mathbb{E}^{(n)}$ is the set of the s
					•		
Co	ND	<i>e</i> 115 1	cupo	C1102	CHRA	SUBS	
1.	VU ,	20131	SURS	5000	3004	3005	
ſ.							
RA	D	10.0		0/50	1.077	3. 114	
NG	5 17	10+82	1 2.614	• Y 6 3 9	1 100	00.53	
20	D .	37.72	· · · · · · · · · · · · · · · · · · ·	6+45/	1+167	5,001	
ME	Ω	11+55	•7543	J+610	4 . 7 . 1	32,55	Fdf4,635 testing stationarity latencies
RA	יי ח	21+39	4.671	0.212	J+730	13.50	. ignoring first 100 trials
MA	ע ה	4.741	1•141	11+33	1.000	4.014	
105	ע ה	32•54	17.40	10.50	1.707	0.257	
NE	ບ	5.956	5 1 • 439	6.041	1 + 170	7.031	$\mathcal{L}_{\mathcal{A}}$ is the set of the
	U '	7•741	1+818	17+69	1.070	6.01J	
					an a		
						•	
		*	•				f_{i} , which is the first state of f_{i} , f_{i} , f_{i}
	•						

COND		SUBI	SUB2	SUB3	SUB4	SUB5	
							· · · · · · · · · · · · · · · · · · ·
BOR	1	12.34	•7851	•1170	• 5197	3.629	$\mathbb{E}^{(n)}$, \mathbb{E}
NOR	9	9•273	• 6572	6 • 3.37	•7585	24.91	
BFR	5	5 • 178	•9078	1•697	5.097	2.748	
NFR	2	24•48	2•599	9•282	5.612	29•28	Fdf4,535 testing stationarity ignoring
BØD	•	6436	1 • 451	9•250	1•550	15.02	first 200 trials
NØD	. 3	31 • 13	22.91	18 • 11	4.607	10.41	
BFD	1	8 • 53	1.440	4.097	1.640	6 • 131	
NF D	6	• 28 /	2.201	1.530	1.974	1+146	
				•			
÷.							
					• •		
0							
				8			
l i					*.		
COND		SUB1	SUB2	SUB3	SUB4	SUB5	
				•	9 a		
BØR		0852	2.174	• 5393	3.028	•7860	
NØR	•	9316	2.359	2.036	1.169	5+458	
NED .	. 1	•895	• 4178	• 3683	1.203	2.327	
Ban	2	• 016	1.083	2.134	• 3540	2 • 101	Far4,65 testing stationarity errors
NØD	3 A	• 001	1.711	• 7202	• 6223	•0756	
BFD	2	• 450	2.676	2.568	•9493	4.160	
NFD	1	•222	2.615	1.874	1.647	• 3366	
			•			•	
		•				•	
1				·			
•				1 C			
COND		SUBI	SUBO	SUB3	SURA	SUB5	
		0001	0006	.,000	5004	0000	
•				•			
BØR	1	•068	S• 665	3.506	1.405	2.464	
NOR	•	8204	1.337	2.087	•8170	2.193	
BFR	•	2311	•8040	1.505	1.632	2•292	Fdf4,65 testing stationarity responses
NFR	•	7240	•8775	1•397	1 • 167	•7879	
DUD Ngd	5	• 203	1.221	• 47 1 1	• 47 59	1.162	
RED	4	•353	• 5288	•0458	•7970	2.836	
NFD	6	•276	1 • 1 19	6.026	• 6 4 9 8	• 6581	
	· 1	• 49.8	2.256	•7024	• 3679	• 46 51	
] :	• .	1.00			•	1. 1. 1. 1 . 1.	
1				•		•	

š. 1

COND	SUB1	SUBS	SUB3	SUB4	S085
BOR	212.3	14.06	69.27	6•011	153+9
NØR	367.9	130.4	68 • 62	21.03	96•34
AFR	97.57	5.947	56.60	13.74	44•22
NER	228.8	24.67	53.97	41.86	174.6
RAD	49.31	63.82	49.92	15+65	84•44
NAD	112.5	40.36	72.44	44.02	75.77
BED	277.8	62.57	76.46	11.80	81+51
NFD	170.7	47.00	33.81	11.97	68•56

X²df₉ measuring first order dependence latencies

3.

COND	SUB1	SUB2	SUB3	5064	3000	
		2 A.			•	
ado	70.00	45.70	39.01	54.23	142.6	
NAD	101-66	20.78	55.39	33.85	56.44	
PED	101.0	30.83	38.39	30.71	58 • 33	
NED '	77.14	AG - AG	44.81	40.76	124.1	x ² df _{ac} measuring second order
RØD	07. MM	34.80	29.06	31.16	44•68	dependence latencies
NØD	- 38.85	52.92	36.58	54.61	41.00	
BED	179.4	47.89	54.09	57.34	81 • 45	
NFD	88.90	50.22	56.58	22.79	44.88	그는 것 이 가지는 것을 잘 했는 것이 있는 것이 많이 가지?
	0.9 - 7 17	*			2	· · · · · · · · · · · · · · · · · · ·
				•		
		· · · · ·				
		1				
24		1 a. 1				
. 1 1		¥ -			•	\mathbf{V}_{i} , where \mathbf{V}_{i} is the second
		$E_{\rm e}$				일 같은 것 같은 것 같은 것 같은 것 같은 것 같이 다. 🖡 🖓 관계
	<u>.</u>	.1				
	·					
	•	. 1 .			aup F	
COND	SUB1	SUB2	_ SUB3	SUB4	SUBS	
	•				1	na se en la seconda de la s En la seconda de la seconda
	· .			-	1007	
BOR	108 • 2	2 21 • 47	1.361	.0105	0.010	
NOR	20•48	• 5,503	3.025	2.594	A. 145	v2df: massing first order dependence
WFR .	8 • 365	5 12 49	5.508	•9052	A 119	responses
NF R	36•46	5 • 4810	4.716	1.620	1 . 1008	
10:01) .	24•87	• 0075	1 • 189	3.120	. 1.575	
1001) BED	19 • 52	• 0634	8 • 429	• 0003 •	. 4025	
	2.008	3 • 2295	2.806	0.370	. 1995	$\mathbf{h}_{\mathbf{k}} = \mathbf{h}_{\mathbf{k}} \mathbf{h}_{\mathbf{k}}$
shar. D	22.54	a 20111	5.105			

COND	SUB	1 SUB2	SUB3	SUB4	SUB5	
						•
BOR	81.9	Ø •8370	2 • 458	6.644	3.980	
NOR	39.7	5 24+28	1.924	•9923	%	
BFR	42•Ø	2 .0800	1.634	1.135	• 6723	
NFR	5.33	3 • 6566	15.06	• 0213	7 • 38 5	
BAD	5.72	4 1.024	10.75	2.621	1.820	X ² df, measuring second order dependence R
NOU DED	12.7	9 •0181 1 5-020	3+786	2+386	•8899	
NED	25.3	4 3•030 7 A-556	2.01g	+/330 1.00g	2.134	
	2200		2	1.4220	1.301	
		1			•	
					•	
Į						
					•	
{						
CONO			<i></i>			
LOND	SOB	1 \$082	SUB3	SUB4	SUB2	
	•					
BØR	. (192)	1 2.250	14.21	.9036	.2519	
NOR	• 0316	5 16.71	19.51	4.863	13.34	
BFR	•0055	5 .0971	• 6473	• 0033	• 3400	
MFR	• 0569	.0488	.0562	.1237	1.519	
BOD	• 1117	• 5493	• 4612	1 • 436	• 3377	X ² df, measuring first order dependence
NOD	S•268	3 . 1871	5.132	2.603	2.084	responses
BFD	•Ø292	• 0888	6•995	3+118	1.357	
INF D	3.154	1.917	1.621	•1832	•2721	
-		•				
1						
i -						
	*					
COND					au 10 c	
COND	SUB1	SUB2	SHB3	SUB4	SUBS	
BØR	5.704		6.100	16.37	2.846	
NØR	1.487	1.707	11.39	.5211	2.201	
BFR	.5429	.0748	.0381	3.370	2.730	
NF R	2.177	2.236	3.109	. 5935	.0549	
BØD	•8649	3.697	1.024	1 • 199	1.968	
NØD	7 • 357	• 4504	6 • 162	•1155	4• 528	X ² df ₂ measuring second order dependence
BFD	1.051	•2402	3•935	4.781	1 • 196	responses
NFD	1.012	12.02	•8698	2.209	2.612	
1 · ·			÷ 7	• • • • • • • • • •	• *	이 가는 것이 있는 것이 있는 것이 같은 것이 가지 않는 것이 있는 것이 있는 것이다. 이 같은 것이 같은 것이 같은 것을 못했지만 않는 것이 같은 것을 많은 것이 있다.
1						- 2017년 - 1월 19일 - 2월 br>2월 19일 - 2월 1
1	•		. '	•	•	
			•	-	. * .	
[

• .				а,
COND	SUB1 SUB2	SUB3 SUBA	CHRS	
COND	3001 3002	3000 3004	3005	
DAD	114.0.26.19	20.77 0 201	a ann	
NØR	27.59 26.43	40.84 34.10	25.25	
BFR	14.03 21.39	33.07, 9.315	5.679	X ² df manumink fingt and an dependence
NFR	160.8 18.87	24.32 5.963	11•42	SR sequences
BØD	36.10 9.620	9 • 597 6 • 151	8.868	
NØD	63+52 6+285	$24 \cdot 27 5 \cdot 425$	7.795	
NFD	41.26 13.65	9.727 13.20	22.02	
• · · ·				
1				
•				•
				· ·
COND	SUB1 SUB2	SURA SURA	SUBS	
00.10	3001 300C	3023 3024	0000	
. '				
BOR	137.4 44.69	43.45 32.57	53.96	
NØR	73.78 67.38	56+63 39+99	39.26	12.10
NFR	34.03 30.68	51.04 38.77	52.81	X ² di ₂ measuring second order
BØD	34.09 40.50	44.69 29.08	56 • 59	dependence SK sequences
NØD	50.82 35.77	46.70 25.17	30.58	
BFD	53.80 34.72	57.92 26.96	37.61	
	50+47 53+34	33+15 23+48	33032	
		•		
			•	an a
		١		
•				
COND			CHDS	
	PORT PORS	3003 3004		
_				
BOR	-785 • 0-457 • 3-	-744•4-540•7-	467 • 4	
ANN Ard	-1897 -925-9-	-1236 -879.7-	815.5	
NFR	-765+3-511+2+ -694-9-479-9-	- 61/4+ 4- 568+3* - 7 1 - 1- 501 - 1-	047.0	Total latencies () imming
BØD	-1072 -619.9-	896.7-657.2-	852.8	Inter Tereneres () Think The
NØD	-1450 -561.2-	.727.0-714.9-	734.8	
BFD	-1547 -763.5-	-1679 -566.6-	773•7	
INC D	-1185 -719.8-	•625•8-715•6-	593+3	

.

. .

· ..

COND	SUB1	SUB2	SHB3	SUB4	SUB5
BÓD	1400	·) 097	1 097	0 771	
DUK	• 1646	3.986	1.086	2.111	1.879
NØR	1.879	7•236	7•621	2.129	13.16
BFR	4.593	• 5500	• 5500	1.714	4.979
NFR	4.036	1.143	3.093	• 3357	4.086
BØD	7.907	1.464	•8714	.0214	2.629
NØD	15.50	5.021	•8786	•9429	1.236
BFD	6 • 521	7 • 193	6.093	1.121	8 • 557
NFD	3•236	7 • 5 50	2.664	1.764	•8071

Var total errors in each 140 trials

.

.,

21

COND	SOBI	SUB2	SUB3	SUB4	SUB5	
BOR	10.00	5•693	8 • 407	4.800	6 • 450	
NOR	4.164	4.307	4.879	1.943	7.771	
BFR	1.050	2.521	5.093	6.057	7.907	
NFR	2.879	2.193	5.450	3.307	3.229	
BØD	4.807	3.379	1.557	1.679	3.157	Van
NØD	16.79	1.250	.1571	1.979	7.629	ver.
BFD	17.04	1.771	15.96	2.229	2.086	
NFD	9•036	5-443	2.479	1.200	•9500	

Var total responses in each 140 trials

١

00	ND	SUB1	SUB2	SUE3	SUE4	SUB5	•			
ĺ										
Se	IE.	• 995	1.000	•9988	•9999	•9967				
LE)E	•9998	1.300	•9985	•9990	•9996		· •		
l sv	1E	• 9995	•9936	•9952	1.000	•9979				
1 iv	TE.	•9985	.9997	•9995	• 9996	•9985			i de la companya de	
	r cr	. 9999	.0003	1.000	. 9942	.9999				
·		.0008	007/	. 9997	. 99/19	.9961			E.	
1.2	17. 	• 9 9 9 0	0004	0003	0000	0046				
J SK	519 	1.000	•9990	•9995	• 9 9 9 9		A	i - formation	- 0	
լւք	M	•9995	•9999	1.000	•9992	1.000	Average	information	TU 2	
SI	/M	•9999	1.000	•9983	1.000	1.000				
LV	Μ	1.980	•9999	•9999	•9996	1.090				
SF	714	•9999	•9996	•9995	1.900	•9979	•		•	
المعيم ا	M	•9992	1.000	•999Ø	•9990	•9998				
150	D	•9999	•9998	•9991	1.000	•9995	•			• • - :-
1 10	 תו	1.099	.9992	.9959	.9999	.9974				• :
		0003	1.000	. 0000	.0000	.0000		•		
		• 7 9 7 0		• • • • • • • • • • • • • • • • • • • •	1 000	1 000				
	טי	•9920	•9972	• 9999	1.000	1.000		•		
- 55	εÐ	1.000	.•9998	1.000	•9983	1.000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	FD D	•9979	• 9 99Ø	•9995	•9985	1.000		1	. · · · · · · · · · · · · · · · · · · ·	
Į					-			•		
l co	IND	SUBI	SUB2	SUB 3	SUE4	SUB5	!		이 이 사실 방송이 동영 것처럼	
J										
1	r r	0002	0000	0000	0000	.0060				с÷,
5y		•9993	• 9 9 9 9	•9990		• 9 9 0 9				
1 4	DE.	• 9999	•9999	•9933	1.9999	•9993	1			• ;
j SI	/E	•9995	• 9 980	•9985	•9999	.9985				
LV	FΕ	•9931	• 9 998	•9981	•9995	•9985	•			
SF	FE E	•9998	• 9 985	•9998	•9915	1.000				i.
1 13	Έ	.9996	.9959	•9986	•9961	•995 9				an ta An An
50	4M	.0083	20008	.9974	.9822	•9834	1	•		
1 10	711. 314	0700	0000	. 0603	.0001	.9717	Avenage	information	in R	
	151	• 9 4 9 9	• 9 9 9 9 0	0757	0/108	.0002	mer age			
1 31	/14	.9883	.9940	• 9051	• 9490	• 9 9 9 2	•		an a	
	/14	•9685	•9990	•9996	•9935	• 9 0 4 0				
{ SF	FM	• 9967	1.000	•9952	•9999	•9883		1		
	r M	•9685	•9924	•9972	•9993	•9964		4		
i Sg	dD	•9433	•9974	•9888	•9783	•9983			•	
1 20	ØD	•9433	•9928	•985 7	•9961	•9924				
S\	15	•9796	.9986	.9952	•9911	•9668				
11	/D	.90/17	.9783	.9974	.9304	•9946			•	
SE	10	0251	. 0061	0008	.9846	.9851				
1 1	rn n	• 90 0	00/6	0969	.0000	.9755				
	D	• 9949	• 9940	• 9000	• 7 7 7 7				in the second	
1 ~				a	etto /	CUDS				
1 00	JND	SUB1	SUBS	SOB3	5084	2082				×.,
			r							· -
			•				.'			
SØ	ðΕ	•2656	.0033	•0007	•ØØ24	•1096		N		
L	ØE	•235Ø	.0073	•0060	•0197	•0501				
S!	JE	• Ø81Ø	.0060	.0005	.0011	.0602				
1.1	VE	. \$203	- 0059	.0009	.0012	.0214	Average	information	in T and S	1 - A 2
SI	F F.	.3677	0234	. 0030	.0067	.1541	•	,		
	75	• 3001	• 9204	• 9900	. 0007	- 3325				
1 50	ند (۲۱۸	• 0584	•0384	.0001	•0097	a145	•			
	911 714	• 0254	•0541	.0013	• 1/252	-0140			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	914 	•0198	•0075	•0005	• 9053	• 00000				
15	VM	•Ø467	•0026	•0310	•0319	• 10513				
ויין	VM	•0196	•Ø271	•0031	•Ø143	•Ø133				
S	FM	• 0243	.0054	.0039	.0016	•Ø269				
្រុំដ	FM	.0054	.0163	.0035	.0017	•Ø134	• . •	•		
S	0D	.0317	.0204	.0047	•ø233	.0018				
1 1	ØD	- 0011	. 0010	.0016	.0002	.0014				
1 SI	v	• 0200	• UU LG	0010	. 0042	.0141			an an an Arthread an	ŧ.
11	Vn	• 0310	1000	• 10046	. a 100	a946		•		
ید خ	5 D	•0107	•0031	•0071	• 0190	anne -		• *		
1 3	r U 50	•0070	• Ø,273	.0059	.0021	007J	•			
	۲IJ	•Ø1Ø9	•0007	•0100	•0072	• 11 11 14		•	•	

