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Abstract. We construct high accuracy trigonometric interpolants from
equidistant evaluations of the Bessel functions Jn(x) of the first kind
and integer order. The trigonometric models are cosine or sine based de-
pending on whether the Bessel function is even or odd. The main novelty
lies in the fact that the frequencies in the trigonometric terms modelling
Jn(x) are also computed from the data in a Prony-type approach. Hence
the interpolation problem is a nonlinear problem. Some existing compact
trigonometric models for the Bessel functions Jn(x) are hereby rediscov-
ered and generalized.

1 Bessel functions of the first kind

The Bessel functions Jν(x) of the first kind and order ν satisfy the second order
differential equation

x2
d2y(x)

dx2
+ x

dy(x)

dx
+ (x2 − ν2)y(x) = 0, ν ∈ C.

They are therefore especially important in many scientific computing problems
involving wave propagation and static potentials. Among others, we mention
signal processing, electromagnetics, acoustical radiation and vibration analysis.

Solving problems in cylindrical coordinate systems leads to Bessel functions of
integer order, while in spherical problems, one obtains half-integer orders. So the
functions Jν(x) of integer and half integer order, where respectively ν = n ∈ Z
and ν = (2n+ 1)/2 are among the more important. We are interested in Bessel
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functions of the first kind of positive integer order and real arguments. Note that
for negative integer order we have the relation

J−n(x) = (−1)nJn(x) = Jn(−x), n ∈ N, x ∈ R.

The even and odd behaviour of the functions Jn(x) is illustrated in the graphs
of J0(x) and J1(x) shown in Figure 1.

Fig. 1. The graphs of J0(x) (left) and J1(x) (right).

The power series and asymptotic series expansions of Jn(x) are respectively
given by

Jn(x) =

∞∑
k=0

(−1)k

k! (n+ k)!

(x
2

)2k+n
, x ≥ 0 (1)

and

Jn(x) =

√
2

πx

(
cos (x− (n+ 1/2)π/2)

∞∑
k=0

(−1)k
Γ (1/2 + 2k + n)

k! Γ (1/2− 2k + n)(2x)2k
+

− sin (x− (n+ 1/2)π/2)

∞∑
k=0

(−1)k
Γ (1/2 + 2k + n+ 1)

k! Γ (1/2− 2k + n− 1)(2x)2k+1

)
,

x→∞,

(2)

where for ` ∈ N,

Γ (1/2 + `) =
(2`− 1)!!

2`
√
π,

Γ (1/2− `) =
(−2)`

(2`− 1)!!

√
π.

In the literature, various trigonometric approximations of the Bessel functions
Jn(x) can be found, including Fourier series expansions and quadrature formulas
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applied to integral representations. Mostly these approximations are constructed
to provide simple compact models guaranteeing a few significant digits on a finite
interval 0 ≤ x ≤ B. For instance, in [2] we find

J0(x) =
1

6
+

1

3
cos(x/2) +

1

3
cos(
√

3x/2) +
1

6
cos(x),

J4(x) =
1

8
− 1

4
cos(
√

2x/2) +
1

8
cos(x).

(3)

Our aim is to provide equally compact formulas constructed from discrete data,
using suitably selected frequencies and delivering a high accuracy approximant
in 0 ≤ x ≤ B.

2 Trigonometric approximations

From the graphs of the Bessel functions Jn(x) of the first kind for integer orders,
one notices that they behave very much like decaying trigonometric functions.
Also, through the reflection formula

Jn(−x) = (−1)nJn(x), x ≥ 0, (4)

and the fact that J ′0(x) = −J1(x), the behaviour is similar to that of the cosine
and sine functions.

2.1 Finite real argument restriction

Since our trigonometric approximations are constructed from a finite number of
uniformly collected samples of Jn(x), we focus on the behaviour of Jn(x) and its
approximations on a finite interval [0, B] with B > 0. We therefore also introduce
the functions

J0(B;x) := J0(x), 0 ≤ x ≤ B,
Jn(B;x) := (B/x)Jn(x), 0 < x ≤ B,

(5)

for some specific restriction of the real Bessel function Jn(x) to the finite interval
[0, B]. This restriction doesn’t inherently change the behaviour of the Bessel
function, as we illustrate in Figure 2 where we display J2(25;x): with B/x ≥ 1
for 0 < x ≤ B the function Jn(B;x) is a somewhat magnified version of Jn(x).

