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A Late glacial – Holocene palaeoecological record, constrained by a robust chronology, from a peat 

bog near Punta Burslem (54°54’S, 67°57’W) on Isla Navarino, southernmost Patagonia documents 

the shifts in intensity and focus of the Southern Westerly Winds (SWWs) at these high latitudes. 

Such long-term records are required to reconstruct and better understand the likely regional 

impacts of a poleward shift and intensification of the SWWs predicted under global warming 

scenarios. Deglaciation at Punta Burslem occurs sometime before c. 17,000 cal a BP, and the post 

glacial landscape is dominated by cold tolerant pioneer species. Nothofagus woodland is established 

by c. 12,250 cal a BP, this moisture sensitive vegetation type retreats in the early to mid-Holocene 

from c. 9700 to 7050 cal a BP reflecting an intense and sustained drier phase associated with a 

prolonged poleward contraction of the SWWs. After c. 6000 cal a BP there is a regional trend to 

cooler and wetter climate. However, we identify at least five periods of rapid climate change (RCC) 

leading to drier conditions at this southern extreme of Patagonia: c. 5350-4750 cal a BP, c.4300-3300 

cal a BP, c. 2600-1850 cal a BP, c. 1350-1100 cal a BP and c. 550-350 cal a BP. From a synthesis of our 

Isla Navarino records and a latitudinal spread (34°-64°S) of multiproxy records it is proposed that 

these periods of RCC and relatively drier conditions indicate latitudinal shifts in the location and 

intensity of the SWWs in response to climatic warming leading to reduced precipitation at the 

southern margins of Patagonia. 
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1. Introduction 

 

Contrasting landmass extents in the mid-high latitudes of the Earth lead to distinctive climates in the 

northern and southern hemispheres. The dominating feature of the southern mid-high latitudes is 

the Southern Ocean which allows the prevailing southern westerly winds (SWWs) almost 

uninterrupted passage to circumnavigate Antarctica. The SWWs are responsible for driving the 

circulation of the Southern Ocean, the eastwards Antarctic Circumpolar Current (ACC) and the Peru-

Chile Current (PCC) (Lamy et al., 2002; 2015). The SWWs are an important driver of Southern Ocean 

upwelling and primary productivity (Bakun et al., 2010) and have an important role in the global 

carbon cycle (Lovenduski and Gruber, 2005; Landschützer et al., 2015). The strength and latitudinal 

position of the SWWs are predominantly controlled by sea surface temperatures (SSTs) (Lamy et al., 

2010). The belt of the strongest velocities of the SWWs along southern South America currently lies 

between ~50° and 55°S (Lamy et al., 2010) but they seasonally migrate each year in response to the 

expansion and contraction of Antarctic sea ice and shifts in the Southern Polar Front (Garreaud et 

al., 2013). The seasonal migration of the SWWs manifests as lower wind velocities over north-central 

Patagonia but with a wider latitudinal range during the austral winter (June-July-August (JJA)). While 

southern Patagonia experiences stronger wind speeds and higher precipitation during the austral 

summer (December-January-February (DJF) (Fig. 1). This pattern has been described as a winter 

monopole and a summer dipole pattern in the zonal winds and is the principal driver for the 

distribution of precipitation along the southern Andes (Garreaud et al., 2013). The seasonal strength 

and position of the SWWs is further controlled by centennial to millennial climate change. The belt 

of the SWWs may be deflected polewards when there is a strong ‘blocking’ South Pacific High (SPH) 

or deflected equatorwards by increasing Antarctic sea-ice (Aceituno et al., 1993). Therefore, during 

periods of warmer climate the SWWs shift poleward and when there is cooler climate the SWWs 

shift equatorward (Toggweiler et al., 2006). Modelling of the Patagonian ice sheet suggests the 

SWWs probably migrated equatorward and increased precipitation between 40° and 45°S during the 

Last Glacial Maximum (LGM) (Hulton et al., 2002), thus likely reducing the amount of CO2 vented 

into the atmosphere leading to cooler global temperatures (Anderson et al., 2009). It is also 

probable that the combination of physical barriers, such as the effect of expanded Antarctic sea ice, 

slower ventilation of the deep sea, and biological factors led to minimum CO2 concentrations during 

the LGM (Kohfeld and Chase, 2017). 

 

Inter-annual variability in the strength and position of the SWWs is expressed as the Southern 

Annular Mode (SAM), with the positive mode characterised as poleward shifts and intensification of 
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the SWWs and the negative mode as an equatorward shift and weakening of the SWWs. General 

circulation models suggest that wind shifts associated with the SAM alter Southern Ocean circulation 

patterns substantially (Lovenduski and Gruber, 2005). During a positive SAM increased winds drive 

greater upwelling of carbon from the deep ocean to the surface, diminishing the ability of the ocean 

to absorb CO2 (Sen Gupta and McNeil., 2012). Although Landschützer et al. (2015) suggest that the 

development of an asymmetrical distribution of atmospheric pressure systems between the Pacific 

sector and Atlantic sector of the Southern Ocean leads to a compensatory interaction between 

temperature and circulation changes leading to a symmetric lowering of pCO2 across the sectors. 

Present climate change projections suggest that the SAM will become more positive in the future 

(i.e. stronger and more sustained increases in zonal wind stress) (Christensen et al., 2013). However, 

modern records are short and there is a growing imperative to reconstruct and better understand 

the likely regional impacts of a poleward shift and intensification of the SWWs. 

