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Abstract 20 

Ballan wrasse (Labrus bergylta) are used as cleaner fish in commercial Atlantic salmon 21 

farming to remove ectoparasitic sea lice. While the delousing performance of wild wrasse is 22 

usually good, that of farmed wrasse is variable, possibly because of different conditions in 23 

hatcheries and sea cages. In this study, three passive-acoustic telemetry (PAT) trials were 24 

conducted at a salmon farm to compare the behaviour of wild and farmed wrasse and test the 25 

effect of acclimatising farmed wrasse to sea-cage conditions before deployment. Up to 40 26 

fish were monitored simultaneously for 60–124 days by triangulating tag positions within a 27 

hydrophone array every 6–10 secs. This data was used to assess fish depth and preferred cage 28 

locations and calculate activity, orientation and home ranges. 29 

 30 

Wild wrasse occupied shallower depths (13.3 ± 2.4 m) than farmed wrasse, which remained 31 

near the bottom of the cages (18.2 ± 1.7 m). Swimming activity was higher in wild wrasse 32 

with significant diurnal variations due to nocturnal quiescence on 68% of observed days. 33 

Wild wrasse rapidly developed large home ranges (616.8 ± 110.1 m2), preferring cage 34 

corners. Hatchery-and-sea-cage acclimatisation improved the behaviour of farmed wrasse; 35 

they rapidly moved up the water column (9.08 ± 2.05 m after 1 week) and established home 36 

ranges (514.3 ± 146.6 m2), and they developed diurnal activity patterns, which may indicate a 37 

positive response to acclimatisation. 38 

 39 

Acclimatising farmed ballan wrasse to sea-cage conditions positively improved and 40 

encouraged behaviours similar to those seen in wild wrasse, including diurnal rhythms and 41 

the establishment of home ranges, and is recommended for all farmed wrasse prior to 42 

deployment to improve delousing performance. 43 

 44 



Keywords: Passive-acoustic telemetry, cleaner fish, biological control, acclimatisation, sea 45 

lice, salmonid aquaculture 46 

 47 

1 INTRODUCTION 48 

In North Atlantic salmon-farming regions, the use of cleaner fish as a component of 49 

integrated pest management strategies against the salmon lice Lepeophtheirus salmonis and 50 

Caligus spp. has increased significantly in the past decade. Two species of cleaner fish are 51 

currently being farmed, ballan wrasse (Labrus bergylta) and lumpfish (Cyclopterus lumpus). 52 

Norway is the biggest producer of cleaner fish with 30.6 million farmed in 2018 (63% of total 53 

deployed, Norwegian Directorate of Fisheries, 54 

www.fiskeridir.no/English/Aquaculture/Statistics/Cleanerfish-Lumpfish-and-Wrasse), while 55 

UK production levels in 2018 were 103,000 and 2,753,000 for ballan wrasse and lumpfish, 56 

respectively (Munro and Wallace, 2018). Securing a sustainable supply of farmed cleaner 57 

fish and becoming self-sufficient is a key priority in meeting the demands of the industry. 58 

 59 

While reaching this target may be achievable given the current pace of progress in cleaner 60 

fish research and infrastructure investment, it is necessary to ensure that the farmed cleaner 61 

fish are robust and perform effectively once deployed at sea through good health and welfare. 62 

Indeed, improving the survival and delousing performance of farmed cleaner fish may allow 63 

their stocking densities to be reduced while maintaining optimal delousing, thereby reducing 64 

the number of fish required. However, while wild wrasse are effective delousers in 65 

commercial salmon sea cages (Treasurer, 2002), as are farmed wrasse in experimental tank 66 

studies (Leclercq et al., 2014a), the performance of farmed wrasse in sea cages has been 67 

questionable. It is possible that the anecdotal reports of variable performance of farmed 68 

wrasse in sea cages, in contrast to their effective performance in tank studies (Leclercq et al., 69 



2014a), may be due to the environmental conditions experienced by the fish in sea cages. In 70 

hatcheries, ballan wrasse are fed pelleted feeds in tanks, under artificial light regimes and at a 71 

controlled temperature, whereas sea-cage volumes are much larger with open boundaries, the 72 

fish are subject to ambient conditions, e.g. seasonal day/light and temperature regimes and 73 

tidal cycles, and supplementary feed is often provided in the form of feed blocks (Leclercq et 74 

al., 2015). Furthermore, the presence of large salmon within the sea cage may act as a 75 

stressor to farmed ballan wrasse, which have had no previous exposure to other fish species. 76 

 77 

While the behaviour of wild and farmed ballan wrasse have not previously been compared 78 

and sea-cage acclimatisation has not previously been tested, in other species, particularly in 79 

salmonids, the behaviour of fish reared in a hatchery has been proven to be very different to 80 

wild fish. Hatchery reared fish are more aggressive at higher densities (Fenderson and 81 

Carpenter, 1971), more prone to predation (Jackson and Brown, 2011) and less successful at 82 

foraging (Brown and Laland, 2002). However, acclimatisation and conditioning regimes 83 

during the hatchery phase have been shown to improve foraging behaviour (Brown et al., 84 

2003), improve predator response (Jarvi and Uglem, 1993) and decrease stress (Näslund et 85 

al., 2013). 86 

 87 

Delousing performance in cleaner fish is difficult to assess in sea cages: routine lice counts 88 

on salmon provide an estimate of the lice population within each sea cage, but this can be 89 

influenced by factors such as environmental conditions, lice population dynamics and 90 

implemented lice management methods (Brooker et al., 2018a); individual cleaner fish can be 91 

sacrificed and the lice in their guts counted, but routine destructive sampling depletes the 92 

valuable stock over time. Passive-acoustic telemetry (PAT) has been proven as an effective 93 

method for observing the fine-scale activity of individual cleaner fish in salmon sea cages 94 



(Leclercq et al., 2018) and was used in the present study to quantify the swimming behaviour 95 

of ballan wrasse in sea cages as a proxy for delousing behaviour. While the overall 96 

performance of the cleaner fish population in each sea cage determines their efficacy against 97 

the sea lice levels within the farm, the behaviour of each fish contributes to the performance 98 

of this population. Therefore, observing the behaviour of individual sentinel fish allows an 99 

estimate of the range of behavioural phenotypes within a population and improves our 100 

understanding of the requirements of the fish, encouraging good husbandry practices to 101 

improve welfare. 102 

 103 

The aims of this study were to (1) compare the behaviour of wild-caught and farmed ballan 104 

wrasse in sea cages at a commercial Atlantic salmon farm, and (2) investigate the impact of 105 

sea-cage acclimatisation on the behaviour of farmed ballan wrasse. 106 

 107 

2 MATERIALS AND METHODS 108 

2.1 Study site 109 

The investigation was performed at a commercial Atlantic salmon sea farm comprised of 110 

three groups of four sea cages (56.69 °N, 5.14 °W, Loch Leven; Mowi Scotland Ltd, UK). 111 

The study used two adjacent sea cages within one group of four floating square steel 112 

platforms (HP 2000, Wavemaster, AKVA Group, Inverness, Scotland) each holding a 113 

double-sized net bag (24 × 24 m square; 15 m (at edges) to 20 m (at centre) depth inverted 114 

pyramid; 18 mm mesh) for in-situ biofouling control by switching the net bag and air-drying. 115 

