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Abstract

Between 01-28. February 2018, the Austrian Space Forum, in cooperation with the Oman 
Astronomical Society and research teams from 25 nations conducted the AMADEE-18 mission, 
a human-robotic Mars expedition simulation in the Dhofar region in the Sultanate of Oman As a 
part of the AMADEE-18 simulated Mars human exploration mission, the Remote Science 
Support team performed analysis of the Dhofar area, (Oman) in order to characterize it as a 
potential Mars analog site.  The main motivation of this research was to study and register selected 
samples collected by the analog astronauts during the AMADEE-18 mission with laboratory 
analytical methods and techniques comparable to the techniques that will be used on Mars in the 
future. The 25 samples representing unconsolidated sediments obtained during the simulated 
mission were studied by using optical microscopy, Raman spectroscopy, X-ray diffraction, laser-
induced breakdown spectroscopy, and laser-induced fluorescence. The principal results showed 
the existence of minerals and the detection of alteration processes related to volcanism, 
hydrothermalism, and weathering. The analogy between the Dhofar region and the Eridana Basin 
region of Mars is clearly noticeable, particularly as an analog for secondary minerals formed in a 
hydrothermal seafloor volcanic-sedimentary environment. The synergy between the techniques 
used in the present work provides a solid basis for the geochemical analyses and organic detection 
in the context of future human-robotic Mars expeditions. AMADEE-18 has been a prime test bed 
for geoscientific workflows with astrobiological relevance and has provided valuable insights for 
future space missions.

Keywords: Planetary exploration, combined instrumentation methods, Astrobiology, simulated 

space mission.
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Introduction

AMADEE-18 was an integrated Mars analog mission conducted by the Austrian Space Forum in 

the Dhofar region in the Sultanate of Oman between 01-28th February 2018. The activities were 

carried out in the proposed terrestrial Martian analog site and directed by a Mission Support 

Center in Innsbruck, Austria (Groemer et al., 2019). During the planning stage of the mission, a 

sequential method for the detection of biomarkers for future human and robotic Mars missions 

was developed. Garnitschnig (2018) proposed a framework for the detection of potential 

biomarkers and compiled a list of potential test sites for future missions (Groemer et al., 2019; 

Groemer, 2018a). These kinds of methods and frameworks pursue a double objective with strong 

implications in the search of life on Mars and optimization in the synergy of analytical techniques 

at different test sites for future Martian missions. The first objective was to evaluate the impact 

of carbon detection, water evidence, and characterize any biosignature. The second objective was 

the rational selection of technique to be used, which was based on the Martian mission such as 

Mars2020 and ExoMars suit equipment. Thus, the synergistic combination of analyses are of 

interest for target selection, deployment outcrop site and instrumentation capabilities for water 

and possible life detection (Garnitschnig, 2018; Gruber et al., 2019; Stromberg et al., 2019). 

Several in-situ experiments were used during this study such as the FieldSpec and ScanMars 

systems, which utilize reflectance spectroscopy and ground-penetrating radar GPR (described in 

detail in this issue). Other lab-based techniques that we have used during our analysis are micro-

imaging, Raman spectroscopy, X-ray diffraction (XRD), laser-induced breakdown spectroscopy 

(LIBS), and laser-induced fluorescence (LIF). The objective of these methods is to have a full 

biological and geological understanding of the surface. In this work, we present the results of the 

analysis done using lab-based techniques and illustrate how they can be used to qualitatively and 

quantitatively describe landscapes in situ, in addition to analyzing samples collected by humans 

during analogue and/or actual space missions. This may facilitate the inference of a surface 

suitability for subsequent analyses. For example, the lab-techniques can help in future selection 

of instrumentation and design of the workflow for a possible field-survey. 

The main motivation of this research was to study selected samples collected by the analog 

astronauts during the AMADEE-18 mission with laboratory analytical methods and techniques 

proposed in the strategic framework developed by (Garnitschnig, 2018) for the AMADE-18 

mission and comparable to the techniques that will be used on Mars in the future. The analyses 

were performed at the Planetary Exploration Instrumentation Laboratory at York University and 

the Royal Ontario Museum, both in Toronto, Canada. The results and measurements exemplify 

the capabilities of each technique, and the combined advantages. Furthermore, the results 

emphasize the selection applicability of portable twin systems−those that resemble real flight 
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instruments used in past/present/future Martian missions, and also based in the same technology− 

for future analog missions. Table 1 compares laboratory-based rover instrumentation from past, 

current and future missions.  Finally, SEM, EDS and XRD as described above, can be used to 

validate field experiments such as LIBS, Raman Spectroscopy and LIF.

Methods used in this study and their relevance to Mars studies

Raman spectroscopy is a non-destructive spectroscopic technique that does not require sample 

preparation. The technique is well suited for in-situ analyses of rocks and minerals, and has been 

used for mineral identification and organic detection of the target sample (Edwards et al., 2013; 

Ferraris et al., 2012). Raman spectroscopy has been proposed as a method for geological 

identification for Mars-related materials,  and it will be used during the future Martian missions: 

SuperCam and SHERLOC (NASA Mars 2020) or the ESA-RLS System (ExoMars) (Beegle et 

al., 2015; Rull et al., 2017; Wiens et al., 2016). 

LIBS utilizes emissions from plasma created at the surface of a sample via high-power laser pulses 

to perform quantitative chemical analyses (Wiens et al., 2012).. One of the primary benefits of 

LIBS is that there is no required sample preparation prior to measurement and only optical access 

to the sample is required. This makes it a formidable candidate for stand-off chemometric analysis 

(Cremers and Radziemski, 2013; Konstantinidis et al., 2019). For these reasons LIBS was selected 

for flight on Curiosity in the ChemCam instrument (Anderson et al., 2015), and will fly on Mars 

2020 (Wiens et al., 2016).  

LIF provides a method for organic and mineral detection through excitation of molecules by the 

absorption of laser light followed by spontaneous emission of light (Storrie-Lombardi et al., 

2009).  Typically, LIF used to be understood as an undesired byproduct of a Raman measurement, 

but (Eshelman et al., 2018) has shown it to be useful for detection of organic  such as organic 

carbon and amino acids, among others. SuperCam and SHERLOC (NASA Mars2020 Rover) will 

also incorporate this technique in their search for evidence of past or present life on Mars (Beegle 

et al., 2015; Wiens et al., 2016). SHERLOC utilizes LIF as a supporting tool for selection of 

targets with possible organics via fast mapping. Subsequently, Raman spectroscopy will be able 

to determine the mineralogy and possible existence of biosignatures (Beegle et al., 2015). 