 

Patagonia is ideally situated to reconstruct past migrations of the SWWs due to its southerly 

maritime location and its palaeoclimatic history is governed by the latitudinal position and strength 

of the SWWs (Fletcher and Moreno, 2011). It is the most southerly landmass except for Antarctica 

(~37-56°S) and is almost surrounded by oceans; the Pacific Ocean to the west, the Atlantic Ocean to 

the east and the Drake Passage and Southern Ocean to the south (Fig. 1). The present-day 

vegetation patterns of Patagonia are strongly influenced by the high levels of precipitation delivered 

by the SWWs. The Andean topography of Patagonia determines the geographical distribution of the 

precipitation brought by the SWWs. Orographic precipitation is produced as the saturated SWWs 

reach the western coast and are driven upwards over the Andean Cordillera leading to a hyper-

humid region in the west (~8000 mm a-1) with the moisture decreasing eastwards as the drier air 

masses descend creating a rain shadow effect (~500 mm a-1, 160 km from the Andean Cordillera) 

(Schneider et al., 2003). This precipitation gradient is reflected in the ecotones that range from 

Magellanic Moorland and Evergreen Forest in the west through to Steppe in the east (Tuhkanen, 

1989-1990) (Fig. 1). The vegetation response to past climatic changes driven by shifts in the position 

and / or intensity of the SWWs can be temporally and spatially reconstructed using high resolution 

and well dated palaeoclimatic and palaeoenvironmental proxy records.  

 

Our understanding of palaeoenvironmental change based on fossil pollen from lakes and mires in 

Fuego-Patagonia is improving with increasing levels of research in the region during the last decade 

(Markgraf and Huber, 2010; Ponce et al., 2011; Borromei et al., 2016; Mansilla et al., 2016, 2018; 

Musotto et al., 2017a, 2017b) (Fig. 1). However, the timing and the nature of the impacts of the 
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poleward shifts in the SWWs during the Late glacial and equatorward shifts during the Holocene at 

higher latitudes is less well understood. Here, we present a new palaeoenvironmental record from 

southernmost Patagonia from Isla Navarino (~55°S) south of the Canal Beagle (Fig.1). It is anticipated 

that the southerly location will enable us, in conjunction with other records of environmental 

change, to track the poleward influence of the SWWs as they migrated through the Late glacial and 

Holocene.  

 

2. Materials and Methods 

2.1 Study area: Isla Navarino 

Isla Navarino lies at the southern extremity of Patagonia (~55°S) and is one of the largest islands in 

the archipelago south of Tierra del Fuego (Fig.1). The Canal Beagle which separates Isla Navarino 

from Tierra del Fuego in the north was formed by ice scouring over successive glacial periods from 

its source in the Cordillera Darwin (Rabassa et al., 2000). The study site, located near Punta (Pta.) 

Burslem1, is an ombrotrophic bog within a closed oval shaped basin (~230 x 160 m), probably formed 

as a kettle hole, located on the northern coastline (54°54’05.62”S, 67°57’11.39”W, altitude 54 m asl) 

approximately 25 km west of Puerto (Pto.) Williams. The current mire is characterised by hummock 

and hollow complexes. The hollows are occupied by pools of water and Sphagnum moss with lesser 

amounts of Empetrum rubrum and Gaultheria microphylla on the hummocks. There are scattered 

trees of Nothofagus antarctica and shrubs of Chilliotrichum spp. around the margins of the peat bog. 

The landscape surrounding the basin is covered by deciduous Nothofagus pumilio forest with a high 

abundance of the hemiparasite Misodendrum. In the more open spaces of the forest Berberis 

microphylla shrubs and Ribes magellanicum herbs are the most dominant species found. The closed 

nature of the basin suggests the site will be sensitive to changes in precipitation. 

 

2.2 Sediment coring and laboratory methods 

A 50 cm long D-section Russian corer 5.5 cm in diameter (Jowsey, 1966) was used to obtain a 

continuous core from the site. The Pta. Burslem bog was probed to estimate the deepest point 

which was cored to 1100 cm where glacial sediments were retrieved at the base. The stratigraphy of 

each 50 cm section was recorded in the field, and cores sealed in layflat tubing and returned to the 

University of Stirling and stored at a constant 4°C. The organic content was estimated by Loss-on-

 
1 The Servicio Hidrográfico y Oceanográfico de la Armada de Chile maps name the point as Punta Burshem. 
However, the Diccionario Jeográfico de Chile by Luis Risopatrón (1924), gives the name as Punta Burslem 
which, we believe was so named during the voyage of HMS Beagle in reference to Charles Darwin’s marriage 
to Emma (neé Wedgwood) Darwin and the close association between the Wedgwood family and the 
Staffordshire town of Burslem. 
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ignition and 2 cm thick contiguous samples were dried and then combusted at 550°C for 4 hours 

(LOI550) (Fig. 2). Sub-samples (1 cm3) were taken from the core at a resolution of between 16 cm and 

4 cm and prepared for pollen analysis using standard techniques (Moore et al., 1991). Basal mineral 

rich samples were treated with Hydrofluoric acid 40%. The identification of pollen grains and spores 

was supported by a pollen reference collection and supplemented by microphotographs (Heusser, 

1971; Villagrán, 1980; Wingenroth and Heusser, 1984; Moore et al., 1991). A minimum total of 300 

land pollen (TLP) grains were identified from each sample excluding Cyperaceae, aquatics, spores 

and algae. The pollen percentage data was divided into local pollen assemblage zones (LPAZ) based 

on major changes in Land Pollen (>2% TLP) and constrained by cluster analysis (CONISS) (Grimm, 

1987). The pollen results are presented using Tilia software version 2.6.1 (Grimm, 2011) (Fig. 3).  

 

Pollen concentrations were estimated by adding a known quantity of Lycopodium clavatum to each 

sample (Stockmarr, 1971). The concentration values (No. grains cm-3) and sediment accumulation 

(cm a-1) were used to calculate the pollen and charcoal accumulation rate (influx: No. grains or 

particles cm-2a-1) (Fig. 4). Charcoal particles between 10-180 μm were also counted alongside the 

pollen and spores on the microscope slides as an indicator of past fire activity (Whitlock and Larsen, 

2001).  

 

The physical condition of fossil pollen within the sediment was also assessed as a further indicator of 

the environmental conditions in which it was deposited. Pollen grains are well-preserved in 

anaerobic conditions such as waterlogged mires (Moore et al., 1991). Corroded and degraded pollen 

grains suggest degrees of chemical deterioration and microbial digestion which indicate a drier 

aerobic environment and reduced mire surface wetness (MSW). Broken and crumpled pollen 

suggest mechanical damage, most probably due to abrasion during transportation, such as reworked 

sediment input to a lake. Each land pollen grain was placed into one of five hierarchical preservation 

categories; normal, broken, crumpled, corroded and degraded (Cushing, 1967; Lowe, 1982; Berglund 

and Ralska-Jasiewiczowa, 1986; Tipping, 1987; Mansilla et al., 2018) (Fig. 5).  