 116 

Atlantic salmon were fed a commercial extruded diet (BioMar (UK) Ltd) to visual satiation 117 

twice daily using surface rotor spreaders and underwater video monitoring (Akvasmart CCS 118 

feed system, SmartEye 360 twin camera; AKVA Group). Two sinking wrasse hides (1 m Ø 119 



weighted ring; 2 m high; plastic fake kelp; Leclercq et al., 2018) were suspended from a rope 120 

at opposite corners of each cage at 8–12 m depth (Fig. 1), and wrasse feed blocks suspended 121 

from ropes were offered weekly adjacent to the hides (600 g blocks, n = 2 / cage; Leclercq et 122 

al., 2015). Mean sea lice counts were obtained weekly on 10 salmon/cage. Salmon and 123 

cleaner fish mortalities were removed daily using hand nets and an air-lift pump connected to 124 

a bottom collector (LiftUP Akva AS, Eikelandsosen, Norway); no significant mortality 125 

events occurred during the study. 126 

 127 

2.2 Acoustic telemetry system 128 

A PAT system (HTI-Vemco Inc., Seattle, WA, USA) was used to record the positions of 129 

acoustic-tagged ballan wrasse during each trial. The acoustic tags (795 LD; 6.8 × 20.0 mm; 130 

0.55 g in water) emit at a single frequency (307.2 kHz) and each one is programmed with a 131 

unique, user-defined pulse rate interval (PRI) to allow tag identification (Ehrenberg and 132 

Steig, 2009). The 3D positioning of each tag pulse (up to 20 cm resolution) is achieved by 133 

measuring the time delay to at least four hydrophones and triangulating its position. Before 134 

the study commenced, an array of eight underwater hydrophones (Model 590, omni-135 

directional) was deployed around the perimeter of both experimental sea cages as described 136 

by Leclercq et al. (2018) (Fig. 1). 137 

 138 

2.3 Experimental fish 139 

Three trials using PAT were conducted at the site: (1) a comparison of wild-caught vs. 140 

farmed ballan wrasse in 2015, (2) an investigation of the effect of (a) hatchery acclimatisation 141 

and (b) hatchery-and-sea-cage acclimatisation on farmed ballan wrasse survival and 142 

behaviour in 2016 (Table 1).  143 

 144 



Prior to the start of the trial 1, the experimental cages were stocked in October 2014 with Q2 145 

2014 Atlantic salmon, and when the trial commenced, the cage contained approximately 146 

34,600 salmon with a mean weight of 3.42 kg. Wild labrids captured from Arisaig, West 147 

Coast of Scotland (n = 3,200, 7.2 % of salmon stock at time of deployment) were deployed 148 

into the cage, and the deployed population was comprised of ballan wrasse (57.9 %), 149 

goldsinny wrasse (Ctenolabrus rupestris; 29.9 %), corkwing wrasse (Crenilabrus melops, 7.6 150 

%), rockcook wrasse (Centolabrus exoletus, 3.7 %) and cuckoo wrasse (Labrus mixtus, 0.9 151 

%). Prior to the start of the experiment, the mean mortality in the wild wrasse population was 152 

0.0001% per day. For tag implantation, wild ballan wrasse were captured from the 153 

experimental cage using non-baited creel pots deployed at 6–12 m depth, slowly raised to the 154 

surface (~2 m / min). Farmed ballan wrasse for trial 1 were reared at Otter Ferry Seafish Ltd. 155 

(Tighnabruaich, Argyll, Scotland), where they were hatched in 2013 from wild-caught 156 

broodstock. Fish were reared in 2.8 m3 circular flow-through tanks (salinity 33–34 ppt) under 157 

ambient temperature, 24 h light, and fed with pelleted feed (BioMar Symbio 2 mm). Fifty 158 

fish were transported in a tank via road to the Loch Leven site and retained in a 300L 159 

perforated plastic barrel submerged below a floating jetty prior to tag implantation. 160 

 161 

Prior to the start of trial 2, the experimental cages were stocked in June 2016 with Q1 2016 162 

Atlantic salmon, and when the first acclimatisation trial commenced, the two cages contained 163 

approximately 56,700 and 41,600 salmon with mean weights of 461.5 g and 453.9 g. Farmed 164 

ballan wrasse for trial 2 originated from Otter Ferry Seafish Ltd., where they were hatched in 165 

2014 from wild-caught broodstock. For the first acclimatisation trial (2a), 1,620 wrasse were 166 

maintained in standard rearing conditions (non-acclimatised group, 24 h light regime, BioMar 167 

Symbio 2 mm pelleted feed, no tank furniture), and 1,950 wrasse were acclimatised for 168 

around one month (11th May – 19th June, 2016), both in 2,000 L tanks. 169 



 170 

The hatchery acclimatisation involved changing the environmental rearing conditions: 171 

artificial kelp hides were present in the tank, a simulated natural photoperiod was provided 172 

via skylights in the roof of the tank room, and supplementary feed blocks were provided in 173 

the tanks (Leclercq et al., 2015) in addition to pelleted feed (Biomar Symbio 2.0 mm). After 174 

two weeks, the pelleted feed was withdrawn. The mean water temperature during this period 175 

was 11.5 ± 0.5 °C, and the mean weight of the fish was 38 g at the start of the acclimatisation 176 

period. Following the hatchery acclimatisation, both groups of fish were transported in tanks 177 

via road to the Loch Leven site. Acclimatised fish were stocked into one cage (n = 1,950; 3.4 178 

% of salmon stock) and non-acclimatised fish were stocked into another (n = 1,620; 3.9 % of 179 

salmon stock) on 11th June 2015. At the time of stocking 50 fish per group were retained in 180 

300L perforated plastic barrels submerged below a floating jetty for subsequent acoustic tag 181 

implantation. 182 

 183 

For the second acclimatisation trial (2b), 200 wrasse from the same cohort of fish used in trial 184 

2a were retained at the hatchery under standard rearing conditions as before. Six weeks prior 185 

to the start of the trial, half of the wrasse were acclimatised for around one month (5th–30th 186 

August, 2016) using the same conditions as for trial 2a. The mean water temperature during 187 

this period was 12 ± 0.5 °C, and the mean weight of the fish was 40 g at the start of the 188 

acclimatisation period. Two weeks prior to the start of the trial (30th August 2016), these fish 189 

were transported to the Loch Leven site as before and introduced to a 2m x 2m x 4m keep net 190 

within the sea cage. The keep net contained artificial kelp hides, and supplementary feed 191 

blocks were offered. For tag implantation, these fish were captured using a hand net. Two 192 

days prior to the start of the trial (11th September 2016), the 100 remaining non-acclimatised 193 



wrasse were transported to the Loch Leven site and retained in submerged, perforated 300L 194 

plastic barrels ready for tag implantation and stocking into the cages. 195 

 196 

Water temperature, salinity and dissolved oxygen were measured at 30 min intervals at 1, 4, 8 197 

and 12 m depth in 2015 (trial 1) and 1, 2, 4 and 12 m depth in 2016 (trials 2a and 2b) over the 198 

study duration (see supplementary data) using data loggers (HOBO U24-002C; HOBO U26-199 

001; Onset Computer Corporation, Bourne, MA, USA) attached to a weighted line deployed 200 

between the experimental cages. 201 

 202 

2.4 Surgical procedure and tagged fish deployment 203 

Before each trial, each acoustic tag was programmed with a unique PRI ranging from 6,275 204 

to 9,957 msec using an acoustic tag programmer (490-LP, HTI-Vemco (USA) Inc., Seattle, 205 

WA, USA) connected to a Windows laptop running TagProg software (v6.0, HTI-Vemco 206 

(USA) Inc., Seattle, WA, USA) and stored in a mild antiseptic solution (0.5g/L, Presept; 207 

