THE EFFECT OF INTERTRIAL DEPENDENCE ON SOME SENSITIVITY AND BIAS STATISTICS

Ranald R. Macdonald

Ph.D. Thesis (1968-1972)
University of Stirling

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 13917071
Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKNOWLEDGEMENTS

I should like to express my thanks to Mr. M. F. Moore, M.A., M.Ed., for supervising this work.
Thanks are also due to Mr. A. Annan (Senior Experimental Officer, Psychology Department) and his staff for their technical assistance, Mr. J. Teale (Computer Manager) and his staff for their forebearance in my use of computer time, and Mrs. Weber for tackling a rather fearsome typing task so expeditiously.

CONTENTS

Acknowledgements 2
Summary 5
Introduction 6
(1) The Basic Experiments 7
(2) Detection and Recognition Models 9
(a) Preamble 9
(b) Parametric Models of Detection and Recognition 9
(c) Theoretical Variances of Parameters 19
(d) Memory Recognition Models 30
(e) Nonparametric Approaches 31
(f) Extension to Rating Experiments 33
(3) Experimental Variables 35
(a) Stimulus Probability 35
(b) Feedback 36
(c) Stimulus Difficulty 37
(d) Payoffs and Instructions 37
(e) Sequential Effects 38
(f) Feedback and Sequential Effects 43
(4) Relevant Reaction Time Findings 45
(a) Experimental Results 45
(b) Reaction Time Theories 52
(5) Methods of Characterising Dependences 62
(a) Preamble 62
(b) Manifest Markov Models 62
(c) Information Theory Analysis 64
(d) Latent Markov Models 66
(e) Autoregressive Processes 69
Materials and Method 72
(a) Preamble 72
(b) Method 73
(c) Design 74
(d) Layout 78
(e) Apparatus 78
Results 81
Introduction 81
Descriptive Results 82
(a) Tests for Stationarity 83
(b) Information Theory Statistics 90
(c) χ^{2} analysis of relations between RS \& L 95
Characterising Dependences 99
(a) Manifest Markov Processes 99
(b) Autocorrelations and Autoregression Processes 107
(c) Latent Markov Analysis 111
Effect of Experimental Variables on Descriptive Statistics 123
Detection and Recognition Models 137
(a) Estimation of Parameters 137
(b) Effects of Experimental Variables 149
(c) ROCT Analysis 158
Simulations 163
Conclusions 180

An investigation of the intertrial dependencies in detection and recognition tasks was undertaken at different levels of a priori stimulus probability, intertrial interval, feedback, and task difficulty in a number of experiments. The effects of these experimental variables on the data are reported.

After preliminary tests for stationarity the dependences were characterised using 0 , lst and 2 nd order manifest Markov processes, an autoregressive process and a latent Markov process. Although none of the models described all the data it appeared that the autoregressive process was the least helpful and that to obtain a reasonable fit of the latent Markov model a numerical minimum x^{2} estimation procedure had to be employed.

Estimates of the parameters of various detection and recognition models were found based on all the data and based on data which was preceded by a particular type of trial. From such evidence it appeared that the value of these estimates depended on the state on the last trial. In particular the bias statistics were dependent on the immediately preceding response and the sensitivity statistics appeared dependent on whether the immediately preceding trial was correct or wrong. Neither Atkinson's (1965) model nor the model proposed by Tanner Rauk \& Atkinson (1971) was found to adequately describe the observed dependences.

Statistical tests have been developed for a number of the detection and recognition models used in the above study. These tests assume intertrial dependence. Simulations of the Markov process estimated from the experiments were used to examine the robustness of such tests against violations of the independence assumption. The tests were found to be relatively robust but large biases were found when the test statistics were based on small samples. This effect was shown to be able to account for some of the earlier findings.

1. INTRODUCTION

The aim of this project was to examine the effects of the trial by trial dependences on various signal detection and recognition models (Tanner Swets Green Peterson Birdsall Treisman Luce Atkinson, etc.). Most of the models assume independence although some e.g. Atkinson Kinchla, postulate some dependences on certain types in certain situations. Here an attempt is made to discover the extent of the dependences in the usual types of psychophysical experiments, how they vary with experimental conditions, and what effects they have on the models. To do this several experiments will be described involving detection and recognition tasks in which the variables stimulus probability feedback intertrial interval and task difficulty were systematically varied. Estimation of the dependences in each of these conditions was then undertaken. An attempt to measure the robustness of the recognition and detection models could then be attempted by simulating experiments with the observed amounts of dependence and observing the effects on the models. In short the aim was to characterise the intertrial dependence in this situation and examine the effect of this on the detection and recognition models.

Thus the review will consist of five sections.
The first dealing with existing models, methods of estimation of their parameters and statistical tests which have been derived on the basis of some of the models.

After this there follows a discussion on models for describing a series of discrete events in time which are dependent. These models will be used to show what the nature of the dependences is in the situations we shall be examining. Having a model which describes such a time series enables similar series to be simulated on a computer. The differences between signal detection models applied to such series and to independent series can be examined. The models discussed for this purpose include an information theory approach, observable and latent Markov models and autoregressive processes.

An attempt will be made to review the main effects of varying the experimental conditions as have been reported in the literature for comparison at a qualitative level with the present investigation. Findings from reaction time studies will also be included since a choice reaction time experiment is a very easy recognition situation.

Up to this point the main emphasis is on the Yes/No experimental situation. A further discussion of Rating scale task will be given and results from the technique examined and compared with RTROC curves (Meyers 1970), so that the effect of latency dependencies can also be examined.

(1) The Basic Experiments

Before examining some different classes of models it might be useful to describe the sort of data to which they have been applied.

In the Yes/No detection situation a subject S is presented with a stimulus which could be either a burst of white noise (N) or a burst of white noise into which a signal (S) has been added. The subject's task is to indicate the presence or absence of a stimulus by responding R_{S} or R_{N} respectively. When this is repeated a number of times the results can be summarised by the conditional probabilities of the subjects response given what the stimulus was on that trial. The table of these figures is often referred to as a confusion matrix.

	Stimulus Presented		
Subj.Resp.	R_{S}	$p\left(R_{S} \mid N\right)$	Stimulus
	R_{N}	$p\left(R_{N} \mid N\right)$	$p\left(R_{N} \mid S\right)$

Often the models used in this situation can be used on recognition data. Here the S is required to respond $R_{S_{1}}$ or $R_{S_{2}}$ depending on whether he was presented with stimulus 1 or 2 rather than detecting the presence of a stimulus.

Other sorts of experimental techniques can be used than the Yes/No situation. In the Forced Choice experiment the
subject is presented with two stimuli at known times. In the detection situation he must state which of the two contained the signal and in the recognition task the subject is required to state which stimulus was which. In a Rating procedure with the detection task the subject not only responds indicating the presence or absence of a signal he indicates his degree of certainty on $a n$ point scale. These three methods are the standard psychophysical techniques that have been used in experimental work in signal detection (Green and Swets 1966). In all but one of the experiments undertaken in this project the set up was the Yes/No design. The subject was presented with one of two known stimuli and required to say which it was the cycle being repeated for several hundred times.

2. SIGNAL DETECTION AND RECOGNITION MODELS
(a) Preamble

Different types of models have appeared from time to time in the literature over the last 20 years (Peterson Birdsall Fox, 1954; Green \& Swets, 1966; Krantz, 1969; Atkinson, 1963; Luce, 1963; Thomas, 1970, etc.)

Attempts have been made to formalise the statistical properties of these models (Gourevitch \& Galanter, 1967; Abrahamson Levitt \& Landgraf, 1967; Dorfman \& Alf, 1968; Abrahamson \& Levitt, 1968 \& 1969; Bush, 1963). Other recent developments in this area include the postulation of a memory recognition model (Tanner Rauk \& Atkinson, 1971), and several attempts to produce a nonparametric analysis of signal detection and recognition data (Pollack and Hsieh (1969), Hodos (1970).

The following section will attempt to summarise the above models and methods of analysis.
(b) Parametric Models of Signal Detection and Recognition

In the basic model of Swets Tanner \& Birdsall
(1961) an observer is required to distinguish between being presented with a signal in a background of noise ($\mathrm{S}+\mathrm{N}$) or with noise alone (N). They assume that repeated presentation of the same stimulus gives rise to a distribution of values $f(x)$ on the subject on some psychological continuum, i.e. $f(x \mid N)$ or $f(x \mid S+N)$ depending whether the signal was added to the
noise or not. The subject uses his knowledge of $f(x \mid N)$ and $f(x \mid S+N)$ to decide from which of the distributions the stimulus has arisen. Indeed, in this model it is supposed that the subject decides to respond.

R_{N}	if the likelihood ratio $\mathrm{x}<\mathrm{C}$
and $\quad \mathrm{R}_{\mathrm{S}+\mathrm{N}}$	if the likelihood ratio $\mathrm{x}>\mathrm{C}$

In the normal equal variance case when

$$
f(x \mid N)=N\left(\mu_{N} \sigma^{2}\right) \text { and } f(x \mid S N)=N\left(\mu_{S_{N}} \sigma^{2}\right)
$$

the likelihood ratio of $S N$ as opposed to N is

$$
\begin{aligned}
\ell(x)= & \frac{\frac{I}{2 \pi \sigma^{2}} \exp \frac{I}{2 \sigma^{2}}\left(X-\mu_{S N}\right)^{2}}{\frac{1}{2 \pi \sigma^{2}} \exp \frac{I}{2 \sigma^{2}}\left(X-\mu_{N}\right)^{2}} \\
= & \exp \frac{I}{2 \sigma^{2}}\left(2 \mu_{S N}-2 \mu_{N}\right) x \\
& -\left(\mu_{S N}^{2}-\mu_{S}^{2}\right)
\end{aligned}
$$

as the units and location are arbitrary we can put $\sigma=1$ and let

$$
\mu_{S N}=\frac{d^{\prime}}{2} \quad \mu_{N}=-\frac{d^{\prime}}{2}
$$

When

$$
\ell(x)=\exp \left(d^{\prime} x\right)
$$

thus $\ell(x)$ and x are monotonically related and we can use an equivalent decision rule to describe S's behaviour

$$
\begin{aligned}
\text { respond } R_{S N} \text { if } f(x)=\frac{(x \mid S N)}{(x \mid N)}>K \\
\text { or } R_{S N} \text { if } f(x)=x>C
\end{aligned}
$$

if C and K are chosen appropriately.

If in experiments (e.g. Tanner, Swets, Green 1956) we induce the subject to vary k, we obtain different estimates of k but $E(x \mid S+N)-E(x \mid N)$ usually called d^{\prime} when expressed in units corresponding to the variance of the underlying distributions should be constant. If we were to plot $P\left(R_{S} \mid S\right) V P\left(R_{S} \mid N\right)$ we obtain a curve characteristic of the subject, i.e. for each value of d^{\prime} there is one such curve. If all the above assumptions are met. When plotted on double probability graph paper $P\left(R_{S} \mid S\right) V P\left(R_{S} \mid N\right)$ should give a straight line slope.

This basic formalisation was developed by its originators (Green \& Swets 1966) to include a number of variations on the original theme.
(1) They considered the case of unequal variance. This no longer results in a monotonic ROC curve if $\sigma_{S}>\sigma_{N}\left(\sigma_{S+N}\right.$ is $s d$. of $f(x \mid S+N)$ then the ROC curve is like:

To detect this difference however is very difficult, e.g. Swets \& Green claim if $\sigma_{S} / \sigma_{N}=2: 1$ then to detect the rapid acceleration at the top of the curve requires at least 3 place accuracy.

If the assumptions of the above model hold except $\sigma_{S+N} \neq \sigma_{N}$ then the effect is more easily measured using double probability paper.

$$
Z_{Y} \text { is now }(k-E(x \mid S+N)) / \sigma_{S} \& k=\sigma_{S} Z_{Y}+\mu_{S}
$$

and

$$
\begin{aligned}
& Z_{X}=(k-E(x \mid N)) / \sigma_{N} \& k=\sigma_{N} Z_{X}+\mu_{N} \\
& Z_{X}=\frac{\sigma_{S} Z_{Y}+\mu_{S}-\mu_{N}}{\sigma_{N}}
\end{aligned}
$$

i.e. the slope of the line is σ_{S} / σ_{N} and its intercept with
the y axis is $\frac{\mu_{S}-{ }^{\mu} N}{\sigma_{N}}$. We can thus estimate the ratio of standard deviations from the slope of the ROC curve. However, the model as it now stands begs the question that if the decision axis is no longer monotonic to the likelihood ratio the observer should be able to learn two criteria so that he restores signal to very low values of x.
(2) An alternative way of describing the data is to assume an exponential distribution.

$$
\begin{aligned}
& f(x \mid N)=e^{-x} \\
& f(x \mid S+N)=a e^{-a x} \\
& P\left(R_{S} \mid N\right)=\int_{k}^{\infty} e^{-x}=e^{-k} \\
& P\left(R_{S} \mid S\right)=\int_{k} a e^{-a x} e^{-k a}=\left(e^{-k}\right)^{a} \\
& P\left(R_{S} \mid N\right)=P\left(R_{S} \mid S\right)^{1 / a}
\end{aligned}
$$

i.e. the ROC curve is given in equation (X). This gives the freedom of another parameter and implies that the slope decreases with increasing k.
(3) By assuming $f(x \mid N)=\frac{1}{(1+x)^{2}}$

$$
\begin{equation*}
f(x \mid S N)=\frac{1 / n}{(1 / n+x)^{2}} \quad n<1 \tag{X}
\end{equation*}
$$

Swets and Green produce identical results as those obtained by Luce's choice model (Luce 1963 a).
i.e. in $P\left(R_{S} \mid N\right)=\frac{1}{k+1}$ in a Yes/No experiment $P\left(R_{S} \mid S\right)=\frac{1 / \eta}{1 / \eta+k}$. The above equation can be solved for n and k. (n being the sensitivity parameter). In fact this model differs from the choice model in that eq. (X) although giving equivalent Yes/No predictions does not also predict the forced choice equation as choice theory.

Other models with different premises are:

Luce's Choice model (1963)a

He assumes that two ratio scales η_{1} and η_{2} exist defined on the set of all stimuli used in the experiment ϕ (in the detection case S and N) and b is a ratio scale defined on the set of all responses in experiment ψ. He then assumes

$$
p(R \mid S)=\frac{\eta(S, S(R)) b(R)}{\forall_{R^{\prime} \varepsilon R}^{\eta\left(S, S\left(R^{\prime}\right) b\left(R^{\prime}\right)\right.}}
$$

where n is the similarity between the presented stimulus S and the one $S(R)$ for which R is the correct response. He also assumes

$$
\begin{array}{ll}
\eta\left(S_{1} S_{2}\right)=\eta\left(S_{2} S_{1}\right) \text { for } & S_{1}+S_{2} \varepsilon \phi \\
n\left(S_{1} S_{1}\right)=1 & S_{1} \varepsilon \phi \\
\eta\left(S_{1} S_{3}\right) \geqslant \eta\left(S_{1} S_{2}\right) \times \eta\left(S_{2} S_{3}\right)
\end{array}
$$

Consider the Yes/No detection situation. Let $\eta(S, N)=n(N, S)=\eta$ and $b\left(R_{S}\right) / b\left(R_{S}\right)=b$, then the confusion matrix is

Resp.
R_{S}
R_{N}
$N \frac{n\left(N_{S}\right) b\left(R_{S}\right)}{n\left(N_{S}\right) b\left(R_{S}\right)+n(N, N) b\left(R_{N}\right)}$
$S \frac{n(S, S) b\left(R_{S}\right)}{n(S, S) b\left(R_{S}\right)+n(S, N) b\left(R_{N}\right)}$
$\frac{\eta(N, N) b\left(R_{N}\right)}{\eta\left(N_{S}\right) b\left(R_{S}\right)+\eta(N, N) b\left(R_{N}\right)}$
$\frac{\eta(S, N) b\left(R_{N}\right)}{\eta(S, S) b\left(R_{S}\right)+\eta(S, N) b\left(R_{N}\right)}$
by appropriate division of the numerators and denominators we reduce the above to

N

S

$$
\frac{n}{n+b}
$$

$$
\frac{b}{b+n}
$$

n and b can then be found directly from the confusion matrix

$$
\text { i.e. } \begin{array}{rlr}
n & =\left(\begin{array}{ll}
P\left(R_{N} \mid S\right) & P\left(R_{S} \mid N\right) \\
P\left(R_{S} \mid S\right) & P\left(R_{N} \mid N\right)
\end{array}\right)^{\frac{1}{2}} \\
\text { and } \quad b & =\left(\begin{array}{ll}
P\left(R_{N} \mid S\right) & P\left(R_{N} \mid N\right) \\
P\left(R_{S} \mid S\right) & P\left(R_{S} \mid N S\right.
\end{array}\right)^{\frac{1}{2}}
\end{array}
$$

Threshold theories
Classical:- This assumes that there exists some cut-off level of sensory excitation. If this is excluded the subject 'detects' a stimulus. In practice it is noticed that the same stimuli repeatediy presented to the subject may sometimes be detected and sometimes not. Thie can be explained by proposing that the sensory effect produced by the same stimulus varies or that the cut-off value (threshold) varies. For any stimulus S however there is a fixed probability $p(s)$ of detecting it. If however the signal is not detected the subject may guess that it was presented with a probability g, i.e. we can characterise the situation in two matrices.

Stim. State

D	\bar{D}		R_{S}	R_{N}	
s	$p(s)$	$2-p(s)$	D	1	0
N	0	1	D	g	$2-g$

thus the resulting confusion matrix is the product of the two above.

$$
\begin{array}{cc}
\\
s & R_{S} \\
M & R_{N} \\
\hline & (1-p(s)) g
\end{array}
$$

We can thus estimate g from $p\left(R_{S} \mid N\right)$ and then find $p(s)$
i.e. $\quad p(S)=\frac{p\left(R_{S} \mid S\right)-p\left(R_{S} \mid N\right)}{1-p\left(R_{S} \mid N\right)}$

Another performance measure used classically in the probability of being correct statistic $p(c)$. If the number of response alternatives is m then

$$
p(c)=p(c) *+\frac{1}{m}(1-p(c) *)
$$

where $p(c) *$ is the underlying probability of being correct once the effect of guessing on the observed probability has been removed

$$
p(c) *=\frac{p(c)-1 / m}{1-1 / m}
$$

Luce's two state threshold analysis:- Luce modified the above formulation to make it symmetric. He assumes an activation matrix, one of two decision matrices (Luce 1963).

	D	$\overline{\mathrm{D}}$		R_{S}	R_{N}		R_{S}	R_{N}
S	$\mathrm{p}(\mathrm{s})$	$1-\mathrm{p}(\mathrm{s})$	D	1	0	or	$1-\mathrm{g}$	g
N	$\mathrm{p}(\mathrm{n})$	$1-\mathrm{p}(\mathrm{n})$	$\overline{\mathrm{D}}$	g	$1-\mathrm{g}$		0	1

This relaxes two assumptions of classical theory as there is a possibility of going into either state if noise alone is presented and, depending on whether the subject wishes to reduce his miss rate or his false alarm rate, he would choose decision matrix 1 or 2 , thereby producing a confusion matrix of

	R_{S}	R_{N}	or	R_{S}
S	$p(s)+(1-p(s)) g$	$(1-p(s))(1-g)$	$p(s)(1-g)$	$p(s) g+(1-p(s))$
N	$p(n)+(1-p(n)) g$	$(1-p(n))(1-g)$		$p(n)(1-g)$
N	$p(n) g+(1-p(n))$			

As there are three parameters in this model, $n s, n n$ and y the model is not immediately testable from two independent probabilities.

Atkinson (1963):- Further extended threshold theory by postulating detection states corresponding to each stimulus condition. The probability of entering either of these states given signal or noise is specified by an activation matrix

	D_{S}	D_{0}	D_{N}
S	σ	$I-\sigma$	0
N	0	$I-\sigma$	σ

Thus σ is a measure of the subjects sensitivity and a decision matrix depending on trial n

	R_{S}	R_{N}
D_{S}	I	0
D_{0}	ρ_{n}	$1-\rho_{n}$
D_{N}	0	1

Thus ρ_{n} is an estimate of the bias on trial n. So the resulting confusion matrix is the product of the activation and decision matrices

\[

\]

This is the only model so far considered which allows for non independence between trials. As Atkinson in Atkinson, Bower \& Crothers, 1965 postulates that

$$
\begin{array}{rlrl}
& =\rho_{n}+\theta\left(1-\rho_{n}\right) & & \text { if } D_{0} \text { and feedback } S_{-} \\
\rho_{n}+1 & & =\left(1-\theta^{\prime}\right) \rho_{n} & \\
& \text { if } D_{0} \text { and feedback } N \\
& =\rho_{n} & & \text { otherwise }
\end{array}
$$

$$
\rho_{\mathrm{n}} \text { changes only with feedback. It }
$$

is shown (Atkinson, Bower \& Crothers, 1965)

$$
\underset{n \rightarrow \infty}{L}\left(\rho_{n}\right) \rightarrow \rho_{\infty}=\frac{\gamma}{\gamma+(1-\gamma) \phi}
$$

$$
\begin{aligned}
\text { where } & \gamma & =P(S) \\
\text { and } & \phi & =\frac{\theta^{\prime}}{\theta}
\end{aligned}
$$

Thus ϕ and σ can be estimated from the confusion matrix. Sandusky (1966) and (1971), proposed a model with a similar activation and decision matrix. In this model if neither signal is recognised on a trial the response depends on the sensory state on the immediately preceding trial. If the signal was not recognised on the preceding trial then the subject repeats his last response with a probability v. If the last signal was recognised he assumes a change has occurred and modifies his strategy in favour of response alternation, i.e. he repeats his last response with a probability w where $w<v$. Thus ρ_{n} is independent of n and if the probability of a true recognition is a constant α for each of the stimuli

$$
\rho_{n}=\rho=\frac{\gamma \alpha v+(1-\gamma) \alpha(1-v)+(1-\alpha)(1-w)}{1-(1-\alpha)(2 w-1)}
$$

To estimate the parameters Sandusky uses a numerical technique. Krantz (1969) postulated a non-symmetric decision model for detection experiments. His activation matrix was

		D_{2}	D_{1}	D_{0}
A	S_{n}	n_{2}	n_{1}	n_{0}
	N	0	q_{1}	q_{0}

and decision matrices depending on the point on ROC curve were:-

		Y	N		Y	N	
$P_{\text {neg }}$	D_{2}	I	0	$P_{\text {pos }}$	D_{2}	I	0
	D_{1}	b	$1-b$		D_{1}	I	0
	D_{0}	0	1		D_{0}	a	$1-a$

and the response matrices $R=A D$
$\begin{array}{llll}\mathrm{Y} & \mathrm{N} & \mathrm{N}\end{array}$

and the ROC curve is
lower level

$$
P\left(R_{S} \mid S\right)=\frac{\eta_{1}}{q_{1}} P\left(S \mid S_{N}\right)+\eta_{2}
$$

and
higher level

$$
P\left(R_{S} \mid S\right)=\frac{\eta_{0}}{q_{0}} P\left(S \mid S_{N}\right)+I-\frac{\eta_{0}}{q_{0}}
$$

Thomas and Legge (1970) have proposed a different approach to signal detection. Following Parks (1966) the basic proposition is the subject responds so that $P\left(R_{S}\right)$ the probability that the subject responds S is given by

$$
P\left(R_{S}\right)=\text { minimum }(k q, 1)
$$

where k is a constant depending on the payoff matrix and q is the probability of (S). It is thus assumed

$$
\begin{aligned}
& k q=q P\left(R_{S} \mid S\right)+(1-q) P\left(R_{S} \mid N\right) \\
& P\left(R_{S} \mid S\right)=k-\frac{1-q}{q} P\left(R_{S} \mid N\right)
\end{aligned}
$$

so that if q is fixed for all data points over generation on an ROC curve, then these points should lie on a straight line through ($0, k$) with slope $-(1-q) /{ }_{q}$. Given two points on this line the point closer to ($0, k$) corresponds to a larger hit and smaller false alarm rate and this reflects more sensitivity. However, the model does not yield a measure of sensitivity on an interval scale.
(c) Theoretical Variances of Parameters

Some of the above models to be considered can be conceived as producing a number of independent binomial processes. Let there be J such processes. Bush (1963) considers some of the estimation problems involved. Let p_{j} and n_{j} be the probability of success and the number of trials on the j th process respectively. Finally let $X_{i j}$ be a random indicator variable showing the state on the ith trial of the jth process. Thus the likelihood of a set of observations is given by

$$
L=\prod_{j=1}^{J} \prod_{i=1}^{n_{j}} P_{j} X_{i j}\left(1-p_{j}\right)^{l-X_{i j}}
$$

and $\operatorname{lnL}=\underset{j}{\sum_{i} \sum_{i j}} X_{i j} \ln p_{j}+\left(l-X_{i j}\right) \ln \left(l-p_{j j}\right)$. Thus to find the ML estimate of a parameter (θ) where P_{j} is a function of θ we differentiate lnL with respect to θ and set it equal to 0 .
i.e. $\frac{\partial \ln L}{\partial \theta}=\frac{\partial \ln L}{\partial P_{j}} \frac{\partial_{j}}{\partial \theta}=0$

$$
\begin{aligned}
& =\sum_{j}^{\Sigma} \underset{i}{ }\left(\frac{x_{i j}}{P_{j}}-\frac{I-x_{i j}}{I-P_{j}}\right) \frac{\partial p_{j}}{\partial \theta} \\
& =\underset{j}{\Sigma} \underset{i}{\sum}\left(\frac{x_{i j}-p_{j}}{p_{j}\left(1-p_{j}\right)}\right) \frac{p_{j}}{\partial \theta} \\
& =\sum_{j}^{\sum \frac{\sum X_{i j}-n_{i} p_{j}}{i}} \frac{\partial p_{j}}{\partial \theta} \\
& \sum_{j} \frac{\bar{x}_{j}-p_{j}}{n_{j}\left(l-p_{j}\right)} \frac{\partial p_{j}}{\partial \theta}=0
\end{aligned}
$$

where $\bar{x}_{j}=\sum_{i} \frac{x_{i j}}{n_{i}}$

A solution is $p_{j}=\bar{X}_{j}$ and as $p_{j}=f(\theta)$ the ML estimate of θ is $f^{-l}\left(X_{j}\right)$

Note:

$$
E\left(\Sigma \frac{x_{i j}}{n_{j}}\right)=\sum_{i} \frac{E\left(X_{i j}\right)}{n_{j}}=\frac{P_{j} n_{j}}{n_{j}}=P_{j}
$$

It can be shown (Kendall \& Stewart (1963)) that ML estimations are best asymptotically normal (BAN) with an asymptotic variance equal to the Minimum Variance Bound (MVB). The MVB is established by the Cramer Rao Inequality (Kendall \& Stewart, vol.2, p.l3).

$$
\operatorname{var} t<\frac{1}{-E \frac{\partial^{2} \ln L}{\partial \theta^{2}}} \quad \text { or } \frac{1}{E \frac{\partial \ln L}{\partial \theta}}{ }^{2}
$$

where t is the estimate of a population parameter θ and L is the likelihood function of observation made on the population. In this case therefore the asymptotic variance of θ is
$A \operatorname{var}(\hat{\theta})=\frac{I}{-E \frac{\partial^{2} l n L}{\partial \theta^{2}}}=\frac{1}{\Sigma \frac{n_{j}}{p_{j}\left(1-p_{j}\right)} \frac{\partial p_{j}}{\partial \theta}}{ }^{2}$
$E \frac{\partial^{2} \operatorname{lnL}}{\partial \theta^{2}}=E \frac{\partial \sum \sum \frac{X_{i j}-p_{j}}{} \frac{\partial p_{j}}{p_{j}\left(1-p_{j}\right)}}{\partial \theta} \frac{\partial p_{j}}{\partial \theta}$

$$
\begin{aligned}
& =E \sum_{j i}^{\sum \sum} \frac{p_{j}\left(I-p_{j}\right)-\left(X_{i j}-p_{j}\right)\left(I-2 p_{j}\right)}{h_{j}^{2}\left(I-p_{j}\right)^{2}} \frac{\partial p_{j}}{\partial \theta} \\
& =E \sum_{j i}^{2} \frac{-x_{i j}+2 p_{j} x_{i j}--\sum_{i}^{2}+l p_{i} \partial p_{j}}{\partial \theta} \\
& {p j^{2}\left(I-p_{j}\right)^{2}}_{2}^{2}
\end{aligned}
$$

as $E\left(X_{i j}\right)=p_{j}$ we have

$$
\begin{aligned}
\frac{\partial^{2} l n L}{\partial^{2} \theta} & =\frac{\Sigma \Sigma-p_{j}\left(1-p_{j}\right)}{j i-p_{j}^{2}\left(1-p_{j}\right)^{2}} \frac{\partial p_{j}}{\partial \theta} \\
& =-\Sigma \Sigma \frac{1}{p_{j}\left(1-p_{j}\right)} \frac{\partial p_{j}}{\partial \theta} \\
& =-\Sigma \frac{n_{j}}{p_{j}\left(I-p_{j}\right)} \frac{\partial p_{j}}{\partial \theta} 2
\end{aligned}
$$

Thus
$\operatorname{Avar}(\hat{\theta})=\frac{1}{\int_{j}^{\sum} \frac{n_{j}}{p_{j}\left(1-p_{j}\right)} \frac{\partial p_{j}^{2}}{\partial \theta}}$

Luce's Choice Model

Here we have two processes operating one when a signal is present and the other when the stimulus is noise alone. A solution to the ML estimation equation is

$$
\begin{aligned}
& P\left(R_{S} \mid S\right)=\frac{1}{n b+I}=\bar{X}_{S} \quad \therefore \frac{\partial P\left(R_{S} \mid S\right)}{\partial n}=\frac{1}{n} P\left(R_{S} \mid S\right)\left(1-P\left(R_{S} \mid S\right)\right) \\
& P\left(R_{S} \mid N\right)=\frac{n}{n+b}=\bar{X}_{N}
\end{aligned}
$$

and the ML estimates of n and b

$$
\begin{aligned}
& \dot{n}=\sqrt{\left(1-\bar{x}_{S}\right) / \bar{x}_{S} \bar{x}_{N} /\left(1-\bar{x}_{N}\right)}=\sqrt{\frac{P\left(R_{N} \mid S\right) P\left(R_{S} \mid N\right)}{P\left(R_{S} \mid S\right) P\left(R_{N} \mid N\right)}} \\
& \hat{b}=\sqrt{\left(1-\bar{x}_{S}\right) / \bar{x}_{S}\left(1-\bar{x}_{N}\right) / \bar{x}_{N}}=\sqrt{\frac{P\left(R_{N} \mid S\right) P\left(R_{N} \mid N\right)}{P\left(R_{S} \mid S\right) P\left(R_{S} \mid N\right)}}
\end{aligned}
$$

Their asymptotic variances are

$$
A V(\hat{n})=\frac{N\left(P\left(R_{S} \mid S\right)\left(1-P\left(R_{S} \mid S\right)\right)\right.}{n^{2}}+P\left(R_{S} \mid N\right)\left(1-P\left(R_{S} \mid N\right)\right)
$$

$A V(\hat{b})=\frac{b^{2}}{N\left(P\left(R_{S} \mid S\right)\left(1-P\left(R_{S} \mid S\right)\right)+P\left(R_{S} \mid N\right)\left(1-P\left(R_{S} \mid N\right)\right)\right.}$

In the threshold model we have as a solution of the ML estimation equation:

$$
\begin{aligned}
P\left(R_{N} \mid s\right) & =(1-p(s))(1-g)=\bar{X}_{S} \frac{\partial P\left(R_{N} \mid S\right)}{\partial p(s)}=-P\left(R_{N} \mid N\right) \\
P\left(R_{N} \mid N\right) & =1-g \quad=\bar{X}_{N} \\
g & =1-\bar{X}_{N} \\
\text { and } p(s) & =1-\frac{\bar{X}_{S}}{\bar{X}_{N}}
\end{aligned}
$$

are the required ML estimations and

$$
A V(p(s))=\frac{1}{\frac{N P\left(R_{N} \mid N\right)^{2}}{P\left(R_{S} \mid S\right)\left(I-P\left(R_{S} \mid S\right) \mid\right.}}
$$

is the asymptotic variance of the threshold $p(s)$.

We can also use the probability of being correct as an index of sensitivity, The equation for the observed
probability of being correct is

$$
P(c)=P(c) *+\frac{1}{2}\{I-P(c)\}
$$

where $P *(c)$ is the true probability; of being correct and the other responses are guesses from m alternatives.

Thus

$$
P(c) *=\frac{P(c)-1 / m}{1-1 / m}
$$

Assuming independence of trials then from the binomial distribution

$$
\begin{aligned}
& A \operatorname{var}(P(c))=P(c)(1-P(c)) / N \\
& A \operatorname{var}(P(c) *)=(1-P(c)) P(c) /(1-1 / m)^{2} N
\end{aligned}
$$

In Luce's threshold model there are as we saw three parameters to be estimated. We therefore need more data than is in one confusion matrix to estimate these parameters. However, it is possible to obtain two confusion matrices differing only in g, i.e. the subject is required to detect the same signal in two situations where experimental conditions are arranged to make the subject change his bias parameter. Let the two bias parameters and let the variables in the second situation be denoted by a prime. Then the estimation equations are:

$$
\begin{aligned}
& P\left(R_{N} \mid N\right)=\left(1-p_{n}\right)(I-g) \\
& P\left(R_{N} \mid S\right)=\left(1-p_{S}\right)(1-g) \\
& P\left(R_{N} \mid N\right)^{\prime}=\left(1-p_{n}\right)\left(I-g^{\prime}\right) \\
& P\left(R_{N} \mid S\right)^{\prime}=\left(1-p_{S}\right)\left(1-g^{\prime}\right)
\end{aligned}
$$

Gourevitch and Galanter (1967) derived an approximation to the sampling distribution of d^{\prime} when

$$
\begin{aligned}
& f(x \mid N)=\left(\mu_{N}, \sigma^{2}\right) \quad \text { and } \\
& f(x \mid S N)=N\left(\mu_{S N}, \sigma^{2}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& \mathbb{P}_{1}=P\left(R_{N} \mid N\right)=\int_{-\infty}^{c} f(x \mid N) d x \\
& P_{2}=P\left(R_{N} \mid S N\right)=\int_{\infty}^{c} f(x \mid S N) d x
\end{aligned}
$$

Normally we estimate P_{1} and P_{2} empirically ice. obtain $\hat{\mathrm{P}}_{1}$ and $\hat{\mathrm{P}}_{2}$ and then convert these to z scores using a table of areas under a ND curve to give z_{1} and z_{2}. The estimate of $d^{\prime}=\mu_{8 n}-\mu_{n}$ is $d_{1}=z_{1}-z_{2}=\operatorname{est}\left(c-\mu_{N}\right)-\operatorname{est}\left(c-\mu_{S N}\right)$. If $\sigma=1$ we can write

$$
\begin{aligned}
p_{i} & =\int_{-\infty} \frac{1}{\sqrt{2 \pi}} e^{\frac{-\left(x-\mu_{i}\right)^{2}}{2}} d x \\
& =-\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{i} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
\text { i.e. } p_{i} & =\phi\left(z_{i}\right) \\
z_{i} & =\phi^{-1}\left(p_{i}\right)=g\left(p_{i}\right)
\end{aligned}
$$

Now expanding $g(\hat{p})$ about the point $\hat{p}=p$

$$
g(\dot{p})=g(p)+(\hat{p}-p) g^{\prime}(p)
$$

Differentiating * we have

$$
\begin{aligned}
& \frac{d p}{d z}=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}=\text { ord } z \quad \begin{array}{l}
\text { where ord } z \text { means } t \\
\text { ordinate of the nor } \\
\text { curve at standard } s
\end{array} \\
& g^{\prime}(p)=\frac{d z}{d p}=\frac{1}{\text { ord } z} \\
& z=z+\frac{\dot{p}-p}{\text { ord } z} \quad \text { substituting into equation } * .
\end{aligned}
$$

Thus $\hat{d}=\hat{z}_{1}-\hat{z}_{2}=z_{1}=z_{2}+\frac{\hat{p}_{1}-p_{1}}{\text { ord } z_{1}}-\frac{\dot{p}_{2}-p_{2}}{\text { ord } z_{2}}$ and

$$
\operatorname{var}(\hat{d})=\frac{\operatorname{var} \hat{\mathrm{p}}_{1}}{\left(\operatorname{ord} z_{1}\right)^{2}}+\frac{\operatorname{var} \hat{\mathrm{p}}_{2}}{\left(\operatorname{\operatorname {ord}z_{2})^{2}}\right.}
$$

as p_{1}, P_{2}, z_{1} and z_{2} are constant.
We assume p_{j} is estimated from n_{i} independent observations distributed binomally.

Thus $\quad \operatorname{var}(d)=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}\left(\text { ord } z_{1}\right)^{2}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}\left(\text { ord } z_{2}\right)^{2}}$

$$
\operatorname{var}(\hat{d})=\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}\left(\operatorname{ord} \hat{z}_{1}\right)^{2}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}\left(\operatorname{ord} \hat{z}_{2}\right)^{2}}
$$

we can thus test $H_{0}: \hat{d}_{1}-\hat{d}_{2}=0$ using

$$
z=\frac{\hat{d}_{1}-\hat{d}_{2}}{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}\left(\text { ord } z_{1}\right)^{2}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}\left(\text { ord } z_{2}\right)^{2}}}
$$

when the Z distribution is $N(0,1)$.
Recently Abrahamson \& Levitt (1969) have extended this approach to an examination of a number of different points on the same ROC curve. They define

$$
F(x \mid N)={ }_{-6}^{x} f(t \mid N) d t \text { and } F(x \mid S N)=\int_{-\infty}^{x} f(t \mid S N) d t
$$

These have inverses $\mathrm{F}_{\mathrm{N}}^{-1}$ and $\mathrm{F}^{-1} \mathrm{SN}^{\text {respectively. }}$

$$
\begin{aligned}
& P\left(R_{S} \mid S N\right)=P(\text { hit })=1-F_{S N}(c)=P(c) \\
& P\left(R_{S} \mid N\right)=P(\text { false alarm })=1-F_{N}(c)=p(c)
\end{aligned}
$$

thus eliminating c we have the equation for the ROC curve

$$
F_{N}^{-1}(1-p)=F_{S N}^{-1}(1-P)
$$

if we assume

$$
f(x \mid N)=\frac{1}{\sigma} f\left(\frac{x}{\sigma}\right)
$$

and

$$
f(x \mid S N)=\frac{1}{\sigma_{s}} f\left(\frac{x-s}{\sigma_{s}}\right)
$$

where σ^{2} is the variance of the noise distribution and $\sigma_{s}{ }^{2}$ the variance of the signal plus noise distribution. Note how much less restrictive this is than the equal variance normal condition previously considered,

$$
P(c)=1-F\left(\frac{c-s}{\sigma_{s}}\right) \quad p(c)=1-P\left(\frac{c}{\sigma}\right)
$$

and the ROC curve

$$
F^{-1}(1-P)=\frac{\sigma}{\sigma_{s}} F^{-1}(1-p)-\frac{s}{\sigma_{s}}
$$

if $\sigma=\sigma_{s}$ this depends only on so which we call d^{\prime}.
By changing the probability of the signal $P(S)$ on the rewards the estimate of (c) and $P(c)$ can be obtained for several values of c. Suppose n_{i} trials are made at c_{i}. For $i=1 . . .{ }^{n}$ we can estimate

$$
\begin{aligned}
& \hat{p}\left(c_{i}\right)=\hat{p}_{i}=\frac{\text { no } R_{s} \text { given } S N}{P\left(S_{i}\right) n_{i}} \\
& \hat{p}\left(c_{i}\right)=\hat{p}_{i}=\frac{\text { no } R_{s} \text { given } s}{\left(1-P\left(S_{i}\right)\right) n_{i}}
\end{aligned}
$$

where $P\left(S_{i}\right)$ is the a priori probability of a signal being presented and asymptotically

$$
\left(n_{i}\right)^{\frac{1}{2}}\binom{\hat{p}_{i}-p_{i}}{P_{i}-P_{i}} \sim N\left(\begin{array}{cc}
0 & \frac{p_{i}\left(1-p_{i}\right)}{1-P\left(S_{i}\right)} \\
0 & 0 \\
0 & \frac{P_{i}\left(1-P_{i}\right)}{P\left(S_{i}\right)}
\end{array}\right)
$$

now if $\quad X_{i}=F^{-1}\left(1-\hat{P}_{i}\right) \xi_{i}=F^{-1}\left(1-p_{i}\right)$

$$
Y_{i}=F^{-1}\left(1-\hat{P}_{i}\right) n_{i}=F^{-1}\left(1-P_{i}\right)
$$

and

$$
r_{i}=\frac{p_{i}\left(1-p_{i}\right)}{(1-P(S)) f\left(\xi_{i}\right)} \quad \delta_{i}=\frac{P_{i}\left(1-P_{i}\right)}{P\left(S_{i}\right) f\left(\eta_{i}\right)}
$$

If $f\left(\varepsilon_{i}\right)$ and $f\left(n_{i}\right)$ are normal γ_{i} and δ_{i} are probit weights (Finney 1952)

$$
\begin{aligned}
& x_{i}-\xi_{i}=\frac{\hat{p}_{i}-p_{i}}{f\left(\xi_{i}\right)} \\
& Y_{i}-n_{i}=\frac{\hat{p}_{i}-p_{i}}{f\left(n_{i}\right)}
\end{aligned}
$$

and asymptotically

$$
\begin{aligned}
& \left(n_{i}\right)^{\frac{1}{2}} \begin{array}{l}
X_{i}-\xi_{i} \\
Y_{i}-n_{i}
\end{array} \approx N \begin{array}{l}
0 \\
0
\end{array} \boldsymbol{r}_{i} 0 \\
& \text { if } \quad z_{i}=X_{i}-y_{i} \\
& n^{\frac{1}{2}}\left(z_{i}-\frac{s}{\sigma}\right) \sim N\left(0, \quad \tau_{i}\right) \\
& \tau_{i}=\gamma_{i}+\delta_{i}
\end{aligned}
$$

where
note: $X \sim N(\mu, \Sigma)$ means vector X is multivariate normal will mean vector μ and covariance matrix Σ.

They then considered an estimate of $d^{\prime}\left(\frac{S}{6}\right)$ from a number of estimates from different points on the ROC curve (dip). They obtain a solution which they claim is asymptotically unbiased and efficient:-

$$
\hat{d}^{\prime}=\Sigma n_{i} \hat{d}_{i}^{\prime} / \operatorname{var} \hat{d}_{i}^{\prime} \quad \Sigma n_{i} / \operatorname{var} \hat{d}_{i}^{\prime}{ }^{-1}
$$

with variance

$$
\operatorname{var} \hat{d}^{\prime}=\Sigma n_{i} / \operatorname{var} \hat{d}_{i}{ }^{-1}
$$

where n_{i} are the number of observations for each data point. The estimates of the individual cutoffs are found from the maximum likelihood equation

$$
\begin{aligned}
\ell\left(d^{\prime}, \frac{c_{i}}{\sigma}\right)= & \frac{\pi}{i}\left(1-F\left(\frac{c_{i}}{\sigma}-\frac{S}{\sigma}\right)\right)^{n_{i}(S \mid S)} F\left(\frac{c_{i}}{\sigma}-\frac{S}{\sigma}\right) \\
& \left(1-F\left(\frac{c_{i}}{\sigma}\right)\right)^{n_{i}(S \mid N S)} \quad F\left(\frac{c_{i}}{\sigma}\right)^{n_{i}}(N S \mid N S)
\end{aligned}
$$

$n_{i}(s \mid s)$ is the number of hits in condition i.

$$
K_{1}=\sum_{1}^{N} \frac{p_{i}-\left(1-F\left(\hat{c}_{i} / \hat{\sigma}\right)\right)^{2}}{F\left(\left(\hat{c}_{i}-S\right) / \hat{\sigma}\right) 1-F\left(\left(\hat{c}_{i}-S\right) / \hat{\sigma}\right)} n_{i}\left(1-P\left(S_{i}\right)\right)
$$

$$
+\sum_{l}^{N} \frac{P_{i}-\cdots-F\left(\left(\hat{c}_{i}-S\right) \hat{\sigma}\right)}{F\left(\left(\hat{c}_{i}-S\right) / \hat{\sigma}\right) I-F\left(\left(\hat{c}_{i}-S\right) / \hat{\sigma}\right)} n_{i} P\left(S_{i}\right)
$$

where $\hat{\sigma} \equiv S(\hat{S / \sigma})$ and $c_{i}=\hat{\sigma}\left(\frac{c_{i}}{\sigma}\right)$
K_{1} is distributed as χ^{2} with $N-1$ degrees of freedom.