XRD allows the user to obtain mineral identification and structural characterization, and is 

commonly used for crystallography and mineralogy (Klein, 2008). In space, ChemMin, onboard 

the MSL Curiosity rover, combines XRD with X-ray fluorescence (Bish et al., 2013). The 

ChemMin system can identify and quantify the minerals present in rocks and soil in order to 

understand the habitability of Mars.
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Other supportive methods such as scanning electron microscopy (SEM-EDS) allow us to analyze 

the mineralogic composition which, in combination with the in situ petrological description and 

in lab optical mineralogy study, provides information about regolith material source, petrological 

composition, identification of weathering and hydrothermal processes affecting the Martian 

rocks. A summary of the techniques used to determine mineral and elemental composition, detect 

organics, and deduce the geological context is presented in Table 1. 

Table 1. Comparison of the capabilities of the 5 systems employed in this investigation. 
(RLS=Raman Laser Spectrometer), (ChemCam=Chemistry and Camera), (Sherloc=Scanning 
Habitable Environments with Raman & Luminescence for Organics & Chemicals), (CheMin= 

Chemistry and Mineralogy), (MSL=Mars Science Laboratory)

Laboratory 

Technique

Mineral 

Identification

Elemental 

Composition

Organic 

detection

Geological 

Context

Laboratory 

instrumentation 

location  in this 

study

Rover 

Instrument 

Equivalent

Raman 

Spectroscopy

Yes Potentially

(only major 

elements)

Yes Yes 

(mapping)

Royal Ontario 

Museum 
RLS 

(ExoMars)

SuperCam 

(Mars 2020)

Sherloc 

(Mars2020)

Micro-

imaging

Yes No Yes Yes York University CLUPI 

(ExoMars)

XRD Yes No No Potentially Royal Ontario 

Museum
CheMin 

(MSL)

LIBS No Yes Potentially Yes 

(mapping)

 York University ChemCam 

(MSL) 

SuperCam 

(Mars 2020)

LIF Potentially No Yes No York University Sherloc 

(Mars 2020)

SEM-EDX Yes 

(Imaging)

Yes

(Qualitative)

Yes No York University

Geology of the site and its analogy with Mars
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In the Dhofar region a pre-rift, syn-rift and post-rift sequence ranging from Upper Cretaceous pre-

rift sediments until Upper Middle Miocene post-rift deposits units can be found. These series 

involve three sedimentary groups (Roger et al., 1989): The Hadhramaut Group, Paleocene to late 

Eocene in age that overlays in an unconformity over cretaceous strata consisting in shallow-

marine carbonate units (Lepvrier et al., 2002); The Dhofar Group, late Eocene, laying 

unconformably over Hadhramaut Group represented by two limestones units part of a shallow 

lacustrine to shallow marine deposits (Lepvrier et al., 2002) and the Fars Group, early Miocene, 

compose by conglomerated and carbonate deposits units (Lepvrier et al., 2002). Figure 1 and 2 

show The Paleocene–Miocene stratigraphic units of the Dhofar region Simplified geological map 

of southern Oman (Dhofar area) (from (Robinet et al., 2013).

Figure. 1. Simplified geological map of southern Oman (Dhofar area) showing the two studied 
areas discussed in this paper from (Robinet et al., 2013). (Reproduced by permission of 

Elsevier).
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For Peer Review Only; Not for DistributionFigure. 2. The Paleocene–Miocene stratigraphic units of the Dhofar region from (Robinet et al., 
2013). (Reproduced by permission of Elsevier).
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In the study area, the geological records are register by outcrops of the Huqf Supergroup, in the 

NE elongated salt basin in south Oman were uplifted blocks become sites of carbonate deposition, 

whereas basinal transtensional depressions were overlain with black shale and silicyte (Amthor 

et al., 2005). These belonging to the Ara Fm depositional times (Ramseyer et al., 2013) as can be 

observed in Figure 3.

Figure 3. Picture of field site showing the outcrops and alluvial fans deposits from were 
samples were taking and study in laboratory.

Quaternary deposits of alluvial fans were found during the field study; these unconsolidated 

sediments are present together with outcrops ranging from cm up to 1 meter approximately of 

silicified dolomites and organic-rich laminated chert (silicilyte) belonging to the Ara Fm as 

observed in Figure 3. The alluvial fans are composed mostly by sand to pebbles to boulders and 

cemented by poorly sorted rolled clasts covered by thin dark oxidized coating (Yuan et al., 2016) 

(Figure 3). 

The feeding area of the sediments for the alluvial fans comes from the northwest-north region 

product of erosion and weathering of the Oman mountains outcrops and from the Huqf 

Supergroup sediments mention before outcropping in the area.

Part of those no consolidated sediments of the alluvial deposits includes volcanic rocks of alkaline 

to basaltic composition belonging to the volcanic rocks interbedded with the Precambrian-
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Cambrian deposits, limestones and silicified dolomites fragments, and fragments of a 

hydrothermal altered silicified dolomite-carbonates and volcanic rocks that includes magnetite 

and sulfides like the remnant product of the hydrothermalism observed before in the Oman 

mountains (Reuning et al., 2007)

The hydrothermalism was vaguely studied for Dhofar area, its believed to be related to 

magmatism in part with the intrusion of late-stage veinlets carrying metals of magnetite and 

sulphides. A possible supergene alteration was also identified on the samples during the 

petrological description and field studies with secondary mineralization of alunite, coesite and 

montmorillonite in the sediments together with oxides and secondary chlorite.

