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Textual abstract 

 

The burden of disease is a major issue in aquaculture production. The fish gill is a significant 

portal of entry for pathogens in fish. To investigate epithelial integrity and innate immune 

responses in gill epithelia the salmonid gill cell line RTgill-W1 was stimulated with diverse 

pro-inflammatory and infectious agents. Epithelial integrity in polarised cells expressed as 

transepithelial electrical resistance (TER) immediately increased after stimulation with 

different PAMPs (pathogen associated molecular patterns). In parallel tight junction and 

innate immune gene expression was modulated with bacterial PAMPs, LPS and MDP, 

internalized through actin dependent and independent endocytic pathways.  

 

The salmonid alphavirus subtype 2 (SAV-2) was used as an infectious agent in RTgill-W1 

cells and was found to multiply at a low level. TER was found to be disturbed at an early 

stage of infection although tight junction related gene expression was not modulated. 

However, a strong PAMP-driven antiviral response was observed including upregulation of 

the expression of Rig-like receptor (RLRs) and several interferon stimulated genes (ISGs). 

Barrier function of trout gill epithelium against infection was also investigated. A bacterial 

invasion assay using A. salmonicida highlighted the capacity of PAMP pre-treatment to 

reduce bacterial invasion. 

 

At the level of signal transduction of the phosphoproteome of RTgill-W1 cells in steady 

state and under poly(I:C) and MDP stimulation was conducted where poly(I:C) stimulated 

cells presented a higher number of phosphoproteins (360 unique phosphoproteins). These 

results provide an untargeted view of the key signaling pathways that are rapidly activated 

in response to PAMP stimulation. 

 

The findings of the present study highlight an integrated response to viral infection and 

PAMP challenge in fish epithelia that could facilitate the development of novel therapeutic 

avenues for fish health management in aquaculture. 
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Preface 

 

This PhD project was designed to characterize rainbow trout gill epithelial cell RTgill-

W1which has included the barrier function and innate immune responses of trout gill cells 

to viral and bacterial PAMPs (Chapter 2) and viral infection agent (salmonid alpha virus 

subtype 2 which causes sleeping disease in trout) and bacterial infection agent (A. 

salmonicida which causes furunculosis in trout) (Chapter 4). The mechanisms of recognition 

of viral and bacterial PAMPs by the gill epithelial cells have also been studied. Further to 

study the cellular mechanisms involved in the barrier functions including cellular integrity 

and tight junction properties, and antiviral responses of RTgill-W1cells, global 

phosphoproteome approach has been applied (Chapter 3). The phosphoproteome study has 

included the identification of phosphoproteins, different kinases involved in the 

phosphorylation events and different signaling pathways involved in cellular integrity and 

antiviral responses in steady state and viral and bacterial PAMP stimulated RTgill-W1 cells.  

 

Thus, in this thesis, the author has outlined the importance of studying fish-pathogen 

interactions highlighting the use of in vitro cell culture model. The use of different PAMPs 

as immune-stimulants has also been described. The interferon system and its role in innate 

immunity in fish have also been highlighted. The importance of antimicrobial peptides in 

immunomodulation has been placed. SAV-2, one of the aquatic viruses that reasons huge 

loss in the trout aquaculture causing sleeping disease, has been prioritized in the introductory 

dialogue. A bit explanation on Aeromonas salmonicida and its pathogenicity has also been 

in place in the introduction. Finally, different aspects of protein phosphorylation including 

its importance in phosphoproteomics including its development, has been emphasized.  
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Chapter 1 

General introduction 

 

1.1 General background 

Aquaculture has grown steadily in the last few decades playing an increasing role in meeting 

the demand of fish for a growing world population (FAO, 2018). The rate of increment of 

fish production is double the world population growth rate (FAO, 2014). Aquaculture food 

fish contributed a record over 40% of the total 158 million tonnes of fish produced by capture 

fisheries and aquaculture in 2012 contributing the increment of per capita fish consumption 

over the last several decades where the average consumption has increased from nearly ten 

kilograms in 1960s to nearly nineteen kilograms in 2012 (FAO, 2014). This sector has great 

potential to expand and to meet the growing protein demand of an increasing global 

population. The production of aquaculture food products including fish, crustaceans, and 

mollusks has been recorded at 60 million tonnes in 2010 with a projected total value of 

US$119.4 billion (FAO, 2012) that is anticipated to increase to US$202.96 billion by 2020 

(Grand View Research, 2015). Aquaculture contribution has been projected to rise to 62% 

of the total by 2030 (FAO, 2014). 

 

Among aquaculture species, finfish contributes the highest production volume and values 

(FAO, 2014) where of 567 aquaculture species, 359 are finfishes. Among the finfish 

production, salmonid species as a single commodity share the highest by value (67.7%) and 

by quantity (80%) (FAO, 2016). Since the beginning of 1990s, more than half of the world 

production of diadromous fishes has come from salmonids, and the share peaked at 70.4 

percent in 2001 where the production of salmonid has increased dramatically from 299 000 

tonnes in 1990 to 1.9 million tonnes in 2010, at an average annual rate exceeding 9.5 percent 

(FAO, 2012).  

 

Aquaculture intensification creates substantial animal stress, facilitating the emergence of 

infectious diseases causing huge aquaculture loss. The disease challenge in aquaculture is 

unlike to the disease challenge in other animal production systems as all the aquatic animals 

growing in the same water column have the potentiality of infection with the same pathogens 

(Jones et al., 2015). A rapid and dynamic development of aquaculture worldwide, 

epidemiological changes are leading to increase in the disease burden of aquaculture 
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(Kennedy et al., 2016). Evolution of virulence of pathogens also playing role in emerging 

of some of the fish diseases which is unavoidable due to the intensification of aquaculture 

(Walker & Winton, 2010).  

  

In general, aquatic organisms have evolved specialized gas-exchange structure which is 

gill in fish accomplished by four pairs of vascularized gill arches composed of hundreds 

of gill filaments, which increase their contact surface by folding into the secondary 

lamella (Xu et al., 2016). Gills are in direct contact with the water and therefore are 

continuously exposed to environmental insults. Thus, the gill act as an important organ of 

entry for different pathogens including intracellular bacteria and viruses (Pratte, 2018). 

Thus, there is an evident need for the fish to defend such a large and delicate surface from 

pathogenic attack (Xu et al., 2016). How fish gill defends against pathogenic attack is 

little studied even a significant number of innate and adaptive immune molecules 

including cytokines, caspases, immunoglobulins, major histocompatibility complex 

(MHC), and pathways such as apoptosis, metabolic etc. operate in fish gill have been 

reported (Aquilino et al., 2014; Valenzuela-Miranda et al., 2015). Thus, knowledge on gill 

properties is important to understand gill-pathogen interaction as well as the immunological 

functions of gill and gill cells. 

 

1.2 Teleost fish gill and gill properties 

Many functions are carried out by the teleost fish gill which is composed of epithelial cells, 

chloride cells and mucous cells. The teleost gill is structurally complex (Part et al., 1993; 

Wilson & Laurent, 2002). A large surface area of the gill facilitates the exchange of gas, 

keeps balance between ion and acid/base and eliminates nitrogenous waste (Chasiotis et al. 

2012a). Due to the continuous exposure to the surrounding water, fish gills are prone to 

contact with various pathogens, parasites and pollutants. For the study of fish gill diseases, 

gill cells especially primary gill cells have been widely used. Secondary cell lines however 

allow for more consistent and reproducible in vitro studies. The only available secondary 

fish gill epithelial cell line RTgill-W1 might therefore be a suitable alternative to study gill 

physiology and infection pathogenesis and immunology.  

 

The RTgill-W1 cell line has been developed from the primary culture of rainbow trout gill 

Oncorhynchus mykiss (Walbaum) by Bols et al. (1994). This cell line offers a great potential 
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to study viral and bacterial gill disease in vitro. For example, Al-Hussinee et al. (2016) has 

investigated the antiviral responses of RTgill-W1 cell line upon induction with VHSV and 

viral and bacterial PAMPs while Trubitt et al. (2015) studied the effects of osmoregulatory 

hormones in RTgill-W1 cells. Previously, the pharmaceutical ecotoxicology has been 

investigated in RTgill-W1 and primary gill cells where double seeded and single seeded 

inserts (DSI and SSI) have been used to grow the cells (Claire, 2016). Cytotoxic and 

genotoxic responses of RTgill-W1 have also been reported (Amaeze et al., 2015). Moreover, 

RTgill-W1 cell have been used for the study of ichthyotoxicity by Dorantes-Aranda et al. 

(2011).  

 

The fish gill epithelium covering the gill filaments and lamellae separates the external 

environment from extracellular fluids thus playing a critical role in gill function. Epithelial 

cells form intercellular junctions which result in a tight cellular barrier that separates the 

serosal from the basal side. The so-called tight junctions control the diffusion of different 

chemical components along the paracellular compartments.  

 

1.3 Tight junction proteins 

The gill plays the central role in maintaining homeostasis of the fish body (Evans et al., 

2005). This homeostasis is regulated partially by tight junctions (Chasiotis et al. 2012b). The 

membranes of two closely associated epithelial cells are joined together by tight junctions 

which form a virtually impermeable barrier that controls the movement of fluids. Tight 

junctions are also known as occludin junctions or zonulae occludin. The tight junction 

paracellular space is formed and regulated by the claudin and occludin proteins (Whitehead 

et al., 2011) which are associated with intracellular protein ZO-1, and plays important roles 

in actin cytoskeleton regulation. Tight junction proteins play a vital role in the formation 

and development of epithelia, maintaining tissue integrity, tight junction permeability 

regulation and maintaining cell polarity. These tight junction proteins can be modulated by 

different environmental factors. Selected tight junction proteins have been shown to be 

sensitive to environmental changes. Moreover, endogenous factors have also been reported 

to mediate gill’s response to the changes in environmental conditions (Chasiotis et al., 

2012b). Different tight junction genes have been studied and their responses have been 

examined in the gill upon changing external environmental conditions. Bui et al. (2010) 

profiled 12 claudin genes in cultured puffer fish gill epithelia using specific primers where 

9 genes were expressed in response to sea water acclimation. However, the role of gill 
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epithelial tight junctions in maintaining the paracellular permeability properties is not well 

studied.  

 

1.3.1 Zonula occludin-1 (ZO-1) 

ZO-1 is the first proteins among the tight junction proteins identified in animals (Stevenson 

et al., 1986). This protein resides on the inner cytosolic surface of tight junction, is composed 

of several binding domains targeting occludin and claudin as well as signaling molecules 

including transcription factors and actin cytoskeleton (Bauer et al., 2010). This protein is 

one of the most multipurpose tight junction components identified, and has been shown to 

respond to different environmental factors (Chasiotis et al., 2012b). Thus ZO-1 can be 

regarded as a dual activator providing important role in tight junction regulation associating 

claudin and occludin with actin cytoskeleton and transducing signals for the expression of 

different genes, cell cycle progression etc. (Bauer et al., 2010).  

 

1.3.2 Occludin  

The first transmembrane tight junction protein identified in vertebrate epithelia was occludin 

(Furuse et al. 1993) and extensively characterised using MDCK cells (Balda et al., 1996). 

McCarthy et al. (1996) demonstrated that ccludin localizes solely to tight junction fibrils at 

cell-cell contact sites. A wide variety of epithelial and endothelial tissues contain occludin 

(Gonzalez-Mariscal et al., 2003).  

 

Occludin is the most extensively studied, well characterized and best understood tight 

junction protein in teleosts. Chasiotis et al. (2010) reported constitutive expression of 

occludin mRNA in gill tissue of rainbow trout, which indicates an important role for 

occludin in the regulation of branchial permeability. Compared to mammalian occludin, 

rainbow trout protein has 46–48% amino acid sequence similarity, 50% similarity with frog 

occludin while zebrafish occludin shares about 63% amino acid sequences (Chasiotis et al., 

ood & Kelly, 2010). Tight junction barrier formation and augmentation has been reported in 

mammalian models to “occlude” the paracellular movement of solutes (Cummins, 2012).  

 

1.3.3 Tight junction protein and transepithelial electrical resistance (TER) 

Epithelial and endothelial cells form intercellular tight junctions when cultured to a 

monolayer. Tight junctions are found in several places in the body such as; kidneys, 

intestine, lung epithelia in human while in fish tight junctions are found in gill epithelium. 
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Not only they are also found in the gill, but also in a wide range of tissues including intestine, 

skin, muscle, brain, blood-brain barrier, vascular system, swim bladder, lateral line, gall 

bladder, kidney, head kidney and spleen in different teleost fishes (McKee et al., 2014; 

reviewed in Kolosov et al., 2013) 

 

Tight junctions are important components of the epithelial junctional complex and form a 

circumferential, belt-like structure at the luminal end of the intercellular space acting as a 

gatekeeper of the paracellular pathway (Farquhar and Palade, 1963). Transepithelial 

electrical resistance (TER) is the electrical resistance between the apical and basal side of 

the epithelial (or endothelial) cells. In in vitro studies the TER of an epithelial monolayer 

can be measured in transwell systems. There is a positive correlation between the 

development of a tight junction between the adjacent cells and TER. TER measurement is 

widely used and a very reliable, convenient and non-destructive method. The TER value is 

a strong indicator of cell integrity. This quantitative expression of the barrier integrity is 

expressed as ohms-cm2 (Ω-cm2) (Benson et al., 2013).  

 

The complexity of the tight junction network, has an effect on TER and Claude & 

Goodenough (1973) demonstrated a direct relationship between TER and the number of 

parallel strands between cells. Epithelial gill cells have the ability to differentiate and to 

retain their polarised properties when the primary cultures of gill epithelial cells are grown 

onto permeable inserts (Moore et al., 1998). Primary gill cultures grown on to glass discs or 

in wells might lose the differentiation and polarisation properties while grown onto 

transwells the gill cells are more likely to build their epithelial properties. Thus in the 

transwells the cellular integrity is retained and a tight gill epithelium mimicking in vivo 

integrity is formed (Fijan et al., 1983; Srinivasan et al., 2016).  

 

1.3.4 Transwell system to study cellular integrity 

A typical transwell system has several components where the main component is the 

transwell insert carrying a microporous membrane of varying pore size. Other components 

are cell culture companion where the insert is placed forming serosal and basal 

compartments (Figure 1.1A). The integral part of the system is the cell monolayer cultured 

onto the microporous insert. Growth medium is used in the apical side and the basal side.  
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To measure the electrical resistance, different volt-ohm meters are used. The measurements 

are taken by using two electrodes where one electrode is placed in the serosal compartment 

and another in the basal compartment.   

 

 

Figure 1.1: Transwell system (A) and its application in measuring transepithelial electrical 

resistance measurement (B).  

 

TER measurements have been done for various cell types using different commercially 

available measurement systems. The Milicell ERS-2 device is widely used for measuring 

cellular integrity (Figure 1.1B).   

 

Transepithelial resistance has been measured in primary and secondary fish cell lines. An 

overview on the literature is presented in the Appendix 3, Supplementary Table S3. The 

use of transwell system in mammalian models to study the barrier function is also 

reviewed.  

     

1.4 Bacterial and viral fish diseases  

Bacterial and viral diseases are among the most dominant causes for losses to aquaculture 

production which affect the economic growth of the aquaculture sector in many countries 

worldwide accounting total loss over 6 billion USD per year (The World Bank, 2013). 

Disease is not a simple interaction between pathogens and host, rather a complex interaction 

among host, pathogens and the environment involving infectious and non-infectious 

processes which are triggered by external factors (Francis-Floyd, 2013). Aquaculture 

intensification creates substantial animal stress, facilitating the emergence of infectious 

diseases causing huge aquaculture loss. Although a significant advancement has been made 

in diagnosis, treatment and management of disease in certain aquaculture sectors, resistance 
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issues still a barrier for the expansion of aquaculture. The lack of historic background of 

microbial diversity in aquatic system leads to the emergence of previously unknown diseases 

(Stentiford et al., 2017). Thus, the control of diseases of aquatic organisms is complicated 

because of the complexity and the nature of the aquatic environment (Assefa & Abunna, 

2018). A proper and quick diagnostic technique and right therapeutic agents are required to 

control infectious diseases as well as proper aquaculture management and biosecurity are 

needed to be emphasized (FAO, 2016).  

 

According to the Office International des Epizooties (OIE, 2018), of the listed ten fish 

diseases as notifiable, eight are viral (Table 1.1). These are mostly members of the 

Rhabdoviridae and Iridoviridae family and they have caused tremendous socio-economic 

losses worldwide (Aoki et al., 2011). Other viruses are erythrocytic necrosis virus (ENV), 

channel catfish virus (CCV), tilapia lake virus (TiLV) and largemouth bass cirus (LMBV) 

causing huge loss to aquaculture production. Bacteria, on the otherhand can also cause huge 

aquaculture loss (Dalsgaard & Danish, 2000). Among different bacterial diseases in fishes 

caused by various species of bacteria furunculosis, columnaris, vibriosis, dropsy, bacterial 

gill disease and mycobacteriosis (tuberculosis) are the most prominent (Table 1.1).  

 

TiLV, an OIE listed but not notifiable virus, is an emerging RNA virus causes huge 

mortalities of tilapia of all life stages in Asia, Africa and South America (Jansen et al., 2018) 

where the economic loss is un-estimated. Hounmanou et al. (2018) have reported 90% 

mortalities of tilapia in Africa due to TiLV infection. Wallace et al. (2017) have reported six 

key pathogens causing diseases in wild and farmed fishes in Scotland which include 

Renibacterium salmoninarum causing bacterial kidney disease in wild salmon, A. 

salmonicida causing furunculosis in salmonid, IPNV causing Infectious pancreatic necrosis 

in salmonid, ISAV causing infectious salmon anaemia, SAV causing pancreas and sleeping 

diseases in salmonids and VHSV causing haemorrhagic septicaemia in trout. As an example, 

salmonid aquaculture in the UK is hampered by infectious diseases however, particularly 

those caused by viral pathogens where salmonid alphavirus (SAV) causes considerable loss 

of growth and can kill up to 60 % of a population contributing 47% of total mortality losses 

and the highest biomass losses (86 %) associated with infectious diseases in cultured salmon 

in Scotland (McLoughlin & Graham, 2007). In Japan, according to Inouye (1996), the 

damage caused by disease in finfish and shrimp aquaculture in 1992 was estimated to be 18 

269 mt worthing US$ 264 million where the total production was 356 154 mt, worthing US$ 
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4 376 million which was about 5% of the total production of finfish and shrimp in 1992. 

Disease in rainbow trout caused the total production loss of more than 600 mt Worthing 

more than 6 million USD (Inouye, 1996). Another study reported the loss of channel catfish 

aquaculture of over 100 million fish worth nearly $11 million while the trout industry 

reported losses of over 20 million fish worth over $2.5 million in 1988 (Meyer, 1991). This 

clearly demonstrates the impacts of diseases on aquaculture production. 

 

Fish RNA viruses, and the pathology they cause relatively well characterised, however, the 

understanding of how these viruses and in particular SAV manipulate host machinery during 

their replication cycle is extremely limited. Improving knowledge in this area can thus be 

considered highly relevant, particularly given that improved understanding of such 

interactions in birds and mammals is assisting the development of new therapeutic 

approaches in these animal groups. Moreover, bacterial disease pathogenesis in fish is not 

well studied which is also important to understand to develop new therapeutics against 

bacterial diseases.  
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Table 1.1: List of important fish diseases with causative agents. 

 
Disease Causative agent(s) Host Affected organs Comments Reference 

Viral diseases 

Channel catfish 

virus disease 

(CCVD) 

Channel catfish 

virus (CCV) 

Mainly channel 

catfish, also 

other closely 

related catfish  

Trunk kidney 

and other organs 

including skin 

- (Camus, 2004) 

Epizootic 

haematopoietic 

necrosis  

Epizootic 

haematopoietic 

necrosis virus 

(EHNV) 

Salmonids and 

non-salmonids 

Gill, fin base, 

spleen and 

kidney 

OIE listed (OIE, 2018) 

Erythrocytic 

necrosis  

Erythrocytic 

necrosis virus 

(ENV) 

More than 20 

fish species 

including 

salmonids 

Erythrocytes - (Emmenegger et al., 

2014) 

Infectious 

Haematopoietic 

Necrosis 

Infectious 

haematopoietic 

necrosis virus 

(IHNV) 

Salmonids and 

some non-

salmonid fish 

species 

Gill, fin base, 

spleen and 

kidney 

OIE listed (OIE, 2018) 

Infectious salmon 

anaemia (ISA) 

infectious salmon 

anaemia virus 

(ISAV)  

Salmonids Gill, heart, liver, 

kidney, spleen 

and others 

OIE listed (OIE, 2018) 

Koi herpesvirus 

(KHV) disease 

Koi herpesvirus 

(KHV) 

Mainly common 

carp 

Gill, kidney and 

spleen 

OIE listed (OIE, 2018) 

Pancreas disease 

and sleeping 

disease 

Salmonid 

alphavirus (SAV) 

salmonids Brain, gill, heart, 

pancreas etc. 

OIE listed (OIE, 2018) 

Red sea bream 

iridovirus disease 

Red sea bream 

iridovirus 

Wide range of 

species including 

sea bass, bream, 

perch etc. 

Gill, kidney, 

spleen, intestine 

and heart 

OIE listed (OIE, 2018) 

Spring viraemia of 

carp (SVC)  

Spring viraemia of 

carp virus (SVCV)  

Mainly carps Mainly liver and 

kidney, also gill, 

brain and spleen 

OIE listed (OIE, 2018) 

Tilapia lake virus 

(TiLV) disease 

Tilapia lake virus 

(TiLV) 

Tilapia Eyes, brain and 

liver 

OIE listed (Eyngor et al., 

2014) 

Viral haemorrhagic 

septicaemia (VHS)  

Viral haemorrhagic 

septicaemia virus 

(VHSV) 

Wide range of 

host species 

including 

salmonids  

Mainly kidney, 

heart and spleen 

OIE listed (OIE, 2018) 

Largemouth bass 

virus disease 

(LMBVD) 

Largemouth bass 

virus disease 

(LMBV) 

Largemouth bass 

(Micropterus 

salmoides) 

Swim bladder, 

gill and trunk 

kidney 

- (Beck et al., 2006) 

Bacterial diseases 

Enteric red mouth 

disease 

Yersinia ruckeri Salmonids Skin around the 

mouth and 

throat, liver, 

pancreas, swim 

bladder and 

pyloric caeca 

 (Kumar et al., 2015) 

Bacterial gill 

disease (BGD) 

Flavobacterium 

branchiophylum 

Salmonids Gill - (Schachte, 1983)  

Bacterial kidney 

disease 

Renibacterium 

salmoninarum 

Salmonids Externally skin, 

fin base; 

internally kidney  

- (Wallace et al., 

2017) 
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Furunculosis A. salmonicida Salmonids Skin, mouth, gill - (Wallace et al., 

2017) 

Columnaris  Flavobacterium 

columnare 

Carp and 

salmonids 

Skin, gill - (Declerc et al., 

2013) 

Vibriosis V. anguillarum, V. 

ordalii and V. 

salmonicida 

Wide range of 

fish species 

including 

salmonid 

Externally 

lateral line, vent; 

internally kidney 

and spleen 

- (Idowu et al., 2017) 

Mycobacteriosis M. tuberculosis Wide range of 

fish species 

including 

salmonid 

Skin, kidney and 

liver 

- (Puttinaowarat et 

al., 2000) 

 

1.4.1 Salmonid alpha virus (SAV) 

Salmonid alpha virus is one of the viruses cause huge losses to salmon and trout aquaculture. 