 

A cryptotephra layer was identified at 595 cm during pollen identification and as mineral residue 

during the LOI550 assays (Fig.2). The tephra layer was concentrated by acid digestion of the organic 

content (Dugmore et al., 1992) and the mineral content assessed using light and polarising 

microscopy. Volcanic glass shards were identified based on morphology, vesicularity and isotropism 

under plane-polarised light. The major element geochemical composition of the glass component of 

the tephra sample was determined by electron microprobe analysis using the SX100 Cameca 
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Electron Microprobe at The University of Edinburgh (Hayward, 2012). A minimum of 10 glass shards 

were analysed to provide a representative geochemical signature (Hunt and Hill, 1993). Tephra 

identification was carried out through comparisons with geochemical data from previous studies 

(Mansilla, et al., 2016, 2018) (Table S1). 

 

3. Results and discussion 

3.1 Stratigraphy 

The Pta. Burslem stratigraphy comprises bluish-grey clays and silts at the base between 1100 and 

1082 cm, with sub-centimetre layers of organic rich sediments between 1096 and 1094 cm, probably 

deposited during the waning stages of the development of the kettle hole. This is overlain by 

lacustrine mud which increases from <10% at 1082 cm to ~40% LOI550 by 1028 cm. Between 1028 

and 910 cm the organic content of the lacustrine mud plateaus at ~40% LOI550 and then gradually 

increases between 910 and 882 cm suggesting increasing bioproductivity under relatively warmer 

conditions. The lacustrine phase continues until the transition to peat (>80% LOI550) at ~882 cm 

which then persists to the surface.  

 

3.2 Chronology 

The chronology of the Pta. Burslem record is constrained by 8 AMS radiocarbon dates from 0.5cm 

thick, ~2 cm3 bulk samples (Table 1). The radiocarbon chronology is supplemented by the presence 

of the cryptotephra that is geochemically correlated to the eruption of Volcán Hudson (H1) dated to 

7241±23 14C a BP (Stern et al., 2016). The Pta Burslem age-depth model was constructed using the R 

Bayesian package BACON (Blaauw and Christen, 2011) and the pollen diagrams are constrained 

using the weighted mean ages (cal a BP).  

 

3.3 Pollen Stratigraphy 

Eight Local Pollen Assemblage Zones (LPAZ’s) are indicated by CONISS based on the percentage 

pollen data (Fig. 3) and these LPAZs are applied to all the stratigraphic figures to aid comparison. 

 

3.3.1. LPAZ PB-1 (1095-925 cm; c. 16,800-12,600 cal a BP)  

The basal land pollen assemblage is dominated by well-preserved Empetrum rubrum, Poaceae and 

Asteraceae Subf. Asteroideae. The basin was occupied by the aquatic Myriophyllum, which peaks 

towards the middle of the zone and then steadily declines, and the algae Pediastrum is present in 

large proportions throughout the zone. Although the organic content increases in the first half of the 

LPAZ pollen influx is very low (<1000 grains cm-2 a-1) and continued at this low level until c. 6500 cal a 
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BP. The combined stratigraphic evidence suggests the kettle hole was initially colonised by cold-

tolerant heathland and steppe vegetation and surrounded by a treeless landscape. The site itself was 

a small lake which as climatic conditions warmed supported shallow rooting Myriophyllum and the 

algae Pediastrum which favours clear post-glacial water bodies (Komárek and Jankovská, 2001). 

Myriophyllum steadily increased until c. 14,560 cal a BP and then steadily declined towards the top 

of the LPAZ at c. 12,630 cal a BP. From the evidence within LPAZ PB-1 it is not clear if the decline in 

Myriophyllum was a response to cooling during the Antarctic Cold Reversal (ACR) (Gest et al., 2017) 

and / or a change in water levels. All other proxies continued relatively unchanged during LPAZ PB-1.  

 

Table 1.  
Radiocarbon ages, calibrated age ranges and median ages for the Pta. Burslem record. 
 

Laboratory code Depth 
(cm) 

Material 14C yr (1σ) Calibrated age range 
(95.4%) cal yr BP* 

Calibrated age range 
(wma) at 95% confidence 

(cal yr BP)** 
UCIAMS189856 105 Bulk 2095 ± 20 1933-2087 1902-(1995)-2096 
UCIAMS189857 359 Bulk 3575 ± 20 3713-3893 3732-(3892)-4192 
UCIAMS189858 530 Bulk 6200 ± 20 6968-7161 6902-(7049)-7183 

Tephra H1 596 n/a 7241 ± 231 7949-8152 7935-(8034)-8177 
UCIAMS189859 683 Bulk 8805 ± 30 9597-9909 9522-(9721)-9912 
UCIAMS189860 813 Bulk 10055 ± 30 11,308-11,707 11,261-(11,460)-11,700 
UCIAMS189861 933 Bulk 10730 ± 35 12,562-12,717 12,519-(12,678)-12,792 
UCIAMS189862 1045 Bulk 12690 ± 40 14,784-15,222 14,680-(15,033)-15,356 
UCIAMS189863 1095 Bulk 14070 ± 70 16,741-17,349 16,267-(16,784)-17,229 

* Calibrated age ranges using Calib 7.10 (Stuiver and Reimer, 1993) and SH13 curve (Hogg et al., 
2013). 
** Probability interval of calibrated ages and weighted mean ages (wma) using BACON (Blaauw and 
Christen, 2011).  
1Age for Volcán Hudson tephra H1 layer from Stern et al. (2016).  
 
 

3.3.2. LPAZ PB-2 (925-884 cm; c. 12,600-12,180 cal a BP) 

The Empetrum and Poaceae heath-grassland dominant in the preceding LPAZ begins a punctuated 

decline and the ground cover Acaena correspondingly increases. Nothofagus dombeyi type pollen 

(hereafter referred to as Nothofagus) is continuously present and gradually increases to ~10%. 