If the n_{i} 's are allowed to increase so that $n_{i} / \sum n_{j} \rightarrow a \quad$ limit v_{i} and the models assumptions hold then $K_{I_{j}} / \Sigma n_{j}$ will converge to 0 . Otherwise it will reach a minimum for some values σ° and $C^{\circ}\left(C_{I}^{O} \ldots C_{N}^{O}\right)$. In such a case K_{1} is roughly distributed as $A^{-l} \chi_{2 N}^{2}\left(\Delta^{2}\right)$ where A is a constant

$$
A=M \quad M \frac{P_{i}{ }^{\circ}\left(1-P_{i}{ }^{\circ}\right)}{P_{i}\left(1-P_{i}\right)}, \frac{P_{i}{ }^{\circ}\left(1-P_{i}{ }^{\circ}\right)}{P_{i}\left(1-P_{i}\right)}
$$

$\chi_{2 B}^{2}(\Delta)$ is a non central chi square with $2 N$ degrees of freedom and non centrality parameter Δ

$$
\Delta=\Sigma n_{i} \frac{\left(p_{i}-p_{i}^{0}\right)^{2}}{P_{i}\left(1-p_{i}\right)}\left(1-P\left(S_{i}\right)\right)+\frac{\left(P_{i}-P_{i}^{0}\right)^{2}}{P_{i}\left(1-P_{i}\right)} P\left(S_{i}\right)
$$

To achieve a power of at least β against a specified set of P_{i} 's and P_{i} 's n_{i} should be large enough to satisfy

$$
P\left(x_{2 N}^{2}(\Delta)>A x_{N-1}^{2}\right) \leqslant \beta
$$

From this they showed that to test the goodness of fit of a logistic model against a normal one with power . 5 and significance level . 05 well over 5,000 observations would be required. They also considered the case where $\sigma_{S} \neq \sigma$ and showed estimates for $\sigma / \sigma_{S}, S / \sigma_{S}, c_{i} / \sigma_{S}$ and the covariance matrix of these parameters could be found from the maximum likelihood equation

$$
\begin{aligned}
& \ell\left(\frac{\sigma}{\sigma}, \frac{S}{\sigma_{S}}, \frac{c}{\sigma_{S}}\right)=\frac{\pi}{i} 1-F\left(\frac{\sigma}{\sigma_{S}} \frac{c}{\sigma_{S}}-\frac{S}{\sigma_{S}}\right){ }_{x}^{n_{i}(S \mid S)} \\
& \quad F\left(\frac{\sigma}{\sigma_{S}} \frac{c}{\sigma_{S}}-\frac{S}{\sigma_{S}}\right){ }_{x} \quad 1-F\left(\frac{c}{\sigma_{S}}\right){ }_{x}(N S \mid S) \quad{ }_{x}(S \mid N S) \\
& \quad F\left(\frac{c}{\sigma_{S}}\right) \quad n_{i}(N S \mid N S)
\end{aligned}
$$

Unfortunately there is no explicit solution to this equation and solutions have to be generated numerically. In, however, the case where $\sigma=\sigma_{s}$ they reach the same solutions as Gourevitch and Galanter using different notation.
(d) The Memory Recognition Model

Tanner Rauk and Atkinson (1970) proposed a model
of signal amplitude recognition which predicts sequential dependences and the effect of feedback.

The model supposes two signals S_{0} and S_{1} are presented to a subject in a Yes/No signal recognition, experiment. $\quad \gamma$ is the a priori probability of S_{1} and A_{0} and A_{1} are the responses corresponding to S_{0} and S_{1}.

When a stimulus S is presented to a subject an image I of it is set up. I is normally distributed $I_{0} \sim N\left(s_{0}, \sigma_{I}{ }^{2}\right) I_{1}$ $\sim N\left(s_{1} ; \sigma_{I}{ }^{2}\right)$. For scaling puyposes s_{0} is set equal to 0 and s_{1} to 1. At the end of the trial I is stored and becomes trace T. $T_{0} \sim N\left(t_{0}, \sigma_{T}{ }^{2}\right) T_{1} \sim N\left(t_{1}, \sigma_{T}{ }^{2}\right)$.

The relation postulated between s and t is
linear and depends on γ i.e. $t_{1}=\alpha+(1+\alpha) \gamma$

$$
t_{0}=(1+\alpha) \gamma
$$

where α is a const.
Let S_{l}^{j} be the presentation of stimulus ℓ on trial j. When $S_{\ell}{ }^{j}$ occurs $I_{\ell}{ }^{j}$ is set up and compared with t_{m}^{j-1} the trace of the stimulus S_{m} presented on the last trial. The decision on what to respond depends on $d_{j-1}=S_{\ell}^{j}-t_{m}^{j-1}$.

The decision process may be specified thus

if \quad\begin{tabular}{ll}
$d_{j} j-1>\delta_{0}$

$d_{j} j-1$ \& $<\delta_{1}$

other

\quad then \quad

Respond A_{1}

Respond A_{0}

\quad

Repeat last response.
\end{tabular}

Thus

$$
P\left(A_{l}^{j} \mid S_{\ell}^{j} A_{m}^{j-1} S_{n}^{j-1}\right)=\frac{s_{\ell}-t_{n}-s_{m}}{\sigma D}
$$

where (x) is the integral of the unit normal density function

$$
\text { i.e. } \left.\quad(x)=\frac{1}{\sqrt{2 \pi}}\right\}_{-\infty}^{-\left(\frac{1}{2}\right) y^{2}} d y
$$

If feedback is present then the decision process becomes

$$
d_{j j-1}>\delta_{0} \quad \text { Respond } A_{1}
$$

if | $d_{j} j-1<\delta_{1}$ then \quad | Respond A_{0} |
| ---: | :--- |
| other | |
| | Repeat last stimulus |

Thus $P\left(A_{1}^{j} \mid S_{l}^{j} A_{m}^{j-1} S_{n}^{j-1}\right)=\frac{s_{e^{-}} t_{n}-\delta_{m}}{\sigma D}$
Tanner et al. propose when feedback is present the actual process is a weighted average of the two decisions
i.e. Subjects do not make full use of feedback in this case

$$
\begin{aligned}
& P\left(A_{1}^{j} \mid S_{l}^{j} A_{m}^{j-1} S_{n}^{j-1}\right)=w\left(\frac{\delta_{\ell}^{-t_{n}}{ }^{-\delta} n}{\sigma D}\right) \\
& +(1-w)\left(\frac{e^{-t_{n}}{ }^{-\delta_{\text {jin }}}}{\sigma D}\right)
\end{aligned}
$$

Thus there are five unknowns $\sigma_{D} \delta_{0} \delta_{1} w$ and a.

(e) Non-Parametric Approaches to Signal Detection

Recently attempts have been made to overcome the difficulty of having to choose which model you must use to obtain a measure of a subject's sensitivity. The solution for psychologists less interested in examining the models than in using them was to develop simple statistics which approximated to estimates of the various models.

The sampling distribution of these measures provides a fairly intractible analytic problem. Pollack \& Hsieh (1969) attempted to find it empirically by simulating a forced choice experiment on a computer. They specified the distribution of noise $f(N)$ and signal + noise $f(S+N)$ and calculated $P(f(N)<x)$ and $P(f(S+N)<x)$ for all values of x. From this they obtained the area under the ROC curve (A_{g}). They found that for a given value of d^{\prime} varying the $\sigma_{S N} / \sigma_{N}$ ratio affected A_{g}
and ${ }^{\sigma_{A g}}$. For a value of A_{g} however $\sigma_{A g}$ was relatively constant with an underlying normal distribution. Analogous results were obtained using uniform and negative exponential underlying distributions for noise and signal + noise. Correlating the samples from $f(N)$ and $f(N S)$ did not appear to affect A_{g} or $\sigma_{A g}$. That is to say they found that the sampling variability of the area measure was dependent on its mean value and relatively independent of the complex conditions which led to the given mean value.

They also attempted to use the intersection of the ROC curve with the negative diagonal $P(I)$ as a measure of performance similar to A_{g} or d^{\prime}. Again for a given value of d^{\prime} the parameters $P(I)$ and $\sigma_{P(I)}$ are related to $\sigma_{S N} / \sigma_{N}$. However the sampling variability of Ag is less than the sampling variability of $P(I)$.

Pollack and Norman (1964) suggested a model-free analysis of a subject sensitivity based on a single point $P\left(R_{S} \mid S\right), P\left(R_{S} \mid N\right)$ on a ROC curve. The straight line from the point $(0,0)$ and $(1, I)$ to $P\left(R_{S} \mid S\right), P\left(R_{S} \mid N\right)$ divides the ROC. curve into four regions (see diagram).

According to all models discussed points in the area I represent inferior performance that the point $P\left(R_{S} \mid S\right), P\left(R_{S} \mid N\right)$. Similarly the area S contains only the points representing superior performance. Points lying in other areas are ambiguous. Thus, Pollack and Norman (1964) suggested the measure A^{\prime}. equal to the area I plus half the ambiguous area as a measure of performance. A non-parametric measure of bias was introduced by Hodos (1970). Using the same diagram as Pollack he suggested a percentage bias parameter equal to one hundred $(y-x) / y$ where x is the intercept on the y axis of the line passing through the point ($1, I$). Isobias lines based on this assumption appear similar to those developed by Luce (1959) using his model.

(f) Extension to Rating Experiments
Although originally developed for the Yes/No experimental set up signal detection models were soon applied to the results of rating scale experiments (e.g. Watson Rilling and Bourbon (1964)), as this procedure enables more information about subjects ROC curves to be obtained from a similar amount of experimental effort. The rating task implies that the subject must use several decision criteria simultaneously. He must place each observation in a category that corresponds to his degree of certainty as to which stimuli had occurred. The probabilities of $P\left(R_{S} \mid S\right)$ and $P\left(R_{S} \mid N\right)$ can be found assuming that the subjects responds signal present only when he was most certain that it was present or when he is most and second most certain that the signal is present, etc. Thus for n categories $n-1$ data points on a ROC curve can be derived.

Abrahamson and Levitt (1969) have studied the statistical properties of a Tanner Swets Green type model in this situation. The degrees of certainty are $c_{1}, c_{2} \ldots c_{k}$. The subject responds c_{r} when the psychological representation of the stimulus lies between c_{r} and c_{r+1} on the decision axis where $c_{1}=-\infty$ and $c_{r+1}=\propto$.

$$
\begin{aligned}
& P\left(c_{i} \mid S N\right)=Q_{i}=\int_{c_{i}}^{c_{i+1}} f_{S N}(x) d x \\
& P\left(c_{i} \mid N\right)=q_{i}=\int_{c_{i}}^{c_{i}+1} f_{N}(x) d x
\end{aligned}
$$

Again, estimates of Q_{i} and q_{i} are easily obtained, and the random vector $\left(Q_{1} \ldots . Q_{k}\right)$ and ($q_{1} \ldots . q_{k}$) are independent estimates of a multinomial process. The hit probabilities if the subject uses criterion c_{i} are

$$
P_{i}=f_{S N}(x) d x=j \sum_{i=1} Q_{j}=1-F \frac{\left(c_{i}-s\right)}{\sigma}
$$

and the corresponding false alarm probabilities are

$$
p_{i}=\underset{j>i}{\Sigma} q_{j}=1-F\left(\frac{c_{i}}{\sigma}\right)
$$

Therefore the ROC curve is as before

$$
F^{-1}\left(1-P_{i}\right)=\frac{\sigma}{\sigma_{s}} F^{-1}\left(1-P_{i}\right)-\frac{s}{\sigma_{s}}
$$

Under the assumption $\sigma_{s}=\sigma$ they define an approximation to the minimum variance estimator of s and its variance

$$
\frac{\stackrel{s}{\sigma}}{\sigma}=\sum_{i j} \hat{\tau}^{i j_{Z_{j}} / \xi_{i j}} i^{i j}
$$

where $\tau^{\text {if }}=\frac{\hat{p}_{i}\left(1-\hat{p}_{j}\right)}{(1-P(S)) f\left(F^{-1}\left(1-p_{i}\right)\right)}$

$$
+\frac{\hat{P}_{i}\left(1-\hat{P}_{j}\right)}{P(S) f\left(F^{-1}\left(1-P_{i}\right)\right)}
$$

and by approximating to a solution of the maximum likelihood equation they derive a goodness of fit statistic. They state that in the case of $\sigma_{s}=\sigma$ is intractible.

Meyers (1970) suggested defining the categories $c_{1} \ldots c_{k}$ in a Yes/No experiment in terms of the latencies. That is to say the frequency of the same responses at different latencies are grouped together and ordered from fast Yes to slow Yes to slow No to fast No and treated as if they were Yes certain Yes uncertain No uncertain No certain. Meyers then proposed a model similar to that of Krantz (1969) be applied to data in this situation.
(3) Experimental Variables

The main independent variables that have been investigated in detection or recognition systems are stimulus probability, " payoffs, instructions, inter response time, feedback, stimulus difficulty and the nature of the stimuli. Some of these variables may very well effect the nature of the sequential effects.
(a) Stimulus Probability

This is one of the most common independent variables to be studied as the subject's sensitivity as measured by most models is assumed independent of this variable. For example, Tanner Swets and Green (1956) varied the a priori stimulus probabilities using values of .1, .3, .5, l.7, and l.9. They then obtained an ROC curve as described in Chapter 1. Some observers in this situation did not produce ROC curves which were symmetrical about the negative diagonal and their data was better fitted when the assumption $\sigma_{N}=\sigma_{S N}$ is not made. In general, however, it was found that increasing the a priori stimulus probability had the effect of raising the point representing the subject's performance on the ROC curve. That is to say it increased simultaneously both the probability of a hit and a false alarm.

Recently Tanner Haller and Atkinson (1967) and Parducci and Sandusky (1965) in auditory and visual recognition studies produced rather contradictory results. Tanner et al. experimental situation involved a auditory amplitude recognition task. Subjects were run for 400 trials at each stimulus probability on each of three sessions. The order for presentation of each session was determined randomly. In this: case subjects were given no feedback and were not informed of the a priori probabilities. The results are shown in the diagram below.

Fig. 1. Pobability of hits, Ralse alams, and the A_{1} response averaged over observers.

They found that the probability of a hit $P\left(R_{1} \mid S_{1}\right)$ and false alarms $P\left(R_{1} \mid S_{2}\right)$ decreased as the probability of stimulus $1 P\left(S_{1}\right)$. The probability of response $1 P\left(R_{1}\right)$ only increased largely with $P\left(S_{1}\right)$. Summarising the results of the two experimental situations one can say that increasing a priori stimulus probability has its greatest effect on the bias of the subject. The direction of the effect is determined by the amount of information the subject has of the value of $P\left(S_{1}\right)$.
(b) Feedback

Green and Swets (1966) state that trial by trial feedback helps to bring about a rapid approach to asymptotic behaviour. This effect however is small when presession training is given. This was demonstrated by Grundy (1961). Kinchla and Atkinson (1964) varied the probability of giving feedback in a Yes/No detection situation. They found that this had an effect on the subject's bias parameter but not on the sensitivity one. They used an Atkinson type model, see section on signal detection models.

Kinchla (1966) and Tanner et al 0967) showed that
feedback effects the relationship between the relationship between the a priori stimulus probability and the hit and false alarm probabilities. That is to say subjects have a greater tendency to probability match when they have feedback. The difference between the feedback and non-feedback condition is even more noticeable in the case where subjects have no information about the a priori stimulus probabilities
(Tanner Rauk and Atkinson (1970)). The effect of feedback on sequential dependencies in pooled data was also studied in the above paper. They predicted and found that in the no feedback condition the sequential dependencies would affect only the bias of the subject and not his sensitivity
i.e. the points $\left(P\left(R_{1} \mid S_{1} R_{I} S_{1}\right), P\left(R_{1} \mid S_{2} R_{1} S_{1}\right)\right)$,
$\left(P\left(R_{1} \mid S_{1} R_{1} S_{2}\right), P\left(R_{1} \mid S_{2} R_{1} S_{2}\right)\right),\left(P\left(R_{1} \mid S_{1} R_{1} S_{2}\right)\right.$,
$\left.P\left(R_{1} \mid S_{2} R_{1} S_{2}\right)\right),\left(P\left(R_{1} \mid S_{1} R_{2} S_{2}\right), P\left(R_{2} \mid S_{2} R_{2} S_{2}\right)\right)$,
all lie on the same ROC curve. While if feedback is presented they predict that only the points $P\left(R_{I} \mid S_{I} R_{j} S_{j}\right), P\left(R_{I} \mid S_{2} R_{j} S_{k}\right)$ where $j=k$ lie on the curve. They claim that the data generally bears out their predictions. Although a glance at the graphs suggests that the points $P\left(R_{I} \mid S_{1} R_{j} S_{k}\right), P\left(R_{I} \mid S_{2} R_{j} S_{k}\right)$ where $j=k$ appear if anything to be on a more sensitive ROC curve than the others. They also found that feedback reduced the total amount of dependence on the last trial.
(c) Stimulus difficulty

McGill (1957) used a four signal auditory frequency recognition task and varied the difficulty by varying the intensities of the signals against a background of white noise. He used an information theory analysis and found that as the task became easier the information shared between a response and a stimulus which evoked it increased while the information shared between this response and the response on the immediately succeeding trial decreases. This is really saying that as the probability of the correct response increases the other factors affecting the response must simultaneously decrease.
(d) Payoffs and instructions

It was discovered early that payoffs could influence the bias of the subject without affecting his sensitivity. E.g. Tanner Swets and Green (1956) show that a subject can be made to change the value of his bias parameter by varying the
payoffs dependent on the outcomes of each trial. The extent to which the subject does this is smaller than would be predicted by a normative Bayesian type analysis. This however is a common enough finding in decision making, c.f. Peterson and Beach (1968). The same effect can be observed by varying the instructions to a subject. Egan Schulman \& Greenbergl959 instructed subjects to use a "strict", "medium" and "lax" criteria. Feedback was given to subjects if the criterion they were using fell outwith a specified range. Again the sensitivity was found to remain constant while the bias changed.
(e) Sequential effects

This is the area in which this project is mainly interested. Fechner (1860) found a "negative time error" in his experiment on lifted weights. That is to say if two equal weights are presented to a subject then the second weight is judged greater than the first. Fechner postulated a fading memory trace to account for this mechanism. Thus when a subject lifted the first weight he formed an image which was then compared to the second. As this trace fades so the second is judged as heavier. Contemporary introspectionists did not like this idea. Thus Kohler (1923) postulated a hypothetical physiological process as an explanation instead.

Postman (1946) studied this effect for tones differing in either pitch or intensity. He found little time error for pitch but with the intensity variable he found a time error the nature of which depended on the interstimulus interval (ISI). Averaging over subjects and frequencies he obtained the following graph for intensity judgments and

LOUDNESS

Fig. 8. Generaitzed Time-Error Functions for Zact and Loudness Each point on the graph represeats the average time-ertor for an O at a given' time-interval.

GENERALIZED TIME-ERROR FUNCTION

A distinction is made by Stevens (1939) between discriminations which depend on the addition of excitation to excitation (e.g. intensity judgment) and those which depend on differential patterns of excitation. The former appeared to lead to systematic time errors while the latter do not.

Needham (1934) found that the time error reversed itself after extensive practice becoming negative after a short interval and positive after a longer one. Similar after effects are common in visual studies.

In the 1950's some work was carried out into sequential effects by presenting a constant stimulus around threshold to a subject for a large number of trials and asking the subject to detect the presence of the stimulus, e.g. Verplank, Collier and Cotton (I952) used a light at the 50% threshold.

This stimulus was presented to sixteen subjects
on 300 successive trials during four separate sessions. They found significant auto correlations up to about lag ll (representing about one minute real time) and no significant dependence over lag 20. Day (1956) presented a continuous 1000 cps tone to the right ear of each of five subjects at a sensation level of 70 db . Subjects were instructed to respond by pressing a key whenever they could detect an
increment in the loudness of the tone. From 300 to 600 increments in intensity each 0.1 second in duration were added regularly to the tone at a fixed interstimulus interval. A response of Yes or No was recorded for each increment. Day varied the interstimulus interval and found that the subjects' responses did not conform to a random series as measured using a runs test (see Siegel (1956)). He also found that as the interstimulus interval increased so the departure from randomness decreased, although some subjects showed marked degrees of non-randomness even at the longest interstimulus intervals.

Other experimenters (Senders and Sowards (1952), Senders (1953) and Wagnaar (1968) presented a constant stimulus to a subject asking him to respond as to whether it fell into one of two categories. Wagenaar states that in these experiments no real pressure was involved as the subjects' task was to state which of two stimuli presented came first. As both stimuli were presented simultaneously the author claimed that threshold fluctuations could not serve as an explanation for the strong response dependencies found in all cases. He preferred to postulate a sequential response bias to account for the response dependencies which in most cases corresponded to a tendency to repeat the same response on the part of the subject. The main findings were that strong dependencies existed together with wide individual subject differences.

Wertheimer (1953) took successive measurements of auditory visual and pain thresholds on a series of three subjects. These were obtained at 6 second, 1 minute, 3 minute and 1 day intervals. An analysis of the data revealed significant auto correlation between successive measures of thresholds. An analysis of variance showed that in the last experimental condition where the inter threshold determination time was one day, this variable the inter thresh old determination time was found to have a significant effect on the threshold obtained.

Matrices used

More recently work has concentrated on detection and recognition situations. Speeth and Mathews (1961) in a four interval forced choice signal detection experiment found that a subject's current response was effected by his immediately preceding response, his past performance level and an indication of what his last response should have been. This effect decreased as the signal increased, i.e. the task became easier. Carterette and Wyman (1962) in a Yes/No detection experiment found that the trial frequencies were not a zero order Markov process.

We shall now see how more recent studies have revealed some of the relationships between the independent variables and sequential effects. Freidman and Carterette (1964) varied the stimulus probability by making the presentation sequence of stimuli a first order Markov process. A forced choice detection task was used and subjects were not informed of the nature of the stimulus dependencies nor the purpose of the experiment. The transition matrices used are given on the following page. In A, B and C the probability of the first stimulus S_{1} on trial n is independent of the stimulus on trial $n-1$. In D, F and H the probability of a stimulus repetition is increased while in E, G and I the probability of a stimulus alteration is decreased. For the most part the data points were well fitted by a traditional ROC curve. The a priori probabilities appeared to effect the placing of the data points on the curve. They also examined the effect of run length on the probability of a correct response $P(c)$ and the results are shown in the diagram below.

Fig. 2. Proportion of correct responses $[P(C)]$ averaged over the three observers as a function of run length for the various Markov-chain generators.

In experimental conditions A, B and C the probability of a correct response increased with run length. In conditions D and E which had the greatest amount of stimulus dependence run length had a dramatic effect on $P(c)$. In condition $D P(c)$ went from. 45 on the first trial of a run to .8 on the second while in A the corresponding values were . 70 and .58. The observed dependencies of responses on responses were small. The authors suggest that this was due to the provision of feedback following every trial without which more dependency on the immediately preceding response to a given trial might have been noted.
(f) The Effect of Feedback on Sequential Effects

Freidman and Carterette (1964) state that from their research feedback is an important determiner of response dependencies. If feedback is given then the largest response dependencies are on the stimulus presented on the immediately preceding trial. If no feedback is given then the largest effect is of the immediately preceding response. Parducci and Sandusky (1965) in a recognition task of the special position of lights found the effect of feedback was to reduce the accuracy after a stimulus alternation but to increase it after a stimulus repetition. Both these effects cancelled each other out when the probability of a correct response was taken as a performance measure. This perhaps explained the findings of Grundy (1961) who found that the provision of feedback did not appear to effect the probability of a correct response. Also in both these studies the a priori stimulus probability was . 5 . Kinchla (1966) in a signal recognition task showed that subjects in a feedback condition tended to match the probability of the responses whilst in a non-feedback condition they did not. Thus the probability of each of the responses without feedback regressed to . 5 .

The effect of feedback on stimulus alternation was examined by Tanner Haller and Atkinson (1967) who found subjects were more accurate after a stimulus alteration than after a
stimulus repetition in a no feedback signal recognition experiment. This is interpreted by assuming that the subject compares the stimulus on one trial with some "memory" of the stimulus on the immediately preceding trial. Thus if the subject is wrong on one trial he will compare the stimulus on the next with a wrongly labelled "memory" and thereby increasing the chances of him making a wrong response. The effect of feedback in decreasing the probability of a correct response after a stimulus alternation is less easy to explain unless it is postulated that feedback in some way interferes with the comparison process.

We can therefore conclude that sequential effects are observable over a wide variety of detection and recognition tasks. As the task becomes easier so these effects decrease. The same thing happens when the interstimulus interval is increased. Feedback appears to increase the probability of a correct response after a stimulus repetition but has the opposite effect after a stimulus alternation.

4. RELEVANT REACTION TIME FINDINGS

(a) Experimental Results

The Iiterature on reaction time is of direct relevance to the task we are considering as the task facing a subject in a Yes/No recognition situation is very similar to that in a choice reaction time experiment.

Smith (1968) has reviewed the literature of choice reaction time and defines a choice reaction time experiment as follows:-
(a) The stimulus and responses are known at the start of the experiment.
(b) The error rate is low - less than 10% wrong responses occur and no comparison stimuli are presented.
(c) Latency is the major dependent variable.

In the signal recognition task used in the current investigation the error rate was often higher than the 10% stipulated by Smith as characteristic of the reaction time experiment. It is usually more difficult and the experimenter is interested in other dependent variables than latency. There is also a difference in the instruction normally given to the
subjects. The similarity of the two experimental procedures however makes the findings of choice reaction time experiments of direct relevance to those interested in signal recognition.

The major variables found to effect the choice reaction time (CRT) experiment are given below.

(i) CRT and stimulus uncertainty.

The relation choice reaction time is proportional to stimulus uncertainty has been found to hold good whether stimulus uncertainty is varied by changing the number of equiprobable alternatives or varying the probability of occurrence of individual stimuli Hick (1952) and Hyman (1953) and subsequent studies. This is in cases where the task is one one i.e. there is one and only one distinguishable response for each stimuli. Whether this relationship still holds when the one : one relationship is altered is open to question, e.g. Rabbitt (1959) and Pollack (1963). Stimulus uncertainty however cannot entirely explain the finding of Broadbent and Gregory (1965) who showed that the CRT's to a stimulus that occurred on 75% of the trials were longer when this stimulus was part of a four alternative choice reaction time experiment than a two choice task. Thus the number of stimuli has an effect on the latency which is independent of the probability of that stimulus.
(ii) CRT and payoff.

Fitts (in Smith (1968)) showed that where payoffs were greater to the subject following fast accurate responses to some stimuli choice reaction times were shorter to the more highly valued stimuli. Laberge (1964) also found that the effect of increasing the payoff associated with the particular response had the effect of decreasing the latency of that response.
(iii) CRT and sequential effects.

Bertleson (1961) showed that the choice reaction time to a stimulus increase is the number of intervening trials since the last occurrence of the stimuli. Although data produced by Hyman (1953) do not appear to confirm this in a two choice reaction time experiment they do with four, six
or eight choices. Bertleson and Rankin (1966) found the effect reversed when the interval between the stimulus was long, i.e. 12 - 15 seconds.

Laming (1968) studied sequential dependencies in reaction time experiments. He used the multiple regression analysis technique whose basic equation is as below.

$$
\begin{aligned}
E_{i}= & e+a_{0}\left(S_{i}-\frac{1}{2}\right)+\sum a_{j}\left(Q_{i j}-\frac{1}{2}\right)+ \\
& \sum_{k} a_{0 k}\left(S_{i}-\frac{1}{2}\right)\left(Q_{i k}-\frac{1}{2}\right)+ \\
& \sum_{j} \sum_{k<j} a_{j k}\left(Q_{i j}-\frac{1}{2}\right)+\sum_{j} b_{j} E_{i-j}\left[Q_{i j}+1\right]+ \\
& \sum_{j} C_{j} E_{i-j} Q_{i j}+\varepsilon_{i}
\end{aligned}
$$

S_{i} equals 1 if stimulus 2 is presented on the trial otherwise zero.
R_{i} equals 1 if response 2 is made on the trial otherwise zero.
${ }_{i}$ equals $\left|S_{i}+R_{i}\right|$.
$Q_{i j}$ equals $\left|s_{i}+s_{i-j}\right|$.
a_{0} is the effect of the stimuli on the current trial on the error rate.
a_{j} is the effect of the stimulus on trial i-j.
$a_{i j}$ is the effect of the combination of stimuli on trials i and j.
b_{j} is the effect of a mistake of the same sort on trial i-j.
c_{j} is the effect of a mistake of a different sort on trial i-j.

The values of a, b and c are the regression coefficients and provide some measure of the sequential effects. If the coefficient of a similar regression analysis using the response of the dependent variable was also performed. Also the latencies were analysed using the regression equation

$$
\begin{aligned}
T_{i}= & t+\sum_{j} h_{j} T_{i-j}+\sum_{j} \mathbb{F}_{j}\left(\left[R_{i}+R_{i-j}\right]-\frac{1}{2}\right)\left(T_{i-j}-\mu\right) \\
& \left.+g_{j}\left(Q_{i j}-\frac{1}{2}\right)\left(T_{i-j}-\mu\right)\right\} \\
& +s_{0} E_{i}+s_{1}\left(S_{i}-\frac{1}{2}\right)+s_{2}\left(R_{i}-\frac{1}{2}\right) \\
& +\sum_{j} U_{j}\left(Q_{i j}-\frac{1}{2}\right)+\sum_{j} \sum_{j>k} u_{j k}\left(Q_{i j}-\frac{1}{2}\right)\left(Q_{i k}-\frac{1}{2}\right) \\
& +\sum_{j} v_{j} E_{i-j} Q_{i j}+\sum_{j} W_{j} E_{i-j}\left[Q_{i j}+l\right]+\tau_{i}
\end{aligned}
$$

t is the average reaction time.
k_{j} gives the effect of times on preceding trials.
f_{j} gives the effect of times of responses for R_{i} and R_{i-j} being equal or not.
u_{j} gives the effect of the difference in reaction time between the events S_{i-j} is not equal to S_{i} and S_{i-j} equals S_{i}.
$u_{j k}$ gives the effect of the events $Q_{i j}$ and $Q_{i k}$ which are not included in the u_{j}.
w_{j} - this represents the increase in reaction time on a trial when the signal involved in an error on trial $i-j$ is presented again.
v_{j} represents the increase in reaction time when the alternative signal is presented.

Laming estimated the above regression equation using data from several experiments in the same analysis. He reported where the regression coefficients differed depending on the conditions. One of his findings was that the order in which
subjects were run in different experimental conditions was important. Analysing the effects of run length he found that during a run of one of the stimuli S_{A} the reaction time and probability of an error both decreased. While during a run of the other stimuli, however, the opposite happened. Laming postulated a random walk model to explain the latencies construed that this effect was due to a shift in the starting point of the random walk. The effect of adding a bias parameter to the regression equation was to reduce the difference between the constants in the regression equation. From the regression coefficient our general finding is that a_{2} and u_{2} are greater than a_{1} and u_{1}. The graph showing how the coefficients vary with distance from the current trial is shown below.

Median values of the a_{f} regression coefficients in Experiments 1, 2 and 3.

Another find is the importance of the inter-trial interval on the sequential dependencies. He found that the interaction regression coefficients became more important as the inter-trial interval decreased below. 5 of a second. He interprets this by claiming that the speed of extraction of information is less after an alternating sequence of signals than after a run during short inter-trial interval conditions. Too much weight however must not be placed on the absolute value of the
regression coefficients since they may be serving to suppress some variation in another dependent variable rather than to predict the dependent variable directly.

Bertleson (1963) used an experimental situation involving four stimuli in which two were associated with each response. In this way it was possible for him to study the effect of stimulus and response repetition on reaction time independently. He concluded that response repetition led to the greatest effect on latency. It could also be argued that this effect can explain the results showing that stimulus uncertainty is proportional to latency. The more probable a stimulus is the more repetitions of the response to it will be involved. This however cannot account for all of the experimental findings.
(iv) CRT and discriminability.

Increased discriminability decreases CRT for a given number of stimuli Sternberg (1964). However it appears that the way the changes in discriminability occur changes the effect of varying the number of stimuli. In Sternberg's task the stimulus was changed by the addition of noise to it. If the relation between reaction time and number of stimuli (s) is CRT $=k(s)+c$ where k and c are constants then decreasing discriminability by the addition of noise has the effect of altering c. Crossman (1955) and Thrumound and Alluisi (1963) varied the similarity of the stimuli directly and found that they changed the slope of this function i.e. k.
(v) CRT and compatibility.

Fitts (1959) found that the "naturalness" of SR relations e.g. spacial orientation were related to CRT. This stimulated attempts to see if the effects of the number of stimuli disappeared with very compatible stimulus-response relations. Leonard (1959) found that when the stimuli where the tactile vibration of the fingers and the response was depression of the stimulated finger that the number of stimuli had no effect on the response time.
(vi) CRT and Intertrial Interval.

The effect of intertrial interval on the intertrial dependence has been studied by a number of investigators. The experimental findings, however, lead to rather unclear conclusions. Bertleson (1961), Bertleson and Rankin (1966), and Hale (1967) found that introducing a delay between trials of more than a second had the effect of reducing or abolishing the "repetition" effect. Indeed Hale (1967) showed a transition from positive to negative recency as the intertrial interval was increased. This finding was replicated by Williams (1966). Keele (1969) found no change in the nepetition effect over intertrial intervals of 2,4 and 8 seconds in a six-choice lights-buttons task and no effect of interpolated arithmetic tasks in the 4-second intertrial interval. Schvaneveldt and Chase (1969) found a negative recency effect occurred in both 2 and 4 choice ($S-R$) compatible tasks and the negative recency increased as the intertrial interval decreased. With less compatible S-R tasks a positive repetition effect was found and the intertrial interval did not appear to affect it.
(vii) CRT and practice.

Some studies e.g. Mowbray and Rhoades (1959)
and Davis Moray and Treisman (1961) found that practice could eventually reduce the effect of increasing the number of stimuli to the subject. The two studies combined, however, used only four subjects in total.
(viii) CRT and instructions.

It is possible to reduce the latency at the expense of accuracy by varying the instructions e.g. Fitts (1966) and Hick (1952).
(b)Reaction Time Theories

Theoretical analysis of such studies has developed along a number of different lines. There is the "psychological model" of Selfridge, Neisser etc. who are concerned with the nature of the psychological process rather than developing parametric models. There are mathematical models of the reaction time process e.g. Hick Luce Falmange Laberge Stone Laming etc. In these cases the psychological process is formalised into a mathematical model. Finally there is the approach of McGill who seems concerned mainly with specifying the reaction time distribution statistically and who pays less attention to the psychological process.

Smith (1968) provides a comprehensive verbal review of the cognitive approaches starting with Donders and leading to an extended discussion of the differences between feature testing versus template matching models. Since this approach is not particularly relevant to the present topic the interested reader is referred to this review for a summary of the above work.

Recently the use of Markov chains and random walks came to the notice of psychologists and they have been applied to a number of different situations. A distinction should be made between the "Macro" Markov models discussed in the section on characterising dependencies where each event is a trial i.e. the process continues throughout the whole experiment without absorption, and the more common "micro" model in which each trial is represented by an absorption of a Markov
process i.e. the process starts and absorbs during each trial. Looking at the micro model first we see that this was originally applied to choice theory. The unobservable events being referred to as "implicit processes" or some similar concept. If the events are seen as corresponding to observable responses then these criteria for reaching the absorbing state can be studied. Bower (1959) and Estes (1960) considered two successive events corresponding to the same response and Audley (1960) extended this from two to k. Bower also considered using as an absorption criteria the number of events corresponding to one of two responses being greater than k. While Laberge (1962) considered using the criterion k not necessarily successive events corresponding to each course. Although mainly concerned with the response probability such models can equally be made to have latency applications if one postulates the distribution of events in time.

Probably the first application of Markov models to the study of response latencies was by Stone (1960). He made use of the sequential probability ratio test developed by Wald (1947) to relate the mean and variance of the latencies to the error rates and the relative frequencies of the stimulus presentation. Stone postulated that the subject is operating on a stream of random variables $x_{1}, x_{2} \ldots x_{n}$ separated by a constant time t. $P_{0}(x)$ and $P_{1}(x)$ are the probabilities of the random variable taking the value x when the stimulus s_{0} and s_{l} respectively have been presented. The probabilities are assumed to be constant for all observations. The subject transforms each observation x to $c(x)$ and cumulates the transformed observation over the decision period to give a total C_{T}.

Constants $\log A$ and $\log B$ are chosen where $A>B$, so that the subject decides s_{I} is present when $c_{T}>\log A$ and s_{0} when $C_{T}<\log B$. Wald's sequential probability ratio test shows that the optimum choice for $c(x)$ is

$$
c(x)=\log P_{1}(x)-\log P_{0}(x)
$$

This implies that the subject is familiar with $p_{0}(x)$ and $p_{1}(x)$.

Less restrictive assumptions were used by Stone in the formulation of his model. He postulated that the subject only assumed symmetry of the probability distributions, i.e. that $P_{1}(x) / p_{0}(x)$ when x is distributed as $P_{0}(x)$ has the same distribution as $P_{0}(x) / p_{1}(x)$ when x is distributed as $p_{1}(x)$. If n_{i} and v_{i} are the mean and variance of the sample size of observations necessary to decide s_{i} is present then Stone showed

$$
\frac{\overline{\mathrm{n}}_{1}}{\overline{\mathrm{n}}_{0}}=J(\beta, \alpha) / J(\alpha, \beta)
$$

and

$$
\begin{aligned}
& J(\alpha, \beta) v_{I}-J(\beta, \alpha) v_{0}= \\
& \frac{4 J(\alpha, \beta) \alpha(I-\alpha) \bar{n}_{I}^{2}-J(\alpha, \beta) \beta(I-\beta) \bar{n}_{2}^{2}}{(1-\alpha-\beta)} \\
& J(\alpha, \beta)=\alpha \log \alpha /(I-\beta)+(I-\alpha) \log (I-\alpha) / \beta
\end{aligned}
$$

and α and β are the probabilities of s_{0} and s_{I} respectively. If the pure decision time T_{d} can be measured directly then $T_{d i}$ can be substituted for n_{i} and $\operatorname{var} T_{d i}$ for v_{i} in the above equations.

Stone's model did not specify the distribution of the small x's. However Laming (1968) extended this by postulating the distribution for the x given S_{O}.

$$
\begin{aligned}
f\left(x \mid S_{0}\right) & =N\left(\mu_{0} \sigma^{2}\right) \\
\text { and } f\left(x \mid S_{1}\right) & =N\left(\mu_{1} \sigma^{2}\right)
\end{aligned}
$$

i.e. they are both normally distributed with equal variances.

In applying his model to the 2 choice situation Laming denotes the a priori information
$I_{A P}$ where

$$
I_{A P}=\log \frac{P\left(S_{1}\right)}{P\left(S_{0}\right)}
$$

The information obtained by the r th observation

$$
\delta \operatorname{Ir}=\log \frac{x_{r} \mid S_{I}}{x_{r} \mid S_{0}}
$$

and the total information cumulated after n observations

$$
I_{n}=I_{A P}+\sum_{1}^{n} \delta I_{n}=\log \frac{P\left(S_{1}\right) P\left(x_{i} \cdots x_{n} \mid S_{1}\right)}{P\left(S_{0}\right) P\left(x_{i} \cdots x_{n} \mid S_{0}\right)}
$$

As soon as $I_{n}=I_{i}$ when $i=0$ or 1 response R_{i} is made. Thus:-

$$
I_{0}=\log \frac{P\left(S_{1}\right)}{P\left(S_{0}\right)} \frac{P\left(R_{1} \mid S_{1}\right)}{P\left(R_{0} \mid S_{0}\right)}
$$

and

$$
I_{1}=\log \frac{P\left(S_{1}\right)}{P\left(S_{0}\right)} \frac{P\left(R_{1} \mid S_{1}\right)}{P\left(R_{0} \mid S_{0}\right)}
$$

If n is the number of responses before a response is made then the expectation of n is

$$
E(n)=P\left(S_{0}\right) E\left(n \mid S_{0}\right)+P\left(S_{1}\right) E\left(n \mid S_{1}\right)
$$

Using the properties of the normal distribution Laming is able to derive an explicit solution for both $E\left(n \mid S_{0}\right)$ and $E\left(n \mid S_{1}\right)$. In this model it is assumed that the subject minimises the latency subject to a minimum error rate. This is to say he minimises $E(n)$ subject to the condition.

$$
P\left(S_{0}\right) P\left(R_{1} \mid S_{0}\right)+P\left(S_{1}\right) P\left(R_{0} \mid S_{1}\right)<\varepsilon
$$

We see that the minimum is obtained when

$$
\begin{aligned}
& I_{0}=\log \frac{\varepsilon}{I-\varepsilon} \text { and } \\
& I_{1}=\log ((1-\varepsilon) / \varepsilon)
\end{aligned}
$$

but $I_{0}=\log \frac{P\left(S_{1}\right) P\left(R_{0} \mid S_{1}\right)}{P\left(S_{0}\right) P\left(R_{0} \mid S_{0}\right)}-\log \frac{P\left(S_{1} \mid R_{0}\right)}{P\left(S_{0} \mid R_{0}\right)}$
$\varepsilon=P\left(S_{1} \mid R_{0}\right)$
similarly it can be shown

$$
\varepsilon=P\left(S_{0} \mid R_{1}\right)
$$

Laming derives the following main consequences for this model:1. The ratio of the errors given S_{1} as opposed to S_{0} approaches an optimal value $\left(P\left(S_{1}\right)-\varepsilon\right) /\left(P\left(S_{0}\right)-\varepsilon\right)$.
2. The signal that elicits the faster reaction has the smaller probability of error.
3. For a given response the distribution of reaction times is the same whether the response is correct or not.

Predictions 1 and 2 were borne out in a series of experiments, Laming (1968). Prediction 3 however was demonstratably found not to be true. Laming therefore modified the models so that the subject begins sampling the information from the blank display at some time before the signal is presented. The information so sampled is irrelevant to the discrimination between the signals. This leads to the prediction that in a two choice reaction time the errors are faster than the same response made correctly.

Falmagne (1965) developed a choice reaction time model which is an interesting special case of the latent class Markov models discussed in the next section. He postulated that a subject is either in a state of preparedness or not for each stimulus for each trial. If the stimulus presented on one trial was in the prepared state then it remains in
the subject's prepared state for the next trial. However, if the stimulus in the prepared state was not presented on a trial then it goes into the unprepared state with the probability I - c^{\prime} and the stimulus in the unprepared state goes into a prepared state with a probability of c. When a subject is in a prepared state his reaction time distribution is $K(x)$ and in the unprepared state it is $\bar{K}(x)$. This model is in fact a latent Markov process with the states of preparedness being the latent states.

Falmagne's model postulates that $S_{n}(S)$ is a random variable defined for each trial n . The reaction time to stimulus j depends on $K_{i n}$. At trial n the state of the subject can be represented by a vector

$$
K_{n}(s)=\begin{aligned}
& K_{I}(s) \\
& K_{r}(s)
\end{aligned}
$$

If the subject is prepared his reaction time distribution is $K(x)$ otherwise $\bar{K}(x)$. He also postulated a random indicator variable $E_{i n}(s)=1$ if stimulus i has been presented to subject s on trial n or 0 if i has not been presented to subject s on trial n. So the stimuli presented to the subject can be represented by a vector

$$
E_{n}(s)=\left\{\begin{array}{l}
E_{1 n}(s) \\
E_{r n}(s)
\end{array}\right.
$$

W_{n} is the outcome to trial n .

$$
W_{n}=\left\langle E_{n}(s) K_{n}(s), \ldots E_{2}(s) K_{2}(s), E_{1}(s) K_{1}(s)\right\rangle
$$

The theoretical cumulative distributions of $R T$ to stimulus i at trial n, given the state the subject is in are given below.

$$
\begin{aligned}
& J\left(x_{n} \mid E_{i n}=I, \quad K_{i n}=I, W_{n-1}\right)=K(x) \\
& J\left(x_{n} \mid E_{i n}=I, \quad K_{i n}=0, W_{n-1}\right)=\bar{K}(x)
\end{aligned}
$$

Transitions between states for $a l l i$ and n are described by:$P\left|K_{i n+1}(s)\right| E_{n}(s), K_{n}(s), W_{n-1} \mid=f\left(E_{i, n}(s), K_{i n}(s)\right)$
and the values of f are given in the table below

$$
\begin{array}{ccc}
K_{i n}(s) E_{i n}(s) & 1 & 0 \\
1 & 1 & 1-c^{\prime} \\
0 & c & 0
\end{array}
$$

let $P_{i n}(s)=P\left(K_{i n}=I \mid W_{n-I}\right)$

$$
\pi_{i}=P\left(E_{i n}=1\right)
$$

The theoretical cumulative distributions of RT on trial n given the presentation of stimulus i is

$$
\begin{aligned}
J_{i n}(x) & =\stackrel{\Sigma}{W}_{n-1} J\left(x_{n} \mid E_{i n}=1, W_{n-1}\right) P\left(W_{n-1}\right) \\
& =P_{i n} K(x)+\left(1-P_{i n}\right) \bar{K}(x)
\end{aligned}
$$

Falmagne shows
(1) $P_{i n+1}=(1-c) P_{i n}+c$

$$
P_{i n+1}=\left(1-c^{\prime}\right) P_{i n}
$$

(2) The transition of the Markov chain latent states

$$
\begin{array}{ccc}
K_{i n} K_{i n+1} & 1 & 0 \\
1 & 1-\left(1-\pi_{i}\right) c^{\prime} & \left(1-\pi_{i}\right) c^{\prime} \\
0 & \pi_{i}^{c} & 1-\pi_{i}^{c} \\
P_{i}=\lim _{n^{\wedge} \rightarrow \infty} P_{i n}=\frac{\pi_{i}^{c}}{\pi_{i}^{c}+\left(1-\pi_{i}\right) c^{\prime}}
\end{array}
$$

(3) If $E_{\text {in }}(s)=I$

$$
\begin{aligned}
& J_{i n+1}(x)=(1-c) J_{\text {in }}(x)+c K(x) \\
& \text { if } E_{i n}(s)=0 \cdot J_{\text {in+1 }}(x)=\left(1-c^{\prime}\right) J_{i n}(x)+c^{\prime} \bar{K}(x) .
\end{aligned}
$$

We also find a number of implications, e.g. sequential effects on moments.