Johnson & Johnson, CA, USA). Tags were implanted into the coelemic cavity of the fish 208 

following the surgical procedure described in Leclercq et al. (2018). Following recovery, fish 209 

were isolated at sea in 300L perforated barrels for 48 h with any spare fish not tagged, then 210 

examined for survival and suture integrity prior to release in their designated sea cage along 211 

with any spare fish. No mortalities occurred during the recovery period before deployment in 212 

the sea cages. Once deployed, tag signals from tagged fish were recorded continuously until 213 

the tag batteries expired after several months. Hide tags (n = 4; Model 795 LG; 11.0 x 25.0 214 

mm) were programmed at 9,313–15,235 msec and one was deployed within each cleaner-fish 215 

hide to track the movements of the hides resulting from tidal currents. All experiments were 216 

carried out in accordance with the Animal (Scientific Procedures) Act 1986 UK and were 217 

approved by the University of Stirling animal welfare ethical review board. 218 



 219 

2.5 Data processing 220 

Raw acoustic data were processed to identify tags and calculate their positions using 221 

MarkTags (v6.10) and AcousticTag (v6.10) software (HTI-Vemco (USA) Inc., Seattle, WA, 222 

USA), which were saved as hourly Microsoft Access (.mdb) database files consisting of a list 223 

of tag number and Coordinated Universal Time (UTC) stamp with three-dimensional 224 

Cartesian coordinates (x, y, z). Specifically, a noise filter was used to extract individual tag 225 

signals according to their PRIs, and then a 3D algorithm was used to calculate the position of 226 

each individual tag pulse within the study coordinate system based on simultaneous 227 

detections from at least four hydrophones. Up to 16,023 positions fish/day were recorded but 228 

where fish remained in hides or on the bottom of the sea cage, many signals were blocked 229 

and the number of detected positions was as low as 1,082 fish/day. The hourly position files 230 

were converted to comma separated values (.csv) files, and all further analyses were 231 

conducted in R (R Foundation for Statistical Computing, www.R-project.org/). 232 

 233 

Hourly files were merged into daily files, which were further processed and filtered as 234 

follows: the time between detections was used to calculate the minimum swimming speed 235 

(BL (body lengths)/sec) between successive detections based on the length of each fish at the 236 

time of tag implantation; headings (degrees) were calculated based on each successive set of 237 

detections; spurious tag detections resulting from attenuation or reflection of the tag signal 238 

were removed by filtering out all subsequent detections with a time delay < 5 sec (all tag 239 

PRIs were > 5 sec) and using a moving average fish location filter to eliminate false 240 

detections; each individual fish track was visualised and analysed to identify any moribund or 241 

dead fish (date and time of mortality was noted), and tag detections emitted from dead fish 242 

were removed from the dataset. 243 

http://www.r-project.org/


 244 

The length of the datasets from each trial were selected based on numbers of tagged fish 245 

mortalities and spent tags (due to tag batteries being drained). Fish were selected for 246 

inclusion in the final datasets based on tags emitting signals for the entire period of the 247 

dataset and fish remaining alive for at least 10 days after the final day of the selected length 248 

of each dataset. 249 

 250 

Solar and tidal status were assigned to each tag detection based on their time stamp as 251 

follows: solar status (dawn, day, dusk, night) was based on sunrise and sunset times at Fort 252 

William, Scotland (http://www.timeanddate.com/sun/uk/fort-william, 9 miles north of study 253 

site) with a 2-h dawn/dusk period centred on sunrise/sunset and night/day starting/ending 2 h 254 

before/after sunrise/sunset; tidal status was based on tidal charts for Loch Leven Head, 255 

Scotland (http://www.tidetimes.co.uk/loch-leven-head-tide-times, 5.6 miles east of study site) 256 

(high- and low-tides (slack tide) were defined as a 20-min time period centred at each 257 

predicted tidal maximum/minimum, and similarly, mid-tides (flood and ebb tides) were 258 

defined as a 20-min time period centred between successive high and low tides); tag 259 

detections during dawn and dusk periods were excluded from analyses as they are transition 260 

periods between light and dark. 261 

 262 

Based on their Cartesian coordinates, each tag detection was categorised into one of five 263 

locations within each cage: bottom (below 15 m), hide corner (6 × 6 m, 0–15 m depth at each 264 

cage corner where hides were present), empty corner (6 × 6 m, 0–15 m depth at each cage 265 

corner where no hides were present), edges (outside the theoretical cage volume or within 6 266 

m inside the cage edges, corners excluded, 0–15 m depth), centre (13 × 13 m at the cage 267 

centre; 0–15 m depth) and hides (2 m diameter × 3 m depth cylinder centred to each shelter 268 

http://www.timeanddate.com/sun/uk/fort-william
http://www.tidetimes.co.uk/loch-leven-head-tide-times


location using hide tag positions). A degree of net-bag distortion from tidal flow occurred, 269 

which resulted in some tag detections outside the theoretical cage volume. 270 

 271 

Home ranges for each fish were estimated from bivariate normal fixed kernel utilisation 272 

distributions (KUDs), which were calculated over a 0.5 × 0.5 m resolution grid using the 273 

adehabitatHR package in R, and the 95% KUD and 50% KUD areas were termed home 274 

range and core area, respectively (March et al., 2010). Changes in home ranges were 275 

investigated by plotting the daily cumulative KUD95 for each fish over the period of the 276 

study. The home range of each fish is established when the asymptote is reached, which was 277 

defined as the day that the change in KUD95 between two consecutive days was less than 5% 278 

(Rechisky and Wetherbee, 2003). 279 

 280 

2.6 Statistical analysis 281 

Due to the large-scale nature of the study conducted at a commercial salmon farm, it was not 282 

possible to use replicate treatment groups (cages). However, individual fish were treated as 283 

pseudo replicates for all analyses. Means of individual units (fish) were checked for 284 

normality using the Anderson-Darling test and for homogeneity of variance using Levene's 285 

test and observations of residual plots. Log transformations were used where necessary to 286 

normalise data where possible. A one-way analysis of variance (ANOVA) was used to 287 

compare differences in means between groups, and a repeated-measures ANOVA was used 288 

to investigate the effect of daily changes in depth or activity according to the time of day with 289 

Tukey post-hoc tests used for pairwise comparisons. The Chi-squared goodness-of-fit test 290 

was used for nominal frequency data (i.e. fish headings), but due to the very large datasets, 291 

all comparisons were highly significant (P <0.001) even where differences were not 292 

biologically important (Anderson et al., 2000). Consequently, Cramer’s V-test (rcompanion 293 



package in R) was used to measure effect size with magnitudes defined as small = > 0.042, 294 

medium = > 0.127 and large = > 0.212 (Cohen, 1988) where the number of categories k = 8 295 

(45° per category). To compare trends in depth over time between groups of fish, general 296 

linear models were fitted to daily means for each group using least-squares regression, and 297 

significant differences between slopes (trends) were estimated using pairwise comparisons 298 

(lsmeans package in R). 299 

 300 

3 RESULTS 301 

The datasets used for analyses all commenced on the deployment of the tagged fish and 302 

ended 43, 30 and 30 days after deployment for trial 1, trial 2a and trial 2b, respectively. 303 

During trial 1, no data was collected for a total of six days due to temporary network failures. 304 

Water quality data are summarised for each trial in Table 2, and time-series plots are 305 

provided as supplementary data. On day 7 of trial 1, a hydrogen peroxide bath treatment was 306 

administered to treat against amoebic gill disease, which affected the behaviour of the wrasse 307 

for several days. 308 

 309 

3.1 Mortality 310 

Mortality in trial 1 was 11.1% for wild wrasse (2 mortalities) and 33.3% (7 mortalities) for 311 

farmed wrasse over 43 days (Fig. 2). In addition, a further one farmed wrasse and two wild 312 

wrasse tags ceased emitting during the study (presumed batteries expired) meaning that 14 313 

wild wrasse and 10 farmed wrasse were included in the analyses of trial 1. 314 

 315 

Mortality in trial 2a was 15% for acclimatised wrasse (3 mortalities) and 10% for non-316 

acclimatised wrasse (2 mortalities) over 30 days (Fig. 2). In addition, a further four tags from 317 



each group ceased emitting during the study (presumed batteries expired) meaning that 13 318 

acclimatised wrasse and 14 non-acclimatised wrasse were included in the analyses of trial 2a. 319 