Within the lake basin Myriophyllum rapidly peaks to ~60% at the beginning of the LPAZ and then 

together with Pediastrum virtually disappears at the upper boundary of LPAZ PB-2. This LPAZ reflects 

a warming climate, coeval with the end of the ACR, and the development of scattered trees in an 

open grassland. Acaena can thrive on bare ground vacated by the heath and also within more moist 

areas between trees. The initial rapid expansion of the shallow rooting Myriophyllum likely indicates 

a lowering of the lake level and expansion of habitat in response to a warmer and drier climate 

before the site transitioned to a drier peat bog leading to the exclusion of aquatics and algae. In this 
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context the earlier decline in Myriophyllum between c. 14,560 and c. 12,630 cal a BP may have been 

due to a period of relatively cooler climate contemporary with the ACR. 

  

3.3.3. LPAZ PB-3a (884-834 cm; c. 12,180-11,680 cal a BP) 

During this sub-LPAZ the Empetrum heath briefly reverses its decline from the preceding zone but is 

eventually replaced by Poaceae and the establishment of Nothofagus woodland (~20% TLP; ‘Parque’ 

sensu Burry et al., 2006). However, the pollen proportions swing rapidly between Nothofagus, 

Empetrum, Poaceae and Subf. Asteroideae. During this LPAZ the degree of pollen preservation also 

makes a small decline. The evidence presented suggests a continued trend to a drier MSW, and the 

first decline in Nothofagus may simply be driven by the increased input of the site pollen component 

as Empetrum was able to spread across the drier surface. The following large expansion of grassland 

and decline in pollen preservation suggests drier conditions probably constrained the expansion of 

Nothofagus woodland. Thus, the transition to a more temperate Holocene climate was more of a 

‘flickering switch’ between colder / drier Late glacial and warmer / wetter temperate conditions.  

 

3.3.4. LPAZ PB-3b (834-775 cm; c. 11,680-10,960 cal a BP) 

During this sub-LPAZ the expansion of Nothofagus forest continues and this is supported by the 

presence of the hemiparasite Misodendrum that favours Nothofagus antarctica and Nothofagus 

pumilio. However, the initial rapid expansion of the woodland cover in LPAZ PB-3b is again 

interrupted by a brief increase in herbaceous taxa at c. 11,580 cal a BP. This marks the last of the 

rapid high-magnitude pollen events during the Late glacial – Holocene transition and is followed by a 

more solid rise in Nothofagus alongside a return of the algae Pediastrum. A relative increase in 

effective moisture is inferred from the expansion of Nothofagus and the presence of pools of water 

on the mire surface supporting the return of Pediastrum. 

 

 3.3.5. LPAZ PB-4 (775-668 cm; c. 10,960-9420 cal a BP) 

Nothofagus continues to increase towards the mid-point of this LPAZ, reaching a peak of ~86% at c. 

10,260 cal a BP before declining at the top of the LPAZ. During the first half of the LPAZ Pediastrum 

makes a resurgence and then disappears from the record. The influx of charcoal particles also peaks 

at the start of this zone, reaching the maximum level of the entire record (~1620 particles cm-2 yr-1). 

Towards the top of the zone the proportion of normally preserved pollen significantly declines. The 

pollen evidence suggests increasing effective moisture supported the development of closed 

Nothofagus forest until c. 9700 cal a BP. The large peaks in charcoal influx during this period is 

slightly counter intuitive as we would expect wetter wood to burn less but the increase in fire 
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activity may be seasonal and / or reflect the greater availability of woody fuel. After c. 9700 cal a BP 

the evidence in LPAZ PB-4 suggests the trend was towards a reduction in MSW and the beginning of 

a period of prolonged forest contraction. 

 

3.3.6. LPAZ PB-5 (668-495 cm; c. 9420-6360 cal a BP) 

The declining trend in Nothofagus that started in LPAZ PB-4 deepens in LPAZ PB-5 and reaches its 

nadir at the time of the deposition of the H1 tephra layer at c. 8000 cal a BP, although the decline is 

punctuated by brief peaks in Nothofagus. The decline in Nothofagus corresponds to an increase in 

Poaceae and Subf. Asteroideae. We infer from this pattern a major and sustained shift to drier 

conditions at Pta. Burslem and this is further supported by the decline in pollen preservation 

(Normal ~54%) during this zone. The continued higher charcoal influx values during this period is 

more consistent with the increased availability of drier fuel. At c. 7050 cal a BP Nothofagus began to 

restore its dominance, and this also marked the beginning of a fluctuating trend in improved pollen 

preservation; both suggest gradual rising humidity after this time. 

 

3.3.7. LPAZ PB-6 (495-359 cm; c. 6360-3890 cal a BP) 

Nothofagus continues to steadily increase during LPAZ PB-6 concomitant with the gradual decline 

and virtual exclusion of all herbaceous taxa. Also, the overall trend to better preserved pollen 

continued but with significant reversals between c. 5350 and 4750 cal a BP and between c. 4300 and 

3950 cal a BP. During LPAZ PB-6 charcoal influx was also substantially reduced. We infer from this 

evidence that precipitation continued to increase leading to the development of closed Nothofagus 

forest. However, the climatic trend to increased humidity was interrupted by two periods of rapid 

climate change and reduced MSW that are not clearly reflected in the percentage pollen data. 

 

3.3.8. LPAZ PB-7 (359-103 cm; c. 3890-1970 cal a BP) 

This LPAZ is comprehensively dominated by Nothofagus (~96%) leading to an almost complete 

absence of herbaceous taxa, including Poaceae, except for a small and continued increase in 

Empetrum to ~3% after c. 2660 cal a BP. As the Nothofagus proportions increased, Misodendrum 

declined and by c. 3000 cal a BP disappears from this LPAZ. At this time land pollen influx values 

achieve their highest values for the entire record (mean ~6080 grains cm-2yr-1), largely contributed 

by Nothofagus. The evidence from this LPAZ reflects a period of sustained increase in effective 

moisture. A corresponding increase in MSW is also reflected in the increased proportion of normal 

pollen (~97%) and the increased accumulation rate of the peat. At c. 2250 cal a BP there was a 

decline in pollen preservation suggesting a decrease in MSW, which again is not reflected in the 
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percentage pollen assemblages which continues to be dominated by Nothofagus to the upper LPAZ 

boundary. 