Let

$$
E\left(X_{i n}^{V}\right)=\int x^{V_{J}}{ }_{i n}(x)
$$

$$
E\left(X_{k}^{\mathrm{V}}\right)=\int \mathrm{x}_{\mathrm{k}}(\mathrm{x}) \text { and } E\left(X_{\bar{k}}^{\mathrm{V}}\right)=\int \mathrm{x}_{\overline{\mathrm{k}}}^{\mathrm{V}}(\mathrm{x})
$$

then

$$
\begin{aligned}
E\left(X_{i n+1}^{V} \mid E_{i n}=I\right) & =(1-c) E\left(X_{i n}^{V}\right)+c E\left(X_{k}^{V}\right) \\
& =\left(1-c^{\prime}\right) E\left(X_{i n}^{V}\right)+c^{\prime} E\left(X_{k}^{V}\right)
\end{aligned}
$$

this can be estimated also can use different

Falmagne also postulates a linear model.
(I) $P\left(K_{i n+1}(s)=I \mid E_{i n}(s)=I, K_{i n}(s)=I, W_{n-l}\right)=$

$$
(1-c) P\left(K_{i n}(s)=I \mid W_{n-1}\right)+c
$$

(2) $P\left(K_{i n+1}(s)=l \mid E_{i n}(s)=0, K_{i n}(s), W_{n-1}\right)=$

$$
\left(I-c^{\prime}\right) P\left(K_{i n}(s)=I \mid W_{n-I}\right)
$$

Falmagne also reported experimental data from R / T studies which are generally in accord with his main predictions. The fit is less good as the predictions get smaller.

Since much work has been done on reaction time studies it would be useful to see if we can find anything in the literature relevant to detection and recognition situations. However, the reaction time experiment is a recognition task where subjects make few mistakes we should find a relationship between such work and that under present consideration.

McGill (1963) reviewed the nature of a probability mechanism for generating latencies (L). The probability density function of the latencies is $f(t)\left(P\left(t_{1}<L<t_{2}\right)=\right.$ $\int_{t_{1}}^{t_{2}} f(t) d t=F\left(t_{2}\right)-F\left(t_{1}\right)$ where $F(t)$ is the cumulative density.

Of the possible densities he considers

1. Exponential distribution. Random events occurring in time with an equal probability will produce an exponential distribution

$$
f(t)=\lambda e^{-\lambda t}
$$

2. Geometric. If we have a device making two responses A with probability p and \bar{A} with probability $q=1-p$ then the probability of a run of k A responses is given by

$$
p(k)=q^{k} p
$$

which is a geometric distribution with moment generating function

$$
m_{k}(\theta)=\int_{0}^{\infty} e^{\theta t} q^{k} p=\frac{p}{1-q e^{\theta}}
$$

Suppose each response takes time δt and as δt decreases then the number of \bar{A} increases as δt decreases. We assume

$$
\lim _{\delta t \rightarrow 0} \frac{p}{\delta t} \rightarrow \lambda \quad(a \text { constant) }
$$

Let

$$
t=k \delta t
$$

$$
M_{t}(\theta)=\frac{p}{1-p e^{\theta \delta t}}
$$

$$
\begin{aligned}
\lim _{\delta t \rightarrow 0} M_{t}(\theta) & =\frac{\lambda \delta t}{1-(1-\lambda \delta t+\theta \delta t)} \\
& =\frac{\lambda}{\lambda-\theta}
\end{aligned}
$$

This is the moment generating function of the exponential distribution. However most reaction time studies have yielded data which shows systematic departures from the constant probability functions of McGill (1961). McGill went on to consider that the response latency was the sum of a number of different components. He postulated that the response latency t equals $\sum_{\sum_{1}^{N}}^{N}$ in which t_{k} is a random variable which is
exponentially distributed

$$
\begin{aligned}
f\left(t_{k}\right) & =e^{-\lambda t k} \\
M_{t k}(\theta) & =(1-\theta / \lambda)^{-1} \\
M_{t}(\theta) & =(1-\theta / \lambda)^{-n}
\end{aligned}
$$

which turns out to be the moment generating function of a gamma distribution.

$$
f(t)=\frac{\lambda^{n}}{(\lambda \theta)^{n}} \int_{0}^{\alpha} \frac{1}{(n-1)!}{ }^{\mu^{n-1}} e^{-\mu}
$$

Thus for any given k number of elemental responses we can generate a gamma distribution. Suppose k is distributed geometrically

$$
\begin{aligned}
M_{t}(\theta) & =\Sigma q^{k} p(1-\theta / \lambda)^{-k+1} \\
& =\frac{p}{1-\theta / \lambda} \sum_{k=0}^{\infty}\left(\frac{q}{(1-\theta / \lambda} k\right. \\
& =\frac{p}{1-\theta / \lambda} \frac{1}{1-q /(1-\theta / \lambda)} \\
& =1 /(1-(\theta / \lambda) p)
\end{aligned}
$$

This still gives an exponential distribution of t and is apparently insensitive to the random duration of the sub-response elements.

If we consider the latency has two elements t_{1} and t_{2}

$$
\begin{aligned}
f\left(t_{1}\right) & =\beta e^{-\beta t_{1}} \\
f\left(t_{2}\right) & =\alpha e^{-\alpha t_{2}} \\
m_{t}(\theta) & =\frac{\alpha \beta}{(\alpha-\theta)(\beta-\theta)}
\end{aligned}
$$

The function

$$
f(t)=\frac{\alpha \beta}{(\beta-\alpha)} e^{-\alpha t}-e^{-\beta t}
$$

has the above mg.f.
McGill (1965) went on to extend this approach to k elements.
5. Methods of characterisation of the dependencies
(a) Preamble

As this project is an attempt to study the effect of dependencies on some standard models a major problem consists in adequately describing the dependencies. For this purpose each trial can be considered as a discrete event in time. For most purposes each trial can be classified by $R_{i} S_{j}$ i.e. on this trial the subject responded R_{i} to stimulus S_{j}. In the two stimulus Yes/No situation there are only four types of trial $R_{1} S_{1}, R_{2} S_{2}, R_{1} S_{2}$, and $R_{2} S_{2}$. Each trial may yield more information - latencies confidence ratings etc. but can still be approximated to using discrete states.
(b) Manifest Markov models

Probably the most obvious method of describing such data is using a manifest Markov chain of. Carterette and Wyman (1962) and Macdonald (1968). Let the state on the j trial be S_{j} and let A equal ($a_{1} a_{2} \ldots a_{n}$) be the set of all possible outcomes on a particular trial. The results of an experiment of n trials are therefore W equal to ($X_{1}, X_{2} \ldots X_{n}$). We can now classify different properties of the outcome of such experiments regarded as stochastic processes.
(i) W is an independent process if for all j equal to

$$
\begin{aligned}
& 1 \ldots n \text { and } k \text { equal to } 1 \ldots . . . n \\
& P\left(X_{j}=a_{k} \mid X_{j-1} \quad \ldots X_{l}\right)=P\left(X_{j}=a_{k}\right)
\end{aligned}
$$

i.e. the probability that $X_{j}=a_{k}$ is unrelated to the observed states on the previous trials.
(ii) W is a Markov chain of order c if for all j equal to l..... n and for all small k equal to $1 \ldots . .$. $P\left(X_{j}=a_{k} \mid x_{j-1} x_{j-2} \ldots X_{l}\right)=P\left(X_{j}=a_{k} \mid x_{j-1} \cdot X_{j-c}\right)$
i.e. the probability that $X_{j}=a_{k}$ given the observed states $X_{j-1} \ldots X_{j-c}$ is independent of all states earlier in the process.
(iii) W is a stationary Markov chain of order e if for all k and e

$$
P\left(X_{1} X_{2} \ldots X_{e}\right)=P\left(X_{k+1}, X_{k+2} \ldots X_{k+e}\right)
$$

i.e. the probability of a trial being in a particular state is independent of the trial number.

A higher order Markov chain can be transformed into a first order one of many more states. For example if we have a chain ($X_{1} \ldots X_{n}$) of order c we can define a constant state b_{k} as the ordered c tuple $\left(X_{k} \ldots X_{k-c+1}\right)$. Thus if Y_{j} is the outcome of trials $X_{j}, X_{j-1} \ldots X_{j-c+1}$ then

$$
P\left(Y_{j}=b_{k} \mid Y_{j-I}, Y_{j-2} \cdots Y_{I}\right)=P\left(Y_{j}=b_{k} \mid Y_{j-I}\right)
$$

and $Y_{1} \ldots Y_{n-c}$ is a first order Markov chain. We can test to see how the data conformed to this stationarity assumption and the assumption of different orders using a x^{2} analysis. If the stationarity assumption is broken then the proportion of trials in different states should depend on which section of the data we are looking at. Let us break the data down into T sections when $P_{i j}(t)$ is the observed probability of being in state i on one trial and j on the succeeding trial in section t. To test the stationarity assumption we assume $p_{i j}(t)$ is independent of t equal to $p_{i j}$ the same probability as measured over all the sections. If there are $n_{i}(t)$ trials on state i and section t, the stationarity assumption is tested by

$$
x^{2}=\sum_{i} \sum_{j} \sum n(t-1)\left(p_{i j}(t)-p_{i j}\right)^{2} / p_{i j}
$$

With degrees of freedom equal to $n(n-1)(t-1)$.
Let $n_{i j k}$ be the number of times a trial is in state k when it was in state j on the immediately preceding trial and state i on the trial before that. Let $n_{i j}=\sum_{k} n_{i j k}$ and $n_{i}=\sum_{j} n_{i j}$. The $n_{i j k}$ are sufficient statistics for estimating $P_{i j k}$ (the maximum likelihood estimate is $n_{i j k}$ divided by $n_{i j}$) in a second order Markov chain and the $n_{i j}$ are sufficient for estimating the $p_{i j}$ in a first order one, cf. Anderson and Goodman (1954). We may test to see whether a chain corresponds to first or second order by

$$
\begin{aligned}
& x^{2}=\sum_{i} \sum_{j} n_{i}\left(p_{i j}-p_{j}\right)^{2} / p_{j} \\
& d f=(n-1)^{2}
\end{aligned}
$$

or whether a chain is second or third order by

$$
\begin{aligned}
& x^{2}=\sum_{i} \sum_{j} \sum_{k} n_{i j}\left(p_{i j k}-p_{j k}\right)^{2} / p_{i k} \\
& d f=n(n-1)^{2}
\end{aligned}
$$

Indeed the test can be extended to find whether a chain is adequately described by a cth or a c+lth order one. This test does not require the stationarity assumption to be upheld. This technique will enable us to completely characterize the process by a cth order Markov chain if the χ^{2} for the cth versus higher order is not significant. The problem here is obtaining enough data to obtain accurate estimates of the higher order transition probability. To test the hypothesis of third versus fourth order we require to have 256 probabilitie to estimate and it is difficult to make a subject perform more than 1000 trials in one session. In order to estimate the above probabilities therefore one would be forced either to average over sessions or subjects.

(c) Information theory analysis

Information theory analysis enables one to measure the absolute size of the sort of dependencies which we are considering. The theory on which it is based is much the same as the Markovian analysis (see Garner (1962) and Attneave (1959)). Let us again assume we have a series of trials ($X_{1} \ldots X_{n}$) each resulting in one of n discrete states ($a_{1} \ldots . . a_{n}$). Making the stationarity assumption as defined in the last section implies that $P_{i}=P\left(X_{j}=a_{i}\right)$ is independent of j. Having made this assumption the amount of information given when we know $X_{j}=a_{i}$ is defined as $-\log _{2} p_{i}$ and the expected value of the information on any trial $j-E\left(H_{j}\right)$ is simply

$$
E\left(H_{j}\right)=-\sum_{1}^{N} p_{i} \log _{2} p_{i}
$$

This is estimated by

$$
-\Sigma \hat{\mathrm{p}}_{i} \log _{2} \hat{\mathrm{p}}_{1}
$$

where

$$
p_{i}=\frac{n_{i}}{n}
$$

Another name for this statistic is entropy or uncertainty.

A value of this approach is that it enables us to examine the extent to which different events are independent of each other. Supposing we consider another series $\left(Y_{1} \ldots Y_{N}\right)$ when Y can assume any one of the states $\left(b_{1} \ldots b_{n}\right)$ and $q_{i}=p\left(Y_{j}=b_{i}\right)$ which does not depend on j. We now find

$$
\begin{aligned}
& \left(H_{X}\right)=-p_{i}^{N} \log _{2} p_{i} \\
& \left(H_{Y}\right)=-q_{i} \sum_{l}^{N} \log _{2} q_{i}
\end{aligned}
$$

We can also consider the series $\left(X_{1} Y_{1} X_{2} Y_{2} \ldots X_{n} Y_{n}\right)$ and define $p_{i j}=p\left(\left(X=a_{i}\right)\left(Y=b_{j}\right)\right)$. If X and Y are independent then

$$
\begin{aligned}
p_{i j} & =p_{i} q_{j} \\
\left(H_{X Y}\right) & =\left(H_{X}\right)+\left(H_{Y}\right)
\end{aligned}
$$

which is easily verified. However, we can find $H_{X Y}$ by considering the composite series

$$
\hat{H}_{X Y}={ }_{i j}^{\Sigma} P_{i j} \log _{2} P_{i j}
$$

and can estimate the information shared between X and Y in the statistic $T_{X Y}$

$$
\hat{\mathrm{T}}_{X Y}=\hat{\mathrm{H}}_{X}+\hat{\mathrm{H}}_{\mathrm{Y}}-\hat{\mathrm{H}}_{X Y}
$$

This shows the proportion of the entropy that is shared between the two series. This idea is easily extendable to a three simultaneous series case where we can specify all the dependencies by estimating the statistics $\hat{H}_{X} \hat{H}_{Y} \hat{H}_{Z} \hat{H}_{X Y}, \hat{T}_{X Y}, \hat{T}_{X Z}$, $\hat{\mathrm{T}}_{\mathrm{YZ}}$ and $\hat{\mathrm{T}}_{\mathrm{XYZ}}$. There is a simple relation between T and the equivalent X^{2} in the Markovian analysis. Attneave (1959) stated the relationship as

$$
x^{2}=\left(\log _{2} 2\right) n \hat{T}
$$

However, this is only an approximation to the X^{2} analysis discussed above. The former method is preferable for significance testing as informations statistics are biased, see MacRae (1970).

(d) Latent Markov models

Both the above techniques are descriptive of any series of events in time and do not really form an analogue of any psychological process. If it were possible to show that data from the sorts of experiments we have been discussing could be fitted by a latent state Markov model then this result would tell us something about the processes involved. Such models have been used mainly by sociologists looking at a large number of a few repeated observations rather than small numbers of long series of observations. Wiggins (1955) was the first to use such models and Coleman (1964a), (1964b) used latent Markov models during studies of attitude change. A comprehensive text on this and related classes of models was written by Lazarsfeld and Henry (1968).

Let us examine in more detail the latent model used in subsequent analyses. Let us assume that on any trial a subject is in one of n latent classes ($\alpha, \beta, \ldots .$. . . The states that a subject enters on each trial form a first order Markov process specified by the transition matrix $M=\left|m_{\alpha, \beta}\right|$ where $m_{\alpha, \beta}$ is the probability of the state α on trial n and β on trial $n+1$. Corresponding to each state there is a response vector giving the probability of responding in each of n response categories ($R_{1} \ldots R_{n}$). This can be summarised in a response matrix Q equal to $\left|q_{\alpha i}\right|$ where $q_{\alpha i}$ is the probability of the subject responding R_{i} on a trial when he was in state α. At each trial t there is a row vector $V(p)$ equal to $v_{\alpha}(p)$ where $v_{\alpha}(t)$ is the probability of being in state α at time t. We define $V(t)$
as the diagonal matrix whose diagonal elements are the elements of $V(t)$. As the process is ergodic then $\lim _{t \rightarrow \infty} v_{\alpha}(t)$ exists and is denoted by v_{α} and similarly $\lim _{t \rightarrow \infty} V(t)$ is denoted by V. We denote the observed probabilities by $P(t)$ equal to $P_{i}(t), P(t, s)=P_{i j}(t, s)$ etc. where $P_{i j}(t, s)$ is the probability of responding R_{i} on trial t and R_{j} on trial s. Similarly $p_{i}(t)$ is the probability of responding R_{i} on trial t. We now have the first order probabilities defined as

$$
\begin{aligned}
& P(1)=V(1) Q \text { i.e. } P_{i}(1)=\sum_{\alpha} v_{\alpha}(1) p_{\alpha i} \\
& P(2)=V(2) Q=V(1) M Q \text { i.e. } P_{i}(2)=\sum_{\beta \alpha} \sum_{\alpha}(1) m_{\alpha \beta} P_{\beta i} \\
& P(t)=V(t) Q=V(1) M^{t-1} Q
\end{aligned}
$$

We will see that it is very useful if Q is square and has an inverse in each case

$$
\begin{aligned}
P(t) & =V(I) Q Q^{-1} M^{t-1} Q \\
& =P(1) R^{t-1} \text { where } R=Q^{-1} M Q^{2}
\end{aligned}
$$

Similarly the second order probabilities

$$
\begin{aligned}
& P(I 2)=Q^{\prime} V(I) M Q \text { i.e. } P_{i j}(I 2)=q_{\alpha i} v_{\alpha}(i) m_{\alpha \beta} q_{\beta j} \\
& P(I t)=Q^{\prime} V(I) M^{t-1} Q \\
& \text { and } P(t \quad t+n)=Q^{\prime} V(I) M^{N} Q=Q^{\prime} V(I) Q Q^{-I_{M} N_{Q}} \\
&=Q^{\prime} V(I) Q R^{N} \\
& P(I 3)=Q V(I) M Q Q^{-1} M Q=P(I 2) R \\
& R=P(I 2)^{-I} P(I 3)
\end{aligned}
$$

To find the third and higher order probabilities we introduce the diagonal matrix X_{k} which has as its diagonal elements the k th column of Q, and the notation $P_{k}(13 ; 2)=\left|p_{p_{k}}(i, j)\right|$ where $p_{k}(i, j)$, is the probability of responding i at time l and j at time 3 having responded k at time 2.

$$
P_{k}(13 ; 2)=Q^{\prime} V_{M X} Q_{k}
$$

And in a similar way we can obtain the higher order probabilities

$$
P_{k \ell}(14 ; 23)=Q^{\prime} V_{M X} M_{\ell} M Q
$$

It should now be possible given enough data to obtain estimates of $Q V \& M$. However in practice an analytic solution may prove slightly intractible. In the case where Q is square and has an inverse a solution does exist

$$
P_{k}(13 ; 2)=Q^{\prime} \mathrm{VMQQ}^{-1} \mathrm{X}_{\mathrm{k}} Q Q^{-1} \mathrm{MQ}
$$

but $\quad R=Q^{-I_{M Q}}=P(12)^{-I_{P}(13)}$
and $Q^{\prime} V M Q=P(12)$
we have $P_{k}(13 ; 2)=P(12) Q^{-1} X_{k} Q P(12)^{-1} P(13)$

$$
Q^{-I_{X_{k}}}=P(12)^{-1} P_{P_{k}}(13 ; 2) P(13)^{-I_{P}(12)}
$$

As X_{k} is diagonal its elements are the latent roots of the right hand side of the above equation. The other columns of Q can be found from the corresponding characteristic column vectors or by using other values of k.

The two response two latent state case
is therefore immediately solvable. However psychologically speaking restricting the number of latent states to the number of responses does not appear particularly meaningful.

We should be able to start with two states and then if the model does not fit be able to extend this number. It is also useful if the model places no restrictions on the number of responses in the system under examination. One way this might be circumvented would be by considering different partitions of the total response set. For example, suppose there are n responses. We can now divide the n responses into a two response set, e.g. $\left(R_{1}\right)$ and $\left(R_{2} \ldots R_{n}\right)$ and we can estimate q_{11} and $1-q_{I I}$. Similarly we may estimate $q_{I i}$ and $1-q_{I i}$. By
different partitions we should be able to obtain estimates of $\left(q_{1 i}+q_{1 j}\right)$ which should be consistent with $q_{l i}$ and $q_{l j}$. This approach of reducing the number of response categories equal to the number of latent states should work for any number of latent states m in a situation with n observable responses where n is greater than m.
(e) Autoregressive processes:

Autoregressive functions cf. Cox and Miller (1965) provide an alternative way of: characterising a stationary time series. Suppose $\left(X_{n}\right)$ is a discrete Gaussian process, i.e. one for which the distribution of $X_{n 1} \ldots X_{n c}$ is multi variate normal. Then the process is stationary if (1) $E\left(X_{j}\right)=U$ a constant for all j and (2) the covariance matrix $r\left(n_{1} n_{2}\right)$ equal $C\left(X_{n 1}, X_{n 2}\right)$ is a function of $n_{1}-n_{2}$ only, i.e. $C\left(X_{n+h}, X_{n}\right)=r(h) . \quad r(h)$ is the autoregressive function where $\gamma(0)=$ the variance of X_{n} and $\rho(h) / \gamma(0)$ is the auto covariance function.

Cox and Miller describe a class of such stationary processes which might prove useful in describing subjects' response sequences. Let $X_{(n)}$ be a discrete time series. $Z_{(n)}$ be a series of uncorrelated random variables such that $E\left(Z_{n}\right)=0$ and $\operatorname{Var}\left(Z_{n}\right)=\sigma_{z}$. We assume $E\left(X_{n}\right)=0$. In this case a finite moving average series $\left(X_{n}\right)$ is defined as the process

$$
x_{n}=a_{0} z_{n}+\cdots+a_{r} z_{n-r}
$$

If we introduce the further restriction that $\mathrm{Za}=1$ then ($a_{0} . . . a_{r}$) are the weighting constants.

$$
\begin{aligned}
& E\left(X_{n}\right)=0 \\
& \operatorname{Var}\left(X_{n}\right)=\left(a_{0}^{2}+\ldots a_{r}{ }^{2}\right) \sigma_{z}{ }^{2} \\
& \sum_{s=0}^{r-h} a_{s} a_{s+h} \sigma_{z}(\text { for } 0<h<r) \\
& 0 \quad(\text { for } h>r)
\end{aligned}
$$

If $\mathrm{ra}=1$ we could solve the above for the a^{\prime} and σ_{z}. An ith order autoregressive process is defined by the relation

$$
x_{n}=\lambda_{1} x_{n-1}+\cdots \lambda_{i} x_{n-i}+z_{n}
$$

Multiplying throughout by X_{n-1} we have

$$
x_{n} x_{n-1}=\lambda_{1} x_{n-1}^{2}+\ldots \lambda_{i} x_{n-1} x_{n-1}+z_{n} x_{n-1}
$$

and taking expectations

$$
r(1)=\lambda_{i} r(0)+\ldots \lambda_{i} r(n-1) \text { as }\left(X_{n-1} Z_{n}\right)=0
$$

Multiplying by X_{n-h} we have

$$
\gamma(h)=\lambda_{1} \gamma(h-1)+\ldots \lambda_{1} \gamma(h-1)
$$

and dividing by $\gamma(0)$

$$
p(h)=\lambda_{1} p(n-1)+\ldots+\lambda_{1} p(n-i)
$$

This gives a set of equations which can be solved for $\lambda_{1} \ldots \ldots \lambda_{1}$ from the autocorrelation coefficients. In the special case of the first order autoregressive process we see

$$
\begin{aligned}
& \rho(0)=\frac{\gamma(0)}{y(0)}=1 \\
& \rho(h)=\lambda_{2}^{h}
\end{aligned}
$$

A common modification mentioned by Cox and Miller is to have a random term superimposed at each trial e.g. an exror of observation. If $X_{(n)}$ is an ith order autoregressive precess we can produce (X_{n})

$$
Y_{n}=x_{n}+u_{n}
$$

where $E\left(U_{n}\right)=0$ and $\operatorname{Var}\left(U_{n}\right)=e_{u}$. Thus U_{n} is a series of uncorrelated random variables as

$$
c\left(Y_{n} Y_{n+h}\right)=c\left(X_{n} X_{n+h}\right)(h=12 \ldots)
$$

we still have

$$
\gamma(h)=\lambda_{1} \gamma(h-I) \ldots \lambda_{i} \gamma(h-i)
$$

and $\rho(h)=\lambda_{I} \rho(h-I)+\ldots+\lambda_{i} \rho(h-i)$
the only difference being

$$
\operatorname{Var}\left(V_{n}\right)=\sigma_{\lambda}^{2}+\sigma_{u}^{2}
$$

Now we have examined several ways of describing stationary discrete series which enable us later to describe the sorts of sequences of events existing in a detection or recognition experimental setup. Thus hopefully we have described at least one statistical technique capable of characterising the dependencies present in the experimental setup we are considering.

MATERIALS AND METHOD
(a) Preamble

Having reviewed the literature dealing with sequential dependencies it is now of interest to examine what data might most usefully describe this phenomenon. Of the possible paradigms the one most susceptible to dependencies is probably the Yes/No design. In this situation the subject is presented successively with one of two stimuli and each time required to state which stimulus was presented. It has been suggested by Tanner Atkinson and others (see previous section) that the subject compares what he hears on every trial with the image of the immediately preceding stimulus. This means that if feedback is not given errors will tend to be perpetuated where the same stimulus is presented following an error. Thus one might expect feedback to alter the sequential dependencies in this way. The effect of feedback can be studied where feedback is given all the time and when it is only given sometimes within the same session.

If the memory recognition process suggested by Atkinson et al. is correct one might expect that the time between successive presentations should affect the "accuracy of the image" of the stimuli on the immediately preceding trials. If correct this should have the effect of reducing the extent of the dependencies on each trial to the immediately preceding stimuli (although not necessarily the response on the inter-response dependencies). If the time between trials can be shown to be important it raises a further complication to the situation as the response latencies are subject-controlled. Thus the times between the stimuli are variable and this may interact with other experimental variables, for example if feedback is present the subject may take longer between trials as he has no information to process or, alternatively, if the a priori stimulus probabilities are unequal then one might expect differential latencies to each of the stimuli which could have quite complicated effects on the dependencies present. That this is quite likely to happen is suggested by the work in reaction time experiments.

One way of reducing the dependencies might be to present subjects with one of the stimuli before each trial. This should make the "image" of the previous stimuli less important and could remove the effect of feedback. Apart from any interference with the subject memory process of previous trials it also provides a constant stimulus for reference. The presentation of a supposed irrelevant noise, for example white noise in a signal recognition task between each trial, might enable one to study the interference effect without providing the constant standard.

In a rating experiment subjects might expect the sequential dependencies to be more complex and perhaps more pronounced. It would be interesting to examine their effects and compare them with those derived from a RTROC analysis of the data in a Yes/No situation.
(b) Experimental Method

The subjects who were students at the University of Stirling were all volunteers. If they participated in more than two sessions they were paid at the rate of 6/- (30p) per session. Each session lasted approximately for an hour. Two subjects who agreed to participate in one of the longer experiments (18 sessions) stopped attending before having completed ten sessions. They were not paid and their data is not included in the analysis.

In all sessions subjects were allowed to familiarise themselves with the signals, the response box and the response signal sequence by performing 100 practice trials with feedback before the experimental session proper started. They were also told under what conditions they would be run i.e. given information about the stimulus probability and the occurrence of feedback, but nothing about the purpose of the experiments for fear that this might influence their performance. A typical set of instructions to a subject in a recognition task without feedback was as below.
"This is an experiment in signal recognition and you will be presented successively with one of two tones. Your job is to tell me which one of the two occurred on each trial.

Initially in order that you can learn the tones you will be told which of the tones has appeared later it will be left to you to decide which tone has been presented. If you put the earphones on and press either of the two buttons in front of you you should hear a tone after a short delay. Now if you press either response button in front of you it will activate either light 1 or light 2 depending on which of the stimulus was presented. After a delay another stimulus will occur and again you should respond but this time press the button corresponding to the tone you think was presented. This cycling will continue for several trials to enable you to familiarise yourself with the experimental task.

After this the experiment proper will begin. Your task is then exactly the same as the practice one but this time the light will not work. That is to say, you will be given no information as to which stimulus has occurred on each trial. Each of the two signals is equally likely to occur on each trial and there are no sequences or patterns in the presentation as the order has been generated by a randomising procedure on a computer. After a few minutes I shall stop you to see if you fully understand the task. Have you any questions?"

These instructions were written out on a piece of paper and the experimenter attempted as far as possible to stick to a standard wording.
(c)The experimental design

The subjects were required to perform 100 practice trials prion to each session in the hope of reducing the amount of learning present during the session. In the session proper they performed 500 (in the first experiment) or 740 (in subsequent experiments) trials. Each trial consisted of the presentation of a stimulus to which the subject responded. This response could cause either feedback or a constant stimulus or both to be produced and always resulted in the presentation of the next stimulus (see diagram)


```
4500 or'2,000mS
41,000 or 2,500mS 
```

On each trial the stimulus response latency and presence or absence of feedback was recorded on paper tape. This raw data was subsequently fed into the computer and stored on magnetic tape. All the analyses were performed calling data from the magnetic tape.

The experiments

(1)
(a) In this experiment 15 subjects performed for one session each. They were given a signal recognition task in which the stimuli were two tones one of 1000 cycles per sec. and one of 1010 cycles per second. They were randomly assigned to one of three conditions in which the a priori stimulus probabilities was . $25, .5$ and .75. In this experiment no feedback was given.
(b) This was followed by running 10 subjects for one session each in a signal detection task with a priori signal probability . 5 . This experiment was really a pilot one and was conducted while some of the control equipment used in subsequent experiments was still under development.
(2) Here five subjects performed 18 experimental sessions. The first two of which attempted rather unsuccessfully in the event using the method of constant stimuli to determine the stimulus that the subject could respond to correctly about 75% of the time. This was to reduce the colossal individual differences between subjects.
(a) The order of sessions was randomised. All subjects performed the recognition and detection task at three levels of stimulus probability (.25, .5 and .75), and with the presence
and absence of feedback, making twelve sessions in all.
(b) Also randomised within these sessions subjects performed the above task at the . 5 stimulus probability level with a burst of white noise being presented to the subject prior to each stimulus. This data therefore gave two different designs some of it common to both (the main effects in the first one being task stimulus probability and feedback and in the second task presence or absence of white noise and presence or absence of feedback).
(3) Here five subjects (different ones from the last experiment) performed in 19 experimental sessions. The task was a detection one in which the a priori stimulus probability was set at . 5 . Each subject performed the task with 100%, 50% and 0% feedback. In the 50% feedback condition feedback was given randomly throughout the session. The task involved three levels of difficulty again chosen on the basis of the subject's performance to a constant stimulus psychophysical task on the first two sessions and at two levels of delay before the presentation of the stimulus following a response. This made 18 conditions in all the order of which was randomised. In the 50% feedback condition the occurrence of feedback was randomised within the session. Again the first two sessions were attempts to obtain psychometric functions for the subjects to determine stimuli they would get correct 60% and 85% of the time. In the very easy condition the stimuli were set so far apart that the difficulty of the task was similar to that in a choice reaction time experiment.
(4) In this experiment a detection task with a priori signal probability of .5 was used. 15 subjects were allocated to each of three experimental conditions, $100 \%, 50 \%$ and 0% feedback with short delay. The difference in this case was that subjects were asked to respond on a 5 point scale which stimulus they thought had occurred. The responses were labelled as sure signal, think signal, do not know, think noise, sure noise.

A summary of these experiments is given in the table below.

$$
\begin{aligned}
& \text { No Sessions } \\
& \begin{array}{l}
\stackrel{H}{0} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array} \\
& \stackrel{\sim}{\sim} \text { ~ } \sim \text { ~ } \\
& \text { - ツ } \\
& \text { - 山 の } \\
& \text { ค ค } \\
& \text { 웅 ค • } \\
& A \because \circ \\
& \text { - } \stackrel{\bullet}{0} \text { O } \\
& \text { 응日ル }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 온 }
\end{aligned}
$$

$$
\begin{aligned}
& 0
\end{aligned}
$$

$$
\begin{aligned}
& \underset{-1}{\circ} \text { O }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 风 ○ ロ } \\
& \text { ๙ ํ. }
\end{aligned}
$$

LAB IN WHICH THE EXPERIMENTS

(d) Experimental layout

The experiment was conducted in a laboratory designed for communications experiments. The plan of the room is given below (figure 1). The cubicles in which the subjects were seated were semi-soundproof. The control equipment was placed in the centre of the laboratory as it could not be placed in another cubicle for reasons of temperature control. The noise from the paper tape punch was just audible to the subjects. The ambient sound level was 29 db in the cubicle and 33 db in the lab.

(e) Apparatus

Basically the equipment consisted of four audio sources:- two signal generators (Muirhead 205A) and two white noise generators (Dawes 419C), a paper tape reader (GNT24), a 6-digit timer counter (Racal 835), a data transfer unit (hereafter referred to as DTU) (Solatron) a 80-character/second paper tape punch (Facit), a response box and control logic. The signals were standardised using a frequency meter (Racal 9520) and a valve sensitive voltmeter (TF 2600).

The cycle of operations was initiated by a response which is stored and sends a signal to the DTU which stops the timer counter (clock), inputs all the information on its register and outputs it on paper tape via the punch. This signal also initiates a delay which produces a signal from the reader to read a character and advance. Depending on which character has been read one of two audio outputs is presented to the subject (see figure 2).

Different aspects of the control logic will now be examined in more detail.

1. Stimulus control (see figure 3)

When a subject responds this starts a delayed unit which after some time (the size of the delay was an experimental variable) produces a signal which reads in advance of the paper tape reader. The character read is then stored and depending on which of the two used in the experiment it was activates one of two audio channels controlled by an analogue switch and a timer set at 100 milliseconds. While the audio signals contain no white noise, i.e. in the recognition experiment, zero detectors were used to ensure that both signals started in phase. These give a logic signal one when there is an input which is audio and has zero phase.

Record data system
Here it may be useful to explain the function of the DTU. This has nine binary coded decimal (BCD) i. e. 8-4-2-1 codes decodes as input. On receiving a sample instruction the DTU outputs a signal which stops the clock at its next count and dumps the current content into the paper tape punch in two words, one of six decades and one of four. The DTU and the punch were supplied as a package from the manufacturers and no interfacing was required. The Racal timer which was the experimental clock was supplied with the BCD output.

Figure 4 shows the recording system and noise control logic. A signal from the response box sends a sample signal to the DTU which stops the clock and samples its current inputs. The inputs to the DTU are
(1) the content of the clock - word one - six decades
(2) the response (the BCD conversion logic is not shown)
word two - decade two
(3) the state of the reader's store - word two decade three
(4) whether feedback is present on not - word two decade one.

After a short delay provision was made to present a burst of white noise to the subject (see experiment 2) after a longer delay a signal was given to the tape reader to read, advance and channel input to the DTU.

I/P O/P
\rightarrow WORD 1 \rightarrow 1-6

systero
FEC゙OFKDTM\&

$\begin{aligned} & \text { READER } \\ & \text { STORE }\end{aligned} \longrightarrow$ WORD 2

DATA FORMAT

	WORD 2	LF

3 DECADE BCD
STIMULUS
RESPONSE
FEEDBACK
OUfer
TIME

Feedback system (see figure 5)
Here a trigger pulse from the response line (see figure 5) is gated with a free running astable. When the astable is in one state the response is able to produce feedback while in the other state it is not because of the AND gate. The appropriate feedback light is selected by gating the feedback pulse from the output from the reader store.

The signals were subject to some drift due to temperature and because of this stimulus frequency and intensity values were checked before and after each session. Providing the equipment had been switched on for two hours prior to the experiment any drift was below the level that could be detected by a human subject. The frequency drift was of the order of + or - .l cycles per second. The intensities were checked on a valve sensitive voltmeter. This means that the intensity cannot be quoted in absolute units however the drift appeared to be small relative to the differential threshold.

FEEDBACK SYSTEM

RESULTS

Introduction
The computation following the experiments described above can be broken down into roughly three major headings. The first is descriptive, the second estimation of detection and recognition models, and the third simulation.

The descriptive section involves the calculation of summary statistics from the data and analyses of variance on the summary statistics to see if the experimental conditions had any effect on that aspect of the data. Most of the procedures used in this section were incorporated in a program which was given the name OVERALL.

The second section estimated the parameters of five different detection models for each session and for each session given the state on the immediately preceding and the immedately preceding two trials. Another program detemined whether the parameters were affected by any of the experimental conditions or whether the dependence of the parameters on the preceding trials were affected by the experimental conditions. The programe in this section were called ESTMMATE and SEST.

In the final section program calleg SIMLUC simulated experimental data with diffenent degrees of dependence, depending on the model used to measure the inter-trial dependence. The procedures from ESTIMATE weme then applied to the simulated data. It was therefore possible to measure the effect the dependencies had on the detection and necognition models. In panticular the sampling distributions of the estimates of the model's parantens were examined to see how they companed with the same sumpling distmibutions when mome dependencies existed in the deate.

RESULTS

Introduction

The computation following the experiments described above can be broken down into roughly three major headings. The first is descriptive, the second estimation of detection and recognition models, and the third simulation.

The descriptive section involves the calculation of summary statistics from the data and analyses of variance on the summary statistics to see if the experimental conditions had any effect on that aspect of the data. Most of the procedures used in this section were incorporated in a program which was given the name OVERALL.

The second section estimated the parameters of five different detection models for each session and for each session given the state on the immediately preceding and the immediately preceding two trials. Another program determined whether the parameters were affected by any of the experimental conditions or whether the dependence of the parameters on the preceding trials were affected by the experimental conditions. The programe in this section were called ESTIMATE and SEST.

In the final section a program called SIMLUC simulated experimental data with different degrees of dependence, depending on the model used to measure the inter-trial dependence. The procedures from ESTIMATE were then applied to the simulated data. It was therefore possible to measure the effect the dependencies had on the detection and recognition models. In particular the sampling distributions of the estimates of the model's parameters were examined to see how they compared with the same sampling distributions when more dependencies existed in the data.

Descriptive Results

The first thing a researcher should do with a set of data is to examine the raw data rather than fit preconceived models. This prevents one from ignoring important though unexpected aspects of the data. A print-out of all the data corrected in all the experiments was obtained. The first 740 numbers are latencies of each of the trials in one particular session. The next 740 are the stimuli presented while the next indicate the responses made to the stimuli and the final 740 numbers indicate the presence or absence of feedback. As there were 185 experimental sessions similar to the above and 25 more on which only 500 trials were given a print-out of all the raw data would be far too large to include even in an appendix. The raw data, however, still exists in this form on four I.B.M. compatible magnetic tapes.

Let us consider the analysis of the experiments as output by the OVERALL program.
(a) Tests for Stationar.ity

One of the first things to be tested was whether a subject's performance had remained constant throughout each session. The data was grouped into five equal sections and the number of correct responses in successive blocks of ten trials was obtained. An analysis of variance was then performed on this data and a value of F obtained for each session. The table below gives the number of wrong responses in successive blocks of 100 trials for each of the 25 sessions of experiment 1 , together with the F value testing the stationarity assumption. Out of 25 sessions only four showed significant amounts of non-stationarity on the F test at the . 05 level. A similar analysis was performed on the number of Rl responses in each of the five successive blocks of trials. A significant F in this case would imply some change in the bias of the subject throughout the experimental session. The table giving the F values calculated for each experimental session is given below. Also included are F values testing the stationarity of the sequences of latencies generated by each subject on each trial. Each session was broken down into five equal parts and an analysis of variance performed on the latencies generated in each of the parts to see whether the trial number had a significant effect on the latencies generated by the subjects. If, for example, a subject had got progressively faster throughout the session then this would have resulted in a significant F value. This process was repeated after the first 100 trials had been discarded and again after the first 200 trials had been discarded to eliminate the possibility of early learning.

We can conclude from the above table that by far the greatest indication of non-stationarity lies in the latency sequences and that even removing the first few hundred trials there still remains a significant degree of non-stationarity. Little evidence of non-stationarity was found in the analysis of correct wrong sequences although

Number of X responses in successive blocks of 100 trials
Condition Subject 1-100 101-200 201-300 301-400 401-500 F

	1	28	20	12	22	25	1.3
$.25 R$	2	41	41	36	44	40	.3
	3	43	22	34	33	27	2.3
	4	49	70	25	57	63	4.8
	5	33	33	41	51	44	1.4
	6	36	32	45	44	39	.9
	7	78	56	52	50	36	44
	7	15	18	19	16	9	.6
	8	50	46	50	38	46	1.1
	9	50	45	45	46	33	1.4

	11	36	37	44	48	50	1.1
$.75 R$	12	45	45	53	41	31	1.7
	13	14	12	11	13	12	.1
	14	25	24	11	14	22	1.6
	15	24	18	25	14	21	1.3
	16	12	15	13	11	17	.5
	17	48	56	53	53	48	.6
	18	19	9	9	13	4	2.9
	19	47	49	27	24	12	10.7
	20	39	48	50	39	43	.8
	21	53	48	38	29	32	4.2
	22	39	44	41	57	41	2.0
	23	40	39	45	32	26	1.7
	24	26	28	20	17	16	1.1
	25	54	42	40	46	35	1.2

df

F values tasting stationarity of error and latency.

 Condition Subject Errors Response L L - 100| | 1 | 1.3 | 1.7 | 8.5 | . 7 | . 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | . 3 | 2.0 | 45.0 | 21.5 | 24.6 |
| . 288 | 3 | 2,3 | 2.9 | 25.6 | 6.1 | 3.9 |
| | 4 | 4.8 | 2.8 | 20.5 | 3.3 | 2.1 |
| | 5 | 1.4 | 1.0 | 24.6 | 14.7 | 6.8 |
| : | 6 | . 9 | 5.2 | 3.0 | 1.3 | 2.0 |
| | 7 | 1.7 | 1.3 | 4E. 3 | 6.3 | 4.0 |
| . 58 | 8 | . 6 | . 7 | 7.5 | 1.4 | 1.6 |
| | 9 | 1.1 | . 6 | 2.6 | 3.5 | 2.2 |
| | 10 | 1.4 | 5.4 | 28.0 | 13.0 | 5.6 |
| | 11 | 1.2 | 1.1 | 8.8 | 11.3 | 6.6 |
| | 12 | 1.7 | 2.3 | 16.0 | 1.1 | 1.1 |
| . 75 R | 13 | . 1 | 1.2 | 1.1 | 22.2 | 13.0 |
| | 14 | 2.6 | 4.4 | 11.1 | 15.5 | 10.6 |
| | 15 | 1.3 | . 6 | 20.7 | 6.0 | 5.6 |

16	.5	1.2	1.0	5.6	7.1
17	.6	2.6	2.8	2.0	3.8
18	2.9	.7	1.9	1.6	1.8
19	10.7	3.3	3.2	3.8	3.6
20	.8	.7	7.3	4.5	3.6
21	4.2	2.0	1.3	15.6	3.0
22	2.0	2.8	5.3	12.8	17.0
23	1.7	.9	.5	1.2	2.8
24	2.2	2.0	6.8	6.4	2.6
25	1.2	.6	5.8	.8	1.0
	$4 / 45$	$4 / 45$	$4 / 495$	$4 / 395$	$4 / 295$

from subsequent analysis it will be found that many subjects were not discriminating very well between the stimuli. In these cases the correct wrong sequences should approximate to random binary sequences. That significant response sequences should be obtained may be in part due to subjects responding equally to the two stimuli presented as the session wears on. The subject is informed that stimulus 1 appears 75% of the time and stimulus 225% of the time. However, no feedback is given in the experiments and as time wears on the effect of the initial instruction may decrease.

Turning again to the latency data the table below gives the mean latency in the five equal parts of the session for each subject. A Kruskal Wallis non-parametric analysis of variance was performed on this data and a significant value of H equal to 45.8 was obtained on the differences between the five blocks. However, when the first block was ignored and the analysis repeated on the last four this H value was no longer significant. Thus, it appears that in the first l00 trials subjects take longer to respond than in subsequent trials but that the changes in latency with trial number which occur after the first 100 trials vary with the different subjects and there appears to be no consistent pattern of increasing or decreasing latencies.

Thus, although we have shown that there are significant differences between blocks even if the first 200 trials are ignored these differences are not consistent across sessions. Looking at data from all the sessions (i.e. different subjects) the only significant consistency in the latencies for the different blocks is that the first 100 trials had longer latencies.

The same type of analysis was performed on the subsequent experiments. A summary of all these analyses is presented in the table below which gives the number of significant F ratios for each experiment for each type of sequence. In the case of Experiment 4 where the subject had five responses available to him in order to make the results

Mean Latencies for Experiment 1 (seconds).
Condition Session Block 1 Block 2 Block 3 Block 4 Block 5

	1	. 95	. 64	. 62	. 69	. 81
	2	1.58	1.12	1.05	. 75	. 64
. 258	3	3.49	. 86	1.06	1.36	1.46
	4	1.87	. 52	. 69	. 72	. 98
	5	1.08	. 96	. 85	. 51	. 71
	6	1.38	. 87	. 90	. 84	. 94
	7	1.90	. 93	1.22	. 99	1.03
. 5 R	8	1.15	. 73	. 75	. 71	. 69
	9	1.81	. 85	1.14	. 85	. 89
	10	. 99	. 73	. 70	. 77	. 72
	11	1.29	. 64	.49	.41	. 87
	12	1.29	. 67	. 54	. 59	. 74
. 75 R	13	3.08	. 47	. 71	. 53	. 52
	14	3.03	. 80	. 76	. 70	. 57
	25	1.12	. 80	. 82	. 79	. 70
	16	1.23	. 75	. 81	. 75	. 70
	17	2.50	1.22	1.07	1.08	1.39
	18	. 87	. 58	. 59	. 66	. 68
	19	1.41	1.19	1.03	1.16	. 89
.5D	20	2.09	1.13	1.17	1.14	1.00
	21	3.46	2.01	1.70	1.48	1.44
	22	1.71	1.69	1.21	1.59	2.07
	23	1.18	1.42	. 83	. 92	1.19
	24	1.88	. 74	. 88	. 79	. 71
	25	2.29	. 98	1.26	. 72	. 84

No. of F values significant at the .05 level (see appendix).