 320 

Mortality in trial 2b was 5.9% (1 mortality) in acclimatised wrasse and 0% in non-321 

acclimatised wrasse over 30 days (Fig. 2). However, a further four mortalities in the 322 

acclimatised fish and two mortalities in the non-acclimatised fish were seen in the 10 days 323 

following the 30 days that were analysed, so these fish were also removed from the dataset. 324 

In addition, two tags in acclimatised fish and one tag in a non-acclimatised fish ceased 325 

emitting during the study period, meaning that 10 acclimatised fish and 14 non-acclimatised 326 

fish were included in the final dataset for trial 2b. 327 

 328 

3.2 Sea lice numbers 329 

Sea lice numbers on the salmon in the experimental cage remained low throughout trial 1, 330 

with the maximum mean numbers recorded being 0.32 lice/fish for all motile lice stages and 331 

0.2 lice/fish for gravid females (data not shown). As both groups of fish (wild and farmed) 332 

were deployed into the same sea cage, it was not possible to determine the level of delousing 333 

of either group of fish, although the low lice numbers suggest that delousing did occur. 334 

 335 

During trial 2a, lice numbers increased from 0.2 and 0.1 lice/fish (all motile stages) to 1.65 336 

and 3.4 lice/fish at the beginning of July 2016 (day 17 of the trial) for acclimatised and non-337 

acclimatised cages, respectively (data not shown). The mean number of gravid female lice 338 

was very low at 0.05 lice/fish or lower throughout the trial in both cages. Following the 339 

administration of medicated feed on 12–16th July, the number of lice decreased to zero. 340 

 341 



During trial 2b, the lice numbers fluctuated between 0.65 and 3.2 lice/fish in the acclimatised 342 

wrasse cage and 2.2 and 5.2 lice/fish in the non-acclimatised wrasse cage (all motile stages) 343 

(data not shown). The number of gravid female lice was consistently 0.1 or less in the 344 

acclimatised wrasse cage and 0.5 or less in the non-acclimatised wrasse cage. 345 

 346 

3.3 Depth 347 

In trial 1, the mean depth of wild wrasse for the duration of the study was significantly 348 

shallower than farmed wrasse (13.3 ± 2.4 m vs. 18.2 ± 1.7 m, respectively, F = 173.6, P = 0, 349 

Fig. 3a), although there were no significant differences between daily daytime and night time 350 

mean depths in either group (Fig. 3b & 3c). In the night following the bath treatment, the 351 

mean depth of the wild fish increased dramatically to 19.8 ± 0.6 m, but decreased gradually 352 

to pre-treatment levels in the following days, whereas the farmed fish remained deep 353 

throughout the study. Over the course of the trial, the daytime mean depth of wild wrasse 354 

decreased from 14.03 ± 1.04 m on day 1 to 11.91 ± 1.44 m on day 43 (Fig. 3b) whereas the 355 

daytime mean depth of farmed wrasse increased from 14.02 ± 0.97 m on day 1 to 18.71 ± 356 

1.17 m on day 43 (Fig. 3c); slopes of fitted linear regressions for wild and farmed wrasse 357 

depth over time were significantly different (t-ratio = -3.718, P = 0.0004). 358 

 359 

In trial 2a, there was no significant difference in depth preferences between both hatchery-360 

acclimatised and non-acclimatised fish (13.8 ± 1.7 m vs. 13.3 ± 1.8 m, respectively, F = 361 

2.061, P = 0.15, Fig. 3a), and there were no significant differences between daytime and night 362 

time daily mean depths (Fig. 3d & 3e). Although the mean depths of both groups of fish 363 

decreased slightly during the study, the difference in mean depths between the start and end 364 

of the trial and the slopes of fitted linear regressions were not significantly different (t-ratio = 365 

1.577, P = 0.12). 366 



 367 

At the start of trial 2b (day 1), both acclimatised and non-acclimatised fish remained deep 368 

(15.2 ± 2.3 m vs. 19.1 ± 0.4 m, respectively) (Fig. 3f & 3g). However, the acclimatised fish 369 

rapidly decreased their depth; by day 7 their mean daytime depth was 9.08 ± 2.05 m, and they 370 

remained relatively high (>11m) in the water column for the rest of the trial. In comparison, 371 

the non-acclimatised fish were slower to swim up in the water column and the change in 372 

depth was less, although the slopes of fitted linear regressions for acclimatised and non-373 

acclimatised fish were not significantly different from each other (t-ratio = 1.577, P = 0.12). 374 

Overall, however, non-acclimatised fish were significantly deeper than acclimatised fish (9.8 375 

± 2.0 m vs. 13.7 ± 1.9 m, respectively, F = 188.6, P = 0, Fig. 3a), although there were no 376 

significant differences in either group between daytime and night time daily mean depths. 377 

 378 

In all trials, there was a large variation in the mean depths of individual fish although 379 

variations in the daily means of individual fish were generally low. In all trials, only two wild 380 

fish and one hatchery-and-cage-acclimatised fish showed a significant difference between 381 

daytime and night time mean daily depths (S4a & S4e). 382 

 383 

3.4 Activity 384 

In trial 1, the mean daytime activity of wild fish was significantly higher than their mean 385 

night time activity (0.39 ± 0.08 BL/s vs. 0.26 ± 0.04 BL/s, respectively, F = 159.7, P = 0, Fig. 386 

4a), whereas the same was not significantly different in farmed fish (F = 3.119, P = 0.08). 387 

Furthermore, the mean daytime activity of wild fish was significantly higher than mean 388 

daytime and night time activity in farmed fish (F = 41.88, P = 0 and F = 47.02, P = 0, 389 

respectively, Fig. 4a). When comparing daily means, wild fish daytime activity was 390 



significantly higher than night time activity on 68% of observed days, as opposed to 16% of 391 

observed days in farmed fish (Fig. 4b, 4c). 392 

 393 

In trial 2a, the hatchery acclimatisation had no significant effect on swimming activity (Fig. 394 

4a). When comparing daily means, daytime and night time activity was significantly different 395 

in only one day in each group (Fig. 4d, 4e). 396 

 397 

In trial 2b, mean daytime activity was significantly higher than mean night time activity in 398 

hatchery-and-cage-acclimatised fish (0.65 ± 0.09 BL/s vs. 0.48 ± 0.06 BL/s, respectively, F = 399 

63.47, P = 0, Fig. 4a), but not in non-acclimatised fish (F = 3.39, P = 0.07). Due to the wide 400 

variation of daytime activity between fish in hatchery-and-cage-acclimatised fish, their mean 401 

daytime activity was not significantly different from non-acclimatised fish in trial 2b (Fig. 402 

5a). Furthermore, the large variability between fish means that daily daytime activity was 403 

only significantly different to daily night time activity in 23% of observed days (P < 0.05–404 

0.01, Fig. 4f). 405 

 406 

In all trials, there was a clear distinction between individual fish with a significantly higher 407 

mean daytime activity than mean night time activity and those with very similar activity at 408 

different times of day. In trial 1, 86% of wild fish had significantly higher swimming activity 409 

during the day compared to the night (P < 0.001, Fig. 5a) with the increase ranging from 0.07 410 

to 0.23 BL/s. Conversely, mean activities were low in trial 1 farmed fish (0.27 ± 0.01 – 0.39 411 