The syn-rift deposits observed in the regolith and in the Ara Fm could correspond to possible 

Martian analogs. The Precambrian-Cambrian carbonates interbedded with volcanic products, and 

the development of hydrothermal deposits due to active magmatism in a spreading region from 

the study area can be correlated to similar regions from Mars’ surface, such as reported by 

Michalski et al. (2017). For example, Eridania Basin shows a 3.8 Billion-year record from a 

spreading area with active high magmatism and signatures of high Mg-Fe rich clay mineral 

products of hydrothermalism in an ancient lake base with high content of carbon and Ca-Fe-Mg 

rich carbonates (Michalski et al., 2017). Even though the chemistry of Eridania Basin on Mars is 

still unknown, strong evidence from infrared spectroscopy and high-resolution imaging suggest 

that the Eridania Basin contains a complex suite of alteration minerals that likely formed in a 

hydrothermal seafloor volcanic-sedimentary setting with intrusions of sulfide-rich fluids 

interacting with ultramafic-mafic volcanic rocks and sediments (Michalski et al., 2017). Even so, 

more areas in the Martian surface show similarities to geological records from selected places of 

ancient Earth (Léveillé, 2009). Therefore, our future understanding of Martian geo-chemistry and 

ancient development of organic rich carbon deposits in similar environments can be improved 

with the study of these analogs on Earth.

Experimental analysis and setup

In total, 25 geological samples, mostly consisting of various unconsolidated sediments were 

collected by the analog astronauts at the different locations where the in-situ experiments were 

carried out throughout the AMADEE-18 mission (See Figure 4a and 4b). The locations where 

samples were collected and the field cataloging procedures were conducted are presented in the 

Field Activity Plans from the mission (Groemer, 2018; Sejkora et al., 2018). The detailed 

geographical positions of the geo-sampling are available in the online supporting material.
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Figure 4. (a) Analog astronauts doing a geo-sampling in the field during the AMADEE-18 
mission, (b) Digital Model Elevation (DEM) map of the sampling points with the location, and 

Digital Elevation Map (DEM) (the coordinates of sampling location are on the supporting 
material), (c) example of one the geo-samples cataloged at York University, and (d) pelletized 

sand samples.

The samples were composed of unconsolidated sediments with grain sizes ranging from 25 µm 

to a few mm in diameter.  For practical reasons, LIBS and SEM-EDS measurements need to have 

a pelletized sample before carrying out the measurements. The sample preparation was conducted 

to ensure the same mineral and organic compositional properties. A small amount (5-10 g) from 

each sample was powdered manually in an agate mortar and sieved to obtain particles ranging 

from 45-150 µm in size. Powders were mixed with 1 ml of distilled water and compressed. These 

humidified pellet samples were left to dry by evaporation at high vacuum and room temperature. 
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This resulted in the formation of stable pellets. To carry out the measurements, the pellet was 

glued to a microscope slide for easy handling (See Figure 4c).

Micro-Raman measurements were made with a Horiba Lab-RAM Aramis Raman spectrometer. 

The analyses employed a 532 nm 50 mW laser focused to a 1.3 µm spot (FWHM). The 

spectrometer configuration used a 100 µm slit, and a 1200 grooves/mm diffraction grating. The 

location of the points to be analyzed were selected by the operator, along with several automatic 

mappings. A total of 40 different points per sample were acquired. The routine for obtaining the 

spectra was: selecting the point, taking a preview spectrum (fast measurement for good signal and 

focusing condition), and finally acquiring the spectra. The measurement conditions (acquisition 

and accumulations) for the manual location were varied from point to point ranging between 

several second to several minutes. The automatic mapping conditions per sample were 20 points 

separated 0.05 cm. Measurements at each point are a cumulative spectrum of five 10 s exposures. 

Spectra were corrected following the standard procedure available on the OPUS software from 

Bruker. A background subtraction was done using the Rubberband correction method and 65 

baseline points. The normalization to the maximum value =1 was carried out and spectral 

smoothing was used when the spectra was noisy for band identification. The Levenberg-

Marquardt curve fitting was done when in some of the spectra because several Mineral Raman 

bands were overlapping. Mineral identification was performed by comparison to the RRUFF 

Database using Crystal Sleuth (Downs et al., 2015; Laetsch and Downs, 2006). Voight fittings 

were used to deconvolute the main spectral features when the Raman bands of several minerals 

overlapped.

XRD measurements were carried out with a Bruker D8 Advance Diffractometer equipped with a 

two-circle goniometer setup and CuKα radiation source. The system was operated with a voltage 

generator of 40 kV and current of 40 mA. The data was collected using a Ni-filter, low background 

plate, and a LYNXEYE detector. The XRD diffractograms were acquired in range 10 < 2θ° < 70 

with a step size of 0.02° and acquisition time of 1 s per step and a rotation spin of 15 per minute. 

Analysis of resulting diffractograms was performed using the XPowder 2004.04.71 software with 

PDF-2 (2010) and the American Mineralogist Crystal Structure Database (AMCSD) 

crystallographic databases. A background correction for each diffractogram was achieved with 

the Splin-autoroller and polynomial tools available XPowder 2004.04.71 that allows to calculate 

a background polynomial subtraction function (Martin, 2004). XRD mineral quantification, and 

theoretical density determination of the mixture was achieved using the reference intensity ratio 

(RIR) from pattern matching results with XPowder 2004.04.71 (Martin, 2004). 

The micro-imaging analyses and petrological descriptions were made with a standard binocular 

Zeiss microscope. 
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Laser-induced fluorescence measurements were carried out using a 266 nm Raman-LIF system 

designed by (Eshelman et al., 2015, 2014) satisfying selected requirements of a putative flight-

worthy instrument. The excitation power was provided by a quadrupled Team Photonics diode-

pumped solid state Nd:YAG laser with a 0.6 ns pulse width and 13.8 µJ pulse energy at 1000 Hz. 

The acquisition system was composed of an Andor Shamrock 163 spectrometer. A 600 lines/mm 

grating allowed for an observation window between 270 to 550 nm. The spectrometer is coupled 

to an intensified, cooled CCD (Andor iStar 334T). The 1 cm long, 20-point LIF measurements 

are each an accumulation of 40 spectra with 0.01 s exposures. The spectral corrections were done 

in a same way as the Raman analysis. 

The elemental composition of the AMADEE-18 geo-samples was measured using a Vega 

TESCAN Scanning Electron Microscope (SEM) equipped with a Bruker Quantax energy 

dispersive X-ray (EDS) detector. The beam voltage used for secondary electron imaging (SEI) 

and backscatter electron imaging (BSE), as well as EDS spectra acquisition, was 10 kV. SEM-

EDS data were collected on the pelletized sand samples without any coating. 