Experiment No.sess. Correct W Response L L-100 L-200

1	25	4	8	20	17	17
2	80	17	13	43	53	55
3	90	19	11	44	71	55
4	15	3	5	8	11	10

Expeniment 1
Distributions of latencíes
Y axis frequency 0-300
X axis latency $0-5$ sec

Experiment 4
Distributions of latencies
Y axis Irequency $0-300$
X axis Latency $0-5$ sec
comparable response 1 and 2 was treated as response 1 and 3 , 4 and 5 as being response 2. Approximately the same amount of non-stationarity appears in the correct wrong sequences in all of the experiments. In Experiments 1 and 4 where naive subjects were used the amount of non-stationality in the response sequences appears to be somewhat greater than for the practice subjects. Perhaps the most unusual finding is that the number of significant non-stationary latency sequences are increased if the first hundred trials is ignored in experiments 2, 3 and 4. This result seems very strange when we consider the evidence presented for Experiment 1 that in the first 100 trials the subjects are taking significantly longer than in the later part of the experiment. This finding appears replicated in Experiments 2, 3 and 4. The result can be more easily understood when one examines the summary tables of each of the individual analysis of variance. It appears here that the within mean square is greater in the total analysis than when the first 100 trials have been dropped. In Experiment 3, for example, the mean square within groups for the analysis ignoring the first 100 trials is less than the equivalent statistic for the analysis over all the data in 69 out of 90 sessions. This indicates that during the first trial not only is there a longer main latency but there is also a greater variability in the latencies produced by the subject. This greater within block variance appears to have the effect of reducing the number of significant between block effects, thereby accounting for the proportionately fewer non-stationary sequences including the first 100 trials than when the first 100 trials has been dropped.

Analyses of variance were performed on these F statistics to test whether the experimental conditions manipulated in the different experiments had any effect on the degree of non-stationarity.

(b) Information Theory Statistics

In an attempt to study the nature of the interrelation of the three measures taken at each trial, namely, stimulus, response and latency, the latencies were divided into quartiles and an information theory analysis was undertaken. This meant the calculation of the average information at each trial given by the response, stimulus and latency, together with the shared information between each pair of these measures, and finally the shared information between all of these measures. The results are shown in the accompanying table.

These results may be more easily comprehended by averaging the information over sessions. A diagram is drawn for each of the experimental conditions used in the first session. This is a diagram of overlapping circles where each circle represents one of the measures and the numbers in the shared areas represent the shared information between these measures. The value of the information theory analysis of the data is that it shows the proportion of information in the measure that is shared between it and another.

The same analysis was performed on the results of Experiments 2, 3 and 4. A detailed table of the average information contained on each trial by the various measures was circulated as before. There is little point in producing all that information here, however. It will probably suffice to reproduce the diagrams giving the average information contained in the measures stimulus, response and latency, and how it is shared between them for each of the subsequent experiments. In Experiment 2 the main analysis was performed on the data including the bursts and the data not including bursts, accordingly the average information is given for each of these two analyses (see section on effect of experimental variables). The only comments that may be made from these diagrams is that in experiments 2 and 3 the subject's performance is much better than on experiments 1 and 4 where the subjects were naive. This can be seen from the

Average Information Experiment No. I

Session Latency(L) Stimulus(S) Response(R) LS LR SR LSR

1	2.00	. 83	. 98	. 03	. 08	. 24	. 00
2	2.00	. 79	. 93	. 00	. 00	. 00	. 00
3	2.00	. 84	. 90	. 00	. 04	. 04	-. 01
4	2.00	. 77	. 89	. 02	. 03	-. 03	-. 03
5	2.00	. 80	. 98	. 01	. 00	. 01	. 00
6	2.00	1.00	. 99	. 00	. 01	. 03	. 00
7	2.00	1.00	1.00	. 01	. 01	. 00	. 00
8	2.00	1.00	. 98	. 02	. 02	. 38	-. 01
9	2.00	1.00	. 90	. 00	. 01	. 01	-. 01
10	2.00	. 99	. 99	. 00	. 01	. 01	-. 01
11	2.00	. 80	. 98	. 00	. 07	. 00	-. 01
12	2.00	. 85	1.00	. 00	. 02	. 02	-. 01
13	2.00	. 78	. 52	. 07	. 16	. 25	. 07
14	2.00	. 86	. 82	. 01	. 01	. 18	-. 04
15	2.00	. 77	. 93	. 00	. 01	. 20	-. 03
16	2.00	1.00	. 99	. 08	. 09	. 43	. 02
17	2.00	1.00	. 77	. 00	. 01	. 00	. 00
18	2.00	1.00	1.00	. 01	. 01	. 51	-. 02
19	2.00	1.00	1.00	. 01	. 01	. 10	-. 03
20	2.00	1.00	. 99	. 00	. 01	. 01	. 00
21	2.00	. 99	1.00	. 01	. 00	. 03	-. 03
22	2.00	1.00	. 93	. 00	. 01	. 01	. 00
23	2.00	1.00	. 97	. 00	. 05	. 06	-. 01
24	2.00	1.00	1.00	. 05	. 04	. 25	. 00
25	2.00	1.00	1.00	. 00	. 00	. 01	-. 02

ecognition Stimulus pobability . 25

R
Recognition Stimulus Probability . 5

S

Recognition Stimulus
Probability . 5

R
Experiment 2 (-gnoring Bunst Data)

R
Experiment 2
(ignoring data where a prioni stimulus probability \neq.5)

L

Experiment 4
amount of shared information between the S and R measures. It also appears that the amount of information shared between the response and the latency is greater than that between the stimulus and the latency. This is what we would expect as both response and latency are subject controlled.

(c) $\frac{x^{2} \text { analysis of dependencies between stimulus, response }}{\text { and latencies }}$

An equivalent χ^{2} analysis was also performed on the same data and the values of χ^{2} on the independence of the different sequence measures are given in the table below.

From the above data we can see that in eight of the sessions there is a significant relationship between the stimulus and the latency. On 14 of the sessions there is a significant relationship between the response and the latency and on 21 of the sessions there is a significant relationship between stimulus and response. On 11 of the sessions there is a significant interaction between all three measures. Thus, we can conclude that four subjects showed no significant relationship between stimulus and response and were therefore not discriminating significantly better than chance. On examining the results for these four subjects the only significant relationship is one significant χ^{2} between response and time. These results agree with the information theory statistics suggesting that the biggest relation is between stimulus and response followed by between response and latency followed by that between stimulus and latency. In the information analysis the stimulus by response by latency information statistic was a composite of two factors, (I) the shared information between the three measures, and (2) the interaction term. There would be a significant interaction if, say, subjects responded faster when the responses were correct than when the responses were wrong. An examination of the histograms of latencies of correct and wrong responses revealed that in fact such a relation existed. The same analysis was repeated on the data from Experiments 2,3 and 4 , and the number of significant x^{2} in each of the conditions is given in the table below. This table reveals that the pattern is similar in all the different experiments. In Experiment 2 one subject did not discriminate significantly on eight of the sessions. In Experiment 3 in only one session did a"subject not discriminate significantly. The relationship between the
response and latency appears greater than that between the stimulus and the latency as one might expect, and both these dependencies appear greater in Experiment 2 where a priori stimulus probability was an experimental variable, than in Experiment 3 where the a priori stimulus probability was . 5 throughout the experiment. The significant SRL χ^{2} is presumably an indication that correct responses have a shorter latency than incorrect ones.

Condition	Subject	LS	LR	SR	LSR
	1.	21.2	54.4	157.7	9.76
	2	2.00	2.9	. 7	1.17
. 25 R	3	4.7	28.4	28.5	6.38
	4	3.1	10.5	19.0	17.30
	5	5.9	1.6	7.7	2.05
	6	. 8	8.4	23.6	1.35
	7	4.1	5.9	1.2	2.36
. 5 R	8	13.8	11.6	240.1	4.82
	9	2.9	8.2	3.9	8.86
	10	1.6	4.2	8.7	9.10
	11	1.8	33.3	2.7	6.80
	12	2.4	11.2	14.6	7.43
. 75 R	13	54.1	119.4	198.1	259.48
	14	4.1	3.9	132.2	11.61
	15	. 3	3.5	142.6	14.73
	16	54.8	57.6	268.9	9.27
	17	3.0	3.7	. 7	1.75
	18	8.3	10.2	310.4	7.69
	19	8.4	7.5	69.0	18.70
. 5 D	20	2.9	6.6	7.2	1.01
	21	8.2	. 8	21.6	20.54
	22	2.6	5.4	6.1	. 12
	23	1.1	35.2	43.0	5.59
	24	33.1	24.6	165.8	24.98
	25	2.0	4.1	8.8	11.18
	df.	3	3	1	3

Number of Significant x^{2}

Experiment	No.Sessions.	SR	RL	SL	SRL
1	25	2.1	14	8	11
2	80	72	61	47	43
3	90	89	50	17	28
4	15	12	9	7	8
	df	1.	3	3	3

(a) Manifest Markov Processes

As mentioned in the Introduction the inter-trial dependences can be measured by fitting Markov processes of different orders to the stimulus, response sequences. The depth of the dependences are measured by the highest Markov process necessary to describe the sequence. As χ^{2} statistic tests the hypothesis of a nth order Markov process versus a $\mathrm{n}+\mathrm{l}$ th or higher order. Owing to the data available it was only practical to test the hypothesis of a zero versus a first order dependence and a first order dependence versus a second or higher order dependence. To test the hypothesis of a second versus a third order dependence would involve determining the relative frequency of four successive events. Even if the probability of occurrence of the least likely event was .I then the probability of four successive of these events would be of the order . O001. This could be expected to occur once in a session of ten thousand trials and to obtain an estimate of this probability accurately should therefore involve several tends of thousand trials. To run a subject in a session lasting this length of time is really impractical. Such a process would have to be estimated by averaging over sessions.

In the analysis of the first experiment there appears to be a great deal of inter-trial dependence in the sequences. All of the latency data when discretised into four quartiles shows a significant Markov dependency higher than first order. While this is true in all but one of the SR response sequences this appears mainly attributable to dependences in the response sequences rather than in the correct wrong sequences. The Markov analysis was performed on the latencies discretised into quartiles, the $S R$ sequences, the R sequences, and the correct wrong sequences. The stimulus sequences from a zero order Markov process as they were generated by a pseudo random number generator which was tested for randomness using various tests such as runs test, χ^{2} test, autocorrelations, etc. The number of significant x^{2} is shown in the table below. The suffixes indicate the hypothesis being tested, for example, R2 indicates
X^{2} testing and zero and first order dependences

Condition	Session	Latency 1	Latency 2	SR 1	SR 2	Response 1	Response		Correct Wrong 1	Correct Wrong 2
. 25 R	1	61	41	38	34	9	4		18	3
	2	278	102	32	30	25	1		1	2
	3	188	84	32	'882	25	2	-	- 3 -	3
	4	303	87	159	. 94	125	37		55	10
	5	190	125	211	45	201	2		21	5
. 5R	6	36	37	38	61	61	42^{\prime}		5 .	4
	7	139	74	46	54	34	15		4	1
	8	77	45	101	19	19	2		30	1
	9	168	74	221	29.	- 212	2	-	, 1 .	2
	10	119	54	8	44	0	9		1	8
. 75 R	11	196	73	29	35	23	8		2	2
	12	149	113	84	63^{\prime}	75	12	-	- 8	14
	13	118	57	18	25	3	1		1	8
	14	128	86	40	39	0	8		4	6
	15	119	72	40	29	11	1		3	1

$\stackrel{\bullet}{0}$

 $\stackrel{\oplus}{\infty}$
N
CH

N
Latency
Latency 1

4
?

No. Sig χ^{2} testing Ist and 2nd order Dependence Experiment 1.

$$
\begin{array}{llllllll}
\mathrm{L}_{1} & \mathrm{~L}_{2} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{SR}_{1} & \mathrm{SR}_{2}
\end{array}
$$

No. Sigg $(.05$ Total 24 21	18	11	9	5	21	8		
No.	25	25	25	25	25	25	25	25

No. Sig χ^{2} testing lst and 2nd order dependence Experiment 2.

	L_{1}	$\mathrm{~L}_{2}$	R_{1}	R_{2}	C_{1}	C_{2}	SR_{1}	SR_{2}
$\mathrm{~S}_{1}$	14	14	14	10	6	5	15	7
$\mathrm{~S}_{2}$	14	5	4	2	4	1	8	4
$\mathrm{~S}_{3}$	15	7	7	4	5	6	9	6
$\mathrm{~S}_{4}$	6	5	2	1	1	1	1	0
$\mathrm{~S}_{5}$	16	11	5	3	2	2	3	5
No. 65	42	32	20	18	15	36	22	
Nig (.05)			80	80	80	80	80	80
Total 80 No.	80	80	80					

No. Sig X^{2} testing lst and 2nd order dependence SEE APPENDCXB Experiment 3.
$\begin{array}{llllllll}\mathrm{L}_{1} & \mathrm{~L}_{2} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{SR}_{1} & \mathrm{SR}_{2}\end{array}$

S_{1}	17	8	5	5	1	1	8	-
S_{2}	17	14	5	2	1	1	8	-
S_{3}	17	13	3	0	4	1	5	1
$\mathrm{~S}_{4}$	18	14	3	2	4	2	7	2
$\mathrm{~S}_{5}$	17	9	4	3	5	3	10	3
No. Sig (.O5)	86	58	20	12	15	8	38	6
Total No.	90	90	90	90	90	90	90	90

No. Sig x^{2} testing lst and 2nd order dependence Experiment 4.

$$
\begin{array}{llllllll}
\mathrm{L}_{1} & \mathrm{~L}_{2} & \mathrm{R}_{1} & \mathrm{R}_{2} & \mathrm{C}_{1} & \mathrm{C}_{2} & \mathrm{SR}_{1} & \mathrm{SR}_{2}
\end{array}
$$

No. Sig								
(-05)	13	9	7	5	2	1	1	3

Total
$\begin{array}{llllllllll}\text { No. } & 15 & 15 & 15 & 15 & 15 & 15 & 15 & 15\end{array}$
x^{2} testing the hypothesis of a zero versus a second or higher order process on the 25 response sequences. We can thus see that the greatest dependencies exist in the latencies and that 20 of the $S R$ sequences are first order dependent while 8 are second order or higher dependent. It also appears that the observed dependence in the $S R$ sequences are attributable to dependencies in the response rather than in the correct wrong although significant dependencies do exist even in the correct wrong sequences.

The same analysis was performed on the data obtained in Experiments 2, 3 and 4. The following tables show the number of significant x^{2} obtained in each of the experiments. For Experiments 2 and 3 these are displayed for each subject as well as over all sessions. From this it appears that there are marked differences between the dependencies produced by different subjects. The pattern that emerges is fairly consistent through the experiment. The sequence of latencies is by far the most dependent although large numbers of the SR sequences also exhibit first order dependence. Only about 20\% of these sequences, however, show significant dependence of a second or greater order. We also find that the dependences that exist in the response sequences are greater than the dependences existing in the correct wrong sequences, although significant dependencies occur in both cases.
(b) Autocorrelations and autoregressive processes

Another method of characterizing the dependences was using autocorrelation. The first 20 autocorrelations were calculated for the latencies in each session and the results are shown graphically in the accompanying diagrams which plot autocorrelation against lag. Attempt to obtain similar diagrams for the response and correct wrong sequences used an estimate of the tetrachoric coefficient, namely, $r_{\cos \pi}$. Following the discussion on autoregression processes a first and second order regression analysis was undertaken on the autocorrelation coefficients where the latency data and the results are given in the table below. In some cases the multiple correlation coefficient on one variable is greater than when two variables are used. This appears self-contradictory. However, the analysis of one variable is based on a slightly different sampie. Thirty autocorrelations being used in the first analysis while only 29 were available for use in the second.

A similar analysis was performed on the sequences of responses and on the sequences of correct wrongs. Estimates of the autocorrelations were obtained and a regression analysis performed on these autocorrelation coefficients. The results of this analysis are given below.

As most of these multiple correlation coefficients are not perfect or anything like it we cannot really say that the sequences have adequately been described by the autoregressive process.

These statistics, however, do show up some of the features of the data, for example the dependencies in the latency sequences appear much greater than in the correct wrong sequences as we have seen already in the x^{2} analysis. This is hardly surprising since for at least part of the time some of the subjects are responding at little better than chance level. The subject is not discriminating the correct wrong sequence must be random by definition. On looking at

Subject	Condition	First order Analysis	Second order Analysis
2		. 93	93
3	. 25 R	. 07	. 26
4		. 60	. 66
5		. 84	. 86
6		. 26	. 30
7		.97	. 97
8	. 5 R	. 86	. 86
9		. 62	. 66
10		. 93	. 95
11		. 58	. 62
12		. 50	. 55
13	. 75 R	. 65	. 76
14		. 66	. 66
15	,	. 37	. 38
16		. 60	. 59
17		. 58	. 56
18		. 77	. 78
19		. 84	. 87
20	. 5D	. 46	. 54
21		. 64	. 73
22		. 21	. 34
23		.99	. 91
24		. 16	. 30
25		.70	. 70

Coefficients of Multiple Regression on Response and
Correct Wrong Data

Session	Condition	Resp lst Order Analysis	onse 2nd Order Analysis	Correc lst Order Analysis	t Wrong 2nd Order Analysis
1		. 55	. 59	. 39	. 40
2		. 42	. 44	. 16	. 52
3	. 25 R	. 69	. 67	. 02	. 13
4		. 96	. 96	. 87	. 87
5		. 89	. 89	. 54	. 61
6		. 62	. 67	. 30	. 45
7		. 84	. 85	. 27	. 29
8	. 5 R	. 60	. 61	. 56	. 57
9		. 97	. 97	. 16	. 27
10		. 47	. 42	. 15	. 20
11		. 45	. 45	. 56	. 57
12		. 94	. 94	. 46	. 51
13	. 75 R	. 36	. 42	. 21	. 25
14		. 19	. 20	. 22	. 32
15		. 41	. 42	. 29	. 29
16		.17	. 22	. 24	. 25
17		. 92	. 93	. 13	. 17
18		. 46	. 49	. 24	. 30
19		. 24	. 23	. 21	. 37
20	. 5D	. 79	. 81	. 32	. 34
21		. 18	. 34	. 28	. 30
22		. 66	. 73	. 26	. 32
23		. 86	. 86	. 22	.23
24		. 53	.56	. 35	. 35
25		. 90	. 91	. 39	. 40

the graphs of the autocorrelations it is clear that the autocorrelations are positive and decrease with order except in the response case where some subjects appear to show a negative relationship between responses differing by about ten trials. This suggests that they tend to maintain responding on the same button for five or six trials and then switch to responding on the other. While this effect is noticeable the size of it is very small.

Finally, the effect of the second order regression analysis, i.e. taking into consideration the two previous correlations, does not appear to affect the predictive value of the model except in perhaps a few cases of correct wrong sequences. Thus, the more complicated analysis did not explain very much more of the data. It could be seen from looking at the graphs of the autocorrelations that the autoregressive process was not likely to describe the data particularly well. We have shown this to be the case for the data in Experiment 1. Subsequent analyses were performed on Experiments 2, 3 and 4 and similar results were found. However, we shall confine ourselves here to including only the graphs of the autocorrelation for each session in each of the experiments from which it can be seen that consideration of the autoregressive process is not likely to prove very fruitful.

Experiment 1 i $E \in h 88$ for condition
Plot of Autocorrelations of latencies
Y axis autocorrelation 0-1
X axis lqg 1-20

Experiment 2
Plot of Autocorrelations of latencies
Y axis autoconrelation $0-1$
X axis $10^{\prime} 1-20$

Experiment 3
Plot of Autocorrelations of latencies

Y axis autocorrelation 0-1
X axis lag l-20

Experiment 1
Plot of Autocorrelations of
Correct Wrongs
Y axis autocorrelations 0-1
X axis lag l-20

EXPERIMENT 3
Plot of Autocorrelations of correct wrowas
 Y axis autocorr X axis lag $1-20$

Experiment 4
Plot of Autocorrelations of Correct Wrongs
Y axis autocorrelations 0-1
X axis lag 1-20

$+$

Experiment I
Plot of Autocorrelations of
Responses
Y axis autocorrelations 0-1
X axis lqg l-20

 (1)

Experiment 2
Plot of Autocorrelation of Responses

Experiment 3
Plot of Autocorrelations of Responses
Y axis autocorrelations 0-1
X axis lag 2-20

Experiment 4
Plot of Autocorrelations of Responses
Y axis autocorrelations 0-1
X axis lag 1-20

A number of analyses of the dependences using a latent Markov model as a base were undertaken (see Introduction). The two latent state Markov process was fitted to sequences of respknses and to sequences of correct wrong trials. This method of estimation is as given in the Introduction. The results of this analysis produced in certain cases values of parameters supposedly representing probabilities outwith the bounds of zero to one. When this occurred the program was made to substitute the probability of zero or one depending on which was nearest the estimate of that probability. The results, using the same terminology as in the Introduction, are given in the table below for the analysis of responses and correct wrong sequences.

As can be seen from thece results there are a number of occasions where impossible parameter values were obtained. In an attempt to provide an alternative method of fitting the model to the data a numerical hill-climbing procedure was adopted. From the initial estimation procedure values of parameters $M(1,1), M(2,2), Q(1,1)$ and $Q(2,2)$. From these values the other elements of the M and Q matrices and the values of the V matrix could be determined. With these values a χ^{2} measure of goodness of fit with the observed third order conditional probabilities was obtained. The four original parameters were then modified systematically by adding or subtracting an increment of .1 and after each transformation another χ^{2} goodness of fit statistic was determined and the parameter was changed back to its initial state. After this had been done to all the parameters the change which resulted in the greatest improvement in the goodness of fit statistic was adopted and the procedure was then repeated. The process was then continued until the x^{2} statistic did not improve after any of the transformations. The size of the increment added or subtracted from each of the parameters at each iteration was then changed from . I to . Ol and the process again repeated until no more improvement

 OMNTOOOOODMMONOOUOOOHOHOO OMNNTOOLOOGNOMOONOOONOOOO

WRDNG SEQUENCES
 Σ
NOOU寸OONHOOMOHOOOOUMODNMO
 MGOLOOONGOCNOOOOOOMNONNNO

 0

MoanNomoroorooongoomNtomm
2

EXPERIMENT NO 1
LATENT MARKOV ANALYSIS

NLONNNサOOONNTOOOMOOOLnTHOO

OMOOHOOMNOHTNOOON OOサNMOM Σ
oasinaronrbousogogwoogongin

$$
\text { SEQUENCES FROM EXPERIMENT } 1
$$

$$
\begin{aligned}
& \text { 근. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ○ }
\end{aligned}
$$

$$
\begin{aligned}
& \circ
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma
\end{aligned}
$$

N	0	0	\pm	\sim
\times	0	Γ		Γ

$\stackrel{\infty}{\wedge} \stackrel{\infty}{\perp} \stackrel{\wedge}{\sim}$

| ∞ | N | |
| :--- | :--- | :--- | :--- |
| \sim | \ddots | |

 -
 \begin{tabular}{llll}
 \circ \& 0 \& O

\hline \& -

\hline
\end{tabular}

 \(\begin{array}{llll}0 & 0 & 0 & 0 \\ -i & 0 & i & -i\end{array}\)

Σ

$\stackrel{N}{\times} \underset{\sim}{\sim} \stackrel{\infty}{ \pm} \underset{\sim}{\infty} \stackrel{m}{m}$
$\gg \stackrel{\sim}{\circ}$
$\begin{array}{llll}0 & 0 & 0 & 0 \\ -i & -i & \ddots & -i\end{array}$

σ
ヘ

$\begin{array}{llll}\infty & \infty & 0 & -1 \\ & 0 & -1 & \bullet\end{array}$

Σ

.82
.84
1.0
.76
Table continued.
in the value of x^{2} could be obtained. The output of this procedure is given in the table below. From the results it can be seen that this procedure has increased the goodness of fit of the model in the cases where the x^{2} values differed from zero. It should be noted that in this case the number of parameters is equal to the degrees of freedom for the x^{2} so that if the model fitted one should expect a χ^{2} value of zero. Combining the two estimation methods appears to lead to sensible estimates for the parameters.

The next stage was to develop an analysis of data involving the four observable states. This is to analyse the sequences of trials each trial being denoted by the stimulus and response which occurred at that time.

An analysis of such a sequence done as per the Introduction involves a solution of a quartic equation. A computer program was written to solve such an equation however the initial values obtained as estimates of the parameters included several imaginary solutions which were very difficult to interpret. An alternative approach therefore making use of more information was used in this case.

It proved possible here to use the information available about the stimulus sequence alone. The stimulus sequence was generated by simulating the independent zero order Markov process given the a priori stimulus probability values. As mentioned before this was done using a standard pseudo random number generator. If we denote the a priori probability stimulus one as STl and the a priori probability stimulus two as ST2 we can use the following equation for the response matrix Q.

$$
\begin{aligned}
& Q=\left(\begin{array}{llll}
x_{1} & \text { STI }-x_{1} & x_{3} & \text { ST2 }-x_{3} \\
x_{2} & \text { STI }-x_{2} & x_{4} & \text { ST2 }-x_{4}
\end{array}\right) \\
& M=\left(\begin{array}{ll}
M_{1} & I-M_{1} \\
I-M_{2} & M_{2}
\end{array}\right) \\
& V=\left(\begin{array}{ll}
V_{1} & 0 \\
0 & 1-V_{1}
\end{array}\right)
\end{aligned}
$$

We denote the observed transition probability matrix between time $T=1$ and time $T=2$ by $P(1,2)$ and between time $T=1$ and time $T=3$ as $P(1,3)$. We will also introduce the stratified matrix $P_{k(1,3 ; 2)}$ as being the matrix whose ijth elements are the probability of being in state i at time l and j at time 3 , while at time 2 being in state k. We also introduce X_{k} as being the diagonal matrix whose diagonal elements are the kth column of Q.

Thus $X_{1}=\left\{\begin{array}{ll}X_{1} & 0 \\ 0 & X_{2}\end{array} \quad\right.$ and $X_{2}= \begin{cases}\operatorname{STI}-X_{1} & 0 \\ 0 & \text { STI }-X_{2}\end{cases}$

$$
X_{3}=\left|\begin{array}{ll}
x_{3} & 0 \\
0 & x_{4}
\end{array}\right| \quad x_{4}=\left(\begin{array}{ll}
S T 2-X_{3} & 0 \\
0 & S T 2-X_{4}
\end{array}\right]
$$

We can now aake use of the theoretical relations mentioned
in the Introduction.
$P(1,2)=Q^{\prime} V M Q$
$P(1,3)=Q^{\prime} V M^{2} Q$
$P_{1}(1,3 ; 2)=Q^{\prime} \operatorname{VMX}_{1} M Q$
$P_{2}(1,3 ; 2)=Q^{\prime} V M X_{2} M Q$
$P_{3}(1,3 ; 2)=Q^{\prime} V_{M X} M_{3}$
$P_{4}(1,3 ; 2)=Q^{\prime} V M X X_{4} M Q$
Taking determinants we have

$$
\begin{aligned}
& \frac{P_{1}(1,3 ; 2)}{P(13)}=X_{1}=X_{1} X_{2} \\
& \frac{P_{2}(1,3 ; 2)}{P(13)}=x_{2}\left(\operatorname{ST} 1-X_{1}\right)\left(\operatorname{ST} 1-x_{2}\right)
\end{aligned}
$$

On rearranging the above we obtain the following quadratic equation

$$
x_{2}^{2}-\frac{\operatorname{sTl}^{2}+x_{1}-x_{2}}{\operatorname{STI}} x_{2}+x_{1}=0
$$

The two values of X_{1} and X_{2} are therefore the two rates of the above equation. A similar analysis involving the last two states gives the following equations:-

$$
\begin{aligned}
& \frac{P_{3}(1,3 ; 2)}{P(1,3)}=X_{3}=X_{3} X_{4} \\
& \frac{P_{4}(1,3 ; 2)}{P(1,3)}=X_{4}=\left(S T 2-X_{3}\right)\left(S T 2-X_{4}\right)
\end{aligned}
$$

And the quadratic equation

$$
x_{4}^{2}-\frac{\mathrm{ST} 2+\mathrm{X}_{3}-\mathrm{X}_{4}}{\mathrm{ST} 2} \mathrm{x}_{4}+\mathrm{X}_{3}
$$

The results of this analysis in no case produced estimates of all the probabilities within the range 0 to 1. The minimum χ^{2} procedure was therefore written analogous to the minimum χ^{2} procedure used in the latent state two observable response case. However, it was found that this procedure took too long to find a solution in order that it could be used on all the individual sessions. Unfortunately all that could be done was to combine the data together and fit the model to the combined data. The original estimates of the parameters of the model are given in the table below along with the values of the parameters after using the minimum χ^{2} procedure. It can be seen here that the minimum x^{2} procedure gives sensible answers for the model.

This approach for characterising the dependences was used in Experiments 2, 3 and 4. The two latent state two

ESTIMATES OF THE PARAMETERS OF THE LATENT MARKOV MODEL (ANALYTICALLY DETERMINED AND NUMERICALLY)

EXPERIMENT I

V		Q	M	
1	0.499	0.501	1	0
0	0.499	0.501	.19	.81

after min. x^{2}

V	Q			M		
.56	.46	.04	.33	.17	.87	.13
.44	.21	.29	.03	.47	.16	.84

$$
x^{2}=46.5
$$

EXPERIMENT 2

V	Q				M	
1	0.50				1	0
0	0.50				. 22	. 78
$\chi^{2}=9.9 \times 10^{24}$						
after min. χ^{2}						
. 92	. 42	. 08	. 14	. 36	. 98	. 01
. 08	. 07	. 43	. 04	. 46	. 11	. 89
EXPERIMENT $3 \quad \chi^{2}=86.7$						
V			Q		M	
1	21	29	0	5	1	0
0	0	5	0	5	1	0
$x^{2}=7.7 \times 10^{15}$						
after min. χ^{2}						
V			Q			
. 75	. 47	. 03	. 03	. 47	. 10	. 10
. 25	. 25	. 25	. 25	. 25	. 30	.70
$x^{2}=7.5$						

observable state model was applied directly to the response and correct wrong sequences and the results of this are given in the tables below. As in Experiment 1 if the probability parameters fall outwith the zero to 1.0 bound they were set to either zero or one. On looking at the data it can be seen that this was necessary in practically every case. These estimates should therefore be improved by using the minimum x^{2} procedure described in the analysis of Experiment l. The above values could be taken as starting points. Unfortunately the time taken to reach a solution would make finding a minimum $\chi^{2} 190$ times too expensive in computer time to be worth the effort. We would, however, imagine that the improvement resulting from the use of the minimum χ^{2} technique would be of the same order as that found in the analysis of experiment 1.

Analysing the $S R$ sequences in terms of a latent state model produced the same problem in that the time taken to run minimum χ^{2} procedures which would have been necessary to obtain sensible parameter estimates would have proved prohibitive. As a result all the experimental data for each experiment was combined and the combined data was analysed using the latent Markov process described above. The results are given in the tables below.

We can thus see that the results show considerable improvement in the estimates of the parameters after the use of a minimum χ^{2} procedure. Any χ^{2} value at all still means that the model does not fit but at least the degree to which it does not fit is considerable improved. These estimates were then used in the simulation procedures which will be described later on.

Of the models the best fit is in Experiment No. 3. The data on Experiment 1 included much data in which the subjects were not discriminating between the stimuli as mentioned above. Experiment 2 averaging the data involved
averaging the data with different a priori stimulus probabilities which would make the fitting of any statistic model difficult. Averaging the data for Experiment 3 involved averaging easy, medium and difficult discriminations. An interesting finding is the values of the parameters obtained after the minimum χ^{2} analysis in Experiment 3. This is very much aligned with the Falmange model. In this model the subject alternates between two states. When the subject is in one state he discriminates well when in the other he does not. From the values found in the Q matrix it appears that the subject is doing just that. In one state the subject is equally likely to respond with either of the alternatives while in the other state he responds with the correct alternative in the ratio of 47 : 2.5. We must be careful, however, to realise that this result may be due to the averaging of easy, medium and difficult sequences of discrimination rather than the validity of the two latent state type model.

The probabilities of the subjects responding R_{1} given the stimulus presented and the $S R$ combination on the last trial was determined and then $P\left(R_{1} \mid S_{1} S_{i} R_{j}\right)$ versus $P\left(R_{1} \mid S_{2} S_{i} R_{j}\right)$ was plotted for all i's and j 's.
Thus, if the commonly held independence assumption is true then these points should be independent of the $S R$ combination on the immediately preceding trial. As no feedback was given in any of the sessions in this experiment (1) Atkinson's model (in Atkinson Bower and Crothers (1965)) also predicts that these points should be the same. While the Tanner and Rauk model predicts that the points should lie on an ROC curve. On examining the graph we see that the points do not appear to be randomly distributed around some particular value, nor do they appear to lie on ROC curve. The main effect on the points appears to be a change in bias related to the response on previous trials. This point will be more fully made when the parameters of the various signal detection models are estimated for each of these four points. Here we would expect to find the major effect on the bias parameter. The results indicate a large amount of individual variation between sessions. As different subjects performed in each session it is not possible to say whether this variability is between subjects or between sessions. If the same subjects perform on the same session twice one could say whether the effect of these dependences were relatively constant. As previously noted the main effects appear to be a change in bias depending on the preceding response. However, this effect varies from subject to subject. In the majority of cases the effect is due to an apparent increase in probability of maintaining the same response although in at least one case the opposite effect is seen and the subject tends to alternate his response from trial to trial. The other effect is that there appears to be a tendency for the sensitivity to be increased when the subject was correct on the last trial. This is the sort of result one would expect to obtain if the subject was performing as in a latent Markov state model where one of the states comesponds to a better performance
level from the other. That is to say this result would be predicted if one assumed that the subject's state of performance varied throughout the trials and his performance was more likely to be like that on the immediately preceding trial than on any other trial. This effect, however, will be obscured by the fact that in some cases the subjects were only marginally responding better than chance. In such cases any effects like this would be difficult to observe.

We are mainly concerned with the effect of the dependency on the sensitivity and bias statistics of the detection and recognition models. It is therefore useful to estimate not only the overall parameter value of these models but also to estimate the parameter value looking at data following a particular trial event. The results of this analysis will be considered in the section dealing with the analyses of the detection and recognition models.

The equivalent results for experiments 2,3 and 4 are given in the following pages. Again, changes in bias and sensitivity appear in all the experiments depending on the state on the immediately preceding trial, and it does not appear that saying the points lay on the same ROC curve is a particularly good approximation to the observed points.

Experiment 1 SEE P88 for condition
(P1 ot of $P\left(A_{1} \mid S_{2} A_{;} S_{K}\right) P\left(A_{2} \mid S_{2} A_{j} S_{K}\right)$
for preceding trials
$S_{1} R_{1}+S_{1} R_{2} X$
$S_{2} R_{1}-\Delta \quad S_{2} R_{2} M$

Experiment 4
Plot of $P\left(A_{1} \mid S_{1} A_{;} S_{K}\right) P\left(A_{1} \mid S_{2} A ; S_{K}\right)$
for preceding trials

$$
\begin{array}{ll}
S_{1} R_{1}-+ & S_{1} R_{2} X \\
S_{2} R_{1}-\diamond & S_{2} R_{2} \bowtie
\end{array}
$$

Much of the descriptive analysis discussed in the previous section was performed by the program OVERALL. This program derived the following statistics:-
(1) The average information in each stimuius.
(2) The average information in each response.
(3) The average information shared between latency and stimulus.
(4) The average information shared between latency and response.
(5) The average information shared between latency, stimulus and response.
(6) The x^{2} measuring relationship between latencies and stimuli.
(7) The χ^{2} measuring the relation between latencies and responses.
(8) The χ^{2} measuring the relationship between stimuli and responses.
(9) The χ^{2} measuring relationship between stimuli responses and latencies.
(10) Variances of the total latencies in each $1 / 5$ th of the experiment.
(II) Variances of the total emors in each $1 / 5$ th of the experiment.
(12) Variances of the total responses in each $1 / 5$ th of the experiment.
(13) The x^{2} measuring the first order dependancy for the latency sequences.
(14) The x^{2} measuring the second order dependance of the latency sequences.
(15) The x^{2} measuring the first order dependancies of the response sequences.
(16) The χ^{2} measuring the second order dependencies of the response sequences.
(17). The x^{2} measuring the first onder dependencies of the correct wrong sequences.
(18) The x^{2} measuring the second order dependencies of the correct wrong sequences.
(19) The x^{2} measuring the first order dependencies of the SR sequences.
(20) The χ^{2} measuring the second order dependencies of the $S R$ sequences. (21) The mean latency.

Each statistic was then used as the dependence variable in an analysis of variance to see how the experimental conditions affected each statistic. Tables of the raw data input into these analysis appear in the appendix. In the results of Experiment 1, two completely randomised designs were used. In design I the levels of the main effects were recognition task at probability $.25, .5$ and .75 , and detection task at stimulis probability .5. In design 2 the levels were recognition at stimulus probabilities .25, . 5 and .75. In design 2 the detection data were omitted. See table in the appendix of sample analysis. The results of this first experiment showed very little, in fact the only significant effects were:-
(1) The average information of each stimulus in both designs was significant. As this was under the control of the experimenter and deliberately manipulated in the experiment we had hoped that this result would have been obtained.
(2) The x^{2} value testing the first order dependencies of the latencies proved significant at the .05 level in design 1 . This indicated that the recognition sessions showed less dependence for the latencies.

In conclusion, it appears that little was found about the effects of the experimental variables and the data in Experiment 1. A better design is required to enable one to make a precise study of the experimental effects. In particular, controlling the subject differences might be expected to increase the precision of the experiment. The analysis of the experiment No. 2 took two forms. The first form was an analysis of four factors, recognition versus detection, stimulus probability, presence or absence of feedback, and subject. While some of the same data was used in the second analysis, again using $A \times B \times C \times S$ design where the factors are recognition on detection task, presence or absence of burst of white noise between trials and presence or absence of feedback. The results of the first analysis on the 22 statistics mentioned above are summarised in the table below. This table shows the F statistics

F Values Computed in Experiment 2

(Ignoring Burst Data)

Stat.	Task	Stim. Prob.	Feedback	T \times P	T $\times \mathrm{F}$	P $\times \mathrm{F}$	T \times P $\times \mathrm{F}$	Subj.
Av I.S.	. 00	413.34	. 02	. 17	. 43	. 35	. 53	4.76
Av I.R.	3.05	36.00	26.67	. 26	3.12	5.05	1.28	1.84
I.L.S.	. 46	1.93	2.28	2.87	. 01	1.56	. 18	3.87
I.L.R.	. 25	3.97	2.30	1.19	. 09	2.47	6.16	3.65
I.S.R.	1.09	. 91	1.27	4.34	. 52	1.70	. 98	36.56
I.L.S.R.	. 25	2.63	14.05	1.43	. 53	. 78	1.30	. 98
Ch.L.S.	. 52	1.96	2.14	2.45	. 01	1.44	. 22	4.00
Ch.L.R.	. 33	4.13	2.49	1.19	. 06	2.97	1.30	3.49
Chas.R.	1.11	. 32	2.07	3.79	. 37	1.15	5.10	34.59
Ch.L.S.R.	2.29	7.25	. 01	1.21	. 38	4.00	1.30	1.04
Var. L	. 00	. 27	. 45	2.32	. 26	. 59	. 66	1.64
Var. E	. 56	3.08	2.53	. 08	. 33	. 99	. 83	2.10
Var. R	2.20	3.69	. 30	1.07	. 78	2.21	. 90	6.57
ChLdep. 1	3.37	. 81	2.62	. 65	. 83	. 28	. 55	42.55
Chidep. 2	. 00	2.35	5.04	1.38	. 33	. 27	. 49	40.09
ChRdep. 1	4.53	1.76	1.43	. 56	. 46	. 55	. 76	5.81
ChRdep. 2	1.62	1.52	. 31	1.22	. 44	1.63	1.32	4.08
ChEdep. 1	6.02	1.75	7.83	1.57	5.20	1.40	. 79	3.26
ChEdep. 2	. 00	3.07	. 01	1.50	. 03	. 55	2.47	4.32
ChSRdep. 1	3.58	1.53	$\bigcirc 52$	1.56	. 50	. 62	. 37	32.0
ChSRdep. 2	2.53	3.70	. 15	. 96	. 18	1.65	. 98	4.81
L	. 41	1.06	. 13	4.70	. 00	4.40	2.17	8.67
DF	1,4	2,8	1, ${ }_{4}$	2,8	1,4	2,8	2,8	4,8
$\begin{aligned} & \text { CritF } \\ & (.05) \end{aligned}$	7.71	4.46	7.71	4.46	7.71	4.46	4.46	3.84
$: \begin{aligned} & \text { CritF } \\ & .01 \end{aligned}$	21.20	8.65	21.20	8.65	21.20	8.65	8.65	7.01

calculated and their degrees of freedom - a sample analysis appears in the appendix。

Looking at this table we find stimulus probability has an effect on the average amount of information contained in each stimulus. This result is similarly found in the first experiment, and is simply a reflection of the manipulation of the experimental variable stimulus probability. As one might expect this effect also affects the average information contained in the response to each of the stimuli. A . 05 sig. effect of the S factor must be attributed to chance factors. That is to say, the maximum amount of information is obtained when the responses are equally likely, When the stimulus probabilities are not the same the responses are not equally likely. There is also a significant effect of feedback on the average information contained by a response. It appears that in both the .25 and .75 stimulus probability conditions the effect of feedback is to reduce the average information in the response. This could be attributed to the result that probability matching was greater in the presence of feedback as opptsep to the no feedback condition where subjects usually show a greater tendency to respond equally to each of the two alternatives. This conclusion is supported by the presence of a significant $P \times F$ interaction, see table.

	0	F	
.75	8.98	8.00	total average information
.5	9.77	9.83	of responses in P \times F table.
.25	9.17	8.70	

A significant T x P x F interaction effect is found in the average information shared between S and R.

			R			D
	.75	.5	.25	.75	.5	.25
0	1.0	.8	1.3	.9	1.3	.6
F	1.1	1.6	1.0	1.1	1.1	.9

total average information shared between $S \times R$ in $T \times P \times F$ table

It appears in the 0 feedback recognition condition subjects do better when the a priori stimulus probability are equal while the reverse is true in the detection task.

Feedback appears to affect the shared information between LS and R.

0	F
-.319	.04

total average information shared between TS and R
In the absence of feedback there appears to be an interaction effect between $T S$ and R cancelling out any shared information, (i.e, a relation between correctness and latency.)

When the analysis is repeated on the equivalent x^{2} a significant $T \times P \times F$ interaction effect was found in the $S R$ dependence as was described above. However, on the x^{2} measuring the second order interdependence of $S R$ and T no significant Feedback effect was found although a significant stimulus probability effect was observed, indicating a much higher inderdependence in the .75 S condition.

It is possible that the variance in total response one's errons and latencies might be related to non stationability. Accordingly this statistic was used in this analysis. The only significant experimental effect was a P x F interaction on the variance of the errors.

	0	F
.75	24	
.5	52	25
.25	32	25

total variance of total errors in each $1 / 5$ th of the experiment

Feedback appears to reduce the variance in this . 5 stimulus probability condition.

Analysis of variance were then run on χ^{2} measuring first and second order markov dependence. The only significant effects were found on the correct wrong sequences where it was found that the lst onder dependence was greatest in the absence of feedback.

$$
\begin{array}{cc}
0 & F \\
178.8 & 91.4
\end{array}
$$

total χ^{2} df3 measuring lst order dependence in correct wrong sequences (each figure is the total of $30 \chi^{2}$.

Finally a significant T x P interaction was found on the total latencies.

| | .75 | .5 | .25 |
| :--- | :---: | :---: | :---: | :---: |
| R | 7729 | 9373 | 6515 |
| D | 7916 | 8027 | 9102 |

It appears that the total latency in the equi-variable stimulus condition is greatest in the recognition task - this is not true in the detection task.

We shall now consider an analysis of the results of the same experiment this time ignoring the unequal stimulus probability condition. (For a sample analysis see appendix.) The table below gives the computed F values and their degrees of freedom.

On examining an analysis of the information statistics the significant (0.5) effects are:-
a T x B interaction effect on the shared information between T and S.

	R	D	
0	.13	.19	total average information
B	.12	.10	shared between S and T

It appears that the addition of a burst of white noise reduces the relation between stimulus and latency on a trial in the detection task but not in the recognition task. There is also a significant $T \times F$ interaction in the shared information between S and R.

	0	F	
R	2.03	2.92	total average information
D	2.29	1.99	shared between S and R

Feedback appears to help. the recognition task but not the detection. It may be worth remembering that in this experiment some of the Detection task have bursts of white noise between trials. A significant effect of Feedback on information shared between $S R$ and L.

0	F
-.28	-.17

total average information shared between LS and R
This is similar to the effect noted in the last analysis. When the same analysis was performed on the x^{2} equivalent to the information statistics the $T \times B$ and $T \times F$ interaction reported above were found to be significant (.05). The effect of feedback on the information shared between LS and R was not found.