 

3.3.9. LPAZ PB-8 (103-0 cm; c. 1970 cal a BP – present) 

The dominance of Nothofagus in LPAZ PB-7 continues into LPAZ PB-8 with overall proportions 

remaining >90%, but with two distinct reductions in tree cover between c. 1850 and c. 1350 and 

between c. 700 and 350 cal a BP with corresponding increases in Empetrum heath. Misodendrum 

and trace amounts of herbaceous taxa, e.g. Subf. Asteroideae, Gunnera and Rumex, also return to 

the record during this LPAZ. The overall trend suggests a shift to a more sustained and / or increase 

in humidity but punctuated by at least three periods of reduced MSW indicated by brief peaks in 

pollen influx values and reduced pollen preservation at c. 1850-1710 cal a BP, c. 1250 cal a BP and c. 

420 cal a BP. While two of the periods of forest contraction occur broadly at the same time as 

reduced MSW it would appear that the latter peatland proxy for changes in humidity is more 

sensitive to short periods of rapid climate change. 

 

4. Synthesis and climatic inferences 

 

While there are a growing number of palaeoenvironmental records from the Canal Beagle area and 

the wider Fuego-Patagonia region (Fig. 1) differences in timespans, methods and approaches often 

limit close comparison of data. Here, we are able to present a synthesis of the Pta. Burslem record 

from the western sector of the Canal Beagle with a record from Caleta (Cta.) Eugenia in the eastern 

sector (McCulloch et al., 2019) (Fig. 6). Both records were produced using the same methods and 

approaches and our synthesis will provide a more robust reconstruction of the nature and timing of 

climate change at the southern extreme of Patagonia. Our Isla Navarino records are compared to the 

diatom inferred precipitation record from Laguna Aculeo (33°50’S) (Jenny et al., 2003); sea surface 

temperature (ODP1233 and GeoB3313-1, 41°00’S) (Lamy et al., 2010); the pollen record from Mallin 

Pollux (45°S) (Markgraf et al., 2007); moraine building events in the Lago Argentino basin (50°S) 

(Kaplan et al., 2016); the dry / warm ‘Cipreses Cycles’ from Lago Cipreses (51°S) (Moreno et al., 

2018); magnetic susceptibility (MS) from marine core JPC67 close to the northern outlet glaciers of 

the Cordillera Darwin Icefield (CDI) (54°31’S) (Bertrand et al., 2017) and the chronology of Holocene 

glacier fluctuations of the northern flank of the Cordillera Darwin (Hall et al., 2019). The record of 

temperature anomalies from the James Ross Island (JRI) ice core (57°41’S), the closest ice core 

record to Patagonia, and the duration of marine conditions, i.e. the absence of ice shelves, in the 
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Prince Gustav Channel and Larsen A embayment (Mulvaney et al., 2012) are included as a reflection 

of climate change along the Antarctic peninsula (Figs. 6 and 7). 

 

4.1 Late glacial environment (c. 17,000-11,700 cal a BP) 

There are few close minimum ages for deglaciation from the Canal Beagle to date. In the eastern 

sector of the canal a minimum age of 17,760 cal a BP was obtained from Pto. Harberton (Markgraf, 

1993). In the western sector of the canal ages of 14,740 and 14,350 cal a BP have been obtained 

from Valle Holanda and Bahía Pía respectively (Hall et al., 2013). The basal age of c. 17,040 cal a BP 

from Pta. Burslem is consistent with retreat from a Last Glacial Maximum extent (Rabassa et al., 

2000) in response to regional warming as evidenced in the Antarctic ice cores (Jouzel et al., 2007). 

The slightly older age from Pta. Burslem considering its more proximal location to the CDI is probably 

more related to its location closer to the wetter end of the west to east precipitation gradient and 

the promotion of earlier growth and preservation of organic material for radiocarbon dating; a 

similar phenomenon was observed in the distribution of minimum ages in the Estrecho de 

Magallanes (McCulloch et al., 2005). 

 

Between c. 17,000 and 12,600 cal a BP the environment along the north coast of Isla Navarino was 

treeless and dominated by cold tolerant steppe vegetation. An unambiguous response of the 

terrestrial vegetation at Pta. Burslem and Cta. Eugenia to potential climatic cooling during the ACR is 

not identified in the pollen records. This is probably because of the dominance and insensitivity of 

the cold tolerant steppe vegetation to such relatively small-scale temperature changes. There is 

evidence for changes in the abundance of aquatic flora at Pta. Burslem and slightly reduced pollen 

preservation at Cta. Eugenia during the ACR which may reflect a reduction in humidity, probably as a 

result of a continued equatorward focus of the SWWs in response to the relatively cooler climate 

during the Late glacial. There is a brief period of cooling between c. 14,500 and 13,900 cal a BP 

suggested by the Deuterium (δD) analysed from peat mosses from Pto. Harberton (Markgraf and 

Huber, 2010) which corresponds closely to the magnetic susceptibility peak recorded during the first 

half of the ACR in the JPC67 core (Fig. 6). There is also tentative evidence for an advance of the 

Marinelli Glacier during the ACR (Hall et al., 2019). However, the ~1°C temperature reduction during 

the ACR (as suggested by the JRI ice core record) appears to have had minimal impact on the 

vegetation along the northern coast of Isla Navarino. 