± 0.05 BL/s) and only 30% exhibited a significant difference between mean daytime and 412 

night time activity, and this increase was notably lower at 0.04 BL/s (Fig. 5b). In trial 2a, 413 

swimming activity was higher during the day compared to the night in only two hatchery-414 

acclimatised fish (Fig. 5c), whereas 70% of hatchery-and-cage-acclimatised fish (trial 2b) had 415 



significantly elevated daytime activity compared to 15% in non-acclimatised fish (trial 2b) 416 

with the increase in activity ranging from 0.06 to 0.39 BL/s and 0.12 to 0.26 BL/s, 417 

respectively (Fig. 5e, 5f). 418 

 419 

3.5 Cage locations 420 

During the first week of trial 1, wild wrasse spent approximately 50% of their time below 421 

15m, and this increased to 82% on day 8 following a hydrogen peroxide bath treatment 422 

administered on day 7 (Fig. 6a). On the day of the treatment, tagged fish spent a high 423 

proportion of their time in the centre of the cages compared to all other days (14.7% and 424 

14.8% for wild and farmed wrasse, respectively) due to the reduction in the volume of the sea 425 

cages for the bath treatment. For wild wrasse, the daily time spent below 15m decreased after 426 

day 8 and then remained at approximately 30–40% for the rest of the study. The edges and 427 

corners were also preferred locations, with more time spent in hide corners than empty 428 

corners, although the hides were very seldom used (data not shown). Edges and corners 429 

together accounted for approximately 50–70% of wild wrasse daily time from day 19. Visits 430 

to the cage centre were infrequent (0.38–3.52% of daily time). In comparison, farmed wrasse 431 

in trial 1 spent 60–90% of their time below 15m throughout the trial (Fig. 6b). Other 432 

preferred locations of the farmed wrasse were edges and corners with very little time spent in 433 

the cage centre. 434 

 435 

In trial 2a, the behaviour of the hatchery-acclimatised fish and non-acclimatised fish were 436 

similar, and the acclimatisation did not appear to have a significant impact on their preferred 437 

cage locations, with the fish spending the majority of the time in the corners, particularly the 438 

hide corners (data not shown). 439 

 440 



In trial 2b, the hatchery-and-cage-acclimatised fish spent increasingly less time below 15m 441 

during the day, from 67.3% on day 1 to 27.4% on day 5 (Fig. 6c), a pattern also reflected in 442 

their mean depths (Fig. 3e). As in the wild fish, corners and edges were preferred locations, 443 

with hide corners being preferred over empty corners, and an increasing proportion of time 444 

was spent in the centre of the cage towards the end of the trial (maximum of 12.8% on day 445 

25). In contrast, non-acclimatised fish in trial 2b spent more time during the day below 15m 446 

at the start of the trial (90.9% on day 1), which decreased gradually to 28.2% on day 11 (Fig. 447 

6d). As with the acclimatised fish, edges and corners were the preferred locations, with hide 448 

corners being preferred over empty corners. 449 

 450 

Night time locations in all trials were similar to daytime locations, except for in wild fish and 451 

hatchery-and-cage-acclimatised fish, which regularly spent more time in the corners during 452 

the night (S5). 453 

 454 

3.6 Orientation 455 

Tidal flow in the sea cages at the study site is on an ESE-WNW axis, and farmed wrasse 456 

strongly oriented to this axis whereas wild wrasse showed a weak orientation with headings 457 

distributed more evenly (Fig. 7a, 7b). While both wild and farmed wrasse headings were 458 

significantly different from a uniform distribution of headings due to the large sample sizes 459 

(P = 0), there was no sizeable effect in wild wrasse (V < 0.042), whereas a medium-size 460 

effect was seen in farmed wrasse (V > 0.127). In trial 2b, non-acclimatised fish were strongly 461 

oriented on an ESE-WNW axis with a small effect size (V > 0.042, Fig. 7d), whereas in 462 

hatchery-and-cage-acclimatised fish, fish headings were more evenly distributed with no 463 

sizeable difference from a uniform distribution (V < 0.042, Fig. 7c). 464 

 465 



3.7 Home ranges and core areas 466 

There was considerable variation in the home ranges and core areas of individual fish (Table 467 

3). Wild fish had the largest home ranges and core areas, and in most fish their home ranges 468 

covered the majority of the cage area (Fig. 8a). In contrast, farmed fish in trial 1 had the 469 

smallest home ranges and core areas, and their ranges were primarily at the centre of the cage 470 

(comparison with depths and locations indicates that these fish were below 15m). Both home 471 

ranges and core areas were significantly larger in wild fish than in farmed fish (F = 11.81, P = 472 

0.00002). 473 

 474 

The home ranges and core areas of hatchery-and-cage-acclimatised fish in trial 2b were 475 

statistically similar to those in wild fish (F = 11.81, P = 0.17), and the core areas were mostly 476 

in the corners and hides (Fig. 8c). Although the mean home ranges and core areas of non-477 

acclimatised fish in trial 2b were smaller than in acclimatised fish (404.6 and 46.1 vs. 514.3 478 

and 78.3, respectively), the populations were not significantly different (F = 11.81, P = 0.15). 479 

 480 

The calculation of cumulative home ranges for individual fish shows that the home ranges of 481 

wild fish in trial 1 were larger than in farmed fish, and they were established over two days 482 

earlier on average (8.07 ± 3.83 d vs. 10.5 ± 5.4 d for wild and farmed fish, respectively, Fig. 483 

9a, 9b). In trial 2, hatchery-and-cage-acclimatised fish rapidly established their home ranges 484 

in 8.1 ± 4.28 d compared to 10.9 ± 5.02 d in non-acclimatised fish (Fig. 9c, 9d). 485 

 486 

4 DISCUSSION 487 

Passive-acoustic telemetry has been proven as a useful technique for observing the fine-scale 488 

behaviour of individual cleaner fish in salmon sea cages (Leclercq et al., 2018), and this 489 

study successfully used PAT in commercial salmon sea cages to compare the behaviour of 490 



wild and farmed ballan wrasse and investigate the effect of acclimatisation to sea-cage 491 

conditions. Hatchery acclimatisation alone had limited impact on the behaviour of the fish 492 

once deployed at sea, whereas a combination of hatchery-and-cage acclimatisation caused the 493 

fish to rapidly decrease their depth once deployed, develop diurnal rhythms in activity and 494 

establish home ranges earlier than non-acclimatised fish. These behaviours may be a proxy 495 

for delousing behaviour. 496 

 497 

Although sea lice numbers were recorded weekly for farm records during the trials, due to the 498 

low numbers sampled, chemical treatments, natural fluctuations and the aggregation of some 499 

wrasse treatment groups within the same cage, it is difficult to draw any conclusions on the 500 

delousing performance of the wrasse from this data. Nonetheless, lice numbers in the 501 

acclimatised wrasse cage in trials 2a and 2b were generally lower than in the non-502 

acclimatised wrasse cage, which may indicate a higher level of delousing in the acclimatised 503 

wrasse. Underwater cameras used for monitoring stocks and feeding rates may be used to 504 

corroborate acoustic data and records of lice numbers. However, consultation with the farm 505 

workers revealed that delousing behaviour had not been observed through the cameras 506 

suggesting that there is a low frequency of delousing behaviour and/or delousing behaviour 507 

does not occur near the cameras at the centre of the pens. 508 

 509 

4.1 Survival 510 

The low survival of cleaner fish in commercial salmon sea cages is a key bottleneck that 511 

needs to be addressed (Brooker et al., 2018b) and more data is required from commercial 512 

farms to better understand the multifactorial causes of these mortalities (Powell et al., 2018). 513 

While only a relatively small number of fish were tagged in this study, it provides an 514 

estimation of survival rates in a commercial sea-cage environment. Fish mortalities are 515 



collected routinely in salmon farms, although some of the tagged fish in these studies were 516 

not collected after death suggesting that actual mortality rates may be higher than predicted. 517 