The only effect of an experimental variable on the variances of the totals for each $1 / 5$ th of the sessions was in the error variance where a significant $F \times$ Beffect was observed.

F Values Computed in Experiment 2
(Ignoring unequal Prob. condition)

	0	B	
0	22.8	52.3	variance of total errors
F	41.9	28.7	in each $1 / 5$ th of the session

This indicates that the presence of a burst decreases the error variance in the 0 feedback condition and increases it in the feedback condition.

In the analysis performed on χ^{2} measuring markov dependence in sequences of errors responses latencies and SR combinations. The experimental variables were shown to affect dependence only in the error sequences. Here Burst has the effect of increasing first order dependence.

0	B
33.3	75.7

total $\chi^{2} \mathrm{df}_{1}$ measuring lst order dependence (20 x^{2} in each condition)

Burst x Feedback interaction is also found

	0	B
0	20.6	66.7
F	12.7	9.0

total $\chi^{2} \mathrm{df}_{1}$ measuring 1st onder dependence

It appears feedback has the effect of reducing the dependence in the Burst condition.

A similar analysis was performed on statistics calculated from experiment three. A sample analysis is reproduced in the appendix. The F ratios and their degree of freedom are reproduced in the table below.

We find a significant effect $T \times D$ on the average information contained in each stimulus. The stimuli were randomly generated however we have performed 17 significant tests on this statistic and we might expect to get one significant (. 05 level) by chance. A significant Difficulty effect was found on the average information contained in each response.

E	M	D
29.95	29.67	29.45

total average information in each response

Since in the easy condition subjects were getting almost all trials correct they had no opportunity to show response preferences. Also, a massive effect was obtained on the effect of difficulty on information shared between S and R, as one would expect.

E	M	D
25.86	11.21	4.14

The effect was reproduced in the test on the equivalent χ^{2} s. A significant (.05) effect was also obtained of the effect of Difficulty on x^{2} measuring the second order interaction between $S R$ and L. It should be noted that in many cases in the easy condition there were too few frequencies for the estimated χ^{2} statistic to be distributed as χ^{2}.

On examining the effect of experimental variables on the variances of totals for each half of a session Difficulty appeared to increase the error variance. This is probably due to the fact that it had a large effect on the total number of errors.

E	M	D
8.61	104.65	143.16

F Values Computed in Experiment 3
Time Feed Diffi $T \times F \quad T \times D \quad F \times D \quad T \times F \times D \quad$ Subj

AVI.S.	.6	.1	1.8	.5	4.9	.8	1.21	.6
AvI.R.	1.4	2.2	6.3	.4	.9	1.3	1.5	3.3
I.L.S.	3.1	1.3	1.8	.9	1.4	2.3	1.9	16.1
I.L.R.	3.8	1.2	1.4	1.7	1.2	2.3	1.5	12.1
I.S.R.	.0	.9	116.6	.4	.1	.8	1.8	3.5
I.L.S.R.	2.7	1.3	2.4	1.4	1.2	1.8	1.5	2.7
Ch.L.S.	3.2	1.3	1.8	.8	1.3	2.4	2.0	19.3
Ch.L.R.	4.0	1.1	1.4	1.7	1.1	2.3	1.5	13.1
Ch.S.R.	.0	.8	103.5	.4	.1	.8	1.7	2.2
Ch.L.S.R.	2.2	.5	6.0	.0	1.3	1.0	.1	15.8
Var.L	1.1	1.1	.2	1.8	.8	1.0	.7	1.6
Var.E	.1	.2	9.3	1.4	1.3	1.2	1.0	.0
Var.R	.5	1.7	.6	1.3	.8	4.5	1.6	.9
ChLdep.1	1.4	1.7	.4	.9	2.9	1.5	1.4	2.6
ChLdep.2	2.4	.9	1.9	.8	1.9	.7	.9	1.8
ChRdep.1	4.7	.7	7.1	1.4	6.5	.5	1.0	2.0
ChRdep.2	.0	2.1	1.9	.7	1.7	.7	1.7	1.4
ChEdep.1	.5	1.0	1.2	2.2	.6	1.2	.8	1.4
ChEdep.2	1.5	.1	.2	1.2	2.2	.5	1.1	1.6
ChSRdep.1	2.1	1.5	4.6	2.2	1.8	.2	.8	1.0
Ch SRdep. 2	.2	1.0	12.3	.8	2.2	.9	1.0	2.2
L	9.3	.3	9.2	.7	1.0	.0	1.1	3.9

DF	1,4	2,8	2,8	$2,8:$	2,8	4,16	4,16	4,16
Crit								
F(05)	7.71	4.46	4.46	4.46	4.46	3.01	3.01	3.01
	21.20	8.65	8.65	8.65	8.65	4.77	4.77	4.77

An F $\times \mathrm{D}$ interaction was found on the variances of the total responses.

	E	M	D
0	38	30	59
V	29	47	24
F	24	28	40

variance of total response one's in each $1 / 5$ th of the session

Variable feedback appears to increase the observed variance in the medium difficulty task and reduce it in the difficult condition.

In examining the effect of experimental variables on x^{2} measuring 0 and first order dependencies. The most important factor appears to be task difficulty. Obviously if the subject is responding 100% correctly his response sequence is an 0 order markov if the stimulus sequence is an 0 onder markov. We thus find significant effects of difficulty on χ^{2} measuring the first order dependencies in the response and $S R$ sequences and in the x^{2} measuring second order dependencies in the $S R$ sequences. There is also a significant (.05) Times x Difficulty interaction on the x^{2} measuring the first order dependencies in the response sequences.

\[

\]

total $\chi^{2} \mathrm{df}_{1}$ measuring first order dependencies in response sequences ${ }^{1}$ (each total contain $15 \chi^{2} s$)

It seems that apart from in the easy condition a longer dead period between trials reduces the dependence in the response sequences.

Finally in the analysis of the latencies it appears that the subjects take longer if the task is more difficult
E M D

$$
182492400526929 \quad \text { total latency }
$$

and that a longer dead period between trials increases the subjects! latency.

Analysis performed on the results of experiment four showed no significant effect of the only experimental variable feedback. As there were only 15 sessions all using naive subjects it is not a very powenful test. It was again a simple randomised design as experiment one.

Since so many F tests were performed it seems likely that same apparently significant Fs are due to chance. However, bearing that in mind one can tentatively draw the conclusion that sepanating sequential effects into response dependencies and correct wrong dependencies is useful as difficulty and intertrial period appear to affect the former while feed-back and the introduction of a burst of noise between trials affect the latter.

Also worthy of mention is the frequency of large subjects' differences found when the MS subjects were tested against the MSA $\times B \times C \times S$ interaction.
(a)Estimation of parameters of detection and recognition models

This analysis was performed using a program called ESTIMATE. It contained five estimation procedures. These procedures estimated the parameters for each model for all the data collected in one session. For the same data divided into four groups depending on the state on the immediately preceding trial and for all the data grouped into 16 parts depending on the state on the immediately preceding two trials. These latter estimates were not very useful since the data involved in each estimation was very small, or even non-existent. In this case it was proved possible to obtain estimates of these parameters depending on the immediately two preceding trials. The five estimation procedures were (l) Luce (this estimates the sensitivity and bias parameters of Luce's choice model), (2) DP (this estimates the sensitivity d^{\prime} and the bias parameter B for Tanner Swets and Green's model),
(3) Classical (this estimates the threshold statistic and the probability of being correct statistic),
(4) ATK (this estimates the sensitivity parameter sigma and the bias parameter of Atkinson's model), and (5) NP (this estimates the non-parametric statistics A^{\prime} and percentage bias). The results of this program on the data for Experiments $1,2,3$ and 4 are given in the tables below.

The values given are that for each statistic for each session, together with the values of the statistic depending on the immediately preceding trial. In cases where not enough data was available to estimate the statistic in a certain condition, the value given in the table is zero. It is important to realise that these are not parameter estimates, merely blanks indicating that no estimation was possible. The values of the statistic depending on the immediately preceding two trials are not quoted for each session, however the mean values of these parameters over each experiment are available, and will appear for a different purpose in the simulation section. The program

ESTIMATE also performed the Friedman two way analysis of variance on the estimates of each parameter depending on the immediately preceding trials. A significant $X^{2}{ }_{r}$ value obtained in one of these analyses indicated that a particular statistic was dependent on the immediately preceding trial and that the nature of the dependency was consistent over all the subjects in that particular session. The mean value of each statistic depending on whether the last trial was Sl or S2 was calculated from the same data and again a Friedman analysis performed to see whether the stimulus on the last trial had any effect on this statistic. This method was applied to test the hypothesis at the response on the immediately preceding trial affected each statistic and that the correctness of the immediately preceding trial also affected the statistic. The results of experiment 1 are summarised in the tables below. The other experiments were analysed in the same way but the detailed results are not included for lack of space.

In Experiment l we find that all the sensitivity parameters were dependent on the state on the immediately preceding trial. A more detailed analysis revealed that the two threshold statistics and the non-parametric measure depended on whether the subject was correct or wrong in the immediately preceding trial. That is to say, an estimate of his sensitivity following a correct trial was higher than that following a wrong trial. The threshold value was also significantly related to what response was present on the last trial. He was more likely to be correct following a response signal present than following a response noise alone. On looking at the bias parameters we find a slightly different pattern of results. Again, all the bias parameters studied were significantly related to the state on the immediately preceding trial and they were also related to the response on that trial. This indicates an overall tendency on the part of the subjects to maintain the response on the immediately preceding trial. The Luce-bias parameter shows a significant effect relating to the stimulus on the last trial. The Tanner Swets and Green bias parameter was

$$
\begin{gathered}
\text { Experiment } \\
\text { S } \quad \mathrm{R}
\end{gathered}
$$

$3 \times x \times$

found to be related to the correctness on the immediately preceding trial. This could have been expected in the case of this parameter as the measure of bias was taken to be the distance between the mean of the noise distribution to the cut off or criterion, and must be related to sensitivity as well as to bias.

Looking at the results of the second experiment we gain have fairly clear cut results. Four of the sensitivity parameters are found to be significant though dependent on the immediately preceding trial, while five out of six of them are dependent on whether the state on the last trial was correct or not. The threshold statistic is again related to the response made by the subject on the immediately preceding trial. The bias parameters are all significantly related to the last trial, and in particular to the response made on the last trial. This indicates a tendency of subjects to maintain the response they made on the immediately preceding trial.

In Experiment No. 3 a slightly different pattern emerged. All the estimates of the parameters were found to be related to the immediately preceding trials. However, the sensitivity parameters as well as being related to the correctness of the immediately preceding trial were also found to be related to the stimulus presented on that trial. And the bias parameters were no longer related to the response on the last trial but were related to the stimulus present on that trial. In this experiment two-thirds of the conditions involve feedback and it might be that the more feedback the more the bias parameter tended to be related to the feedback (i.e. the stimulus on the immediately preceding trial) rather than the immediately preceding response.

In the final experiment No. 4 the only significant result found was that the sensitivity statistics were related to the correctness of the subject on the immediately preceding trial.

From this analysis we have now found that both sensitivity and bias statistics are affected by inter-trial dependence. In the case of the sensitivity statistic the
most important effect appears to be whether the subject was correct or wrong on the immediately preceding trial. This is what was expected as if the subjects were alternating between two or more states of different performance levels then we would expect this result. More surprising result is the dependence of the sensitivity statistics on the stimulus presented on the immediately preceding trial as found in experiment No. 3. On examining the results of the bias parameter we find that they tend to be related to the response made by the immediately preceding trial but again in Experiment 3 the bias parameter is related to the stimulus present in that trial. Another difference between Experiment 3 and the others which might have been responsible for this difference is that it involved only the detection task. In Experiment 2 the only other involving large number of sessions by the same subject half the time the task was recognition and half the time it was detection.

The only other detection or recognition model applied to this data was the one by Tanner Rauk \& Atkinson. A program MEMREC was written to perform a minimum χ^{2} procedure and estimate the parameters of the model in the no feedback situation. As already stated (see Introduction) the prediction made by the model is that the ROC points calculated depending on the state on the immediately preceding trial should all lie on the same ROC curve. We saw in the previous section that this was not the case. It is therefore not surprising that the fits obtained by the model were not particularly good. This program took as starting values the parameter values found in the Tanner Rauk and Atkinson paper. It systematically varied each of the parameters and measured the goodness of fit of the model until no change in the parameters produced any better fit. The procedure was repeated until the χ^{2} obtained did not change by more than .01 when any of the parameters were changed. The degrees of freedom in the second order probabilities from which the model's parameters were estimated are twelve. There were four

MIN. χ^{2} OBTAINED FROM THE TANNER RAUK \& ATKINSON MODEL.

Condition	Session	Min. x^{2}
	1	166.5
	2	39.9
. 25 R	3	38.9
	4	91.0
	5	114.4
	6	18.2
	7	31.7
. 5 R	8	298.0
	9	57.2
	10	16.5
	11	37.3
,	12	31.6
. 75 R	13	377.1
	14	185.3
	15	166.2
	16	89.3
	17	163.0
	18	203.0
	19	8.1
. 5 D	20	12.2
	21	25.5
	22	14.3
	23	28.4
	24	13.6
	25	36.4

parameters estimated leaving eight degrees of freedom if the parameters were all independent. Using this conservative estimate of the degrees of freedom in the situation we find that out of the 25 sessions in Experiment 1 only six are not significant at the . 05 level. The Table below gives the parameter values of the model and the final minimum χ^{2} for each of the 25 subjects. Unfortunately this procedure took a very long time to obtain a minimum solution. As a result of this it was impossible to use the program on the results of experiments 2, 3 and 4.


```
    #@r%%%%%
```


(b) The Effects of Experimental Variables on the Parameters of the Detection and Recognition Models

The analysis of the effects of the experimental variables on the estimates of the parameters of the models was performed using a program SEST. This program was a composite of ESTIMATE and OVERALL. In this program each of the estimates of the parameters of the model were re-derived and analyses of variance were performed on the overall estimates for each session to examine the effect of the experimental variables. In order to give an idea as to whether the dependence of the estimate on the immediately preceding trial was related to the experimental condition, an estimate of the variance of the estimated parameters was found from the statistics based on data preceded by the same trial. This variance statistic was an estimate of the standard error of the estimate of the parameter together with a sizeable component due to the fact that the estimate depended on the state on the immediately preceding trial. Differences in the variance statistic between different experimental conditions will be interpreted as implying that the dependence of the statistic on the immediately preceding trial changed as a result of the experimental conditions. The results of Experiments l, 2 , 3 and 4 are summarised in the tables below.

We see that for the results of Experiment 1 none of the analyses revealed any significant results. As before the analysis of the data in Experiment 2 was divided into two sections. One involving an analysis of task by a priori stimulus probability by feedback by subject, and the other involving an analysis of task by feedback by burst by subject. The results of the analysis of the task by probability by feedback by subject shows that there is a significant subject effect on all the sensitivity parameters and a significant task by subject interaction on four out of six of them. This indicates that the differences between subjects were not well controlled at the beginning of the experiment. It is interesting to note that both the threshold and probability correct
statistics are affected by a priori stimulus probabilities. This was the original justification for signal detection models in that they enabled sensitivity statistics to be derived which were independent of the experimental conditions. Here we find that all the sensitivity parameters based on the signal detection models are unrelated to the experimental conditions ignoring subject differences while the classical ones are not. Looking at the bias statistic we find that all the statistics are affected by the stimulus probabilities. Again, this is a classical finding. For three of the parameters there are differences between subjects. There is a significant probability by feedback interaction in all the bias statistics. This shows that where no feedback is given and the stimulus probabilities are not equal subjects tend to respond more equally than when feedback is given, i.e. in the presence of feedback subjects tend to probability match and in its absence they tend to respond equally on all the different alternatives. Related to this interaction we find that for two of the estimates of the parameters there is a significant probability by feedback by subject interaction, a probability by subject interaction, a feedback by subject interaction, and one significant feedback effect on its own. The results of a task by subject interaction effect in one of the conditions.

This analysis of variance was then applied to the statistic variances which were estimates of the degree to which the statistic was dependent on the immediately preceding trial. These results showed a significant subject effect in all bar one case indicating the dependence of the bias statistic on the immediately preceding trial in all bar one case was related to the individual subject. It was also found in all bar one case that the task was related to the dependence of the sensitivity statistic. It appears that the dependence between trials is greatest in a recognition rather than a detection task. Two task by subject interactions were also observed. In the consideration of the variance of the probability correct statistic we find that the probability and probability by subject interaction effects are significant. This was one of the sensitivity statistics which were found to be related to

CONDITION EXPERIMENT NO 2

Th ur

$P(c) \nu$	x	x	x	x	x
$A^{\prime} v$	x	x			x
$\sigma \nu$		x	x		

b(Luce) ν
$b(T S G) v$
Bias \% v
$b(A T K) v$
af $\quad \begin{array}{lllllllllllllllllll}1,8 & 2,8 & 1,8 & 4,8 & 2,8 & 1,8 & 4,8 & 2,8 & 8,8 & 4,8 & 2,8 & 8,8 & 4,8 & 8,8\end{array}$

X sig at 05 level
(X) sig at 01 level

CONDITION EXPERIMENT NO 2

(x)
d^{\prime}
(x)

Th
P(c)
A^{\prime}
σ
nu
$\mathrm{d}^{I V}$
X
Th ν
$\begin{array}{lllllllll}a \\ P & x & x & x & x & x & x & x & x\end{array}$
$A^{\prime} v$
ov $\quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X} \quad \mathrm{X}$ X $\mathrm{X} \quad \mathrm{x} \quad \mathrm{x} \quad \mathrm{x}$
b(Luce)
B(TSG)
$\begin{array}{lllll}\text { Bias \% } & & x & (x) & x \\ b(A T K) & X & \otimes & x & x\end{array}$
b(Luce) v
$b(T S G) \nu$
Bias \%v
$b(A T K) \nu$

$$
\text { df } \quad 1,4 \quad 1,4 \quad 1,4 \quad 4,4 \quad 1,4 \quad 1,4 \quad 4,4 \quad 1,4 \quad 4,4 \quad 4,4 \quad 1,4 \quad 4,4 \quad 4,4 \quad 4,4
$$

X sig at 05 level
(x) sig at 01 level
a priori stimulus probability. As the value of the probability increases so does its variance. In Luce's model and in the non-parametric analysis a significant feedback by subject interaction was found on the variance of the sensitivity statistic and in Atkinson's model a significant task by feedback interaction was also found. To summarize then the major effect on the dependence of the sensitivity statistics of detection and recognition models are subject variables and task variables. The recognition task showed more inter-trial dependence from the detection task. When we examine the effect of experimental conditions on the dependence of the bias statistic on the immediately preceding trial no significant results were found.

The results of the second analysis performed on Experiment 2 involving the task by feedback by burst by subject design is given in the table above. We find first of all that the sensitivity parameter is dependent on the subject, thus the individual subject differences were not entirely controlled for in the setting up of the experiment. A significant task by subject interaction was found in three of the sensitivity statistics and this indicates that even within subjects performance on two tasks was not entirely standardised as had been the intention.

Looking at the bias statistics we find that for all models except Luce's there is a subject effect, i.e. the subjects have different biases. Other significant effects are less consistent. There is a significant task effect on Atkinson's bias parameter, a significant burst effect on the non-parametric bias measure, a significant task by subject effect in Atkinson's measure, and a significant task by burst effect in both Atkinson's and the non-parametric estimate of the bias parameter. On examining the raw data this appears to be due to a very small bias in the detection task when a burst is present, the other conditions being very much the same.

If we.look at the variance of the sensitivity statistics confounded with the effects of the immediately

CONDITION EXPERIMENT NO 3

η
d^{\prime}
$T h$
$P(c)$
A^{\prime}
σ
$\eta \nu$
$d^{\prime} v$
$T h \nu$
$P(c) v$
$A^{\prime} v$
σv

$b($ Luce $)$	x X
$b(T S G)$	$(x) x$
Bias \%	(x) (X)
$b($ ATK $)$	x X

(X)
b(Luce) v
$b(T S G) v$
Bias \% v
(x)
$b(A T K) v$
df $\quad 1,16 \quad 2,16 \quad 2,164,16 \quad 2,162,164,164,168,168,164,168,168,1616,16$
df $\quad 1,16 \quad 2,16 \quad 2,164,16 \quad 2,162,164,164,168,168,164,168,168,1616,16$
(x) (x)

$$
\begin{aligned}
& X \text { sig at } 05 \text { level } \\
& \text { X sig at } 01 \text { level }
\end{aligned}
$$

preceding trial we find significant subject effects in three of the sensitivity statistics, namely, Luce's data, the probability of correct statistic and Atkinson's sigma. In both the probability of correct statistic and Atkinson's sensitivity measure a large number of significant effects were obtained. Going back to the original data we find that this is largely due to a significant three way task by feedback by burst interaction. This in turn appears to be due to the very high value for one of the conditions. In the case where the subject is given a recognition task without feedback and without a burst it appears that the dependence on the immediately preceding trial is greatest by a very large extent. The only other main effect very much larger than this is the task by feedback effect where we find that in the recognition task when no feedback is present the dependence is much larger than in any of the other conditions. The other significant effects can be traced back to these conditions. It might be advisable to put in a word of caution but perhaps it would have been more appropriate to have performed these analyses on the square root of the variants rather than on the variances themselves. No significant effects were found for the bias variances which indicated that the dependency of the bias parameter on the immediately preceding trial was not greatly related to the experimental conditions.

Looking now at the results of Experiment No. 3 we find that any differences in the sensitivity parameter have been completely swamped by the large differences due to the different levels of task difficulty.

The only significant result from the analysis of variance on the statistic variances measuring the dependence on the immediately preceding trial from the sensitivity statistics is that of d^{\prime} in which the difficulty effect is insignificant. As the task difficulty is affecting the main d^{\prime} value it is not surprising that it could affect the variance of the d^{\prime} depending on the state on the immediately preceding trial.

This same analysis was performed on the bias statistics and here we find that the subject variable is significant in all four cases, the difficulty variable is significant in three cases, and there is one difficulty by subject interaction. We must remember here that in the easy task subjects were performing at almost the 100% correct level. Under these conditions the bias would be virtually negligible. In the last two experiments no experimental effect has found to affect the dependency of the biases on the preceding trial. Here in Experiment 3, however, we find that for three of the bias statistics the difficulty condition is significant. Again the same comment can be made here since in all of the conditions the subject is getting practically all of them correct and the measurable effect of bias is pretty small as opposed to the difficult. condition when the subject may be making 20% errors. The Atkinson's bias statistic also shows a significant subject effect, a time effect, and a time by feedback by difficulty interaction. Looking at the original data we find although the situation appears complicated increasing the amount of feedback appears to have the effect of increasing the dependence in the short easy condition and decreasing the dependence in the difficult long condition. We should note that the analysis performed here differs slightly from the analysis performed by OVERALL as the extremely easy condition had to be omitted. In that particular condition not enough errors were made to enable the estimation of the detection and recognition parameters following a trial in which an error had occurred. This would have the original analysis inappropriate.

In Experiment No. 4 the only experimental condition varied was the feedback and the subject made one of five possible responses. If this response is dichotomised we complete the data as in the other experiments. Having done this we can examine the data for the effect of feedback on the statistics of the models. On so doing we find no significant differences in sensitivity bias or dependence of the bias parameters. However, in the Atkinson and the

Tanner, Swets and Green model feedback appears to have the effect of increasing the dependence of the sensitivity parameter. Looking at the original data it appears that what is happening is that the dependence is the same when feedback or no feedback is present but when variable feedback is introduced the dependence on the immediately preceding trial is increased.
(c)ROCT analyses

Following Meyer's suggestion of using the latencies to produce rating type data a ROCT analysis was performed for all the experiments. Thus for every session the latencies were divided into fast and slow depending on which side of the median they lay. The responses were then grouped as follows - fast signal present, slow signal present, slow signal absent and fast signal absent. Using a rating scale type analysis we obtained three points on a ROCT curve which can be specified by their sensitivity and bias. The results of this analysis were analysed using a Luce choice reaction time model, see tables below for Experiment 1. The same sort of results were obtained from analysis of the other experiments but the detailed reactions are not included from lack of space. The programme which performed this analysis also calculated the range of the estimates of the parameters of the models for each of the sessions. Other analyses of variance were performed on this statistic to see whether the experimental conditions affected the departures of the points from an isosensitivity curve.

On looking at the results two things appear
fairly clear. Firstly, the bias increases with each of the three points as one would expect that the different cut offs should correspond to three different bias positions. Also the sensitivity of the middle point appears greater than the sensitivity of either of the other two points indicating that by using the latencies as a measure of confidence we are in fact underestimating the performance of the subject. These comments apply to the results of all experiments. Analysis of variance testing the effects of experimental variables on the range of the estimates of the sensitivities were performed. We find that in Experiment 1 there is a significant effect. Looking at the raw data this appears largely due to an increase in the range of the sensitivity values as the stimulus probability changes from .5. This suggests that the underestimation caused by using latencies as confidence ratings is least when

EXPERIMENT NO. 1
ROCT ANALYSIS USING LUCE'S MODEL

Condition	Session		Z			B	
	1	. 24	. 22	. 27	. 13	. 28	2.4
	2	. 85	. 91	. 87	. 13	. 32	1.8
. 25R	3	. 57	. 58	. 51	. 19	. 43	2.3
	4	. 31	. 55	1.1	. 06	. 21	1.6
	5	. 72	. 75	1.0	. 13	. 32	1.7
	6	. 75	. 64	. 85	. 31	. 89	2.8
	7	. 89	. 91	. 78	. 34	1.1	3.6
. 5 R	8	. 88	.17	. 29	. 20	. 75	4.9
	9	. 87	. 83	. 99	. 29	. 92	3.2
	10	.98	. 76	. 84	. 28	. 80	2.7
	11	1.3	. 84	1.4	. 60	3.0	8.6
	12	. 81	. 68	. 78	. 54	2.7	7.1
. 75R	13	. 25	. 07	1.4	. 15	. 48	20
	14	. 69	. 29	. 35	. 46	1.7	5.0
	15	. 78	. 24	. 17	. 59	3.7	14
	16	. 31	-15	. 08	. 39	1.2	8.9
	17	1.0	1.1	. 96	. 36	1.1	2.8
	18	. 27	. 12	.17	. 28	1.1	5.5
	19	. 74	. 46	. 47	. 33	. 87	2.9
. 5D	20	. 84	. 78	. 74	. 32	. 95	3.1
	21	1.0	. 65	. 58	.36	1.2	3.9
	22	. 96	. 79	. 94	. 32	1.0	3.0
	23	. 89	. 53	. 65	. 29	. 78	2.9
	24	. 47	. 27	. 31	. 36	1.0	3.3
	25	. 78	. 76	. 88	. 36	1.1	3.2

the stimulus probability equals .5.
This result is confirmed in the second experiment where there appears to be a large difference in the range dependent on the a priori stimulus probability. There also appears to be a subject difference and a task by feedback interaction. Feedback also apparently has the effect of reducing the range of the sensitivity statistic. The analysis of the second experiment using the task by feedback by burst design shows that we have a significant subject effect and significant feedback by burst by subject interaction and a significant task by subject interaction. On looking at the raw data we find this is due to the fact that the range is considerably smaller than there is feedback but no burst.

Looking at the analysis of the third experiment we find that the most significant effect is that of task difficulty. The more difficult the task the larger the range of sensitivity. This may be an effect of the position on the sensitivity scale as it is much more difficult to improve the sensitivity of .Ol than it is to improve on a sensitivity of .91. These results also indicate a significant difference between subjects, the results of the significant task by subject interaction and the difficulty by subject interaction.

The analysis of the third experiment revealed that the experimental conditions had no effect on the range of sensitivity values of Luce's model calculated as above.

The results of the ROCT analysis may perhaps be more easily understood if we look at them in the following way. The speed of response was the same as confidence when we should expect all the points to have the same sensitivity value. The wider the range of the sensitivity values the less the latencies related to the subject's confidence. We knew from previous analysis that latency is related to a priori stimulus probability. It would therefore appear that when the stimuli were not equiprobable the effect of the stimulus
probability on the latency would obscure relationship between the latency and confidence. This would have the effect of increasing the range of the sensitivity values calculated in the ROCT analysis. This sort of reasoning may be able to explain certain of the other results post hoc. For example, time is most closely related to confidence in the feedback condition where no bursts are present which could explain the feedback by burst interaction.

It was possible to use the same program as was used in the ROCT analysis to analyse the results of the rating scale data, see Experiment No. 4. Here what was wanted was an estimate of the sensitivity and bias parameters corresponding to each of the response cut outs. The subject was in this case allowed five responses. Certain signal present, uncertain signal present, don't know, uncertain signal absent, certain signal absent. This normally gave fewer data points on an ROC curve. The sensitivity and bias parameters were calculated according to Luce's model for each of the four data points. This analysis was then repeated using data following a one or a two response with stimulus l, a one or a two response with stimulus 2 , a three, four or five response with stimulus 1 , and a three, four or five response with stimulus 2. It was not possible to estimate the parameters for all possible stimulus response combinations as there were too many of them. This analysis is made more complicated by the fact that some subjects did not use all the available response alternatives. On looking at the data we notice that differences exist in the bias parameter as we would expect. The bias increases with the position on the ROC curve. If all the points lay on the same ROC curve then the sensitivity values for each of the points should be the same. A Friedman non-parametric analysis of variance was performed on sensitivity data and showed that the data value being in fact dependent upon the point being considered. The middle two points appeared to give the highest sensitivity. On looking at the frequency distribution of responses it was noticeable that subjects seemed reluctant
to use the two more extreme responses. Perhaps if the subjects had not been naive this effect would not have been so marked. As it was the $\mathrm{X}^{2}{ }_{\mathrm{r}}$ was found to be equal to 19.8.

As mentioned before the ROCT analysis was repeated following each of four types of trial. A non-parametric of variance was performed on the sensitivity value at each of the cut off points to see if there was a difference depending on the state in the last trial. None of the resulting $x^{2}{ }_{r}$ values were significant. This, however, does not mean that dependences did not exist where rating scale data was used or even that dependences are less under these circumstances. It must be remembered that only fifteen sessions were analysed on naive subjects. In the analysis of the non-rating experiments the number of sessions were 25,80 and 90 respectively. When Experiment 4 was analysed in the estimate program treating it as a non-rating scale experiment the overall effects were not significant.
However, dependencies on the sensitivity parameters of a number of different models depended on the correctness of the immediately preceding trial were found.

 and
\square

The final part of this work consisted in simulating sequences of $S R$ events with the same dependences that had been observed in the aforementioned experiments. The data from the whole of Experiment 2 was averaged and zero first and second order Markov processes fitted to the SR sequences. A two-state latent Markov model was also fitted using a minimum x^{2} procedure to improve upon the initial estimates as described above. A program SIMLUC was written which simulated the $S R$ sequences with the parameters of the zero first and second order Markov processes and the latent Markov process estimated above. SIMLUC also contained the ESTIMATE procedures and estimates of the signal detection and recognition models were determined for each of the simulated sequences. This process was repeated ten times and estimates of the parameters of the detection and recognition models discussed earlier were thereby obtained. The following table consists of the averages and variances of the estimates of the parameters of each of the models. Together with estimates of these parameters dependent on the state on the immediately preceding trial and on the immediately two trials. Finally included are the empirically obtained estimates as discussed earlier.

The differences between the real and the simulated data are due to at least two factors.
(1) Differences between the simulated performance of the subject and his real performance.
(2) Differences due to the real data being averages of several different subjects operating in several different experimental conditions.

Differences in the mean values overall are probably due to the differences in averaging every statistic of a signal detection model and finding the rated average of the probability and then calculating the same statistic. Differences in the mean values of the statistics depending on the state on the immediately preceding trial showed the differences between the simulation models used.

The empirically obtained variances, theoretical variances (where they exist) and the simulated variances for each of the ten statistics for each of the experiments are
given in the tables below.
It appears that the empirical variances are by far the largest. This we would expect as we have shown before that the sessions are not homogeneous. The theoretical variances is usually the smallest.

As the simulated experiments were all based on a sample of only ten sessions the estimates of the standard errors of the statistics cannot be very accurate. Thus the conclusions drawn above can only be tentative on this data. There also is an indication that as the order of the estimated Markov process increases so does the variance of the statistics.

Another finding is that the sensitivity of the subjects as estimated from the simulated data appears better than when the estimate is derived from the mean of each of the subjects sensitivity statistics. This is probably due to the different averaging techniques. Extremely good performances of, say, ten errors out of 740 trials are less heavily weighted when all the sequences are lumped together and then the sensitivity calculated than when the sensitivity is calculated for each sequence and then the sensitivities averaged.

The dependencies observed in the simulated data do not appear to be of the same magnitude as in the real data. Increasing the order of the Markov sequences from 0 to 2 appears to have the effect of increasing the dependency of the model's statistics on the last two trials. Some dependency of the statistic on the last two trials is observed even in the zero order condition. More will be said of this effect later.

The first order Markov model gets the direction of the first order effects on the sensitivity parameters correct. If anything, however, it appears to over-estimate the effect of the immediately preceding trial on the sensitivity parameter and under-estimate the effect on bias. The second order effect again appears to over-estimate the effect of the immediately preceding trial on the sensitivity statistics. It also gets the relative order of the bias

Variances

Model simulated					
	ThV	OM	IM	2M	LM
Luce z	. 0024	. 0023	. 0034	. 0055	. 0063
b	. 0025	. 0057	. 0021	. 0098	. 0035
Non P A'		. 0011	. 0012	. 0016	. 0009
b\%		2.3	4.7	. 23	1.36
Classic Pc	. 0013	. 0063	. 0021	. 0026	. 0030
Th	. 0003	. 0026	. 0003	. 0025	. 0030
ATK σ		. 0012	. 0012	. 0007	. 0016
b		. 0009	. 0055	. 0013	. 0036
TSG d'		. 0045	. 014	. 0024	. 0042
b		. 0011	. 0027	. 0006	. 0007

	Variances				
	ThV	OM	1M	2M	LM
Luce z	. 0004	. 0009	. 0009	. 0004	. 001
b	. 005	. 016	. 013	. 004	. 010
Non $P A^{\prime}$. 0001	. 0003	. 0016	. 00014
b\%		69.3	49.5	47.3	54.1
Classic Pc	. 0004	. 0015	. 0003	. 0004	. 0004
Th	. 0014	. 0010	. 001	. 004	. 001
ATK σ		. 0016	. 0016	. 0007	. 0014
b		. 0014	. 006	. 003	. 009
TSG d'		. 009	. 012	. 044	. 0024
b		. 003	. 005	. 95	. 0006

	Variances				
	ThV	OM	IM	2M	LM
Luce z	. 0002	. 0002	. 0003	. 0003	. 0004
b	. 005	. 008	. 026	. 007	. 007
Non P A'		. 00008	. 0001	. 00004	. 00009
b\%		148.6	125.7	137.7	73.7
Classic Pc	. 00025	. 0003	. 0003	. 0009	. 0002
Th	. 0013	. 0014	. 0006	. 002	. 0006
ATK σ		. 0005	. 001	. 0007	. 001
b		. 005	. 009	. 010	. 012
TSG d'		. 011	. 009	. 009	. 008
b		. 003	. 006	. 003	. 003

statistics depending on the immediately preceding trial wrong.

As a result of these simulations some potentially interesting effects have become apparent. However, it is difficult to make more than tentative conclusions owing to the smallness of the number of simulated sessions. A major constraint was the amount of computing time required to perform a simulation and it was decided that it was not possible to extend the number of sessions looked at in any but one particular case. The problem was then to decide on which experiment to use as the estimates for the Markov models which were to be simulated. Experiments No. 1 and 4 were ruled out as they used naive subjects whose performance varied very greatly. Experiment No. 3 was also eliminated as it contained sequences where the subjects almost got 100% correct together with sequences where they were responding at little better than chance. This left Experiment 2 where the experimental independent variables were whether the task was detection or recognition a priori stimulus probability presence or absence of feedback and the inclusion or non-inclusion of a burst of white noise between trials. It was decided therefore to use the data from the second experiment after the sessions involving non-equal a priori stimulus probabilities had been removed, thereby hopefully producing a reasonably homogeneous selection of sequences.

From th is data, therefore, zero first second and a latent Markov model were fitted to this data as had been done to each of the experiments mentioned previously. When the latent model was fitted as had been found before probabilities outwith the range of zero to one were obtained. Again, a minimum χ^{2} procedure was used to improve the estimates of the model within the usual bounds for probabilities and the results are shown in the table below. The minimum χ^{2} improved to a final value of 20.29 and the values of the m, v and q matrix obtained show some evidence of a Falmange type model operating on this system. With this data, therefore, 50 sequences were simulated for each model and estimates of the

MAIN SIMULATION (MEANS)

model

Statistic	0	1	2	LM
z	.361	.359	.354	.361
b	1.188	1.208	1.18	1.20
A'	.823	.846	.821	.819
B/	-16.07	-12.86	-14.95	-14.7
P(c)	.670	.674	.669	.667
Th	.404	.412	.396	.405
©	.466	.473	.468	.475
b(A)	.887	.889	.890	.904
d' $^{\prime}$	1.259	1.258	1.262	1.259
b(TSG)	.677	.681	.683	.678

MAIN SIMULATION (VARIANCES)

model

Statistic	Th	0	1	2	LM
z	. 00045	. 0010	. 0010	. 0009	. 0010
b	. 0002	. 007	. 0111	. 009	. 010
A^{\prime}		. 00022	. 00019	. 00021	. 00025
B\%		48. 4	72.2	41.9	50.1
$P(c)$. 0005	. 00081	. 0010	. 0008	. 0011
Th	. 001	. 0028	. 0021	. 0020	. 0025
σ		. 0009	. 0009	. 0010	. 0010
$b(A)$. 002	. 003	. 003	. 003
d^{\prime}	. 0087	. 0113	. 0085	. 0108	. 0111
$b(T S G)$. 0039	. 0028	. 0035	. 0034

Observed Frequencies of Combination of 3 trials

0 Order Markov Simulation

	$\mathrm{S}_{1} \mathrm{R}_{1}$	$S_{1} \mathrm{R}_{2}$	$\mathrm{S}_{2} \mathrm{R}_{1}$	$\mathrm{S}_{2} \mathrm{R}_{2}$
$S_{1} R_{1} S_{1} R_{1}$	58	6	23	46
$S_{1} R_{1} S_{1} R_{2}$	7	5	1	7
$S_{1} \mathrm{R}_{1} S_{2} \mathrm{R}_{1}$	15	8	8	8
$S_{1} R_{1} S_{2} R_{2}$	40	17	16	36
$S_{1} R_{2} S_{1} R_{1}$	12	2	3	9
$S_{1} R_{2} S_{1} R_{2}$	12	3	3	3
$S_{1} R_{2} S_{2} R_{1}$	5	3	4	8
$\mathrm{S}_{1} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{2}$	12	4	2	13
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{1}$	8	4	4	12
$S_{2} \mathrm{R}_{1} S_{1} \mathrm{R}_{2}$	4	3	2	6
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{2} \mathrm{R}_{1}$	3	3	3	6
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{2} \mathrm{R}_{2}$	12	5	4	16
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{R}_{1}$	41	6	9	41
$S_{2} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{R}_{2}$	7	6	3	6
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{1}$	12	10	13	7
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{2}$	33	13	11	30

Observed Frequencies of Combination of 3 trials (continued)
lst Order Markov Simulation

	$\mathrm{S}_{1} \mathrm{R}_{1}$	$\mathrm{S}_{1} \mathrm{R}_{2}$	$\mathrm{S}_{2} \mathrm{R}_{1}$	$\mathrm{S}_{2} \mathrm{R}_{2}$
$S_{1} R_{1} S_{1} R_{1}$	47	17	23	33
$S_{1} R_{1} S_{1} R_{2}$	19	6	5	11
$S_{1} R_{1} S_{2} R_{1}$	5	3	7	17
$S_{1} R_{1} S_{2} R_{2}$	46	9	19	35
$S_{1} R_{2} S_{1} R_{1}$	18	2	7	12
$S_{1} R_{2} S_{1} R_{2}$	7	1	3	5
$\mathrm{S}_{1} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{1}$	7	2	0	5
$S_{1} R_{2} S_{2} \mathrm{R}_{2}$	12	3	4	13
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{1}$	12	2	2	14
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{2}$	9	2	4	3
$S_{2} \mathrm{R}_{1} S_{2} \mathrm{R}_{1}$	5	1	3	4
$S_{2} R_{1} S_{2} R_{2}$	9	4	4	11
$S_{2} R_{2} S_{1} R_{1}$	42	4	17	31
$S_{2} R_{2} S_{1} R_{2}$	19	2	2	10
$S_{2} R_{2} S_{2} R_{1}$	13	5	8	11
$S_{2} R_{2} S_{2} R_{2}$	34	9	8	33

Observed Frequencies of Combination of 3 trials (continued)

2nd Order Markov Simulation

	$\mathrm{S}_{1} \mathrm{R}_{1}$	$S_{1} \mathrm{R}_{2}$	$S_{2} \mathrm{R}_{1}$	$\mathrm{S}_{2} \mathrm{R}_{2}$
$\mathrm{S}_{1} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{1}$	53	4	11	28
$S_{1} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{2}$	7	2	3	7
$\mathrm{S}_{1} \mathrm{R}_{1} \mathrm{~S}_{2} \mathrm{R}_{1}$	19	7	6	15
$\mathrm{S}_{1} \mathrm{R}_{1} \mathrm{~S}_{2} \mathrm{R}_{2}$	45	12	15	44
$\mathrm{S}_{1} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{R}_{1}$	14	6	4	14
$\mathrm{S}_{1} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{R}_{2}$	2	1	2	4
$\mathrm{S}_{1} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{1}$	5	5	6	0
$S_{1} R_{2} S_{2} R_{2}$	6	7	2	9
$S_{2} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{1}$	19	3	6	15
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{1} \mathrm{R}_{2}$	4	3	0	3
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{2} \mathrm{R}_{1}$	10	3	6	7
$\mathrm{S}_{2} \mathrm{R}_{1} \mathrm{~S}_{2} \mathrm{R}_{2}$	11	5	10	7
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{R}_{1}$	42	11	15	38
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{1} \mathrm{R}_{2}$	8	12	1	4
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{1}$	10	5	5	11
$\mathrm{S}_{2} \mathrm{R}_{2} \mathrm{~S}_{2} \mathrm{R}_{2}$	45	10	11	33

signal detection models were obtained from these sequences. The results are comparabie to those obtained in the smaller simulation.

The results indicate that the variances of the statistics are greater if dependences are assumed in the simulated data. The size of this effect, however, is relatively small. A more important difference is the extent to which the empirically obtained variances are higher than the minimum variances calculated theoretically, assuming large sample sizes, i.e. as the sample size to infinity. Surprisingly the statistic which has an empirical variance close to the asymptotic variance is d'. The main values for the parameters were calculated for each of the simulations and are given in the table below. As can be seen from th is table all the simulated data approximate reasonably well to the empirical.

As well as calculating the results for the overall parameters the value of the parameters following a specific trial and a specific two trials were calculated as in programme estimate. A very surprising finding was the results for the zero order Markov simulation, see table below. Here it appears that the values of the parameters are dependent on the immediately preceding trial even though the data was simulated according to a zero order Markov process. The programme was re-run and the sample sizes on which each of the estimates of the parameter had been calculated was obtained and the results are given in the table below. As can be seen the sizes of the samples varied tremendously, the smaller sample sizes occurring when there are more errors preceding the estimation than correct. This means that in a zero order Markov process the number of corrects followed by correct were much greater than the number of wrongs followed by wrongs. Therefore the estimate of the sensitivity following two corrects is based on a much larger sample than when you are looking at the value of the parameter following two successive wrong responses. The nettresult of this is therefore to confound the state in the immediately preceding trial with any effects of biases in the estimates.

Accordingly the biases in the parameters were studied in more detail. It proves difficult to work out an explicit formula for the biases of the parameters therefore a programme bias was written to calculate numerically the expectation of each of the parameters, because the difference between the expected value of the parameter and the population parameter gives the measure of the bias of the statistic. Thus, bias works out the probability of every possible result within a sample of size N given the population parameters. For each possible result it calculates the observed value of the statistic that would be found and the product of this value and its probability summed over all the possible observations gives you the expected value of the statistic. This programme was first run using Luce's model and it gives an expectation of infinity. This is because when no observations are obtained in certain categories the estimates value of the statistic is, in fact, infinity. However, such instances were removed from the sample being considered in programme estimates. Accordingly, programme bias was amended so that the expectation of the various statistics were derived excluding outcomes which contained no observations in a particular category from the sample space. The results are given in the tables below when the probabilities of being correct are .5,.6,.7,.8 and .9. In all cases there are biases. As can be seen from the table the statistics in Luce's model are biased. This effect was very large when the sample sizes are less than ten. However, by the time sample sizes of 45 or more are obtained the statistic values have almost reached their asymptotic levels. Equivalent tables are given for the other models and these appear below.