•

ł

i. ',

. 14

·

COND	50131	2082	2082	5084	2082
SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LFM SØD LØD SVD LVD- SFD LFD	. 1633 .2328 .0337 .0292 .3573 .0566 .0278 .0283 .0050 .0025 .0207 .0052 .0207 .0052 .02447 .0070 .0029 .0029 .0029 .0079 .0205	.0037 .0114 .0055 .0041 .0263 .0438 .1219 .0070 .0038 .0278 .0131 .0108 .0269 .0033 .0253 .0253 .0037 .0213 .0006	• 0011 • 0020 • 0006 • 0004 • 0001 • 0001 • 0001 • 0008 • 0020 • 0045 • 0045 • 0014 • 0046 • 0014 • 0046 • 0011 • 0046	.0015 .0137 .0028 .0013 .0066 .0035 .0121 .0080 .0350 .0126 .0089 .0049 .0049 .0049 .0049 .0049 .0055 .0055 .0055 .0052 .0038	 1151 0482 0548 0326 1554 0323 0046 0105 0449 0369 0256 0185 0075 0037 0158 0236 0210 0119
COND	SUBI	SUB2	SUB3	SUB4	SUB5
SQE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LVM SFM LVD SFD LVD SFD LVD	.9617 .9524 .9725 .9740 .9416 .9523 .3307 .3914 .2187 .2966 .3815 .1326 .0320 .2501 .4567 .1667 .2546 .2747 SUB1	.7937 .8575 .9307 .8420 .8214 .7056 .3323 .1417 .3451 .3031 .3738 .1732 .0948 .2470 .3099 .0590 .2279 .0211 .5UB2	.7360 .7665 .8340 .7382 .9079 .7149 .4181 .3776 .1415 .3300 .4712 .5326 .0620 .0639 .0304 .0714 .0245 .0507 .5UB3	.7429 .8013 .7838 .9225 .7954 .9525 .3755 .5346 .2360 .6112 .3836 .5334 .1594 .0619 .1694 .1154 .0060 .2935 .5UB4	 9198 8888 9223 8055 9417 9825 4097 3599 5498 4321 5748 4584 1599 Ø9Ø2 10Ø2 1932 Ø917 Ø294 SUB5
SØE LØE SVE SVE SFE SØM SFE SØM SVM SFM SVM SVM SFD SVD SVD SFD	.2588- .2254- .0766- .0264- .3517 .0465 -0379 -0712- .0737- .0735- .0019- .0319- .0319- .0319- .0679- .0651- .0340- .0522-	0240- 0015- 0003- 0183- 0286- 0144- 0127- 0140- 0347- 0347- 0347- 035- 0317- 0288- 0128- 0052- 0052-	0003- 0061- 0021- 0013- 0032 0023 0111- 0073- 0078 0015- 0064- 0079 0013- 0083- 0083- 0083- 0049	0120 0115 0133 0031 0035 0025 0073- 0202- 0058 0210- 0058 0245- 0036- 0030- 0061- 0031-	0994 0412 0469 0022 1406 0298 0363 0499 0066 0381 0080 0260 0305 0117 0025 0117 0025 0155 0072 0089

Average information T x R

Average information S x R

Average information T x S x R
	COND	SUBI	SUB2	SUB3	SUB4	SUB5	
							· · · · · · · · · · · · · · · · · · ·
	SØE	241.1	3.346	•7526	2.444	104.7	
Ì	LOE	217.0	7.438	6.170	19.96	50.42	
	SVE	80.15	6.174	•4788	1.168	59.18	
l	LVE	29.79	6.072	•9088	1.228	21.63	
	SFE	314.7	23.65	3.087	6.360	144.2	, , , , , , , , , ,
	LFE	58.18	38.23	.0595	9.858	32.71	
	SOM	25.71	54.36	1.358	25.68	14.75	X^2 df, testing independence T and S
	lgm	20.17	7.714	•1892	5.433	•2757	
	<u>s</u> vm	46.90	.2.638	•9970	32.35	51.22	
Ì	LVM	19.91	27.57	3.130	14.55	13.50	• • • • • • • • • • • • • • • • • • •
	SFM	24.63	5.559	3.981	1.022	27.43	
	LFM	5.563	16.62	8.794	1.//0	13.03	
1	SØD	1.790	20.01	4.805	23.05	1.422	
	1.Ø D	23.05	1.211	4 9/1	+ 2/1 h 2/1	1/1.33	
	SVD	10 20	2 224	7.038	10.31	25.00	
	19D	7 151	07 77	5.080	2.124	0.708	
	SFD	11 10	21.11	10.21	7.383	10.65	
-{	Lr D	11.12	•/005	19461			
	COND	CTED 1	SUDO	SUB3	SUB4	SUB5	
	GOIND		J 0, <i>L</i>	2000	000.	2020	
Í	!						
	Sar	243.8	3.779	1.169	1.579	109.6	
ļ	10F	215.1	11.65	2.095	13.95	48.58	
	SVE	82.79	5.654	•6663	2.828	54.23	
	LVE	29.67	4.196	.4065	1.342	32.78	
1	SFE	309.5	26.54	2.552	6.716	145.6	
	LFE	56.35	48.30	•Ø65Ø	8.668	32.21	$V^2 df$ trating independence T and P
	Søm	28.3%	118.2	3.168	12.28	4.669	x-ong testing independence I and K
í	1ØM	29.11	7 - 145	1.738	8.156	10.86	
	SVM	5.071	3.899	•7720	34.33	44.70	
	LVII	2.543	28.02	2.007	12.93	37.95	
	SFM	2ؕ91	1'3.33	4.571	•9245	26.30	
	LFM	5.351	11601	14.39	4.994	18.90	
1	59D	46.99	27,30	4.348	34 · 20	2.9/16	
	LOD	7.002	3.423	1.410	0 • 0 J 9 5 664	16.15	en e
	SVD	2.981	25.11	4 + 145	20.43	24.07	
Ì	SED	30+48 a aaa	01.67	11.38	5.346	21.12	
	LFD	20.02	-6318	9.690	3.871	11.93	
1		60.76					
	COND	SUE 1	SUB2	SUB3	SUB4	SUB5	.
			1				
						•••	
1	SØE	7 28•Ø	647.1	613.7	617.5	712.1	
	LJE	724.1	681.3	632•1	648•Ø	696.7	
	SVE	- 732. 0	716.2	666.5	643.6	712.2	
	LVE	732.0	6 73• 5	614 • 1	712.3	654 • 4	
	SFE	720.1	662.2	704.6	650.3	720 • 1	X^2 df ₁ testing independence S and R
	LFE	724-1	595.3	599.6	724.1	760.0	
	50M 1 2M	312.1	313.3	383+2	341.9	320.0	
	SVM	357.8	140.5	343.7	470+J. 00h 1	187-0	
	LVM	212.1	<u> 323 • 8</u>	140.0	508-L	390.8	
1000	SFM	355 4	200-4	102.2	357-1	504.1	
	LFM	121 =	174.9	460-3	472-8	415.2	
ļ	SØD	2-020	95.05	62.40	156.6	157.6	• • •
	LØD	235-4	236-9	64.77	62.57	90.19	
	SVD	402-3	204-1	30.94	166.3	100.1	
	LVD	164.7	59.32	71.97	113.7	188.8	
1	SFD	243.7	220-6	25.00	6.166	91.84	
	LFD	261.1	21.50	51.47	279.6	29.96	•

COND	CU31	SUB2	SUB3	SUB4	SUB5	,
SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LFM SØD LØD SVD LØD SFD LFD	.5978 .4650 .1707 .2910 .5083 .2019 30.11 49.83 48.88 47.27 9.522 29.00 2.030 70.53 03.76 79.27 22.89 45.09	2.772 .Ø379 .Ø921 .2609 .5229 2.982 15.12 12.63 9.772 17.07 22.07 17.08 9.455 20.93 25.29 12.03 13.24 6.969	.1161 .1291 .1175 .2132 .4593 4.155 2.175 1.037 .5024 3.881 .9050 7.548 .5671 9.527 9.181 2.920 51.25	1.879 3.648 .6295 .0748 1.046 .5424 9.527 9.819 5.795 8.967 4.278 7.616 5.318 5.737 3.056 4.390 5.458 3.286	2.490 .0668 1.002 1.273 .3422 .6604 21.23 30.97 11.08 26.80 11.37 15.68 25.82 9.434 6.603 22.27 10.14 12.15	X
COND	SUBI	SUB2	SUB3	SUB4	SUB5	
SØE LØE SVE SFE LFE SØM LØM SVM LVM SFM LFM SØD LØD SVD LVD SFD LFD	.5560 .4841 .7166 23.57 1.803 1.266 2.769 .8832 1.768 2.496 1.854 1.001 2.347 1.083 .5573 .3815 4.172 .1566	1.092 1.950 4.028 4.524 .8618 2.542 4.843 .1296 .9670 1.572 6.920 21.75 6.674 7.917 10.62 14.79 10.89 2.812	1.097 6.145 .9970 1.117 .5794 .9201 .5056 1.645 5.278 2.416 1.585 1.968 1.338 1.704 47.34 .5987 1.655 8.258	11.97 7.473 8.531 1.693 12.20 5.847 12.67 5.567 1.949 .2049 .9010 .4164 1.277 6.334 2.919 8.183 10.85 8.454	1.562 8.615 11.07 4.142 1.584 1.043 6.429 17.70 7.151 2.323 4.448 6.838 2.366 3.558 .6899 5.896 2.132 1.438	F
COND	SUB1	SUB2	SUB3	SUB4	SUB5	
SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LVM SFM LFM SØD LØD SVD LVD SFD LFD	12.49 4.410 5.030 23.67 5.538 10.05 4.517 .3406 .1953 2.905 3.019 3.992 1.624 6.365 1.003 2.386 2.669 2.283	2.743 7.514 6.314 4.492 11.62 2.009 3.013 1.95° 2.962 3.289 4.467 42.50 .7265 3.669 5.124 21.35 9.809 10.07	1.818 9.581 .9344 4.113 4.195 11.13 2.708 4.800 32.00 7.196 1.076 .3567 9.550 13.13 41.29 4.490 12.45 17.11	9.310 7.731 8.695 1.347 5.294 2.759 5.222 4.250 3.689 10.58 11.36 4.408 6.336 8.447 5.488 6.832 20.08 5.027	5.560 4.721 5.197 2.549 1.352 3.215 9.665 13.15 4.549 .7286 3.280 5.715 5.141 5.036 .8772 4.286 1.156 .6983	F

 $X^{2}df_{3}$ testing 3-way dependence T S and R

Fdf4,735 testing stationarity latencies

Fdf4,635 testing stationarity latencies ignoring first 100 trials

ตู้ชิ เ งD	SUBI	SUB2	SUD3	SUB4	SUB5	· ·
SØE LØE SVE LVE SFE LFE SØM LØM SVM LØM SVM LØM SFM LØM SFM LØD SVD LØD SVD LØD SFD LFD	$ \begin{array}{r} & .305 \\ .6460 \\ 4.900 \\ 20.99 \\ 3.530 \\ 7.251 \\ 3.253 \\ 1.992 \\ .8303 \\ 1.443 \\ 6.185 \\ 7.163 \\ .7167 \\ 1.521 \\ 1.844 \\ 2.756 \\ 4.511 \\ .5462 \\ \end{array} $	1.359 10.63 2.200 5.378 10.05 .6818 4.840 .7351 2.395 5.755 5.992 9.405 2.116 7.411 1.575 27.63 4.341 2.470	1.475 4.180 1.213 6.433 3.735 6.979 1.224 6.376 34.61 10.74 1.223 5612 8.739 10.999 11.46 2.019 15.67 14.75	12.70 11.07 4.663 1.671 7.737 13.22 5.203 4.732 1.065 1.917 3.076 .8925 4.407 5.208 4.737 2.587 1.122 6.349	2.402 6.357 6.865 4.249 .9120 2.676 9.722 17.92 2.365 .9790 5.105 1.605 1.639 2.585 2.133 2.415 .9072 1.074	Fdf4,535 testing stationa ignoring fire
COND	SUBI	SUB2	SUB3	SUB4	SUB5	
SØE LØE SVE LVE SFE LFE SØM LØM SVM LØM SVM LØM SFM LØD SVD LØD SVD LVD SFD LFD	1.405 .5000 .7500 2.402 .9100 1.815 3.079 3.029 2.340 .9304 .2967 5.109 1.573 .6406 1.339 .2422 1.019 SUB1	1.614 .6203 1.653 .3253 1.573 .1789 1.341 1.351 .4532 .7327 .6088 .4126 .4602 5.660 .5566 .4028 2.714 6.715 .5UB2	.2396 .3206 1.062 .3928 1.661 1.670 2.613 1.173 30.90 .7825 .4443 .6081 1.512 1.988 1.302 2.136 3.877 1.289 SUB3	2.718 2.362 .4262 .1711 .8445 .8000 .9191 .6050 .3074 .5909 .6623 4.032 .4132 6.125 2.214 1.279 2.828 1.560 SUB4	1.444 .7318 1.018 4.429 .5159 1.000 3.606 2.975 1.225 .6810 1.751 1.866 .9312 3.431 2.287 3.783 5.967 1.597 SUE5	Fdf4,65 testing stationar
SØE LJE SVE LVE SFE LFE SØM LJE SØM LJE SFM LJE SFM LJE SFD LFD	5.418 .4956 1.977 2.327 1.473 .4045 1.390 .0605 1.087 5.063 1.323 1.831 .4145 2.151 1.470 1.432 .6285 2.133	.2539 1.945 .9615 1.264 1.058 .5637 2.645 .3259 .3033 9.655 3.290 .2051 .8197 4.450 .4221 .9473 .6603 .8231	3.787 .7809 .3471 1.381 .6290 2.142 .2047 .8923 1.507 .2373 1.824 .0217 3.866 2.562 1.515 .9571 1.019	1.201 1.441 1.269 1.562 .3165 1.293 .5716 .5719 .0396 .6330 .5153 1.008 .5581 2.561 1.069 1.131 2.951 2.955	.6476 1.083 1.073 .6210 .4139 2.048 .5914 1.799 .6459 .5779 .2581 .6123 1.616 1.601 .5532 1.594 3.692 .9079	Fdf4,65 testing stationari