 

The transition between the Late glacial and warmer more temperate Holocene environments took 

place between c. 12,600 and c. 11,700 cal a BP. The expansion of Nothofagus woodland at Pta. 
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Burslem occurred at c. 12,250 cal a BP and slightly lags the warming recorded at JRI but is 

synchronous with the rise in SSTs at 41°S and a small rise in humidity recorded at Cta. Eugenia. The 

‘flickering-switch’ recorded in the Pta. Burslem Nothofagus record was probably a response to the 

gradual but faltering poleward migration of the SWWs during the last glacial interglacial transition 

(LGIT). A poleward shift of the SWWs is also suggested by the absence of lake conditions at Laguna 

Aculeo, which is consistent with a more southerly position of the SPH in tandem with a polewards 

migration of the SWWs leading to drier conditions in central-south Chile (~30°-43°S) (Schneider et 

al., 2017) and windier and wetter conditions after c/ 12,500 cal a BP in the vicinity of Gran Campo 

Nevado (~53°S) (Lamy et al., 2010). Relatively drier conditions at Mallin Pollux are suggested by the 

patchy woodland (Nothofagus <20% TLP). This also suggests that between c. 12, 600 and c. 11,700 

cal a BP the SWWs may have been moving poleward with the northern and eastern sites recording 

drier conditions and the western and southern sites recording more humid conditions. 

 

4.2  Early Holocene thermal maximum (Phase i, c. 11,700 – 10,750 cal a BP) 

From c. 11,700 cal a BP regional climate continued to warm, and SSTs reached a broad peak by c. 

10,750 cal yr BP, a lag of ~1000 years after the peak positive temperature anomaly at JRI. As 

temperatures rose in Fuego-Patagonia closed Nothofagus forest dominated at Pta. Burslem but the 

same warming and increased SWW speeds probably drove down effective moisture levels at Cta. 

Eugenia and probably restrained the eastwards expansion of woodland. The earlier age of c. 12,250 

cal a BP for forest expansion at Pta. Burslem is likely a reflection of its more western location and 

sufficient moisture levels enabling the spread of Nothofagus from refugia located to the north 

(Mansilla et al., 2016; Premoli et al., 2010) into the western sector of the Canal Beagle. The west-

east precipitation gradient is also reflected in the difference in pollen preservation recorded at Pta. 

Burslem and Cta. Eugenia with the former site yielding better preserved pollen grains (Fig. 6). The 

expansion of Nothofagus takes place against the backdrop of a gradual shift to drier conditions at 

Isla Navarino, the continued patchy woodland at Mallin Pollux and the absence of lake sediments at 

Laguna Aculeo. The precise timing of this drier interval (Fig. 6 phase i) is difficult to define but we 

place it between the decline in pollen preservation at Pta. Burslem and Cta. Eugenia at c. 11,700 cal 

a BP and the expansion of Nothofagus woodland and the onset of lacustrine conditions at Lago 

Aculeo after c. 10,750 cal a BP. 

 

The timing of the onset of the early Holocene drier phase appears to be broadly synchronous across 

the Magellan region. To the north, in the Ultima Esperanza area (~52°S) a shift to drier conditions 

leading to lake level lowering and increased fire activity has been identified after c. 11,600 cal a BP 
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(Moreno et al., 2012). In the central Magellan region (53°S) a gross reduction in MSW and increase in 

fire activity has been recorded from c. 11,700 cal a BP (McCulloch and Davies, 2001) and a significant 

contraction of forest cover and reduced MSW from c. 11,050 cal a BP (Mansilla et al., 2018). In the 

southern Magellan region (~54°S) a shift to drier conditions at c. 11,700 cal a BP was also reflected 

by reduced MSW at Pta. Burslem and Cta. Eugenia evidenced by the reduction in pollen 

preservation. There was also increased fire activity and reduced forest cover at Pto. Harberton from 

c. 11,000 cal a BP (Markgraf and Huber, 2010). We argue that during the thermal maximum the 

SWWs had significantly shifted poleward leading to drier conditions to the north of Fuego-Patagonia 

(Fig. 7) and increased Drake Passage throughflow of the ACC (Lamy et al., 2015). However, despite 

this being the period of maximum warmth indicated by the SST and JRI records the ice shelfs along 

the Antarctic Pensinsula continued to be stable.  

 

4.3 Early Holocene forest expansion (c. 10,750 – 9700 cal a BP) 

The expansion of Nothofagus woodland at Cta. Eugenia occurred at c. 10,650 cal a BP, some ~1600 

years later than at Pta. Burslem, which is more in keeping with other records for the establishment 

and spread of Nothofagus forest (e.g. Borromei, 1995; Heusser, 1998; Borromei et al., 2016). This 

phase of woodland expansion suggests an interval of increasing humidity and at this time we see a 

peak in Nothofagus and slightly improved pollen preservation at Pta. Burslem and woodland 

expansion at Mallin Pollux after c. 10,150 cal a BP. These changes take place as temperature declines 

at JRI but is still near the thermal maximum in SSTs and the first evidence for break-up of the ice 

shelf at the northern end of the Prince Gustaf channel, Antarctic Pensinula. This pattern of evidence 

suggests a more poleward focus of the SWWs between c. 10,750 and 10,000 cal a BP. 

 

4.4 Holocene dry period (Phase ii, c. 10,100 – 5900 cal a BP). 

During the Holocene dry period the extent of forest contracted at Mallin Pollux, Pta. Burslem and 

Cta. Eugenia and multiple indicators of MSW indicate a substantial shift to drier conditions (Fig. 6, 

phase ii). Unfortunately, a marine transgression truncates the climate record from Cta. Eugenia at c. 

8650 cal a BP but not before the proportion of normally preserved pollen reached a significant low 

also indicating a shift to reduced MSW. The increase in normally preserved pollen and forest cover 

between c. 8650 and 6700 cal a BP was probably due to the wetter marine conditions at the site and 

so this period is excluded from our synthesis (McCulloch et al., 2019). However, the Mallin Pollux 

and Pta. Burslem records provide compelling evidence for a sustained and substantial shift to drier 

conditions. This period broadly encompasses the Extended Warm Dry Anomaly (Moreno et al., 

2018). Also, during this period there was the onset of increased ice-shelf instability along the 
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Antarctic Peninsula (Mulvaney et al., 2012). Further collapse of the Antarctic Peninsula ice shelves 

occurred during the Holocene dry period. This was after the early Holocene climate optimum 

recorded at JRI but at a time when warmer sub-polar waters intruded into the Palmer Deep 

(Leventer et al., 2002).  