The most common diseases in salmonids are pancreas disease (PD) and sleeping disease 

(SD) where PD is associated with Atlantic salmon (Salmon salar) and SD is associated with 

rainbow trout (Onhorhynchus mykiss) (McLoughlin & Graham, 2007). These diseases are 

mainly prevalent in European countries. Like other alphaviruses, salmonid alphavirus 

(SAV) is a +ssRNA virus. Six subtypes of salmonid alphavirus have been reported by the 

recent molecular taxonomic studies (Table 1.2).  

 

Salmonid alphavirus subtype 1, 4, 5 and 6 cause PD in salmon. Salmonid alphavirus subtype 

3 (SAV-3) has been found to cause PD in salmon in Norway. SD is caused by subtype 2 

(SAV-2) which has similar structural properties as SAV-1. SAV-2 causes SD in freshwater 

rainbow trout in several European countries. 
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Table 1.2: Salmonid alphavirus subtypes and the diseases, host specificity and distribution 

(Fringuelli et al., 2008; McLoughlin & Graham, 2007; Hjortaas et al., 2013; Smrzlic et al. 

2013; Schmidt-Posthaus et al., 2014). 

 
Virus subtype Location Species and 

environment 

Disease Expt. infections 

SAV1 (PD) Ireland (Northern Ireland), 

Scotland, UK 

Atlantic salmon (SW) 

Rainbow trout (FW) 

PD Atlantic salmon, 

rainbow 

and brown trout 

SAV2 (SD) France, England, Scotland, 

Spain, Italy, Germany, 

Switzerland, Croatia 

Rainbow trout (FW) 

Atlantic salmon (SW) 

SD Atlantic salmon, 

rainbow 

and brown trout 

SAV2 Marine 

(PD) 

Norway, UK (Scotland) 

 

Atlantic salmon (SW) PD ND 

SAV3 (PD) Norway Rainbow trout (SW) 

Atlantic salmon (SW) 

PD Atlantic salmon and 

rainbow trout 

SAV 4 (PD) Ireland, UK (Northern 

Ireland, Scotland) 

Atlantic salmon (SW) PD ND 

SAV 5 (PD) UK (Scotland) Atlantic salmon (SW) PD ND 

SAV 6 (PD) Ireland Atlantic salmon (SW) PD ND 

 

In freshwater aquaculture in Europe, sleeping disease (SD) is a serious infectious disease 

(McLoughlin & Graham, 2007). The viral aetiology of SD has been confirmed by the 

isolation of sleeping disease virus (SDV) in France. This virus has been characterized 

extensively and considered as an atypical alphavirus of the family Togaviridae which is now 

well known as SAV-2 (Boucher and Laurencin, 1996). SAV 2 has also been isolated from 

diseased rainbow trout in England, Scotland and Germany (Bergmann et al., 2008). SAV-2 

was first reported in the United Kingdom in 2003 where the virus was isolated and identified 

from a rainbow trout (Graham et al., 2003). Infection with SAV-2 has also been shown to 

be present in fresh water trout in Italy and Spain (Graham et al., 2007). SAV-2 has also been 

isolated recently from rainbow trout in Switzerland, Croatia and from Atlantic salmon in 

Norway (Hjortaas et al., 2013; Smrzlic et al., 2013; Schmidt-Posthaus et al., 2014; Table 

1.2). However, very few SAV 2 isolates are available (Table 1.3).  
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Table 1. 3: SAV2 isolates with related information 

Virus isolate Country of 

origin 

Species  Cell line for isolation References 

SDV S49P France rainbow trout CHSE-214 and RTG-2 (Castric et al., 1997) 

SDV G 1 (DF 

11/03) 

Germany rainbow trout CHSE-214 and RTG-2 (Bergmann et al., 2008)  

SDV G 2 (DF 

18/03) 

Germany rainbow trout CHSE-214 and RTG-2 (Bergmann et al., 2008)  

 

1.4.1.1 Alpha virus genome 

Alphavirus is a small virus 65-70nm in diameter with a genome size of 11.7 kb, coding for 

two open reading frames (ORFs) (Jose et al., 2009). The nucleocapsid of alphavirus is 

composed of 240 copies of capsid protein arranging in a T=4 icosahedral shell (Figure 1.2). 

Two viral glycoproteins E1 and E2 enclose the nucleocapsid. Eighty trimers of E1/E2 

heterodimers arranged in a T=4 icosahedral lattice comprise the surface of the virion (Guo, 

2015).  

 

One ORF encodes the replicase polyprotein and the other one encodes viral structural 

proteins (Figure 1A). There is a 5’ cap and poly(A) at the 3’ end. Two thirds of the alphavirus 

genome (RNA) at the 5’end encodes non-structural proteins (nsP1-nsp4). The remaining 

third at the 3’ end encodes structural proteins. Structural proteins include the capsid protein, 

two glycoproteins (E1 and E2), and two small peptides 6k and E3. The alphavirus genome 

also contains two untranslated regions (5’UTR and 3’UTR residing between ORF1 and 

(Frolov et al., 2001; Levis et al., 1990). 
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Figure 1.2: Structure of alpha virus. (A) Alpha virus genome showing the arrangement of structural 

and non-structural protein. (B) Alpha virus virion (taken from viralZone; 

https://viralzone.expasy.org/625?outline=all_by_species). 

 

E1 triggers viral and cellular membrane fusion (Roussel et al., 2006) whereas E3 is a small 

cysteine-rich glycoprotein carrying the signal for the translocation of E2 into the lumen of 

the ER (Lobigs et al., 1990), and E2 stabilizes the interaction between the virus and the 

receptor thus contributing to greater virulence (Lee et al., 2002). Among the 4 non-structural 

proteins (nsp1-nsp4), nsp1 plays a role in capping of viral RNA at the 5’ end (Ahola et al., 

1997), nsp2 has an enzymatic RNA binding activity associated with ATPase and GTPase 

activity, which is implicated in the unwinding of intermediate double-stranded RNA during 

replication at N-terminal whereas C-terminal functions as a non-structural proteinase 

(Mayuri et al., 2008), nsP3 is associated with the synthesis of negative strand RNA and sub-

genomic RNA. Function of replication complex is associated with the interaction of 

nsp2/nsp3 (LaStarza et al., 1994). RNA dependent RNA polymerase (RdRp) activity is 

performed by nsp4. Excessive concentration of nsp4 is rapidly degraded which is strictly 

regulated inside cells (de Groot et al., 1991).  

 

Alphavirus capsid protein has several functions where the C-terminal end has 

autoproteolytic activity and N-terminal peptide plays role in down-regulating cellular 
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transcription and developing CPE (Garmashova et al., 2007). The capsid of SFV has been 

shown to act as translational enhancer (Yamanaka & Xanthopoulos, 2004). 6K is another 

important alphavirus protein which is highly hydrophobic and small in size and has been 

found to act at late stage of infection in SFV or SINV (Sanz et al., 1994).  

 

1.4.1.2 Alphavirus life cycle 

Upon attachment on the host cells, alphavirus enters the host cells through receptor-mediated 

endocytosis. As alphavirus receptors or attachment factors several cell surface molecules 

have been suggested which include laminin receptor, MHC class 1 antigen, integrin beta 1 

or alpha 1, cell surface heparin sulfate (HS) and DC-SIGN (Kielian et al., 2010). However, 

the receptors for salmonid alphavirus has not been identified. 

 

The pH of the endosome plays an important role in the initiation of viral fusion. Low pH is 

required for this initiation. The viral nucleocapsid needs to be disassembled where ribosome 

facilitates the disassembly by interacting with capsid protein before the replication begins. 

Upon disassembly of the viral RNA genome in the cytoplasm replication takes place. 

Replication of viral genome and transcription of RNA involve the non-structural viral 

proteins that make a membrane-bound replication complex together with host factors. The 

last step of viral replication is the budding where the newly synthesized nucleocapsid cores 

are assembled in the cytoplasm and act together with the envelope glycoproteins at the 

plasma membrane and form the virions (Figure 1.3).  
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Figure 1.3: Alphavirus replication cycle. Figure has been taken from Jose et al., 2009.  

 

1.4.1.3 Virus isolation and identification 

Isolation and identification of aquatic viruses is possible using several developed fish cell 

lines (Essbauer & Ahne, 2001). Primary cells are also used for virus isolation and 

identification. PCR or RT-PCR is used for the detection of specific viral gene material from 

the cells or cell supernatant. Thus, cell culture is regarded as the gold-standard test for the 

isolation and identification of viruses though it is costly and time consuming. Generally, 

virus identification from cell culture is done by the observation of formation of cytopathic 

effects (CPE) which present as changes in morphology of cells due to viral infection. Virus 

lyse the host cells and cause CPE. Virus can also kill the host cell without forming CPE. The 

common symptoms of CPE include rounding and dying of the infected cell, forming syncytia 

which is the fusion of infected cells with adjacent cells (also known as polykaryocytes), and 

the formation of inclusion bodies which might be nuclear or cytoplasmic origin or may be 

viral components. Most common cell lines used for SAV isolation and growing are CHSE-

214, CHH-1 and SHK-1 (OIE, 2017). Several other methods are applied for virus 

identification which include immunostaining, ELISA, immuno-electron microscopy, etc.  
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1.4.2 Aeromonas salmonicida as a fish pathogen 

A. salmonicida is a facultative anaerobic, gram-negative, non-encapsulated, non-motile 

coccobacilli which is catalase and oxidase positive and whose optimum growth temperature 

is between 22 and 25 °C (Popoff, 1984). On the basis of biochemical properties, A. 

salmonicida has been classified into typical and atypical A. salmonicida pathogroups where 

the typical group includes A. salmonicida subsp. salmonicida and the atypical group 

includes A. salmonicida subsp. achromogenes, masoucida, smithia, and pectinolytica 

(Wiklund & Dalsgaard, 1998). Typical isolates are responsible for causing furuculosis in 

salmon and trout which appears to infect fish cultured usually in a polluted environment. 

The first indication of the disease is the appearance of boil like lesions followed by 

haemorrhagic muscles, kidney necrosis, blood-spattered fins and vent. The atypical group 

have been found to cause ulcerative diseases in salmonid and non-salmonid fishes (Wiklund 

& Dalsgaard, 1998). Both groups have worldwide distribution, including North America, 

Europe, and Japan (Kim et al., 2011).  

 

Furunculosis caused by A. salmonicida was first reported in Germany 1894 in brown trout 

from a hatchery by Emmerich & Weibel (1894). Later, this disease was diagnosed in other 

salmonids in different countries. Salmonid species including Atlantic salmon, rainbow trout, 

brown trout and non-salmonid fish species including atlantic cod (Gadus morhua), halibut 

(Hippoglossus hippoglossus), sea bream (Sparus aurata), turbot (Psetta maxima), sea 

lamprey (Petromyzon marinus) etc. are susceptible to furunculosis (Department of 

Agriculture, 2009). Among salmonids, A. salmonicida has been isolated from Atlantic 

salmon in Canada, Finland, Iceland, Norway and Sweden, rainbow trout in Canada, Finland 

and Sweden but also from many other non-salmonid fish species (Cited by Wiklund and 

Dalsgaard, 1998). Furunculosis has been reported to cause huge salmonid aquaculture loss 

in Scotland costing 20 million USD in 1989 (Wallace et al., 2017). Furunculosis has also 

been reported to cause severe problem in rainbow trout aquaculture in Denmark (Dalsgaard 

& Madsen, 2000). In Norway, salmonid aquaculture faces serious challenges due to 

furunculosis (Bornø et al., 2017). In Japan, furunculosis has been reported to cause the 

largest salmonid aquaculture loss (95.6 mt) in 1992 (Inouye, 1996). 
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A. salmonicida transmission mechanism is not well reported despite the disease having been 

studied for over hundred years (Munro & Hastings 1993). Infected fish, contaminated water 

or farm materials can transmit the pathogen while the vertical transmission has not been 

reported for furunculosis (McCarthy, 1977). Among different organs, gills and skin have 

been reported as the main routes of entry of A. slmonicida (Svendsen et al., 1999). A recent 

in vivo study using fluorescent tagged A. salmonicida reported gills as one of the important 

colonization sites for A. salmonicida in rainbow trout (Bartkova et al., 2016). Thus, fish gill 

epithelial cell lines might be an ideal model for studying pathogenesis of A. salmonicida and 

developing possible therapeutic agents.  

1.5 Fish immune system 

The immune system protects animals from foreign substances like pathogens, toxins or 

malignant cells. Like the mammalian immune system, the fish immune system can be 

divided into an innate and an adaptive immune system. The innate immunity, 

phylogenetically, is the oldest system originating in the most primitive diploblastic 

metazoans during the evolutionary period (Lieschke & Trede, 2009). The innate immune 

system includes all the components present before the entry of pathogens and acts as a first 

line of defense. This includes skin (acts as physical barrier), the complement system, the 

interferons, various defence cells (granulocytes, monocytes, macrophages, natural killer 

cells), antimicrobial molecules and cytokines (Biller-Takahashi & Urbinati, 2014). For 

cellular defence, teleosts have been shown to use phagocytic cells similar to macrophages, 

neutrophils and natural killer (NK) cells, as well as T and B lymphocytes while presence of 

cytokines including interferon, interleukins, macrophage activating factors have been 

reported in many different fishes (Detail in section 1.9.1 and 1.10) (Zou et al., 1999; Zou et 

al., 2004; Zou et al., 2014; Change et al., 2009; Reyes-Cerpa et al., 2012; Stachura et al., 

2013; Wang et al., 2008; Liongue & Ward, 2007; Yamaguchi et al., 2015; Lutfalla et al., 

2003; Sangrador-Vegas et al., 2012; Najakshin et al., 1999; Secombes et al., 1996).  

 

1.6 Pathogen associated molecular patterns (PAMPs) as immuno-stimulants  

To protect against infection, it is essential to detect the presence of microorganisms. 

Microbial molecules distinctive for associated microorganisms with specific molecular 

structures, so called pathogen-associated molecular patterns or PAMPs can be detected by 

host defence molecules. Danger-associated molecular patterns or DAMPs of infected, 

injured or even transformed host cells can also be sensed by host receptors. 
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There are many examples of PAMPs. Lipopolysaccharides (LPS) are present on the outer 

membrane of the cell wall of gram-negative bacteria also containing peptidoglycans (PGN), 

which predominately functions as a signifying component of the cell wall of gram-positive 

bacteria. Lipoteichoic acids are also a component of the cell wall of gram-positive bacteria. 

Flagellin is a structural protein of bacterial flagella. Bacterial and in particular viral nucleic 

acids including dsRNA and ssRNA are also recognized as PAMPs. Finally, zymosan from 

the cell wall of yeast is detected as a PAMP.  

 

PAMPs can be used as immune-stimulants which can be defined as the elements that trigger 

the immune system through Pattern recognition receptors (PRRs) and Toll like receptors 

(TLRs) and increase overall resistance to various diseases (Magnadottir, 2010). Immuno-

stimulants may be viral or bacterial derivatives or chemically synthetic. Immuno-stimulants 

are mostly used as dietary supplements in aquaculture to improve the innate defence of 

animals providing resistance to pathogens during periods of high stress, such as grading, 

reproduction, transportation (Bricknell & Dalmo, 2005). The most commonly 

experimentally used PAMPs are poly(I:C) a viral dsRNA analogue, LPS and PGN.  

 

1.6.1 Polyinosinic-polycytidylic acid (poly(I:C))  

Poly(I:C)) is a synthetic chemical compound structurally similar to dsRNA viral gene 

material. It acts as a ligand of TLR3, thus poly(I:C) is sensed by TLR3 (Alexopoulou et al., 

2001; Matsumoto et al., 2002). In human and mice poly(I:C) has been shown to act against 

viral diseases (Zhou et al., 2014). Poly(I:C) is known to induce type I interferons (IFN) and 

to enhance cytokine production and innate and adaptive immunity. It is one of the promising 

immuno-stimulants used in aquaculture which is believed to enhance antiviral defences upon 

binding to TLR3 in fish (Jensen et al., 2002; Lockhart et al., 2004; Bricknell & Dalmo, 2005; 

Fernandez-Trujillo et al., 2008). Zhou et al. (2014) found poly(I:C) to induce antiviral 

activity and to boost the activation of head kidney macrophages. Antiviral effects of 

poly(I:C) have been reported against several aquatic viruses. However, the mechanism of 

antiviral activity of poly(I:C) in fish gill epithelia is not clear.   

 

Upon recognition of poly(I:C), IRF3, a transcription factor, is activated by TLR3 

(Yamamoto et al., 2003). Subsequent production of type one interferon especially IFN-β is 
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initiated by the activation of IRF3. Another pathway is also suggested where the 

transcription factors NF-κB and AP-1 are activated by poly(I:C) (Kawai & Akira, 2008a). 

The production of inflammatory cytokines and chemokines such as TNF-α, IL-6 and 

CXCL10 are triggered by poly(I:C) (Ritter et al., 2005). Poly(I:C) has also been reported to 

be sensed by the cytosolic pattern recognition receptors RIG-I and MDA5 (Kato et al., 

2006). 

 

Ortholog of mammalian TLR3 has been reported in a wide range of fish species which 

include Japanese flounder (Paralichthys olivaceus) (Shahsavarani et al., 2006), catfish 

(Ictalurus punctatus) (Baoprasertkul et al., 2006), fugu (Takifugu rubripes) (Oshiumi et al., 

2003), rainbow trout (Oncorhynchus mykiss) (Rodriguez et al., 2005), zebrafish (Danio 

rerio) (Phelan et al., 2005), and Atlantic salmon (Salmo salar) (Svingerud et al., 2012). 

Poly(I:C) has been found to induce antiviral responses through TLR3 signaling upon 

infection by haemorrhagic septicaemia virus (Takami et al., 2010), infectious hematopoietic 

necrosis (Hyoung et al., 2009), infectious salmon anaemia virus (Jensen et al., 2002), 

haematopoietic necrosis virus (Purcell et al., 2004), infectious pancreatic necrosis virus 

(Lockhart et al., 2004), and channel catfish virus (Plant et al., 2005).  

 

1.6.2 Lipopolysaccharide (LPS) 

Lipopolysaccharide is associated with LPS binding protein (LBP). LBP is a protein that is 

found in the bloodstream in the acute- phase of infection (reviewed in Akira et al. 2006). 

This protein then binds to CD14 which is expressed on the cell surface of phagocytes 

(Poltorak et al., 1998; Shimazu et al. 1999). In Atlantic salmon macrophages, LPS has been 

shown to stimulate phagocytosis and the subsequent production of superoxide (Solem et al., 

1995). Moreover, in goldfish lymphocytes, LPS has been found to stimulate macrophage 

activating factor production (Neumann et al., 1995) and interleukin 1 like molecules 

production in catfish monocytes (Clem et al., 1985).  

 

1.6.3 Peptidoglycan (PGN) 

Peptidoglycan, on the other hand, is one of the important components of the cell wall of 

Gram-positive bacteria. Gram-positive bacterial cell walls may contain up to 40 layers of 

peptidoglycan providing rigidity and mechanical strength to the cell wall. PGN in gram-

positive bacterial cell wall makes up about 20% of the cell wall dry weight compare to 10% 
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in Gram negative bacteria. PGN has been shown to be a powerful biological effector with 

different immuno-stimulatory activities such as activation of macrophages, cytokine 

production, induced autoimmunity, induction of antimicrobial peptide production (Boneca, 

2005). PGN is efficiently recognised by the eukaryotic innate immune system (Dziarski, 

2004).  

 

1.7 Recognition of PAMPs by host receptors 

Viral and bacterial PAMPs play significant roles in immunomodulation of host cells by 

activating different antiviral and antibacterial responses. Different PAMPs bind to different 

intracellular and extracellular receptors on host cells. Extracellular receptors are present on 

the cell surface and upon binding to the PAMPs, activate distinct downstream signalling 

pathways. On the other hand, to bind to the intracellular receptors, PAMPs must firstly be 

internalized. Different endocytic mechanisms, both actin-dependent and independent may 

be employed to internalise molecules. 

 

As mentioned before, the first condition of initiation of immunity is the recognition of 

pathogens by PRRs which are key elements of the innate immune system. Mainly antigen-

presenting cells such as dendritic cells and macrophages express these PRRs. However, 

they can also be expressed by other immune cells and even non-immune cells like epithelial 

cells. These receptors are localised at different subcellular location of the cells. Receptors 

present on the cell surface recognize extracellular pathogens like bacteria or fungi whereas 

receptors in the endosome recognize intracellular pathogens like viruses. Different groups 

of PRRs are distinct in their ligand specificity, signal transduction and sub-cellular 

localisation. 

 

The PRRs are divided into four families, there are Toll-like receptors (TLR), Nucleotide-

binding oligomerization domain (NOD)-like receptors (NLR), C-type lectin receptors 

(CLR) and RIG-1 like receptors (RLR). Toll-like receptors (TLRs) are a family of 

transmembrane proteins first discovered in Drosophila for their role in dorsal-ventral 

patterning (Belvin & Anderson, 1996). TLRs are perhaps the most exclusively studied and 

one of the important PRRs sensing conserved microbial products, triggering a series of 

immune responses against invading pathogens. In vertebrates, to date 27 different TLRs 

have been identified where fish specific or non-mammalian TLRs include TLR18-27 (Palti, 
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2011). TLR22 has been shown to be induced by viral PAMP poly(I:C) and bacterial 

infection in common carp (Li et al., 2017). TLR22 has also been shown to recognize 

poly(I:C) in fugu and subsequent induction of interferon and protection from birnaviruses 

(Matsuo et al., 2008).  

 

1.7.1 Recognition and signaling through TLRs 

TLR3, an intracellular recognition receptor localized in the endosomal compartment, is 

ubiquitously expressed in innate immune cells as well as non-immune cells (Hayashi et al., 

2003). Poly(I:C), an analogue of dsRNA, has been found to activate TLR3 signaling that 

initiates or stimulates the production of type I IFN, especially IFN-β and different cytokines 

in macrophages (Edelmann et al., 2004). In the same study, wild type splenocytes have been 

found to be activated by genomic dsRNA of reovirus while TLR3 deficient splenocytes were 

unable to be activated by the same agent. Thus, it can be deduced that TLR3 could respond 

to poly(I:C) which would enhance innate immunity and will lead to the production of IFNβ 

through binding to TLR3. It was shown that IFNβ triggers antiviral response by inducing 

the production of interferon stimulated genes (ISGs) like for example Mx (Figure 1.4).  

 

 

 

 

 

 

 

 

 

 

Figure 1.4: TLR3 signaling pathway activated by poly(I:C).  

 

1.7.2 Recognition and signaling through RLRs 

It is well known that most viruses produce dsRNA at some stages of their replication. As a 

general rule of thumb, ssRNA viruses produce dsRNA from replicative intermediates 

(Jacobs & Langland, 1996). DNA viruses are believed to produce dsRNA via transcription 

before producing complementary mRNAs, which when annealed, produce long strands of 

dsRNA (DeWitte-Orr & Mossman, 2010). During replication, viral dsRNA accumulates in 
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the cellular compartment. When viruses replicate in the cytoplasm, viral dsRNA is 

cytoplasmic and in the case of replication in the nucleus, viral dsRNA can be detected in 

both the nucleus and cytoplasm (Kumar & Carmichael, 1998). 