arity latencies st 200 trials

١

ity error sequences

ity response sequences

COND	SUD I	SUB2	SUB3	SUB4	SUB5	
SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM LFM SØD LØD SVD LØD SVD LVD SFD LFD	59.23 47.35 63.98 65.30 43.40 25.13 41.24 22.74 35.94 13.42 43.61 16.38 46.54 36.96 37.02 18.28 45.18 17.58	34.00 99.70 100.2 30.21 34.39 31.91 132.8 49.62 34.55 53.68 57.00 108.3 49.23 102.0 93.73 80.34 17.55 16.05	141.4 44.43 24.81 51.34 68.39 92.83 31.29 149.7 26.6Ø 7.793 36.56 111.6 1ØØ.5 239.8 239.8 26.24 115.5 61.83	80.12 76.98 93.80 123.3 92.20 91.13 61.54 27.82 34.75 97.96 75.64 68.75 52.73 105.6 86.01 48.69 204.2 45.59	100.4 28.07 23.18 77.23 36.39 65.80 67.52 187.5 39.79 13.97 60.18 78.92 63.92 28.19 58.78 35.31 63.61 19.21	X
COND	នប់ ខ រ	SUB2	SUB3	SUB4	SUB5	
SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LFM SØD LØD SVO LVD SFO LFD	54.94 76.40 36.97 74.08 39.31 65.46 25.18 53.93 59.49 58.03 40.91 48.52 40.06 57.66 48.51 46.58 44.41 41.40	57.28 80.67 100.7 41.43 48.75 7.93 68.08 52.04 59.33 79.90 82.46 97.49 50.24 60.56 71.22 68.27 58.76 33.99	75.52 51.98 58.48 59.45 71.06 66.90 41.20 113.9 43.04 23.75 43.53 77.03 104.0 85.76 85.76 43.68 84.98 64.01	56.72 89.21 51.61 84.37 66.51 86.95 50.15 40.81 35.26 64.51 58.39 52.12 52.95 57.07 41.37 55.06 70.92 59.76	$1^{1}5.7$ 46.60 70.15 61.25 51.91 78.30 39.76 69.76 34.95 49.90 33.09 71.56 42.11 75.98 46.87 42.49 65.77 34.65	x
COND	SUB 1	SUB2	SUE3	SUB4	SUB5	
 SØE LØE SVE. LVE SFE LFE SØM LGM SVM LVH SVM LVH SPM LVH SØD LVD SFD LFD	1.519 .0430 .2207 .0101 .3454 .6307 6.738 6.720 9.017 .9909 1.135 1.492 33.68 3.523 .0670 .4154 4.792 .0720	.0914 3.655 .5779 .0254 .5210 3.174 13.80 3.540 11.22 3.500 7.030 .2646 37.28 2.507 7.563 .0149 1.790 2.884	.7251 .7330 2.950 1.979 .0289 9.415 .1015 1.116 3.479 .0420 .5161 .0076 1.368 .2965 12.27 4.337 .3624 .1414	3.400 .1357 .3596 .1057 .0702 1.094 .0859 2.754 .0536 1.132 .0062 .1541 .2242 1.229 4.501 6.335 7.899 .4434	.6255 .2249 2.130 1.547 .0054 .3607 .2571 .6073 .0020 2.022 .1975 .0549 2.446 .0470 11.48 7.042 16.14 5.774	X ²

X²df_g testing first order dependence latencies

²df₃₆ testing second order dependence latencies

t,

²df₁ testing first order dependence R

COND		SUB1	SUD2	SUB 3	SUB4	SUB5	
SOE LOE SVE SVE SFE SOM SVM LOM SFM LON SFM LØD SVD SFD LFD	-	2.439 .6390 .8474 .6676 8.373 2.273 9.063 7.186 1.402 15.67 3.594 .3759 3.775 10.62 1.644 1.933 1.564 1.856	1.579 .1547 .8143 .7450 5.112 4.067 11.93 1.499 .9574 .1623 .7454 3.950 .6120 12.61 1.133 .3453 .2189 .8438	2.206 .6131 .2456 .5787 .8197 .7011 .6375 1.574 1.995 1.495 1.495 1.484 5.256 5.146 .4257 3.484 3.433 .9331 .3359	3.623 1.856 3.946 .7863 1.408 1.504 2.349 .4542 .5796 .2476 1.689 1.487 .9613 6.409 .9456 1.377 17.71 5.776	3.722 1.030 2.835 1.070 4.727 2525 .5814 10.41 5.240 6.422 3.023 8.282 2.409 6.565 3.258 1.234 3.067 2.181	X ² df ₂ testing second order dependence responses
COND		SUB1	SUB2	SUB3	SUB4	SUB5	
S3E L9E SVE LVE SFE		.3402 .2637 .0054 .0054 .0343	•1300 1•651 •0496 •9903 •4039	15.54 1.104 .5166 9.224 .2014	•2954 2•336 5•865 •Ø677 •7637	•1939 4•393 •Ø677 3•9Ø2 •Ø343	1
LFE SØM LØM SVM LVM SFM LFM SØD		.2637 .Ø133 .3338 .8315 .6617 .0295 .1777 .2623	.0011 2.710 7.425 2.867 .4610 .6704 .0738 3.805	1.975 .0689 2.738 7.820 .1366 2.648 3.327 1.727	.0219 2.827 2.436 .4712 5.299 2.616 4.702 .0191	1.001 15.34 2.521 19.73 1.134 .0159 13.34 3.528	X ² df _l testing first order dependence errors
LØD SVD LVP SFD LFD		.0175 2.919 6.648 1.444 2.136	1.254 .Ø191 3.169 .9915 .Ø548	•7023 •1062 1•824 •1912 6•506	•1020 •1349 •3399 •1120 9•019	2.785 .5880 .0224 2.841 .0883	
COND		SUE1	SUB2	SUE3	SUB4	SUB5	
SØE LØE SVE LVE SFE LFE SØM LØM SVM		.Ø082 .2165 .0055 .0055 .0346 .0165 .9145 2.871 .6244	.8048 .3584 .0500 .4373 .5859 .1305 2.081 7.167 1.075	2.824 1.149 .4997 2.253 .1998 .4717 .6494 .7444 8.024	12.02 .9200 .6267 .0683 2.291 44.38 1.248 5.253 5.930	.Ø583 .2514 .Ø683 21.33 .Ø346 .ØØØØ .2012 13.26 .3327	X ² df ₂ testing second order dependence errors
SFM LFM SØD LØD SVD LØD SFD LYD SFD LFD		 1276 1.525 1.416 9.942 16Ø1 2377 1.274 789Ø 3.548 	6878 7754 1.112 1.572 .4683 5.302 .1643 1.753 .2525	1.270 .4577 2.449 2.233 .7328 .7994 1.167 1.405 3.275	.4097 1.237 .0778 1.245 .1589 .4828 4.485 3.621 1.237	5.263 .5953 .2650 4.584 .8187 2.111 3.522 .8835 11.70	
1					÷	•	

COND	5091 5082 5083 5084 5085	
SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LVM SFM LØD SVD LVD SFD LFD	4.678 7.157 33.14 21.36 5.376 5.488 19.99 3.535 9.265 14.35 4.245 4.423 10.07 23.24 8.360 $.0238$ 12.64 29.39 5.880 54.70 8.128 10.15 2.965 5.731 5.479 6.226 15.87 24.43 1.129 2.478 27.04 44.48 7.710 11.09 32.11 22.92 22.38 6.127 16.45 24.59 32.26 38.89 17.80 20.07 35.57 30.98 16.12 3.055 20.04 16.07 5.956 15.42 9.831 13.42 16.53 15.97 20.75 6.987 16.07 19.68 41.41 64.51 9.752 12.72 7.022 24.18 28.17 37.94 18.99 22.05 22.44 13.79 13.86 13.72 25.14 16.09 10.50 5.181 47.99 31.31 10.08 6.794 13.89 30.03 41.08	X ² df ₉ testing first order dependence SR sequences
COND	SUBI SUB2 SUB3 SUB4 SUB5	
SØE LGE SVE LVE GFE LFE SØM LVM SVM LVM SFM LVM SFM LØD SVD LVD SFD LFD	8.693 20.32 16.79 39.05 10.46 3.354 12.05 17.41 17.94 22.41 4.518 9.790 16.05 21.12 12.43 6.608 21.07 16.35 14.47 57.14 14.92 15.80 13.61 32.46 $11.806.462 19.13 19.51 108.7 1.04141.41 47.82 31.90 29.50 26.4844.47 39.58 33.29 37.43 73.6549.35 40.36 45.95 28.69 42.7241.07 31.87 21.81 20.54 42.5041.08 42.94 26.82 44.13 36.6631.26$ 41.12 62.22 45.12 $50.8247.60$ 50.58 41.63 49.41 $62.2444.49$ 40.70 21.49 40.17 $50.2817.76$ 34.56 37.81 43.26 $47.0636.21$ 30.83 23.67 30.99 $35.7334.66$ 37.29 34.01 76.05 43.30	X ² df ₃₆ testing second order dependence SR
COND SØE LØE SVE LVE SFE LFE SØM LØM SVM LVM SFM LØM SVM LVM SFM LØD SVD LØD SFD LVD SFD LFD	SUB1 SUB2 SUB3 SUB4 SUB5 -477.4-361. \emptyset -428. \emptyset -642. \emptyset -63 \emptyset .9 -499.2-5 \emptyset 3.8-963.1-679.7-782.3 -481.7-797.6-545.8-541.8-657.1 -584.7-399.7-477.8-681.1-1117 -417.6-4 \emptyset 3.5-96 \emptyset .2-5 \emptyset 5. \emptyset -65 \emptyset . \emptyset -541.8-4 \emptyset 5.4-764.4-617.7-727.1 -7 \emptyset 2.1-853. \emptyset -752.5-662.5-632.4 -717.5-1 \emptyset 02 -598.2-666.5-14 \emptyset 5 -11 \emptyset 1 -6 \emptyset 4.9-993. \emptyset -667.4-548.8 -961.4-825.9-862.2-744.3-882. \emptyset -6 \emptyset 3.4-9 \emptyset 8.4-729.9-566.2-591.7 -1132 -1 \emptyset 4 \emptyset -718.4-669.6-812.1 -1 \emptyset \emptyset 3 -853.1-35C.9-785.7-754.2 -846.1-1118 -913.8-773.9-997.1 -7 \emptyset 1. \emptyset -842.3-1 \emptyset 69 -689. \emptyset -772.6 -1 \emptyset 71 -1258 -1 \emptyset 33 -71 \emptyset .1-935.2 -721. \emptyset -715.8-955.7-5 \emptyset 6.7-7.62.7 -952.5-11 \emptyset 5 -1368 -695.3-1158	Total latencies in each 1/5th of the experiments ignoring negative signs

•

i ;