Mortality was low to moderate in all trials (0.26–0.5% per day) and relatively consistent for 518 

the duration of the trials, except for farmed wrasse in trial 1, where mortality was 33% over 519 

43 days or 0.78% per day. This high mortality may be due to the smaller size of the farmed 520 

fish when deployed, which was further confounded by the bath treatment seven days post-521 

deployment. It is not possible to identify the causes of mortality, and the tagging procedure 522 

may have caused some, especially in the period following surgery and release of the fish into 523 

the sea cages. In all three trials, however, no mortalities were seen in the 48 h following 524 

surgery before they were released into the sea cages, and there was no peak in the rates of 525 

mortality after the surgery, suggesting that few, if any, mortalities were due to the tagging 526 

procedure. The two mortalities in wild wrasse were caused by the fish being trapped in the 527 

net during a net change, although this did not occur in the 2016 trials, suggesting that this 528 

problem was identified and eliminated. However, it highlights the importance of careful 529 

observation during net changes to avoid unnecessary cleaner fish mortalities. 530 

 531 

4.2 Wild vs. farmed wrasse behaviour 532 

Wild ballan wrasse are effective salmon delousers in salmon sea cages (Treasurer, 2002, 533 

2013; Brooker et al., 2018b). Although farmed ballan wrasse are proven to be very efficient 534 

delousers in tank trials (Leclercq et al., 2014a), it has been suggested from farm observations 535 

that they may not always perform effectively in sea cages, which could be due to their 536 

hatchery rearing and sea-cage deployment environments being very different. Skiftesvik et al. 537 

(2013) found that farmed wrasse were as effective as wild wrasse at delousing in sea cages, 538 

but these were in small experimental cages, which are different to full-size commercial sea 539 

cages. Therefore, if the behaviour of the wild wrasse in the current study is typical of wild 540 



wrasse behaviour in sea cages following a suitable period of acclimatisation, it can be used as 541 

a reference for ballan wrasse behaviour in salmon sea cages, with similar behaviour emulated 542 

in farmed wrasse considered desirable. 543 

 544 

Wild ballan wrasse showed a strong diurnal rhythm in behaviour in both depth and activity 545 

with a preference for shallower depths at night and increased activity during the day, a 546 

pattern similar to wild wrasse in a previous sea-cage study (Leclercq et al., 2018). This 547 

increased activity during the day suggests that active foraging and delousing behaviour occur 548 

during the day. Furthermore, although cage edges and corners were preferred locations at all 549 

times, they were used more at night than during the day, suggesting nocturnal quiescence 550 

similar to ballan wrasse in the wild (Costello, 1991; Villegas- Ríos et al., 2013). Cleaner fish 551 

hides were very seldom used by wild wrasse, as also previously reported by Leclercq et al. 552 

(2018), although corners with hides were preferred over empty corners. Underwater 553 

structures are known to be an attraction for many pelagic and demersal fish species 554 

(Pickering and Whitmarsh, 1997) suggesting that proximity to a structure may attract ballan 555 

wrasse in sea cages despite the fish rarely being resident within the hides. By stationing in 556 

open water close to the hides, these fish may be optimising feeding opportunities while 557 

remaining close enough to be able to seek shelter in or around the hide if threatened, and 558 

these areas may be where delousing occurs. Hides are considered essential for wrasse 559 

maintenance in salmon sea cages (Treasurer, 2013), and although they were used very little 560 

by the fish in this study, they do seem to have a role in providing suitable structures to attract 561 

the wrasse. As this study was conducted during the summer, it may be that hides are used 562 

more at low winter temperatures when ballan wrasse are known to enter a state of torpor 563 

(Morel et al., 2013), although hide use was also relatively low in a similar study conducted at 564 

lower temperatures in March–May (Leclercq et al., 2018). Wild wrasse spent very little time 565 



in the centre of the cage where the majority of the salmon biomass can be found, and core 566 

areas of the wild wrasses’ ranges (KUD50) nearly always incorporated hide corners (with 567 

some in empty corners). The attraction of cage edges and corners may also be due to the 568 

substrate-grazing habits of ballan wrasse (Deady et al., 1995; Skiftesvik et al., 2013), and 569 

while the nets were air-dried fortnightly to avoid biofouling, ballan wrasse were often 570 

observed grazing on the nets. 571 

 572 

In contrast to the wild wrasse, the farmed wrasse in trial 1 remained deep (>15m) throughout 573 

the trial and showed no diurnal variation in depth or activity (except in activity towards the 574 

end of the trial). In addition, their home ranges were smaller than for wild wrasse and were 575 

focussed at the centre of the cage with their core areas primarily in the centre at the deepest 576 

part of the cage. This behaviour is very different to the behaviour patterns exhibited by the 577 

wild wrasse in trial 1 and is unlikely to be conducive to desirable behaviour, i.e. delousing. 578 

Considering their hatchery rearing conditions in small circular tanks with constant lighting, 579 

temperature and feeding, it is not surprising that such a dramatic change in environmental 580 

conditions, in addition to the stress of transport to the grow-out site (Leclercq et al., 2014b), 581 

resulted in the fish remaining deep at the bottom of the sea cage throughout the study 582 

possibly reflecting difficulties in coping with the change. However, it should be reiterated 583 

that the wild wrasse in trial 1 were already resident in the sea cage for several months prior to 584 

tagging and were already acclimatised to the farm conditions at the start of the trial. 585 

 586 

A further effect of tank rearing can be seen in the strong orientation of the farmed wrasse to 587 

tidal currents in the sea cage. While the wild wrasse in trial 1 showed a relatively even 588 

distribution of headings, the farmed wrasse showed a strong orientation to the predominant 589 

tidal currents at the sea-cage site. This is likely due to the farmed wrasse becoming 590 



acclimatised to the uniform circular current present in the rearing tanks, and they commonly 591 

orientate towards this current. In comparison, wild wrasse are accustomed to the swirling 592 

currents and eddies of natural rocky reefs. The domestication of fish is a strong selection 593 

pressure and results in the development of specific behavioural syndromes (Sih et al., 2004; 594 

Huntingford and Adam, 2005) as seen in the farmed wrasse in this study, which may not be 595 

desirable traits for ballan wrasse used as cleaner fish. 596 

 597 

While the comparison of different groups of fish allows differing trends in behaviour to be 598 

identified, a significant benefit of PAT is the ability to quantify the behaviour of individual 599 

fish. Despite fish in the same group being treated the same, there was large variation amongst 600 

individual fish behaviours, and consistent individual differences in behaviour result in 601 

various behavioural phenotypes, or personalities, within a population (Huntingford, 2004; 602 

Nilsson et al., 2014). In wild wrasse in trial 1, some fish remained deep (>15m), whereas 603 

others preferred shallower depths (<10m). Furthermore, some fish showed no diurnal 604 

variation in depth, where others preferred shallower depths at night than during the day. 605 

While there was less variation between the activities of individual fish, all but one wild 606 

wrasse had significantly higher activity during the day than at night. This suggests that the 607 

wild wrasse were nocturnally quiescent with resting activity rates at night generally <0.3 608 