 

Antiviral immunity starts upon recognition of pathogens by the host PRRs mostly TLR3 and 

RIG-like Receptors (RLRs) comprising MDA5 (melanoma differentiation-associated gene 

5), RIG-I (retinoic acid-inducible gene I) and LGP 2 (laboratory of genetics and physiology 

2) (Figure 1.5). RLRs are cytosolic pattern recognition receptors and are expressed in most 

of the tissues including epithelial cells and initiate innate immune responses (Loo & Gale, 

2012). A varieties of viruses and the particles similar to viral molecules are detected by RIG-

I and MDA5 and initiate the production of IFN and MDA5 and RIG-I signaling (Jiang et al., 

2012). Studies in mammals have differentiated the roles of RIG-I and MDA5 in response to 

RNA viruses where RIG-I preferentially binds to short (<300 bp) or up to 1 kb dsRNAs that 

have blunt ends and a 5’ triphosphate (5’ppp) moiety, facilitating discrimination between 

host and viral dsRNA or 5′-triphosphate end of single-stranded (ss) RNA. MDA5 does not 

have end specificity, however, it binds specially to long dsRNA usually >1,000 bp (Kato et 

al., 2006; Pichlmair et al., 2006). 

 

Interaction of RIG-I and MDA5 with IPS1 (interferon-b promoter stimulator 1) helps to 

relocate the RLRs to IPS1-associated membranes where they along with downstream 

signaling molecules accumulate to form an IPS1 signalosome that drives IFN production 

(Hiscott et al., 2006). Upon recognition of RNA by RIG-I or MDA5, a complex signaling 

downstream pathway is activated where IPS1 Kawai et al., 2005), also called MAVS 

(mitochondrial antiviral signaling; Seth et al., 2005), VISA (virus-induced signaling adaptor; 

Xu et al., 2005), or CARDIF (CARD Adaptor Inducing Interferon-β; Meylan et al., 2005), 

serves as a critical signaling adaptor for RIG-I/MDA5. Upon activation by viral RNA, RIG-

I and MDA5 act on the mitochondria via interaction of CARDs between RIG-I/MDA5 and 

IPS1, facilitating phosphorylation of interferon regulatory factors IRF3 and 7 which are key 

transcription factors involved in triggering the production of interferon (Kawai et al., 2005; 

Satoh et al., 2010; Xu et al., 2005). IRF3, a transcription factor, is ubiquitously expressed in 

eukaryotic cells while IRF7 expression is induced by IFN treatment (Yoneyama et al., 2002). 

Transcription factors IRF3 and IRF7 play crucial role in antiviral responses and their 

transcriptional activity is regulated by phosphorylation (Yoneyama et al., 2002). IRF3 has 
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been shown to be involved at immediate early phase of gene activation while IRF7 at late 

phase (Au et al., 1998; Weaver et al., 1998).  

 

Tank-binding kinase protein 1, TBK1 has serine-threonine protein kinase activity and has 

been identified as one of the kinases that phosphorylate IRF3 and 7 (Hiscott et al., 2003; 

Yoneyama et al., 2002). TBK1 integrates multiple signals induced by receptor- mediated 

pathogen detection and thus modulating interferon levels (Ma et al., 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Figure 1.5: RLR signalling pathway. Viral dsRNA are sensed by RIG-I and MDA5 and their 

activation is strongly regulated by the phosphorylation of LGP2. RIG-I and MDA5 signal to IPS1, 

which consequently initiates interferon signalling by interacting with TBK1 and IRF 3. IRF 3 is 

phosphorylated (shown by P in the cytoplasm and moves to the nucleus where it initiates the 

production of interferon and interferon stimulated genes (ISGs). ISGs are then translated in the 

cytoplasm and interfere with viral replication. The figure contains the elements detected in this study 

and adapted from Reikine et al. (2014), Shrivastav & Niewold (2013).   

 

1.7.2.1 RIG-Like Receptors (RLRs) and associated molecules in fish 

In the last decade, studies identifying and characterizing fish RLRs and RLR signaling 

molecules has increased. However, the studies on the RLR identification and antiviral 

characterization is bottleneck. The list of RLRs and related signaling molecules identified 

in fish until 2018, is presented in Table 1.4. Main findings of the works cited in Table 1.4, 

has been demonstrated in Chapter 5, general discussion, Table 5.1. 
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Table 1.4: List of RLRs and other signaling molecules identified in fish until 2018 

 
RLR 

Molecules 

Fish species Reference  

RIG-I Crucian carp (Carassius auratus) (Sun et al., 2011) 

Grass carp (Ctenopharyngodon idella (Yang et al., 2011) 

Common carp (Cyorinus carpio) (Feng et al., 2011; Kitao et al., 2009) 

Zebra fish (Danio rerio) (Nie et al., 2015) 

Channel catfish (Ichtalurus punctatus) (Rajendran et al., 2012) 

Atlantic salmon (Salmo salar) (Biacchesi et al., 2009) 

Rainbow trout (Onchorhynchus mykiss)  Gene Bank Acc. XM_021593781 

MDA5 Zebra fish (Danio rerio) (Zou et al., 2014, 2015)   

Rainbow trout (Onchorhynchus mykiss) (Chang et al., 2011) 

Crucian carp (Carassius auratus) (Sun et al., 2011)  

Grass carp (Ctenopharyngodon idella (Su et al., 2010)  

Channel catfish (Ichtalurus punctatus) (Rajendran et al., 2012) 

Japanese flounder (Paralichthys olivaceus) (Ohtani et al., 2011)  

Sea perch (Lateolabrax japonicsu) (Jia et al., 2016) 

Sea bream (Sparus aurata) (Valero et al., 2015) 

LGP2 Crucian carp (Carassius auratus) (Sun et al., 2011)  

Channel catfish (Ichtalurus punctatus) (Rajendran et al., 2012)  

Rainbow trout (Onchorhynchus mykiss) (Chang et al., 2011)  

Zebra fish (Danio rerio) (Sun et al., 2011)  

Black carp (Mylopharyngodon piceus) (Xiao et al., 2016)  

European sea bass (Dicentrarchus labrax) (Valero et al., 2015) 

IPS1 Common carp (Cyprinus carpio) (Feng et al., 2011). 

Rainbow trout (Onchorhynchus mykiss) Gene Bank Acc. NM_001195181 

 Zebra fish (Danio rerio) (Lu et al., 2015) 

TBK1 Crucian carp (Carassius auratus) (Sun et al., 2011) 

Black carp (Mylopharyngodon piceus) (Yan et al., 2017) 

Grass carp (Ctenopharyngodon idella (Feng et al., 2014) 

Zebra fish (Danio rerio) (Zhang et al., 2016), 

Common carp (Cyorinus carpio) (Feng et al., 2011), 

Atlantic salmon (Salmo salar) Gene Bank Accession no. AEA42006 

gilt-head sea bream (Sparus aurata) (Valero et al., 2015) 

Atlantic cod (Gadus morhua) (Chi et al., 2011) 

Rainbow trout (Onchorhynchus mykiss) Gene Bank Acc. XM_021592888 

IRF3 Common carp (Cyorinus carpio) (Feng et al., 2011). 

European seabass (Dicentrarchus labrax) (Valero et al., 2015) 

Rainbow trout (Onchorhynchus mykiss) (Holland et al., 2008) 

 Zebra fish (Danio rerio) (Feng et al., 2016) 

PKR European seabass (Dicentrarchus labrax) (Valero et al., 2015) 

Zebra fish (Danio rerio) (Rothenburg et al., 2005) 

Atlantic salmon (Salmo salar) (Bergan et al., 2008) 

rare minnow (Gobiocypris rarus) (Su et al., 2008) 

grass carp (Ctenopharyngodon idella (Hu et al., 2013) 

Japanese flounder (Paralichthys olivaceus) (Zhu et al., 2008) 

Fugu (Xenopus tropicalis) (del Castillo et al., 2012) 

Rock bream (Oplegnathus fasciatus)  (Zenke et al., 2010) 

Rainbow trout (Onchorhynchus mykiss) Gene Bank Acc. NM_001145891 

ISG15 Atlantic salmon (Salmo salar) (Røkenes et al., 2007) 

grass carp and crucian carp (Zhang et al., 2007) 

Atlantic cod (Gadus morhua) (Seppola et al., 2007; Furnes et al., 2009) 

Japanese flounder (Paralichthys olivaceus) (Yasuike et al., 2011) 

Rainbow trout (Onchorhynchus mykiss) Gene Bank Acc. NM_001124609 

 Zebra fish (Danio rerio) (Langevin et al., 2013) 

Viperin  Rainbow trout (Onchorhynchus mykiss) (Boudinot et al., 1999). 

Crucian carp (Carassius auratus) (Wang et al., 2014). 

Mandarin fish (Siniperca chuatsi) (Sun & Nie, 2004). 
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Grass carp (Ctenopharyngodon idella Wang et al., 2014) 

Tilapia (Oreochromis niloticus) (Lee et al., 2013)   

Rock bream (Oplegnathus fasciatus) (Zhang et al., 2014). 

Large yellow croaker (Larimichthys crocea) (Zhang et al., 2018) 

TO cell line (Atlantic salmon) (Sun et al., 2011). 

Fathead minnow (FHM) cell (Pimephales 

promelas 

(Wang et al., 2019a) 

 

 Zebra fish (Danio rerio) (Thwaite et al., 2018) 

Mx Perch (Perca fluviatilis) (Staeheli et al., 1989) 

Rainbow trout (Onchorhynchus mykiss) (Trobridge et al., 1997) 

Atlantic salmon (Salmo salar) (Robertsen et al., 1997) 

Atlantic halibut (Hippoglossus 

hippoglossus)  

(Jensen & Robertsen, 2000) 

Japanese flounder (Paralichthys olivaceus) (Lee, 2000) 

Fugu (Xenopus tropicalis) (Yap et al., 2003) 

Channel catfish (Ichtalurus punctatus) (Plant & Thune, 2004) 

 Zebra fish (Danio rerio) (Thwaite et al., 2018) 

 

1.8 Other intracellular receptors 

Among intracellular receptors, NOD-like receptor (NLR) is one of the intracellular cytosolic 

receptors that detects bacterial molecules including PGN and MDP (Meylan et al., 2006). 

NLRs involve in immune response against bacterial and viral infection, apoptosis and 

autoimmunity (reviewed in (Reviewed by Boltaña et al., 2011). Among intracellular 

receptors, NOD1 and NOD2 are the first receptors that have been identified (Reviewed by 

Meylan et al., 2006). Different members of NLR family have been identified in several fish 

species which include zebrafish, Atlantic salmon, Japanese puffer (Takifugu rubripres), 

grass carp, medaka and channel catfish (Reviewed by Boltaña et al., 2011).  

In mammals PGN has been reported to be recognized by several PGN recognition molecules 

including CD14, TLR2, NOD1/2 and PGN-lytic enzymes (Dziarski, 2003). PGN 

recognition protein (PGRP) has also been identified in several fish species including grass 

carp (Li et al., 2013, 2014), rockfish (Kim et al., 2010), rainbow trout (Jang et al., 2013), 

yellow croaker (Mao et al., 2010) and zebrafish (Chang, 2007).   

 

Apart from TLR3 and TLR22, several other TLRs have also been reported to recognize 

microbial nucleic acids which include TLR7, TLR8 and TLR9 which are expressed 

exclusively intracellularly in vesicles including the endoplasmic reticulum, endosomes, 

lysosomes and endolysosomes. TLR4, another intracellular receptor molecule that has been 

reported to recognize bacterial LPS in mammals (reviewed in Kawai & Akira, 2010) is not 

present in rainbow trout. 
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TLR7, TLR8 and TLR9 have been identified in different fish species including rainbow 

trout where TLR7 and TLR8 were not induced by poly(I:C) (Palti et al., 2010). However, 

in large yellow croacker, TLR7 and TLR8 have been shown to be induced by poly(I:C) 

stimulation in different organs including gill (Qian et al., 2013). TLR9 on the other hand, 

has been shown to be induced by the intramascular injection with G protein of VHSV at the 

injection site suggesting the recruitment of dendritic like cells into the muscle (Ortega-

Villaizan et al., 2009). 

 

1.9 Antiviral responses 

Antiviral response is important to stop or cease viral replication. Antiviral response is mostly 

mediated by interferon and interferon stimulated genes.  

 

1.9.1 Interferon responses  

Interferons are a family of proteins that are released in response to entry of virus or viral 

particles into the host cells (Sen, 2001). Interferons are generally secreted by white blood 

cells, natural killer cells, fibroblast cells and epithelial cells. Type I interferons (INFs) 

include INF-α, β, τ and  because of their similar amino acid sequences. Type I interferons 

are primarily known to induce an anti-viral state of cells while tnterferon of type II comprises 

only INF- which has a unique amino acid sequence having the ability to regulate overall 

immune system functions (Robertsen, 2006)..  

 

The first line of defence against viruses is the activation of the type I interferon system 

(Saint-Jean & Pérez-Prieto, 2006). Interferon, upon binding to its specific receptor on the 

cell surface, triggers the production of antiviral proteins which can inhibit or delay viral 

replication (Sen, 2001). As in mammals, IFNs are also synthesized in teleost fish and 

activate antiviral response (Robertsen, 2006). In salmonids, three subgroups of type one 

interferon, IFNα, d and e and three subgroups of type two interferon , IFNβ, c and f have 

been demonstrated (Zou et al., 2014). The IFN genes have been identified, sequenced and 

characterized in Atlantic salmon (Robertsen et al., 2003), carp (Kitao et al., 2009), catfish 

(Long et al., 2006), pufferfish (Lutfalla et al., 2003), goldfish (Yu et al., 2010), sea bass 

(Casani et al., 2009), rainbow trout (Chang et al., 2009; Chang et al., 2009) and zebrafish 

(Altmann et al., 2003). As in mammals, the synthetic poly(I:C) has been shown to stimulate 

IFN production in fish (Eaton, 1990). Poly(I:C) induced IFN expression has been shown in 
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several fish species including Atlantic salmon, zebrafish and channel catfish (cited in 

Robertsen, 2006). Failure of induction of the antiviral state by poly(I:C) in CHSE-214 cell 

has been reported and suggested to be due to a defective interferon system in this cell line 

(Saint-Jean & Pérez-Prieto, 2006). However, antiviral activity of poly(I:C) has been reported 

in many fish cell cultures including CHSE-214 against several fish viruses including ISAV, 

IHNV and IPNV (Jensen et al., 2002; Jensen & Robertsen, 2002; Nygaard et al., 2000). 

Unlike mammals, a limited number of functional studies have been conducted with cloned 

fish interferons. Antiviral active recombinant IFN has been reported in Atlantic salmon and 

channel catfish against infectious pancreatic necrosis virus (IPNV) and channel catfish 

herpesvirus (CCV), respectively by Robertsen et al. (2003) and Long et al. (2004). Robertsen 

et al. (2003) has also shown induction of Mx expression by IFN in Atlantic salmon. 

Moreover, zebrafish IFN has been shown to increase resistance against snakehead 

rhabdovirus infection through increased expression of Mx gene (Altmann et al., 2003). 

These findings clearly demonstrate the role of interferon in inducing antiviral state in fish 

and protecting from viral infection.  

 

1.9.2 Interferon stimulated genes 

Several interferon stimulated genes have been identified in fish in response to viral 

infections. Interferon signaling is initiated by IPS1 upon interacting with TBK1 and IRF 3. 

IRF 3 is phosphorylated in the cytoplasm and is transported to the nucleus where it initiates 

the production of interferon and interferon stimulated genes (ISGs). ISGs then translated in 

the cytoplasm and interfere viral replication. The most common interferon stimulated genes 

are Mx, ISGs and Viperin. Moreover, PKR also acts as an ISG and is a dsRNA-dependent 

serine/threonine protein kinase. PKR is regarded as one of the important players in interferon 

response upon stimulation or viral infection. PKR is constantly expressed but inactive in the 

absence of IFN. IFN induction leads to auto-phosphorylation of PKR followed by interaction 

with dsRNA (Sen, 2001; Balachandran et al., 2000).  

 

One of the most well studied antiviral genes is Mx which is a widely used gene marker for 

IFN responses. Mx is highly conserved having GTPase activity and antiviral function (Haller 

and Cochs, 2002). It was originally revealed in influenza virus-resistant mice where the 

single dominant trait was found to be responsible for the resistance which was later termed 

as Mx for myxovirus resistance (Lindenmann et al., 1963). In fish, the Mx gene was first 
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reported in perch (Perca fluviatilis L.) by Staeheli et al. (1989). Afterwards, the Mx gene 

was cloned and characterized in several fish species (Table 1.4). Even though, over fifty 

years have passed after the discovery of Mx protein, and antiviral activity has been studied 

in wide range of animals, the mechanism of antiviral function of this protein has not been 

established. However only recently, Verhelst et al. (2013) described the mechanisms of 

antiviral functions of Mx proteins in mammals. They described the inhibition of release of 

viral proteins of influenza virus by porcine Mx1 in the cytoplasm, inhibition of transport of 

viral protein of influenza virus from cytoplasm to nucleus by human MxA, inhibition of 

transcription of VSV by mouse and human Mx, and inhibition of translation of influenza 

virus by human MxA. However, in fish the mechanisms of antiviral functions of Mx protein 

against aquatic viruses have not yet been discovered.  

 

In mammals, ISG15 has been identified as one of the most abundant mRNA transcripts that 

is expressed upon type I interferon induction (Lenschow, 2010) which was first reported in 

type I interferon including IFBα and β stimulated cell lysates in 1984 (Jeon, Yoo, & Chung, 

2010). Viperin which has been named after virus inhibitory protein, endoplasmic reticulum-

associated, IFN-inducible, has been found to be induced by RNA virus infection by 

interferon dependent and independent pathway through IRF-1, and has a diverse range of 

antiviral actions (Helbig et al., 2013). Viperin was identified and characterized for the first 

time in fish as a virus induced gene (vig1) where high levels of expression were detected in 

rainbow trout leucocytes upon infection with viral haemorrhagic septicaemia (Boudinot et 

al., 1999). A human homologue of viperin, cig5 (cytomegalovirus induced gene 5) was also 

identified and characterized (Zhu et al., 1997).  

 

Viral multiplication and release have been shown to be prevented by viperin thus playing a 

crucial role in innate immunity (Helbig & Beard, 2014). Viperin has also been found to exert 

antiviral effects at a late stage of viral life cycle (Chin & Cresswell, 2001). Most of the cell 

types express viperin at a very low level which has been shown to be upregulated by 

dsRNA/DNA analogues and several viruses through classical interferon pathways by 

binding and activating TLR3 and TLR4, RLRs and cytosolic DNA sensor (Hinson et al., 

2010; Seo et al., 2011; Severa et al., 2006; Boudinot et al., 2000; Helbig & Beard, 2014).  

 

Multiple mechanisms have been developed by viruses to contest varied artillery of the host 

innate immune system, one of them is the evasion of antiviral host proteins (Dauber & 
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Wolff, 2009; Arnaud et al., 2010). Alphavirus has the ability to shutdown host transcription 

and translation processes without affecting viral protein and nucleic acid synthesis, which 

subsequently reduces the expression of IFN-α/β in the host cell, and consequently reduces 

the functions of the hosts’ innate immune system to attenuate the infection (Jose et al., 2009). 

Non-structural protein, nsP2 of Chikungunya virus (CHIKV), has been found to induce 

cellular shutoff and promote viral replication by interacting with several host proteins 

(Bourai et al., 2012). However, overexpression of viperin has been found strongly related to 

decreased CHIKV nsP2 expression levels (Teng et al., 2012).  

 

Since first identification of viperin in trout leucocytes, very little works has been conducted 

on the identification and characterization of viperin in fish, thus little is known on the 

expression pattern of viperin in fish. Among fish, apart from trout, the viperin gene has been 

identified and characterized in crucian carp (Yibing et al., 2003), mandarin fish (Sun & Nie, 

2004). Overexpression of crucian carp viperin has been found to protect culture cells against 

grass carp reovirus (B. Wang et al., 2014). Viperin has also been identified and characterized 

in tilapia and rock bream where viperin expression has been found to be upregulated upon 

induction with LPS and poly(I:C) (Lee et al., 2013) in tilapia and by infection with 

megalocytivirus in rock bream (Zhang et al., 2014). Recently, Zhang et al. (2018) identified 

and characterized viperin in large yellow croaker where they detected ubiquitous expression 

in different tissues and significant upregulation with in vivo poly(I:C) stimulation. In TO 

cell line (an Atlantic salmon cell line developed from head kidney leukocytes), viperin has 

been found to be overexpressed upon interferon alpha stimulation (Sun et al., 2011).  

 

The complete RLR signaling pathway and the expression pattern of relevant genes in fish 

gill epithelia in response to alphavirus is still unknown. On the basis of the previous studies 

on fish RLRs that have been conducted up to date, the fish RLR signaling pathway can be 

deduced from mammalian RLR signaling pathway as shown in figure 1.5.  

 

1.10 Cytokines and chemokines in innate immunity in fish 

Cytokines are the proteins that are secreted from immune and nonimmune cells through 

different secretory pathways (Stanley & Lacy, 2010). Cytokines regulate the immune 

responses including innate immunity and cytotoxic T cell development and antibody 

production. Cytokine directed expression of immune related genes through different 
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signaling pathways can be induced by different immune-stimulants (Reyes-Cerpa et al., 

2012). Cytokines are grouped as pro-inflammatory, anti-inflammatory, interferon, 

chemokine etc. Pro-inflammatory cytokines enable the cells to respond to non-self infectious 

agents and induce a cascade of events leading to the infection modulating the expression of 

other cytokines (Huising et al, 2004). In mammals TGF- has been shown to act as a 

multifunctional cytokine playing diverse roles in the proliferation, differentiation and 

survival of different cell types including T cells, B cells, NK and dendritic cells, and 

macrophages, thus regulating the inflammatory responses (reviewed in Li et al., 2006). The 

function of TGF- in fish is not well studied. However, Kohli et al. (2003) has reported the 

role TGF- in reproduction in zebrafish. IL-17 on the other hand, has pro-inflammatory 

actions. The pro-inflammatory activity of trout IL-17 has been shown by Monte et al. (2013). 

Chemokines, an important group of cytokines, direct immune cells to migrate to infection 

sites (Reyes-Cerpa et al., 2012).  

 

In mammals, intestinal epithelial cells have been reported to express almost every type of 

cytokine which include IFN, a wide range of interleukins, anti-inflammatory cytokines 

protecting intestinal barrier function, and chemokines such as IL-8. Thus, epithelial cells 

have an importsnt role in the orchestration of inflammation (Onyiah & Colgan, 2016). An 

osmoregulatory function of TNF and IL-8 has been reported in gill epithelia of Japanase 

ell (Anguila anguila), as well as the involvement of IL-6, IL-8 and IL-9 signaling pathways 

in the osmotic stress response in gill epithelia (Gu et al., 2018).  

 

1.11 Antimicrobial peptides in fish 

Antimicrobial peptides (AMPs) are small antibacterial molecules comprising of 100 or less 

than 100 amino acid residues which are generally positively charged and evolutionary 

conserved playing an important role in innate immune response (Giuliani et al., 2007). 

AMPs were first discovered about 35 years ago by Boman’s group in the Cecropia moth 

(Hultmark et al., 1982). AMP in teleost was reported for the first time in 1986 in Red Sea 

Moses sole by Lazarovici et. al. (1986). From prokaryotes to vertebrates, all life forms 

produce AMPs and AMPs are conserved in the genome (Hancock, 2000).  