ì

	COND	SHR1	SUB2	SUB3	SUB4	SUB5	
	CAF	0571	. 5214	.1286	1.550	.1286	
	SWE	. 0010	.1214	.2714	.8071	.1214	
	LVE	0010	-1071	.2357	.2286	. 0929	
	SVE	• 9614 001A	. 0000	• 7.057	• 01 03	1.771	
		• 101 4	• 1177.7	• 44.71	-0140	.0357	
	SFE	•1614	• 3.3.77	5000	- 0571	- 01 43	
		• 11300	• Wh 37	0.501	1.202	4.371	
	50.9	2+621	2.102	2.050	- 8071	5.914	
	LØM	4.190	- EO1 A	A1 20	. 4094	1.557	
	SVM	6.270	• 56.14	41.07	• 0600 . A057	.9794	
	LVM	4.284	· · · · · · ·	1.104	1.000	1. 196	
	SPM LEM	1.021	0500	• 4040 5500	1.401	3,121	
		• • • • • •	• 9 30 W	•	40001	0.103	,
	500	11•01 2000	1 • 4 3 1	5.071	10.84	7.857	
	CUD		1.100	0.050	2.014	5.607	
		1.104	1.17	A. 657	3.276	7.907	
	CVD		• 7 300	4.101	7,393	9.121	
	5rU 1.50	• 41 7 - U) • 41 4) • 0 6	0+070	0.800	A 071	1
		1. • 1.200	14.00	J + 004	2.000		
	COND	SPB1	SUBS	SUB3	SUB4	SUB5	
					•		
	~~~					1 6 2 4	
	SØE	11.02	•8571	7+836	2.335	0 1 6 6	
	LOF	1.057	6+621	2.093	2.420	C+104	
	SVE	4.379	2.679	•9143	2.664	2.0001	
•		4.393	3.914	2.801	3.227	1.000	
	516	.3•729	2.136	1 • 7.36	• 0351	1 . 667	
		1.321	1.379	3.154	3 • <u>20</u> 0	4.067	
	Sey	5.950	11.06	• 5.1 7 /	1 0 0 2	1.164	
		•2357	•9429	2.407	1.07.0	4.104	
	SVM LVM	4.479	•9500	3.254	• 2040	1.586	
	EVM SEM	11.13	19.87	• 0 / 3 0	2.001	.9716	
	JEM.	1.093	9+343	4.914	1.070	1.964	
	SAD	3.414	• 5214	• Ø 371 0 1 5 7	1.917	5-629	:
	1.00	1.00/	3+63/	n+10/	1.00	A-021	1
	SVO	0.014	1 071	0.201	7 497	1.534	
	140	4.050	1.841	6.021	1.970	3.107	
	ŚFN	3 . 31/1	1.964	6.373	1.017	6.679	
		1+335	6.021	2.907	6.600	2.193	
	1. C	<b>D</b> • 1 7 3	1.071	J-0 0 11 1	0.067		

Var in T errors in each 1/5th of 700 trials

Var in T responses in each 1/5th _{of} 700 trials

0 •99719636 V •99979580 F •99909484	•99985377 •99846220 •99955866 •99922662 •99979580 •99998023 •99985377 •99895251 •99964825 •99879963 •99909484 •99955866 Av info S	
0 •99668981 V •99955866 F •91601381	•99990119 •99766059 •99879963 •96684664 •97897028 •96337608 •83989689 •99863619 •89717465 •82386609 •99808252 •97897028 Av info R	
• 0 •00217389 V •12800275 F •00043776	•00119668 •02175355 •00547782 •04686390 •00671928 •02161836 •00183006 •03959634 •00365187 •00429168 •02863556 •01264220 Av info TS	•
0 •00429689 V •11362584 F •00202144	•00094918 •01646663 •05041537 •04109854 •00201495 •01761288 •00868399 •03159570 •00613799 •00605622 •10418668 •03287588 Av info TR	
0 •49463620 V •23915328 F •00054962	•00004574 •05926008 •01412375 •11541312 •00019399 •18209540 •01096062 •21233161 •03483557 •00441587 •02971320 •04409537 Av info TSR	
003370793 V .04269531 	00233788022916730007607002086019 00542154026397220026108400868895 0080432100096055 .0045174301444092 X ² df ₃ measuring dependence TS	
0 2.2302396 V 123.49193 7 .44920318	1.2272511 22.116960 5.5979067 47.119834 6.8774842 21.940701 1.8760183 40.014045 3.7422900 4.3910005 28.895130 12.910341 X ² df ₃ measuring dependence TR.	
0 4.4038892 V 119.39217 F 2.0685220	•97308670 16•805487 50•737443 41•838599 2•0652820 17•730038 8•9837357 31•994965 6•1281564 6•3443291 102•55693 33•016678 X ² df ₁ measuring dependence SR	• • • • • •

· •

.

.

0 433.22718 .04692539 59.873578 14.444094 115.02711  $V_{231.48753}$  .19901530 176.76102 11.171301 207.05631 F .56399163 35.350325 4.5091589 30.253489 44.650184  $X^2df_3$  testing dependence T and R

0 14.928381 2.5001131 28.906146 2.6271919 24.933732 V 36.019509 6.0377360 21.099074 4.3205972 18.827643 F 4.0297767 7.5211090 2.3934383 9.7320161 15.540460 X²df₁ testing dependencies S and R

0 1.3430956 3.0476678 19.348094 2.0537007 .30707706 V.35944356 3.3509057 3.1985054 1.6851329 6.7245784 F 8.1543939 3.0790667 1.6407971 .52394347 10.460307 X²df₃ testing 3-way dependence T S and R

0 -88160769 5.5109123 33.730023 7.0221305 .47070921 V 1.8522731 17.336201 2.5180633 5.7771100 35.586053 F 6.4081225 8.2521011 2.7930472 1.7479091 9.0361907 F4,735 testing stationarity latencies

0 •91890483/ 4.2453916 23•492746 5•3234861 2•1321398 •28164342 9•1682947 1•7118125 4•7437016 18•069035 F 5•7181939 5•1645821 3•2711045 1•0742134 20•128975 F4,635 testing stationarity latencies ignoring first 100 trials

0.22204969 2.0332126 4.1290721 1.4689959 .55394089 V.53611370 .59224082 2.7841786 1.5521188 1.8654910 F 1.9044055 2.1916492 .37238007 2.2948718 4.2287356 F4,535 testing stationarity latencies ignoring first 200 trials

0 1.0085409 1.5511880 1.0884970 3.1468705 1.2277558 V 4.7323694 1.5565611 2.2102432 6.4162465 1.1018022 F 1.8928831 3.0542789 1.4327344 1.3516899 8.0480699 F4,65 testing stationarity errors

0 235.44580 484.49695 127.61680 56.445837 40.091083 V 14.272906 282.71872 59.597813 18.797354 103.54776 F 132.99706 40.886953 19.140375 16.756756 20.481939 F4,65 testing stationarity responses 0 135.33033 115.93720 79.545137 45.000679 53.789766 V31.869328 96.211959 47.860019 59.147642 83.612856 F 49.970023 30.343085 80.095029 33.689302 61.299814 X²df₉ measuring first order dependence latencies

0 4.1772320 .00542642 25.080909 26.220174 13.325375 V.Ø0807036 2.6426431 2.1148551 2.1821697 .16112710 F 19.590089 24.414986 2.8956623 .05689602 44.284664 X²df₃₆ measuring second order dependence latencies

0 9.7305921 8.6939040 .71040882 4.5134417 1.3242191 V 1.3128312 15.790512 2.9816506 3.2322843 .17842451 f 19.930521 9.0472741 1.5810288 3.7701138 1.9516505  $X^2df_1$  measuring first order dependence R sequences

0.24482317 .09285270 .20695085 5.3539329 .58557260 V 5.03p532q .77172546 2.3112237 2.9999832 1.5147417 F .00675p21 .25186213 1.0488895 1.0535466 .14507730  $X^{2}df_{2}$  measuring second order dependence R sequences

0 2.8099455 .40 42763 2.3832645 5.8539690 .09342585 V 1.7565202 .33012878 3.3509804 .09149084 1.0826522 F 3.5513808 4.3823194 3.3735361 6.4274667 .07851741 X²df₁ measuring first order dependence error sequences

0 10.938956 2.0216432 30.147861 45.511305 30.361971 V 11.633567 150.45549 17.477517 48.817198 18.472689 F 31.195248 55.048784 18.623846 13.510509 81.959563  $X^{2}df_{2}$  measuring second order dependence error sequences

0 41.287364 42.216974 35.927023 52.223436 33.298678 V 38.256538 86.856925 38.295645 39.346312 26.972411 F 73.507622 42 064542 43.046853 37.127259 36.421320 X²df₉ measuring first order dependence SR sequences

0-9500.3234-4592.0622-32400.348-13970.039-13147.524 V-14013.590-5821.3248-24623.575-22302.360-10992.811 F-12165.995-10368.622-17226.287-17716.161-17643.968 X²df₃₆ measuring second order dependence SR sequences .23571429 3.7000000 9.1923571 5.1285714 1.2357143 Var total errors in each 1.2642857 2.0214286 5.5500000 5.5142857 2.9642857 4.8928571 6.8928571 .37357143 6.3928571 10.107143

P

## APPENDIX C

Estimate of Signal detection parameters for the models fitted in experiments 2, 3 and 4 (for an explanation, see p 137-143).

Session codes for Experiments 2 and 3

0 - indicales

EXP 2

2

	Session	Cond.	Session	Cond.
	1	0.75 R	1	SOE
	2	0.5 RB	2	LOE
	3	F.75 R	3	SVE
*	4	0.5 R	4	LVE
	5	F.5 R	5	SFE
Subi	1 6	F.5 RB Subil	6	LFE
,	7	0.25 R	7	SOM
	8	F.25 R	8	LOM
	9	0.75 D	9	SVM
	10	O.5 DB	10	LVM
	11	F.75 D	11	SFM
	12	0.5 D	12	LFM
	13	F.5 D	13	SOD
	14	F.5 DB	14	LOD
	15	0.25 D	15	SVD
	16	F.25 D	16	LVD
			17	SFD
			18	LFD

Later sessions are reflections of the above for subjects 2 to 4.

not enough dato to make estimate

20

EXPERIMENT	v0	2 1LUCES CHO	ICE MODEL			
STATE ON LAST TRIAL SESSION	OVERALL	Z S1R1 S1R2 S	52R1 52R2	B Overall	S1R1 51R2 S2R1	S2R2
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 9\\ 10\\ 11\\ 12\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ \end{array} $	.883 1.017 .844 1.868 .9888 .561 .8884 .6792 .14227 .1004 .11330 .501 .12852 .12852 .12852 .12852 .12852 .12852 .12852 .1294	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	,775 .962 .893 .975 .734 1.35 .887 .910 .945 .912 .922 .866 1.03 .854 .897 .690 .752 .851 .552 .522 .560 .175 .407 .329 .914 .567 .721 .833 .509 .400 .280 .225 .147 .132 .828 .387 .721 .833 .509 .400 .280 .225 .147 .132 .828 .327 .721 .833 .509 .400 .280 .225 .147 .132 .828 .327 .721 .833 .509 .400 .280 .225 .147 .132 .828 .327 .721 .833 .220 .361 .125 .073 .114 .229 .318 .826 1.06 .324 .339 .778 .651 .566 .324 .546 .464 .597 .243 .114 .110 .179 .420 .302 .176 .238 .147 .188 .550 .215 .264 .134 .118 .173	2.11 2.67 1.2.64 2.44 1.2.64 2.7.47 2.5.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2.1.7.35 2	4.29.969 1.72 2.87.496 2.18 18.8.866 .937 2.31.866 2.06 1.52.996 1.98 10.6 5.00 1.60 1.74.221 2.23 4.54 2.84.345 3.28.941 3.99 3.30 1.00 .576 4.66 1.66 1.51 .955 .226 2.69 3.26 1.78 .844 1.18 .606 1.06 .693 .135 1.54 .041 .66 3.39 7.55 .599 .695 1.32 .843 1.45 .981 1.55 .608 1.22 1.58 1.02 .826 1.78 .847 1.02 1.12 1.25 .951 1.72 .887 1.80 2.36 .881 1.02 1.12 1.25 .961 1.05 .982 .469 .531 .928 1.52 .776 1.44 .604 .000 6.003 2.77 2.69 3.03 1.72 1.69 3.03 2.67 2.92 1.44 6.04 .000 6.003 2.17 2.169 3.03 2.17 2.12 1.25 1.48 1.34 1.26	
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 71 72 73 74 75 76 77 77 78 79 80 FOR FIRST F	.190 .241 .263 .285 .308 .144 .074 .130 .1624 .137 .109 .1624 .1090 .219 .118 .1095 .1268 .1377 .1268 .1377 .268 .308 .2087 .308 .2087 .308 .2087 .308 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2087 .2077 .2087 .2077 .2087 .2077 .2087 .2077 .2087 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .2077 .20777 .20777 .20777 .20777 .20777 .20777 .207777 .207777 .207777 .207777777777	.172 .120 .199 .380 .219 .380 .240 .098 .253 .312 .186 .322 .137 .156 .072 .000 .121 .163 .141 .321 .116 .108 .101 .072 .000 .198 .183 .126 .105 .112 .143 .086 .000 .104 .065 .112 .143 .086 .000 .104 .065 .112 .143 .086 .000 .104 .055 .112 .143 .086 .000 .109 .136 .302 .217 .000 .321 .144 .666 .570 .322 .374 .264 .274 .311 .388 .126 .155 .403 .375 .403 .375 .403 .375 .403 .375 .405 .564 .519 .551 .217 .175 .0VERALL FRI	.387 .221 .313 .204 .342 .249 .157 .188 .275 .299 .363 .333 .000 .149 .000 .149 .000 .149 .109 .122 .198 .214 .012 .077 .255 .207 .000 .108 .107 .108 .107 .108 .107 .108 .107 .108 .107 .107 .108 .100 .039 .123 .010 .197 .2232 .144 .592 .286 .579 .2322 .306 .297 .200 .155 .261 .288 .422 .600 .545 .453 .302 .176 .545 .453 .302 .176 .545 .453 .306 .261 .398 .175 EDIMANN 7.4 EDIMAN 3	1.10 1.10 1.14 .4302 1.14 .601 1.4302 1.46 1.27 1.601 1.27 1.623 .539 1.855 .557 1.855 .1.58 .5577 1.58 .5577 .1.58 577 58 577 58 58 577 58 577 58 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 577 58 58 577 58 58 577 58 577 58 577 58 58 577 58 58 577 58 577 58 577 58 58 577 58 577 58 577 58 577 58 577 58 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 586 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 577 5777 5777 5777 5777 5777 5777 5777 5777 5777 5777 5777 5777 5777 5777 57777 5777 	1.13 .980 .775 1.80 .657 1.66 1.47 1.43 1.81 1.20 .328 1.06 .886 .935 1.79 .465 .322 .472 .592 .443 .000 1.73 .000 .000 1.79 1.36 2.62 1.49 .374 3.35 1.69 1.73 1.31 1.51 1.08 .000 1.75 .000 2.24 1.38 .913 .729 .900 .501 .000 1.26 .907 1.25 1.68 .775 1.02 3.29 .000 3.89 .929 1.36 1.02 1.68 .775 1.02 3.29 .000 3.89 .929 1.36 1.02 1.43 .000 .000 1.00 .544 1.90 1.90 .577 1.51 1.45 2.60 1.69 2.76 4.02 2.89 2.29 1.30 3.04 2.22 1.84 2.53 1.35 .816 2.30 .704 .667 1.04 1.35 .963 1.90 1.31 .43 .900 .704 .667 1.04 1.22 2.37 2.23 1.59 .709 1.09 .564 .760 .730 FRIEDMAN 7.67	1,514 1,074 1,074 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1,084 1