LIBS measurements were achieved with a breadboard system. Plasma excitation was obtained 

with a 1064 nm Quantel ULTRA Nd:YAG laser with 10 mJ pulse energy and 10 ns pulse width, 

focused to a 33 µm spot (FWHM). The peak power density at the target is on the order of 100 

GW/cm2. The light produced from the plasma is collected through an off-axis f/7 collection 

system and delivered via fiber to the Andor ME5000 echelle spectrograph combined with the 

ICCD Andor iStar 334T camera (covering 230-850 nm). The spectrometer was wavelength 

calibrated using an Ocean Optics HG1 Calibration Light Source and intensity calibrated using an 

Ocean Optics DH-3P-CAL Calibration Light Source. Pelletized samples were used for LIBS 

analysis. Each LIBS measurement consists of 15 cumulative spectra with 0.1 s exposures (one 

spectrum per laser shot, for a total of 15 shots). An intensity correction was performed using the 

standard ANDOR Solis software procedure for the ME5000. Identification of element present 

within the spectra were carried with the Solis software and manual identification with the NIST 

Spectral Lines Database (National Institute of Standards and Technology, 2016).

Results

Field samples petrological description 

14 of the most representative regolith samples from the Quaternary alluvial fans sediments, 

silicified veinlets intruding Ara Fm outcrops, and the silicified dolomite and carbonate rocks 

samples from the Ara Fm outcrops were selected in order to describe the mineralogy and 
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petrology. These studies were later used to compare with the data acquired from LIBS, Raman 

and SEM-EDS laboratory analyses. 

A microscope magnifier Zeiss lens was used for the petrological description. Varying grain sizes 

from sand to pebbles and gravel were observed (Figure 5 and 6). 

During the petrological study of the sediment samples, sand and pebble sizes of calcite, dolomite, 

silicified dolomite rocks and quartz rocks fragments were observed. These present rounded to 

sub-rounded shapes with sizes up to 1 mm. All of them show an irregular oxidized coating on 

their surfaces. They represent more of the 80% of the sediment components. 

In minor quantities, less than 10%, sub-rounded to sub-angular fragments of volcanic rocks from 

intermediate to basic composition (andesites and basalts) are present. These rocks mostly show 

an altered matrix, with presence of secondary clay alteration (possible montmorillonite and 

coesite), plagioclase, amphiboles, pyroxenes crystal observed embedded in matrix. 

Sediments also show single crystals in less than 8% and 0.5 to 0.1 mm sizes range belonging to 

unidentified feldspars in angular to sub-angular crystals; unidentified plagioclases, prismatic sub-

angular crystals, many of them with clay alteration on their borders. Volcanic quartz sub-rounded 

to rounded with dark inclusions, prismatic crystals of amphiboles, chloritized and with presence 

of oxides inclusions on their borders, and transverse basal sections of pyroxenes, prismatic crystal 

of chlorite and zircons were also identified.  

Between 2 to 5 % oxides and sulfides were present in the sediments. Alunite was observed likely 

as replacement of sulfides, possible pyrite, in small sizes (less than 0.5 mm) of silicified veinlets 

(Figure 5 and 6) 

Samples belonging to silicified veinlets and silicified dolomite Ara Fm sediments were also 

described. The first ones show a matrix of fine microcrystalline white silica, with presence of 

anorthoclase plagioclase crystals in sizes ranging from less than 0.1 mm up to 0.5 mm, which 

were fractured and rotated; showing evidence of flow movement in the matrix. Magnetite and 

sulfides were also observed. For the silicified dolomite rock fragments, a fine microcrystalline 

matrix of dolomite replaced by silica was clear via microscope mineral identification. Some of 

them show a small zebra pattern, related to possible hydrothermal activity as can be observed in 

Figure 5 and 6.
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Figure 5. Magnified images of the alluvial fan sediments and sand to gravel size material. (a) 
Dolomites, silicate, carbonate clasts with feldspar crystals; (b) sand with presence of volcanic 

quartz, feldspar, disseminated oxides and gravel size clast; (c) rounded volcanic quartz, 
dolomite clasts, rounded basalt clast and alunite and feldspar crystals; (d) andesite sub-rounded 
clast with abundant presence of volcanic quartz, and oxides and disseminated alunite crystals; 

(e) amphibole in fine grained silica with chloritized mineralization in center and oxides in 
borders. Abbreviations: Fsp (feldspar), V Qtz (volcanic quartz), Alu (alunite) and Ox (oxide).
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Figure 6. Magnified images of the alteration processes. (a) The silicate replacing dolomite rock 
from Ara Fm with oxide coating on the surface; (b) silica vein intruded in Ara Fm carrying 

magnetite and sulfides; (c) silicate replacing carbonate rocks from Ara Fm (possible evidence of 
supergen activity); (d) random dissemination of oxides and alunite crystals in silica vein matrix; 
(d) fine to very fine silica matrix replacing carbonate rocks (details of carbonate clast and silica 

veins in process of replacement can be observed). Abbreviations: dolomite (Dol), magnetite 
(Mag), and alunite (Alu).

Raman Analysis

The mineralogical composition results are listed in Table 2 following the ordering of Dana´s 

classification method (Palache et al., 1952). Figure 7 shows representative Raman spectra 
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obtained from the samples. Identification of mineral species is done using the RRUFF Database 

within the Crystal Sleuth software (Downs et al., 2015; Laetsch and Downs, 2006). The following 

references for each minerals were considered alongside the spectral analyses: oxides 

(Balachandran and Eror, 1982; Markovski et al., 2017; Wang et al., 2004), carbonates (Buzgar 

and Apopei, 2009; Rull-Perez and Martinez-Frias, 2003), pyroxenes (Huang et al., 2000; Wang 

et al., 2001), feldspar (Freeman et al., 2008; Lalla et al., 2019, 2015), clays (Apopei and Buzgar, 

2010; Black and Hynek, 2018; E.A. Lalla et al., 2016), and organics (Ferrari, 2007). The organics 

present in the main Raman bands in the range of 2800 to 3000 cm-1 correspond to C-H bonding 

and the other less intense bands near 1300 cm-1 correspond to C-C vibrations (Beegle et al., 2015). 

Table 2. Micro-Raman mineral and other material detection on the different sampling points 
from AMADEE-18 Mission. X indicates that the mineral was found to be present in the 

respective sample.