This bias effect confounds the differences between statistics depending on data following particular sequences of trials. It is possible therefore that some of the results obtained earlier could have been the result of this bias effect. Accordingly programme estimate was re-run with a minor modification in that the estimates of the signal detection statistics were all based on samples of size 100 , the rest of the data being discarded. Thus for every sequence

LUCE'S MODEL (z)

n	5	15	25	35	45	\propto
Pc						
.5	1.06	1.17	1.11	1.07	1.05	1.00
.6	.99	.78	.71	.69	.69	.67
.7	.92	.51	.71	.44	.43	.43
.8	.85	.35	.27	.25	.25	.25
.9	.78	.23	.16	.13	.12	.11

Non P (A^{\prime})
5
15
25
35
\propto
Pc

.5	.5	.5	.5	.5	.5
.6	.53	.63	.65	.65	.66
.7	.55	.74	.77	.78	.79
.8	.59	.82	.86	.87	.88
.9	.62	.88	.92	.93	.94

$P(c)$	5	15	25	35

Pc

.5	0	0	0	0	0
.6	.04	.18	.20	.20	.20
.7	.08	.35	.39	.40	.40
.8	.12	.51	.57	.59	.60
.9	.16	.63	.73	.76	.80
Th	5	15	.25	35	\propto

Pc

.5	-.06	-.18	-.11	-.07	
.6	.008	.21	.28	.30	.33
.7	.08	.17	.54	.56	.57
.8	.15	.65	.72	.74	.75
.9	.22	.76	.84	.86	.88

σ	5	15	25	35	\propto
Pc					
. 5	. 02	. 09	. 10	. 10	. 1
. 6	. 04	. 17	. 20	. 20	. 2
. 7	. 06	. 25	. 29	. 30	. 3
. 8	. 08	. 32	. 36	. 38	. 4
. 9					
d'*	n	5	10		\ldots
Pc					
. 5		0	0		0
. 6		. 08	. 34		. 507
. 7		. 16	. 66		1.05
. 8		. 25	. 95		1.68
. 9		. 33	1.19		2.56

* The data for larger n was not collected as the estimation procedure took much more computer time than the others.
some data following correct trials was discarded and some sequences were discarded as they did not have 100 wrong trials. When this was done for Experiment 2 out of the 80 sessions only about 20 remained, and this was not really enough to make very powerful tests of the hypothesis that the statistics depended on the state of the immediately preceding trial. As a result the programme was again amended this time insisting that the sample sizes on which the statistics depending on the immediately preceding trial were based was 45 in all cases. Having done this 51 sessions out of the 80 remained in the sample for analysis and the reliability of the estimates had been reduced.

The results of this analysis are given in the table below. On the overall test to see whether the statistic depends on the immediately preceding trial none of the sensitivity statistic showed a significant dependence while all the bias statistics did. On the analysis to see whether they depended on the stimulus on the last trial the response on the last trial or whether the last trial was correct or wrong the only significant finding was that the bias statistic of Atkinson's model did depend on the response on the last trial. It thus appears that by ensuring equal numbers in the samples from which the statistics are calculated one is reducing the power of the test. The only conclusion that one can draw is that the bias statistics depend on the state the subject was in on the last trial and that the sensitivity statistics as calculated using all the data depend on the state in the last trial, in particular they depend on whether the correct was correct or wrong or not. This effect, however, is contaminated with a possible bias effect.

Dependence of statistics on Immediately Preceding Trial (all based on sample size $\mathbb{N}=45$)

Last Trial Characterised by

Statistic	$\begin{gathered} \text { Overall } \\ S-R \end{gathered}$	S	R	Correct/Wrong
η				
d^{\prime}				
Th				
P(c)				
A^{\prime}				
σ			X	\%
bias (Luce)	X	,		"
bias(TSG)				$\therefore \quad 30$
Bias \%	X		X	
bias (ATK)	X		X	+80

Conclusions

In the Introduction several signal detection models were summarised and major experimental findings in the area reported. It was also pointed out that although the phenomenon of inter-trial dependence was well established none of the models appeared adequately to account for this phenomenon. Indeed, the existence of this effect would, it was suspected, reduce the accuracy of some of the more quantitative predictions of the models.

The experiments reported were designed to estimate the effect of inter-trial dependence in a number of common types of experimental conditions. The experimental variables were chosen as those commonly varied in recognition detection and reaction time tasks. Out of the 210 sessions studied 105 showed significant first order SR dependences while 39 showed significant second order or higher dependences. On breaking the $S R$ sequences down into sequences of responses, sequences of correct wrongs, and sequences of stimuli it was found that the response sequences showed the greatest number of dependences. The inter-trial dependences of the latencies appeared larger than those measured from the $S R$ sequences.

On examining the sessions for non-stationality it was found that after the first 100 trials had been discarded the effect was negligible on the $S R$ sequences although it was more apparent in the latency data. The experimental variables found most to affect the χ^{2} measuring inter-trial dependence were the subject variable, task difficulty and a priori stimulus probability. Periaps this is due to the fact that these variables also affected the total number of correct and wrong responses.

Attempts were made to describe the dependences using zero, first and second onder Markov models, a two state latent Markov model, and autoregressive processes. A low order autoregressive model proved incapanle of adequately
describing the inter-trial dependence. None of the Markov models fitted exactly and the latent model gave a sensible approximation to the data only when its parameters were estimated using a iterative procedure.

The parameters of the signal detection models were then calculated depending on the SR state of the immediately preceding trial. This was found to affect the value of both the bias and the sensitivity parameters, the bias parameter depending particularly on the immediately preceding response while the sensitivity parameter appeared to depend on whether the immediately preceding trial was correct or wrong. As there were more correct responses than wrong ones the sample size on which the estimate was based following the correct response was greater than that following a wrong response. The estimates of the sensitivity parameters of the models were shown to be biased. This bias could account for the dependence of the sensitivity statistic on the immediately preceding trial. The significant dependences found in the sequences of correct wrongs both of first and second order indicate that at least in some cases an unbiased estimate of the sensitivity would depend on whether the last trial was correct or not. The degree of this dependence was estimated by calculating the variance of the estimates of the parameters depending on the immediately preceding trial. The major experimental variable found to affect this statistic was task difficulty, and this result could be explained by an effect of bias.

The Markov models used to characterise the dependence were then used in a large number of simulations in order to find out the effect of such dependence on the theoretical variances of the estimates of the parameters of the models. It was found that the dependence did have the effect of increasing the variances of the statistics. However, this effect was quite small when compared to the bias present in a number of the statistics due to the small sample size. When the sample sizes are larger (over 100) the bias effect disappears although the small effect of non-independence remains.

To sum up, sequential dependences were measured in a number of tasks. The most important aspect of bias on detection or recognition models assuming trial independence was dependence of a response on the immediately preceding response.

Dependence on the accuracy of the immediately preceding trial was also present. The most critical factors affecting the dependence were subject differences and task difficulty. The effect of the dependence is greater on the bias than on the sensitivity parameters. It was also shown that statistical tests developed for sensitivity statistics were robust against the observed violations of the independence assumptions.

REFERENCES

Abrahamson \& Levitt (1968) "Statistical Analysis of Data from Experiments in Human Signal Detection" Unpublished Report Bell Telephone Laboratories.
Abrahamson \& Levitt (1969) "Statistical Analysis of Data from Experiments in Human Signal Detection" J.Math.Psych., V. 66 pp.391-417.

Abrahamson, Levitt, \& Landgraf (1967) "Statistical Estimation of Parameters of Decision Theory Models"
J.Accoust.Soc.Amer., V. 42 p.ll95.

Atkinson (1963) "A Variable Sensitivity Theory of Signal Detection" Psych.Rev., V. 70 pp.91;106.
Atkinson, Bower \& Crothers (1965) "An Introduction to Mathematical Learning Theory" J. Wiley \& Sons N.Y.
Anderson \& Goodman (1957) "Statistical Inference about Markov Chains" Ann.Math.Stat. V. 28 pp.89-110.
Atteneave (1959) "Applications of Information Theory to Psychology" Holt Reinhart \& Winston N.Y.
Audley (1960) "A Statistical Model for Individual Choice Behaviour" Psych.Rev., V. 67 pp.1-15.
Bertleson (1961) "Sequential Redundancy and Speed in a Serial Two Choice Responding Task" Quart.J.Exp.Psych., V. $12 \mathrm{pp} .90-102$.

Bertleson (1963) "S-R Relationships and Reaction Time to New Versus Repeated Signals in a Serial Task" J.Exp.Psych., V. 65 pp.478-484.

Bertleson \& Rankin (1966) "Reaction Time to New Versus Repeated Signals in a Serial Task as a Function of Response Signal Time Interval" Acta Psych., V. 25 pp.132-136.
Bower (1959) "Choice Point Behaviour" in Bush R. and Este W.K. "Studies in Mathematical Learning Theory" Stanford University Press.
Broadbent \& Gregory (1965) "On the Interactions of SR Compatibility with other Variables Affecting Reaction Time" Brit.J.Psych., V. 56 pp.61-68.

Bush (1963) "Estimation and Evaluation" in Luce, Bush and Galanter "Handbook of Mathematical Psychology" V.l. J. Wiley N.Y.

Carterette \& Wyman (1962) "Application of a Simple Markov Model to a Simple Detection Situation Involving Social Pressure" in Creswell Solomon \& Suppes. "Mathematical Methods in Small Group Processes" Stanford University Press.
Coleman (1964)a. "Introduction to Mathematical Sociology" The Free Press N.Y.

Coleman (1964)b. "Models of Change and Response Uncertainty" Prentice Hall Inc.

Cox \& Miller (1965) "The Theory of Stochastic Processes" Methuen London.
Crossman (1955) "The Measurement of Discriminability" Quart.J.Exp.Psych., V.7 pp.176-195.
Davis Moray \& Treisman (1961) "Imitative Responses and the Rate of Gain of Information" Quart.J.Exp.Psych., V.13 pp.78-89.

Day (1956) "Serial Non-Randomness in Auditory Differential Threshold as a Function of Inter Stimulus Interval" Amer.J.Psych., V.69 pp.387-394.
Dorfman \& Alf (1968) "Maximum Likelihood Estimation of Parameters of Signal Detection Theory" Psychometrika V.33, pp.117-124.
Ega Schulman \& Greenberg (1959) "Operating Characteristics Determined by Binary Decisions and Ratings" J.Accoust.Soc.Amer., V.31 pp.768-773.

Estes (1959) "A Random Walk Model for Choice Behaviour" in Arrow Karlins Suppes edn. "Mathematical Methods in the Social Sciences" Stanford University Press.
Finney D.J. (1952) "Probit Analysis A Statistical Analysis of the Sigmoid Response Curve" Cambridge Univ. Press., London.
Fitts (1959) "Information Handing in Speeded Tasks" Research Report RC-109 IBM New York.
Fitts (1966) "Cognitive Aspects of Information Processing III - Set for Speed versus Accuracy" J.Exp.Psych., V. 71 pp. 849-857.
Falmange (1965) "Stochastic Models for Choice Reaction Time with Application to Experimental Results" J.Math. Psych., V.12, pp.77-124.

Fechner (1860) "Elements Der Psychophysik" Leip.Breithoff \& Hartel.
Friedman \& Carterette (1964) "Detection of Markovian Sequences of Signals" J.Acoust.Soc.Amer., V. 36 pp.2334-2339. Garner (1962) "Uncertainty and Structure as Psychological Concepts" J. Wiley \& Sons N.Y.
Gourevitch \& Galanter (1967) "A Significance Test for One Parameter Isosensitivity Functions" Psychometrika V. 32 pp.25-33.

Green D.M. \& Swets J. (1966) "Signal Detection and Recognition Theory" J. Wiley \& Sons N.Y.
Grundy (1961) "Auditory Detection of an Unspecified Signal" J.Acoust.Soc.Amer., V. 33 pp.1008-1012.

Hale D. (1967) "Sequential Effect in a Two Choice Serial Reaction Task" Quart.J.Exp.Psych., V.l9 pp.133-14l. Hick (1952) "On the Rate of Gain of Information" Quart.J.Exp.Psych., V. 4 pp.ll-26.
Hodos (1970) "Nonparametric Index of Response Bias for Use in Detection and Recognition Experiments" Psych.Bull., V. 74 pp.35l-352 Hyman (195.3) "Stimulus Information as a Determinant of Choice Reaction The" J.Exp.Psych., V. 45 pp. 188-196. Keele (1969) "The Repetition Effect: A memory dependent process" J.Exp.Psych., V. 80 pp.243-248.
Kendall \& Stuart (1963) "The Advanced Theory of Statistics" Vols.l, 2 and 3. C. Griffin \& Co., London.
Kohler (1923) "Zur Theorie Des Sukzessivergleichs and den Zeilfehler" Ps.Ford., V. 4 pp.115-175.
Krantz (1969) "Threshold Theories of Signal Detection"
Psych.Rev., V.76, pp.308-324.
Kinchla (1966) "A Comparison of Sequential Effects in
Detection and Recognition" Experimental Psychology Series
New York University Technical Reports No. 1.
Kinchla \& Atkinson (1964) "The Effect of False Information
Feedback on Psychophysical Judgments" Psychon.Sci.,
V.l pp.317-318.

Laberge (1962) "A Recruitment Theory of Simple Behaviour"
Psychometrika V. 27 pp.375-396.

Laberge (1964) "Attention Factors and Latency in Simple Choice Situations" Unpublished paper presented at Ann Arbor University.
Laming (1968) "Information Theory of Choice Reaction Times" Academic Press, London.
Lazarfeld \& Henry (1968) "Latent Structure Analysis" Houghton Mifflin Co., Boston.
Leonard (1959) "Tactual Choice Reactions. I." Quart.J.Exp.Psych., V.11 pp.76-83.

Luce (1959) "Individual Choice Behaviour" J. Wiley N.Y. Luce R. (1963) "A Threshold Theory for Simple Detection Experiments" Psych.Rev., V. 70 pp.6I-79.
Luce R. (1963)a "Detection and Recognition" in Luce R., Bush \& Galanter "Handbook of Mathematical Psychology", Vol.l, J. Wiley N.Y.
Macdonald (1968) "Sequential Effects in a Signal Recognition Task" Unpublished M.Sc. Report University of Stirling. McGill (1957) "Serial Effects in Auditory Threshold Judgments" J.Exp.Psych., V.53 pp.297-303.

McGill (1961) "Loudness and Reaction Time" Acta.Psych., V.19 pp.193-199.

McGill (1963) "Stochastic Latency Mechanisms" in Luce, Bush \& Galanter ed. "Handbook of Mathematical Psychology" J. Wiley N.Y.

McGill W. \& Gibbon J. (1965) "The General Gamma Distribution and Reaction Times" J.Math. Psych., V. 2 pp.1-18.
Meyers (1970) "Models for Response Times in Detection
Experiments" Unpublished paper read to B.P.S. Math. and Stat.Psych. Section.
Mowbray \& Rhoades (1959) "On the Redundancy of Choice Reaction Times with Practice" Quart.J.Exp.Psych., V. ll pp.l6-23. Parducci \& Sandusky (1965) "The Time Error in Auditory Perception" Amer.J.Psych., V. 59 pp.193-219.
Parks T. (1966) "Signal Detectability Theory of Memory Recognition and Performance" Psych.Rev., V.73 pp.44-58. Peterson \& Beach (1967) "Man as an Intuitive Statistician" Psych.Bull., V. 68 pp.29-46.

Peterson Birdsall \& Fox (1954) "The Theory of Signal Detectability" Trans.I.R.E. Group on Information Theory P.G.I.T.-4 pp.171-212.

Pollack (1963) "Speed of Classification of Words in Superordinate Categories" J.Verbal Learning and Verbal Behaviour V. 2 pp.159-165.
Pollack I. \& Hsieh R. (1969) "Sampling Variability of the Area Under the ROC Curve and of $d^{\prime \prime}$ Psych.Bull., V.71 pp.161-173. Pollack \& Norman (1964) "A Nonparametric Analysis of Recognition Experiments" Psychon.Sci., V.l pp.125-126. Postman (1946) "The Time Error in Auditory Perception" Amer.J.Psych., V. 46 pp.558-567.
Rabbitt P. (1959) "Effects of Variability in Stimulus and Response Probability" Nature V. 183 p. 1212.
Sandusky (1966) "A Two Choice Recognition of Stimuli in Markovian Sequences - A Test between Two Models"
Unpublished Ph.D. Dissertation University of California L.A. Sandusky (1971) "Signal Recognition Compared Models for Random Markov Probability Sequences" Perception and Psychophysics V. 10 pp.339-347.

Schwaneveldt \& Chase (1969) "Sequential Effects in Choice Reaction Time" J.Exp.Psych., V. 80 pp.1-8.
Seigel (1956) "Nonparametric Statistics" McGraw Hill.
Senders (1953) "Further Analysis of Response Sequences in the Setting of a Psychophysical Experiment" Amer.J.Psych., V.66 pp.215-228.

Senders V. \& Sowards (1952) "Analysis of Response Sequences in the Setting of a Psychophysical Experiment" Amer.J.Psych., V. $65 \mathrm{pp} .358-374$.

Smith T.E. (1968) "Choice Reaction Time - An Analysis of the Major Theoretical Positions" Psych.Bull., V. 69 pp.77-110. Speeth \& Mathews (1961) "Sequential Effects in the Signal Detection Situation" J.Acoust.Soc.Amer., V. 33 pp.1046-1054. Stevens (1939) "On the Problem of Scales for the Measurement of Behavioural Qualities" J.Unif.Sci., V.9 pp.94-99.
Sternberg (1964) "Two Operations in Character Recognition Some Evidence from Reaction/Time Experiments" Paper presented at AFCRL Symposium Boston Nov. 1964.

Stone M. (1960) "Models for Choice Reaction Time" Psychometrika V. 25 pp.251-260.
Swets Tanner \& Birdsall (1961) "Decision Processes in
Perception" Psych.Rev., V. 68 pp.301-340.
Tanner Haller \& Atkinson (1967) "Signal Recognition as
Influenced by Presentation Schedules" Perception \& Psychophysics V. 2 pp.349-358.

Tanner Rauk \& Atkinson (1970) "Signal Recognition as Influenced by Information Feedback" J.Math.Psych., V. 7 pp.259-274. Tanner Swets \& Green (1956) "Some General Properties of the Hearing Mechanism" Univ. of Michigan Electronic Defence Group Technical Report No. 20.
Thomas \& Legge (1970) "Probability Matching as a Basis for Detection and Recognition Decisions" Psych.Rev., V.77 pp.65-72. Thrummond \& Alluisi (1963) "Choice Time as a Function of Stimulus Dissimilarity and Discriminability" Canadian J.Psych., V.17 pp.326-337.

Verplank W., Collier \& Cotton (1952) "Non-independence of Successive Responses in Measurement of Visual Thresholds" J.Exp.Psych., V. 44 pp.273-282.

Wagenaar (1968) "Sequential Response Bias in Psychophysical Experiments" Perception and Psychophysics V.3 pp.364-366. Wald (1947) "Sequential Analysis" Wiley N.Y. Watson Rilling \& Bourbon (1964) "Receiving Operator Characteristics Determined by a Mechanical Analogue to the Rating Scale" J.Acoust.Soc.Amer., V. 36 pp.283-288. Wertheimer (1953) "An Investigation of Randomness of Threshold Measurements" J.Exp.Psych., V. 45 pp.294-303. Wiggins (1955) "Mathematical Models for the Interpretation of Attitude and Behaviour Change" Unpublished Ph.D.
Dissertatation Columbia University.
Williams (1966) "Sequential Effects in Disjunctive Reaction
Time: Implications from Decision Models" J.Exp.Psych., V. 71 pp.665-672.

APPENDIXA

9 This contains the total number of errors response
ones and latencies (in m.s.) occurring in 5 successive blocks of 140 trials for Experiments 2, 3 and 4.

	BLOCK	1	2	3	4	5
0.75 R		51． 6 のanas		69． $\mathrm{mangang}^{\text {a }}$	54．ดงคッดの	57．0ectionti
$0 \cdot 50 R B$		69．リのn介ดa	72．ดคの円ด介		69．9の9のロの	7？．
F．75R		50.090 ¢an	46．9000na		57．月のロロの刀	55．anoxat
0.50 R				61．9んの日月号		66．
F．5aR		78．0日ッいの日	76・ハคロロハの	78． 1 －	71． 7 －	59．0acman
F． 5 ORB		56．90んの日可	71．イのロロッロ	73．ดのดのดの		GA．manaricta
O．P．5R			5P．－Acosen	57．リのロハのロ	7．3－ 9 －1ranc	49．000sana
F．25R		43.0000000		55．0日の日の号		51．Яのดのดด
0.750	S 1	38．93nand		47．ハイックの介	46.8 arimam	
0．50DR		36．anocus	42．onsicuna	57．คตめのけの	49．Anaami	64． 5 angone
F．751）		34.0000006		34．6．arincha	41．	
0.500		29－00nobes	ל1．0ncong	4．3．	52．ロロのクロの	23．crimmona
F．50D		72．0日Gumar	56．0nciadr	69．90ハ0900	55．ดのロの刀ด	76．
F． 5 ADR		50.6 binmenea	6is．ancosies	6P．	65． －イคのคの	
0．？．50			S－1angas		41．0日月のam	
F．25D		5？．0．9nmb：	55．anaman	5．3． $\operatorname{singang}$	48・カดดดดの	41．ancago
0.75 R		36－6ancios	41 －monaon		51．คのดののa	44．0．10．390
0.50 RB			19．4．ロの日の			31.900 ana
F．75R		：1－1：30，${ }^{\text {a }}$			8．Мпの入入のa	17．
$0.50 R$		41.0060 ma		5？．$\frac{\text { anconsa }}{}$		66． 1 の日の刀口
F． 50 R		27.6069306	3．3－0ヶmanay			
F． 50 R B		23．6rusubay	9．3．mbnacm		16．めのロのワロ	21．जncaria
0．25R		2ヶ． 1600001	14． 40 anamo	14．0nのm¢a	15．ภncona	16．mannita
F．PSR		20．0．0ncomo	14．0日大刀口os			11．0ncila
0.750	S 2	$30 \cdot 6 \mathrm{cosan}$		29．ロッハロのロ	33.0 ロดハの9ด	27－mactera
0.5 ADR		$78 \cdot$－manama	67－तanama	K7－ดคคハดด		
F．75D		32.0 ！日man	36．0日000の	34 ロดのดのハ		27－ncomsa
0.500		40． 10 conana	56．以ロックロ可		5．3． F －	63． の日arry
F．Snd			4の・ดののロดの			62－Mabif：
F．Sadr		$4 \% \cdot 6 \begin{gathered}\text { ananan }\end{gathered}$	5月．ИНのロの日		31．${ }^{\text {a }}$－	55．月ดดの口の
O． 2.50			43．ロロクロの9		4．5．刀inchan	50．Angana
F． 2.50			33． 3 －		26・カロロハのa	2．3．กпตmのa
0.75 R		12．	22－0日のnの发	6・カワのดのคの		1 2.6080000
$0.50 R B$		？4．0ツのดのn			2の・ハดワの円の	24．0日singon
F．75R					25．	1．3． 5.9640
$0.50 R$		2．4．0ッのの日ด		37．ロancon	36． B －	5．3．000sma
F． 50 R			2．3．イロanaの			2．1．nmonan
F．SMRR						19－6mencta
O．P．5R		37．जn¢ana	37－ロด円のดス	30． 9 ¢angan	18．m＠an¢m	15．anmenam
F．25R	S 3					$38 \cdot \operatorname{raman}$
0.75 D		14．月の円คดก		2．ด．ดัดดกด	25．刀manan	18．6ituban
$0 \cdot 500 \mathrm{DB}$		18．リッツのan				20．Ariminam
F．75D		19．900009	2．－ 0 gonat	26． 2000000	16．ロดดリดn	21－ดกตดดオ
0.5011		2．2． 1 月n¢n	2．7－ดngnan	3月．ロのロの日の	31．0の日の可	28・ロ日ッดの戍
F．50id			26．ロロッロロロ	28．リロロハロロ	25．0の円のロロ	47．0のロロの日
F． 5 ODB		24．00ックロロ	19．0日の刀口ロ	21．000のnด	20．00のロロด	34.000 －
0.250		33－のロのロロロ	31．00の日可	34． 1 のดのロดด	29．00ロ日勿 3	34.0 ロのロのにの
F．25D			30.000000	20．000の日0	20．000000＂28	28．ロロのดดの

COND

$0.75 ?$
0.50 ？B

F． 75 R
0.50 R

F．50．
F．5DRB
0．25？
F .2 S
0.75 D
$0.5 D D E$
F． 75 D
O．50D
F．50D
F．50DB
0．25D
F．25D
$0.75 ?$
0.50 品

F． 75 ？
0.50 ？
$F \cdot 50 ?$
F．5DRB
0.25 ？

F．25R
0.75 D
0.50 DB

F．75D
0.50 D

F．50D
F．50DB
C．25D
F．25D

S 4

25－00）（ing
13．10．tang
27．9われの日の

2．6．ดดดのดの 2の．ดๆのดのด
17・ロดののดの 3？．のดののロロ 2
31．ต9のตตด

S 5
1

28．

47．ดのดロッに
28．のロロロのロ
29・ロロロロのに
29．0000円の
34．のロのロのด
43．めดのดのด 28．のดのดのด
25．90の日0日 23．000000

13．日0の日の日

19．月のロのロロ
32．のดのดดの 20．घののดan

11．ดのตตดの 13．ดดดดのก
14．の日ดのดの 16. ดดดดดのด
17・のดののดの 30．のดのดィ！

14．ロロのロのด 14. ตดのคのด
13•日ののカのロ 7．日のดのดดの

13．ตดดดのの 2の・ดののムดの
15．ดのดのดの 19．ロハのดดの

16．ดクดののด

35．ดのดのดの 27．ดのดのดด 17．ดด円のดの
24．のดคのดの 30．ดのดดดด 35．ดดดのดッ

51．日のดののの 50．ロのดの日の 55．のดのロのの
39.00000040 .00000041 .000000

15.00000026 .00000015 .000000 M

TOTAL RI!'s
COND BLOCK
$0.75 R$
0.50 RB
F. 75 R
$0.5 A R$
F. Sar

F: 50RR
0.25R
F.25F
0.750
$0.50 D R \quad S I$
F.75D
0.500
F. 5nn
F. 50DF
$0.2 .5 D$
F. 25 D
$0.75 R$
ก. 50RB
F.75R
0.50 R
F. SUR
F. SuRB
0.2.5R
F.2.5R

S 2
0.75 D
$0.50 D B$
F. 75 D
0.50 D
F. 500 D
F. SODR
0.2 .50
F.2.50
0.75 R
0.5 miRR
F.75R
O. 5AR
F. Sal
F. FARB
0.2.5K

S 3
F. P.5R
0.75 D
$0.50 D R$
F. 75 D
$0.50 D$
F. 50D
F. 5ADR
0.25 D
F.25D

1
. 2

COND

0.75 R		83.900×90	87－Mnaman	80．armama	8．3．	961400
0．50RB		6K．gncuan		72． $\operatorname{Gucasac}$		79－以入けのดの
F． 75 R		191．macisin		98．mbanco	103．かムのロの	104．日内のด介
$0 \cdot 50 \mathrm{R}$		－ry mameran	下く．	75．の日にパの	81．0円のดロの	
F．50R					90． 9 －	
F．50RR				81．ตดดดのด	65．9日ดดの号	
0．25R	S 4		59． －${ }^{\text {a }}$	45．月のハの日大	36． B －	
F．2．5R	S		49. ตnaran	26．ดดのハのด	35．9円ィのaの	
0.75 D		79． 9 －${ }^{\text {anama }}$	1a1． 1 －	94．Иロックロด	96．ดnののดの	98．Musicus
$0.50 D 8$		71.0 anocs	6R．ancmab	72．ロดのดดの	63．ดnッハオの	76．ดกa入のa
F．750		97．110cicha			192．คのオのロ	
0.500		75．bosman	89．กดด入คの	84．日ดดハดด		79．のดハのคの
F． 500		74．aのッハハの	8ด．ดの円ดดの		66．ดกดのaの	
F．SODR		\because－19：36MO	73．जAstana	8？．ดดคのดの	77．ดดamのa	77． 7aのama $^{\text {a }}$
$0.25 D$		6a．nganat		57－ดดดดのด	60．जnacam	56．
F．25D		46．0のックロa		49・カのคคのロ	40．ดคดดかの	38．ロดงのดの
0.75 R				195．0ดの入の	108． AOMOH	
$0 \cdot 50 R B$				79．0ดにのnの		
F．75R		166．のดดan				i 16．0n000
0．50k			R？．ดnanao	9？．Иดのにのa	104．बヵanan	97． 9000000
F．5AR			89．カニロดのด	86．जnaman	95． $\begin{array}{rc}\text {－}\end{array}$	92．500000
F． 5 （R）R		84．Guanat	74．ज介arina	78．ดのハウにの	66． $\operatorname{\text {ganana}}$	79．\％．！\％nの
O．25R		43．คncana	47．9ッハイดด		63． 3 －	6R．9n¢asm
F． 2.5 S		46．ดดดดดด	45．ดnกาูก	37．ロดのハウの		32－Пดamka
0.750					87－Mnctan	916．ロunama
0.5008			7ア．－xocaram	68． 7 －	80． 1 －	85． C －
F．75D		－\％P．の¢ดam	1介1． 1 の日の刀口		1の7．ดnलのa	10．3． 10096
0.590		\％4．月nsman	8R．Иดnctix	7ヶ．ภロハイロの	72．	70．06arana
F．5のD		77－mancona	79． 9 －	73． 9 ロののロด	72． $\begin{array}{r}\text {－} \\ \text {－}\end{array}$	65． 1 CODOCM
F． 500 B		74．ungacin			81．ดのnのan	
0．2．5D			5ด．Иคのดคa		50．ดのดの日a	63．
F．25D		47 －カッดハดด	42．90日ด日耂	36. ดดดのดの	32．0日ดดดด	42.

TOTAL LATENCIES（MS）（ignore－sign）

COND
BLOCK
ก． $75 k$
О．50kFz
F．75K
0．50K
F． 50 R
F． 5 ．
0． 2.5π
F．2．5k
0.751
0.50013

F． 751 ）
0．5（1）
$F \cdot 5010$
F．500H
0.25 D

F． 25 D
$0.75 R$
O．5ARE
F． 75 R
O． 5 बR
F．SGR
F．5ARB
0.2 .5 R

F． 2.5 P
0.751

0．5（nDH
F．75D
0.500

F．50！）
F． 50 ODH
0.25 D

F．251）
$0.75 R$
0．5nにな
F． 7512
0.5012

F． 5 OR
F．5ARF
0．25R
F． 2.5 R
0.75 D

O．5DDF
F． 750
0.500

F．50D
F．5aDR
0．2．5D
F．25D

 － $165986 \cdot$ 日月－476507•0日－121731・ロロー133306．00－165482•nの

CCND

$0.75 ?$
$0.5 D P B$
F． 75 ？
$0.50 R$
F． 50 B
F． 5 DПB
0.25 ？

F．25？
0.75 D

C．57DB
F．75D
0.50 D
$F .5 D$
F．50DB
$0.25 D$
F．25D
0.75 R

C．50，B
F． 75 R
0.50 R

F． 5 gR
F．50RB
$0.25 n$
F．25R
0.75 D
0.50 DB

F．75D．
$0.5 D D$
F．50D
F．50DB
0.25 D

F．25D

 $-102136.00-97497 \cdot 000-105847 \cdot 00-107725 \cdot 00-102687.0010$

 －104408．0日－84280．000－120043．00－121571•00－158441・の日
$-114506.90-86787.000-85294.000-787$ の3．0日0－82997．0日0 －95970．0のロー76845．000－66328．000－66548．000－71398．0ดИ
$-129636 \cdot 00-112278 \cdot 00-98930.000-98197 \cdot 000-108356 \cdot 00$
（？，Vi）
BLOCK
1

SOF
LOF
SUF．
LUF
SFF．
LFF．
SOM
$L \cap M$ SUM
LVM
SFM
LFM
$S \cap!$
I．OD
SUD
LVD
SFD
LFD
$S O F$ ．
LOE
SVE
LVE
SFE
LFE
SOM
LOM
SリM
LVM
SFM
LFM
$S \cap O$
LOD
SU1）
LVI
SFi）
L．FI）
$S \cap F$ ．
LOE
SUE
LVE
SFF．
LFF．
SOM
LOM
SUM

LVM

SFM
LFM
SOI
LOD
SUD
LVD
SFD
LFD

3
4
5

		－ดncirimari
	－anaのィara	
－のnのnの日a	－のロのオのけのa	
－Aッロッのロのa	1－ 1 －	
－ロの円のnaのa	－の介のロのaワの	1－日のดのハウ¢
－のヘロarana	1－ロッのamă	
17－9円のคのa	2．4．かのดのロの	
18．ロッのロッハ		
2．7－Mロッハのa	24．ハロロのルハ	，5－Mmarime
15．円ロロのロロ		3．3－Mrarants
16・ツのロッのロ		
36．ดดのルのa	4a．	4P．Aprmar
6．3．ดดคのคィ		
2．4．ルイดのロッ	ィム・ハคดดのa	3．3－मianのgn
15．9円ดด介の	？4．	
3ヵ・の円ロいのロ	43－ 0 －	
2．8．जดดดต9	33．	31－ロッハナツの
	27－ムดดハのa	

COND

\because OE：		1．ดnamana	13．คดดดดの	8．ดดดดดดดด	3．ดのハดดのด	
1.05		5．๓のハのดのィ		1－のดのăăa	4． －$^{\text {anagana }}$	19．ดงดのă
SU：			4．クด入のดのด	6．	6．ด̆ดดดดのп	
LVE			1－¢イ刀ดのハの		2．	1．mamasaba
SFF			6． －	6．	2．	
I．FE		－biadiasiana		－manapara	1－	－ดanagaan
SO：		？1．ciectacta	29－ดคดดดด	2．1． 1 －	18．ดดดดดดa	
LO4	S 4		18．ดัのดのa	17． 1 anayco	12．ดคのดดa	15．日ด刀口ам
SIM		：1ヶ． 1 ¢atana		3．3．万人のmดa	2\％－ดดnanan	3P．ロッウmar
l．VM			8．ハดดดハハの¢	12．ดのハのดด	14． 14 AGAAA	10．ดคのดのハ
SFM			27－мăロă	19．0．aのăa	16．ดดのดดă	21． 1 －
LFM				10．0のハのă		26． 2ancan $^{\text {a }}$
SOD		44．जのa入のa	34．amanat	3R・ロロのヘロa	40.0 ロดのดดa	
L．ก1）			58．	55．ดดดดดă	44．ดดดดのด	64．gnaman
S\1）		28．anのman	33． 3 － 1 のดดดดa	36．	38. ดดดดดa	
L（1）		38．	53．ดดดดดดด	4R・ロดのハดด	39.0 － 3 －	5ヶ．！ハハハのดด
SFD			51. ロดăan	6R．ดดดดดด	71．ดのดดดดの	
LFD		？४．ดのaのă	16．ดดดดดă	P6． ¢ดดดดのด	28．ดด¢ดดด	33．9のハイハの
SOE			3． －	－Mmanagan	－Banamsan	2．ดmamman
LOE		3． B －${ }^{\text {anamana }}$		1－ancanaa	1－AGAacma	2．oganama
SVE		？－mancsarat			1－D句いいca	3．
IVE				3．m＠amama		1－リヘの円の円の
SFFP		S－mancouch	1－ 1 －	－ammanaのa	1－ C －${ }^{\text {abagamana }}$	1－imanama
LFE		1－6anamian	－आロดのดดดa	－ハคคロのロดa	－aดのabana	－Mancrabiba
SOM		16．maname	P3．\quad Manama	17－ 3 －	39． 3 －${ }^{\text {a }}$	19－ammara
LOM			3M． 3 ghana		24．ИИの积	
SUM	S 5	19．manama	1ヶ．ananas		18．日可吅可	10．arimana
LIVM		2．1．Amanan	：5．ดด	18．ロดăaの	16－ดACADAA	2P．－ดnmana
SFM		15．ดด¢ดดa	9－คดดのดดの		19．0ดのに日の	8．ロดのハดดの
I．FM		20．MGOnan		22．0日ดज品	7－ดのดのดのa	2．？．
SOD		41. 日agman	45．пดดaดa¢	37－ดのดดのด	38.000000	
LOD		56． ¢	54．0の日の日の	50．ロロのดดロ	32．ดดの吅可	
SVD			33．ロดดดดのด		55．0ดดのดด	50．ดดのดดด
LVD		37－ 3 －${ }^{\text {a }}$	28．0日ロดดดด	21．0日ロดのดロ	48． 1 －${ }^{\text {a }}$－	4ด．ดดดด日aの
SFD		4大．	27－ดดดดดด	47－日のオดดด	56－日月のロロロ	53 －ดดดดดดの
LFO		45．Аヵのดดa	56．ロロดดดの	63－日ロハの日の	63．0日日吅	53．日のハの可

TOTAL RESPONSES

COND	Block	$\cdots 1$	2	3	4	
SOE		70．ロッの日の日	53．ดคดดのด	76．ल¢ดดดค	84．0ดロดのn	65．ดดคคดด
LOF：			68．ロのดッのด	72． $\begin{gathered}\text {－}\end{gathered}$	K6．0ดดดดの	－ 71.0 の日のดのด
SVE			81．日のดの日の	78．ดnดnan		
LVF：					64．のดの日のロ	79．9日のดの9
SFE		71. ロaのaba	67－ロดハกดก	59．คのดดのด	79．9のคดดด	68．0ngana
LFE		7？リカดดのด	68．ด¢		71．0の日勿	61．ดanama
SOM		6\％．ดด⿻コ一⿰幺幺）	68．日のดดのa		53．Иดดดの日	78．ดดดハのด
LOM			53．0ดのดดの	53．ด̆ดดのハの	56．ดのดのดA	
SVM		48．9ดのかのa		65．0日大ดの号	69．0日ロด日の	60．日Иの吅
LVM		73．90のaのa	63.000000	62．ロดの日ดの	43.9 のดดดのด	45．0日日月のロ
SFM		73．30のロดのロ	57－のロロロのロ	72．ロッロロのロ	58．ดดดดの日	67．ดดดดดด
LFM			61．クロのハのロ	54.0 ロのロロのロ	48．0日ロのにの	50．ดคのดのด
SOD			51． 1500000	54．00ดดのロ		49．ロดのดのด
LOD		65．ดดดดの日	53．ดのดハดの	47－ดのดดดの	51.0 ロดのดのロ	$40 \cdot$ のดのดดด
SVd		71.0 － 7 －	56．0日にのにの	56．ดのดดดの	51. の日のดのด	57－ดดดดのด
LVI）		48．0のロの日の	$49.00000 日$	38．ดのดดดด		55．ดดดのดの
SFD		56．ดดดดดの	59．0ロのดの可	62．Яハดののロ	52．円ูคดดの	65．9のตのดの
LFD			63．लดロดのロ	70.0 ¢ดดのด	71．	59．กのดのハの
SOE		7ロ．ดดดดดด	72．ตตดดaの	64．9ดロのดด	67．ดคดดの入	72．のanama
LOE				68．ดัดดの	61．ดのดดのด	
SVF．		6ッ．ハกดのดの	69．Мดのดดa	76. คดのดดด	67－ดดดดดの	6．3．manman
I．VF．		69．ดกดดИロ	61．	77－คヘดคのด	67－ดดดดดดの	79．日大弓⿱㇒日勺大a
SFF		6P．ดดดดดa	73．ดのagのa	68．0ดดロロの	57．ดดดดดด	68．ADAMA可
I．FF．		61．ดのดの日の	62．0日ดดのด	67－の日ดのロの		72．0の日のดの
50 M		7．9．の日のハดの	86．ロロのハのロ	6R．ดดดดดดด	76. ロดดดดด	5？．ดดดดのดด
LOM		79.0 の日ロロの	72．ดดดดดดด	78．ดคのดのด	69．ロดดดดด	7ค．ดดのハのด
SVM			62•ดดดดのด	6P．ロッดロの日	61．ロのดดดの	6．3．ดดăan
LVM		1 1 8C．日日，	72．ロのロด日の	56．0のดИの日	64．ロดのดのด	69．ดดのดのด
SFM		77 －ดดดดดดด	63．ロのดดดの	81．のดのดのด	54．ロのดดดの	77－日月の日の号
LFM		7．7．пnaman	75．日のดのロด	78．000の日可	76．ดดดดดの	
SOD	S2	6ヶ．ЛดดИハの	68．ดロดดのロ	76. ดดのดดด	84．0のロロの号	75．00ดのดロ
LOD		44．ハッดดดの	81．ดดดดのด	67．のดのดดの	65．90のดดロ	
SVD		66．ハดのตดの	64．のดดดดの	64．aghana		
LVD		77. ¢लのดดの	79． 100000	83．аดa＠an		86．DADAMAC
SFD		73. ハのヘのดの	69．	8ด．$\frac{\text { ¢ดのดดด }}{}$	8ด・ロロロดดด	70．ดดคの円ด
LFD		6ヶ．लのดのดの	64．0日の日日号		59．ロの日ดのด	72．Mnのman
SOE		G\％．	79．のดのaดの	72．MADAM号	85．ดดดのดの	
＋6\％		6K．t介ugan		64．ดดのดด口	65．クのดดดの	65．0日大日可
SVE．		7 70．ィのロดのด	64．の日のดดด	62．ロのดดดด	67．ดดดดดの	70.0 のดดดă
LVF．		79．ดดดดดด	8ロ，ดดハのロロッ	65．ロดのดのด	70．ดดのดดด	
SFFP．		67．คのดの积	78．ดดดのคด	7 7．ดดのดดด	75．ดดดดดの	67．ดロดのハロロ
LFF．			66．のดの日ロの	79．ดดคดดの	75.0 ロดดดดด	
Sn：M				76．0のロดのด	7 7．ดのดの日の 7	77・のดดดดด
LOM			78．ロดのดดด	$77.00000 日 月$	87．คのดดのด 8	89．ดดべのดの
SVM		85．बnのank		72．คดのดดด	89．ดดดのロの 7	78．¢ดดดดのด
LI／M	S3	77－ดのッツaの	7？． 7 －	72．ロロの吅	69．ดดの日のロ 7	7ロ．のดคดのa
SFM	S3	84．ดคハウดด	77． 1 のดのดดด	67．0のロロのロ	67．Иのロの可 8	83．ดดดดのด
LFM		75．ดดのดดの	75．0のロの日の	75.0000000	73．ดめดดดด 7	74.0 － 7 －
SOD		65．0日0月の吅	89．0ดดดのด	88．000のロの	83．0ดロの日の 7	71.0 日日の日an
LOD		75.0 － 7 の日のด	83．ロ0の日の刀	72．0ดดดดด	94．0の日00の 7	71.000000
SUD		77.0 の日のดのด	72.0000000	85.000000	76．000000 6	
LUD	． 7	73.0000000	74.0000000	67．000000	79．0000の0 8	82．0日ロロの日
SFD．		60．000日00	63．000000	74.0 ロの日日の刀	73.0000006	67－の日ロの可
LFD		－82．000000	73.000000	71.000000	88.0000008	84.000000

1．nt
sい6．
LVF
SFF．
LFF．
SOM
IOM
SUM
LIVM
SiFM
1．FM
SOD
LOD
SVO
LVD
Sin
L．FD

1	ヶイ・ดดのดด介	73．ด๐ดดดด	66．คのดดดด	73．ロпดดดa	78．ดดのハのด
	大ッ．のけのにの可	6K．ดดดดดa	62．ดのดดのด	77.0 － 7 －	77．ดดดดのด
		64．ดคคののの			72．
	59．の日のロのロ	77－ดดดดのa	71. のดの日の号	65．ดคハดดa	
	6．3．ดncuan	57．คッチのดの	K6．ロロのดロด	63．ロดดดดด	60．ดのตのดด
	7．3．ィヵッロッの	63．	81．0ดดดดดの		77－คのăのa
	5．3．¢ดのดのă		6G・のคロロッロ	56．ดคดดaの	60．ดคのคのハ
S 4	68．ดのดดにด	6セ・ดックロのด	71．日月ดดのハ	71．ウののロのロ	65．のดดのハの
	90．0ッうonat		89． 1 －		85．ดคคのハの
		76. のคウのニロ	70．イดดดのด	79． －$^{\text {acuana }}$	7 76．Mロのハイハ
	6K．Ariciman	65．ดのดดaの	73．0ดดのにの		63．9の日ama
	64．acionna	71． 7 ¢のดのด	74．ดดのดのด	78．ดดดดดの	69．ดดハดกด
	86．Пыаима	77－ดめดのดの	78．0の円円のด	85－Иค円ดロด	84．คのดウのด
	73．0ッワのにけ	46．ภッดดのด	66－リムmana	75. คロロハのด	64．日anana
	72．¢ăan		7ヵ．Йハのดคの	80．ภのロの日の	
			95．ดดคのดดด	98•ดのดดのの	86．Graman
		7？．өnaman	67－ดดคハดด	88•คดดคのハ	84．ancicma
	53． x （ancone		74. คのロดのด	6®．ตดคกดด	
	63．Mnpriv：		62．ดคคูคก		72．ตฺคตคค
	74．0nicusir	78．	69． 6 －${ }^{\text {anaras }}$		65．И¢लana
		66． 6 － 6 Ana	6a．abanan	72．0ดดดดの	72．คหの円ดด
	6．．．wnumem	64．ロロロロの为	61．DMAMAA	73．ロロดのロด	
	71.9 Cxag 0		65．ดดคดคの	63．ロคดดดa	69．Иムのคハの
			$74 . \operatorname{ดaภのดa~}$	58．ด¢ดロaの	70． 7 －
	73．日n刀can	83．ロค円入のロ	85．numnam	82－ดnmena	79．Ahmara
			91．Иヵ刀口のत	92．ロดnロのa	
S 5	71．0日の吅の	72．ด勺ดの日ロ		58．ロのロの吅	69．0nbmea
	89．MのOへの吅	87－ดคดกดの			8ด．ロロのaのa
	83．Macinan	74. คのハロのム		76．Иดดดดดด	78．ดดดのดดa
		69．ロイロロのロ	78．Øの日大ロロ	79－ロのロดดด	79．
		63．ดดคูの	67．日ดดดดロ	79．	85．ィดคのロの
	77．0riseran	82．ดดดดดด	84．ロハのロロの	74．ดのดดดの	65．90ヶmana
	5？－0bいcan	60．0日のロロの	48．	57．ロロロの日の	5P．пn¢igna
	6\％．Smanas			65．ดดのดดด	53．Amanna
	72．介narses	56．ロロロの日ロ	63．ロのดดดの	63．ロ日のดด口	46．ดnmman
	6？．ringoga	56．00日000	51．0の日のดロ	52．00日0の日	63．日のดのดロ

 71．แルดดのの 64．ดคलのดの

7ค．ดดดดดの 81．คのดดดด
72．ロดดคのด
67－คのตคa木
60．ดのตคaด

81．ดのดดดの
76.