- - - ·

•

EXPERIMENT ESTIMATION STATE ON LAST TRIAL SESSION	ND Overall	2 2TANNER SWETS DPRIME S1R1 S1R2 S2R	GREEN MODEL B 1 S2R2 OVERALL	S1R1 S1R2 S2R1 S2R2
$\begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 15\\ 16\\ 17\\ 19\\ 20\\ 22\\ 22\\ 24\\ 25\\ 22\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 3\\ 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 0\\ 1\\ 2\\ 3\\ 3\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 0\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	$\begin{array}{c} .156\\ - .009\\ .2122\\ .01823\\ .1823\\ .1823\\ .194\\ .1954\\ .019\\ .1954\\ .019\\ .1222\\ .2530\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .1221\\ .12$	$\begin{array}{c} .154 & .080 & .3\\ -231 & .093 & .1\\ -079 & .280 & .3\\ .264 & .180 & .1\\ -180 & .069 & .069 & .0\\ 873 & .104 & .1\\ -053 & .156 & .0\\ -157 & .376 & .1\\ .510 & .259 & .7\\ 1.33 & 1.20 & .7\\ 1.26 & 1.46 & 1\\ .353 & .020 & .2\\ .585 & .441 & .1\\ .649 & .757 & .2\\ .000 & .104 & .4\\ 1.08 & .532 & .8\\ 2.12 & 1.51 & 1\\ .649 & .757 & .2\\ .000 & .104 & .4\\ 1.08 & .532 & .8\\ 2.12 & 1.51 & 1\\ .648 & .152 & .2\\ .688 & .152 & .2\\ .688 & .152 & .2\\ 1.78 & 1.62 & 1\\ .2.24 & 2.46 & 1\\ .2.71 & 2.18 & 2\\ .71 & 2.18 & 2\\ .71 & 2.18 & 2\\ .71 & 2.18 & 2\\ .71 & 2.18 & 2\\ .391 & .39 & 1\\ .391 & .39 & 1\\ .957 & 1.21 & 1\\ .884 & 1.04 & .7\\ .957 & 1.21 & 1\\ .884 & 1.04 & .7\\ .957 & 1.21 & 1\\ .884 & 1.04 & .7\\ .957 & 1.22 & 1\\ .303 & 1.86 & 2\\ .2.4 & .885 & 1\\ .2.24 & .885 & 1\\ .2.21 & .000 & 2\\ .2.32 & .103 & 1\\ .87 & 1.81 & 2\\ .2.81 & .606 & 1\\ .87 & 1.81 & 2\\ .10 & 2.48 & 1\\ .93 & 1.19 & 1\\ .373 & 2.63 & 2\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	.125 .039 .202 .022 171 .029 .097 .011 075 .130 .187103 .184 .084 .101 .068 109034 .047 .064 .791086 .062 .078 033 .028029 .025 129 .277 .035 .045 .389 .126 .284 .102 .214 .299 .274 .392 .900 .735 .432 .696 .616 .314 .785 .521 .269 .013 .109031 .316 .167 .058 .210 .268 .096 .143 .142 .000 .036 .231 .031 .639 .247 .350 .550 1.27 .558 .667 .681 1.73 1.31 1.56 1.19 .298 .057 .097 .465 .989 .754 .988 .612 1.11 1.14 .798 .754 1.04 1.22 .649 .971 1.44 1.27 1.50 1.10 .831 .504 .953 .964 -043016 .107039 .869 .947 .652 .839 .373 .444 .175 .275 .433 .607 .311 .307 .387 .619 .526 .375 .277 .368 .460 .249 .600 .630 .756 .670 1.50 .750 1.07 1.15 1.29 .383 .807 .888 1.75 .000 1.89 1.41 1.66 .065 .784 .871 1.84 .854 1.12 .775 1.68 1.64 1.50 .940 1.17 .814 1.51 .934 1.43 .395 .519 .647 1.17 .000 1.25 1.18 1.08 1.01 1.34 .968 1.10 1.23 .518 1.05
476 90 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 6 9 0 1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.533 2.94 2.94 2.94 2.95 1.2.785 2.561 2.561 2.551 2.660 1.553 4.31 2.066 1.553 4.31 1.431 1.901 1.424 1.800 3.833 1.833 1.833 1.06	1.67 $1.43$ $1.2.00$ $1.37$ $1.2.33$ $2.18$ $.62.33$ $2.18$ $.62.33$ $2.18$ $.62.31$ $1.37$ $1.22.31$ $1.38$ $1.2.51$ $2.58$ $1.22.46$ $2.010$ $2.22.46$ $2.000$ $2.22.48$ $.000$ $2.22.48$ $.000$ $2.22.48$ $2.09$ $3.22.43$ $2.60$ $.62.43$ $2.60$ $.62.43$ $2.60$ $.62.54$ $2.29$ $1.22.61$ $1.46$ $2.22.56$ $1.46$ $2.22.56$ $1.46$ $2.21.39$ $2.28$ $1.39$ $2.28$ $1.392.59$ $2.34$ $2.21.39$ $2.28$ $1.39$ $2.28$ $1.391.37$ $1.20$ $1.201.42$ $1.17$ $1.201.42$ $1.17$ $1.211.86$ $1.655$ $1.21.12$ $1.21$ $1.21$ $1.211.12$ $1.21$ $1.211.75$ $1.93$ $1.211.75$ $1.93$ $1.211.75$ $1.93$ $1.211.75$ $1.26$ $1.211.40$ $.655$ $5.50$	.57       1.48       .808         .24       1.34       .469         000       2.25       .940         0100       2.92       1.76         .54       2.16       1.41         .70       1.80       1.11         .94       1.85       1.23         .900       2.92       1.76         .54       2.16       1.41         .70       1.80       1.11         .94       1.85       1.23         .900       2.93       1.59         .66       1.89       .809         .900       2.60       1.15         .96       2.12       1.38         .91       2.50       1.34         .96       2.13       1.34         .96       2.13       1.34         .96       2.13       1.34         .961       1.95       .953         .962       1.62       .341         .41       1.61       .866         .45       1.51       .522         .97       .43       1.48       .941         .73       1.51       .522         .97       .63       1.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

EXPERIMENT ESTIMATION	NO	2 3CLASSICAL THRESHOLD	MODEL	-
STATE ON LAST TRIAL SESSION	OVERALL	THRESHOLD Siri Sir2 S2ri S2r2	P(C) Overall :	S1R1 S1R2 52R1 S2R2
1 2 3 4 5 6 7 8 9	.155 006 .118 .191 031 .179 .011 .082 .286	.181 .061 .276 .034 314 .046 .144 .017 128 .188 .259179 .255 .125 .149 .102 189057 .073 .097 .727148 .095 .117 055 .044+.048 .039 229 .359 .054 .069 .464 .182 .366 .151	•237 -003 •245 •083 -022 •048 •223 •274 •288	.372 .024 .252 .032 031 .017 .005 .011 .424 .083 .134 .333 .120 .079 .075 .040 069 .027 .013 .045 .027 .050 .040 .121 208 .323 .200 .417 345 .131 .288 .481 .397 .086 .295 .088
101 112 134 167 189 122 222 222 222 233 333 333 337 44 234 567 89 122 34 567 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 67 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 89 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 45 1223 1223 1223 1223 1223 1223 1223 122	.378 .699 .1277 .5366 .277 .548 .749 .324 .795 .707 .827 .795 .707 .827 .795 .707 .827 .795 .707 .827 .795 .707 .806 .927 .795 .707 .806 .927 .795 .707 .806 .927 .795 .816 .888 .8815 .8666 .828 .857 .7530 .9963 .8755 .7557 .9963 .8765 .7557 .9963 .8765 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .7959 .8155 .8570 .9963 .8277 .8570 .9963 .8277 .8570 .9963 .8277 .8570 .9963 .8276 .8570 .9963 .8277 .8570 .9963 .8277 .8570 .9963 .8277 .8570 .9963 .8277 .8570 .9963 .8277 .8570 .9963 .8276 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075 .8075	.290 .380 .355 .467 .775 .699 .501 .679 .632 .396 .724 .569 .350 .021 .159051 .398 .234 .088 .285 .348 .141 .204 .203 .000 .056 .309 .048 .646 .326 .430 .589 .855 .595 .663 .670 .956 .896 .937 .867 .380 .087 .144 .527 .808 .709 .807 .630 .847 .856 .730 .709 .825 .876 .652 .801 .918 .886 .928 .842 .745 .557 .795 .799 .071026 .157064 .762 .792 .654 .749 .451 .511 .244 .356 .502 .626 .393 .388 .463 .634 .573 .452 .358 .446 .523 .326 .622 .641 .710 .664 .929 .707 .833 .855 .890 .460 .734 .769 .958 .000 .970 .914 .949 .098 .724 .763 .956 .755 .848 .719 .952 .947 .928 .790 .863 .738 .929 .786 .951 .470 .882 .866 .836 .814 .902 .807 .842 .878 .567 .829 .865 .542 .758 .848 .717 .722 .000 .794 .829 .671 .706 .760 .786 .762 .849 .817 .728 .677 .601 .713 .690 .448 .491 .510 .797 .722 .000 .924 .955 .000 .010 .957 .955 .948 .849 .817 .728 .677 .601 .713 .690 .448 .491 .510 .797 .722 .000 .944 .814 .806 .693 .714 .895 .483 .880 .817 .924 .930 .834 .825 .864 .000 .882 .866 .836 .814 .902 .807 .728 .677 .729 .000 .944 .895 .483 .880 .817 .924 .930 .834 .825 .926 .928 .000 .940 .944 .841 .806 .693 .714 .690 .448 .491 .510 .797 .722 .000 .794 .955 .000 .010 .957 .925 .769 .946 .843 .813 .514 .807 .926 .826 .808 .877 .926 .783 .745 .806 .775 .783 .755 .848	216 216 216 216 216 216 216 216	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
70 71 73 74 75 76 77 76 79 80 FOR FIRST	.836 .850 .569 .624 .513 .828 .837 .535 .681 .577 .715 PARAMETER RIEDMAN	.839 .709 .857 .844 .912 .647 .000 .824 .645 .620 .673 .489 .547 .415 .469 .564 .816 .864 .856 .854 .537 .464 .525 .574 .579 .760 .753 .74 .749 .355 .548 .544 .688 .788 .545 .73 DVERALL FRIEDMAN 14	3 .653 .637 .591 .457 .306 .641 .641 .641 .341 .458 .458 .401 .710 .7	.632 .583 .575 .711 .559 .750 .000 .747 .563 .493 .579 .617 .481 .449 .507 .339 .326 .290 .275 .321 .609 .695 .671 .733 .600 .636 .485 .662 .366 .268 .298 .374 .375 .457 .412 .586 .420 .345 .349 .425 .699 .720 .474 .744 FRIEDMAN 1.75

.

	EXPERIMENT ESTIMATION	NO	2 4NONPA	RAMETRIC A	NALYS	IS			
	STATE ON	OVERALL	APRI S1R1 S	ME 1R2 S2R1 S	52R2	BIAS	S1R1 S1R2	S2R1 S2R2	
- T., -	LAST TRIAL					· · · · · · · · · · · · · · · · · · ·			
• • •						n ster i r			
		.558	.557	.531 .612	.519	-8.45	=14.2.20	-12.6 .812	
	3 3	,497	,418 .470	,536 ,553 ,600 ,633	.373	-,059	-16,3 5,4	-8,04 1.64 5 1.98 24,2	C ang
<del></del>	4.5	,578 ,487-	.594	<u>,567</u> ,556	•545 •544	-8.18 917	-15,3 2.04	1-7,96-2.76	
-	6	.566	.712	461 539	.591	-10.1	-68,8-10,	-3.67 14.6	r inter
147 % 	8	.568	.442	.626 .551	.639	11.5	-14.8-24.9	10.0 45.1	n provinsi in Provinsi in s
- 1. 	10	.718	,730	.690 .721	.739	18.8	48.215	3 26,7 3,94	1997) - 2010 
<b>.</b>	12	<b>766</b> 807	•770 <u>⊨</u> •820	.007 .718	.896	25.0	-67.6-36.2	2-20.6 70.4 L-54.2 41.2	a April
	13	,555 ,660	.619	,508 ,586	.476	-4.56	-25,8-,90	5 3.14 .006	
	15	649	.702	700 .585	.700	29.2	16.9 60.	5-7.65 49.3	
2	17	+764	.789	.673 .744	.800	-8.18	-27.5 6.0	5 20.4 5.36	-
÷	16	•886 •924	.911	.847 .358 .919 .897	.879 .934	18.7	-52.8 49.	3 31,3 53.6 3-82.0 2.87	
	20	696 . 868	.711	.557 ,586	.803	17.6	13.9 5.90	5.54 $33.0$	·
	22	905	.925	.899 .898	.886	24.9	2.75-44.	4 48.6 42.7	
	24	,942	,951	.917 .964	.940	29,6	-27.8-48.	3-3.09 47.8	÷j
	25	•877 •493	.882 .465	.004 .885	.824	-8.39	14.8 23.	5 3.99233	
	27	•829 •694	.833 .724	.827 .837 .746 .611	.823 .675	-42.2	-44.7-57.	3 12.2-45.1 3-5.40-2.05	
	29	.738	.755	.781 .716	.710	3,94	3.02-25.	4 13.1 10.4	
• • •	31	.729	.740	.776 .768	.699	23,2	37.9 38.	4 5,33 21.0	
	32 33	•84/ •941	•843 •954	.900 .782	.852	-26.8	-37.9 64.1	0-76,4-18 <u>.7</u>	a de
- -	34 35	•888 •874	.922 .872	.754 .637	.894 .88 <b>5</b>	-8,51	-45.9 17.	7-31,2 16,5	<u>_</u> = ₹1
				•					
- 2				•					
	· · · ·								
191	36	.844 .919	.902	.539 .772 .892 .911	.845	-58.1 -4,69	-85.3-4.1	2-56,6-38.1 5-25.4 28.3 -	F t,