 

AMPs have been identified and characterized from a wide range of fish species. The most 

common AMPs that have been identified and characterized in fish are piscidins 
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(characterized in American plaice, Atlantic salmon, Atlantic cod, red seabream etc.) 

defensins (in Atlantic cod, common carp, gilthead seabream, Japanese pufferfish, Mandarin 

fish, zebra fish, rainbow trout etc.), hepcidins (in Atlantic cod, Atlantic salmon, Ayu, 

Barramundi, channel catfish, common carp and many other), cathilicidins (in Atlantic cod, 

Atlantic salmon, Ayu, brown trout, rainbow trout etc.) and histone-derived (in Channel 

catfish, Atlantic halibut and rainbow trout) (reviewed by Masso-Silva & Diamond, 2014).  

 

1.11.1 Mechanism of action of AMPs  

AMPs work on the pathogens in two different ways, by direct killing or by inactivating or 

damaging the DNA, RNA or inhibiting their protein synthesis. AMPs are cationic peptides 

which can directly interact with the negatively charged peptidoglycan in the cell wall of 

gram-positive and negative bacteria (see chapter 1.5.3). Moreover, the cell wall of gram-

positive bacteria contains teichoic acids and the outer membrane of gram-negative bacteria 

contains lipopolysaccharides (LPS) which provide further electronegative charge to the 

bacterial surface (Figure 1.6). AMPs can also interact with the bacterial cell wall by trans-

locating through the outer membrane via so called self-promoted uptake (Mahlapuu et al., 

2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: The mechanisms of antimicrobial peptides. Upon infection, cytokines or different AMPs 

are released from the epithelial cells. AMPs can directly kill the pathogens or can inactivate their 

pathogenesis. Modified from Rakers et al. (2013). 
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1.11.2 Immunomodulatory activities of AMPs 

Cationic antimicrobial peptides play an important and significant role in modulation of host 

defences against microbial infection having antibacterial, antifungal, antiparasitic, 

antitumoural, and antiviral activities (Hancock & Diamond, 2000). Among the 

immunomodulatory activities employed by AMPs, immune cell differentiation modulation 

and induction of adaptive immunity contributes to clearance of bacteria (Figure 1.7). 

Moreover, suppression of certain TLR expression, and/or cytokine-mediated production of 

pro-inflammatory cytokines, prevents excessive and harmful pro- inflammatory cytokine 

responses (Mookherjee et al., 2006; Van Der Does et al., 2010; Yeung et al., 2011). LPS 

induced expression of TNF-α in THP-1 cells and TNF-α, IL- 1β, IL-6, and IL-8 in human 

primary monocytes has been found to be inhibited by LL- 37 (Mookherjee et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Immunomodulatory activities of AMPs. Figure has been taken from Mahlapuu et al. 

(2016).  

 

1.12 Protein phosphorylation 

Protein phosphorylation is a key regulatory mechanism of cell life and the most studied post-

translational modification (PTMs) of proteins playing a crucial role in the regulation of 

signaling pathways and other cellular processes in eukaryotes, in particular, protein 

phosphorylation is a major coinage of signal transduction pathways (Hunter, 1995). In fact, 
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phosphorylation has functions in metabolism, cell cycle, and immunology etc. (Figure 1.8). 

It is projected that one third of proteins are phosphorylated at some points of their life cycle 

(Zolnierowicz & Bollen, 2000). Protein phosphorylation regulating most of the processes is 

a reversible mechanism controlled by protein kinases and phosphatases (Figure 1.9B) 

constituting about 2% of the human genome (Alonso et al., 2004; Manning et al., 2002). The 

most commonly phosphorylated amino acid residues are serine, threonine and tyrosine 

(Figure 1.9A).  

 

 

 

 

 

 

 

 

 

 
Figure 1.8: Most common functions of phosphorylation in eukaryotes.  

     

 

 
 
Figure 1.9: A) Main phosphorylated amino acids, B) Protein phosphorylation and dephosphorylation 

reaction. Protein kinases are responsible for phosphorylation where a phosphate group is added to 

the specific amino acid residue from ATP and protein phosphatases are responsible for 

dephosphorylation where a phosphate group is removed from phosphoprotein.  

 

1.12.1 Challenges in phosphorylation studies 

Studying phosphorylation events is not a straight- forward approach, facing several 

challenges, which should be taken into consideration before starting phosphorylation 

experiments. The first one is the sub stoichiometry nature of phosphorylation allowing a 
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fraction of the accessible protein to be analysed at a certain time upon stimulation. The 

Second is the variability in the phosphorylation sites on proteins which means the 

heterogenicity in any given phosphoprotein (Delom & Chevet, 2006). Third, low abundance 

of many of the signaling molecules within the cells (Yoon & Seger, 2006). Fourth, difficulty 

in the identification of minor Phosphosites by most used analytical techniques, which have 

a limited dynamic range in identification of Phosphosites. Finally, the reverse reaction 

dephosphorylation, which might reduce the recovery of phosphoproteins (Delom & Chevet, 

2006).  

 

The first and the third challenges can be overcome by enrichment of phosphopeptides. For 

example, TiO2 based enrichment. The second challenge might be compensated by 

appropriate replication and verification of the results. The fourth challenge is currently being 

addressed by many researchers by using high throughput LC-MS/MS technique which 

allows the identification of all possible Phosphosites. Finally, the final challenge can be dealt 

with by using different phosphatase inhibitors during sample preparation.  

 

1.12.2 Phosphoproteome separation and detection 

Several techniques are employed for the identification of phosphoproteins. One of the most 

used techniques for phosphoprotein separation and identification is two-dimensional gel 

electrophoresis (2-DGE) where cell extracts are loaded onto the 2-D gels and run for a 

specific time at specific voltage followed by in-gel digestion and analysis by LC-MS/MS or 

by MALDI-TOF-MS. Another method is immunoblotting or Western blotting using specific 

antibodies for the detection of proteins (Magi et al., 1999). Direct staining is another way of 

analysing phosphoproteome of cells, tissues or organs using specific reagents in 1 or 2-DGE 

for the detection of selective phosphoproteins. Isotope staining with inorganic phosphate 

isotope (32Pi) or γ-(32P)-ATP is also used in in vivo and in vitro protein phosphorylation 

studies (Wettenhall et al., 1991).  

 

Phosphoproteome analyses based on 2-DGE have significant limitations which include the 

lower loading capacity and the lower separation of certain types of proteins like acidic, 

alkaline and hydrophobic (Bunai & Yamane, 2005).  
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1.12.3 Phosphoproteome enrichment 

Researchers working on phosphoproteomics have been encouraged by the limitations of in 

gel phosphoproteome analysis to develop the alternative techniques to identify 

phosphoproteins. In one of the commonly used methods, the entire cell lysates are 

fractionated into peptides and are identified by liquid chromatography (LC) followed by 

analysis on mass spectrometry (MS/MS). Phosphoprotein abundance is only a small fraction 

of total protein in given cell lysate which is one of the down sides of phosphoproteomics. 

This leads to the limited number of phosphoprotein identification in a given cell extract 

which directed the development of techniques to purify or enrich phosphopeptides from a 

complex cell extract. Several techniques like immobilized metal affinity chromatography, 

immunoprecipitation, a specific chemical derivation etc. are available to enrich 

phosphoproteins present in complex samples (Delom & Chevet, 2006).  

 

1.12.4 Phosphoproteome identification 

In the past decade, the use of mass spectrometry (MS) has become popular for 

phosphorylation analysis. It has become a dominant technology for phosphorylation site 

detection as well as phosphoprotein identification. For MS analysis, generally 2 steps are 

followed; the first step is the digestion of proteins into peptides and the second step is adding 

phosphorylation as a variable modification when analysing the MS-data. Phosphorylation at 

a single amino acid residue in a specific peptide adds a mass of 80 Da. Thus, by looking at 

the increase of masses of 80 Da of the observed peptide and comparing with expected 

peptide mass, phosphopeptide can be identified (Delom & Chevet, 2006). Then the MS data 

are used to identify proteins by searching the available database.  

 

1.12.5 Potentials and challenges in fish phosphoproteome study 

While, several proteomic analyses have been conducted in a number of fish species 

including zebra fish (Lucitt et al., 2008) and Arapaima gigas (Torati et al., 2017) the analysis 

of the phosphoproteome and other PTMs in fish species has rarely been addressed. 

Currently, only one report has analysed phosphoproteins in zebra fish (Lemeer, Jopling, et 

al., 2008). Currently, besides zebrafish most of the bioinformatics tools have been developed 

for human, rat or other mammalian species. Thus, the bioinformatics analysis for other fish 

species is based mainly on zebrafish if available or using underlying mammalian databases 

which in some cases might provide inaccurate functional information. To this end, it is 
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required to convert any identified fish proteins into human or zebra fish proteins or genes 

homologs to do some analyses missing those that do not have any human homolog. 

However, the advancement of different techniques and growing interest in fish proteomics 

will encourage to include fish proteomics data (e.g. zebra fish) which will enable researchers 

to get more accurate and relevant predictions on the functions, localization and properties of 

phosphoproteins in fish.  

 

1.13 Hypothesis and objectives 

Viral and bacterial pathogens cause huge losses to aquaculture production. However, 

knowledge on how aquatic viruses and in particular SAV manipulate the host machinery 

and in particular the innate immune response during their replication cycle is extremely 

limited. Moreover, bacterial disease pathogenesis in fish is also not well understood. 

Improving knowledge in this area could help in the development of new therapeutic 

approaches to prevent or treat viral and bacterial diseases in fish. 

 

An intact gill epithelium is necessary to protect the fish from external insults but also a target 

organ for viral and bacterial infection. The cellular integrity of fish gill epithelial cells can 

be modulated by external stimuli, but this process is poorly understood. Viral and bacterial 

PAMP induced innate immunity in fish gill epithelia is also unclear. The mechanism by 

which the bacterial and viral cell components are recognized by the fish gill epithelia have 

not been studied before. The molecular mechanisms that are involved in innate immune 

response including signal transduction pathways and cellular integrity in fish gill epithelia 

can broadly be studied by protein phosphorylation. However, the fish phosphoproteome is 

not well studied.  

 

Thus, the general hypothesis of this research thesis is that viral and bacterial pathogens and 

pathogen associated molecular patterns (PAMPs) interact with the fish gill epithelium 

resulting in a modulation of epithelial integrity in relation to barrier function and associated 

cell signalling.  

 

The overall objective was to determine the effects of viral PAMP poly(I:C) and bacterial 

PAMPs LPS and PGN, salmonid alpha virus subtype 2 (SAV-2) and one of the fish 

pathogenic bacteria, Aeromonas salmonicida on the barrier functions and molecular 

response of rainbow trout gill epithelial cell RTgill-W1.  
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My PhD thesis addressed three specific hypotheses to meet the objectives: 

(1) Viral and bacterial PAMPs can modulate the cellular integrity of RTgill-W1 through 

inducing the expression of tight junction genes. PAMPs can also induce the antiviral 

response through internalization into the gill epithelial cells (Chapter 2). 

(2) Viral and bacterial PAMP stimulation can trigger the dynamics of protein 

phosphorylation including antiviral signaling pathways in gill epithelial cells 

(Chapter 3). 

(3) Salmonid alphavirus subtype 2 (SAV-2), an infectious pathogen of salmonids can 

replicate in fish gill epithelia and induce an antiviral response which subsequently 

limits viral replication. Moreover, viral and bacterial PAMPs can induce the barrier 

function against A. salmonicida, a bacterial pathogen of salmonids through inducing 

the expression of cytokines and antimicrobial peptides (Chapter 4).  
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Chapter 2 

Cellular response and signalling in RTgill-W1 cell upon stimulation with viral and 

bacterial PAMPs 

 

2.1 Introduction 

The gill is one of the most important organs in teleost fishes playing a central role in 

respiration and osmoregulation. As gills are continuously exposed to the surrounding 

environment, contact with different pathogens is very likely. An intact gill barrier is essential 

for normal physiological function and to combat pathogens. This barrier is not static, can be 

modulated by external insults like environmental stress, pathogens and toxins (Benson et al., 

2013) and is regulated by the tight junctions between the cells. Tight junction proteins 

claudin and occludin are regulated by tight junction regulatory protein ZO-1 and other 

proteins (Whitehead et al., 2011). The tight junction protein barrier connects epithelial cells, 

thus preventing the passage of substances through the intercellular space and allowing 

passage only through the cell from apical to the basolateral side (Benson et al., 2013). Thus, 

tight junction proteins maintain the cell polarity and cellular integrity. By forming a barrier 

tight junction contribute to creating transepithelial electrical resistance (TER) between the 

apical and basolateral side. Bacteria and bacterial toxin, and viral pathogens can disrupt the 

epithelial integrity interacting with tight junction and render cells susceptible for infection 

by the pathogens (Torres-Flores & Arias, 2015; Bonazzi & Cossart, 2011). Viral and 

bacterial Pathogen associated molecular patterns (PAMPs) can play important role in 

modulating cellular integrity thus impacts on TER of epithelial cells.  

 

Moreover, PAMPs activate the immune system through pattern recognition 

proteins/receptors and TLRs and enhance overall resistance to various diseases 

(Magnadottir, 2010). PAMPs may be viral or bacterial derivatives or chemically synthetic. 

Most commonly used PAMPs in fish immunology studies are poly(I:C), lipopolysaccharides 

and peptidoglycan. Poly(I:C), a structural analogue of dsRNA acting as a ligand of toll-like 

receptor 3 (TLR3), has been widely used as an immuno-stimulant in humans and mice 

against viral diseases based on its ability to enhance innate and adaptive immunity (Zhou et 

al., 2014). Both natural and synthetic dsRNAs are known to induce type I interferons (IFN) 

and the production of other cytokines. Lipopolysaccharide (LPS) is also used widely as a 

potent PAMP which can be released from gram-negative bacteria that can associate with 

LPS binding protein (LBP), an acute-phase protein present in the bloodstream of vertebrates 
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including fish (Solstad et al., 2007) and then binds to CD14, a glycosylphosphatidylinositol 

(GPI) linked protein expressed on the cell surface of phagocytes (Poltorak A et al. 1998; 

Shimazu et al. 1999). In vitro, LPS stimulates phagocytosis and the production of superoxide 

anions in Atlantic salmon macrophages (Solem et al., 1995). Similarly, LPS stimulates the 

production of macrophage activating factor in goldfish lymphocytes (Neumann et al., 1995) 

and the production of interleukin 1 like molecules in catfish monocytes (Clem et al., 1985). 

Peptidoglycan, on the other hand, an important component of bacterial cell walls, has been 

shown to be a powerful biological effector with different immuno-stimulatory activities such 

as activation of macrophages, cytokine production, induced autoimmunity, induction of 

antimicrobial peptide production (Boneca, 2005).  

 

In humans and other mammals, TLR3 signalling pathway is well studied. Upon recognition 

of poly(I:C), TLR3 activates interferon regulatory factor 3 (IRF 3), through the adapter 

protein Toll-IL-1 receptor (TIR) domain-containing adapter inducing IFN-β (Yamamoto et 

al., 2003). Activation of IRF3 leads to the production of type I IFNs, especially IFN-β. In 

teleost, orthologs of mammalian TLR3 have been identified in a number of species, 

however, the working mechanism of poly(I:C) in teleost is unclear, and very little is known 

about the relationship between poly(I:C) -induced antiviral effects and TLR3 signalling in 

fish.  

 

The type I interferon system is the first line of defence against viruses, upon binding to its 

receptor on the surface of other cells, it triggers the production of antiviral proteins which 

can inhibit or delay viral replication. As in mammals, IFNs are also synthesized in teleost 

fish and activate antiviral response (Børre Robertsen, 2006). Synthetic poly(I:C) stimulates 

IFN production in mammals and also in fish (Eaton, 1990) and fish cell cultures where 

antiviral activity of poly(I:C) against several fish viruses has been evaluated (Nygaard et al. 

2000; Jensen et al., 2002; Jensen & Robertsen, 2002). Mx is one of the most well studied 

IFN-induced antiviral proteins which has been used as an indicator of IFN responses. The 

Mx gene in fish was first reported in the perch (Perca fluviatilis L.) by Staeheli et al. (1989), 

but has been characterised and cloned from several fish species.  

 

Bacterial and viral PAMPs play significant roles in immunomodulation of host cells by 

activating different antibacterial or antiviral genes. Different PAMPs bind to different 

receptors of host cells where some are intracellular, and some are extracellular. Extracellular 
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receptors are present on the cell surface and upon binding to the PAMPs, send signal to the 

downstream pathways. On the other hand, to bind to the intracellular receptors, PAMPs must 

be internalized to the host cells. Different molecules use different mechanisms to enter the 

cells. Most common mechanism is the endocytosis. Endocytosis is a process by which 

extracellular material and plasma membrane are internalized into the cell interior. This plays 

an important role in proper signaling and regulation of cell surface receptors, for the delivery 

of nutrients into the cell, establishment and maintenance of cell polarity, and the turnover of 

plasma membrane proteins and lipids (Dutta & Donaldson, 2012). Moreover, endocytosis is 

also used by bacterial toxins and pathogens as a mode of entry to the cell interior.  

 

Several substances have been tested to block the endocytosis pathway. Cytochalasin D 

(CyD) is one of the chemical components that has the property to inhibit endocytosis. It is a 

cell-permeable and potent inhibitor of actin polymerization which disrupts actin 

microfilaments (May et al., 1998). By inducing depolymerization of the actin cytoskeleton 

it selectively blocks endocytosis of membrane bound and fluid phase markers from the 

apical surface of polarized cells without affecting the uptake from the basolateral surface 

(Gottlieb et al., 1993). CyD has been reported to the inhibition of cell ruffling and motility, 

cell retraction and arborization, zeiosis, blebbing, and enucleation (Schliwa, 1982).  

 

Several other chemical components have been tested to block or inhibit or reduce the uptake 

of certain viral or bacterial molecules by the host cells. Cefradin, a semi-synthetic 

cephalosporin, inhibits the last stage of bacterial cell wall synthesis by binding to certain 

penicillin-binding proteins (PBPs), such as PBP3, which results in cell lysis. Cell lysis is 

mediated by bacterial cell wall autolytic enzymes. It is effective against gram-positive and 

gram-negative bacteria. Cefradin may also interfere with the autolysin inhibitor. Lisinopril, 

an angiotensin converting enzyme, used to treat high blood pressure in adults and children, 

was also used in the study as an inhibitor of ligand internalization.  

 

The mechanism by which the bacterial and viral cell components are recognized by the fish 

gill epithelia is unclear. These can be internalized by endocytosis which can be Clathrin-

mediated or Clathrin-independent endocytosis. In this study, the rainbow trout gill epithelial 

cell line RTgill-W1 was used to investigate the effects of PAMPs on the epithelial integrity 

and on the expression of the tight junction and antiviral response genes as well as the 

mechanisms of internalization of PAMPs by trout epithelial cells.  
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2.2 Materials and Methods 

2.2.1 Cell culture 

The rainbow trout gill epithelial cell line RTgill-W1 was used as a model of fish gill 

epithelia. The cell line was available at the Institute of Aquaculture, University of Stirling, 

UK and obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). 

The cells were maintained using protocols developed in the Virology laboratory of the 

Institute of Aquaculture, University of Stirling, Scotland, UK, following Bols et al. (1994). 

Briefly, cells were maintained in Leibowitz L-15 media supplemented with L-glutamax 

(GIBCO Life Technologies) and 10% of fetal bovine serum (FBS) (Life Technology) at 22 

°C in 75 cm2 plastic flasks (SARSTEDT, Germany). The cells were sub-cultured once a 

week by trypsinysing with 0.05% trypsin –EDTA (GIBCO Life Technologies).  

 

For transepithelial electrical resistance experiment, the Madin-Derby Canine Kidney cell 

line MDCKII was used as a control. The cells were maintained at 37 °C with 5% CO2 in 75 

cm2 plastic in Eagle’s Minimum Essential Medium (MEM) (GIBCO Life Technologies) 

supplemented with 10% FBS, 2mM L-glutamine (GIBCO Life Technologies) and 2mM 

nonessential amino acid (GIBCO Life Technologies).  

 

2.2.2 Pathogen associated molecular patterns (PAMPs) 

Viral and bacterial PAMPs were used as immune-modulators. Poly(I:C), a structural 

analogue of dsRNA acting as a ligand of TLR3 and RLRs was used as viral PAMP while 

bacterial lipopolysaccharide (LPS) and peptidoglycan (PGN) were used as bacterial PAMPs. 

For internalization study fluorescein labelled poly(I:C), Alexa Fluor 488 labelled LPS and 

rhodamine labelled MDP were used. Poly(I:C), LPS, PGN, fluorescein labelled poly(I:C) 

(HMW) and Rhodamine labelled MDP were purchased from InvivoGen while Alexa Fluor 

488 labelled LPS was purchased from Thermo Fisher.  

 

2.2.3 Effects of PAMPs on the trans-epithelial electrical resistance (TER) 

RTgill-W1 cells were seeded onto 12 well transwells (BD Falcon) with 0.9 cm2 growth area, 

0.4 μm pore size and a pore density of 1.6×106 pores per cm2. The apical compartment 

contained RTgill-W1 cells in complete growth medium (L-15 medium supplemented with 

10% FBS and L-Glutamax) and the basolateral compartment contained only complete 

growth medium. Transwells with medium only in both apical and basolateral sides were 
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used as background control. Before starting the final experiments, some trial experiments 

were conducted to optimize the seeding density onto the transwell system. MDCKII cells 

were used as the positive control for the transwell system. TER measurements were 

performed with a chopstick-type probe (STX-2) connected to a Millicell ERS-2 voltmeter 

(EMD Millipore Corporation, Billerica, USA), according to manufacturer instructions. The 

resistance measured across a culture insert with no seeded cells was used for background 

correction of all TER measurements. Post seeding TER was measured at different time 

points until TER values reached stability. When TER values stabilized, cells were stimulated 

with poly(I:C) and LPS at a concentration of 10 µg/mL in the first experiment. In the second 

experiment cells were activated with LPS and PGN at 10 µg/mL. During stimulation, 

medium from the apical compartments of control and blank groups were replaced with fresh 

medium as was done for the treatment groups. Each treatment in each experiment was run 

in triplicate and each experiment was performed three times. 

 

TER was calculated according to the manufacturer`s guideline. To get the true cell 

resistance, resistance of the blank insert having only medium is subtracted from the reading 

of the cell culture insert with cells. The unit of TER measure is Ωcm2. The unit area 

resistance is obtained by multiplying the meter reading by effective membrane area of the 

insert.  

TER is calculated as;  

𝑈𝑛𝑖𝑡 𝐴𝑟𝑒𝑎 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (Ω−𝑐𝑚2) = 𝑅𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (Ω) × 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝐴𝑟𝑒𝑎 (𝑐𝑚2) 

 

2.2.4 Effects of PAMPs on the expression of innate immune gene markers  

To evaluate the effects of PAMPS on tight junction protein expression in RTgill-W1 cells, 

cells were grown to around 95% confluence in triplicate onto 12-well plates and in 

transwells. To equilibrate inserts to the medium, insert and wells were preloaded for 2 h with 

1 mL and 2 mL of cell culture medium (Section 2.2.1) respectively. Each insert and well 

was seeded with 1.0×105 and 4.0×105 RTgill-W1 cells respectively. Cells were treated with 

or without poly(I:C) (10µg/mL) LPS (10µg/mL) and PGN (10µg/mL) for 6 and 24h and 

then harvested for further processing. 