77・カ円ดดดの
60．ดのดのロの
65．ニロロムのス

－ーดดดดดの

$75 \cdot$ ดロロのロのด 64．ดดのตดの

72．ロดดดดの 72．คッルのดの

7ロークッMロロッ
79．AnMARO

69－ดnดの日ォ

ND

	BLOC	
50\％：		
Lnr：		
SUE		
ve．		
Sire．		
LFF：		
SoM		
LOM		
SVM		
VM		
SFM	S 1	
FM		
SOD		
100		
Sun		
vud		
Sfi）		
LFi）		－148245．0日－1361485．n（1）－145426．0n－148029．00－148386．0の
SOF．		
Loe		
SVE		
LVE		
Sfe		
LFE		
SOM		
LOM		
SVM		
IVM		
	S 2	
LfM		
Son		
Lon		
SVI		
（vi）		
SFI		
1．F）		
SOE		
LOE		
SVE		
LVi．		
Sid		
sov S		
CM		
SVM		
UM		
SFM		
fim		
SOD		
109		
SVD		
VID		
$5{ }_{\text {Fi }}$		－2 2 の444．0日－123467．0日－1の2299．00－167814．00－164745．0日
FD		－2655日日．ด日－246681．0日－209932．0日－169598．0日－149162．0日

COND

SO：
LOE SVF LVE SFF： LFE
SOM
LOM suM LUM SFM LFM SกI） 1．OD SUD LVD Sin ．．Fい

SへE

LOE SVF： L．VE SFE LFE SOM LOM SVM LVM SFV：
LF\％ SOD LกD） sVi
LVD
SFD
LFI）

 －97151．の日の－109307．日の－120365．日日－121964．の日－114．321．の日 － 150357 －日可－172521．00－199014．00－178201．00－153182．0日

APPENDIXB

This contains examples of the analysis of variance, performed on the output of program overall for each of the four experiments. This is followed by the raw data for the analyses performed on experiments 2-4 not given in the text.

Analyses of Variance in Average Information contained in a response

EXPERIMENT 1

a) Analysis of Recognition data only:

Source	df	SS	MS	F
Stim. Prob.	2	.037	.019	1.3
Within Treatment	12	.171	.014	
Total	14	.208		

b) Analysis of all experimental conditions:

Source	df	SS	MS	F
Treatments	3	.049	.016	1.6
Within Treatment	21	.215	.010	
Total	24	.264		

EXPERIMENT 2

a) Not including burst data:

Source	df	SS	MS	F
Task (T)	1	. 004	. 004	3.0
Stim Prob (P)	2	. 176	. 088	40.0
Feedback (F)	1	. 032	. 032	26.7
S	4	. 021	. 005	1.5
T \times P	2	. 002	. 001	. 3
T $\times \mathrm{F}$	1	. 002	. 002	3.1
P $\times \mathrm{F}$	2	. 027	. 014	5.0
Tx ${ }^{\text {S }}$	4	.006-	. 001	
Px S	8	. 020	. 002	
$\mathrm{F} \times \mathrm{S}$	4	. 005	. 001	
T \times P $\times \mathrm{F}$	2	. 009	. 005	1.3
T \times P \times S	8	. 023	. 003	
T $\times \mathrm{F} \times \mathrm{S}$	4	. 003	. 001	
F \times P \times S	8	. 021	. 003	
$\mathrm{T} \times \mathrm{P} \times \mathrm{F} \times \mathrm{S}$	8	. 029	. 004	

b) Not including unequal stimulus probability data:

Source	df	SS	MS	F
Task (T)	1	. 0016	. 0016	4.3
Burst (B)	1	. 0000	. 0000	. 0
Feedback (F)	1	. 0009	. 0009	4.5
S	4	. 0048	. 0012	5.4
T X B	1	. 0000	. 0000	. 1
TX F	1	. 0008	. 0008	1.2
F X B	1	. 0003	. 0003	1.8
T× S	4	. 0015	. 0004	
B X S	4	. 0012	. 0003	
$F \times S$	4	. 0008	. 0002	
$T \times B \times F$	1	. 0002	. 0002	. 8
$T \times B \times S$	4	. 0009	. 0002	
$T \times F \times S$	4	. 0027	. 0007	
$B \times F \times S$	4	. 0007	. 0002	
$T \times B \times F \times S$	4	. 0009	. 0002	

EXPERIMENT 3

Source	df	SS	MS	F
Time (T)	1	. 0003	. 0003	1.38
Feedback (F)	2	. 0008	. 0004	2.18
Difficult (D)	2	. 0042	. 0021	6.34
Subjects (S)	4	. 0029	. 0007	3.32
T $\times \mathrm{F}$	2	. 0001	. 0000	. 36
T \times D	2	. 0002	. 0001	. 86
Fx D	4	. 0008	. 0002	1.25
T \times S	4	. 0010	. 0002	
F \times S	8	. 0015	. 0002	
D \times S	8	. 0025	. 0003	
TxFxD	4	. 0013	. 0003	1.53
TxFxS	8	. 0010	. 0001	
Tx Dx S	8	. 0011	. 0001	
$F \times \mathrm{D} \times \mathrm{S}$	16	. 0027	. 0002	
T $\times \mathrm{F} \times \mathrm{D} \times \mathrm{S}$	16	. 0034	. 0002	

In all the above designs each main effect is tested against the interaction between itself and subjects, i.e. $F_{A}={ }^{M S A} /$ MSAS. The subjects effect was tested against the highest order interaction, i.e. $F_{S}={ }^{M S S} /{ }_{\text {MSABCS }}$. In the analysis reported in pp 150 all effects were first tested against the highest order interaction.

EXPERIMENT 4

Source	df	SS	MS	F
Treatments	2	.0119	.0060	1.89
Within Treatments	12	.0379	.0032	
Total	14	.0498		

Ø．75R．	． 79.37	－8418	． 7728	－ 8438	． 84.38
F．75R	－ 83.39	－ 8155	． 75.32	－ 8 И91	． 8587
O． 50 R	． 9998	－995？	． 9990	.9961	1．00の
F． $5 \emptyset \mathrm{R}$.9991	．9976	． 9981	1．0ヵの	． 9998
¢． $2.5 R$	－タッブ	－ 24.38	． 7914	． 834π	． 8457
F．251？	－8056	－ishas	． 7845	－8ดへ4	． 8476
0.75 D	－प918	－ 8 ？ 39	． 7868	－ 82.18	－8P59
F．750	－ 4991	－828ロ	－ 8457	． 7914	－ 8587
19．590	－9995	． 9996	． 9995	：9981	． 9999
F．5AD	－9999	． 9986	． 9992	． 9995	． 9991
0．2．5D	－80ด4	．8113	－832の	． 8418	． 8155
F．251）	．8113	． 7655	－ 8399	． 8259	.8340

Average information in S
COND SUR1 SURE SIJR3 SIJB4 SUB5

0.75 R	－ 2925	． 9651	． 8360	． 9651	． 8846
F．75R	－ 8457	． 7868	－ 5927	． 8197	－7704
の． 50 R	． 9529	． 9796	． 9509	． 9974	． 9341
F．5日R	． 9 917	． 9986	． 9816	． 9985	． 9924
9．25R	－8694	－8641	． 9399	． 9316	． 9643
F．25R	． 8404	． 8925	． 8866	． 8729	． 8495
4．75D	． 8569	． 9.376	－8070	． 9160	． 9187
F．750	.7104	－8605	． 9076	．8155	－8320
0．50D	． 9862	－9985	． 9988	． 9796	． 9873
F．50D	9及の9	． 9967	． 9999	． 9911	． 9862
0.25 D	．7822	.9118	． 9651	． 9733	． 9717
F． 250	.9017	． 8975	． 8026	． 9032	． 8476

COND
 SUB1 SUR？SIJB3 SIJB4 SUB5

$0.75 R$	． 00055	．0960	． 0074	－019の	－ 0573
F．75R	－0¢3a	－ 0573	－ 0391	． 0355	－ 0228
9．5¢R	－の104	－0ヘ81	－0359	－ 0167	． 0155
F． $5 \emptyset R$	－0031	－ 0123	－ 0675	－ 0095	－ 0079
$0 \cdot 0.51$	－ดn31	－ 0174	－ดn98	－ 0049	－ 0166
F． 2.5 K	－ロの4の	－ 1195	－ดのワ9	－0135	－0088
0.750	－0¢16	－への58	－ด151	－0282	． 0175
F．75D	－0977	－ 00098	－0215	－ 0335	－ 0462
0.590	－ดn 5 ？	－ 0 a 53	－ 0 － 49	－ 0259	． 0115
F．50D	－日as？	－0038	－0164	－0166	－0011
Q． 2.50	－ดag？	－0ด61	－0023	－ 0384	－0059
F．2SD	－ 0068	－ 0115	． 0112	－0197	－ 0400

Average information in T and S
0.75 P

F． 75 R
A． 56 MR
F． 5.4
i． 2.5 R
F． 2.51
H．75D
F．75D
0．5AD
F． 50 D
0.250

F．25D

COND
SIIB1 SIIR2 SIJB3 SUR4 SIIBS
$0.75 R$
F．75：
0.50 F

F． 5 \％R

F．？．5R
4.751

F． 750
0.50.

F． 500
0.250

F．25D


```
-0017 •0746 • 3819 • 34m9 •2044
```



```
.3.334 -1865
.1011 - .3614 • P.428 • 4438 • 2894
-0N२3 - 4.39介 - 1870 • ?439 •1620
- जn71 -1824 - 2529 • 3882 •08894
.1454.0419 - 2888 . 4785 . 3078 Average information in S and R
.0139 - Ø477 •1845 - 2913 -0904
.0083 -1550 •1563 •2600 . 2748
```

SIRA SUR？SIJB3 SIJR4 SUBS
0.75 R

F．75i
$0.50 R$
F． 50 R
0.25 k

F．25R
0.751
0.751
0.551
0.5110

F．5．5D
0.250

F． 250

```
-.ดのリ9-.0159-.0103-.0183 .0.0465
-.0018.0.047-.0028 - 0296 -0047
```



```
-.Dハ51-.のnР7-.0の14-.0114-.0ロ17
```



```
-.04:37 -G@11-.0125-.0154-.の223
```



```
-.02आ1 - 0のजの-.0日66-.0174-.0264
    -9004-.0の30-.0019-.0549-.0030
    .0039 -0049-.0119 .0026-.0017
-.0013-.0N41-.0205 .0155 -0213
```

9．75R
f． 75 K
－䟚
F． 50 （1）
？？？5i
$\because 8$
－． 751
F． 75 5
1．50D
F．5nD
9． 2.50
F．25D

	5：76	$35 \cdot 66$		
	8	36．1		
	1？．5？	66．66	9	
	$7 \cdot 616$	10	－的	
	13	－9？7	$13 \cdot 3$	$8 \cdot 927$
5	5．949			
59		2.1 .71	31	
2.3	5．4．3n	4.977	26.29	
$9 ?$	3．878	16.64	$16 \cdot 9 ?$	
	6.306	$2 \cdot 305$	35．03	
－ 71 ด	11	1		

$\chi^{2} d f_{3}$ measuring dep T and S

COND
0.75 R

F．75R
10．Galk
F．5an
0．？5R
F．P．5R
0.750

F．750
0.500

F． $5{ }^{\circ} \mathrm{D}$
8．250
F．25D

SUB1 SIIB？SIIR3 SUB4 SUB5

```
59.41 36.85 ?.4.09 4.287 135.3
46.^п 8.7.1^ 31.05 63.52 80.45
19.0% 11.0.6 1P.63 3.342 19.64
1.765.11..37 104.0 6.906 10.79
11.9ห 18.03 4.193 1.878 96.099
5.ด.34 55.47 1.2.45 2.8.29 42.12
68.43 9.0.572 25.58 14.0.3 60.54
147.6 2R.43 58.06 60.76 100.3
25.1@ 5.346 4.218 14.50 15.25
5.1441 11.14 16.63 36.57 10.11
5!.40 .72.58 14.87 64.31 46.45
1.815 34.47 11.31 47.18 104.3
```

$x^{2} d f_{3}$ measuring dep T and R

SIWi SUBR SIIB．SIIB4 SIJB5

		41？．4		
	A	292	403．6	150.7
． 687	42．40	19	315.7	
3．	$3.39 \cdot 6$	37	184.9	
－ 6708	37	2	4	
2.405	440	20	26	
7.464	189．5	28	38	
81.88	160	30	39	
，	42． 57		$413 \cdot 1$	
	94．68	327．2	41	
1	51．1¢	186．5	28	
8.782				

χ^{2} df $_{1}$ measuring dep S and R

$x^{2} \mathrm{df}_{3}$ testing 3-way dependence

SUB1 SUB2 SIJB3 SUB4 SIIB5

2.881	1.956	14.46	.7963	1.098
8.148	1.921	10.32	4.885	.8549
37.72	.8554	8.457	1.129	29.53
2.1 .39	4.671	6.275	5.738 .33 .55	
8.476	1.870	17.24	4.834	26.45
10.21	1.3 .59	23.22	4.783	1.612
15.75	1.995	13.07	2.041	11.25
37.16	6.227	1.2 .69	10.32	2.348
32.54	17.40	10.20	6.307	6.016
7.741	1.818	17.69	1.896	2.613
$5.049-.7188$	5.990	2.385	7.266	
14.81	1.562	13.43	1.139	1.347

SIIB1 SUB2 SUB3 SUB4 SUB5

$$
\begin{array}{lllll}
2.2 .68 & 2.973 & 5.613 & .2643 & .7285 \\
5.917 & 1.347 & 14.90 & 2.689 & .4942 \\
19.59 & .4228 & 4.086 & 2.017 & 3 \cdot 104 \\
3.1 .58 & 1.938 & 4.639 & 8.817 & 33.30 \\
5.865 & 1.094 & 2.948 & 1.688 & 30.99 \\
5.4714 & .4779 & 23.91 & 4.297 & 2.710 \\
17.30 & 1.291 & .8879 & .7060 & 2.914 \\
4.475 & 2.051 & 1.741 & 1.330 & 8.611 \\
9.755 & 10.50 & 7.263 & 2.554 & 4.538 \\
4.496 & .7453 & 13.86 & .6543 & 5.316 \\
7.015 & 1.856 & 3.937 & .9597 & 3.595 \\
.8821 & 1.633 & 34.07 & 2.647 & 2.198
\end{array}
$$

Fdf4, 735 testing stationarity

latencies

Fdf4, 635 testing stationarity
latencies ignoring first 100
words
$0.75 R$
$F .75 R$
$0.50 R$
$F .50 R$
$6.2 .5 R$
$F .25 R$
0.750
$F .75 D$
$0.50 n$
$F .501$
$0.25!$
$F .25 D$

COND	SITA 1	SUR2	SIJB3	SUB4	SUB5
$0.75 R$	1．149	－ 7 价9	1．748	1．73n	1．650
F．75R	． 98.32	3.330	4．078	1．118	1.647
$0.50 R$	． 9316	2． 359	2． 136	1．169	5.458
F． $50 R$	2.016	$1 \cdot 083$	2．754	－ 3540	2． 781
U．25R	1.879	1.961	3.870	． 7624	1．4．34
F．2SR	.9471	1．40日	． 4108	2.946	－6011
0.750	2． 315	． 1599	． 9128	2．307	1．140
F．750	－ 9567	1.494	． 7101	3.774	$2 \cdot 206$
$0.501)$	4．688	1.711	－ 3516	． 6919	． 9195
F．50D	1．222	$2 \cdot 615$	1.874	1.647	． 3366
0．250）	－ 4876	2.237	－1405	． 6179	$2 \cdot 212$
F．250	－ 6584	． 6583	3.023	2.418	1.757

（1．75R	3．2．32＇	－50．3？	－592？	－ 7785	4.717
F．75R	1．1？	1.148	4.893	1．204	－7557
0.50 R	． 8204	1．337	2.987	．817的	2．193
F． 5 AR	． 72.10	． 8775	1.397	1.167	． 7879
for 25 R	2． 321	2.451	． 9843	2．130	1．500
F． 2 ．5R	2．498	1.834	$1 \cdot 305$	4．071	． 7173
0．75D	1.59 .3	． 7195	． 3528	2．048	－ 5869
F．750	1.211	1.376	1.545	． 8943	． 1935
6．50D	4.353	． 5288	－ 0458	． 7970	2.836
$\cdots 500$	1.498	2.526	－ 7024	． 3679	－ 4851
$\% 2.5 \mathrm{D}$	1．275	． 2881	1.360	－ 3124	． 5972
r．25D	2.554	． 4627	2.651	.9351	． 9152

Ffd4， 65 testing stationarity errors

SIllil SURP SUB3 SUB4 SUB5

Fdf4， 65 testing stationarity responses

F df4， 535 testing stationarity latencies ignoring the first 200 trials

0.758	2．507	12．8？	1.567	． 3711	3
F． 75 R	－1188	－ 32711	8．664	2.623	5.393
0.50 R	39.75	2．1．2．9	1.97 .4	－99P3	2．958
F． $50 R$	5.333	－6566	15.06	－け213	7.385
9．2．5R	22.11	3． 1142	． 9748	－ 0227	11.36
F．2．5R	$2 \cdot 363$	1．92？	18．20	1．4以8	6.188
（1．750	25.61	5．394	． 7575	2.025	1.960
F．750	8.267	1.999	$1 \cdot 471$	． 6470	－ 2773
0.500	12.79	． 0787	3．786	$2 \cdot 386$	． 8899
F．500	25．37	4． 556	2．918	1．228	1.501
0．251）	4.721	1.822	－6423	1.818	4.861
F9251	9．163	4.235	1.724	$4 \cdot 107$	5.916

SUBI SIIBP．SIIR3 SUB4 SUBS

$$
\begin{aligned}
& \text { 2. คのด 4. 51.3 1.976 1.812 6.225 } \\
& 4.835 \cdot 4117 \cdot 7763 \cdot \text { • 4460 5.527 } \\
& 1.487 \text { 1.707 11.39 . 52.11 2.201 } \\
& \text { 2. 177. 2. .3.36.3.109 •5935 .0549 } \\
& \text { 5.732 3.754 6. } 1413.5761 .672 \\
& 10.64 \text { 2.783 7.014 4.151 13.04 } \\
& \text { 3. } 544 \text { 5.115.3744 2.605 2.113 } \\
& 6 \cdot 127 \text { 4.296 1.337.4785 2. } 125 \\
& 7 \cdot 357 \text { •45ด4 6. } 162 \cdot 1155 \text { 4. } 528 \\
& 1.012+2.02 .8698 \text { 2.209 2.612 } \\
& 7.0034 .342 \quad 6.200 \quad 1.242 \quad 4.640 \\
& 7.561 .9548 \quad 8 \cdot 118 \quad 1.912 \quad 3.175
\end{aligned}
$$

SUB1 SURP SIIB3 SIIB4 SIJR5

	16		4.863	
6	． 0488	－ 1		
	7.01			
	． 02		－ 298	
5.	4.314		－ 131	． 0820
3	－	－	2.436	
	－1871	5.	$2 \cdot 6$	
	1.917	1．621	－1832	
	－5317	67	1.354	

$\mathrm{X}^{2} \mathrm{df}_{2}$ testing second onder dependence R

$X^{2} \mathrm{df}_{1}$ testing first order dependence
$\mathrm{X}^{2} \mathrm{df}_{2}$ testing second onder dependence

0．7．7R	76．OC	24．9イ	22．9．3	8.979	19．1？
F．751？	？4\％．7	2．5．84	7－？ 15	5． 399	7．386
ก． 501 R	27．59	26． 4.3	4f．84	34．10	25.25
F．50\％	1661.8	18．87	2．4．32	5.963	11.42
0．251：	230.4	19．3？	． 39.90	7．346	65．00
F．25R	28け．？	12.96	109.9	16.75	$16 \cdot 22$
0.750	6K．6n	，29．75	2．2． 18	4.029	11.92
F．750	59．8ด	9．77？	11.98	10.94	9．611
0.500	6．3．5？	6．285	2.4 .2 .7	5.425	7.795
F． 50 D	41.26	13.65	9．72．7	13.20	22．02
（10．2．50	120.9	9.114	13．11	14.15	11.06
F．250	206.7	7．373	8.844	14．61	10.19

SIJRI SIJR2 SUB3 SIJB4 SUBS

48．49	＇47．61	41．06	20．96	34．47
26．97	44.91	34．30	31.87	58．4．3
73.78	67．38	56．63	39.99	39－2．6
34．93	30．6吸	51．04	38．77	5P．81
66.75	41．19	30．38	26．16	35．13
40.21	25．21	51．12．	38．92	66．59
68.44	． 38.87	23．04	26．29	24．79
44.19	42．56	42． 23	34．22	23．59
50．8？	35．77	46．7介	25．17	30．58
50.47	53．34	33．15	23．48	35．32
39．69	40.66	66.23	26.90	－49．70
45．56	40．11	50．34	36－39	$41 \cdot 12$

$X^{2} \mathrm{df}_{36}$ testing second onder dependence SR sequences

Total latencies（ ）ignoring sign

COND	SUB1	SUB2	SUB3	SUB4	SUB5
$0.75 R$	3.407	2.236	2.379	2.086	1.979
F.75R	3.050	2.379	3.871	1.336	2.393
$0.50 R$	1.879	7.236	7.621	2. 129	13.16
F.50R	4.036	1.143	3.093	. 3357	4.086
$0.25 R$	8.443	1.550	7.736	-6929	3.229
F.25R	2.657	1.321	1. 2.86	3.736	1.300
0.750	5.967	. 3571	1.121	2.586	2.371
F.750	1.979	2.300	. 9786	4.193	2.907
$0 \cdot 500$	12.20	5.921	. 8786	- 9 4? 9	1.236
F.50D	3.236	7.550	2.664	1.764	-8071
0.250	1.407	3.479	. 3357	. 8786	4.907
F.?.5D	2.193	1-129	5.371	3.414	2.086

COND SUB1 SUB2 SUB3 SUB4 SUB5
$0.75 R$
F.75R
T. 5 SR
\therefore-50R
9.25R
F. 2 5R
3.75D
F.75D
9.5月D
F.50D
0.2.5D
F.25D

Var total errors in each 140 trials

Var total responses in each 140 trials

$B \emptyset R$	1－の円ロ	． 9977	1．ดคロ	1．ดのศ	． 9999
大阶	． 9998	－ $995 ?$	． 9990	． 9961	1．9ดด
BFR	． 9981	－ $99 \% 3$	． 9997	1．000	1.000
NFR	． 9991	． 9996	． 9981	1．0ク0	． 9998
BOD	． 9997	． 9996	． 9986	1－000	1－0ดด
NOD	.9995	． 9996	． 9995	－9981	． 9999
BrD	1．0na	． 9999	－9959	． 9955	． 9993
ND	． 9999	． 9986	． 9992	． 9995	． 9991

Average information S

SIJR1 SUB2 SUB3 SUB4 SUB5

.9979	.9998	.9996	.9939	.9651
.9529	.9796	$.95 ß 9$.9974 .9341	
.9767	1.996	.9997	.9935	.9477
.9017	.9986	.9816	.9985	.9924
.9776	.9967	.9952	$.9999 . .9911$	
.9862	.9985	.9988	.9796	.9873
.9783	.9991	.9846	.9979	.9952
.9869	.9967	.9999	.9911	.9862

Average information R

COND	SUB！	SURP．	S1183	SUB4	SUB5
BOR	－गn46	－カ刀ロ 1	－059．9	－ 0140	－．01964
NOR	－M1ハ4	－ด081	－0．359	－ロ167	－0155
BF：	－のn2a	－ 0027	－ 0162	－Dar 4	－0169
NFR	－のの31	－ 0123	． 0675	－0095	－0079
BOD	－ロロロ	－ 0036	－0058	－0392	－0071
Nad	－のn5？	－0053	－0049	． 0259	.0115
BrD	－戶089	－ 0048	－0031	－ 0293	． 0177
NFD	－ 0052	－ 0038	． 0164	．0166	．0011

COND SIIRI SUBE SIJB3 SUB4 SIJBS

－ロnam	． 3	． 3	－ 6	－0341
－ 0 R46	． 0420	－2061	． 338	－1805
－ 0091	－ 2.6033	． 4141	． 407	． 1862
－003？	． 3637	－ 4174	－ 5461	． 3387
．0569	－ดの日の	． 3530	． 5443	． 0707
． 1454	－ 18419	－ 2888	． 4785	． 3078
－0026	． 0696	． 2581	． 4916	． 0861
0263	.0943	． 3480	． 45	1

GOND
SIIRI SIJR？SIIR3 SUBA SUB5

$$
\begin{aligned}
& -0038-.0169-0332-0023-.0213 \\
& -0002-.0146-.0320-.0734-.0279 \\
& -.0004-.0157-0035-.0040-.0038 \\
& -.0063-.0098-.0549-.0092-.0032 \\
& -.0273-.0019-.0203-.0014-.0043 ~ \\
& -.0201-.0000-.0066-.0174-.0264 ~ \\
& -.0145-.0047-.0734-.0053-.0044 ~ \\
& -0004-.0030-.0019-.0549-.0030 ~
\end{aligned}
$$

Average information T and R

Average information S and R

Average information T S and R

3.471	7.382	1.472	1.922	25.03
1.444	14.47	33.47	18.60	30.11
.5419	12.113	3.726	$5.42 P$	19.75
6.256	9.5 .34	7.688	4.965	17.50
2.6 .94	1.941	14.15	11.41	8.778
0.13	.1311	5.741	16.13	19.84
16.18	2.493	56.01	6.209	13.90
.9399	4.204	7.021	36.13	2.353

SIIBI SUBR SIJB3 SUHAC SUR5

.8379	1.355	.2498	1.251	2.533
19.59	.42 .23	4.786	2.917	3.174
4.553	.7185	2.918	1.958	1.932
30.58	1.938	4.639	8.817	33.30
2.723	1.381	4.656	.6782	12.49
9.755	10.51	7.263	2.554	4.538
4.594	1.654	6.117	.7845	5.496
4.496	.7453	13.86	.6543	5.316

SHBI SIIRP SIHR3 SUBA SUBS

$1 \cap .34$	$0.61 \cap$.9650	1.2 .77	3.414
37.72	.8554	8.457	1.129	2.9 .53
11.55	.7543	5.610	4.971	5.994
2.1 .39	4.671	6.275	5.738	33.55
4.741	1.141	11.33	1.556	13.50
$3 . .54$	17.40	10.20	6.397	6.016
5.956	1.439	6.041	1.798	9.657
7.741	1.818	17.69	1.896	2.613

$X^{2} \mathrm{df}_{3}$ testing 3 -way dependence $\mathrm{T} S$ and R

Fdf4,735 testing stationarity latencies

Fdf4,635 testing stationarity latencies ignoring first 100 trials

12.34	.7851	$\cdot 1170$.5197	3.629
9.273	$\cdot 6572$	6.337	.7585	24.91
5.178	.9078	1.697	5.097	2.748
24.48	2.599	9.282	5.612	29.28
.6436	1.451	9.250	1.550	15.02
31.13	22.91	$18 \cdot 11$	4.607	10.41
18.53	1.440	4.097	1.640	6.131
6.287	2.201	7.530	1.974	1.146

Fdf4,535 testing stationarity ignoring first 200 trials

Fdf4,65 testing stationarity errors

SUB1 SUBE SUB3 SUB4 SUB5

1.068	2.662	3.506	1.405	2.464
.8204	1.337	2.087	.8170	2.193
.2311	.8040	1.505	1.632	2.292
.7240	.8775	1.397	1.167	.7879
2.203	1.221	.4711	.4759	1.162
4.353	.5288	.0458	.7970	2.836
6.276	1.119	6.026	.6498	.6581
1.498	2.526	.7024	.3679	.4851

Fdf4,65 testing stationarity responses
SIHI SUHP SUB3 SUB4 SUB5

212.3	$14 . \emptyset 6$	69.27	6.011	153.9
367.9	130.4	$68 \cdot 62$	21.03	96.34
97.57	5.947	56.60	13.74	44.22
228.8	24.67	53.97	41.86	174.6
49.31	63.82	49.92	15.65	84.44
112.5	40.36	72.44	44.02	75.77
277.8	62.57	76.46	11.80	81.51
170.7	47.00 .33 .81	11.97	68.56	

$X^{2} d f_{g}$ measuring first order dependence latencies

SUBI SUR2 SIJB3 SIIRA SIJR5

70.??	45.7?	39.01	54.2.3	$142 \cdot 6$
161.9	. 38.78	55.39	33.85	56.44
98.92	34.8.3	. $38 \cdot 39$	30.71	$58 \cdot 33$
77.14	$40 \cdot 146$	44.81	40.76	$124 \cdot 1$
$27 . \emptyset \emptyset$	34.80	2.9 .06	31.16	44.68
38.85	52.9?	$36 \cdot 58$	54.61	41.00
179.4	47.89	54.09.	7.34	5
88.90	5月:?	56-58	22	44.88

$X^{2} \mathrm{df}_{36}$ measuring second order dependence latencies

SUR1 SUBR SUB3 SUB4 SUBE

$108 \cdot 2$	21.47	1.361	0.0105	$\cdot 1367$
20.48	.5503	3.025	2.594	2.210
8.365	12.49	5.508	.9052	4.165
36.46	.4810	4.716	1.628	4.119
2.4 .87	.0075	1.189	3.129	.1098
19.52	.0634	8.429	.6085	1.575
2.008	.2295	2.806	.0060	.4025
29.24	2.111	2.162	2.370	.1995

COND SUB1 SUB2 SUB3 SUB4 SUB5

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BOR | 114.2 | 36.18 | 32.77 | 9.891 | 8.822 |
| NOR | 27.59 | 26.43 | 40.84 | 34.10 | 25.25 |
| BFR | 14.03 | 21.39 | 33.07 | 9.315 | 5.679 |
| NFR | 160.8 | 18.87 | 24.32 | 5.963 | 11.42 |
| BOD | 36.10 | 9.620 | 9.597 | 6.151 | 8.868 |
| NOD | 63.52 | 6.285 | 24.27 | 5.425 | 7.795 |
| BFD | 53.17 | 9.442 | 12.34 | 15.89 | 9.978 |
| NFD | 41.26 | 13.65 | 9.727 | 13.20 | 22.02 |

$\mathrm{X}^{2} \mathrm{df}_{1}$ measuring first order dependence

COND SIJB1 SUBR SUB3 SUB4 SUBS

BOR	137.4	44.69	43.45	32.57	53.96
NOR	73.78	67.38	56.63	39.99	39.26
BFR	80.07	54.94	26.24	37.21	47.2 .6
NFR	34.03	30.68	51.04	38.77	52.81
BOD	34.09	40.50	44.69	29.08	56.59
NGD	50.82	35.77	46.70	25.17	30.58
BFD	53.80	34.72	57.92	26.96	37.61
NFD	50.47	53.34	33.15	23.48	35.32

COND
SUB1 SUB2 SUB3 SIJB4 SUBS

BDR	-785.0-457.3-744.4-540.7-467.4
Nar	-1897-925.9-1236-879.7-815.5
Br R	-965.3-511.2-604.4-568.3-849.6
NFR	-694.9-472.9-741.4-591.4-1118
BAD	-1072-619.9-896.7-657.2-852.8
NOD	-1450-561.2-727-0-714.9-734.8,
BFD	-1547-763.5-1679-566.6-773.7
NFD	-1185-719.8-625.8-715.6-593.3

$\mathrm{X}^{2} \mathrm{df}_{2}$ measuring second orden dependence $S R$ sequences

Total latencies () ignoring -ve signs

COND SUR1 SIIRP SIIR3 SIIA4 SUB5

BOR
N ${ }^{\prime}$ R
BFR
NFR
$B O D$
NØD
BFD
NFD

$$
\begin{array}{lllll}
.1646 & 3.986 & 1.086 & 2.771 & 1.879 \\
1.879 & 7 \cdot 236 & 7 \cdot 621 & 2.129 & 13.16 \\
4 \cdot 593 & \cdot 5540 & .5506 & 1.714 & 4.979 \\
4 \cdot 036 & 1.143 & 3.093 & .3357 & 4.086 \\
7.967 & 1.464 & .8714 & .0214 & 2.629 \\
19.20 & 5 \cdot 021 & .8786 & .9429 & 1.236 \\
6 \cdot 521 & 7 \cdot 193 & 6.093 & 1.121 & 8.557 \\
3.236 & 7 \cdot 559 & 2.664 & 1.764 & .8071
\end{array}
$$

Var total errors in each 140 trials

BOR
NiP
RFP
NFR
BOD
NOD
$B F D$
NFD

CIND SUBI SUli? SUR3 SIJR4 SURS

1	5.693	8.107	A.890	6.450
4.164	$4 \cdot 397$	4.879	1.943	7.771
5 ¢	2. 5 ? 1	5.1993	6.957	7.907
2. 8779	$2 \cdot 193$	5.450	3.307	3.2.29
4.807	3.379	1.557	1.679	$3 \cdot 157$
16.79	1.250	. 1571	1.979	$7 \cdot 629$
17.04	1.771	15.96	$2 \cdot 229$	2.086
9.036	5.443	. 479	$1 \cdot 20$.9500

Var total responses in each 140 trials
1.

SøE	． 0905	1.909	． 9988	． 9999	． 9967
LOE	－990\％	1．900	－ 0935	． 9998	． 9996
SVE	． 9925	． 9936	－ 2052	1．059	． 9979
LVE	－ 0965	－9007	－ 9995	－ 9996	－9985
SFE	－ 9999	－9093	1．990	． 9942	． 9999
LFE	.9998	－9974	． 9997	－ 9949	． 9961
SøM	1.903	．90？	． 9993	． 999 Ø	． 9946
LøM	． 9995	－ 9 ？99	1.090	． 9092	1.000
SVid	－ 9999	1．900	． 9983	1.000	1.000
LUM	$1.0 \% 9$	－ 9999	． 9999	． 9996	1．090
5 HH	． 9999	． 9996	． 9995	1.000	． 9979
$5 \sqrt{1}$	－ 0092	1.090	－ 9990	－9990	－9998
SOD	． 9999	． 9998	． 9991	1．900	－ 9995
LOD	1.090	． 9992	． 9959	． 9999	． 9974
SUD	． 9993	1－ロロワ	． 9999	． 9999	． 9999
LUD	． 9920	． 9972	． 9999	1.800	1.000
STED		． 9998	1.000	． 9983	$1.00 \square$
LFD	． 9979	． 9990	． 9995	． 9985	1.000

COND
SUE1 SUB2 SUB3 SUB4 SUB5

Average information in S

SøE	． 9993	． 9999	． 9990	． 9999	． 9069
LøE	－9999	． 9999	． 9933	1．00\％	． 9993
SVE	． 9995	． 998 ú	． 9985	－9099	． 9935
LVE	． 9931	． 9938	． 2931	． 9995	． 9985
SFE	． 9998	． 9905	． 9998	． 9915	1.00
LSE	． 9996	． 9059	． 9986	． 9961	． 9959
S3M．	． 9983	． 9998	． 9974	． 9322	． 9834
LOH	－97¢9	． 9990	． 9693	． 9991	． 9717
SVM	－9393	． 9946	． 9857	－ 9498	． 9992
LVM	． 9685	．990日	． 9996	． 9935	． 9346
SFi：	． 9967	1.909	． 2052	． 9999	． 9883
LFM	． 9685	． 9024	． 9972	． 9993	． 9964
SøD	． 9433	． 9974	． 9888	． 9733	． 9983
100	． 9433	． 9928	． 9857	． 9961	． 9924
SV：	． 9790	． 9936	． 9952	．9911	． 9668
LVD	－9017	． 9733	． 9974	－9304	． 9946
SFD	． 9251	． 9961	． 9998	－9846	． 9851
PD	－9949	．991：6	． 9868	－ 9999	． 9755
IOND			UB3	SUB4	SUB

$S \varnothing E$
1.0 E

SUE
L．VE
SFE
LFE
5\％14
LOM
SUM
LVM
SFM
LFM
S历D
LDD
SUD
LUD
SFD
LFD

	－ 0033	－ 0007	－0024	－1096
． 2350	－ 0073	－ 0 の6ロ	－ 0197	1
－ $081 \varnothing$	－ 0 00́g	－ 0955	－0011	－06【2
． 8293	－ 0659	－0009	－0012	4
． 3667	－ 9234	－9030	－ 0067	－1541
8584	－0384	－ 0001	－0097	23
0254	－0541	－ 0013	－0252	5
9198	－0075	－ 0 －02	－刀053	－6003
－0467	－0026	． 2010	－0319	－ 2513
－ 0196	－ 0271	－0031	－ 0143	－ 0133
－ 2243	－ 0054	－ 0639	－0， 16	－ 02
－0．954	．0163	－0935	－ 0017	－ 0134
0317	－ 0204	－ 0647	． 0233	－0018
0233	－ 0012	－ロø 16	－0002	0014
0310	－0087	－0042	－0042	－
－0107	－0031	－0071	－0190	0246
－9070	－0，273	－0059	－0021	5
0109	－ 0907	． 0100	－0072	－0104

Average information in R

Average information in T and S

S6E	－ 033	－ 0 ¢37	－0011	．0015	． 1151
LSE	． 2328	．0114	－0020	． 0137	． 0482
SUE	－ 0837	－ 0 の55	－ 0006	－ 2028	． 0548
LUE	．0292	－0941	－ 0998	－2\％13	． 0326
5 FE	． 3573	－ 2203	．0825	－0966	． 1554
LFE	－ 0566°	． 0438	－ 9 gci	－0ロ35	． 0323
SOH	．0273	． 1219	－0031	．0121	－00346
LOH	－0283	－0070	－0017	－0の30	.0185
SUM	－995x	．0038	－0008．	－0350	． 8449
LVA	． 0025	． 0278	．0025	． 0126	． 0369
5FM	－9207	．0131	－ 0845	－オ的の9	． 0256
LFin	－9052	－0198	． 2141	－ 0649	． 0185
S0D	．08447	． 0269	－0842	． 0335	．0075
LSD	．0070	． 0033	．0014	－0059	． 0837
SVD	－0．029	． 0253	－0046	－0055	．0158
int	．0535	．0837	．9315	－03．98	． 0236
STD	－ 0879	．0213	．0111	－0052	．0210
LFD	． 8205	－ø0ø6	．0094	－0038	．0119
COND	SUB1	SUB2	SUB3	SUB4	SUB5
S3E	． 9617	． 7937	． 7368	． 7429	． 9198
LfE	． 9524	－8575	． 7665	． 8013	． 8888
SUE	． 9725	－9307	． 8340	． 7888	． 9223
L．VE	．974\％	－ 8429	． 7382	． 9225	． 8055
SFE	． 9416	． 8214	－9079	． 7954	． 9417
LFE	－9523	． 7 の56	． 7149	－ 9525	． 9825
SøM	． 3307	． 3323	． 4181	． 3755	． 4097
L $\varnothing \mathrm{M}$	． 3914	． 1417	． 3776	． 5346	． 3599
SVM	． 2187	． 3451	． 1415	． 2360	． 5498
LVM	． 2966	． 3031	． 330%	． 6112	． 4321
SFM	． 3815	． 3738	． 4712	． 3836	． 5748
LFM	.1326	． 1732	． 5326	． 5334	． 4584
S¢D	－ 9320	． 3943	． 0620	． 1594	． 1599
100	． 2501	． 2470.	．0639	． 0619	－ 0902
SUD	.4567	． 3099	． 0364	． 1694	．1002
LVD	． 1667	． 0590	． 0714	． 1154	． 1932
SFD	． 2546	． 2279	． 8245	－ 2060	．0917
L，D	． 2747	． 0211	． 0507	． 2935	． 0294
CUND	SUB1	SUB2	SUB3	SUB4	UB5

SDE	．2588－．0240－．0003－．0120			． 0994
LJE	． 2254	．0015－．0061	． 0115	． 8412
SVE	－ 0766	のøロ3－． 0.11	． 8133	． 8469
LUE．	－9064	． 2 008－．0013	．0031	．0022
SFE	． 3517	．0183－．0032	． 0035	． 1496
LFE	． 0465	．0286－．9ø23	． 0025	．$\quad 82$
SOM	－．0359	．0144－． 0	Ø0	． 0363
LSM	C71	－ 0127	－ø2ø2	． 8499
SUM	－． 0737	．0140－．ac	． 2058	－ 2
Un	－． 0735	．0878－． 2915	． 0210	．038
SFl：	． 0019	． 347 －．ø630	． 2833	．0080
Fin	．．0319	．0154．0064	． 9245	． 0260
Sod	－．1929	－ $00 \square 5-.0079$	．0ヵ36	． $03 \square 5$
Lod	－． 1054 －	．0317－．0013	． 0066	． 0117
SVD	－． 0679	．0288－．0083	． 0630	． .025
RUD	－． 0651 －	．0128－．0049	．0071	.0155
SF	－． 0340	． $0552-.003$	． 0.6	．0072
$F D$	－．0522－	． 0074 －．0480	．øø31	．øø89

Average information $T \times S \times R$
$X^{2} \mathrm{df}_{1}$ testing independence S and R
$728.7647 .1613 .7617 .5 \quad 712.1$
724.1681 .3632 .1648 .0696 .7
732.7 716.2 666.5 643.6 712.2
$732.6 \quad 673.5614 .1 \quad 712.3 \quad 654.4$

$724.1595 .3 \quad 599.6 \quad 724.1 \quad 736.0$
$312.1 \quad 313.3 \quad 333.2 \quad 341.9362 .0$
$357.8 \quad 140.5 \quad 343.7476 .5 \quad 329.9$
$212.1323 .8 \quad 140.6 \quad 224.1487 .0$
277.9288 .4354 .2528 .4390 .8
$355.8 \quad 348.9423 .3 \quad 357.1 \quad 504.1$
$131.5 \quad 174.8469 .3472 .8415 .2$
2. 029 95.05 $62.49156 .6 \quad 157.6$
$235.4236 .964 .77 \quad 62.57$ 90.19.
402.3 294.1 30.94 166.3 100.1
$164.7 \quad 59.32 \quad 71.97113 .7188 .8$
243.7 220.6 25.00 6.166 91.84
261.121 .5051 .47279 .629 .96

243.8	3.770	1.169	1.579	109.6
215.1	11.65	2.095	13.95	48.58
82.76	5.654	.6663	2.828	54.23
29.67	4.196	.4065	1.342	32.78
309.5	26.54	2.552	6.716	145.6
56.35	48.30	.0650	8.668	32.21
28.39	118.2	3.168	12.28	4.669
29.17	7.145	1.738	8.156	10.86
5.971	3.899	.7720	34.33	44.70
2.548	28.02	2.0 .07	12.93	37.95
20.91	13.33	4.571	.9245	$26.3 \varnothing$
5.351	$116 \emptyset 1$	14.39	4.994	18.90
46.99	27.30	4.348	34.08	7.629
7.002	3.423	1.478	6.059	3.846
2.981	25.71	4.745	5.664	16.15
56.48	3.856	31.81	29.43	24.07
8.008	21.67	11.38	5.346	21.12
20.92	.6318	9.690	3.871	11.93

SUE1 SUB2 SUB3 SUB4 SUB5

S9E $\quad 720 . \pi \quad 647.1 \quad 613.7 \quad 617.5712 .1$ 724.1681 .3632 .1648 .0696 .7 732.7 $716.2666 .5643 .6 \quad 712.2$ 732.9 673.5614 .1712 .3654 .4 $70 \pi .1662 .2704 .6650 .3720 .1$ $724.1595 .3599 .6724 .1736 . \varnothing$ $312.1313 .3333 .2341 .9362 . \varnothing$ 357.8140 .5343 .7476 .5329 .9 $212.1323 .8 \quad 140.6224 .1487 .0$ $\begin{array}{llllll}277.9 & 288.4 & 354.2 & 528.4 & 39.8 \\ 355.0 & 348.9 & 423.3 & 357.1 & 584.1\end{array}$ 131.5174 .8469 .3472 .8415 .2 $2.029 \quad 95.0562 .49156 .6 \quad 157.6$ $\begin{array}{llllll}235.4 & 236.9 & 64.77 & 62.57 & 90.19 . \\ 402.3 & 294.1 & 30.04 & 166.3 & 100.1\end{array}$ $164.759 .32 \quad 71.97 \quad 113.7 \quad 188.8$ $\begin{array}{lllll}243.7 & 220.6 & 25.06 & 6.166 & 91.84 \\ 261.1 & 21.50 & 51.47 & 279.6 & 29.96\end{array}$