	36 36	.914	.931	.939 .907	.892	-52.0 -22.1	-78.7-72.	0-76.2-5.33 8-83.5 21.7	i jar i i
	4::	.863	.919	.839 ,717	.880	26.1	-65.6 78.4	4-38,4 61.9 0-79.8 .463	
	42	.902	.591	885 940	.913	-21.0	-39.7-31.		
	43 44	.905	. 414	<b>806</b> 838	.897	-20.3	-54.0 31.	1-40.5 18.8	
	45 46	<b>,867</b> ,899	.887 .879	.805 .803	·875	-30.4 -4.58	-38,7-27.1	9-8.22-4.68	<u>.</u>
	<b>47</b> 49	.857 .332	.873	.844 .855 .815 .838	.851 .821	-13.5	13.4 6.7	6-47.7-7.75	
	49	,923	. 926	.909 .000	.922	52.8	54,5 68.	7 .000 48.1	
, i	21 51	+928	.933	.916 .929	.914	-56.8	-59.6+35.	7-77.8=49.3	경험관품
	_ <u>22</u> 53	+ <u>67/</u> +916	.925	.921 .921 .941 .899	.891	-43.4	-56.2-58.	4-30.1-33.7	
	54 55	.947 .951	.947	.961 .000	.945	-32.5	-48.8-12.4	000 2.17	
	56	, 589	. 099	.909 .870	.891	31.6 32.0	-35.2 11.	8 31.1 47. <u>1</u> 8 .000 52.5	6. <u></u> 7
	55	.947	, 947	.967 .971	.941	-11.4	-31,4 15.	7-33.2 12.7	57 - C. ()
	<b>27</b> 60	,929	.936	.000 .914	.932	-84.5	-85,6,00	0-87.4-81.3	
	<b>61</b> 62	,937 ,928	.947	.847 .956 .844 .953	,938 ,915	-47.2	-52.9-41.	4-78.0-32.9	
	63 64	.907 .892	.889	.000 .000		-47.4 20.4	593 59.5	0 .000+33.8 9-62.5 26.9	a can lo
	65	,862	.831	.922 .846	.928	-37.6 -18.2	-47.5 55.	5-35.4 15.4 7-19.0-13.3	
÷.	67	,815	.819	.783 .785	.846	-61,5	-62,4-67,1	5-57,8-54.1	
7: 	68 69	.833 .835	.853	.799 .830	.845	-53.6	-55.4=40.1	-60.844.7	
	70 71 •	.896	.889	870 867	.916 .922	-34.8 -35,4	-43.0 21.	.000 22.7	
	72	-836 789	.831 707	.809 .869	.840	47.7 -24.5	29.4 30.0	5-4,97 60,8 5-39,8=27,7	
	74	.736	.751	.724 .712	.746	-14.3	-16.7 11.	3-14.5-24.2 5-60.9=27.2	
	7- 7-	• 828 • 895	.878	.891 .537	908	-44.7	-42,0-22,	7-55.1-44.2 7-24.0-9.81	
	77 78	•754 •814	•768 •773	./18 .725 .809 .810	. 870	-24.9	-13,9-54	3-51,8-2.57	Ŧ
	<b>79</b> 87	•788 •893	.836 .084	.703 .767	.783 .905	965 50,5	51,6 31,9	9 23,6 57,1	: -
	PAS FISST		OVERALI	FRIEDMAN	9.77	,			. 94 - 3

;

 $\sum_{k=1}^{n}$ 

A No.

FOR FIRST PARAMETER OVERALL FRIEDMAN 9.77 Stim: Friedman .362resp Friedman 2.45cor wr Friedman 9.06

LAST TRIAL	GVENALL	0141 31	nz Jen	1 3282	UVERALL	STHT STHT	o <u>rni</u> osm
5		•				i di se	
1 2	.054 003	.038 . 071 .	032 .1 032 .0	18 .019 49 .011	1,44 ,897	.683 3,28 .386 2,25	1,73 3,
			*.	•			
3 4	.035 .079	006 . .089 .	111 .1 071 .0	53119 53 .046	1,07	.161 3.44	2.96 6.
é 7	•062 •008	009	028 .0	25 .045 38 .086 15 .035	• 0.32 • 404 • 794	.012 .902 .055 .199	.568 2.
8	.061	037	116 .0	41 .064	.836	,077 .099	.985 4
10	.273	.248	234 .2	69 .313 71 .633	1.54	3,84 ,886	2,08 1,
12 .	,438	.471	371 ,3 007 0	46 .477	1.51	1.15 8.74	,257 1
14 15	.186	.229	164 .0	45 .231	1,53	,794 1.81	.970 3
16	,119	•000	038 .1	60 .043	.681	.000 .636	,243 2
13	.629	+689	515 .5	52 .598	1.46	,373 4,69	1,52 3
20	237	.265	057 .0	91,424	1,93	1,71 1,99	1,80 2
22	.679	.738	658 .6	53 .621	1.48	1.31 .097	1.12 2
24	.793	.822	709 8	64 .783	.591	,910-,010	.061 .0
26	007	036	015 .0	94030	1.20	1.11 1.44	1.31 1
28	.240	.289	326 .1	23 .211	•944	1.02.985	.819 .9
30 31	.361	.355	454 .4	04 .294	1.06	1.66 .771	.761 .9
32 33	.529	<b>515</b>	475 .5	57 .542	•418 2.38	425 .205	+341 +4
34 35	•634 •532	.725	336 .5 000 .5	02 .650	•901 •229	.692 1.23	.684 1
36 37	.498	.636	038 .3	18 .517	.268	.139 .546	.193 .4
38 39	.701	.743	775 .6	63 .645 47 .681	•459 •228	.206272	.195 1.
40 41	•568 •632	.709 .578	443 .2	43 .592 92 .764	.464 1.17	.078 2.99 .826 .000	.092 1.
42 43	•673 •679	.637 . .705 .	626 .7 786 .4	85 .702 36 .622	<b>,918</b> 2,00	.656 .701 2.27 2.14	.6 <b>51</b> 1. 4.95 1.
44 45	•608 •575	.637 .627	433 .4	99 .658 17 .601	,706 .711	.417 1.68 .543 .748	.385 1.
46 · 47	•664 •555	.610 .594 .	738 .7 524 .3	23 .684 37 .540	.879 .293	.608 <b>39.2</b> .532 .518	.964 .9
48	• 467 • 727	.635 .737	406 .4	19 .444 00 .725	1.28	1.78 2.58	.788 1
20 51	.744	.759	711 .7	33 .701	1.15	1.33 2.53	,756 .6
53 54	• 708 • 708	.773	783 .6	63 •637	.500	.255 .561	.487 .7
55	,818	.764 .	000 .7	52 .848	.141	.164 .000	.040 .1
57 57	,784	.776	777 .0	00 .794	4,50	3.10 16.6	.000 10
59 59	.745	.779	744 .6	73 .673	1.35	1.12 5.09	2.14 1
61 62	.776	.307 . 786	527 .8	37 .779	1.24	1,69,965	080 .8
02		.700 .	×10 *0	23 .707			
63	.681	,632 .	000 .0	00.662	•169	.174 .000	.000
65 66	.561	.476 .	723 .5	13 .3/4 21 .747 93 .255	1.40	1.02 15.0	1,45 2
67 68	416	.425	315 .3	49 .508	.576	.593 .208 .266 .501	.660 .6
69 7n	.479	.469 .	409 .4	55 .513	.324	.262 .437 .504 1.31	.237 .5
71 72	167 <u>6</u> 488	.659 .	611 .0	00 .730 86 .483	.218	.094 3.10	.000 .4
73	.307	.417 .	456 .3	74 .225	1.74.718	1.78 3.12	1.13 1.
75 76	,538	.493	637 5	71 .700 82 .685	,808 ,454	1773 1.35 1454 .927	.768 .7 .283.39
77 78	.339	.365 .	277 2 412 4	30 .375 19 .586	.855 .681	.977 .936 .822 .246	.550 .9
79 80	,404	.496 .	250 3	64 .393 22 .669	.331	150 558 1.07 348	.268 .4
FOR FIRST P	ARAMETER	OVERALL	FRIEDM	AN 10.	5	COTENHIN	7.47
STIN FRI	EDMAN .1	30RESP	FRIE	JMAN •	1UCOR WR	FRIEDWAN	( + • (

۰.

STATE ON LAST TRIAL SESSION 1 2 3 4 5	OVERALL .004 .005	Z S1R1 S1R2	S2R1 S2R2	OVERALL	S1R1 S1R2	52R1 \$2R2
1 2 3 4 5	.004					
c 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	.003 .007 .007 .210 .154 .296 .217 .180 .397 .241 .115 .327 .242 .247 .033 .024 .004 .024 .024 .024 .024 .024 .024	000 .000 .000 .000 .000 .000 .000 .000 .211 .185 .145 .213 .459 .300 .327 .299 .500 .855 .914 .341 .199 .025 .000 .346 .488 .271 .349 .025 .000 .014 .000 .014 .000 .014 .000 .014 .000 .014 .000 .014 .000 .014 .000 .113 .001 .244 .327 .396 .543 .277 .336 .181 .214 .265 .133 .277 .336 .181 .215 .239 .333 .196 .233 .196 .233 .290 .475 .290 .475 .290 .475 .290 .475 .290 .475 .290 .475	.000 .006 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .151 .194 .000 .135 .211 .306 .199 .095 .081 .172 .316 .794 .000 .145 .288 .259 .259 .200 .037 .000 .037 .000 .037 .000 .032 .000 .032 .000 .032 .000 .032 .215 .128 .137 .521 .273 .094 .120 .215 .128 .137 .521 .275 .236 .234 .236 .238 .236 .238 .236 .238 .238 .208 .238 .208 .248 .208 .238 .208 .238 .208 .238 .208 .238 .208 .238 .208 .238 .208 .239 .258 .238 .208 .239 .258 .248 .208 .248 .208 .248 .208 .248 .208 .259 .258 .248 .208 .248 .208 .259 .258 .248 .208 .248 .208 .259 .258 .248 .208 .248 .208 .259 .258 .248 .208 .248 .208 .248 .208 .259 .258 .248 .208 .248 .259 .258 .248 .208 .248 .208 .248 .208 .248 .259 .258 .248 .208 .248 .208 .248 .208 .248 .259 .258 .248 .208 .248 .208 .248 .208 .248 .208 .248 .259 .258 .248 .208 .248 .208 .248 .208 .248 .208 .248 .258 .208 .248 .208 .248 .248 .248 .248 .248 .248 .248 .248	1.45 .584 1.807 .805 .419 .562 .419 .565 .419 .567 .419 .567 .419 .567 .419 .567 .419 .567 .419 .567 .419 .567 .567 .419 .567 .560 .706 .706 .706 .706 .706 .706 .705 .263 .1.264 .2643 	,000 .000 ,000 .000 ,000 .000 ,000 .000 ,000 .000 1.13 .285 ,550 .376 ,967 .257 .601 .405 .867 .860 .413 .781 .855 .364 ,523 .225 .346 .535 .724 .000 1.29 .000 .000 .418 .000 .5751 .539 .724 .000 1.25 .000 .418 .000 .597 .396 1.21 .892 1.21 .655 1.32 .864 1.35 .993 1.47 .503 .628 .514 1.48 1.76 .503 .50 1.05 1.21 1.65 1.51 .000 1.17 .000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 76 77 77 77 77 80 81 82 84 85 87 87 87 80 81 82 84 85 87 76 77 76 77 76 77 77 77 77 7	.019 .045 .010 .051 .157 .158 .391 .181 .127 .102 .542 .659 .525 .689 .583 .045 .025 .034 .009 .034 .009 .034 .009 .034 .009 .034 .009 .034 .107 .359 .553 .410 .266 .010 .076 .1107 .359 .553 .410 .009 .031 .009 .031 .141 .236 .010 .009 .031 .009 .031 .009 .034 .141 .236 .010 .009 .035 .025 .009 .035 .005 .009 .035 .005 .009 .035 .005 .009 .035 .005 .009 .035 .005 .009 .035 .005 .009 .035 .005 .009 .035 .005 .009 .035 .005 .005 .005 .005 .005 .005 .005	.000 .000 .048 .000 .084 .000 .084 .000 .163 .12 .143 .11 .347 .65 .169 .122 .103 .165 .504 .651 .858 .585 .751 .69 .569 .81 .020 .000 .034 .001 .022 .000 .011 .000 .012 .160 .022 .000 .012 .000 .012 .000 .012 .000 .012 .000 .012 .000 .012 .000 .012 .000 .013 .000 .022 .000 .014 .000 .022 .000 .014 .000 .022 .000 .014 .000 .022 .000 .014 .000 .012 .000 .014 .000 .012 .000 .014 .000 .015 .227 .187 .400 .008 .000 .019 .000 .000 .000 .019 .000 .000 .000 .019 .000 .000 .000 .019 .000 .000 .000 .019 .000 .000 .000 .012 .227 .123 .28 .556 .28 .556 .28 .556 .28 .556 .28 .556 .28 .556 .28 .556 .53 .227 .233 .689 .661	0 .000 .019 161 .026 0.000 .016 0.024 .145 0.213 .145 0.255 .145 0.255 .437 0.258 .516 0.557 .437 0.555 .437 0.555 .437 0.555 .437 0.555 .437 0.555 .437 0.555 .437 0.555 .437 0.000 .037 0.000 .037 0.000 .000 0.000 .000 0.223 .167 0.258 .083 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.335 .309 0.000 .012 0.000 .012 0.000 .012 0.000 .012 0.000 .012 0.000 .012 0.000 .012 0.000 .007 0.258 .083 0.335 .309 0.355 .398 0.306 .129 0.100 .008 0.000 .007 0.100 .008 0.000 .007 0.100 .008 0.000 .007 0.000 .007 0.000 .007 0.000 .007 0.258 .083 0.355 .398 0.455 .398 0.574 .470 0.590 LEDMAN 31. RIEDMAN 11.	2.17 1.38 1.32 1.41 2.28 1.35 1.07 1.37 1.37 1.34 1.34 1.34 1.35 1.91 1.34 1.547 1.35 1.35 1.000 2.21 1.547 1.35 1.35 1.35 1.36 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.5	.000 .000 1.05 .000 1.01 .000 1.32 .50 1.06 1.00 1.32 .58 1.72 1.22 1.06 1.07 1.58 1.50 1.19 1.19 1.11 2.66 .695 1.09 1.15 1.58 .282 .000 1.29 .000 1.36 .000 1.29 .000 1.36 .000 .366 .000 .488 .000 .487 .000 1.41 1.33 .704 .441 1.27 .000 1.41 1.33 .704 .832 1.01 .997 1.55 2.30 2.637 .581 1.29 .000 1.01 .997 1.55 2.30 2.637 .581 1.29 .000 1.01 .997 1.55 2.30 2.637 .581 1.29 .000 1.01 .997 1.55 2.30 2.637 .581 1.29 .000 1.01 .997 1.55 2.30 2.657 .577 2.944 .528 1.21 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .641 .784 .21 .000 .000 .000	$\begin{array}{c} .\ 0.00 & 1.03 \\ .\ 0.00 & .000 \\ .\ 0.00 & 3.06 \\ 2.36 \\ .\ 0.00 & 3.06 \\ 3.02 & 1.48 \\ 2.50 & 2.25 \\ 1.26 & 1.01 \\ .\ 1.41 & 1.40 \\ 2.81 & 1.69 \\ 1.45 & 1.52 \\ .\ 1.49 & 1.50 \\ .\ 746 & 1.16 \\ 1.31 & 1.29 \\ .\ 981 & .918 \\ 1.58 & 1.23 \\ .\ 0.00 & 2.28 \\ .\ 0.00 & 2.99 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .000 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 \\ .\ 0.00 & .427 $

XPERIMENT	NO	3 2TANNED SW	STS: ODSEN	MODEL		
STATE ON	OVERALL	DPRIME SIRL SIR2	8281 8282	OVERALL	S1R1 \$1R9	S281 S282
AST TRIAL						
1	5,33	.000 .000	.000 5.07	2.79	.000 .00	0 ,000 2,53
2	5,56	.000 .000	.000 .000	2.41	.000 .00	0.000.000
<u></u>	38.2	.000 .000	,000 .000	35.7	;000 ;00	0.000.000
6	5,18	.000 .000	,000 .000	2.40	.000 .00	0 .000 .000
7	1,88	1.88 1.98	2.22 1.96	.801	1983 194	4 1.43 .831
9	1.48	1.64 1.45	1.87 1.45	.633	.811 .34	0 1.12 .596