 

For the short window time course response experiment, cells were stimulated with poly(I:C) 

at a concentration of 1µg/mL for 30 min, 1, 3, 6 and 24 h. Afterwards, cells were harvested 

with TRI-reagent (Sigma) for total RNA extraction.  
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2.2.4.1 Total RNA extraction and cDNA synthesis 

2.2.4.1.1 RNA extraction 

Total RNA was extracted from 12 well culture inserts and wells using TRI reagent (Sigma-

Aldrich, St. Louis, MO, USA) according to the manufacturer's directions with some 

modifications (detailed protocol in appendix 1.1). Briefly, cells were washed twice with 1ml 

of PBS and cell lysate was collected in 500 µL of TRI-reagent and incubated at room 

temperature (RT) for 5 min, then 50 µL of 1-bromo-3-chloropropane (BCP) was added and 

the tube was shaken vigorously by hand for 15 seconds followed by incubation at room 

temperature for 15 min. Samples were then centrifuged at 16900 × g for 15 min at 4 ºC. 

After centrifugation, the upper aqueous phase was transferred to a new tube without 

disturbing the interface. Then ½ volume (half of total volume of upper phase) of RNA 

precipitation solution (prepared in house with 1.2 M NaCl and 0.8 M Sodium citrate 

sesquihydrate in nuclease free water (Ambion), 0.22 µm filter sterilized) and another ½ 

volume of isopropanol were added and mixed properly by inverting gently for 4-6 times 

followed by incubation for 10 min at room temperature. The sample was then centrifuged at 

16900 × g for 15 min, at 4ºC. The RNA precipitate forms a gel like pellet on the side/bottom 

of the tube. The supernatant was removed carefully without disturbing the pellet by pipetting 

and the pellet was washed with 500 µl of 75% and then centrifuged at 16900 × g for 15 min, 

at room temperature. The supernatant was removed carefully by pipetting and the RNA was 

air dried at room temperature for 5 min and eluted in RNase free water.  

 

Quantity and purity of RNA were assessed using Nanodrop Spectrophotometer (ND-1000, 

Labtech International, Uckfield, UK) through UV-light absorbance at 260 and 280 nm, 

where a 260/280 nm absorbance ratio of 1.8–2.0 was considered as a pure RNA sample. 

Low quality RNA was discarded. The quality of RNA was also checked by gel 

electrophoresis using 1.5% agarose gel (pure and intact RNA gives two bands 28S and 18S).  

 

2.2.4.1.2. cDNA synthesis 

The cDNA was obtained from 1μg of total RNA from each sample and cDNA was 

synthesised using the protocol of Superscript III First-Stand Synthesis System (Invitrogen) 

(detail protocol in appendix 1.2). Briefly, 1 μL of 50 μM oligo(dT) and 1 μL of 10 mM 

dNTP mix were added in required volume of nuclease free water (Ambion) and RNA to a 

final volume of 10 μL. Then the reaction mix was incubated at 65 °C for 5 min in Thermal 
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Cycler (Biometra) and placed on ice for at least 1 min. Then 10 μL of cDNA synthesis mix 

containing 2 μL of 10X RT buffer, 4 μL of 25 mM MgCl2, 2 μL of 0.1 M DTT, 1 μL of 

RNaseOUT™ (40 U/μL) and 1 μL of SuperScript III RT enzyme (200 U/μL) was added into 

each RNA/primer mixture. The reaction was mixed gently and collected by brief 

centrifugation and then incubated for 50 min at 50 °C in Thermal Cycler (Biometra). The 

reaction was terminated by incubating at 85 °C for 5 min. Then the tube was chilled on ice 

and collected by brief centrifugation. Finally, 1 μL of RNase H was added and incubated for 

20 min at 37 °C. The cDNA synthesis reaction was stored at −20 °C or used for PCR 

immediately.  

 

2.2.4.1.3 PCR and PCR product purification 

Primers for PCR and qPCR used in the study were for tight junction genes claudin 3a and 

8d, tight junction regulatory gene ZO-1, innate immune response genes TLR 3, IFNβ and 

interferon induced Mx2 (Table 2.1). All the lyophilized primers were eluted in nuclease free 

water (Ambion) and diluted to 10 µM. RT-PCR was conducted using MyTaq HS DNA 

polymerase (BIOLINE) according to the manufacturer’s instruction. Each PCR reaction 

mixture contained 12.5 µL of 2X MyTaq mastermix (1X), 1 µL of each 10 µM primer (final 

primer concentration 400 nM), 1 µL of template cDNA and the rest was nuclease free water 

(Ambion) to a final volume of 25 µL. PCR was performed in a thermal gradient thermocycler 

(Biometra). PCR reaction condition was: initial denaturation for 1 min at 95 °C for 1 cycle 

followed by 35 cycles of denaturation for 15s at 95 °C, annealing for 15s at 55-62 °C 

(optimum annealing temperature for each primer set), and extension for 15s at 72°C 

followed by final extension for 2 min at 72 °C. The PCR products were run on a 1-2% 

agarose gel stained with ethidium bromide. The gel was checked on a gel documentation 

system (Syngene InGenius).  

 

2.2.4.1.4 Plasmid DNA standard generation 

For the absolute quantification, a DNA standard for each of the target gene was generated. 

For this, PCR product of each target needed to be cloned into a vector. Thus, the PCR 

product of each target gene was purified using the PCR clean-up and Gel extraction kit 

(Macherey-Nagel) according to manufacturer’s instructions (detailed protocol in appendix 

1.3). Purified DNA was eluted in 20 µL nuclease free water (Ambion). DNA concentration 

was determined using Nanodrop Spectrophotometer (ND-1000, Labtech International, 
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Uckfield, UK). Purified PCR products were directly used for the ligation procedure or kept 

at -20°C until used.  

 

In the present study, to quantify mRNA transcripts of target genes, absolute real-time qPCR 

was employed where each target was cloned into pGEM-T easy vector to produce a 

quantitative DNA standard. A standard curve from the serially diluted standards of known 

copy number (107 to 101 molecules/µL) was generated and the copy number of unknown 

samples was then calculated by extrapolating the CT (cycle threshold) into the standard 

curve. No reference gene or housekeeping gene was used in this study as the quantification 

by absolute qPCR does not depend on the reference gene or housekeeping gene since the 

reference is the standard curve.  

 

Moreover, absolute quantification based real- time qPCR was preferred as for relative real-

time qPCR choosing the right housekeeping gene is critical and expression of many of the 

housekeeping genes such as GAPHDH (glyceraldehyde-3-phosphate dehydrogenase), -

actin and 18S rRNA vary depending on the cell types and experimental conditions (Kozera 

& Rapacz, 2013) which supports the idea that there is no ideal reference gene (Rebouças et 

al., 2013). Thus, for ideal relative quantification assay requires a series of reference genes 

even for the investigation of expression of a single gene of interest, which is expensive and 

time consuming. Bearing these constraints of using housekeeping genes in real time qPCR 

in mind, absolute real time qPCR based on a quantitative standard was used.  

 

2.2.4.1.5 Competent cells preparation  

The chemically competent cells were prepared using two chemical solutions where 

solution 1 contained 1M potassium acetate (Sigma-Aldrich), 1M RbCl2 (Sigma-Aldrich), 

1M CaCl2 (Sigma-Aldrich), 1M MnCl2 (BDH Chemicals) and 80% (w/v) glycerol in a 

required volume of deionized water. The pH of the solution was adjusted to 5.8 using 100 

mM acetic acid (Fisher Chemical); and solution 2 was prepared with 100 mM MOPS (pH 

6.5) (Sigma-Aldrich), 1M RbCl2, 1M CaCl2, and 80% (w/v) glycerol (Sigma-Aldrich) in 

a required volume of deionized water. pH of the solution was adjusted to 6.5 using 

concentrated HCl (Sigma). The solutions were filter sterilized using 0.22 m syringe 

filter (Sartorius). 
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One frozen aliquot of competent cell (DH5α, Thermo fisher) was retrieved by plating 

onto the LB agar (Merck) plate with no antibiotics and was grown overnight at 37 °C. A 

single colony from overnight incubated plate was picked and inoculated in 5 mL of LB 

broth and was grown overnight at 37 °C in s in a Maxq 2000 shaker at a speed of 200 rpm 

which was then sub-cultured into 2 conical flasks each with 50 mL of LB broth (Merck) 

and was grown by incubating at 37 °C in in a Maxq 2000 shaker at a speed of 200 rpm 

and optical density (OD) at 550 nm was measured periodically using spectrophotometer 

(Equipnet, CECIL CE 2041) until OD reaches 0.48-0.50. The flasks were then chilled on 

ice for 5 min. Then the cells were transferred into 50 mL falcon tubes and centrifuged at 

3000 rpm for 10 min at 4 °C. The pellet was re-suspended in 20 mL of solution 1 by 

gentle pipetting and then chilled on ice for 5 min followed by centrifugation at 3000 rpm 

for 10 min at 4 °C. The pellet was finally re-suspended in 2 mL of solution 2 by gentle 

pipetting and chilled on ice for 15 min. The cells were then aliquoted in sterile pre-chilled 

1.5 mL Eppendorf tubes in a volume of 110 μL and the ready to use competent cells were 

stored at -80 °C.  

 

2.2.4.1.6 Ligation 

Ligation of PCR product was done into pGEM-T easy vector system (Promega) according 

to the manufacturer’s instruction. Briefly, 3 µL (20-30 ng) of purified PCR product was used 

in 10 µL of standard reaction containing 5 µL of T4 DNA ligase buffer, 1 µL (50 ng) of 

pGEM-T easy vector 1 µL of T4 DNA ligase enzyme. A positive (with control insert) and a 

negative (without PCR product or insert) controls were always set. The ligation mixture was 

then incubated at 4°C for 18-24 h. 

 

2.2.4.1.7 Transformation 

Following ligation, 2 µL of each ligation reaction was transferred to 50 µL E. coli competent 

cells (DH5α cells, Thermo Fisher Scientific; prepared in section 2.2.5.1) in 1.5 mL 

Eppendorf tube and mixed gentle by pipetting and incubated on ice for 30 min. After 

incubation the cells were heat shocked for 50 seconds at 42 °C in water bath following 

incubation on ice for 2 min. Then 250 µL of LB medium was added in each tube and 

incubated for an h in shaking incubator at a speed of 200 rpm. After incubation, from each 

transformation tube 50 µL, 100 µL and rest of the cells were spread on Luria-Bertani (LB) 
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agar plates containing 100 µg/mL ampicillin. The plates were then incubated overnight at 

37 °C. 

 

In the following day, plates were checked for growth of bacteria. Three single colonies were 

picked per transformation reaction and placed in sterile 1.5 mL eppendorf tube containing 1 

mL of LB broth supplemented with 100 µg/mL ampicillin. The tubes were then incubated 

overnight at 37 °C in a Maxq 2000 shaker at a speed of 200 rpm. Following overnight 

incubation, the tubes were checked for bacterial growth by observing the cloudiness of the 

growth medium.  

 

2.2.4.1.8 Plasmid purification and ligation confirmation 

Plasmid DNA purification was then conducted using NucleoSpin plasmid DNA purification 

kit (Macherey-Nagel) following the protocol outlined in the kit (detailed in Appendix 1.4). 

The concentration and quality of plasmid DNA was checked using Nanodrop 

Spectrophotometer (ND-1000, Labtech International, Uckfield, UK). To confirm the correct 

insertion of the target, conventional PCR was conducted using the gene specific primers. 

After PCR confirmation, plasmid samples of each target were sequenced using SP6 

(TAAGATATCACAGTGGATTTA) or T7 (ATTATGCTGAGTGATATCCC) primer.  

 

For sequencing, plasmid samples were sent to GATC Biotech, using LIGHTrun sequencing. 

LIGHTrun sequencing was prepared in tubes containing a mixture of 5µl plasmid DNA (80-

100 ng/µL) and 5 µL of SP6 or T7 primer (5 µM). When sequences were obtained, they 

were blasted in NCBI to check the correct insertion into the pGEM-T easy vector.  

 

2.2.4.1.9 Copy number calculation and subsequent dilution 

The copy number per microliter of plasmid DNA was calculated using the formula stated 

below.  

Step 1: Calculation of molecular weight  

(𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 + 𝑏𝑎𝑠𝑒 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟) × 660 = 1 𝑚𝑜𝑙 

Step 2: Calculation of moles  

(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑔 𝑝𝑒𝑟 𝑚𝑖𝑐𝑟𝑜𝑙𝑖𝑡𝑒𝑟 ÷ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 𝑖𝑛 𝑔) × 1 𝑚𝑜𝑙 = 𝑋 𝑚𝑜𝑙 

Step 3: Calculation of molecules or copy number per microliter 



48 

 

X mol

1 mol
× 6.023 × 1023 = molecules/µL 

Where, 660 is the molecular weight of each base pair of nucleotides in plasmid DNA, 

6.023 × 1023 is the Avogadro's number. 

 

Finally, the plasmid DNA was diluted in nuclease free water to 1107 copy/µL to 1101 

copy/µL and used as standard for absolute quantification of mRNA expression in the 

samples.  

 

2.2.4.1.10 Standard curve generation 

Syber green based qPCR was performed to test the DNA standard using Luminaries Color 

HiGreen qPCR Master Mix (Thermo Scientific) in Stratagene Mx3005P thermal cycler 

(Agilent Technologies, Santa Clara, US). Standard sets of each target were run in duplicate. 

No template control (NTC) was always performed to check contamination or false positive 

amplification. Three independent runs were conducted, and mean CT values were plotted 

against log of copy number to generate standard curve.  

 

Table 2.1: Primer sequences used in RT-PCR and RT-qPCR for rainbow trout transcript 

targets 

 

Target 

gene 

Primer sequences (5’-3’) 

 

Amplico

n size 

(bp) 

TM 

(oC) 

Reference 

sequence 

accession  

number 

Application  

Claudin-3a F-TGGATCATTGCCATCGTGTC 

R- GCCTCGTCCTCAATACAGTTGG 

139 60 BK007964 RT-PCR, 

RT-qPCR 

Claudin-8d F-GCAGTGTAAAGTGTACGACTCTCTG 

R- CACGAGGAACAGGCATCC 

339 60 BK007966 RT-PCR, 

RT-qPCR 

ZO-1 F-AAGGAAGGTCTGGAGGAAGG 

R- CAGCTTGCCGTTGTAGAGG 

291 59 HQ656020 RT-PCR, 

RT-qPCR 

TLR3 F- TGACAGAGCTTAACCTGGC 

R- AAGAACTTCCAGGCATGGACA 

538 60 CA363490 RT-PCR  

TLR3 F-AGCCCTTTGCTGCCTTACAGAG 

R-GTCTTCAGGTCATTTTTGGACACG 

61 60 CA363490 RT-qPCR 

Mx2 F-GATGCTGCACCTCAAGTCCT 

R-TAGCTGCGTGCCTTCATCAG 

237 60 RBTMx2/R

BTMx3 

RT-PCR, 

RT-qPCR 

IFNβ F-GACGTCTGTCACGTGGAACAAAAT 

R-CCAAACACCGCCCACAACA 

100 59 NP_0011539

74 

RT-qPCR 
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2.2.4.11 Absolute quantification of tight junction and antiviral response genes 

The mRNA expression levels of the TJ proteins claudin 3a and 8d and tight junction 

regulatory protein ZO-1 and antiviral response proteins TLR3, IFNβ and Mx2 were 

quantified using Luminaries Color HiGreen qPCR Master Mix (Thermo Scientific). SYBR 

green based RT-qPCR (Figure 2.1) was performed to quantify the mRNA transcripts using 

Stratagene Mx3005P thermal cycler (Agilent Technologies, Santa Clara, US). The following 

qPCR protocol was employed: pre-treatment at 50 °C for 2 mins; initial denaturation at 95°C 

for 10 mins, 35 cycles of denaturation 95 °C for 15s, annealing 59/60 °C (target specific) for 

30s, and extension 72 °C for 30s; followed by dissociation curve temperature profile: 95 °C 

for 10s, 55 °C for 5s and 95 °C for 30s to confirm the generation of a single specific 

amplicon. Two microliters of each standard of 1107 copy/ µL to 1101 copy/ µL (generated 

in section 2.2.5) in duplicate or diluted cDNA (1:5 dilution) in triplicate or nuclease free 

water (Ambion) for NTC were used with 18 µL of mastermix containing 10 µL of SYBR 

Green, 0.5 µL of each primer (200 nM) and 7 µL of nuclease free water (Ambion).  

 

For absolute quantification of each mRNA transcript, the copy number was extrapolated 

from the standard curve. The MIQE guideline (Bustin et al., 2009) was followed in all the 

steps from RNA extraction to qPCR data analysis.  
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Figure 2.1: SYBR green chemistry: SYBR green dye detects polymerase PCR products by 

intercalating into double-stranded DNA formed during PCR. During PCR, the DNA polymerase 

amplifies the target sequence which creates double-stranded DNA PCR products resulting is an 

increase in fluorescence intensity proportional to the amount of PCR product produced. 

 

2.2.5 Recognition of PAMPs in RTgill-W1 cells by FACS-Analysis 

To investigate the mechanisms of recognition of poly(I:C), LPS and MDP by salmonid 

epithelial cells, a flow cytometry-based technique was applied. Regularly maintained 

RTgill-W1 cells were seeded onto 96 well plate or 24 well plate transwells at a seeding 

density of 0.04×106 cells per well or per insert in a volume of 100 µL. Cells were incubated 

at 22 °C until they formed a confluent monolayer (around 48 h). Initially, cells were 

stimulated with 10 µL/well or insert of poly(I:C) (InvivoGen) at 10 µg/mL (stock 100 

µg/mL); 2 µL/well or insert of MDP labelled with Rhodamine (InvivoGen) at 10 µg/mL 

(stock 500 µg/mL); 5 µL/well or insert of LPS labelled with Alexa Fluor 488 (Thermo 

Fisher) at 10 µg/ml (stock 200 µg /mL) for 24 h. Cells were then washed with 200 µL of 

PBS (Life Technology) three times and harvested in 100 µL PBS and analysed by flow 

cytometer (Beckman Coulter).  

The procedure of flow cytometer data analysis for the target channels is presented in Figure 

2.2. Gating was performed for each channel and PAMP. The green FITC channel (excitation 

494 nm and emission 520 nm) was used for both Fluorescein and Alexa Fluor 488 as both 

have similar excitation (495 and 492 nm respectively) and emission (519 and 518 nm 
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respectively) spectra while for MDP-rhodamine (excitation 546 nm and emission 576 nm) 

the PE channel (excitation 565 nm and emission 578 nm) was used.  

 

Before the inhibition study, the working concentration and duration of treatment of CyD 

(Sigma-Aldrich) were optimized by investigating the effects of different doses and durations 

of treatment of CyD on the cell viability. The optimum concentration and duration of CyD 

treatment were found to be 2 µg/mL for 1 h pre-treatment. Cells were then treated with CyD 

at a concentration of 2 µg/mL in respective wells or DMSO diluted in medium in control 

group one h prior to stimulation with PAMPs. After one h of CyD treatment cells were 

stimulated with MDP labelled with Rhodamine at 10 µg/mL and LPS labelled with Alexa 

Fluor 488 at 10 µg/mL. Cells were incubated in dark at 22 °C for 3 h. After 3 h cells were 

washed with 200 µL of PBS for three times and harvested using citric saline (270 mM KCl 

and 30 mM sodium citrate solution in deionized water and sterilized by autoclaving) in 0.1 

mL PBS and analysed by flow cytometer.  

 

To further investigate the mechanisms of internalization of MDP in RTgill-W1 cells, several 

other inhibitors including L-histidine (Sigma-Aldrich), cefradine (Sigma-Aldrich) and 

Lisinopril (Sigma-Aldrich) were used. The dose and duration of treatment of each of the 

inhibitors were optimized which was 2 mM and the duration of pre-treatment was 1 h. The 

duration of MDP stimulation was 3 h. Each treatment was performed in triplicate and each 

experiment was performed at least three times. 
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Figure 2.2: Procedure of analysing flow cytometry data for ligand internalization. RTgill-W1 cells growing on 96 well plate or 24 well transwells were 

stimulated with fluorescent labelled PAMPs and harvested after specified durations. Discriminating live cells (A and B), gating for control (C) and poly(I:C) 

stimulated (D) cells for the detection of poly(I:C) positive and negative cells using green channel for fluorescein FITC, for MDP-rhodamine detection, PE 

channel was used where MDP positive and negative cells in control (E) and MDP stimulated (F) group are shown, and for LPS labelled with Alexa Fluor 

488 detection green channel was used for where MDP positive and negative cells in control (E) and MDP stimulated (F) group are presented.  
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2.2.8 Statistical analysis 

TER data were analysed using two-way repeated measure ANOVA followed by Bonferoni’s 

multiple comparison using GraphPad prism version 6.0 (San Diego, CA, USA). RT-qPCR 

data were analysed using one-way ANOVA followed by Bonferoni’s multiple comparison, 

internalization data were analysed using paired sample t-test using GraphPad prism. In all 

analyses, differences between groups were considered statistically significant at p<0.01 

unless mentioned otherwise.  
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2.3 Results 

 2.3.1 Changes of epithelial integrity in response to PAMPs 

The integrity of the epithelial membrane depends on the correct polarization of epithelial 

cells. This polarization can be measured by Transepithelial Electrical Resistance (TER). 

TER is a non-destructive technique carried out using a volt-ohm meter in cells grown onto 

transwells.  

 

TER was used to study the cellular integrity of RTgill-W1 cells in response to immune 

challenges with various PAMPS. Before starting the RTgill-W1 experiment, the seeding 

density in the 12 well transwells was optimized. A commonly used mammalian cell line 

MDCKII was used as a positive control to check whether the system was working. The 

seeding density of 0.1106/per insert in both cell lines gave the highest resistance (Figure 

2.3). For subsequent experiments this seeding density was chosen. 

 

 

Figure 2.3: Optimization of seeding density of RTgill-W1 and MDCKII cells on transwell insert. For 

RTgill-W1 cells, three different seeding densities were tested to optimize the seeding density onto 

the transwells. Seeding density of 0.10×106 cells per insert was found to show the highest resistance 

(a). High TER value was detected in MDCK II cells at 48 h of post seeding which was around 8.5 

KΩ-cm2 (b).  

 

To investigate the effects of PAMPs on TER, viral and bacterial PAMPs were used in two 

experiments to investigate their effects on cellular integrity. Cells were grown onto the 

transwells and post-seeding TER was measured at different time points (i.e. 2h, 6h, 12h…) 

until TER reached its peak and stabilized. In most cases 72 h post seeding yielded a stable 

TER. Cells were stimulated with poly (I:C) and lipopolysaccharide (LPS) at 10 µg/mL prior 

to TER measurement over time. Before stimulation, all treatment groups had similar TER. 

Immediately after stimulation, TER increased gradually until 24 h in stimulated cells and 
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then decreased slowly (Figure 2.4A). Significantly higher electrical resistance was detected 

in activated cells than that of control cells at 3 h of post stimulation and onwards (p<0.001). 