 

In 2019 Laguna Aculeo dried out (NASA, 2019), Holz and Veblen (2013) have identified increased 

wild fire activity alongside 20th century warming and drying trends in western Patagonia and open 

marine conditions are returning to the Prince Gustav channels along the Antarctic Peninsula 

(Mulvaney et al., 2012). This pattern of ocean-atmosphere-land connections is expected to be 

‘played out’ with poleward shifts of the SWWs in response to global warming (Lim et al., 2016). This 

is potentially further complicated by the linkages between Antarctic ozone loss during spring, the 

accompanying circulation changes in terms of the SAM, and Southern Hemisphere midlatitude 

summer surface temperatures (Bandoro et al., 2014). We suggest that the wider environmental 

impacts of the Holocene ‘dry’ phase is a close analogue of likely future global warming scenarios for 

southern South America and should be the focus of urgent research attention. 

 

However, the pattern of evidence from the latitudinal transect suggests the picture is more complex 

than the SWWs being simply focused more poleward at this time. During the early Holocene warm 

and dry period, we also see the onset of the Laguna Aculeo lacustrine record which implies an 

increase, albeit relatively small, in winter precipitation during the seasonal equatorward migration of 

the SWWs and the SPH. Between c. 10,000 and 8500 cal a BP the water levels in the laguna were at a 

minimum and frequently dried out, and with precipitation levels estimated at <200 mm a-1 (Jenny et 

al., 2003). During the period of ‘extreme’ dryness (c. 9700 – 7050 cal a BP) recorded at Isla Navarino 

and Potrok Aike (c. 9300-7000 cal a BP) (Zolitscka et al., 2013), SSTs temperatures decline, probably 

due to increased along-shore equatorward winds and coastal upwelling cooling the shelf waters (cf. 

Schneider et al., 2017). The increase in precipitation at Laguna Aculeo appears to be contrary to the 

evidence for a substantial poleward shift of the SWWs. This may point to greater seasonal elasticity 

between a stronger and more poleward focus of the SWWs during the summer and weaker but 

latitudinally more ranging belt of SWWs during the winter.  

 

During the Holocene dry period we can still see sub-millenial climate variability as there was a brief 

return to relatively wetter conditions at c. 8300 cal a BP that is closely contemporary with a peak in 

MS values (c, 8750-8000 cal a BP) recorded in Seno Almirantazgo (Bertrand et al., 2017) (Fig. 6) that 

may coincide with a glacier advance in the Marinelli fjord at c. 8270 cal a BP (Hall et al., 2019). This 
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period is also broadly coeval with a brief increase in Nothofagus at Mallin Pollux and a small step-

increase in precipitation at Laguna Aculeo.  

 

The timing of the end of the early-Holocene dry period appears to vary latitudinally. The period of 

forest contraction at Pta. Burslem appears to end at c. 7050 cal a BP. Nothofagus at Mallin Pollux 

rapidly increased around the time of the brief period of wetter conditions at c. 8300 cal a BP and 

remained dominant thereafter. The lake basin at Potrok Aike began to refill after 7000 cal a BP 

(Zolitschka et al., 2013) and strengthening of the SWWs after c. 6800 cal a BP is inferred from 

sedimentary evidence at Lago Cardiel (~49°S) (Gilli et al., 2005). However, the pollen preservation 

evidence from Pta Burslem indicates drier conditions continued until a later step-change at c. 5900 

cal a BP which is synchronous with a significant increase in precipitation at Laguna Aculeo. We 

suggest that the pattern of evidence points towards a more sustained period of drier climate 

between c. 9700 and 5900 cal a BP but with a period of intense dryness between c. 9700 and 7050 

cal a BP. 

 

4.5 Mid- to Late Holocene climate variability (Phases iiii – vi, c. 5900 - 1000 cal a BP) 

From c. 5900 cal a BP there was a restoration of closed Nothofagus forest at Pta. Burslem from 

which we infer a rise in humidity. The degree of pollen preservation at Pta. Burslem and Cta. Eugenia 

also improves suggesting an increase in MSW. The extent of woodland cover at Cta. Eugenia was 

significantly less (Nothofagus ~20% TLP) and so the expansion of woodland is more gradual and 

closed woodland is achieved at c. 3000 cal a BP. The diatom inferred precipitation record from 

Laguna Aculeo suggests a gradual increase in precipitation and the sea surface temperature and the 

JRI ice core records reflect a gradual decline in temperatures. This pattern is consistent with an 

equatorward shift of the SWWs in response to climatic cooling leading to increased precipitation 

along Patagonia and extended reach of the SWW storm tracks to lower latitudes. This trend follows 

increasing seasonality in insolation (Jenny et al., 2003; Lamy et al., 2010). 

 

The general trend to cooler and wetter conditions is reflected in all the proxies presented here. 

However, the palaeoenvironmental records from Pta. Burslem and Cta. Eugenia provide evidence for 

increased climate variability after c. 5900 cal a BP and to the present. From our synthesis we identify 

at least five periods of rapid climate change (RCC) leading to drier conditions at this southern 

extreme of Patagonia: phase iii c. 5350-4750 cal a BP, phase iv c.4300-3300 cal a BP, phase v c. 2600-

1850 cal a BP and phase vi c. 1350-1100 cal a BP. Not all of these periods are necessarily reflected in 

changes in the vegetation assemblages of the pollen records but are identified as reductions in MSW 



AUTHOR ACCEPTED MANUSCRIPT: DOI 10.1016/j.quascirev.2019.106131 
 

16 
 

across the Isla Navarino sites which suggests a degree of resilience (or lags) in the vegetation 

records. We argue that these periods of RCC and relatively warmer and drier conditions indicate a 

more poleward focus of the SWWs in response to climatic warming leading to a more sustained 

dipole SWWs-SPH scenario (cf. Garreaud et al., 2013) (Fig. 7). During periods of warmer climate Isla 

Navarino probably received more winter precipitation (JJA). However, being located at the margin of 

the focus of the reduced latitudinal range of the SWWs during summer (DJF) the mire ecosystems 

were more stressed due to reduced precipitation and increased evaporation. There is also a close 

positive association between periods of reduced precipitation at Laguna Aculeo and reduced 

moisture at Pta. Burslem and Cta. Eugenia. The SPH would also have shifted southwards in tandem 

with the SWWs leading to the increased prevalence of alongshore winds and drier conditions at 

Laguna Aculeo (cf. Schneider et al., 2017).  