Samples

Mineral

04
-1

5

05
-1

7

07
-1

7

08
-1

8

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6

Magnetite X X X X X X X X
Hematite X X X X X X X
Goethite X
Anatase X X X X X

Chromite X
Quartz X X X X X X X X X X X X X X X
Calcite X X X X X X X X X X X X X X X

Dolomite X X X
Titanite X
Olenite X

Enstatite X X
Diopside X X
Epidote X X

Microcline X X X
Orthoclase X
Sanidine X X X X X
Albite X X X X X X X X X

Andesine X X X
Labradorite X X

Clays X
Carbonaceous 
Material and 

organics

X X X X X X X X X X X X X X X
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Figure 7. Micro-Raman spectra of the most significant mineral phases detected.

XRD analysis

The minerals found within the collected samples using XRD are compiled in Table 3. Figure 8 

compiles the XRD diffractograms of the different sampling points and the higher concentration 

minerals detected on the different samples are also indexed in the figure. The detailed mineral 

quantification of each transect point is attached as supporting material in weight percent (wt%) 

including all the minor minerals. 
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Table 3. XRD mineral detection on the different sampling points from AMADEE-18 Mission. 

X corresponds to the detected mineral in each collected sample.

Samples
Mineral

04
-1

5 

07
-1

7

08
-1

8

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6

Iron-Oxides X
Anatase X X
Rutile X X
Quartz X X X X X X X X X X X X
Calcite X X X X X X X X X X X X X

Dolomite X X X X X
Ferrosilite X X

Olenite X
Diopside X
Pigeonite X
Enstatite X X
Epidote X
Pyrope X X
Coesite X
Olivine X X
Feldspar X X

Anorthoclase X
Orthoclase X
Sanidine X
Anorthite X X

Albite X X X X X
Bytownite X
Andesine X X

Labradorite X X
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Figure 8. X-Ray diffractogram of the selected transect points from the AMADEE-18 Mission. 
The minerals shown are the higher concentration obtained from the quantification (see 

supporting materials). Abbreviations: quartz (Qtz), calcite (Cal) and feldspar (Fsp).
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Laser Induced Fluorescence

A 1 cm long, 20-point LIF measurement was carried out on unprocessed sediment. Results of the 

LIF measurements for the different sampling points are shown in Figure 9a-d. The most intense 

LIF bands for organic detection are located between 300 to 450 nm (Eshelman et al., 2015, 2014). 

The spectra from the organics detected at the collected samples were compared with the internal 

PIL (Planetary Exploration Instrumentation Laboratory) database (Cote et al., 2018; Lymer, 

2018). The results coincide with previous analyses of amino-acids like tyrosine and possibly 

tryptophan. Figure 9e shows a comparison between the different amino-acids used as standards 

and the detected organics from AMADEE-18 mission. The minerals detected coincide with 

carbonates (dolomite and calcite) and silica (quartz) LIF spectra from the PIL database. The 

dolomite is clearly differentiable on the spectra considering broad bands at ~350 and ~460 nm. 

The quartz presents a weak band at ~325 and the strongest broad band between 450 to 475 nm. 

Also, Figure 9e. presents some selected bands from the different minerals detected and 

AMADEE-18 results. Table 4 shows the minerals and organic signature detected for the different 

samples. The minimum amount of minerals and organic signatures were considered only for more 

than 15% of detection of the 20-point, being in more than 3 points

Figure 9. Representative LIF measurements (20 points along a 1 cm line) from the different 
sampling points from AMADEE-18: (a) 09-18; (b) 10-18; (c) 12-23; (d) 18-26; (e) selected 

spectral comparison with some organics and minerals
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Table 4. Main LIF minealogical detection for the different sampling points from AMADEE-18 

Mission (20-point mapping of 1 cm line). (** The carbonate and organic signatures were 
considered only for more than 15% of detection – more than 3 points

Samples

04
-1

5

07
-1

7

08
-1

8

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6

Silicate (Quartz, 
Amorphous sand)

X X X X X X X X X X X X X X

Carbonates 
(Calcite or 
dolomite)

X X X X X X X X X

Organic 
signature**

X X X X X X X X 5 X X

Scanning Electron Microscopy Analysis (SEM-EDS)

The results of the semi-quantitative EDS analyses are summarized in Table 5. The elemental 

analysis, representing bulk composition of the mixed powder samples was performed on areas of 

approximately 10 mm2 on each pellet representing a qualitative approximation of the elemental 

distribution. The quantification of EDS spectra was performed with the P/B-ZAF QUANTAX 

analysis strategy (Bruker-Nano, 2011). This is a standard-less, self-calibrating spectrum analysis 

procedure that makes use of ZAF matrix correction formulas, enabling simple processing of the 

EDS spectra collected for each sample. Since the accuracy of EDS quantification is relatively 

low, especially with standard-less quantification, the normalized elemental mass percentages 

were used to allow comparison within and between samples for the relative elemental 

concentrations. With these quantifications, a qualitative analysis of the sample elemental 

composition was performed on the data. Figure 10 shows an example of the elemental distribution 

and BSE profile of a sample. Most samples appeared relatively homogeneous in BSE images, 

however, distinct mineral phase boundaries appeared in some samples, as evidenced in the BSE 

image and corresponding EDS spectral map of sample 05-17. The stark contrast seen between the 

left and right halves of both images are a result of large sodium chloride grains, interpreted as 

halite. The EDS spectra of the soil samples were more homogeneous across all samples, reflecting 

the random mixing involved in their preparation. The wt% oxide concentrations (rounded to the 

nearest percent to reflect the low accuracy of method) in Table 5 were calculated from the 

normalized mass percentages derived through the quantification procedure. All of the elemental 

iron present was converted to wt% FeO (see supporting data). 

The spectra for some samples gave erroneous results, likely due to the large error associated with 

the quantification, and only the elements with identifiable peaks were quantified. Two poor 

quality spectra (4-15 and 8-18) have been omitted in Table 5.
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Table 5. EDS elemental quantification converted to equivalent wt. % oxides for the different 
sampling points from the AMADEE-18 mission. Powder sample spectra collected over ~10 

mm2 acquisition areas and normalized.