LTE
SVE
LVE
SFE
LFE
50 H
L3M
SVM
LVí
SFM
LFM
SED
L9D
SUD
LVD
SFD
LFD

S9E	241.1	3.346	. 7526	2.444	194.7
LIE	217.0	7.438	6.179	19.96	50.42
SUE	89.15	6.174	. 4788	1.168	59.18
LUE	20.79	6.972	. 9088	1.223	21.63
SFE	314.7	23.65	3.087	6.369	144.2
LFE	58.18	38.23	. 8595	9.358	32.71
SOM:	25.71	54.36	1.358	25.68	14.75
LSM	Q.0.17	7.714	. 1892	5.433	. 2757
SUM	1:6.09	2.638	-997ø	32.35	51.22
LVM	i9.91	27.57	3.130	14.55	13.56
SFM	24.63	5.559	3.981	1.622	27.43
LFM	5.563	16.62	8.7.94	1.776	13.63
SOD	1.798	20.31	4.365	23.65	1.861
L. 0 D	23.65	1.277	1.631	. 1946	1.432
SVD	31.22	8.924	4.341	4.341	14.33
LV	10.8?	3.229	7.238	19.31	25.08
SFD	7.15!	27.77	5.989	2.124	9.708
LFD	11.12	362	10.2	7.383	10.65

$x^{2} \mathrm{df}_{3}$ testing independence T and S
$X^{2} \mathrm{df}_{3}$ testing independence T and R
SUA1 SUR2 SUB3 SUB4 SUB5

S0E	． 5978	2.772	． 1161	1.879	2.499
LOE	． 4650	． 9879	． 1291	3.648	． 2668
SVE	． 1707	－＠921	． 1175	． 6295	1．092
LVE	－2919	． 26.99	． 2132	． 0748	1.273
SFE	－5～88	． 5229	． 1226	1.046	． 3422
LFE	－20：9	2.982	． 4593	． 5424	． 6684
SøM	3：11	15.12	4.155	9.527	21.23
LDM	49.83	12.63	2.175	9.819	30.97
SVM	48.88	9.772	1.037	5.795	11.98
LVM	47.27	17.07	．5824	8.967	26.80
Spu	9.52 .2	22.07	3．851	4.278	11.37
Lem	29．05	17.98	－9050	7.616	15.68
39D	2.030	9．455	7．54， 8	5.318	25.82
LTD	$7 こ .53$.	20.93	． 5671	5.737	9.434
S＇D	03.76	25.29	9.527	3.056	6．683
LU	79.27	12．03	9.181	4.390	22.27
SFD	22.89	13.24	2．92g	5.458	10.14
LFD	45．09	6.969	51.25	3.286	12.15
COND	SUB1	SUB2	SUB3	SUB4	SUB5
53 E	． 55500	1.092	1.097	11.97	1.562
LgE	－4993！	1.950	6.145	7.473	8.615
SUE	． 716 C	4.028	． 9970	3.531	11.07
它VE	2こ．57	4.524	1.117	1.693	4.142
SFE	1.503	． 8615	． 5794	12.25	1.584
Lre	1.266	2.542	． 9201	5.847	10．043
SgM	2.769	4.843	． 5056	12.67	6.429
LSM	． 8832	－ 12×16	1.645	5.567	17.70
SUM	1.768	． 967	5.278	1.949	7.151
LVM	2.496	1.572	2.416	－ 2.949	2.323
SFM	1.854	6.929	1.585	．9010	4.448
LFM	1.891	21.75	1.968	． 4164	6.838
SGD	2.347	6.674	1.338	1.277	2.366
L3D	1.085	7.917	1．7934	6.334	3.558
Sym	． 5578	10.62	47．34	2.919	． 6899
LTD	． 5815	14.79	． 5987	8.183	5.896
SFD	4.172	10.89	1.655	10.85	2.132
LFD	． 1566	2.812	8.258	8.454	1.438
COND	SUB1	SUB2	SUB3	SUB4	SUB5
			，		
Sge	12.49	2.743	1.818	9.310	5.560
LgE	4.410	7.514	9.581	7.731	4.721
SVE	5.030	6.314	． 9344.	8.695	5.197
LVE	23.67	4.492	4.113	1.347	2.849.
SFE	5.538	11.62	4.195	5.294	1.352
$\stackrel{L F E}{ }$	10.05	2．099	11.13	2.759	3.215
SOM	4.517	2．013	2.798	5.222	9.665
Loh	． 3406	1．95：	4.860	4.250	13.15
SVM	－105．）	2.962	32．00	3.689	4.549
LVM	2.905	3.289	7.196	10.58	． 7286
SFM	3.910	4.467	1.076	11.36	3.280
1 F \％	3.992	42．5D	． 3567	4.408	5.715
SgD	1.6 2̇4	． 7265	9.550	6.336	5.141
LgD	6.365	3.669	13.13	8.447	5.036
SUD	1．0ロ3	5.124	41.29	5.488	． 8772
LUD	2.386	21.35	4.490	6.832	4.286
SFD	2.669	9.809	12.45	20.08	1.156
LFD	2.283	10.07	17.11	5.027	． 6983

$X^{2} \mathrm{df}_{3}$ testing 3－way dependence $T S$ and R

Fdf4，735 testing stationarity latencies

Fdf4，635 testing stationarity latencies ignoring first 100 trials

	SUn 1	SUB2	SUE3	SUB4	SUB5	
SEE	?.395	1.359	1.475	12.78	2.402	
LTE	. 61000	10.63	4.180	11.0.8	6.357	
SVE	4.900	2.200	1.213	4.663	6.865	
LVE	27.99	5.378	6.433	1.671	4.249	Fdf4,535 testing stationarity latencies
Sre	3.53n	10.75	3.735	7.737	.9120	. ignoring first 200 trials
LTE	7.251	. 6818	6.979	13.22	2.676	
S0M	3.253	4.840	1.224	5.2Ø3	9.722	
LTM	1.992	. 7351	6.306	4.732	17.92	
SVM	-8303	2.395	34.61	1.065	2.365	
LVM	1.443	5.755	10.0.4	1.917	-97.98	
SFM	6.185	5.992	1.223	3.076	5.105	,
LTM	7.168	0.405	. 5612	. 8925	1.605	
50.0	. 7107	$2 \cdot 116$	8.739	4.407	1.639	
LSD	1.52!	7.411	10.99	5.208	2.585	
SVD	1.344	1.575	11.46	4.737	2.133	
LD	2.756	27.63	2.019	2.587	2.415	
5 SD	4.511	4.34_{1}	15.67	1.122	-9:772	
150	. 5462	2.470	14.75	6.349	1.074	
COMD	SUB1	SUB2	SUB3	SUB4	SUB5	
SDE	1.405	1.614	. 2396	2.718	1.444	
LDE	-5006	. 6293	- 3296	2.362	. 7318	
SVE	. 7500	1.653	1.962	. 4262	1.018	
LVE	-75\%0	. $32: 5$. 3928	. 1711	4.429	
SFE	2.402	1.573	1.661	. 8445	. 5159	
LFE	-91ro	. 1789	1.670	.8000	1.000	
$5 ¢ 0: 1$	1.815	1.341	2.613	. 9191	3.686	Fdf4,65 testing stationarity error
LSH	3.079	1.351	1.173	. 6950	2.975	sequences
SUM	3.829	. 4532	30.98	. 3074	1.225	
LVM	2.349	. 7327	. 7825	. 5909	. 6810	
SFM	-9304	. 6938	. 4443	. 6623	1.751	
LFí	. 2967	. 4126	. 6081	4.032	1.866	
50 D	5.199	. 46 ¢ 2	1.512	. 41132	. 9312	
1.9D	1.573	5.660	1.988	6.125	3.431	
SVD	.6400	. 5566	1.382	2.214	2.287	
LVD	1.339	. 4828	2.136	1.279	3.783	
SFD	. 2422	2.714	3.877	2.828	5.967	
$1 F D$	1.0:9	6.715	1.289	1.560	1.597	
-0\%						,
CO:D	SU31	SUR2	SUB3	SUB4	SUR5	- .
STE	5./113	. 25339	3.787	1.201	. 6476	.
1.5 E	. 4950	1.945	. 7809	1. 441	1.083	
SVE	1.977	. 9615	. 3471	1.269	1.873	
LVE	2.327	1.264	1.381	1.562	. 6218	
Sre	1.193	1.058	. 6290	. 3165	. 4139	-
LFE	. 1545	. 5637	2.142	1.293	2.048	
STM	1.390	2.645	. 2 g 47	. 5716	. 5914	Fdf4,65 testing stationarity response
L3in	- 0605	. 3259	. 8923	. 5719	1.799	sequence's
SVit	1.087	. 3 ¢33	1.507	. 9896	. 6459	
LVii	5.963	9'. 655	. 2373	. 633D	. 5779	
SFM	. 1.323	3.290	1.824	. 5153	. 2581	-
LFM	1.831	.2ø51	. 0217	1.008	. 6123	-
SOD	. 4145	. 8177	3.866	. 5581	1.616	
L3D	2.151	4.459	2.562	2.561	1.601	
SUD	1.479	. 4221	1.515	1.069	. 5532	
LVE	1.432	. 9473	. 9571	1.131	1.594	$!$
Sid	. 6285	. 6603	1.019	2.951	3.692	,
Lid	2.133	. 8231	1.510	2.955	.9079	

Sge	59.23	34.00	141.4	80.12	100.4	
LGE	47.35	99.7ø	44.43	76.98	28.07	
SUE	53.08	190.2	24.81	93.80	23.18	
LVE	65.3n	30.21	51.34	123.3	77.23	
SFE	43.49	34.30	68.39	92.20	36.39	$\mathrm{X}^{2} \mathrm{df} \mathrm{g}_{\mathrm{g}}$ testing first onder dependence
LFE	25.15	31.91	92.83	91.13	65.30	latencies
S01	41.24	132.8	31.29	61.54	67.52	
Lmi	22.74	49.62	149.7	27.82	187.5	
S\%	35.0\%	34.55	26.60	34.75	39.79	
ivia	$1 \% .42$	53.68	7.793	97.96	13.97	
\% 4	45.81	57.00	36.56	75.64	60.18	
LPM	16.83	108.3	111.6	68.75	78.92	
59 D	16.54	49.23	110.5	52.73	63.92	
L9D	36.96	102.0	239.3	105.6	28.19	
S	37.02	93.73	239.8	86.01	58.78	
LVD	18.28	80.34	26.24	48.69	35.31	1
SFD	45.18	17.55	115.5	204.2	63.61	
LFD	17.58	16.05	61.83	45.59	19.21	
COND	SUB1	SUB2	SUB3	SUB4	SUB5	
Sge	54.34	57.28	75.52	56.72	115.7	
L.SE	76.40	30.67	51.98	89.21	46.60	
SUE	36.97	: 08.7	58.48	51.61	70.15	
LVE	74.18	41.43	59.45	84.37	61.25	
SFE	39.31	$\therefore 8.75$	71.0.6	66.51	51.91	$\mathrm{X}^{2} \mathrm{df}_{36}$ testing second order dependence
LFE	60.46	,7.03	$66 \cdot 9.0$	86.95	78.30	36 latencies
Som	25.18	68.28	41.20	59.15	39.76	
LSM	52.93	52.84	113.9	49.81	69.76	
SUM	59.49	59.33	43.04	35.26	34.95	
LVM	58.03	79.9!	23.75	64.51	49.90	
SFM	40.91	82.4.6	43.53	58.39	33.09	
LFM	48.52	97.1:9	77.03	52.12	71.56	
S¢D	40.86	50.24	104.0	52.95	42.11	
100	57.65	150.56	85.76	57.07*	75.98	
SVE	48.51	71.22	85.76	41.37	46.87	
LUD	46.53	- 8.27	43.68	55.06	42.49	
Sfo	44.41	58.76	84.98	70.92	65.77	
LFD	41.40	33.99	64.01	59.76	34.65	\because
100:0	SUB1	SUP?	SUE3.	SUB4	SUB5	$\because \quad \therefore$.
SXE	1.519	. 0914	. 7251	3.400	. 6255	\therefore
LDE	.0489	3.655	. 7330	. 1357	. 2249	
SVE.	. 2207	. 5779	$2 \cdot 950$. 3596	2.130	
LVE	- 0101	. 0254	1.979	. 1057	1.547	
STE	. 3454	. 5210	- $\quad 288$. 0762	- 9054	$\mathrm{X}^{2} \mathrm{df}$ testing first order dependence R
LFE	. 6307	3.174	9.415	1.094	. 3607.	
Sght	6.738	13.80	. 1015	. 0859	. 2571	
LGM	6.72 m	3.540	1.116	2.754	. 6873	- *
SVii	0.017	11.22	3.479	. 0536	. 0020	b.
Wh:	. 9909	3.805	.042\%	1.132	2.022	
STM	1.135	7.030	. 5161	- 2062	. 1975	
15 H	1.492	. 2646	. 0076	. 1541	. 8549	
$S M D$	33.68	37.28	1.368	. 2242	2.446	
LND	3.523	2.507	. 2965	1.229	.0470	
OVD	.0670	7.563	12.27	4.501	11.48	
Livo	. 4154	. 1149	4.337	6.335	7.042	
SFO	4.792	1.790	. 3624	7.899	16.14	
Lic	.0729	2.884	. 1414	. 4434	5.774	

Cam	2.439	1.579	2.206	3.623	3.722
LOE	. 6399	. 1547	. 6131	1.856	1.933
9e	. 8474	. 8143	. 2456	3.046	2.835
LUE	. 6676	. 7450	. 5787	-2863	1.970
STE	8.373	5.112	. 8197	1.453	4.727
Lice	2.273	4.967	. 7911	1.594	. 2525
Sm	0.065	11.93	. 6375	2.349	. 5814
LM	7.180	1.499	1.574	. 4542	10.41
SVii	1.4.92	. 9574	1.995	- 5796	5.240
LVI	15.67	. 1623	1.495	. 2476	6.422
5 m	3.504	. 7454	1.454	1.689	3.323
in:	. 3759	3.959	5.256	1.487	8.282
Son	3.775	. 6120	5.146	. 9613	2.409
100	17.62	12.61	. 4257	6.409	6.565
SVD	1.644	1.133	3.484	. 9456	3.258
LVD	1.933	. 3453	3.433	1.377	1.234
sid	1.564	. 2189	. 9331	17.71	3.067
LTD	1.856	. 8438	. 3359	5.776	2.181
COND	SUS1	SU32	SUB3	SUB4	SUB5
-					
53E	. 3442	. 1300	15.54	. 2954	. 1939
LJE	. 2637	1.651	1.104	2.936	4.393
SVE	- 0054	. 0496	. 5166	5.865	. 0677
LUE	-0054	.9903	9.224	- 0677	3.992
SFE	. 0343	.4989	. 2014	. 7637	- 0343
LFE	. 2637	- 0011	1.975	- 0219	1.981
S0M	. 0133	2.71%	. 0689	2.827	15.34
L9M	. 3333	7.425	2.738	2.436	2.521
SVM	. 8315	2.867	7.829	. 4712	1.9 .73
LVM	. 6617	. 4619	. 1366	5.299	1.134
SFM	. 295	. $67 \mathrm{~m} /$	2.648	2.616	- 1159
LF\%	. 1777	. 0738	3.827	4.792	13.34
S5D	-2:25	3.805	1.727	. 9191	3.528
LJD	. 0175	1.254	. 7923	-1020	2.785
SUD	2.810	. 0191	. 1062	. 1349	.5880
LUD	6.648	3.169	1.824	. 3399	- 0224
SFD	1.444	. 9915	. 1912	. 1120	2.841
Lid	2.136	. 0548	6.5 ด่6	9.019	. 8883
COMD	SUB1	SUB2	SUE3	SUB4	SUB5
1					
S0E	- 0082	. 8048	2.824	12.02	- 0583
LJE	. 2165	. 3584	1.149	-9200	. 2514
SVE	-9055	. 05 ¢ ${ }^{\text {a }}$. 4997	. 6267	- 0683
IVE	- 0055	. 4373	2.253	. 0683	21.33
SFE	- 0346	. 5859	. 1968	2.291	. 0346
LFE	- 9165	. 13×5	. 4717	44.38	- 0 -øø
S0:\%	-9145	2.081	. 6494	1.248	. 2012
L3M	2.871	7.167	. 7444	5.253	13.26
SUM	. 6244	1.075	8.024	5.930	. 3327
LVM	.1276	- 6878	1.270	. 4997	5.263
5 m	1.525	. 7754	. 4577	1.237	. 5953
LFiM	1.416	1.112	2.449	. 0778	. 2650
SSD	9.942	1.572	2.233	1.245	4.584
LOD	. 1691	. 4633	. 7328	. 1589	. 8187
SUD	. 2377	5.302	. 7994	. 4828	2.111
VD	1.274	. 1643	1.167	4.485	3.522
Sid	.7890	1.753	1.405	3.621	. 8835
LFD	3.548	. 2525	3.275	1.237	11.70

$\mathrm{X}^{2} \mathrm{df}_{2}$ testing second onder dependence responses

$X^{2} \mathrm{df}_{1}$ testing first order dependence errors

$\mathrm{X}^{2} \mathrm{df}_{2}$ testing second order dependence

 :| SøE | 4.678 | 7.157 | 33.14 | 21.36 | 5.376 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDE | 5.488 | 19.99 | 3.535 | 9.265 | 14.35 |
| SVE | 4.245 | 4.423 | 10.07 | 23.24 | $8 \cdot 360$ |
| LVE | - 0238 | 12.64 | 29.39 | 5.880 | 54.70 |
| SFE | 8.128 | 10.15 | 2.965 | 5.731 | 5.479 |
| LFE | 6.226 | 15.87 | 24.43 | 1.129 | 2.478 |
| S0M | 27.04 | 44.48 | 7.710 | 11.09 | 32.11 |
| LOM | 22.92 | 22.38 | 6.127 | 16.45 | 24.59 |
| SUM | 32.26 | 38.89 | 17.82 | 20.07 | 35.57 |
| LUM | 3 l .98 | 16.12 | 3.855 | 20.04 | 16.07 |
| ST | 5.956 | 15.42 | 9.831 | 13.42 | 16.53 |
| LFM | 15.97 | 20.75 | 6.987 | 16.07 | 19.68 |
| SOD | 41.41 | 64.51 | 9.752 | 12.52 | 21.54 |
| LOD | 44.38 | 19.56 | 9.797 | 12.72 | 7.022 |
| SUD | 24.18 | 28.17 | 37.94 | 1.8 .99 | 22.05 |
| LVD | 22.44 | 13.79 | 13.86 | 13.72 | 25.14 |
| SFD | 16.09 | 10.50 | 5.181 | 47.99 | 31.31 |
| LFD | 10.08 | 6.794 | 13.89 | 30.03 | 41 |

COND SUB1 SUB2 SUB3 SUB4 SUB5

SDE	8.693	20.32	16.79	39.05	10.46
LGE	3.354	12.05	17.41	17.94	22.41
SVE	4.518	9.790	16.05	21.12	12.43
LVE	6.608	21.07	16.35	14.47	57.14
SEE	14.92	15.80	13.61	32.46	11.80
LFE	6.462	19.13	19.51	108.7	1.041
SDM	41.41	47.82	$31.9 \emptyset$	29.50	26.48
LgM	44.47	39.58	33.29	37.43	73.65
SVM	49.35	40.36	45.95	28.69	42.72
LVM	41.07	31.87	21.81	29.54	42.50
SFM	41.08	42.94	26.82	44.13	36.66
LFM	31.26	41.12	62.22	45.12	50.82
SDD	47.60	50.58	41.63	49.41	62.24
LDD	44.49	40.70	21.49	40.17	50.28
SVD	17.76	34.56	37.81	43.26	47.06
LVD	36.21	30.83	23.67	30.99	35.73
SFD	34.66	37.29	34.01	76.05	43.30
LFD	35.47	41.54	41.62	43.66	44.06

COND SUB1 SUB2 SUB3 SUB4 SUB5

SøE	-477.4-361.0-428.0-642.0-630.9
LDE	-499.2-503.8-968.1-679.7-782.3
SVE	-481.7-797.6-545.8-541.8-657.1
LVE	-584.7-399.7-477.8-681.1-1117
SFE	-417.6-403.5-960.2-505.0-650.0
LFE	-541.8-405.4-764.4-617.7-727.1
S0M	-702.1-853.0-752.5-662.5-632.4
LDM	-717.5-1902-598.2-666.5-1495
SUM	-1101-604.9-993.0-667.4-548.8
LVM	-961.4-825.9-862.2-744.3-882.0
SFM	-603.4-908.4-729.9-566.2-591.7
LFM	-1132-1540-718.4-669.6-812.1
SOD	-1003-353.1-55c.9-788.7-754.2
LCD	-816.1-1118-913.8-773.9-997.1
SUD	-701.0-842.3-1069-689.0.772.6
LVD	-1071-1258-1033-710.1-935.2
SFD	-721.0-7.15.8-9.55.7-506.7-7.62.7
LFD	-952.5-1105-1368-695.3-1158

$\mathrm{X}^{2} \mathrm{df}_{9}$ testing first order dependence SR sequences

Total latencies in each 1/5th of the experiments ignoring negative signs

$S \emptyset E$	． 0571	－ 5214	－ 1286	1．550	－ 12.86
$L \emptyset E$	－ 1 ¢1 14	－1214	－ 2.714	－8071	－1214
SVE	－日？ 14	－1071	－ 2.357	－2？．86	－19？9
LVE	－ตว 14	－ 9929	－4ヘ71	－ 0143	1.771
SFE	－1214	． 5.357	－1 14.3	－ 2.357	． 0.357
LFE	－ 1500	－ 0857	－ $59 ? 9$	． 0.571	－ 014.3
Sめ．	2．621	\therefore ¢ 31	？． 5 ？ 1	1.393	$6 \cdot .371$
LめM	$4.19: 1$	1．193	？． 150	－ 8071	5.914
SVM	6.3511	－52．14	41.39	－6286	1.557
LUM	4.064	！．1®7	1.164	－ 4857	． 8786
SFM	$1 \cdot 021$	－（1） 4	－ 4643	1－2？9	1.486
LFM	．5571	－ 9 5！9	．5500	4.621	3.121
Sad	11.31	1．45！	3.379	－ 9 P．86	2． 193
LOD	3.193	9．246	5．2．71	10.84	$7 \cdot 857$
SVD	1.164	1－12．9	？． 9.50	3．914	5.607
LVD	？．才板	． 9500	4.657	$3 \cdot 236$	7－907
SFD	－イ¢ 0	3.414	6．693	7．393	9．121
LFD	1．15\％	14．an	3．664	2．8ดの	4．971

COND SIBI SUE32 SIJR3 SURA SIIR5

$S \emptyset E$	11．9．9	． 8571	7．8．36	$2 \cdot 336$	1．5．36
Lor：	1．957	6．62． 1	2.093	2.950	2． 164
SVE	4．279	2．679	． 914.3	2．664	2．0．57
LVE	$4 \cdot 39.3$	3.914	？．8ด7	3．229	1－大イム
SFE	． 7.729	2．7．36	1．7．36	． 8.357	$1 \cdot$ P？ 29
LFE	1．321	1.379	3．764	3． 2.86	4．629
S＂Y	5．9．5a	11.06	－ 5.357	1.714	1.557
Lam	． 2.357	． 9429	2.4117	1．09．3	4.164
SVM	4.479	． 9500	3．264	－2．643	2． 2.36
LVM	11.73	19.87	． 6786	2．307	1．586
SFM．	1.093	$9 \cdot .34 .3$	4.914	1.3336	－ 8714
LFM	3.414	－ 5214	－0．071	1.979	$1 \cdot 2.64$
SOD	1.807	3．6．57	8． 157	1.250	5.629
L为）	6.614	12.87	6.607	9．407	4.021
S11：	4.059	1.271	2．621	2． 2.14	1.536
LIP	3.307	1．964	$2 \cdot 393$	1.879	3．107
SFD	1．3．36	2． 1 ¢ 1	2．664	7．371	6.679
1.00	5.193	1.871	3．8ด7	$6 \cdot 629$	2．193

Var in T errors in each $1 / 5$ th of
700 trials

Var in T responses in each $1 / 5$ th of 700 trials

| 0.99719636 | .99985377 | .99846220 | .99955866 | .99922662 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $V .99979580$ | .99979580 | .99998023 | .99985377 | .99895251 |
| $F .99909484$ | .99964825 | .99879963 | .99909484 | .99955866 |

$A v$ info S

0.99668981
$V .99955866$
F .91601381
.97897028
.9717465
Av info R

0.00217389	.00119668	.02175355	.00547782	.04686390
$V .02800275$.00671928	.02161836	.00183006	.03959634
$F .00043776$.00365187	.00429168	.02863556	.01264220
Av info TS				

	．00429689			，	
	11362584	－00201495	01761288	399	
	ロ0				

0	． 49463620	－ 00004574	． 05926008	．01412375	． 11541312
V	． 23915328	－ロDビ19399	． 18209540	．01096062	． 21233161
F	－00054962	－ 533483557	－ロロ441587	．02971320	－04409537
			info TSR		

$$
\begin{gathered}
0-.03370793-.00233788-.02291673-.00076070-.02086019 \\
V .04269531-.00542154-.02639722-.00261084-.00868895 \\
-00386246-.00804321-.00096055 \cdot 00451743-.01444997 \\
X^{2} \mathrm{df}_{3} \text { measuring dependence TS }
\end{gathered}
$$

```
0 2.2302396 1.2272511 22.116960 5.5979067 47.1198.34
V123.49193 6.8774842 21.940701 1.8760183 40.014045
F.44920318 3.7422900 4.3910005 28.895130 12.910341
                                    X2}\mp@subsup{\textrm{df}}{3}{}\mathrm{ measuring dependence TR.
```

$04.4438892 .9730867016 .805487 \quad 50.73744341 .13 .38599$
$V 119.392172 .065282017 .730038 \quad 8.983735731 .994965$
F 2.1.685220 6.1281564 6.3443291 102.55693 33.016678
$X^{2} \mathrm{df}_{1}$ measuring dependence $S R$
 V 231.48753 •19901530 176.76102 11.171301 207.005631 F. $56399163 \quad 35.3503254 .5091589 \cdot 30.25348944 .650184$ $X^{2} \mathrm{df}_{3}$ testing dependence T and R

0	14.92 .8381	2.5001131	28.906146	2.6271919	24.933732
V	36.019509	h. 0377360	21.0990744	4.3205972	18.827643
F	4.0297767	7.5211090	2.3934383	9.7320161	15.540460

0	1.3430956	3.0476678	19.348094	2.0537007	.30707706
V	.35944356	3.3509057	3.1985054	1.6851329	6.7245784
F	8.1543939	3.0790667	1.6407971	.52394347	10.460307
		$X^{2} d f f_{3}$ testing 3 way dependence $T S$ and R			

0.88160769 5. г10912.3 33.730023 7.0221305 .47070921

V 1.8522731 17.3362. 12.51806335 .777110035 .586053
F6.4081225 8.2521011 2.7930472. 1.7479091.9.0361907
F4,735 testing stationarity latencies
0.9189048314 .2 .45391623 .4927465 .32348612 .1321398

PR8164342 9.1682947 1.7118125 4.7437016 18.069035
F5.7181939 5.1645821 3.2711045 1.0742134 20.128975
F4,635 testing stationarity latencies ignoring first 100 trials

. 222.04969	2.0332126	$4.1290721 \quad 1.4689959$. 55394089	
V. 5.3611 .370	-59?.2 4 48 ?	2.7841786 1.5521188	1.8654910	
1.9944055	$\begin{aligned} & 2.191649 ? \\ & \mathrm{~F} 4,535 \text { te } \end{aligned}$.379 .380072 .2948718 sting stationarity laten	:4.2287356 ies ignorin	$200 \text { trials }$

01.0085499	1.5511880	1.0884970	3.1468705	1.2277558	
V	4.7323694	1.5565611	2.2102432	6.4162465	1.1018022
F	1.8928831	3.0542789	1.4327344	1.3516899	8.0480699
	F4, 65 testing stationarity errors				

135．33（13．3	115.93729	79.545137	45．のヘロ679	53.789766
V 31.869 .37 .8	96．2．11959	47.860019	59．14764？	83.612856
F 99・ソ7边3	310.343085	80．095029	33.689302	61．29981
	$\mathrm{X}^{2} \mathrm{df}_{9} \mathrm{me}$	ing firs	der depe	c

32.0	－010542612	25．080909	26.220174	13.32537
V． 0 ¢8070．36	2．6426431	2.1148551	2．182．1697	－16
Fi9．59ด089	24.414986	56623	－05689602	44.28466

$\mathrm{X}^{2} \mathrm{df}_{36}$ measuring second order dependence latencies

9．73059？ 1	8.6939040	． 71040882	4.5134417	1.32 .42191
V 1．312831？	；5．79051？	2．9816506	3.2322843	． 17842451
F 19.93059 .1	9．3472741＇	1.5810288	3.7701138	1.9516505
	$\mathrm{X}^{2} \mathrm{df}_{1}$ meas	uring first	order depend	nce R sequence
0． 24482317	． 109795270	． 20695085	5.35393 ？ 9	． 58557260
V 5.0305320	． 77172546	2.3112237	2.8999832	1.5147417
F－0nG75¢21	． 25186213	1.0488895	1.0535466	． 14507730
	$\mathrm{X}^{2} \mathrm{df}_{2} \text { mea }$	ing seco	order dep	nce R sequenc

02.8099455 .40 .427632 .38326455 .8539690 ． 09342585

V 1．7565202 ． $33012878 \quad 3.3509804 .091490841 .0826522$
F $3.55138 \varnothing 84.3823194 \quad 3.37353616 .4274667$ •07851741
$\mathrm{X}^{2} \mathrm{df}_{1}$ measuring first order dependence error sequences
010.938956 2． $02.1643230 .14786145 .511305 \quad 30.361971$
$\begin{array}{llllll}V & 11.633567 & 150.45549 & 17.477517 & 48.817198 & 18.472689\end{array}$
F $31.195248 \quad 55$ ． 04878418.62384613 .51050981 .959563 $\mathrm{X}^{2} \mathrm{df}_{2}$ measuring second order dependence emror sequences

```
10 \1.287364 42.216974 35.927023 52.223436 33.0.98678
IV 38.256538 86.856925 38.295645 39.346312 26.972411
F 73.50762? 42. \varnothing6454? 43.046853 37.127259 36.421320 \(\mathrm{X}^{2} \mathrm{df}_{9}\) measuring first order dependence SR sequences

1．55714？9 4．87．45714 3．7ん4PR57 11．878571 4．44PR571
1И．P5月ดดด 4.9142 .857 与．1928571 12．585714 2．485714．3
8．5928571 4．235714．3．5928571 3．7．357143 1P．142857

Var total responses in each 140 trials

APPENDIX C

Estimate of Signal detection parameters for the models fitted in experiments 2, 3 and 4 (for an explanation, see p 137-143).

Session codes for Experiments 2 and 3
EXP 2 EXP 3


Later sessions are reflections of the above for subjects 2 to 4.
O-undicais not enough dato to -make entinate



FOR FIRST PARAMETER OVERALL FRIEDMAN 7.49
1.40
.808
.469
.940
1.76
1.41
1.11
1.23
1.41
1.59
.809
1.15
1.34
1.38
1.80
1.20
1.34
1.21
.866
.935
.341
.953
.977
.941
1.07
1.12
.522
.603
.447
1.05
1.08
.475
.701
.533
\begin{tabular}{llll}
.793 & .693 & .971 & .763 \\
.716 & .370 & .419 & .443 \\
.959 & .780 & .000 & .950 \\
1.71 & .000 & 000 & 1.74 \\
1.47 & 1.20 & 1.66 & 1.26 \\
1.31 & .410 & 1.24 & 1.02 \\
1.47 & 1.51 & 1.07 & 1.04 \\
1.50 & 1.50 & .000 & 1.28 \\
1.46 & .000 & 1.59 & 1.64 \\
1.09 & .983 & .722 & .768 \\
1.17 & 1.02 & .000 & 1.11 \\
1.41 & 1.51 & 1.70 & 1.22 \\
1.48 & 1.05 & .990 & 1.32 \\
1.86 & .000 & 1.79 & 1.73 \\
1.27 & .827 & 1.40 & 1.16 \\
1.47 & .887 & 1.85 & 1.17 \\
1.05 & .000 & .000 & 1.09 \\
1.30 & .928 & 1.46 & .717 \\
.882 & .923 & .859 & 1.10 \\
.300 & .500 & .326 & .375 \\
.974 & .933 & .831 & .985 \\
1.07 & .874 & .507 & 1.15 \\
.947 & .740 & .990 & .911 \\
1.09 & .755 & 1.15 & 1.12 \\
1.40 & .641 & .000 & 1.04 \\
.571 & .495 & .831 & .482 \\
.638 & .596 & .685 & .418 \\
.491 & .335 & .394 & .510 \\
1.01 & 1.18 & 1.15 & 1.13 \\
1.03 & .997 & .960 & 1.19 \\
.477 & .388 & .462 & .522 \\
.535 & .864 & .847 & .825 \\
.839 & .274 & .492 & .483
\end{tabular}

EXPERIMENT NO ESTIMATION
state on LAST TRIAL SESSION

2
3CLASSICAL THRESHOLD MODEL THRESHOLD

P(C)
OVERALL SIR1 SIR2 S2R1 S2R2
OVERALL
1R1.S1R2 S2R1 S2R2 OVERAL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline . 155 & . 181 & 1 & .276 & . 0 & . 237 & . 3 & . 024 & & , \\
\hline . 006 & -. 314 & . 046 & . 144 & . 017 & -. 003 & .. 031 & . 017 & . 005 & 01 \\
\hline .118 & -. 128 & .188 & . 259 & . 179 & . 245 & . 424 & . 083 & .134 & 33 \\
\hline .191 & . 255 & . 125 & . 149 & . 102 & . 083 & . 120 & . 079 & . 075 & 40 \\
\hline .031 & -. 189 & 057 & . 073 & . 097 & -. 022 & -. 069 & . 02 & . 013 & 045 \\
\hline . 179 & . 727 & 148 & . 095 & .117 & . 048 & . 027 & . 050 & . 040 & 121 \\
\hline . 011 & -. 055 & . 044 = & . 048 & . \(039^{\circ}\) & . 223 & -. 208 & . 323 - & . 200 & 417 \\
\hline . 082 & -. 229 & . 359 & . 054 & . 069 & . 274 & -. 345 & . 131 & 288 & 481 \\
\hline .286 & .464 & .182 & .366 & . 151 & . 288 & . 397 & . 086 & . 295 & . 08 \\
\hline
\end{tabular}

\begin{tabular}{lllllllllll} 
& & & & .653 & .632 & .583 & .575 & .711 \\
70 & .836 & .839 & .709 & .857 & .848 & .650 & .757 & .559 & .750 & .000 \\
71 & .850 & .912 & .647 & .000 & .824 & .637 \\
77 & .569 & .603 & .550 & .745 & .540 & .591 & .563 .493 & .579 & .617 \\
73 & .624 & .645 & .620 & .673 & .489 & .457 & .481 .449 & .507 & .339 \\
74 & .513 & .547 & .415 & .469 & .561 & .306 & .326 & .290 & .275 & .321 \\
75 & .828 & .816 & .864 & .856 & .852 & .641 & .609 & .695 & .671 & .733 \\
76 & .837 & .821 & .811 & .797 & .869 & .618 & .600 & .636 & .485 & .682 \\
77 & .535 & .537 & .464 & .525 & .570 & .341 & .366 & .268 & .298 & .374 \\
78 & .681 & .579 & .760 & .753 & .743 & .458 & .375 & .457 & .412 & .586 \\
79 & .577 & .749 & .355 & .548 & .541 & .401 & .420 & .345 & .349 & .425 \\
80 & .715 & .688 & .788 & .545 & .733 & .710 & .699 & .720 & .474 & .744
\end{tabular}

FOR FIRST PARAMETER DVERALL FRIEDMAN 14.7


\begin{tabular}{lllllllll}
1 & .054 & .038 & .032 .118 & .019 & 1.44 & .083 & 3.28 & 1.73 .3 .94 \\
2 & -.003 & -.071 & .032 & .049 & .011 & .897 & .386 & 2.25 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. & . 004 & .000 & . 000 & .000 & .006 & 1.45 & . 000 & .000 & . 000 & . 978 \\
\hline 2 & . 005 & .000 & .000 & . 000 & .000 & . 584 & .000 & .000 & .000 & .000 \\
\hline 3 & .003 & .000 & . 000 & .000 & . 000 & 1.03 & .000 & .000 & . 000 & . 000 \\
\hline 4 & .000 & . 000 & .000 & .000 & . 000 & H & .000 & .000 & . 000 & . 000 \\
\hline 5 & . 007 & . 000 & . 000 & . 000 & . 008 & . 807 & .000 & . 000 & . 000 & 1.35 \\
\hline 6 & .005 & .000 & .000 & .000 & . 000 & . 565 & .000 & . 000 & . 000 & . 000 \\
\hline 7 & . 210 & . 211 & . 185 & . 151 & . 194 & . 852 & 1.13 & . 285 & 2.34 & . 665 \\
\hline 8 & . 154 & . 145 & . 213 & .000 & . 135 & . 459 & . 550 & . 376 & . 000 & . 344 \\
\hline 9 & . 296 & . 259 & .300 & . 211 & . 306 & . 711 & . 967 & . 257 & 1.69 & . 660 \\
\hline 10 & . 217 & .327 & .291 & .109 & . 095 & .496 & . 601 & . 405 & 1.96 & . 269 \\
\hline 11 & . 180 & . 186 & . 241 & . 081 & . 172 & . 801 & . 867 & . 860 & 1.86 & . 667 \\
\hline 12 & . 397 & . 399 & . 502 & . 316 & . 353 & . 619 & .413 & . 781 & . 949 & . 655 \\
\hline 13 & . 893 & . 855 & . 916 & 1.06 & . 794 & . 567 & . 855 & . 364 & 1.17 & . 420 \\
\hline 14 & .241 & . 341 & . 191 & . 000 & . 145 & . 419 & . 523 & . 225 & . 000 & . 271 \\
\hline 15 & . 115 & . 125 & . 000 & .000 & . 104 & . 381 & .346 & . 000 & . 000 & . 492 \\
\hline 16 & . 327 & .346 & . 485 & . 288 & . 259 & . 427 & .376 & . 350 & . 360 & . 518 \\
\hline 17 & . 262 & . 271 & . 341 & . 277 & . 200 & . 641 & .751 & . 539 & 1.52 & . 465 \\
\hline 18 & . 247 & . 317 & .192 & . 000 & . 219 & . 696 & .736 & . 635 & .000 & . 707 \\
\hline 19 & . 033 & . 025 & . 000 & .090 & . 037 & . 915 & .724 & . 000 & . 000 & 1.05 \\
\hline 20 & .020 & . 014 & . 000 & .000 & . 021 & . 809 & 1.29 & . 000 & .000 & . 502 \\
\hline 21 & . 008 & . 000 & . 000 & . 000 & . 009 & . 957 & . 000 & . 000 & . 000 & . 539 \\
\hline 27 & . 024 & . 014 & . 000 & . 000 & . 032 & .960 & 1.25 & . 000 & . 000 & . 932 \\
\hline 23 & . 027 & . 013 & . 000 & . 000 & . 035 & . 706 & . 418 & . 000 & . 000 & . 778 \\
\hline 24 & . 054 & . 066 & . 000 & . 174 & . 042 & . 796 & . 597 & . 000 & 1.91 & 1.05 \\
\hline 25 & . 212 & .244 & . 326 & . 128 & . 137 & 1.00 & 1.37 & . 396 & 4.35 & . 643 \\
\hline 26 & . 389 & . 396 & . 541 & . 521 & . 273 & 1.10 & 1.21 & . 892 & 1.72 & . 881 \\
\hline 27 & . 200 & . 265 & . 135 & . 094 & . 120 & . 742 & 1.21 & . 655 & 1.70 & . 320 \\
\hline 28 & . 232 & . 277 & . 336 & . 215 & . 166 & 1.10 & 1.32 & . 864 & 1.25 & . 645 \\
\hline 29 & . 186 & .181 & . 216 & . 224 & . 151 & . 942 & 1.35 & . 993 & 1.34 & . 578 \\
\hline 30 & . 341 & . 424 & . 542 & .250 & . 234 & 1.30 & 1.47 & 1.48 & . 767 & 1.35 \\
\hline 31 & . 473 & . 360 & . 561 & . 411 & . 446 & 1.16 & 1.76 & . 503 & 3.11 & . 731 \\
\hline 32 & . 271 & . 239 & . 331 & . 259 & . 258 & . 702 & . 628 & . 514 & 2.42 & . 682 \\
\hline 33 & . 226 & . 196 & . 238 & . 218 & . 208 & . 858 & 1.40 & 1.35 & . 873 & . 483 \\
\hline 34 & . 549 & . 565 & . 797 & . 618 & . 379 & 1.52 & 1.50 & 1.05 & 1.45 & 2.10 \\
\hline 35 & . 290 & . 290 & . 471 & . 263 & . 261 & 1.26 & 1.21 & 1.65 & 1.05 & 1.36 \\
\hline 36 & . 712 & . 793 & . 780 & . 618 & . 657 & . 843 & , 744 & . 997 & . 751 & . 917 \\
\hline 37 & .047 & . 032 & . 000 & . 293 & . 043 & 1.01 & 1.52 & .000 & . 488 & . 893 \\
\hline 38 & .039 & . 039 & . 000 & . 000 & . 039 & 1.03 & 1.17 & .000 & . 000 & . 859 \\
\hline
\end{tabular}
 LAST TRIAL SESEION





\footnotetext{
IOR FIRET PARAMETER OVERALL FRIEDMAN 28.8
STIM FRIEDMAN 22.2RESP FRIEDMAN 4.92COR WR FRIEDMAN 13.0
81
IOTESECOND PARAMETER OVERALL FRIEDMAN 30.9
STIM FRIEDMAN 7.69RESP FRIEDMAN .3OBCOR WR FRIGDMAN 15.1
}

Esflimaton
NGNPARIMETRTC ANALYSIS
STAFE OH- OVERAGL APRIME S2R1 S2R2 OVERIAS OVEALL SIR1 84月2-827I=82 SESSION



\(z=\)
Nㅡㄴ





EXPERIMENT NO ESTIMATION

4,NONPARAMETRIC ANALYSIS
APRIME
BlAS
STATE ON OVERALL SIR1 S1R2 S2R1 S2R2 OVERALL SIR1 SIR2 S2R1 S2R2 LAST TRIAL SESSION


FOR FIRST PARAMETER OVERALL FRIEDMAN 6.17 STIM FRIEDYAN .286RESP FRIEDMAN 1.14COR HR FRIEDMAN 4.57

\footnotetext{
FOR SECOND PARAMETER OVERALL FRIEDMAN 3.86
STIM FRIEDMAN 1.14RESP FRIEDMAN 1.14COR WR FRIEDMAN 286 FB तFIO
}
```

 EXFFRIMENT VO
 ESTIMATION
 5ATKINSONS MODEL
 SIGMA B
 STATE ON OVERALL S1R1 S1R2 S2R1 S2R2 OVERALL SIR1 SIR2 S2R1 S2R2
 LAST TRIAL
 SESSION
 | 1 | . 769 | . 724 | .000 | .000 | . 816 | 3.40 | 6.87 | . 000 | . 000 | 1.22 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | .005 | -. 322 | . 013 | . 027 | . 018 | 1.01 | . 965 | 1.12 | 1.06 | . 908 |
| 3 | . 285 | . 306 | . 165 | . 366 | . 261 | 1.32 | . 687 | 2.03 | . 919 | 2.14 |
| 4 | -. 137 | -. 045 - | . 239 - | . 225 | . 063 | . 892 | . 506 | 1.17 | . 759 | 1.41 |
| 5 | . 389 | . 388 | . 462 | . 449 | . 358 | . 538 | .374 | . 7 ¢8 | . 278 | 1.01 |
| 6 | . 561 | . 614 | . 517 | . 344 | . 581 | 1.03 | .940 | . 835 | 1.28 | 1.07 |
| 7 | . 017 | -. 0142 - | . 040 | . 035 | . 117 | . 724 | .232 | . 360 | 1.71 | 2.09 |
| 8 | .475 | . 486 | . 455 | . 322 | . 544 | . 396 | . 471 | 1.75 | . 195 | . 363 |
| 9 | -. 107 | -.081- | . 168- | . 127 | . 088 | . 420 | . 326 | . 267 | . 455 | 1.22 |
| 10 | . 525 | . 600 | . 563 | . 658 | . 401 | . 977 | .713 | . 864 | 2.55 | 1.09 |
| 11 | .026 | . 190 | . 049 - | .013- | . 055 | . 524 | . 404 | .611 | .386 | 1.12 |
| 12 | . 203 | . 264 | . 092 | .181 | . 156 | . 386 | . 819 | . 323 | . 271 | . 097 |
| 13 | . 070 | -.103- | . 024 | . 138 | . 142 | . 286 | .274 | - 229 | . 250 | . 518 |
| 14 | . 200 | . 275 | . 161 | . 141 | . 133 | . 805 | 1.08 | 1.06 | . 546 | . 715 |
| 15 | .246 | . 251 | . 221 | . 258 | . 212 | 1.69 | 6.51 | 2.22 | 2.59 | . 564 |

 FOR FIRST PARAGETEF OVERALI FRIED:AAY 5.23
 STIM FRIEDMAN 1.14RESP FRIEDHAN 1.14COR WR FRIEDMAN 1.14
 FOR SECOND PARAYETER OVERAL.I FRIEDMAN 2.31
 STIM FRIEDMAN 1.14RESP FRIEDMAN 2.57CORWR FRIEDMAN .286
 FP OFLO

```
by. \(2669 \cdot B \cdot K \cdot 72\)```