For increasing B we find that the new approximations introduced in this
section, have a far better overall behaviour, meaning a smaller uniform norm of
the relative error, than the existing power series and asymptotic series expansions
which only perform well at either end of the interval [7, 3].
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Fig. 2. The graph of J2(25;x).

In the numerical illustrations we also compare to partial sums of the Fourier-
type series representations [1]

J0(B;x) =

∞∑
k=0

δk
2√

B2 + k2π2
sin
(√

B2 + k2π2
)

cos
(
kπ
√

1− x2/B2
)

Jn(B;x) =

∞∑
k=0

δkπJn
2

(√
B2 + k2π2 + kπ

2

)
Jn

2

(√
B2 + k2π2 − kπ

2

)
× cos

(
kπ
√

1− x2/B2
)
, n ≥ 1

(6)

where δ0 = 1/2 and δk = 1, k > 0.
From (4) and the definitions (5) it is clear that for n ≥ 0 the J2n(x) and the

J2n+1(B;x) are even functions and that the J2n+1(x) and the J2n(B;x) are odd
functions. So we develop cosine sum approximations for the former and sine sum
approximations for the latter. For the cosine approximations, we use as input
the values

fj := Jn(B; j∆) or fj := Jn(j∆) j = 0, . . . , 2m− 1, ∆ =
B

2m− 1
, (7)

and for the sine approximations, where we always have f0 = 0 since the function
is odd, the values

fj := Jn(B; j∆) or fj := Jn(j∆) j = 1, . . . , 2m, ∆ =
B

2m
, (8)

so for both, 2m samples taken at equally spaced points in the interval [0, B].
The new approximations are of the so-called Prony-type [8, 6].

2.2 Finite sum cosine approximations

From [5, 4] we obtain the following formulas for the construction of an m-term
cosine interpolant with coefficients αk and frequencies φk, satisfying the inter-
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polation conditions

m∑
k=1

αk cos(φkj∆) = fj , j = 0, . . . , 2m− 1, (9)

where the sampled (restricted) Bessel function is an even function.
We first solve (9) for the unknown nonlinear parameters φk in the interpolant

and afterwards for the unknown linear coefficients αk.
Let the `× ` Hankel and Toeplitz matrices H

(r)
` and T

(r)
` be defined by

H
(r)
`,± :=


fr fr±1 · · · fr±(`−1)
fr±1

... . .
. ...

fr±(`−1) · · · fr±(2`−2)

 ,

T
(r)
`,± :=


fr fr∓1 · · · fr∓(`−1)
fr±1

...
. . .

...
fr±(`−1) · · · fr

 ,

where for j < 0 formula (4) is used. Because of the uniformity of the sampling
at j∆ and the property

1

2
cos(φk(j + 1)∆) +

1

2
cos(φk(j − 1)∆) = cos(φk∆) cos(φkj∆), (10)

the generalized eigenvalue problem (11) can be written down for the matrices

C(0)
m :=

1

4
H

(0)
m,+ +

1

4
H

(0)
m,− +

1

4
T

(0)
m,+ +

1

4
T

(0)
m,−,

C(1)
m :=

1

4
H

(1)
m,+ +

1

4
H

(1)
m,− +

1

4
T

(1)
m,+ +

1

4
T

(1)
m,−.

The values cos(φk∆), k = 1, . . . ,m are the generalized eigenvalues of [5, 4]

C(1)
m vk = cos(φk∆) C(0)

m vk, k = 1, . . . ,m, (11)

where the vk are the generalized eigenvectors. Under the condition that

0 ≤ max
k

φk∆ ≤ π (12)

the frequencies φk, k = 1, . . . ,m can be unambiguously extracted from the gener-
alized eigenvalues cos(φk∆), k = 1, . . . ,m. With the φk identified, the interpola-
tion problem (9) can be solved for the coefficients αk. In an exact mathematical
setting it suffices to consider a subset of m interpolation conditions of the 2m
imposed ones, as the remaining m conditions have become linearly dependent
because of the generalized eigenvalue relation (11) satisfied by the φk.
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With respect to (12) we make the following remarks and observations. With
∆ = B/(2m− 1) condition (12) amounts to