Samples

oxide 
wt% 07

-1
7

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6 Average
(oxide 
wt%)

SiO2 24 41 33 16 28 32 27 12 22 31 28 28 27
Al2O3 5 9 7 2 5 6 5 3 4 6 5 5 5
FeO 2 4 3 1 2 3 1 1 2 3 2 2 2
MgO 3 8 5 2 3 5 3 2 3 5 4 3 4
CaO 27 13 21 34 27 22 20 28 28 23 18 29 24
Na2O 1 1 1 0 1 1 1 0 1 0 1 1 1
K2O 1 1 1 1 1 1 1 1 1 2 1 1 1
CO2 37 23 29 44 33 30 42 53 39 30 41 31 39
Total 100 100 100 100 100 100 100 100 100 100 100 100 103

Figure 10.  An EDS elemental map of 05-17 (right). The left half of the image is primarily 
composed of oxygen, silicon, and calcium whereas the right is dominated by sodium and 

chlorine. BSE image corresponding to area of EDS elemental map (left).

Laser Induced breakdown spectroscopy (LIBS)

LIBS spectra are shown in Figure 11. The spectral range covers almost all the near-UV, visible, 

and near-infrared. The main compositional elements are Al, Ca, Ti, Si, K, Fe, and Mg, were 

identified using the NIST Spectral Lines Database (National Institute of Standards and 
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Technology, 2016). In the near-UV region, the most intense peaks are Ca II located at 315.89, 

317.93, 393.36 and 396.85 nm, Al I peaks at 308.31 nm, and Ti II within the 310-360 nm region, 

and 368.5 nm. Si II peaks are present at 385.6 nm and 390 nm approximately, as well as, Fe I 

peaks at 370.73 nm and 373.8 nm. The region from 480 to 660 nm contains Mg I (517.2 nm and 

518.3 nm), Fe I and Fe II (526.6 nm, 527 nm, and 534.97 nm), Ca I (487.81 nm and 585.74 nm), 

and Na I (588.9 nm and 589.59 nm) characteristic lines. In the region of the near-infrared, the 

major peaks observed correspond to Ca I (714.8 nm, 720.2 nm, and 732.6 nm), K I (doublet at 

766.49 and 769.89 nm), and O I (777.4 nm and 844.6 nm).

Figure 11. LIBS spectra from the pelletized AMADEE-18 sand samples.

Discussion 

The petrological study of these samples shows evidence of hydrothermal deposits in the Ara Fm 

previously undescribed. This hydrothermalism is probably related to the syn-rift volcanism in the 

late stage of formation (Ramseyer et al., 2013; Reuning et al., 2007; Rollinson et al., 2014). It is 

represented by the existence of the silica veinlets carrying sulfides and oxides intruding the 

dolomitic rocks studied in the present work. Part of this alteration has generated secondary clays 
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being observed in the present samples. Also, a supergene alteration has been observed on the 

samples reflected by an oxidized coating over the surface of almost all the clasts described. These 

alterations are supported by the presence of tertiary clays. In general, the supergene alteration was 

produced by the alluvial water intruding into the outcrops from the surface. The supergene process 

is combined with other alterations like the weathering and the alteration of the post-rift processes. 

All of the alteration processes described above are believed to have occurred on Mars. Because 

of this, this area has being proposed as a key terrestrial Mars analog for alteration processes 

(Chevrier and Mathé, 2007). The hydrothermalism and supergene alteration observed in the 

samples are comparable to similar geological data identified by the NASA MSL-Curiosity 

mission in Mars    (Le Deit et al., 2013; Marzo et al., 2010; Popa et al., 2015).

The spectroscopic analyses performed here detected minerals ranging from oxides to complex 

clays. The detected minerals match those observed using optical microscopy. The detected 

carbonates like dolomite and calcite correspond to the hydrothermal alteration. The oxides such 

as hematite and quartz are also significant in the context of understanding the hydrothermal 

processes. Also, minerals from old volcanism of the region such as pyroxene, feldspar, and olivine 

were detected. The meteoric alterations have also been detected in the form of clays and the water 

content on certain samples. The present results also confirm that Raman spectroscopy is able to 

detect certain mineral species that are not visually differentiable such as olenite, pyrope, or coesite 

minerals, among others. Also, the results agree with the mineralogy previously reported (Amthor 

et al., 2005; Ramseyer et al., 2013). The other powerful application of the Raman analysis was 

the detection of organic materials on the different samples. However, the measurements must be 

complemented with the capabilities of other laser techniques to get semiquantitative 

concentrations of the organics present. Given the fast measurements and high sensitivity to target 

biomolecular structures that are present in the different samples, the best complementary method 

for detection of organics is LIF. The wavelength range for the detected organics match the range 

amino-acids like lysine or phenylalanine (Eshelman et al., 2018, 2014). Also, the LIF method 

helped to confirm the existence of carbonates such as calcite or dolomite and quartz. 

The XRD measurements identified and quantified the mineralization present in the different 

samples. Indeed, the pattern matching facilitated easy identification of quartz, feldspars and 

carbonates. The detection of some feldspars like albite helped to confirm the hydrothermal 

alterations. Other minerals (pyroxene and certain feldspars) confirmed the existence of past 

volcanic activities. The high concentration of carbonates in the analyzed samples was confirmed 

with LIF, LIBS and EDS. The high concentration of calcite and dolomite agree with the 

petrological description of the sedimentary rocks.
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The LIBS technique mainly detected Ca, Mg, Al and other metal ions like Fe. These elements 

could be the cations in the identified carbonates (e.g. dolomite and calcite). However, Mg and Fe 

could also be associated with the volcanic parent mineralogy such as pyroxene, olivine or Fe-

oxides (magnetite). This agrees with the Si detected on the samples which could represent the 

ionization of the pyroxene, olivine, and feldspars. Peaks corresponding to Al can be assigned to 

the different alkali-feldspar and/or clay mineralization present along all the different sampling 

points. The K and Na peaks probably belong to feldspar group minerals because this mineral 

group presents higher concentrations of K and Na compared to other minerals.

The semi-quantitative EDS analysis of the uncoated pellets detected high concentrations of Si, 

Ca, and C, which is consistent with the dominant mineralogy of calcite, dolomite, and quartz 

determined through the other experimental techniques applied to the samples. Throughout the 

laboratory analysis, samples were handled with gloves and stored in sealed containers to minimize 

contamination. Despite these efforts, it is likely that some of the C measured by EDS for the 

samples is due to contamination; however, high concentrations of ~40% indicate that 

contamination cannot be the only responsible mechanism, and that the presence of carbonates is 

probable. Possible contamination factors could include in-situ biological contamination, or 

sample handling at the Kepler base station during the mission.  (Abed et al., 2010) reported that 

the bacterial community in the region is mainly composed of cyanobacterium (e.g. 