 

The intervening wetter periods (between c. 5900 cal a BP and present) at Pta. Burslem and Cta. 

Eugenia represent the onset of greater seasonality in the behaviour of the SWWs (Markgraf and 

Huber, 2010). The wetter intervals suggest a more equatorward shift in the SWWs in response to 

colder climate conditions leading to a sustained monopole scenario (cf. Garreaud et al., 2013) (Fig. 7) 

and a northwards shift in the SPH leading to increases in winter precipitation at Laguna Aculeo. We 

would expect an antiphase behaviour between the precipitation record of Laguna Aculeo and Isla 

Navarino (Lamy et al., 2015). However, the wetter phases at Laguna Aculeo were closely 

contemporary with increases in MSW at Isla Navarino, particularly Cta. Eugenia. The oxygen isotope 

reconstruction of precipitation sources for the past ~2000 years from Ariel Peatland on Tierra del 

Fuego (54°S) (Xia et al., 2018) suggests that periods of more intense westerly air flow coincided with 

the wetter periods recorded at Isla Navarino. Conversely, periods of increased precipitation at 

Laguna Aculeo coincided with weaker SWWs at high latitudes which allowed more easterly airflows 

to penetrate Tierra del Fuego from the South Atlantic. 

 

The wetter and probably cooler periods at Isla Navarino are also contemporary with the large peaks 

in magnetic susceptibility (MS) from the northern outlet glaciers of the CDI at 5600-3750, 3250-2700 

and 2000-1200 cal a BP (Fig. 6). The peaks in MS reflect higher grain-size mode values and are 

interpreted as periods of vigorous meltwater discharge and glacier retreat (Bertrand et al., 2017). As 

a general rule, glaciers advance during periods of climatic cooling (Oerlemans, 1993) and so our 

climatic inferences are at odds with the interpretation of the MS record from Seno Almirantazgo. 

Here, we argue that the MS peaks are more likely a reflection of increased glacial sediment supply 

due to increased erosion and meltwater flow into the fjord during glacier advances. This 
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interpretation is more in keeping with the peaks in MS reflecting glacier advances during the ACR, at 

c. 8750-8000 and moraine building events in the Lago Argentino basin at 6120 ± 390, 4450 ± 220, 

1450 or 1410 ± 110 cal a BP (Kaplan et al., 2016). The sequence of glacier advances reconstructed 

from the Marinelli fjord also indicates an ice advance at ≤ 6700 cal a BP.  

 

4.6 Little Ice Age to present (c. 1000 cal a BP - present) 

After c. 1000 cal a BP there is a significant decline in SSTs and temperature at JRI, a small contraction 

of forest cover at Pta. Burslem, with small reductions in pollen preservation at both Pta. Burslem and 

Cta. Eugenia at c. 550-350 cal a BP (Phase vi). This likely reflects cooling during the Little Ice Age (LIA) 

and is broadly contemporary with moraine building events in the Lago Argentino basin at c. 360 ± 30 

and 240 ± 20 cal a BP (Kaplan et al., 2016). LIA cooling likely drove an equatorward shift of the SWWs 

leading to colder and drier conditions at Pta. Burslem and Cta. Eugenia. The Antarctic ice-shelves 

began to reform after the last neoglacial advance (c. 1450 cal a BP) and remained stable until the 

recent collapses during the 20th Century. Again, this is instructive regarding the Holocene ‘dry’ 

period analogy for future global warming scenarios as there is a considerable time difference from 

the loss of the ice-shelves at c. 8000 cal a BP, the increase in precipitation at Laguna Aculeo after c. 

3300 cal a BP and inferred equatorward shift of the SWWs and the restoration of the Antarctic 

Peninsula ice-shelves ~1850 years later. Therefore, the recent collapse of the Prince Gustav and 

Larsen ice-shelves and return of open water is likely to be an enduring feature of the Anthropocene. 

 

5. Conclusion 

 

The Pta. Burslem record located along the Canal Beagle (~54°S) strongly reflects a regional climatic 

pattern and its southerly location provides valuable insights into the latitudinal shifts of the SWWs at 

the extreme south of Patagonia during the Late glacial and Holocene. Between c.14.5 and c. 13.6k 

cal a BP the record tentatively suggests a decrease in effective moisture coeval with the timing of 

the Antarctic Cold Reversal. This was followed by a marked transition from the Late glacial colder 

environments to warmer and more temperate climatic conditions marking the beginning of the 

Holocene by c. 11.7 kcal a BP. Higher levels of humidity were registered between c. 10.7 and 9.7 kcal 

a BP at Pta Burslem and sites located at the same latitude (~54-55°S) in Tierra del Fuego and Canal 

Beagle. In contrast, sites located in areas to the north (~53°S) suggest lower effective moisture 

during the same interval. The combined evidence suggests stronger westerly winds at the site area 

due to the poleward migration of SWWs. A sustained period of drier conditions is registered 

between c. 9.7 and c. 6.0 kcal a BP at the Isla Navarino sites and across Fuego-Patagonia. This strong 
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reduction in effective moisture across the region suggests that the influence of the SWWs was 

weakest during the early to mid-Holocene, perhaps due to their extreme poleward migration leading 

to instability of the Antarctic Peninsula ice-shelves. A return of higher effective moisture levels at Isla 

Navarino and across the region is registered after c.5.9 kcal a BP suggesting that the SWWs migrated 

equatorward in response to cooler climate. However, the Late Holocene is characterised by periods 

of rapid climate change, probably due to increased seasonality and increasing SST gradients, leading 

to periods of drier conditions at the southern extreme of Patagonia. 
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