0 ≤ max
k

φk ≤
(2m− 1)π

B
,

which implies that the choice of B and m determines which frequencies in
Jn(B;x) or Jn(x) can be identified without aliasing effect. In other words, the
choice of B and m limits the frequency range of the parameters φk in the models
(9) and (13). In view of the well-known damped cosine asymptotic behaviour [9]

Jn(x) ∼
√

2

πx
cos

(
x− (2n+ 1)π

4

)
and our own observations formulated in Section 4, it is reasonable to choose m
for a given B such that B < (2m− 1)π.

2.3 Finite sum sine approximations

Also from [4], we find similar formulas for the construction of an m-term sine
interpolant for Jn(B;x), satisfying

m∑
k=1

αk sin(φkj∆) = fj , j = 1, . . . , 2m, (13)

where the sampled (restricted) Bessel function of the first kind is an odd function.
We summarize the method here.

Because the sine analogue of the property (10) is

1

2
sin(φk(j + 1)∆) +

1

2
sin(φk(j − 1)∆) = cos(φk∆) sin(φkj∆), (14)

we define

S(0)
m :=

1

2
H

(1)
m,+ +

1

2
T

(1)
m,+,

S(1)
m :=

1

4
H

(2)
m,+ +

1

4
H

(0)
m,+ +

1

4
T

(2)
m,+ +

1

4
T

(0)
m,+.

Then the values cos(φk∆) are the generalized eigenvalues of [4]

S(1)
m vk = cos(φk∆) S(0)

m vk, k = 1, . . . ,m. (15)

Under the condition that
|max

k
φk∆| ≤

π

2
,

or equivalently

max
k
|φk| ≤

(2m− 1)π

2B
, (16)

the frequencies φk can be uniquely extracted from the generalized eigenvalues
cos(φk∆) computed from (15) and then the coefficients αk, k = 1, . . . ,m can be
computed from the interpolation conditions (13) as above. Our recommendation
now is to respect 2B < (2m− 1)π.
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3 Numerical comparison

In the following we compare the new Prony-type interpolants, first to partial
sums of the Fourier-type series expansion for the functions Jn(B;x) on [0, B]
presented in Section 2 and afterwards to the power series and asymptotic series
expansions (1) and (2) given in Section 1. We take J0(B;x) and J0(x) as example
for the cosine approach and J2(B;x) and J1(x) as example for the sine approach,
and such for different values of B and m. It is the subject of future work to
verify whether our observations for the example functions can be stated for
general order n, which seems the case from our initial experiments presented in
Section 3.3.

In order to avoid any undesirable effect of rounding errors and make sure
that the truncation error incurred by the new approximants is dominant, the
computations are performed in the computer algebra environment Maple, using
between 800 and 2200 digits, depending on the values of m and B.

We use the formula

|Jn(B;x)−Rm(x)|
1 + |Jn(B;x)|

or
|Jn(x)−Rm(x)|

1 + |Jn(x)|

for the relative error from approximating the function value Jn(B;x) or Jn(x)
by the trigonometric m-term sum Rm(x). The denominator takes care of any oc-
currence of zeroes: in their neighbourhood the relative error is gradually replaced
by the absolute error.

3.1 Cosine sum approximants for J0(B;x)

In Figure 3 and Table 1 we show the log10 relative error of the new approx-
imants introduced in Section 2.2 compared to the Fourier-type partial sums
given in Section 2.1, and this for various values of the trigonometric degree m
and the interval upperbound B. The figures speak for themselves. We do not
display results for the even function J1(B;x) as these are very similar to the
ones obtained for J0(B;x).

Table 1. Maximum log10 relative error of the m-th approximants of J0(B;x).

B = 1 B = 5 B = 20
m (6) (9) (6) (9) (6) (9)

5 -2.037 -27.70 -0.6596 -13.43 -0.2729 -2.637
10 -2.317 -66.14 -0.9248 -37.88 -0.3337 -14.59
25 -2.702 -202.5 -1.305 -132.3 -0.2496 -72.54
50 -2.999 -463.1 -1.601 -323.0 -0.4362 -202.9
75 -3.173 -746.2 -1.775 -536.2 -0.5891 -355.8
100 -3.298 -1044 -1.900 -764.1 -0.7055 -523.5
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Fig. 3. Log10 relative error of the m-th Fourier-type (upper red) and cosine Prony-type
(lower black) approximants for m = 5, 10, 25 (left to right) and B = 5.