BL/s and actively foraging during the day with activity rates of 3–6 BL/s although it remains 609 

to be proven whether increased swimming activity translates into increased delousing 610 

activity. 611 

 612 

4.3 Effect of acclimatisation to sea-cage conditions 613 

Due to the consistently deep mean depths, low activity and lack of diurnal behaviour patterns 614 

observed in the farmed wrasse studied in trial 1, the acclimatisation trials aimed to explore 615 



methods of improving the behaviour of farmed ballan wrasse following deployment. The 616 

acclimatisation protocol was implemented as a two-step process in two separate trials to 617 

determine the relative importance of acclimatisation in the hatchery and acclimatisation in the 618 

sea cage. 619 

 620 

Trial 1 and trial 2 were conducted in different years (2015 and 2016) with different stocks of 621 

farmed wrasse, albeit from the same hatchery, so it is difficult to draw conclusions regarding 622 

differences in behaviour between the two trials. Ballan wrasse culture is a new and rapidly 623 

evolving industry (Brooker et al., 2018b), and culture techniques are likely to have changed 624 

between the two cohorts of fish being produced. Indeed, the fish used in the first trial in 2015 625 

were some of the first farmed ballan wrasse to be deployed in salmon cages in Scotland. This 626 

may have been a contributing factor explaining the higher mortalities in the farmed wrasse in 627 

trial 1 and differences in behaviour between these fish and the non-acclimatised farmed 628 

wrasse in trials 2a and 2b. Furthermore, although study 1 and study 2a were conducted at 629 

approximately the same time of year with similar water temperatures, salinity was lower in 630 

study 1, especially near the surface, due to high rainfall and freshwater runoff during the 631 

study. This may partially explain differences in the depth of the fish between trials 1 and 2a. 632 

Territorial competition between the wild and farmed wrasse present in the same cage also 633 

cannot be discounted. 634 

 635 

The hatchery acclimatisation using artificial kelp hides, natural photoperiod and 636 

supplementary feed blocks (trial 2a), had no apparent significant impact on depth and just one 637 

fish developed diurnal rhythms in activity. Conversely, hatchery acclimatisation followed by 638 

acclimatisation in the sea cage where fish were retained in keep nets within the sea cages 639 

with artificial kelp hides and supplementary feed blocks (trial 2b) had a significant impact on 640 



behaviour, especially for depth and activity and the development of diurnal activity patterns. 641 

However, study 2b was conducted later in the summer when water temperatures were higher, 642 

and this may partially account for the higher rates of activity and shallower swimming depths 643 

in this study. There was a broad range in the mean activities of individual hatchery-and-cage-644 

acclimatised wrasse, and not all fish developed diurnal activity patterns. It seems that this 645 

diurnal pattern in activity is an indicator of a positive response to acclimatisation and the 646 

development of daily rhythms in behaviour, similar to those of wild wrasse in trial 1. The 647 

different responses of individual fish may be due to differences in their behavioural plasticity 648 

(Dingemanse and Wolf, 2013) with some fish able to adapt to the sea-cage environment more 649 

effectively than others. Villegas-Ríos et al. (2018) found that the response of wild cod 650 

(Gadus morhua) to environmental fluctuations can be partially explained by their different 651 

personalities on a reactive-proactive axis, and this may contribute to the different responses 652 

of acclimatised fish in this study. However, genetics and environmental fluctuations can only 653 

partially explain differences in individual fish behaviour, and even in consistent and identical 654 

rearing conditions, as in farmed wrasse in this study, behavioural individuality has been 655 

demonstrated in clonal fish, and individuality may be an inevitable outcome of early 656 

development (Bierbach et al., 2017). Nonetheless, while a range of behavioural phenotypes 657 

was observed in the hatchery-and-cage-acclimatised wrasse, the acclimatisation process 658 

appears to have shifted the overall population behaviour structure towards that of wild 659 

wrasse. 660 

 661 

The positive effect of hatchery-and-sea-cage acclimatisation is further evidenced by cage 662 

locations. Cage edges and corners were preferred by the hatchery-and-cage-acclimatised 663 

wrasse during the daytime and night time, similar to the preferences of wild wrasse seen in 664 

trial 1. Hatchery-and-cage acclimatisation also had a positive effect on reducing orientation to 665 



prevailing currents, which appears to be a result of being reared in tanks with consistent 666 

directional currents. While trial 2b non-acclimatised wrasse were strongly oriented to the 667 

prevailing ESE-WNW tidal currents at the site, the headings of hatchery-and-cage-668 

acclimatised wrasse were more evenly distributed, as also seen in the wild wrasse. Although 669 

the sizes and cage coverage of the home ranges and core areas were similar for both groups 670 

of fish in trial 2b, the estimation of cumulative home ranges highlights a clear difference 671 

between acclimatised and non-acclimatised wrasse. The establishment of home ranges was 672 

rapid in hatchery-and-cage-acclimatised wrasse (mean 8.1 ± 4.3 d), while non-acclimatised 673 

wrasse gradually expanded their home ranges over a longer period (mean 10.9 ± 5.02 d), 674 

which provides further evidence that the hatchery-and-cage acclimatisation promoted the 675 

rapid acclimatisation of the fish to the sea-cage environment. 676 

 677 

5 CONCLUSIONS 678 

Ballan wrasse are proven to be effective at delousing salmon infected with sea lice in 679 

commercial sea cages, although the origin of the fish, wild or farmed, appears to impact on 680 

delousing efficiency. In this study, PAT was used effectively to visualise the behaviour of 681 

individual cleaner fish in commercial salmon sea cages and compare wild and farmed wrasse 682 

and investigate the effect of acclimatisation. Clear differences were found between the 683 

behaviour of wild and farmed ballan wrasse. Wild wrasse frequented shallower depths, were 684 

more active during the day and covered more of the cage area. A combination of hatchery-685 

and-cage acclimatisation to sea-cage conditions had a positive effect on farmed wrasse, with 686 

these fish exhibiting behaviours similar to those of wild origin and more rapidly acclimatising 687 

to the sea-cage environment. The development of diurnal rhythms in behaviour, particularly 688 

in activity, appears to be a key indicator of a positive response to acclimatisation in farmed 689 

wrasse. While most hatchery-and-cage-acclimatised fish developed diurnal rhythms in 690 



activity in this study, some did not, and it may be that the response of individual fish to 691 

acclimatisation is a function of time, with some fish requiring longer acclimatisation periods 692 

than others. Extending the acclimatisation period may further shift their overall behaviour 693 

towards that of wild wrasse, although further investigation is required. Nonetheless, a 694 

combination of hatchery-and-cage acclimatisation is recommended prior to deployment to 695 

improve farmed ballan wrasse delousing efficacy. 696 

 697 
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Table 1. Summary of the three acoustic tagging trials. 

 Trial 1 Trial 2a Trial 2b 

Comparison Wild vs. non-acclimatised 

farmed ballan wrasse 

Hatchery-acclimatised vs. non-acclimatised 

farmed ballan wrasse 

Hatchery-and-cage-acclimatised vs. non-

acclimatised farmed ballan wrasse 

Hatchery 

acclimatisation 

– 11th May – 19th June 2016 5th August – 30th August 2016 

Sea-cage 

acclimatisation 

– – 30th August – 12th September 2016 

Transport to sea cage Wild: October 2014, 

Farmed: 31st May 2015 

11th June 2016 Acclimatised: 30th August 2016, non-

acclimatised: 11th September 2016 

Tagging surgery 2nd June 2015 13th June 2016 12th September 2016 

No. tagged wrasse 18 per group 20 per group 17 per group 

Weight at surgery Wild: 66.27 ± 12.21 g 

Farmed: 43.57 ± 6.49 g 

Acclimatised: 45.08 ± 5.39 g, non-

acclimatised: 46.38 ± 4.92 g 

Acclimatised: 50.43 ± 6.23 g, non-

acclimatised: 63.70 ± 11.73 g 

Length at surgery (TL) Wild: 16.83 ± 1.01 cm 

Farmed: 13.97 ± 0.60 cm 

Acclimatised: 13.38 ± 0.57 cm, non-

acclimatised: 13.59 ± 0.42 cm 

Acclimatised: 14.35 ± 0.67 cm, non-

acclimatised: 14.79 ± 0.73 cm 

Deployment date 5th June 2015 15th June 2016 14th September 2016 

Data acquisition 124 days 60 days 77 days 

 



Table 2. Summary of water quality parameters at 4m depth during the three acoustic trials 

recorded at 30 min intervals and averaged over 12 h. (mean ± standard deviation, range in 

parentheses). 