11	2.05	2.01 1.73	2.86 2.09	· • • • • • • • • • • • • • • • • • • •	1934 147	2 1,99 ,804
12	1,14	1,13 .856	1.41 1.28	447.	.348 .37	8 ,689 ,521
14	1172	1+32 1+93	,000 2.23	.563	475 45	7 .000 .626
15	2,49	2.40 .000	1.50 1.61		.383 .24	0 ,000 1,02
17	1.63	1.59 1.32	1.56 1.92	665	.700 .46	3 ,918 ,683
18	1.70	1.41 1.97	.000 1.83 	5 .724 5 1.81	,010 ,01 - 1 <del>.85 .00</del>	8 .000 .791 0~~.000 1.82
20	4.11	4.41 .000	.000 4.00	1,97	2.30 .00	0 .000 1.76
21 22	4.01 3.99		.000 4.71	1.98	2.30 .00	0,000 2,13
23	3,88	4.42.000	000 3.65	1.80	1,88 ,00	0 .000 1.72
25	1.87	1.71 1.36	2.34 2.34	.937	,962 ,41	9 1.72 .992
26	1,17	1.62 2.35	.811 1.50	) ,607 5 ,855	,622 ,36 .872 1.0	2 .508 .749
28	1,77	1.56 1.34	1.85 2.14	.919	873 62	7 1.01 1.00
29 30	2,01	2.04 1.85	1.68 1.70	) •985 5 •737	1.14 .92	< 1.01 .900 2 .751 .985
31	.929	1.26 .719	-1.09 1.00	497	,783 ,24	5 806 428
33	1,80	1.95 1.74		.843	1,10 ,97	2 .869 .678
-						
74	.746			.447	.424 .14	5 .354 .787
35	1.51	1.51 .932	1.63 1.63	.830	816 .57	3 .830 .920
36	,426	.291 .311	, 600 525 1.49 3.48	·192	2.03.00	5 .270 .271 0 .524 1.69
3 <u>8</u>	3,55	3.56 .000	,000 3.50	5 1.79	1.84 .00	0 .000 1.72
39 40	3,43	3,36 ,000	2,17 3,87	7 1.84	1.70 .00	0 1.04 2.28
41	4.62	4.59 .000	.000 .000	) 2.54	2.30 .00	0.000.000
42	2,19	2.13 2.39	2.67 2.20	5 1.23	1.17 .93	1 1.78 1.29
44	2,17	2,27 1,41	1.84 2.20	5 1.40	1.48 .77	6 1.24 1.44 6 .521 .711
46	2,05	2.12 2.44	1,91 1,94	1.05	1.08 1.2	2 ,915 1.01
47	2,41	2.76 1.78	2.04 2.27	7 1.40 7 1.54	1.50 1.2	2 1.10 1.27
49	.750	.852 .535	663 80	L .428	.460 .29	0 ,391 .480
50 51	.762	.191 .667	580 .824	4 .283	,101 ,48	0 .249 .442
52	.814	.872 .534	,727 .97	7 .432	.394 .32	7 .410 .545
53 54	.400	.703 .264	432 1.09	382	.375 .14	1 .264 .596
55	3.43	4.04 .000	1 .000 3,51	2 1.72	1.53 .00	0.000 2.10
70 57	3,68	4.04 .000	.000 3.59	1.96	2.12 .00	0 .000 1.99
58	4.70	4,54 .000	000 .000 .000	J 2.29 J 1.71	2,00,00	0 .000 .000 0 .000 1.67
60	38.0	.000 .000	,000 .000	2.33	.000 .00	0.000.000
61 62	2.14	2.25 1.57	2.42 2.22	· .789	1.15 .99	8 .868 1.47
63	1.63	1.70 .000	2.05 1.29	1.07	1.07.00	0 1.59 .835
64	2.92	2.12 4.53	, .000 2.87 3 1.81 2.14	4 1.00	1,05 .50	8 .817 1.12
66	2,60	2.57 .000	1,63 2,8	5 1.44	1,38,00	0 1.06 1.62
67 68	.750	.984 .635	5 .755 .59	5 .345	.412 .28	9 .362 .293
69	1.28	1.43 .813		5 .724 4 .734	.715 .40	0 .820 .829 1 .731 .850
70 71	.233	.399 .914	327 .05	133	.276 .50	7-,166 ,025
72	1,75	2.00 1.12	2 1.36 1.95 1 .000 4.80	5 .832 8 2.38	2,48 .00	0,000 2,31
74	4.37	4.60 .000	.000 4.20	2.30	2,30 ,00	0,000 2,29
75 76 •	4,76	.000 .000	,000 4.51 ,000 3.70	1.86	2.21 .00	0 .000 1.85
77	4.95	5.09 .000	.000 4.84	1 2.54 n 2.74	2.54 .00	0.000 2,54
78 79	38.4	2.92 1.17	/ 1.43 2.3	7 1.55	1,95,44	4 1.00 1,60
80	2,10	2,42 1,57	2,30 1.92	2 1.35	1,60 1,0	3 1.83 1.12 8 1.21 1.36
81 82	2,64	2,70 1.25	5 2.09 2.99 5 2.46 2.21	1.41	1.34 .88	7 1.80 1.50
83	2.78	2.74 .000	2.66 3.00	5 1.61 8 1.12	1,45 ,00	0 1.52 1.99 7 1.02 1.51
84 85	2.34	1.35 1.16	, 10/2 2.50	.658	.704 .43	7 .549 .783
86	.920	.731 1.54	.969 .87	3 •520 7 .3A0	.409 .92	3 .368 .559
87 88	.981 1.37	1.78 1.75	, 1.35 1.1	.614	,644 .72	8 .455 .586
89	.928	.814 1.33	5 ,850 .930	5 .394 5 .208	,132 ,15	9 ,205 ,352

					· ·
,	FOR SECOND PARAMETER OVE	RALL FRIEDMAN	30.9		
	STIM FRIEDMAN 7.69RE	SP FRIEDMAN	,308COR WR	FRIEDMAN	12+1

46	,827	,838	,875	,781	,814	,694	,712	.778	,661	.067
<u></u>										
•										
. 47	.913	,949	,870	.860	.886	,753	.802	.538	, 692	.732
48	.934	.929	,875	,941	,942	.791	,796	.700	, 649	.817
49	498	.523	.372	.467	.539	.281	.320	.204	1235	,318
50	,497	.439	.413-	,501	,626	,300	.269	•231	, 291	,403
51	.364	.148	.539	329	.509	.203	.077	.185	,244	, 324
52	,501	,469	,408	,483	.586	,314	,333	1217	, 275	,365
53	.307	.237	,315	.256	.384	.184	.144	.176	1149	.243
54	,459	,453	,227	, 345	,619	.263	,273	,103	,179	,416
55	,955	.933	.000	.000	.982	.913	,927	.000	.000	.903
56	.985	,975	,000	.000	,994	.935	,931	,000	.000	,945
57	,974	.983	.000	,000	.976	.932	,955	.000	.000	,921
58	,989	.977	.000	,000	.000	.981	,972	.000	.000	.000
59	.954	.956	.000	,000	,950	.938	,925	.000	.0.00	,944
60	.990	.000	.000	.000	.000	,989	.000	.000	.000	.000
61	,726	.719	.559	.805	.771	.667	,656	.505	,769	.709
62	,886	.858	.811	,761	.923	.802	,769	,730	,667	,855
63	.834	.835	.000	,940	.747	.530	,572	.000	,478	,451
64	,952	.956	.815	.000	.948	.843	.873	,750	.000	.843
65	.813	.827	.560	,739	.848	.694	+710	,559	.630	1714
66	,919	.909	.000	,830	,944	.797	,794	1000	,500	.832
67	,707	.632	,789	,777	.747 .	.455	.402	.000	. 389	,217
68	,425	.485	.371	.441	.375	.290	+ 372	.200	.293	.232
69	.693	.689	.479	\$744	.744	.469	,524	.310		. 421
70	+699	.667	.758	.697	,754	.370	+413	1424	.310	.34/
71	.191	.358		-304	+040	.097	1/0	1320.	- 130	458
72	,746	,746	+ 495	.080	.847	,012	1090	.000	1300	085
73	.991	.993	.000	.000	.989	.981	1702		.000	044
74	,989	.989	.000	.000	. 989	.9/0	17/7	~ 0000		040
/5	,994	.000	.000	.000	1995	1961	0000	1000	888	036
- 16 -	,968	.980	.000	.000	+90/	1940	1929	1000		084
	.995	.994	.000	.000	. 994	.980	.000	.000	. 000	.000
1	,99/	.000	.000	.000	1000	474	744	500	423	.676
/9	.936	.9/4	.211	,612	. 942	.0/4	.694	. 615	545	3651
00	,903	.942	.022	,982	.040	840	.823	.415	. 655	.859
01	10/9	, 090	.214	.0/3	. 707	748	.769	. 680	. 646	. 697
E	,914	.902	./09	.902	1727	824	.832		. 783	.816
03	.944	.921	494	932	030	.745	.777	.355	.587	.782
	457	407	505	101/	723	458	.502	.419	.316	. 494
07	.057	.003	704	.900	844	741	. 273	.543	.351	.331
00	1207	.402	704	1243	504	. 361	292	.277	407	.440
	470	.349	404	. 440		.501	.580	596	.387	.432
00	140	770	A14	44.0	643	.350	.247	493	340	.360
09	387	1002	228	270	.431	.196	134	.191	.175	.260
<u>70</u>	1200	.1.0			1401					
FOR FIRST PARA	METER O	VERALI	FRIF	DMÁN	28.8					
STIM FRIEDM	AN 22.	2RESP	FF	TEDM	N 4.9	2COR WR	FRIED	MAN	13.0	
									~	
								1.1	-	
FOR SECOND PAR	AMETER	DVERAL	L FRI	EDMAN	30.9		FOICT	MAN	48.4	

EXPERIMENT N	10	3			· · · - ·					· · · · -
ESTIMATION		301 45	STEAL	TUDE	SHOL D	MODEL				
······································		THR	ESHOL	D		P(C)	- 7a			<u></u>
STATE ON	OVERALL	\$1R1	\$1R2	S2R1	52R2	OVERALL	SIRI	51R2 1	52R1	S2R2
LAST TRIAL		· · · · · · · · · · · · · · · · · · ·					-7-21-21-1	= 7/1 <u>−</u> ÷.		
SESSION										
				· .						
1	,997	.000	.000	.000	,994	,992	.000	.000	,000	.989
2	,992	.000	.000	.000	+000	,989	.000	.000	.000	.000
3	,997	.000	.000	.000	.000	,995	,000	+000	.000	.000
	1.00	.000	.000	.000		,995	,000	.000	.000	.000
5	,992	.000	,000	,000	,994	,986	.000	.000	.000	,984
•	1945	.000	.000	.000	+000	,989	,000	,000	,000	,000
7	+767	,805	.585	.918	.745	.651	,649	,589	.714	,655
<u>in e</u> 8	.732	•774	.610	.000	.705	+689	•717	1622	,000	,678
9	,642	.736	.420	,849	.620	-531	,589	.407	.600	.511
10	,663	.578	. 233	,936	.733	.599	1492	+462	.778	.707
11	./90	.795	.736	. 952	•771	+ 691	,685	.612	.830	.693
12	,513	.425	. 455	,675	.569	+418	, 358	.329	.520	.475
13	.079	134	.046	=.060	.128	.058	,078	.072	.032	.068
	+598	1535	. 721	.000	1638	.545	. 1459	+537	.000	.596 _
19	,/28	/23	.000	.000	.81/	./21	1092	1000	.000	.773
16		.459	.320	,510	.622	,478		1259	.560	.587
17	.001	.681	. 241	,781	.671	.567	,565	,477	,547	.608
18	1094	.628	.740	.000	+727	,586	,500	+647	,000	.630
<u>· 19</u>	,964	.967	.000	.000	.964	,935	,949	+000	.000	.928
20	1975	.989	.000	.000	.959	,959	+972	,000	.000	.951
21	.991	.000	.000	.000	,983	,984	.000	•000	.000	.979
22	,976	,989	.000	.000	1966	,954	,973	.000	.000	.938
23	,963	.969	.000	.000	.956	.946	,965	+000	,000	.930
24	,934	,897	.000	,889	.960	.897	.871	.000	,750	.920
25	,789	.798	. 490	,956	,809	.650	,604	, 455	,651	.743
- 26	-627	, 636	,440	,560	.706	,439	,424	1292	, 297	.569
27	,756	.763	.814	.939	.716	.659	• 578	•744	,792	.690
28-	,782	.764	,639	.814	.812	.623	,560	•508	, 649	1710
29	.806	.853	,783	.814	.774	.686	,688	.645	.630	,708
30	,700	,637	.517	.707	.806	,485	• 388	.299	,593	.614
31	,552	.723	.324	.734	.497	.355	.434	.238	.278	.372
32	,669	,683	.541	843	.677	,559	,585	.472	,544	.573
33	•751	,844	.802	,762	.668	.629	,658	.610	.633	.605
34	,513	, 494	.207	,433	,725	,268	,263	.109	, 225	,380
35	.745	.739	.605	,745	.782	.545	1547	.353	.580	.577
36	,268	,180	,220	. 339	,331	,171	.115	123	+250	.208
37	,954	.978	.000	.571	.953	.911	,935	.000	.500	.917
38	,962	.966	.000	.000	,955	.924	,923	.000	,000	,925
39	,991	.000	.000	.000	•982	.948	•000	.000	.000	.963
40	,966	,954	.000	,824	.988	.910	.907	.000	,714	,935
41	,994	.989	.000	.000	.000	.976	,978	.000	.000	.000
42	,960	,916	,000	,000	, 995	,900	,845	.000	,000	.953
43	.877	.862	,787	.961	.890	,715	,702	1722	.739	.730
44	,912	.925	.720	. 880	.920	.672	. 695	,500	,588	,689
45	.657	.732	.367	.569	.687	.436	,473	.195	, 355	,522
46	,827	,838	,875	,781	814	,694	,712	.778	,661	.667
•										

						angigar S. An an an				1997) 1997		
	100	<u>,</u>	y gro g	1997	.000	.000	.000	.997	-52.2	.000	.000 .000 4.	35
	신문학	4	ajer j	,999	.000	.000		.000	-5,26	.000	.000 .000 .00	00
		5 4		997	.000	.000	000	.996	34.6	1000	+000 +000-44	.3
		7 A		.894	.894	.876	,910	900	18.9	-14.7	80.1-70.5 42	-1
	4	9		.849	.871	.816	.888	.844	30.7	3.87	73,3-49.1 35	.4
	1	u . 1		.909	+031	.879	.954	.925	26,5	17.8	01.3-65.7 87 16.9-6 <u>4.8 4</u> 3	.3
v	1	3		553	.787	.748	.842	.820	33.5	51,4	15.0 5.33 32 7.85~.835 17	•9 •1
	1	<b>4</b> 5		.863	.821	.861	.000	.895	64.1 77.4	46.3	84.1 .000 84	.0
	1	6	· -	,822	.809	.744	.835	,861	56.2	59.0	49,1 65,6 53	, Ó
	÷ i	8 8		,874	1839	.899	1000	.888	35.2	27.1	45.6 ,000 35	4
	្លាំខ្ល	0		990	.993	.000	.000	.901	33.5	+39.3	.000 .000-8.	12
	7.5	2	-	988	,993	.000	.000	1992	7,50	-34.7	.000 .000 70 .000 .000 12	
	2	3 4		986	+991	.000	904	982	48.3	81.6 59.3	.000 .000 37	33
	2	5		894	.876	.820	.897	.1928.	-,605	-31.4	59.1-87.9 48	.5
	2	7 A		.898	.867	,929	.948	.916	32.7	-20.0	47,4-58,1 82	• 0
												· •
			21.5				, ji		. • . • . • . • .	··		K T
	21 - E					· · ·		•	÷			at g
	23	9 n	· · ·	.907	.908	.892	886	.918	7,83	-34.0	.924-31.0 55	10
	3	1		763	,R14	,715	,775	,775	-10,2	-40.8	31,2-58,1 21	,2
	3	3		886	.900	,879	890	,884	17,5	-36,5	-30,7 16,0 60	15
	3	4 5		.854	,654	,761	868	.800	-21.4	-19.8	-29.8-5.73-30	97° ⊴: 14
	3	6 7		•644 •977	•603 •983	.010	,890 ,843	.671 ,978	5,57 -1,96	6,55 -54,2	.076 12,6 3. .000 53,3 18	52 17
	3	8 9		<b>.98</b> 0 .988	.980 .000	.000	.000	•980 •991	-4.77 -77.3	-24.9	.000 .000 24	15 114 37
	4	0		.976	.976	.000	919	.982	-44.3	-9.20	+000 16,0-80	•5
	4	2		974	958	.000	.000	,987	-39,4	400	.000 .000-88	ių 📲
	4	4		,907	.915	.841	876	,923	-68.9	-72,0	-21.6-68.1=69	3
	4	5 6		,803 .910	.916	.670 .938	,765	.843	-22,9	-40,4	,000 12,6 <b>-12</b>	29 18 19 19 19