Deltaproteobacteria, Bacteriodetes, Gemmatimonas and Planctomycetes). However, we have 

shown that EDS provided a relatively quick and semi-non-destructive mineralogical and 

geochemical analysis of samples, with elemental results consistent with those derived from the 

other instruments. 

From an astrobiological perspective, carbonates are most commonly associated with potentially 

habitable zones such as hydrothermal areas, marine or lacustrine sediments, or biominerals (Bish 

et al., 2013). The carbonates form not only through hydrothermal or diagenetic processes, but 

they can have an origin of weathering byproducts or from serpentinization. Carbonates provide 

an energy source for chemosynthetic microbes on Earth.  Considering the magnesium-iron rich 

carbonates detected by the Spirit rover (Morris et al., 2010), the sand studied during the 

AMADEE-18 mission is a good geological candidate for an in-situ instrument analysis of future 

space-qualified equipment prototypes and twin systems for future research. 

The approach described in this section provides a geo-chemical instrumentation and 

methodological suite for the comprehensive analysis of a sample, yielding a mineralogical, 

elemental, organic, petrological, and geomorphological investigation. The results obtained from 

the different techniques illustrate the applicability of portable systems based on the real flight 

instruments for future analog missions (E. A. Lalla et al., 2016; Sehlke et al., 2019; Warren-
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Rhodes et al., 2019). Further, the combined measurements of this comprehensive geo-chemical 

suite in analog space missions will yield insight into how our present methods can be improved 

upon for future missions to Mars and beyond. Particularly, given the large degree of instrument 

overlap and complementation, continuous use of the geo-chemical suite in space exploration will 

facilitate a unique combination in which the instruments ought to be used (Foing et al., 2011; 

Sehlke et al., 2019; Warren-Rhodes et al., 2019). 

Among the possible proposed objectives, the suite of used lab-techniques demonstrated that these 

analyzes provided us useful information when the “Selection of Instrumentation” comes. It should 

be noted, that the objective of this work and subsequent conclusions are not in the means by which 

the samples were collected and archived, nor in how the capability of these specific instruments 

in the terrestrial analogue compare to potential capabilities on Martian exploration. Rather, we 

strive to demonstrate how the synthesis of information derived from the aforementioned 

instruments (whose techniques are highly comparable to those in present and future missions) can 

be used to maximize mineralogical, petrological and astrobiological inference in a rigorous and 

efficient way.  The information of capabilities from Table 1 combined with the “Data from 

orbiters and previous missions” could help us to decide an optimized workflow when it is required 

(see Figure 1). When the traverse plan is included in the workflow, this feature information could 

help to: (1) determine the logical orders of experiments according to the relevance of the acquired 

data; (2) duration of the experimental procedure (e.g. how much time and how many astronaut 

are required, time-lining, among others); and (3) risk assessments from landing site 

geomorphology, required sensing range, and energy duties (robotic and human). 

As we have discussed over the course of the article, there are great mineralogical and 

astrobiological implications from studying terrestrial analogues, not only from the point of view 

of instrumentation validation, but also in systematizing methods of inference in the analogue 

context in addition to the setting of real space exploration. Indeed, data comes at many stages in 

space exploration; ranging from site selection, standardization of surrounding factors (such as 

passive reflectance), to the final mineralogical and astrobiological conclusions. Having accepted 

this, the only feasible way in which the utility of subsequent missions can be optimized is by 

having the integral processes and methods for inference rigorously established in the terrestrial 

domain. This is particularly true as we begin to travel with higher frequency beyond Mars. 

 Conclusion 

1- The different techniques proposed facilitated the petrological, mineralogical and chemistry 

goals, chemical determination and organic detection for possible habitability within in the 

framework in Martian research. These analyses are presented to provide guidance for future 

analog missions like the AMADEE-18 mission. Also, the combined analytical methods will 
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improve the methods and protocols of in the detection of life for future space systems and Human 

missions to Mars.

2- The petrological analysis allowed us to determine the mineralogy, and geochemical origin of 

the minerals and alteration processes such as volcanism, hydrothermalism, and weathering among 

others, and to propose this area as a Mars Analog for future field simulated missions and 

instrumental experimentation for samples study.

3- The mineral identification obtained from Raman spectroscopy and XRD agree with the 

petrological analysis. The results show that the mineralogy of the different samples is dominated 

by the carbonates, silica (quartz) and feldspars. 

4-The LIBS detection of Al, Ca, Ti, Si, K, Fe, Si and Mg and the subsequent elemental analysis 

obtained by SEM-EDS were in high agreement. The detected elements could be assigned to 

carbonates, clays, Fe-ores, and feldspar. These results give the understanding of the elemental 

distribution between mineral phases detected by Raman and XRD.  

5-The LIF measurements detected a high concentration of carbonates as did the EDS, XRD, LIBS 

and Raman.  

6-The detection of the organic samples was mainly achieved by Raman spectroscopy and LIF. 

Thus, the combined Raman-LIF measurements would provide the capabilities to identify organics 

on Mars.  
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List of Figures

Figure. 1. Simplified geological map of southern Oman (Dhofar area) showing the two studied 
areas discussed in this paper from (Robinet et al., 2013). (Reproduced by permission of 

Elsevier).

Figure. 2. The Paleocene–Miocene stratigraphic units of the Dhofar region from (Robinet et al., 
2013). (Reproduced by permission of Elsevier).

Figure 3. Picture of field site showing the outcrops and alluvial fans deposits from were samples 
were taking and study in laboratory.

Figure 4. (a) Analog astronauts doing a geo-sampling in the field during the AMADEE-18 
mission, (b) Digital Model Elevation (DEM) map of the sampling points with the location, and 

Digital Elevation Map (DEM) (the coordinates of sampling location are on the supporting 
material), (c) example of one the geo-samples cataloged at York University, and (d) pelletized 

sand samples.

Figure 5. Magnified images of the alluvial fan sediments and sand to gravel size material. (a) 
Dolomites, silicate, carbonate clasts with feldspar crystals; (b) sand with presence of volcanic 

quartz, feldspar, disseminated oxides and gravel size clast; (c) rounded volcanic quartz, dolomite 
clasts, rounded basalt clast and alunite and feldspar crystals; (d) andesite sub-rounded clast with 

abundant presence of volcanic quartz, and oxides and disseminated alunite crystals; (e) 
amphibole in fine grained silica with chloritized mineralization in center and oxides in borders. 