However, similar resistance was detected in poly(I:C) and LPS treated cells at all time 

points. In poly(I:C) and LPS stimulated cells, TER values reached a peak of around 40 to 46 

Ωcm2 at 24 h of stimulation which were around 1.6 and 1.9 times higher than that of control 

cells, respectively. Moreover, after 48 h of post activation the values were around 1.65 and 

2.0 times higher in poly(I:C) and LPS treated cells than control cells, respectively.  

 

 

Figure 2.4: Effect of poly(I:C), lipopolysaccharide (LPS) and peptidoglycan (PGN) on transepithelial 

resistance (TER) across RTgill-W1 cell layers: (A) 10 μg/mL poly(I:C) and 10 μg/mL LPS were 

used to stimulate the cells; (B) 10 μg/mL LPS and PGN were used. The experiments were started 

nearly 72 h after seeding in transwells when TER was stable. Values are expressed as mean±SEM. 

Any course 3 independent experiments in triplicate were conducted having 3 measurements at a 

single time point in each insert. Values are mean ± SEM (n=3×3=9). *=p<0.01 and ***= p<0.0001 

(between control and stimulated cells). No asterisk indicates lack of significant differences at a 

specific time point. Repeated measure one-way ANOVA followed by Bonferoni’s multiple 

comparison was conducted using GraphPad prism v.6.0. BA denotes before activation.  

 

Further to investigate the immunomodulatory and cellular effects of another commonly used 

bacterial PAMP PGN, cells were stimulated with PGN (10 µg/mL) along with LPS (10 

µg/mL) stimulation where both LPS and PGN stimulation gave significantly higher 

resistance than that of control cells at all the time points from 3 h (p<0.001). However, 

similar resistance in LPS and PGN treated cells was found. Highest electrical resistance was 

found in LPS and PGN stimulated cells after 24 h of activation which were around 23 to 27 

Ωcm2, respectively being 1.62 and 1.91 times higher than that of control group (Figure 

2.4B).  
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2.3.2 Molecular response of rainbow trout gill epithelia to viral and bacterial PAMPs 

Cellular and molecular response initiate upon the recognition of antigens by host receptors. 

Different pathogens and pathogen associated molecular patterns (PAMPs) are recognized 

by various specific receptors. To investigate the molecular response upon PAMP 

stimulation, the expression of innate immune genes and tight junction related genes were 

tested upon stimulation with viral and bacterial PAMPs.  

 

Two in vitro cell culture systems (conventional cell culture and transwells) were employed 

to investigate the innate immune response at different time points. The response was 

monitored using Syber green based quantitative real time PCR (qPCR). For absolute 

quantification of the copy numbers of mRNA transcripts of selected target genes, DNA 

standard were generated for each target gene (method section 2.2.6). For each quantitative 

standard, co-efficient of determination (R2), efficiency (optimum value 2) and sensitivity 

were calculated (Table 2.1). Copy numbers of mRNA transcripts were from the quantitative 

standard curve. 

 

Table 2. 2: Co-efficient of determination (r2), efficiency and sensitivity for the target genes 

generated from the standard curve. Efficiency was calculated using the formula, E =10(-1/-

slope). An E value of 2.0 is equivalent to 100% efficiency. N represents the number of qPCR 

repetitions for each gene to produce the standard values, while sensitivity is the lowest 

number of target molecule copies determined.  

 

Target r2 Efficiency N Sensitivity 

TLR3 0.99 2.03 3 101 

IFN 0.97 2.24 3 101 

Mx2 0.99 2.04 3 101 

ZO-1 0.99 2.03 3 102 

Claudin 3a 0.96 1.72 3 101 

Claudin 8d 0.98 1.71 3 102 

The standard curve of each gene is presented in Appendix 2.1, Figure 2.1.  

 

2.3.2.1 Innate immune response  

To study the innate immune response of RTgill-W1 cells upon induction of viral and 

bacterial PAMPs, two different culture conditions; conventional 12 well plate culture system 
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and transwell system were employed. Viral PAMP Poly(I:C), and bacterial PAMPs LPS and 

PGN were used as immune modulators. 

 

2.3.2.1.1 Response to poly(I:C), viral PAMP 

Stimulation with poly(I:C) at 1 and 10 µg/mL for 6 and 24 h yielded interferon beta and 

Mx2 signals in the transwells (Figure 2.5). In the traditional 12 well cell culture system, 

expression was observed only at 24 h of stimulation with poly(I:C) 1 and 10 µg/mL. Data 

for 1µg/mL concentration are not shown.  

 

TLR 3 was found to be expressed in RTgill-W1 cells of all the groups. Poly(I:C) stimulation 

for 24 h induced significantly higher expression of TLR3 than in control cells (p<0.001). 

However, the expression was significantly more upregulated in transwells than in 12 well 

culture. 

 

 

Figure 2.5: Antiviral response of RTgill-W1 cells upon stimulation with viral PAMP poly(I:C) at a 

concentration of 10 µg/mL for 6 and 24 h in the transwells and 12 well plate. Expression of TLR3 

(A), IFNβ (B) and Mx2 (C) in RTgill-W1 cells upon stimulation was investigated. Data are mean ± 

SEM of three course independent experiment. Data are mean ± SEM of three course independent 

experiments. Two-way ANOVA followed by Bonferoni’s multiple comparison was conducted to 

analyse the data with the level of significance of p<0.01 using GraphPad Prism version 6.0. 

*=p<0.01, **=p<0.001 and ***=p<0.0001 denote significantly different. 

 

To determine the time-point of initiation of the antiviral response, a time course response 

experiment was conducted where cells were stimulated with poly(I:C) for 30 min, 1, 3,6 and 

24 h using the lower dose (1 µg/mL). This experiment was conducted in the transwell 

system. In this experiment, significantly higher mRNA transcripts of TLR 3 was found in 

the 24 h post stimulation group while similar expression was detected in the control, at 1h 

and 3h post stimulation (Figure 2.6). Very low level of expression of IFN was detected in 

poly(I:C) stimulated cells while no expression was detected in control cells. However, 
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significantly higher mRNA transcript numbers were detected in the 6h post stimulation cells 

(p<0.01). Surprisingly, antiviral response gene Mx 2 expression initiated at 30 min of 

stimulation with poly(I:C) progressively and upregulated up to 24 h to a final copy number 

of 8.54±2.82×107 per µL of cDNA, which was significantly higher than at all the other time 

points (p<0.0001). In comparison control cells did not show any signal for Mx2 expression. 

 

 

Figure 2.6: Antiviral response of RTgill-W1 cells in a time dependent manner upon stimulation with 

poly(I:C) at 1 µg/mL for different durations in the transwells. Expression of TLR3 (A), IFNβ (B) 

and Mx2 (C) in RTgill-W1 cells upon stimulation was investigated. Data are mean ± SEM of three 

course independent experiment. One-way ANOVA followed by Bonferoni’s multiple comparison 

was conducted to analyse the data with the level of significance of p<0.01 using GraphPad Prism 

version 6.0. *=p<0.01, **=p<0.001, ***=p<0.0001. 

 

2.3.2.1.2 Response to bacterial PAMP (LPS and PGN) 

To evaluate whether bacterial PAMPs have the ability to show antiviral response, cells were 

stimulated with LPS and PGN at a concentration of 10 µg/mL for 24 h. As viral PAMP, 

TLR3 was found to be upregulated in transwells in control and LPS stimulated cells (Figure 

3). However, in the 12 well culture, PGN was found to upregulate TLR3 expression compare 

to control cells. No expression of IFN and Mx2 was found in both the culture system in 

control and 12 well plate in LPS stimulated cells. However, LPS in transwells and PGN in 

both systems were found to be able to trigger the expression of IFNβ and Mx2 (Figure 2.7).  
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Figure 2.7: Antiviral response of RTgill-W1 cells upon stimulation with bacterial PAMPs LPS and 

PGN at a concentration of 10 µg/mL for 24 h in the transwells and 12 well plate. Expression of TLR3 

(A), IFNβ (B) and Mx2 (C) in RTgill-W1 cells upon stimulation was investigated. Data are mean ± 

SEM of three course independent experiments. Two-way ANOVA followed by Bonferoni’s multiple 

comparison was conducted to analyse the data with the level of significance of p<0.01 using 

GraphPad Prism version 6.0. *=p<0.01, **=p<0.001 and ***=p<0.0001.  

 

2.3.4 Tight junction gene expression 

To investigate the effects of viral and bacterial PAMPs on the epithelial integrity of RTgill-

W1 cells, the expression of a set of tight junction (TJ) related gene markers were tested.  

 

2.3.4.1 Response to viral PAMP, poly(I:C) 

Poly(I:C) was not found to stimulate the expression of claudin 3a. A similar expression of 

claudin 3a was observed in both the culture conditions. Claudin 8d was significantly 

upregulated in poly(I:C) stimulated cells in the 12 well plate at 6h (p<0.0001) and in the 

transwells at 24h (p<0.001). ZO-1 was significantly upregulated in both culture conditions 

at both 6- and 24-h stimulation (p<0.0001) (Figure 2.8). 
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Figure 2.8: Tight junction response of RTgill-W1 cells upon stimulation with viral PAMP at a 

concentration of 10 µg/mL for 6 and 24 h in the transwells and 12 well plate. Expression of tight 

junction gene Claudin 3a (A), Claudin 8d (B) and tight junction regulatory gene ZO-1 (C) in RTgill-

W1 cells upon stimulation was investigated. Data are mean ± SEM of three course independent 

experiments. Two-way ANOVA followed by Bonferoni’s multiple comparison was conducted to 

analyse the data the level of significance of p<0.01 using GraphPad Prism version 6.0. *=p<0.01, 

**=p<0.001, ***=p<0.0001. 

 

2.3.4.2 Response to bacterial PAMP, LPS and PGN 

Bacterial PAMPs LPS and PGN were not found to induce the expression of claudin 3a and 

8d which was also similar in both the culture conditions. However, ZO-1 was significantly 

upregulated in the transwells in all the groups compared to the counterparts in the 12 well 

plates. In the 12 well plate culture, LPS was found to upregulate ZO-1 expression (p<0.001) 

while in the transwells both LPS and PGN were found to upregulate ZO-1 expression 

(p<0.0001) (Figure 2.9).  
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Figure 2.9: Tight junction response of RTgill-W1 cells upon stimulation with bacterial PAMPs LPS 

and PGN at a concentration of 10 µg/mL for 24 h in the transwells and 12 well plate. Expression of 

tight junction gene Claudin 3a (A), Claudin 8d (B) and tight junction regulatory gene ZO-1 (C) in 

RTgill-W1 cells upon stimulation was investigated. Data are mean ± SEM of three course 

independent experiments. Two-way ANOVA followed by Bonferoni’s multiple comparison was 

conducted to analyse the data with the level of significance of p<0.01 using GraphPad Prism version 

6.0. The asterisk *=p<0.01, **=p<0.001, ***=p<0.0001 and ****=p<0.00001 denote significance 

between culture methods within treatments while ++=p<0.001 and +++=p<0.0001 denote significance 

between control and treatment within the culture methods.  

 

2.3.5 Recognition of PAMPs in RTgill-W1 cells 

Bacterial and viral PAMPs play significant roles in immunomodulation of host cells by 

activating different antimicrobial responses. Different PAMPs bind to different intracellular 

and extracellular receptors on host cells and become internalized by endocytic mechanisms 

either in actin-dependent or independent manner. Flow cytometry and fluorescent 

microscopy techniques were used to investigate the pathway of recognition of PAMPs in 

RTgill-W1 cells.  

 

2.3.5.1 Observation of internalization by fluorescent microscopy  

To investigate the recognition pathway of PAMPs by RTgill-W1 cells, cells were grown in 

96 well plates. Cells were stimulated with poly(I:C) labelled with fluorescein isothiocyanate 

(FITC), LPS labelled with Alexa Fluor 488 and Muramyl dipeptide (MDP) labelled with 

Rhodamine. All were applied at 10µg/mL for 24 h and then cells they were observed under 

fluorescent microscope. MDP and LPS were found to be internalized by RTgill-W1 cells, 

as the cells produced a fluorescent signal. However, poly(I:C) treated cells did not give any 

fluorescent signal.  
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To inhibit actin dependent uptake cells were treated with Cytochalasin D (CyD) which led 

to rounding, detachment from the surface and reduced numbers of cells. MDP Rhodamine 

LPS-labelled Alexa Fluor 488 were internalised by CyD treated cells.  

 

2.3.5.2 PAMPS internalization in polarized and non-polarized RTgill-W1 cells 

To investigate the recognition pathway of PAMPs by RTgill-W1 cells, cells were grown 

onto 96 well plates and 24 well transwells system as both having similar growth area. Cells 

were stimulated with poly(I:C) labelled with FITC, LPS labelled with Alexa Fluor 488 and 

MDP labelled with Rhodamine at 1 µg/mL and 10µg/mL for 30 min, 3h, 24 h and 48 h. 

Cells were analysed by flow cytometry for the detection of internalization of poly(I:C), LPS 

and MDP. Initial data showed the internalization of MDP and LPS at 3, 24 and 48 h of 

stimulation at the dose of 10 µg/mL while the percentage of positive cells was very low at 

30 min post stimulation at 10 µg/mL and at all the time points at 1µg/mL concentration (data 

not shown). However, the percentage of internalization of poly(I:C) was 1-2% (data not 

shown).  

 

To further analyse the internalization of ligands cytochalasin D (CyD) was added 1 h before 

stimulation at a concentration of 1µg/mL to inhibit ligand internalization. Concentration of 

CyD and duration of pre-treatment were optimized before starting the final experiments. 

Cells were subsequently stimulated for 3 h with the labelled ligands at a concentration of 10 

µg/mL in 96 well plate and 24 well transwells. 

 

CyD was found to decrease the internalization of LPS significantly in both non-polarized 

and polarized cells (p<0.05 and p<0.01 respectively) (Figure 2.10 C, D and Figure 2.11 C, 

D). However, MDP internalization was not significantly inhibited by CyD in either polarized 

or non-polarized cells (Figure 2.10 A, B and Figure 2.11 A, B). Moreover, internalization 

and inhibition of both of the ligands were higher but not significant in polarized epithelial 

cells (transwells) than that of non-polarized cells (well plate).  
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Figure 2.100: Internalization of PAMPs in RTgill-W1 cells in presence and absence of CyD. Cells 

were treated with CyD 1 h prior to stimulation in treated group. Percentage internalization data were 

obtained from FACS analysis. Four independent experiments were conducted, and data were 

presented as mean  SEM. Bars represent the percentage of internalization of MDP in well plate (A) 

and transwells (B); and LPS in the well plate (C) and transwells (D) into RTgill-W1 cells. Data were 

analysed using GraphPad prism version 6.0 with the level of significance of *p<0.005, **p<0.001. 
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Figure 2.111: Intracellular fluorescent labelling of RTgill-W1 cells at 3 h incubation with 10 µg/mL 

MDP-Rhodamine and LPS-Alexa Fluor 488 in 96 well plate (A and B) and in transwells (C and D). 

CyD was used as the inhibitor. Cells were analysed in CytFlex flow cytometer and data were 

analysed using CytExpert software.  

 

 

To study other uptake mechanisms, involve in MDP internalisation 3 other inhibitors 

including L-histidine, cefradine and lisinopril were used. Initially the dose of the inhibitors 

was optimized which was 2 mM. The experiment was conducted in 24 well transwells. The 

MDP internalization in RTgill-W1 cells was significantly inhibited by L-histidine, cefradine 

and lisinopril. The amino acid L-histidine was found to reduce the uptake of MDP by 17%. 

The antibacterial drug cefradine was able to inhibit the internalization of MDP by 24% while 

ACE inhibitor lisinopril was found to suppress the uptake by 30% (Figures 2.12, 2.13). 
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Figure 2.12: Histograms showing the flow cytometry data of positive and negative RTgill-W1 cells 

for MDP-Rhodamine. MDP internalization was inhibited by Cefradine (A), Lisinopril (B) and L-

histidine (C). Cells were analysed in CytFlex flow cytometer and data were analysed using CytExpert 

software.  

 

 

 

Figure 2.13: Internalization of MDP in RTgill-W1 cells in presence or absence of inhibitors. Cells 

were treated with inhibitors before 1 h of stimulation in treated group at a concentration of 2 mM. 

Percentage internalization data were obtained by FACS analysis. Four independent experiments 

were conducted, and data were presented as mean  SEM. Bars represent the percentage of 

internalization of MDP into RTgill-W1 cells with or without L-histidine (A), lisinopril (B) and 

cefradine (C). Data were analysed (Paired sample t-test) using GraphPad prism version 6.0 with the 

level of significance of p<0.05. 
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2.4 Discussion 

Gill is one of the most important organs in fish which is a point of entry for many 

microorganisms. The gill has a complex architecture comprising several different types of 

cells making it difficult to study the role of each cell in host defence. The expression pattern 

of certain genes in the gill in in vivo studies might be the cumulative effect of several cell 

types within the gill. As blood is continuously flowing through the gill, different nucleated 

blood cells also play a role in the expression of genes in the gills. This together makes it 

difficult to evaluate the contribution of gill epithelial cells to innate immunity. Thus, 

epithelial RTgill-W1 cells, have a great potential to study the contribution of gill epithelial 

cells in barrier function and innate immunity,  

 

2.4.1 Modulation of epithelial integrity and tight junction function by viral and 

bacterial PAMPs 

Epithelial barrier properties of gills play a key role in innate immunity against microbial 

infection. The integrity of an epithelial layer can be monitored as a function of transepithelial 

electrical resistance (TER) and the expression of tight junction proteins. To monitor the 

barrier function of RTgill-W1 cells in transwells upon stimulation with viral and bacterial 

PAMPs, TER measurement (method section 2.2.3), and quantification of the expression of 

some selected tight junction genes by absolute RT-qPCR (method section 2.2.4) was 

performed. 

 

2.4.1.1 Response to viral PAMP, poly(I:C) 

The epithelial integrity of RTgill-W1 as measured by TER was found to increase if exposed 

to viral PAMP poly(I:C) (10µg/mL). The tight junction genes Claudin 8d and ZO-1 were 

found to be upregulated by poly(I:C) which correlates to the observed increased epithelial 

resistance. Similar induction of TER by poly(I:C) (10µg/mL) has been reported in human 

epidermal keratinocytes (Yuki et al., 2011) while Borkowski et al. (2015) have reported 

dose-dependent increase of TER along with claudin and occludin mRNA expression by 

poly(I:C) in human epidermal keratinocytes. These findings are in accordance with the 

current results and could represent the response of epithelial cells to poly(I:C) stimulation 

while endothelial cells respond in the opposite way. Poly(I:C) has been shown to induce a 

decrease in TER as early as 6 h of stimulation along with decrease in claudin 5 and no change 

in ZO-1 gene expression in human endothelial cells (Huang, Stuart, Takeda, D’Agnillo, & 
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Golding, 2016). In another study, poly(I:C) has been shown to reduce TER in human 

polarized airway epithelial cells (Comstock et al., 2011).  

 

2.4.1.2 Response to bacterial PAMP, LPS and PGN 

Bacterial PAMPs LPS and PGN were found to increase TER (Figure 2.4) while tight 

junction genes claudin 3a and 8d were not regulated. ZO-1 was found to be significantly 

upregulated in the transwells by both LPS and PGN (Figure 2.5). Previously, both LPS and 

PGN have been shown to modulate the resistance of in human epidermal keratinocyte cells 

by increasing TER as early as 3 h post stimulation with LPS and PGN (10µg/mL). 

Furthermore in the same study ZO-1 mRNA abundance was induced by PGN induction 

(Yuki et al., 2011). In contrast, LPS has been shown to disrupt the integrity and decrease 

TER in rat cholangiocytes (epithelium of bile duct) and Caco-2 cells (colorectal epithelium) 

(Guo et al., 2013; Sheth et al., 2007).  

 

Considering the previous findings and the results of the current study, it can be suggested 

that viral and bacterial PAMPs increase cellular integrity and resistance towards the exterior 

environment.  

 

2.4.2 Induction of innate immunity by PAMPs  

As the first line of defence, innate immune response is important for the subsequent and 

quick activation of adaptive immune mechanisms (Zhao et al., 2009). In the present study, 

the innate immune response effectors in RTgill-W1 cells was investigated in a short and 

long-time windows post stimulation with PAMPs (Figures 2.3-2.5 in result section). The 

earliest antiviral response was observed at 30 min post stimulation which suggests that, 

RTgill-W1 cells are able to respond to viral infection by producing interferon (IFN) and 

subsequently Mx2. The bacterial PAMPs LPS and PGN were also found to modulate innate 

immune responses in RTgill-W1 cells by upregulating mRNA abundance of TLR3, IFN 

and Mx2.  

 

Kasamatsu et al. (2010) have reported the upregulation of mRNA transcripts of TLR3 upon 

poly(I:C) stimulation in blood cells of lamprey (Lethenteron japonicum). Upregulation of 

TLR3 and interferon has been shown in rainbow trout spleen upon stimulation with 

poly(I:C) (Abós et al., 2014). Al-Hussinee et al. (2016) reported no expression of interferons 
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or Mx1 in control RTgill-W1cells while cells stimulated with LPS or poly(I:C) or with both 

simultaneously upregulated interferon and Mx production. Moreover, poly(I:C) was shown 

to reduce viral replication of VHSV in RTgill-W1 cells while LPS was found to be less 

effective in delaying viral replication (Al-Hussinee et al., 2016). poly(I:C) was also shown 

to be an effective inducer of interferon stimulated genes (ISGs) like Mx in BF-2 cells (Saint-

Jean & Pérez-Prieto, 2006), and interferon-1 and Mx-1 and -3 in RTgill-W1 cells (Poynter 

et al., 2015a). The upregulation of TLR3, IFN and Mx2 upon stimulation with poly(I:C), 

suggests that, the antiviral response in rainbow trout gill epithelial cells follows the TLR3 

signaling pathway (Børre Robertsen, 2008) which depends on induction by viral particles.  

 

IFN and innate immune response gene Mx2 were upregulated by LPS in polarized RTgill-

W1 cells (Figure 2.7). The antiviral function of LPS in fish has not yet been reported. Thus, 

the mechanism involved in antiviral response upon LPS stimulation in RTgill-W1 cells is 

not clear. However, studies in mammalian cell lines demonstrated LPS induced antiviral 

response. For example, in mouse primary peritoneal exudates cells (PECs), LPS has been 

shown to induce IFN and NO production (Ito et al., 2005). IFN-/ induction by LPS has 

also been reported in mouse macrophages (Gao et al., 1998). Tafalla et al. (2001) have 

reported the production of Nitric Oxide (NO) by turbot kidney macrophages in response to 

LPS stimulation and NO had previously been shown to inhibit the replication of VHSV 

(Tafalla et al., 1999). Later, NO was also shown to inhibit viral replication cycle of several 

mammalian viruses including SARS CoV (Akerstrom et al., 2005) and Adenovirus (Cao et 

al., 2003). Mehta et al. (2012) reported the role of NO as an alternative antiviral factor in 

primary mouse embryonic fibroblast cells.  