3.2 Sine sum approximants for J2(B;x)

In Figure 4 and Table 2 we show the log10 relative error of the new approximants
introduced in Section 2.3 compared to the Fourier-type partial sums given in
Section 2.1, and this for various values of the trigonometric degree m and the
interval upperbound B. The figures again speak for themselves. The behaviour
is similar when approximating other functions J2n(B;x).

Fig. 4. Log10 relative error of the m-th Fourier-type (upper red) and sine Prony-type
(lower black) approximants for m = 5, 10, 25 (left to right) and B = 5.

3.3 Power series and asymptotic series sums

To conclude our numerical illustration, we compare the new Prony-type ap-
proximants, now computed for Jn(x), to the power series and asymptotic series
expansions (1) and (2). In Table 3 we fix m = 20 but vary B in [0, B] and the
order n in Jn(x). The cosine and sine sums are, as expected, much better when
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Table 2. Maximum log10 relative error of the m-th approximants of J2(B;x).

B = 1 B = 5 B = 20
m (6) (13) (6) (13) (6) (13)

5 -1.477 -30.54 -0.1408 -15.22 -0.1167 -2.609
10 -1.615 -69.63 -0.2455 -40.29 -0.0387 -15.44
25 -1.807 -206.9 -0.4181 -163.4 0.4884 -74.29
50 -1.956 -468.0 -0.5604 -326.8 0.5256 -205.2
75 -2.044 -751.5 -0.6458 -540.4 0.4867 -358.6
100 -2.107 -1049 -0.7070 -768.6 0.4461 -526.5

regarding a wider range for x, while the expansions (1) and (2) only perform
well for either small or large values of the argument.

Table 3. Rough maximum log10 relative error of the 20-th approximants of Jn(x) for
various B and n.

(1) (2) (9) or (13)

n
B

0.01 15 100 0.01 15 100 0.01 15 100

0 -137 -1 32 117 -13 -49 -321 -56 -19

1 -138 -3 32 120 -14 -48 -324 -83 -12∗

2 -139 -3 33 122 -13 -49 -324 -82 -13

5 -141 -5 33 131 -13 -48 -327 -70 -15∗

20 -148 -13 36 186 -8 -45 -333 -101 -19

The choice for B satisfies the recommendations formulated in the dicussion
of (12) and (16), except for the results in Table 3 marked with ∗. When using
2B ≥ (2m − 1)π in the sine model, then the frequency range for the φk is
reduced and introduces an unwanted aliasing effect from the frequencies in the
range [(2m− 1)π/(2B), 1].

4 Simplified procedure

When inspecting the computed frequencies φk in the models (9) and (13) of the
previous section, we observe that:

– all (or almost all) the φk, k = 1, . . . ,m are real and lie in the interval [0, 1];

– their distribution becomes denser towards the interval endpoint 1.

In Figure 5 we display a typical situation.
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Fig. 5. Distribution of the φ1, . . . , φm computed for J0(x) (top) and J1(x) (bottom)
on [0, B] with m = 25 and B = 5.

This behaviour is reminiscent of the behaviour of Chebyshev zeroes and ex-
trema, when restricting them to the interval [0, 1]. We also note that the frequen-
cies appearing in the simple models (3) coincide with the extrema of a Chebyshev
polynomial of the first kind restricted to [0, 1]. For instance:

– The cosine frequencies 0, 1/2,
√

3/2, 1 in the model for J0(x) are the non-
negative extrema cos(3π/6), cos(2π/6), cos(π/6), 1 of the Chebyshev polyno-
mial T6(x).

– And the cosine frequencies 0,
√

2/2, 1 in the approximation for J4(x) are the
non-negative extrema cos(2π/4), cos(π/4), 1 of the Chebyshev polynomial
T4(x).