 Trial 1 Trial 2a Trial 2b 

Temperature (°C) 11.59 ± 0.97 (9.01–

13.20) 

11.68 ± 0.42 (10.59–

12.82) 

13.66 ± 0.29 (12.92–

14.18) 

Salinity (PSU) 18.83 ± 6.04 (9.53–

26.92) 

32.49 ± 0.57 (31.16–

33.54) 

29.38 ± 4.37 (21.29–

36.88) 

Dissolved oxygen 

(mg/L) 

9.70 ± 1.60 (4.64–

13.11) 

10.36 ± 0.42 (9.40–

11.48) 

7.11 ± 0.67 (4.67–

8.85) 

 

  



Table 3. Core areas (CA) and home ranges (HR) of individual fish in each trial. All values 

are m2. 

 Trial 1 Trial 2b 

 Wild Farmed Acclimatised Non-acclimatised 

Fish ID CA HR CA HR CA HR CA HR 

1 95 680 23 237 95 564 40 425 

2 148 733 70 364 118 599 28 194 

3 123 664 14 194 14 142 65 440 

4 37 407 24 339 82 611 75 562 

5 121 566 108 648 75 572 62 563 

6 83 627 10 185 76 474 80 576 

7 26 546 85 457 68 553 24 303 

8 113 583 43 355 117 676 35 347 

9 138 709 29 314 84 481 25 412 

10 85 642 22 369 55 472 11 138 

11 140 674 - - - - 43 398 

12 98 589 - - - - 55 421 

13 101 637 - - - - 65 439 

14 63 580 - - - - 40 449 

Mean ± 

SD 

97.8 ± 

36.8 

616.8 ± 

110.1 

42.9 ± 

33.4 

346.0 ± 

136.1 

78.3 ± 

30.2 

514.3 ± 

146.6 

46.1 ± 

20.9 

404.6 ± 

128.2 

  



 

Figure 1. Plan-view schematic of 24 × 24 m square cages in the local Cartesian coordinate 

system showing the positioning of the cleaner-fish hide areas (2 m diameter grey circles, mean 

location during study), the hydrophone array deployed across two horizontal planes at 1 m 

(shallow) and 20 m (deep) depth and wrasse feed blocks deployed weekly adjacent to the hides. 

  



 

 

Figure 2. Ballan wrasse mortality in all trials and experimental groups during the periods 

used for analysis. 



 

Figure 3. (a) Boxplot of group depth for each trial (letters represent significance with 

different letters denoting significant differences from other groups, P < 0.05). Comparison of 

daytime and night time mean daily depth for (b) trial 1 wild wrasse, (c) trial 1 farmed wrasse, 

(d) trial 2a hatchery-acclimatised wrasse, (e) trial 2a non-acclimatised wrasse, (f) trial 2b 

hatchery-and-cage-acclimatised wrasse and (g) trial 2b non-acclimatised wrasse (mean ± 

SEM, n = 10–14 fish,. Asterisks show significant differences between daily mean depths of 

corresponding treatment groups (* = P <0.05, ** = P <0.01, *** = P <0.001). Dotted lines are 

fitted linear regressions of daily mean activity. Gaps between points in (b) and (c) are due to 

temporary system failures. Arrows indicate day of bath treatment. 



 

Figure 4. (a) Boxplot of group activity for each trial (letters represent significance groups 

with different letters denoting significant differences from other groups, P < 0.05). 

Comparison of daytime and night time mean daily activity for (b) trial 1 wild wrasse, (c) trial 

1 farmed wrasse, (d) trial 2a hatchery-acclimatised wrasse, (e) trial 2a non-acclimatised 

wrasse, (f) trial 2b hatchery-and-cage-acclimatised wrasse and (g) trial 2b non-acclimatised 

wrasse (mean ± SEM, n = 10–14 fish. Asterisks show significant differences between 

daytime and night time activity (* = P <0.05, ** = P <0.01, *** = P <0.001). Gaps between 

points in (b) and (c) are due to temporary network failures. 



 

Figure 5. Comparison of daytime and night time mean activity of individual fish for (a) trial 

1 wild wrasse, (b) trial 1 farmed wrasse, (c) trial 2a hatchery-acclimatised wrasse, (d) trial 2a 

non-acclimatised wrasse, (e) trial 2b hatchery-and-cage-acclimatised wrasse, (f) trial 2b non-

acclimatised wrasse (mean ± SEM, n = 30–43 days). Asterisks show significant differences 

between daytime and night time activity (* = P <0.05, ** = P < 0.01, *** = P <0.001). 



 

Figure 6. Proportion of time spent in different cage locations during the daytime for (a) trial 

1 wild wrasse, (b) trial 1 farmed wrasse, (c) trial 2b hatchery-and-cage-acclimatised wrasse, 

(d) trial 2b non-acclimatised wrasse. Gaps in (a) and (b) are due to temporary system failures. 

Arrows indicate day of bath treatment. 



 

Figure 7. Polar distribution of ballan wrasse headings during spring and neap tides where 

swimming speed > 1 BL/s; (a) trial 1 wild wrasse, (b) trial 1 farmed wrasse, (c) trial 2b 

acclimatised wrasse and (d) trial 2b non-acclimatised wrasse (y-axis gridlines = 2,500 

observations). 



 

Figure 8. Examples of kernel utilisation distributions (home ranges) of individual fish for (a) 

wild wrasse #11, (b) farmed wrasse #3, (c) hatchery-and-cage-acclimatised wrasse #9 and (d) 

non-acclimatised wrasse #3. Light grey = core area (KUD50), dark grey = home range 

(KUD95), solid line = cage boundary and dotted lines = approximate location of hides. 



 

Figure 9. Cumulative 95% kernel utilisation distributions (KUD95) for (a) wild wrasse, (b) 

farmed wrasse, (c) hatchery-and-cage-acclimatised wrasse and (d) non-acclimatised wrasse. 

Grey lines = cumulative KUD95 for individual fish, black lines = mean cumulative KUD95 ± 

SEM, dotted lines = mean asymptote (time taken to establish home range). 

  



Supplementary data 

S1. (a) temperature, (b) salinity and (c) dissolved oxygen during trial 1 measured at 1, 4, 8 

and 12m depth and 30 min intervals over the study period and averaged over 12 h. 

 

 



 

  



S2. (a) temperature, (b) salinity and (c) dissolved oxygen during trial 2a measured at 1, 2, 4 

and 12m depth and 30 min intervals over the study period and averaged over 12 h. 

 

 



 

  



S3. (a) temperature, (b) salinity and (c) dissolved oxygen during trial 2b measured at 1, 2, 4 

and 12m depth and 30 min intervals over the study period and averaged over 12 h. 

 

 



 

  



S4. Comparison of daytime and night time mean depth of individual fish for (a) trial 1 wild 

wrasse, (b) trial 1 farmed wrasse, (c) trial 2a hatchery-acclimatised wrasse, (d) trial 2a non-

acclimatised wrasse, (e) trial 2b hatchery-and-cage-acclimatised wrasse, (f) trial 2b non-

acclimatised wrasse (mean ± SEM, n = 30–43 days). Asterisks show significant differences 

between daytime and night time depths (* = P <0.05, *** = P <0.001). 

 
  



S5. Proportion of daily time spent in different cage locations during the night time for (a) trial 

1 wild wrasse, (b) trial 1 farmed wrasse, (c) trial 2b hatchery-and-cage-acclimatised wrasse 

(d) trial 2b non-acclimatised wrasse. Gaps in (a) and (b) are due to temporary system failures. 

Arrows indicate the night following the bath treatment. 

 

 
 

 

 