 

NO and NO synthetase (NOS) have been identified in fish gill epithelium (Ebbesson et al., 

2005; Hyndman et al., 2006; Mistri et a., 2018; Tipsmark & Madsen, 2003). In rainbow trout 

gill, inducible nitric oxide (iNOS) expression has been shown to be induced by parasitic 

infection (Bridle et al., 2006) and bacterial infection (Ward et al., 2003). These together 

suggest that, in the rainbow trout gill epithelia, LPS induced interferon induction might 

follow the alternative antiviral pathway where NO acts as an intermediate product. It would, 

therefore, be necessary to investigate the effects of LPS on NO production in RTgill-W1 

cells.  
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In the study, PGN induced an antiviral response in RTgill-W1 cells by upregulating TLR3, 

IFN and Mx2 (Figure 2.7). PGN has been reported to induce interferon production in 

mammalian cells. PGN synthesized from Lactobacillus rhamnosus has been shown to 

upregulate interferon ,  and  production in mice (Clua et al., 2017). Liu et al. (2004) have 

also reported interferon induction (IFN / production) and subsequent reduction of viral 

replication of vaccinia virus in RAW 264.7 cells (murine macrophage) by the stimulation of 

PGN synthesized from Bacillus alcalophilus. This study confirms that PGN stimulation of 

antiviral response may be through conserved activation pathways in vertebrate history.  

 

2.4.3 Traditional cell culture vs transwells 

Since the development of cell culture techniques, in vitro studies have become more popular 

than in vivo studies as in vitro studies alone allow consistent and reproducible 

experimentation. Cell culture also supports the 3R (replacement, refinement and reduction) 

agenda (https://www.nc3rs.org.uk/). However, in the case of epithelial cells in vitro studies 

do not reflect the in vivo situation as the epithelial cells typically develop polarization which 

is reduced or lost in conventional cell culture systems but can be retained in transwell 

culture. Epithelial cells cultured in permeable inserts (transwells) can mimic the in vivo 

condition (Srinivasan et al., 2016). Polarisation of epithelial cells can be retained in the 

transwell systems. In the present study, tight junction response and antiviral response of 

RTgill-W1 cells in conventional cell culture and in transwell system culture were compared.  

 

Upon stimulation with poly(I:C), an immediate antiviral response in the transwell system 

was observed within 30 min while in conventional culture the antiviral response was 

detected much later at 24 h post stimulation. Moreover, a 4 to10 fold higher antiviral 

responses by RTgill-W1 cells upon stimulation with bacterial LPS and PGN in the transwells 

were also shown. A 5- to 23-fold higher expression of the tight junction mRNA ZO-1was 

also observed in RTgill-W1 cells cultured on transwells upon stimulation with LPS and PGN 

highlighting the importance of polarization. Innate immune response has also been shown 

in polarized epithelial cells expressing IL-6 in response to bacterial infection (Healy, Cronin, 

& Sheldon, 2015). Taken together it demonstrates that fully polarised epithelial cells respond 

significantly faster than non-polarized epithelial cells. Polarized epithelial cells grown onto 

the transwells can uptake molecules from both apical and basal surfaces which resembles 

the in vivo situation allowing a faster response to stimuli. Clearly cell polarity is important 
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in a balanced immune response as failure of the formation of apico-basal polarity has been 

shown to be associated with human cancer development. For example, adenovirus E4-ORF1 

oncoprotein has been found to interact with several cellular proteins including ZO-1 

localizing to the tight junction of epithelial cells resulting in blocking functional tight 

junction formation and polarization of MDCK cells (Latorre et al., 2005).  

 

2.4.4 Perception of viral and bacterial PAMPs by RTgill-W1 cells 

The first step of innate immune response is the recognition of pathogens or the molecules 

associated with the pathogens. Upon recognition pathogens or PAMPs are internalized into 

the cells. Sometimes, pathogens enter cells through the hosts’ mechanisms of internalization. 

Thus, to block the entry of the pathogens into the cells, it is crucial to know the underlying 

mechanisms of internalization. In the present study, the mechanisms involved in the 

recognition of poly(I:C), LPS and PGN by RTgill-W1 cells was studied by using flow 

cytometry.  

 

Poly(I:C) is a well-known dsRNA analogue that is recognized by TLR3 in the endosomal 

compartment where it plays a key role in initiating an antiviral state. In this study, a low 

percentage of cells was found to internalize fluorescein-labelled poly(I:C), although a strong 

and rapid antiviral response had been shown even at a low concentration (1µg/mL) of 

poly(I:C) (Figure 2.6). On the other hand, LPS was found to be internalized in polarized and 

non-polarized trout gill epithelial cells (18.94±1.3%). To reveal the LPS signalig pathway 

in trout gill epithelia, a potential inhibitor Cytochalasin (CyD) was used to selectively block 

actin polymerization. CyD significantly reduced (71-78%) the internalization of LPS. 

 

CyD is cell-permeable and is a potent inhibitor of actin polymerization that disrupts actin 

microfilaments (May et al., 1998) by inducing the depolymerization of the actin 

cytoskeleton. CyD selectively blocks endocytosis of membrane bound and fluid phase 

markers from the apical surface of polarized cells without affecting the uptake from the 

basolateral surface (Gottlieb et al., 1993). CyD has also been found to inhibit infections by 

viruses that enter cells by apical endocytosis in polarized MDCK cells (Gottlieb et al., 1993). 

It therefore, appears that LPS internalization in rainbow trout gill epithelia follows the actin-

dependent endocytosis pathway. In a study by Lu et al. (2018) the scavenger receptor class 

B 2a (PaSRB2a) mediated internalization of LPS in ayu (Plecoglossus altivelis) 



71 

 

macrophages has been reported. As Class-A scavenger receptor has been identified in 

RTgill-W1 cells earlier (Poynter et al., 2015b), it is tempting to speculate that this receptor 

might be involved in the endocytosis pathway of the observed LPS internalization in trout.  

  

However, in mammals and some fishes with TLR4 orthologs, LPS is known to be sensed by 

TLR4. Suzuki et al. (2003) demonstrated that internalization of LPS in human intestinal 

epithelial cells may take place through TLR4 dependent and independent pathways. As 

TLR4 is not present in the rainbow trout genome, thus, the pathway by which LPS is 

recognized by trout gill epithelia remains unclear. However, a recent study demonstrated a 

non-canonical pathway of sensing LPS by zebra fish caspase caspy2 in zebra fish cell line 

ZF4 (Zhang et al., 2018).  

 

Another bacterial PAMP, in the current study, MDP has also been found to be internalized 

in both polarized and non-polarized epithelial cells. However, the internalization was not 

significantly reduced by CyD (6-11% inhibition) indicating an actin independent uptake. For 

further investigation of the internalization pathway, several other inhibitors include 

Lisinopril (an angiotensin converting enzyme inhibitor), cefradine (antibiotic known to 

inhibit autolysin which breaks down PGN) (Foster et al., 2000) and L-histidine (a 

proteinogenic amino acid with peptide uptake inhibitory properties (Song, Hu, Wang, Smith, 

& Jiang, 2017)) have been used in the present study. The inhibition of MDP uptake was 

found to be 30%, 24% and 17% respectively (Figure 2.13). In a study, MDP uptake into 

MDCK cells has been shown to be reduced by around 75-85% by lisinopril and cefradine, 

and by 50% by histidine (Song et al., 2017) suggesting peptide/histidine transporter 1(PHT1) 

mediated internalization. Therefore, partial inhibition of MDP internalization in the RTgill-

W1 cells by Lisinopril, cefradine and L-histidine supports PHT1 mediated internalization.  
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2.5 Conclusion 

The findings of the current study suggest faster antiviral response of trout gill epithelial cells 

when cultured on transwells rather than when cultured in conventional cell culture system 

due to polarization. Bacterial and viral PAMPs can increase the epithelial resistance and 

upregulate tight junction mRNA expression in RTgill-W1 cells. Bacterial and viral PAMPs 

also trigger an innate immune response in RTgill-W1 cells. Bacterial LPS internalization in 

RTgill-W1 cells is mediated by actin dependent endocytosis whereas MDP internalization 

follows PHT mediated actin independent endocytosis.  
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Chapter 3 

Cellular response and signalling in RTgill-W1 cell upon stimulation with viral and 

bacterial PAMPs through activation of phosphorylation cascades 

 

3.1 Introduction 

Rapid signal transduction from cell membrane receptors to the nucleus relies on different 

mechanisms such as the post-translational modification (PTM) of proteins. PTMs of proteins 

can alter the location of a protein within the cell, can trigger the specific interaction with 

other proteins, enzymatic activity or the stability of substrate proteins. Several PTMs have 

been described in cell systems being ubiquitination, acetylation and phosphorylation the best 

characterised molecular switches in cell signaling (Deribe et al., 2010). Protein 

phosphorylation is a reversible process by which a phosphate group from ATP (or other 

nucleoside phosphates) is esterified to specific amino acids by protein kinases. Generally, 

the most common sites (amino acids) of phosphorylation identified in eukaryotes are serine, 

threonine and tyrosine which comprise approximately 78.7-90, 10.3-18.5 and <1-2.8% of 

total phosphoproteome respectively (Arrington et al., 2017; Olsen et al., 2006; Bo Zhai et 

al., 2008; Wang et al., 2013; Zhu et al., 2017). Pphosphorylation at histidine, aspartate, 

cysteine, lysine and arginine residues have also been reported although at a very low 

percentage (Liu & Chance, 2014). The addition of a phosphoryl group adds a – 2 charge at 

physiological pH provoking conformational changes to proteins. Moreover, phosphorylation 

creates docking sites for interaction with other proteins by domains that recognise 

phosphorylated residues (reviewed by Deribe et al., 2010).  

 

Phosphoproteins are regulated by a network of protein kinases, phosphatases and phospho-

binding proteins that are able to modify the phosphorylation state of proteins, recognise 

unique phosphopeptides or target particular proteins for degradation (reviewed by Liu and 

Chance, 2014). Although both kinases and phosphatases have been recognised to be very 

important for signal transduction, it is currently understood that while kinases control the 

amplitude of the signal, phosphatases are key dictators of the rate and duration of the signal 

(Hornberg et al., 2005). In humans, more than 500 kinases have been described to control 

protein phosphorylation. Most characterised kinases are serine/threonine kinases. Protein 

kinases have a conserved structural motif, which include an activation loop, a catalytic 

domain and ATP binding domain. Protein kinases often catalyse the phosphorylation of 
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proteins and are themselves substrates for other protein kinases creating signal amplification 

as the activity of the first kinase is magnified by the catalytic activity of the other kinases 

downstream, a mechanism used by mitogen-activated protein kinases (MAPKs) (Morrison 

2012). Kinases are able to recognise highly conserved regulatory motifs. However, kinase 

specificity varies and as result while on average in humans each protein kinase may 

phosphorylate a few dozen proteins some protein kinases are highly specific while others 

are likely to phosphorylate hundreds of distinct proteins within cells (i.e. ) (Litchfield, 2003). 

  

Traditionally, the study of phosphorylation events has been studied in a targeted manner by 

the use of phosphorylation-specific antibodies. However, recent advances in proteomics 

technology, which include phosphopeptide enrichment, high-accuracy mass spectrometry 

and associated bioinformatics tools make it now possible to analyse the phosphoproteome 

in an untargeted manner without initially relying on antibodies (Macek et al., 2009).  

 

There are several issues that should be considered before starting phosphoproteomics 

experiment. Sample preparation steps prior to LC-MS analysis can have important role on 

the final results. The amount of protein that is used for analysis is a critical point to get 

reasonable number of phosphoproteins. Use of an appropriate protease for sample digestion 

is also important. The most commonly used enzyme is trypsin, which cleaves proteins at the 

carboxyl terminus of arginine and lysine residues (Beltran & Cutillas, 2012). Isolation of 

phosphopeptides from the mixture of more abundant unmodified peptides is also a critical 

step in the phosphoproteomics workflow (Montoya et al., 2011). To overcome this 

complexity, several enrichment techniques are used. Enrichment using TiO2 based columns 

is a popular choice with showing good reproducibility (Cutillas, 2015; Zhu et al., 2017). 

Recently, a high select TiO2 phosphopeptide enrichment kit has been introduced which has 

been shown to capture more 97% phosphopeptides (Choi et al., 2017). For the identification 

and functional and molecular characterization of proteins, many different bioinformatics 

tools are available. Uniprot (https://www.uniprot.org/) and NCBI 

(https://www.ncbi.nlm.nih.gov/) are the most comprehensive protein databases. For gene 

ontology analysis, motif and kinase enrichment analysis, subcellular localization, functional 

characterization based on orthologous groups, gene conversion from one species to another, 

protein-protein interaction, signaling pathway analysis, several tools are available. Some of 

the commonly used platforms are Enrichr (http://amp.pharm.mssm.edu/Enrichr/), cytoscape 

(https://cytoscape.org/) and gene ontology consortium (http://geneontology.org/), Gene 

https://www.uniprot.org/
https://www.ncbi.nlm.nih.gov/
http://amp.pharm.mssm.edu/Enrichr/
https://cytoscape.org/
http://geneontology.org/
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STRING (https://string-db.org/) for protein-protein interaction and pathway analysis, 

eXpression2Kinases (X2K) Web (http://X2K.cloud), KSEA web 

(https://github.com/casecpb/KSEA) and KEA2: Kinase Enrichment Analysis 2 

(http://www.maayanlab.net/KEA2/) for kinase enrichment analysis, motif-X (http://motif-

x.med.harvard.edu/) and pLogo algorithm (https://plogo.uconn.edu) for motif analysis. 

Enrichr is also useful for kinase and pathway analysis. However, most of these 

bioinformatics tools are suitable for human, rat or other mammalian species. Some tools 

have the possibility to work with an underlying zebrafish database. Thus, bioinformatics 

analysis for other fish species is mainly based on mammalian functional information which 

in some cases might be inappropriate to other vertebrates. To this aim, it is required to 

convert fish proteins or genes accession numbers to human or zebra fish proteins or genes 

homologs to do some of the analyses. If there is not a human homolog then the information 

of those proteins is lost.  

 

Over the years, a substantial number of the gene expression studies in fish have been 

conducted based on the transcriptome analysis and sometimes the proteins have been 

deduced from the transcriptome which may be inaccurate in many cases. Few studies have 

analysed the phosphoproteome of zebrafish (Kwon et al., 2016; Lemeer et al., 2008; Lemeer 

et al., 2008) while as a non-model organism, rainbow trout has been studied focusing on the 

transcriptome in response to pathogens and PAMPs (Rebl et al., 2014). Very few studies 

have been conducted on the proteomics or phosphoproteomics of rainbow trout providing 

only partial information of phosphoproteomics data (Long et al., 2015).  

 

The molecular innate immune responses and tight junction gene expression in rainbow trout 

gill epithelial cells have been studied and demonstrated in previous chapter (Chapter 2). The 

innate immune responses have been found to be modulated by viral and bacterial PAMPS. 

Cellular integrity of trout gill epithelia has also been found to be modulated by viral and 

bacterial PAMPs while tight junction gene has been partially induced by PAMPs. Thus, to 

investigate the molecular mechanisms that are involved in innate immune response 

including signal transduction pathways and cellular integrity, phosphoproteome of trout gill 

epithelia in steady state and PAMPs induced state was studied. The present study included 

the identification of phosphoproteins with their sub-cellular localization, molecular and 

cellular functions, identification of different motifs and associated kinases and different 

signaling pathways in stimulated and non-stimulated RTgill-W1 cells by applying label free 

https://string-db.org/
http://x2k.cloud/
https://github.com/casecpb/KSEA
http://www.maayanlab.net/KEA2/
http://motif-x.med.harvard.edu/
http://motif-x.med.harvard.edu/
https://plogo.uconn.edu/
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in-solution quantitative phosphoproteomics using TiO2 enrichment-based LC-MS/MS 

analysis.  

 

3.2 Materials and methods 

3.2.1 Cell culture, stimulation and cell lysis 

Rainbow trout gill epithelial cells RTgill-W1 were maintained in L-15 medium with 10% 

FBS. Cells were grown in 75 cm2 flask. Ninety to ninety five percent sub-confluent culture 

was used for the experiment. The experiment was conducted in 6-well format transwell with 

a membrane pore size of 0.4 micron having a growth area of 4.2 cm2. Cells were seeded at 

a density of 0.8×106 cells per insert and were maintained until they reached confluency. 

Then cells were stimulated with poly(I:C) and muramyl dipeptide (MDP) at a concentration 

of 10 µg/mL for 30 min. Control cells were treated with DMSO as a mock stimulation. 

Lysates from 4 inserts of each treatment were pooled together. Conditions tested were as 

follow: control (n=4 biological replicates), MDP (n=3 biological replicates) and poly(I:C) 

(n=5 biological replicates). After 30 min of stimulation, cells were washed three times with 

PBS followed by cell lysis with 400 µL lysis-buffer (1 % (w/v) Sodium deoxycholate in 50 

mM ammonium bicarbonate and 1% phosphatase inhibitor cocktail (v/v) (Thermo Fisher 

Scientific, Hemel Hempstead, UK) per insert. All chemicals were from Sigma Aldrich 

(Dorset, UK) unless otherwise specified. 

 

3.2.2 Protein quantification and visualisation by 1D SDS-PAGE 

Protein quantification was performed using BCA assay according to the manufacturer’s 

instructions (Interchim Uptima, France) using Bovine Serum Albumin (BSA) (stock 

2mg/ml) as standard. Protein samples (25 µL) were dispensed in 96 well plates together with 

100 µL of working solution. Plates were incubated for 30 min at 37°C, cooled at room 

temperature and the absorbance was read at 562 nm using a BioTek Synergy HT 96-well 

plate spectrophotometer (BioTek, USA). To check the quality and integrity of the cell 

protein lysates extracted proteins from each sample were visualised by 1-Dimensional 

Sodium Dodecyl Sulphate Polyacrilamide Gel Electrophoresis (1D SDS-PAGE gel).  

 

1D SDS-PAGE: Ten micrograms of protein was mixed with 2 Laemmli sample buffer (Bio-

Rad, UK) at a ratio 1:1, then incubated in a heat block (Thomas Scientific, USA) at 100°C 

for 10 min. Samples were centrifuged for 3 min at 16,000 × g, then 25 µL of each sample 
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and 5 µL protein standard (Precision Plus Protein™ Standards, 10-250 kDa from Bio-Rad, 

USA) were loaded into each well of a 4-15%, 10-well comb, 30 µL Mini- protean TGX 

precast gel (Bio-Rad, UK). Gels were electrophoresed in 1x Lamelli SDS electrophoresis 

buffer (Tris base 250 mM, Glycine 1.92 M, SDS 1% in double distilled water) at 100 v for 

90 min and then stained with SimplyBlue™ Safe stain (Thermo Fisher Scientific, Hemel 

Hempstead, UK) overnight in mild shaking following 3 washes each wash with mili-Q water 

for 1 h in mild shaking. Finally, the gel was visualized and scanned using an Epson 

expression 1680 artist scanner (Epson, USA). 

 

 

Figure 3.1: Illustration of phosphoproteomics workflow. A) Cell culture, stimulation, collection of 

cells using lysis buffer, protein quantification and digestion, B) enrichment of phosphopeptides using 

enrichment kit. 

 



78 

 

3.2.3 Trypsin digestion  

One miligram of protein was used as the initial input. Protein samples were dried in Savant 

DNA 110 SpeedVac® Concentrator and re-suspended in 400-500 µL of 2 mM DTT (Bio-

Rad, UK) in 50 mM ammonium bicarbonate (Sigma-Aldrich, UK) by vortexing until protein 

dissolved completely. Samples were then incubated for 60 min at 37°C followed by another 

incubation for 60 min at 37°C in dark after adding 200 mM freshly prepared iodoacetamide 

(IAA) (Fisher Scientific, Leicestershire, UK) at 5 µL/100 µL of sample. Then 10 µL of 200 

mM DTT per 105 µL of sample were added followed by further incubation for 30 min at 

room temperature in dark. Finally, sequencing grade modified trypsin (Promega, UK) was 

added in a trypsin to protein ratio of 1:100 and incubated at 37°C overnight in dark. On the 

following day, the digestion was stopped by adding 96% formic acid (Fisher Scientific, 

Leicestershire, UK) to a final concentration of 1%. 

 

3.2.4 Clean-up of the tryptic digestion 

Clean-up of digested samples was performed using HyperSep™ SpinTips (Thermo Fisher 

Scientific, Hemel Hempstead, UK) according to the manufacturer’s instruction. Briefly, first 

the spin tip was washed three times with 50 µL of releasing solution (40% of 0.1% formic 

acid (Fisher Scientific, Leicestershire, UK) in miliQ water plus 60% of acetonitrile (Fisher 

Scientific, Leicestershire, UK)) by pushing through with syringe, followed by washing three 

times with 50 µL of binding solution (1% formic acid (Fisher Scientific, Leicestershire, UK) 

in miliQ water) in the same way. Then the samples were loaded to the spin tips using 50 µL 

each time. Spin tips were washed three times with binding solution followed by elution of 

sample in 50 µL of releasing solution. Second elution was done during which the sample 

was wetted with releasing solution and incubated for 5 min and pushed through with syringe. 

Eluted samples were directly dried for enrichment or stored at 4°C until further usage.  

 

3.2.5 Phosphopeptide enrichment 

Phosphopeptide enrichment was done using High-Select TiO2 Phosphopeptide enrichment 

kit (Thermo Scientific, Hemel Hempstead, UK). Before starting, all solutions were 

equilibrated at room temperature for around an h. Lyophilized peptide samples were re-

suspended in 150 μL of Binding/Equilibration Buffer. The pH of re-suspended samples was 

verified (acidic pH, <3 is recommended for optimum binding). The TiO2 spin tip was 

conditioned by washing the column in 20 μL of Wash Buffer followed by centrifugation at 
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3,000 × g for 2 min followed by another centrifugation at 3,000 × g for 2 min with 20 μL of 

Binding/Equilibration Buffer. The next step was the addition of 150 μL of peptide samples 

to the TiO2 spin tip and incubation for 5 min at room temperature followed by centrifugation 

at 1,000 × g for 5 min. Samples were reapplied in the spin tip column and centrifuged at 

1,000 × g for 5 min. The next step was wash step where the TiO2 spin tip was washed by 

adding 20 μL of Binding/Equilibration Buffer and centrifuged at 3,000 × g for 2 min 

followed by washing by adding 20 μL of Wash Buffer and centrifugation at 3,000 × g for 2 

min. These steps were repeated once. Finally, phosphopeptides were eluted in 50 μL of 

phosphopeptide Elution Buffer. The elution buffer was added directly to the TiO2 spin tip 

and was centrifuged at 1,000 × g for 5 min. Elution step was repeated once. The eluted 

phosphopeptides were dried in Savant DNA 110 SpeedVac® Concentrator and stored at -

80°C until analysis by LC-MS/MS.  