Therefore we now investigate the accuracy of the simplified approximants

m∑
k=1

αk cos(φ̃kx)

and
m∑
k=1

αk sin(φ̃kx)

where the φ̃k are not obtained from the solution of the generalized eigenvalue
problems (11) or (15) but are fixed a priori, preferably as some Chebyshev ex-
trema or zeroes. The coefficients αk are still computed from the system of inter-
polation conditions (9) or (13), now without the frequencies satisfying a related
generalized eigenvalue problem. This system consists of 2m interpolation condi-
tions to fix only m coefficients αk. It can be solved in the least squares sense or
we can select a square subsystem by disregarding in (7) or (8) the samples taken
at odd multiples of ∆. In our experiments we have chosen the latter option.

For the φ̃k we consider 5 different schemes, where Tn(x) and Un(x) respec-
tively denote the Chebyshev polynomials of the first and second kind:
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1. from the zeroes of T2m(x):

φ̃k = cos

(
(2k − 1)π

4m

)
, k = 1, . . . ,m, (17)

2. from the zeroes of U2m(x):

φ̃k = cos

(
kπ

2m+ 1

)
, k = 1, . . . ,m, (18)

3. from the zeroes of T2m+1(x):

φ̃k = cos

(
(2k − 1)π

2(2m+ 1)

)
, k = 1, . . . ,m, (19)

4. from the extrema of T2m(x):

φ̃k = cos

(
kπ

2m

)
, k = 1, . . . ,m, (20)

5. from the extrema of T2(m−1)(x):

φ̃k = cos

(
kπ

2(m− 1)

)
, k = 0, . . . ,m− 1. (21)

In the Tables 4 and 5 we show the maximum relative error of different m-term
cosine and sine approximations for the functions J0(x) and J1(x) on the interval
[0, 20] respectively. We compare all φ̃k selections for the cosine approximants and
all but the last one for the sine approximants (in the current choice, the latter
leads to a singular linear system for the αk in the sine model). For completeness
we also list the maximum relative error of the Prony-type approximant (9) or
(13), which is the unrivalled option. In Table 4 the simplified approximants using
frequencies φ̃k from either (17), (19) or (21) deliver the smallest truncation errors
and follow best the optimum trend of (9), explored in Section 3. The conclusion
for Table 5 is similar, now with (17) and (19) for (13).

Table 4. Maximum log10 relative error of the m-term cosine approximant for J0(x)
on [0, 20].

m 10 25 50 75 100

(9) -14.59 -72.54 -202.9 -355.8 -523.5

(17) -8.940 -58.85 -176.1 -316.2 -471.0
(18) -2.862 -21.50 -71.22 -132.5 -201.3
(19) -7.855 -56.91 -173.6 -313.3 -467.8
(20) -1.364 -21.32 -71.05 -133.1 -201.2
(21) -6.788 -54.99 -171.0 -310.4 -464.6
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Table 5. Maximum log10 relative error of the m-term sine approximant for J1(x) on
[0, 20].

m 10 25 50 75 100

(13) -16.24 -75.10 -206.0 -359.4 -527.3

(17) -8.759 -58.21 -175.2 -315.0 -469.7
(18) -2.825 -21.99 -72.02 -133.5 -202.4
(19) -7.723 -56.28 -172.6 -312.1 -466.5
(20) -3.149 -22.29 -72.31 -133.8 -202.7

To construct a trigonometric approximation for a particular Jn(x) on a spe-
cific interval and guaranteeing a predetermined accuracy, it suffices to choose
the appropriate m and a suitable scheme for the φ̃k (or computing the φk as
detailed in Section 2). To this end, truncation error upperbounds for each of the
trigonometric approximation schemes (9) and (13), in combination with (17)–
(21), would be very helpful.

Conclusion

The proposed Prony-like method generates quite high accuracy approximants,
which we believe are unexplored so far. In view of the many physics and engi-
neering applications involving Bessel functions of the first kind of integer order,
these exploratory results may offer interesting opportunities.

In the future, a more complete comparison of the newly introduced trigono-
metric approximants with different representations of the Bessel functions of the
first kind, should also be conducted.

Precise statements for general order functions Jn(x) on a guaranteed trun-
cation error bound for these interpolants in the interval [0, B] and the exact
behaviour of the frequencies present in the oscillating and decaying functions
Jn(x) form interesting topics for future research.
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