Abbreviations: Fsp (feldspar), V Qtz (volcanic quartz), Alu (alunite) and Ox (oxide).

Figure 6. Magnified images of the alteration processes. (a) The silicate replacing dolomite rock 
from Ara Fm with oxide coating on the surface; (b) silica vein intruded in Ara Fm carrying 

magnetite and sulfides; (c) silicate replacing carbonate rocks from Ara Fm (possible evidence of 
supergen activity); (d) random dissemination of oxides and alunite crystals in silica vein matrix; 
(d) fine to very fine silica matrix replacing carbonate rocks (details of carbonate clast and silica 

veins in process of replacement can be observed). Abbreviations: dolomite (Dol), magnetite 
(Mag), and alunite (Alu).

Figure 7. Micro-Raman spectra of the most significant mineral phases detected.

Figure 8. X-Ray diffractogram of the selected transect points from the AMADEE-18 Mission. 
The minerals shown are the higher concentration obtained from the quantification (see 

supporting materials). Abbreviations: quartz (Qtz), calcite (Cal) and feldspar (Fsp).

Figure 9. Representative LIF measurements (20 points along a 1 cm line) from the different 
sampling points from AMADEE-18: (a) 09-18; (b) 10-18; (c) 12-23; (d) 18-26; (e) selected 

spectral comparison with some organics and minerals
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Figure 10.  An EDS elemental map of 05-17 (right). The left half of the image is primarily 
composed of oxygen, silicon, and calcium whereas the right is dominated by sodium and 

chlorine. BSE image corresponding to area of EDS elemental map (left).

Figure 11. LIBS spectra from the pelletized AMADEE-18 sand samples.
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List of Tables

Table 1. Comparison of the capabilities of the 5 systems employed in this investigation. (RLS=Raman 
Laser Spectrometer), (ChemCam=Chemistry and Camera), (Sherloc=Scanning Habitable Environments 
with Raman & Luminescence for Organics & Chemicals), (CheMin= Chemistry and Mineralogy), 
(MSL=Mars Science Laboratory) 

Laboratory 

Technique

Mineral 

Identification

Elemental 

Composition

Organic 

detection

Geological 

Context

Laboratory 

instrumentation 

location  in this study

Rover 

Instrument 

Equivalent

Raman 

Spectroscopy

Yes Potentially

(only major 

elements)

Yes Yes 

(mapping)

Royal Ontario Museum RLS (ExoMars)

SuperCam 

(Mars 2020)

Sherloc 

(Mars2020)

Micro-

imaging

Yes No Yes Yes York University CLUPI 

(ExoMars)

XRD Yes No No Potentially Royal Ontario Museum CheMin (MSL)

LIBS No Yes Potentially Yes 

(mapping)

 York University ChemCam 

(MSL) 

SuperCam 

(Mars 2020)

LIF Potentially No Yes No York University Sherloc (Mars 

2020)

SEM-EDX Yes 

(Imaging)

Yes

(Qualitative)

Yes No York University
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Table 2. Micro-Raman mineral and other material detection on the different sampling points from 

AMADEE-18 Mission. X indicates that the mineral was found to be present in the respective sample.

Samples

Mineral

04
-1

5

05
-1

7

07
-1

7

08
-1

8

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6

Magnetite X X X X X X X X
Hematite X X X X X X X
Goethite X
Anatase X X X X X

Chromite X
Quartz X X X X X X X X X X X X X X X
Calcite X X X X X X X X X X X X X X X

Dolomite X X X
Titanite X
Olenite X

Enstatite X X
Diopside X X
Epidote X X

Microcline X X X
Orthoclase X
Sanidine X X X X X
Albite X X X X X X X X X

Andesine X X X
Labradorite X X

Clays X
Carbonaceous 
Material and 

organics

X X X X X X X X X X X X X X X

Page 38 of 51

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Astrobiology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only; Not for Distribution
Table 3. XRD mineral detection on the different sampling points from AMADEE-18 Mission. X 

corresponds to the detected mineral in each collected sample.

Samples
Mineral

04
-1

5 

07
-1

7

08
-1

8

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6

Iron-Oxides X
Anatase X X
Rutile X X
Quartz X X X X X X X X X X X X
Calcite X X X X X X X X X X X X X

Dolomite X X X X X
Ferrosilite X X

Olenite X
Diopside X
Pigeonite X
Enstatite X X
Epidote X
Pyrope X X
Coesite X
Olivine X X
Feldspar X X

Anorthoclase X
Orthoclase X
Sanidine X
Anorthite X X

Albite X X X X X
Bytownite X
Andesine X X

Labradorite X X
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Table 4. Main LIF minealogical detection for the different sampling points from AMADEE-18 Mission 

(20-point mapping of 1 cm line). (** The carbonate and organic signatures were considered only for more 

than 15% of detection – more than 3 points
Samples

04
-1

5

07
-1

7

08
-1

8

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6

Silicate (Quartz, 
Amorphous sand)

X X X X X X X X X X X X X X

Carbonates (Calcite 
or dolomite)

X X X X X X X X X

Organic signature** X X X X X X X X 5 X X

Table 5. EDS elemental quantification converted to equivalent wt. % oxides for the different sampling 

points from the AMADEE-18 mission. Powder sample spectra collected over ~10 mm2 acquisition areas, 

and normalized.

Samples

oxide 
wt% 07

-1
7

09
-1

8

10
-1

8

11
-1

8

12
-2

3

14
-1

3

18
-2

6

19
-2

6

20
-2

6

21
-2

6

22
-2

6

23
-2

6 Average
(oxide 
wt%)

SiO2 24 41 33 16 28 32 27 12 22 31 28 28 27
Al2O3 5 9 7 2 5 6 5 3 4 6 5 5 5
FeO 2 4 3 1 2 3 1 1 2 3 2 2 2
MgO 3 8 5 2 3 5 3 2 3 5 4 3 4
CaO 27 13 21 34 27 22 20 28 28 23 18 29 24
Na2O 1 1 1 0 1 1 1 0 1 0 1 1 1
K2O 1 1 1 1 1 1 1 1 1 2 1 1 1
CO2 37 23 29 44 33 30 42 53 39 30 41 31 39
Total 100 100 100 100 100 100 100 100 100 100 100 100 103
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