	4	7 8		,932 ,944	,948 ,945	.870 .913	.907 .916	,925 ,951	-52,9 -57,8	-68.1	-66,7-39,8-39 -43,7-78,6-58	.2
	4 5	9 n		,725	,748 ,709	,674	.705	.735	-15.8	-10.6	-7,00-17,5-22	, 8 . 8
	5	1		670	571	699	685	.742	-6.75	-1,52	37.9 12,4-9,	22
	5	3		656	.625	.652	629	.698	1,20	3.12	3,15 ,575 4.	15
	5	5		,977	,982	.000	.000	.975	-2.05	91.0	.000 .000-78	,0
	5	5 . 7		.983	.983	.000	.000	.980 .980	-42,3	-38.3	.000 .000-58	6
	5	8 ° 9		•995 •983	.993	.000	,000 ,000	.000	28.7 54,5	75.5 21,4	+000 +000 +00 +000 +000 80	10 .2
	6	0		•998 •907	.000	.000	.000	.000	100 64.3	.000 73.3	.000 .000 .00	)0 (156) • 1
	6	2		.945	.934	.917	903	.961	7,90	13.9	24.0 37.5-3.	18 <u>)</u> -12
	6	4			967	-924	.000	.956	-60.7	-50.9	35.2 .000-58	<b>1</b> 993
	- 6	6		,945	.915	.000	860	955	-42.3	+32,1	.000-56.5-54	5 00
	6	7 9		•817 •726	.787	.873	.818 .727	.842	-33,3	23.1	8,74 4.97 1.	57 57
		9 0	ni k	.822 785	.844	.740	.849 .773	.812 ,782	-24.7 -46,1	-,849 -31,0-	195-26.3-48	7
	7	1		585	.634 .909	.760 .794	.385	.521	-5.07	-21.8-	15.1846 .50	)0 2
	23	3		.995	.996	.000	000	996	-13.5	-39.4	.000 .000 53	
	7	5	•	,995	.000	.000	.000	.992	-55.1	.000	000 .000-79	1
	7	5		•985 •997	990 997	.000	.000	.983 .996	8,55 -32,4	2,69	1000 .000-48	6
	71	9		.999	.000	.000	.000 .828	.000	100	,000- -86,8	+000 +000 +00 38+0-62+2-79	10 - 1° - 6
	8	3		.902	921	.850	.875	.895	-66.9	-77.3-	57,9-92,5-43	3
	81 			921	,934	.901	.905	.913	+62.5	-41.2	27.8-89.0-74	1
	81	5. F	1.17	,971	, 953 , 937	.000	,875	.952	-39,2	+37,3	9.25-41.7-58	2
	89	5	<u>.</u>	,815	,833 .721	.800	,757	.837 .753	-13.4 -18.0	-9.76	38,3=26,5=25, 40,9=20,9=14,	9 6 1 2 1
	87	and the	100 <u>0</u>	770	,738	.727	,813	.806	30.6	39.0	28,3 64,8 7.7	2
		• *1.	1870) 1997 - 1997	. <b></b>	1013	• <del>•</del> • ₩	•••••	<b>-</b>			··· • • • • • • • • • • • • •	
	r Contañ		a taria.	th alphatic			en je en					
	ennere). Nu			y stall. Pri tra				+		• •• ••	이 아니라 이 가족되었다. 2013년 - 1월 2013년 - 1월 2	1997) - 175 1997) - 175
			المريح المراجع	,762	.732	,829	745	.765	20.6	39.8	22.2 24.8=5.8	
	-=_`` <b>≓\$</b> (	)	17 - 7. 	. 668	.651	.064	.647	.705	. 14.5	ः <b>४७ (अ</b> हि स्टब्स् स्टब्स्	1917. 9789#7+1	<b>9</b>
					WEDALL	FRIS	DHAN	34.8		1 <u>.</u>		

2 ( 5 .

EXPERIMENT ESTIMATION	N <b>O</b>	3 5ATKINSONS	MODEL		
STATE ON LAST TRIAL SESSION	OVERALL	SIGMA Siri Siri Si	2R1 <b>82R2</b>	OVERALL	S1R1 51R2 52R1 52R2
1234567890112345678901222456789012234567890122345678901223456789012223456789012223456789012223456789	$\begin{array}{c} 999\\ 999\\ 999\\ 999\\ 999\\ 999\\ 999\\ 658\\ 559\\ 658\\ 559\\ 64122\\ 7724\\ 444\\ 5568\\ 956\\ 9959\\ 9985\\ 6639\\ 889\\ 6639\\ 86538\\ 6638\\ 6638\\ 6638\\ 6623\\ 686\end{array}$	$\begin{array}{c} 000 & .000 \\ .000 & .000 \\ .000 & .000 \\ .000 & .000 \\ .000 & .000 \\ .000 & .000 \\ .551 & .556 \\ .717 & .555 \\ .589 & .390 \\ .483 & .477 \\ .684 & .410 \\ .367 & .327 \\ .677 & .034 \\ .456 & .457 \\ .693 & .000 \\ .106 & .274 \\ .566 & .457 \\ .509 & .659 \\ .950 & .000 \\ .972 & .000 \\ .973 & .000 \\ .973 & .000 \\ .973 & .000 \\ .663 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .593 & .000 \\ .594 & .000 \\ .593 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .000 \\ .594 & .00$	.000 ,989 .000 ,000 .000 .000 .000 .984 .000 .000 .000 .984 .000 .000 .000 .674 .626 .516 .771 .715 .628 .692 .519 .462 .027 .096 .000 .777 .462 .548 .000 .777 .462 .548 .000 .928 .000 .928 .000 .938 .000 .938 .000 .930 .667 .920 .642 .712 .626 .712	<b>5000</b> <b>1.000</b> <b>1.000</b> <b>1.1.3.666</b> <b>1.1.3.662</b> <b>1.1.1.1.1.1.1.662</b> <b>1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.</b>	.000 .000 .000 .000 .000 .000 .000 .000
333333334444444455555555566666666667777777777	435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629 435629	.392 .237 .443 .253 .506 .113 .546 .340 .113 .123 .546 .340 .113 .123 .930 .000 .978 .000 .978 .000 .45 .000 .45 .000 .745 .000 .742 .179 .274 .100 .928 .000 .956 .000 .771 .000 .927 .000 .956 .000 .771 .000 .928 .000 .574 .000 .574 .000 .574 .000 .574 .418 .135 .348 .667 .000 .797 .000 .000 .000 .764 .418 .135 .348 .667 .000 .776 .000 .764 .415 .244 .241 .543 .000 .776 .336 .999 .000 .764 .418 .754 .000 .765 .433 .763 .667 .763 .667 .284 .279 .284 .279 .583 .000 .776 .336 .999 .000 .764 .418 .284 .279 .583 .000 .776 .336 .999 .000 .764 .418 .284 .279 .583 .000 .776 .336 .999 .000 .764 .418 .284 .279 .583 .000 .776 .336	.594 .613 .322 .375 .519 .519 .517 .231 .207 .300 .924 .000 .924 .000 .948 .721 .931 .000 .948 .721 .931 .000 .948 .721 .931 .574 .693 .574 .693 .574 .693 .252 .299 .274 .379 .225 .299 .274 .379 .225 .299 .274 .379 .225 .299 .274 .379 .225 .299 .274 .379 .244 .31 .000 .941 .000 .941 .000 .941 .000 .941 .000 .944 .000 .944 .0	.7919 .68810 .1.9279 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .5247950 .54400 .55710 .557100 .5477950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .5479500 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .547950 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .5479500 .54795000 .54795000 .5479000 .5479000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
90	,196	  .150 .173	.172 .257	1.61	2,99 2,6 <u>9 1,1</u> 9 .814
FOS FIRST	PARAMETER	OVERALL FRIE	DMAN 33.	9	FOTODRAN 43.0

іл .

 $\sum_{k=1}^{n}$ 

E

r

EXPERIMENT NO Estimation	4 1LUCES CHOICE HODEL	
STATE DU OVERALL LAST TRIAL SESSION	Z S1R1 S1R2 SZR1 S2R2 OVERALL	51R1 51R2 52R1 52R2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	.134 $.000$ $.000$ $.101$ $.542$ $1.04$ $.974$ $.947$ $.965$ $1.02$ $.522$ $.703$ $.464$ $.540$ $.860$ $1.11$ $1.65$ $1.61$ $1.14$ $1.08$ $.394$ $.366$ $.290$ $.473$ $1.63$ $.239$ $.318$ $.458$ $.265$ $.961$ $1.16$ $1.11$ $.990$ $.774$ $1.41$ $.316$ $.375$ $.426$ $.274$ $1.84$ $1.27$ $1.90$ $1.38$ $.837$ $2.79$ $.244$ $.274$ $.173$ $.426$ $1.07$ $.603$ $.900$ $1.03$ $1.12$ $2.01$ $.579$ $.784$ $.622$ $.487$ $2.25$ $1.01$ $1.08$ $.693$ $.737$ $2.93$ $.568$ $.722$ $.742$ $.637$ $1.13$ $.472$ $.614$ $.544$ $.633$ $.683$	.491 .000 .000 .679 1.07 .915 .968 1.13 1.40 .610 1.04 .595 1.95 .729 1.43 .648 2.13 .989 2.95 1.01 .964 .900 .932 .958 4.90 3.02 .603 .547 1.83 1.02 2.85 1.68 3.62 5.54 2.62 .837 1.31 1.33 .460 .987 2.46 1.71 2.83 .962 1.23 2.94 2.87 .73 3.36 4.17 2.95 1.66 .892 .933 1.57 1.23 .271 .559 .459 1.63
FOR FIRST PARAMETER STI FRIFLAN O FOR SECOND PARAMETER STIM FRITDMAN O FD OFLU FD OFLU	OVEHALI FRIEDMAN 6.17 NORESP FRIEDMAN 2.57COR WR OVERALI FRIEDMAN 2.49 OOPESP FHIEDMAN 1.14COR WR	FRIEDMA : 4.57 FRIEDMA : .284

EXPERIMENT 40 **STANNER SWETS GREEN MODEL** ESTIMATION DPRIME STATE ON S1R1 S1R2 52R1 S2R2 OVERALL S1R1 S1R2 S2R1 S2R2 OVERALL LAST TRIAL SESSION 2,52 2.35 .000 .000 2.65 1.01 .892 .000 .000 1.17 1 -.055 .033 .068 .044 .007 2 .013 -,028 ,016 ,034 ,023 ,734 .340 3 .808 .441 .952 .765 .468 .168 .486 .289 -.084-.264-.347-.065 -.346 -.127-.622-.591-.166 -.180 4 .655 .763 .614 1.07 .467 1.07 1.15 1.23 1.49 .930 5 1.74 1.41 .891 1.62 ,855 .671 .431 .793 6 1.55 .761 -.154-.099 .005 .114 .025 7 .043 -.186-.132 .012 .321 1.37 1.41 1.21 1.05 1.57 .866 .884 .610 .761 .953 a -.344 -.298-.788-.399 .223 -.252 -,233-,661-,288 .102 9 1.71 1.58 2.07 1.05 .739 ,948 .882 .761 .523 1.44 1.0 .074 .049 .274 .133=.042-.138 .195 .084-.031-.068 11 .682 .304 .591 .881 .414 .375 .226 .435 .758 .602 12 ,238 .231 .172 13 -.011-.097 .458 .382 -.009+.078 .342 .333 .196 .227 14 .508 .705 .407 .373 .469 .269 .259 15 .208 .220 .243 , 352 .925 .609 .755 .570 .265 .647 6.17 FOR FIRST PARAMETER OVERALL FRIEDMAN FRIEDMAN 1.14COR WR FRIEDMAN 4.57 FRIEDMAN .286RESP STIC FOR SECOND PARAMETER OVERALL FRIEDMAN 7.29 FRIEDMAN .286COR WR FRIEDMAN 2,57 FRIEDMAN 1.14RESP STI'

EXPERIMEN	• • • • • • • • • • • • • • • • • • •	4						· · · · ·
ESTIMATIC	)N	4 NON	PARA	METRIC	C AN	ALYSIS		
STATE ON LAST TRIA Session	OVERALL	APR S1R1	[ME 51R2 :	52R1 (	52R2	BIAS	S1R1 S1R	2 S2R1 S2F
			_					
1	.937	.923	.000	.000	.947	61,8	65,7 ,01	00 ,000 46
3	,722	.737	.647	.768	.727	8,28	-18.8 15	6-3.13 26
4	, 379	. 452	.305	.312	.438	-2.07	-6,30 14	2-15.2 5.
5	.786	.793	.816	.832	.764	-32,5	-47.0 ,97	76-67,27
6	,859	.881	.841	,756	.867	4.40	4.45 10	4 4.76 4.
7	•51/	.433	450	505	.612	-1.10	-17.8-10	1 .489 13
8	+03U . 787	.037	-013	.//1	.582		-70+1-1+;	7-74,4044
10	.845	.876	.861	.902	.786	-6.61	-28.1-27	6 63.6 1.
- II	.529	597	550	,484	448	-3,87	-16,8-5,4	1-3,17 .4
12	,686	.710	.605	.681	.722	-30.7	-10,5-21	2-36,4=64
13	.583	.496	.463	.648	.630	-16.6	-,971-9,0	1-30,4-13
14	.667	.716	.639	,628	.656	-4.78	6.09 2.2	21-12,3-7.
FOR FIRST Stim F	I PARAMETER F <b>rie</b> dman +2	OVERALI 86RESP	L FRI F	EDMAN Riedma	6,17 AN 1	14COR WR	FRIEDMAN	4,57
i.				•	i i			
	. <u>.</u> .		: · ·				·····	····
	ND PARAMETER	OVERA	LĽ FŘ	TEDMA		84		
FOR SECON				A E D P AI		AAAAA HA		
FOR SECON STIM FP OFLO	FRIEDMAN 1	1-RESP	F	RIEDM	AN 10	14COR WR	FRIEDMAN	i de Tolerno d
FOR SECON STIM FP OFIO	FRIEDMAN 1.	17RESP	F	RIEDM	AN 1	14COR NR	FRIEDMAN	
FOR SECON STIM FP OFLO	FRIEDMAN 1	1-RESP	F	RIEDM	AN 1	14COR NR	FRIEDMAN	i de l'Adaman
FOR SECON STIM FP OFIO	FRIEDMAN 1	1-858	F	RIEDM	AN 1	14COR NR	FRIEDMAN	
FOR SECON STIM FP OFIO	FRIEDMAN 1	17RESP	F	RIEDM	AN 1	14COR NR	FRIEDMAN	i de la contra de la
FOR SECON STIM FP OFIO	FRIEDMAN 1	17RESP	F	RIEDM	AN 1	14COR NR		i in the second s
FOR SECON STIM FP OFIO	FRIEDMAN 1	1 <b>-</b> RESP	F	RIEDM	AN 1	14COR NR	<u>Γ Γ Ι Βυπαι</u>	i internet in the second se
FOR SECON STIM FP OFIO	FRIEDMAN 1	1 <b>-</b> R <u>e</u> sp	F	RIEDM		14COR NR		i international de la construction de la construct

ESTIMATION	10	5 ATKINSONS MODEL	
STATE ON LAST TRIAL SESSION	OVERALL	SIR1 SIR2 S2R1 S2R2 OVERALL S1R1 S1R2	S2R1 S2R2
1	.769		.000 1.22
3	.285	022.013.027.010 1.01 .907 1.12	1.00 .900
4	137	045239225063 .892 .506 1.17	.759 1.41
5	.389	.388 .462 .449 .358 .538 .374 .768	.278 1.01
6	<b>.56</b> 1	.614 .517 .344 .581 1.03 .940 .835	1.28 1.07
7	.017	042040 .005 .117 .724 .232 .360	1.71 2.09
8	.475	.486 .455 .322 .544 .396 .471 1.05	.195 .363
9	107	081168127 .088 .420 .326 .267	.455 1.22
10	•528	.600 .563 .658 .401 .977 .713 .864	2,55 1.09
11	.026	.990 .049013055 .524 .404 .611	.386 1.12
12	+203	-0.07 - 0.04 + 130 + 130 + 0.05 + 0.014 + 0.020 + 0.014 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.020 + 0.	+2/1 +09/
14	• 0 / 0		546 715
15	-246	.251 .221 .258 .212 1.69 6.51 2.22	2.59 .564
17			
FOR FIRST F	PARAMETER	OVERALL FRIEDMAN 5.23	
STIM FRI	IEDMAN 1.	14RESP FRIEDMAN 1.14COR WR FRIEDMAN	1.14
FOR SECOND	PARAMETER	OVERALL FRIEDMAN 2.31	. 286

FP OFLO

Ref. 2669-B.K. 72