 

3.2.6 LC MS/MS  

The digested and enriched phosphopeptides were analysed using a Dionex Ultimate 3000 

RSLS nano-flow system (Dionex, Camberley UK). Samples were reconstituted in 10 μL of 

water and a volume of 5 μL were loaded onto a Dionex 100 μm × 2 cm 5 μm C18 nano-trap 

column at a flow rate of 5 μL min-1. The composition of the loading solution was 0.1% 

formic acid and ACN (98:2). Once loaded onto the trap column samples were washed off 

into an Acclaim PepMap C18 nano-column 75 μm × 15 cm, 2 μm 100 Å at a flowrate of 0.3 

μL min-1. The trap and nano-flow column were kept at 35°C in a column oven in the Ultimate 

3000 RSLC. Samples were eluted with a gradient of solvent A: 0.1% formic acid and ACN 

(98:2) versus solvent B: 0.1% formic acid and ACN (20:80) starting at 5% B rising to 50% 

B over 100 min. The column was washed using 90% B before being equilibrated prior to the 

next sample being loaded. The eluant from the column was directed to a Proxeon nano-spray 

ESI source (Thermo Fisher, Hemel, UK) operating in positive ion mode then into an Orbitrap 

Velos Fourier Transform (FTMS). The ionisation voltage was 2.5 kV and the capillary 

temperature was 200°C. The mass spectrometer was operated in MS–MS mode scanning 

from 380 to 2000 amu. The top 20 multiply charged ions were selected from each full scan 

for MS/MS analysis, the fragmentation method was HCD at 30% collision energy. The ions 

were selected for MS2 using a data dependant method with a repeat count of 1 and repeat 

and exclusion time of 15s. Precursor ions with a charge state of 1 were rejected. The 

resolution of ions in MS1 was 60,000 and 7500 for MS2.  
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3.2.7 MS data processing 

LC-MS/MS data were processed initially uploading the raw spectra data into Thermo 

Proteome Discoverer 1.4 (Thermo Scientific, Hemel Hempstead, UK). Peak picking was 

performed under default settings for FTMS analysis such that only peptides with signal to 

noise ratio higher than 1.5 and belonging to precursor peptides between 700-8,000 Da were 

considered. Identification of peptide and protein was performed with SEQUEST algorithm. 

An in house compiled database containing proteins from the latest version of the UniProt 

SwissProt database (2017) was compiled to include only Oncorhynchus mykiss. The search 

parameters were: Tryptic cleavage with 2 missed cleavages; static modification was 

carbamidomethyl of cysteines; allowed dynamic modifications were oxidation of 

methionine and phosphorlyation of serine, threonine and tyrosine. Precursor tolerance was 

set at 10 ppm and MS2 tolerance was set at 0.05 Da. Resulting peptides and protein hits 

were further screened by excluding peptides with an error tolerance higher than 10 ppm and 

by accepting only those hits listed as high and medium confidence by Proteome Discoverer 

software. The confidence of peptide matching was based on the false discovery rate (FDR). 

FDR threshold was set at 0.05, therein data was comprised by both peptides identified with 

high confidence (FDR<0.01) and medium confidence (FDR<0.05).  

 

3.2.8 Protein identification 

Protein identification was based on the presence of at least one unique peptide and 

quantification was based only on unique peptide(s). An Oncorhynchus mykiss uniprot 

database (https://www.uniprot.org) was used to match peptide sequences to protein 

identity (accession numbers). Sequences of uncharacterised proteins were blasted in 

BLASTp of NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (McGinnis & Madden, 

2004). The protein homologies were selected according to the criteria (identity >80%, E 

value <0.001) demonstrated by Pearson (2014).  

 

After phosphoprotein identification, the number of phosphoproteins were visualised by 

Venn diagram using online tool BioVenn (http://www.biovenn.nl) showing the unique 

and shared phosphoproteins by the different groups. Shared phosphoproteins were further 

analysed by t-test (p<0.05) using Microsoft Excel and presented by volcano plot using 

RStudio version 1.0.153. 

 

https://www.uniprot.org/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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3.2.9 Identification of phosphoprotein localization 

Predicted sub-cellular localization of phosphoproteins was obtained using WoLF PSORT 

algorithm (https://wolfpsort.hgc.jp) based on both known signal motifs and their amino acid 

sequence features having over 80% prediction accuracy (Horton et al., 2007). The protein 

sequences were uploaded into the algorithm and the prediction of sub-cellular localization 

was made based on the highest identity to the database.  

 

3.2.10 Gene Ontology (GO) annotation and kinase enrichment analysis (KEA) 

Enrichr (http://amp.pharm.mssm.edu/Enrichr; Chen et al., 2013; Kuleshov et al., 2016) tool 

was used to perform GO and kinase enrichment analysis (KEA). Since the tool supports only 

human, mouse and rat genes, best matched human counterparts of the trout genes identified 

in rainbow trout were used. To this end, trout protein accession numbers were blasted in 

NCBI against zebrafish (Danio rerio) and zebrafish uniprot protein IDs were exported. The 

gene symbols of respective proteins of zebrafish were then extracted using the biological 

DataBase network (https://biodbnet-abcc.ncifcrf.gov/db/db2db.php). Finally, zebrafish gene 

symbols were then converted to human gene symbols using OrthoRetriever tool 

(http://lighthouse.ucsf.edu/orthoretriever/). The procedure of extracting tentative gene list of 

human counterparts of relevant trout sequences has been illustrated in figure 3.2. Adjusted 

p-value and combined score were considered for GO annotation and kinase prediction where 

the combined score was described by Chen et al. (2013) as c = log(p)  z, where c = the 

combined score, p = Fisher exact test p-value, and z = z-score for deviation from expected 

rank.  

 

For general cellular and molecular characterization of phosphoproteins identified in 

salmonid gill epithelia in steady state and stimulated conditions, all the phosphoproteins 

identified in each group were used for GO analysis. Kinase enrichment analysis was also 

performed using all the phosphoproteins in each group. The bigger data set was used to draw 

a more complete picture of phosphoproteome in fish gill epithelia for each tested condition.  

 

3.2.11 Pathway analysis 

The gene symbols of human counterparts of the identified rainbow trout proteins were used 

in Enrichr and significantly enriched (p<0.05) KEGG pathways were predicted. Relevant 

KEGG pathways for human were exported and the pathways were adopted for the genes 

https://wolfpsort.hgc.jp/
http://amp.pharm.mssm.edu/Enrichr
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identified in rainbow trout using the tool Pathvisio (https://www.pathvisio.org/). Similar to 

GO annotation and KEA, all the phosphoproteins identified in each group were used for 

pathway analysis to have overall picture regarding the signaling pathways activated in steady 

state and stimulated RTgill-W1 cells.  

 

3.2.12 Phosphorylation motif analysis 

Phosphopeptide sequences were uploaded to pLogo algorithm (https://plogo.uconn.edu) for 

the identification motifs present in each data set (O’Shea et al., 2013). The whole 

phosphopeptide data from each treatment group were used to identify motif which would 

allow to identify main kinases involved in the phosphorylation events in rainbow trout gill 

cells at stimulated and control conditions. Sequences were centered on each phosphorylation 

site and extended to a total length of 15 amino acids (±7 residues). When the site was located 

in the N/C-terminal of the protein, the sequence was filled up to 15 amino acids with the 

required number of “X”. The sequences of proteins from rainbow trout identified in this 

study were used as a background dataset. For the graphical presentation of the identified 

motifs, logo-like representations were generated for each motif using pLogo based on their 

statistical significance (p<0.05).   

 

3.2.13 Kinase identification by literature search 

From the motif substrates, kinases can be predicted. Motif substrates, identified in RTgill-

W1 cells, were associated with literature (Schwartz and Gygi, 2005; Pearson and Kemp, 

1991; Villen et al., 2007; Leighton et al., 1995; Burch et al., 2004; Pinna and Ruzzene, 1996). 

Then the Kinases were identified from the literature search.  

 

https://www.pathvisio.org/
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Figure 3.2: Workflow of phosphoprotein analysis for KEA, pathways and GO.  

 

Phosphoproteins were also classified based on the functional annotation of orthologous 

groups. For this Discover EggNOG version 4.5.1 (http://eggnog.embl.de; Huerta-Cepas et 

al., 2016) which utilizes the database of GO and KEGG, was used. The protein sequences 

of the identified phosphoproteins from the uniprot database were used to find the functional 

groups.  

 

3.2.14 Statistical analysis 

Phosphoprotein abundance between groups was compared by t-test using Microsoft Excel 

where differences between groups were considered statistically significant at p<0.05.  

 

 

  

http://eggnog.embl.de/
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3.3 Results 

3.3.1 Phosphoproteome analysis of RTgill-W1 cells 

To study the signalling mechanisms involved in the molecular innate immune responses, the 

phosphoproteome of RTgill-W1 cells was analysed by LC-MSMS following 

phosphopeptide enrichment in steady state and in cell stimulated with poly(I:C) and MDP-

Rhodamine independently for 30 min. Phosphopeptide enrichment, yielded similar 

percentage of phosphorylated peptides in all samples which was 83.23±7.58%, 

78.40±2.61% and 83.30±5.33% (mean±SD) respectively in control, MDP and poly(I:C) 

treatment groups (Figure 3.3a). However, although the percentage of phosphopeptide 

enrichment was similar, the number of phosphopeptides identified was higher in poly(I:C) 

stimulated cells (1,388 phosphopeptides) compared to control (734 phosphopeptides) and 

MDP stimulated cells (666 phosphopeptides). In total, 1,789 phosphopeptides were 

identified, 751 peptides of which were unique in poly(I:C) stimulated cells (Figure 3.3b).  

 

 
 

Figure 3.3: Phosphopeptides identified in RTgill-W1 cells in different treatment groups. (A) Stacked 

histogram showing the number and percentage of phosphopeptides and non-phosphopeptides in 

different groups. (B) Venn diagram showing the number of phosphopeptides shared and unique 

between different treatment groups. 

 

A total of 2,612 phosphorylation sites were detected in 1,789 phosphopeptides. More than 

half of the phosphopeptides were monophosphopeptides (65%) whereas 30% were 

diphosphopeptides (Figure 3.4A). The distribution of phosphorylated amino acids was 

similar in all samples, ranging from 70.72-73.80% pSer, 20.05-21.55% pThre and 5.91-

7.23% pTyr (Figure 3.4 B-D).  
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Figure 3 4: Phosphorylation sites at Serine, Threonine and Tyrosine residues. Phosphorylation sites 

were detected in LC-MS/MS using Proteome discoverer. (A) Phosphorylation frequency in each 

peptide at different residues, number and percentage of phosphosites at each residue in control (B), 

MDP (C) and poly(I:C) (D) stimulated cells.  

 

Phosphopeptide identifications compiled at protein level resulted in the identification of 691 

phosphoproteins in total, with poly(I:C) group comprising 597 phosphoproteins, 360 of them 

being unique (Figure 3.5). Information on the phosphoproteins identified available in 

Supplementary Table S3.2. Phosphoproteins shared in all the groups were further analysed 

and presented in volcano plot. Among the shared phosphoproteins, 5 phosphoproteins 

(Thymosin β 11, Lupus La protein homolog B-like, Sequestosome 1-like, Laminin-A-like 

and heat shock 70kDa protein) were significantly upregulated in poly(I:C) treated cells 

compared to control cells (t-test, p<0.05; Figure 3.5 C) while one phosphoprotein (scaffold 

attachment factor B2-like isoform X1) was significantly upregulated in MDP compared to 

the control group (Figure 3.5D). Moreover, compared to MDP treatment, 2 phosphoproteins 

(Thymosin β 11 and, Sequestosome 1-like) were significantly upregulated in poly(I:C) 

stimulated cells (Figure 3.5C).  
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Figure 3.5: Number of phosphoproteins identified in RTgill-W1 cells in different groups. (A) Actual 

number of phosphoproteins in control, MDP and poly(I:C) stimulated cells. (B) Venn diagram 

showing the distribution of phosphoproteins in different groups. (C-E) Volcano plot of shared 

proteins between different treatment groups, (C) Control vs MDP, (D) Control vs poly(I:C), (E) 

MDP vs poly(I:C). Red dot represents significantly higher abundance of protein between groups, 

p<0.05. Phosphoprotein abundance between treatment groups was analysed by t-test using Microsoft 

excel and presented by volcano plot using RStudio version 1.0.153. 

 

3.3.2 Phosphoprotein localization 

Localization of the phosphoproteins was predicted using the WoLF PSORT algorithm 

(https://wolfpsort.hgc.jp). Most of the phosphoproteins were predicted to be localized in the 

nucleus and cytoplasm, which comprised around 80% of total phosphoproteins identified 

(Figure 3.6). Other predicted subcellular locations were mitochondria, plasma membrane, 

extracellular membrane and cytoskeleton. Interestingly, phosphoproteins localized in the 

cytoskeleton were found only in poly(I:C) stimulated cells. Similarly, the percentage of 

phosphoproteins residing in the extracellular and plasma membrane was higher in poly(I:C) 

stimulated cells compared to control cells. However, similar cellular distribution of 

phosphoproteins was observed in control and MDP stimulated cells except for mitochondria 



87 

 

where the percentage was lower for MDP stimulated cells compared to control cells and for 

plasma membrane where the percentage was higher in MDP stimulated cells compared to 

control cells. Full data are available in Supplementary Table S1. 

 

Figure 3.6 : Localization of phosphoproteins identified in different treatment groups. Bar with 

same colour shows the percentage of phosphoproteins in specific localization in the respective 

treatment group.  

 

3.3.3 Gene ontology (GO) enrichment analysis of phosphoproteins 

The Enrichr tool was used for GO enrichment analysis. Based on annotations obtained 

according to biological processes, an enrichment in phosphoproteins associated with RNA 

and mRNA processing, regulation and metabolism was obtained. Many of the biological 

processes like cytoskeleton organization, signal transduction, regulation of cytoskeleton 

organization and protein kinase activity were found only in the poly(I:C) stimulated cells 

(Figure 3.7A). 

 

In case of molecular functions, an enrichment in binding and receptor activity including 

RNA binding was found. Transmembrane signalling receptor and G-protein coupled 

receptor activity related proteins were found only in poly(I:C) stimulated cells (Figure 3.7B). 

In most cases, significantly higher enrichment was found in poly(I:C) stimulated cells 

compared to control and MDP stimulated cells (Figure 3.7). 
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Figure 3.7: Gene ontology (GO) enrichment analysis of the identified proteins. (A) Biological 

processes and (B) molecular function of phosphoproteins identified in control, MDP and poly(I:C) 

stimulated cells sharing each component of GO. Rainbow trout protein accession numbers were 

converted to zebra fish protein accession number followed by conversion to zebra fish gene symbol 

which were further converted to human gene symbol. Human gene symbols were analysed using the 

tool Enrichr for each treatment group for gene ontology. Top 10 entries of each category (on the 

basis of combined score, which was described by Chen et al., 2013) were then plotted against the 

negative logarithm of adjusted p values (p<0.05).  
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To visualise the phosphoprotein functional groups in a different way, all the phosphoproteins 

were classified according to the Discover EggNOG 4.5.1 (http://eggnog.embl.de) tool which 

provides functional characterization for the inferred orthologous groups. All the 

phosphoproteins belonged to 20 different functional groups (detailed presented in the 

Supplementary Table S1). Based on the number of phosphoproteins in a specific function 

group, the top 5 molecular functions were signal transduction (K), RNA processing (A), 

transcription (T), post translational modifications (M) and cytoskeleton (Z). The percentage 

of phosphoproteins involved in signal transduction and cytoskeleton organization was 

higher in poly(I:C) stimulated cells whereas proteins related to RNA processing and post 

translational modifications was higher in the control and MDP stimulated cells (Figure 3.8). 

Figure 3.8: Top 5 functional groups and percentage of phosphoproteins identified in RTgill-W1 cells 

of different treatment groups.  

 

3.3.4 Motif analysis and kinase prediction 

Motif sequences using the phosphopeptide sequences of each treatment group were analysed 

using the plogo tool (https://plogo.uconn.edu/). To find the significant motifs from the 

phosphopeptide data, first, overall motifs were identified for each group for serine and 

threonine residues (Figure 3.9). Individual motifs were then extracted from the overall 

motifs for serine and threonine residues for each group (Supplementary Figure S1). The 

plogo tool provides some statistical information like foreground data (FG), background data 
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(BG), percentage matching of specific motif with the foreground data and values (scores). 

The value or score provides the strength of the prediction for the motif.  

 

For serine residue, around 90 different motifs were detected in all three groups where 39 of 

them were unique in poly(I:C) treated cells. MDP treated cells had 9 unique motifs. 

However, phosphopeptides in control cells did not show any unique motifs. In the case of 

threonine residue, only 4 motifs were identified where 2 of them were unique in poly(I:C) 

treated cells. However, only 2 and 1 motifs were detected respectively in control and MDP 

treated cells at threonine residue. No significant motifs were found for phosphotyrosine 

residue in any of the groups.  

 

Associated kinases for the motif substrates were identified by literature search where some 

of the kinases from motif sequences were identified (Table 3.2). However, the kinases were 

predicted based on the motif substrates of human database. For most of the motifs, associated 

kinases could not be found in the literature. Complete list of kinases identified from motif 

substrate has been presented in Appendix: 3, Supplementary Table S 3.5 and 3.6. The most 

enriched kinase detected in the study was proline directed MAPK kinase. However, casein 

kinase was the most prevalent kinase which had many substrate specificities. Several protein 

kinases like PKA, PKB and PKC were also identified from the motif sequences.  

 

3.3.5 Motif and kinase in differentially expressed phosphoproteins 

To identify the involvement of any specific motif and kinase in the phosphoproteins that 

were differentially expressed in the poly(I:C) stimulated cells, motif analysis using the 

phosphopeptides of the diffefentially expressed phosphoproteins were used where only one 

motif (…D…pS…….) and one kinase CK2 was identified (Table 3.1).  
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Table 3.1 Differentially expressed phosphoproteins from poly(I:C) stimulated cells along with 

phosphopeptides, related kinases and functions 

 
Differentiall

y expressed 

phosphoprot

eins 

Phosphopeptides  Functions of proteins Motif and kinase 

Thymosin KTEpTQEKNPLPTK Actin monomer binding, actin 

filament organization (Litwack, 

2018) 

 

 

 

 

 

 

 

…D…pS……. 

 

CK2 (Songyang et 

al., 1996) 

 

 

Lamin-a EEERLRLpSPSPPPTR  

GGTATPLpSPTR 

LNDNDpSETSSLAGGAVTR 

LSPpSPPPTR 

Structural function and 

transcriptional regulation in the 

nucleus (Andrés & González, 

2009).  

Sequestoso

me 

GGKDAGGpSGDEEWTHVTSK 

DAGGpSGDEEWTHVTSK 

EVDPSTGELQpSLR 

DPGGpSGDDEWTHLTSK 

VMpTPNPSPPGSGGPPSAR 

Main role in autophagy (Pankiv 

et al., 2007); 

Also involved in translation, 

ribosomal structure and 

biogenesis (Ciani et al., 2003). 

  

  

  

Lupus la FDDGDNDDAPPpSPK 

DSpSPPREPIIDVHR 

FDDGDNDDAPPpSPK 

KIIEDQQEpSLNK 

KPEDpSSTPR 

KTKFDDGDNDDAPPpSPK 

KTKFDDpSDDDAPPSPK 

LDFNNKVLpTDETK 

SQSEADLSPQSpTETQQR 

TLLApSSFSIR 

VpTGVSADQEER 

pYRPSEESQR 

RNA processing and binding 

(Alfano et al., 2004). 

Heat shock 

70 KDa 

TSpSGDSpSQGPTIEEID 

 

Response to heat (Rendell et al., 

2006); also functions in 

immune responses (Tsan & 

Gao, 2009).  
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Figure 3.9: Overall pLogos for motifs of control, MDP and poly(I:C) treated cells illustrated by serine (S); top three and threonine (T); bottom three pLogos 

were derived from phosphorylation sites in rainbow trout (Oncorhynchus mykiss) phosphopeptides. In each pLogo, residue heights are proportional to their 

log binomial probabilities in the context of the rainbow trout protein background with residues above the x-axis indicating overrepresentation and residues 

below the x-axis indicating underrepresentation (p<0.05). The central residue in each pLogo is fixed and denotes the phosphorylation site. The n(fg) and 

n(bg) values at the bottom of each pLogo indicate the number of aligned foreground and background sequences respectively. The pLogos and corresponding 

extracted motifs have been presented in supplementary Figure S3.1 and Table S 3.5 and 3.6.  
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Table 3.2: List of kinases identified from the phosphorylation sites in RTgill-W1 cells in the study. Number in the parenthesis represents 

percentage probability.  

 

Motif Kinases 

Foregrounda aligned  Backgroundb aligned Reference 

Control MDP Poly(I:C) Control MDP Poly(I:C) 

.......sP...... Proline directed MAPK 156(60.19) 153(63.74) 242(84.78) 3910 3910 3910 (Schwartz & Gygi, 2005) 

....R..s....... CaMK II 121(39.26) 96(25.97) 210(70.53) 3455 3455 3455 (Pearson & Kemp, 1991) 

.....R.s.......  Protein Kinase B kinase (PKB) 61(10.8) 52(8.21) 96(14.77) 2653 2653 2653 (Pearson & Kemp, 1991) 

..R....s.......  Casein II Kinase 64(9.4) 52(6.09) 111(16.81) 3102 3102 3102 (Pinna & Ruzzene, 1996) 

...R...s.......  cGMP dependent protein kinase 58(8.05) 48(5.5) 85(8.52) 2900 2900 2900 (Pearson & Kemp, 1991) 

.......s.D.....  CaMK II 49(6.58) 43(5.37)) 77(8.64) 2500 2500 2500 (Schwartz & Gygi, 2005) 

.......s.E.....  Glucokinase 49(4.0) 48(4.64) 79(5.39) 3128 3128 3128 (Schwartz & Gygi, 2005) 

....RR.s.......  Protein Kinase A kinase (PKA) 22  - 32 320  - 320 (Pearson & Kemp, 1991) 

......DsD......  CK2 like 18 17 23 256 256 256 (Schwartz & Gygi, 2005) 

.......sD.E....  CK2 21 20 33 297 297 297 (Schwartz & Gygi, 2005) 

.......sDE.....  CK2  - 10 16  - 2292 213 (Schwartz & Gygi, 2005) 

.P..R..s.......  PKB kinase  - 20    - 290  - (Pinna & Ruzzene, 1996) 

...K...s.......  PKA kinase   -  - 77  -  - 2864 (Pearson & Kemp, 1991) 

....K..s.......  PKA kinase   -  - 76  -  - 2824 (Pearson & Kemp, 1991) 

..R.R..s.......  p70 S6 kinase  -  - 35  -  - 535 (Leighton et al., 1995) 

...RR..s.......  ZIP kinase  -  - 29  -  - 393 (Burch et al., 2004) 

...KR..s.......  PKA/PKC kinase  -  - 33  -  - 286 (Pearson & Kemp, 1991) 
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.......sD...... CK2 51 40 68 2464 2372 2372 (Villen et al., 2007) 

.......s..E.... CK2 63 53 97 3476 3476 3476 (Villen et al., 2007) 

.......s.D..E.. CK2 15     238     (Villen et al., 2007) 

.......s..E.E.. CK2   18     451   (Villen et al., 2007) 

......Ds....... CK2   44 65   2464 2464 (Villen et al., 2007) 

.......s...E... CK2     82     3338 (Villen et al., 2007) 

.......s.D.E... CK2     21     238 (Villen et al., 2007) 

.......sDEE.... CK2     12     58 (Villen et al., 2007) 

.......tP...... Proline directed MAPK 18 2252 15 2252 30 2252 (Schwartz & Gygi, 2005) 

...R...t....... cGMP dependent protein kinase 11 1427 - - 21 1427 (Schwartz & Gygi, 2005) 

 

a Foreground data set is the sequences within which a motif is searched, and the number is the total peptide sequences that are aligned to the 

foreground dataset. 
b Background data set is the proteome of specific organism from where the probability of specific residue of foreground data is determined.  
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3.3.6 Kinase identification by kinase enrichment analysis (KEA) 

To identify the kinases that are responsible for phosphorylation the human counterpart of 

the genes identified in rainbow trout, were used. The Enrichr tool as mentioned earlier was 

used for kinase enrichment analysis. A total of 105 significant kinases were identified. 

Kinases with adjusted p value of <0.05 were considered. Based on the adjusted p values, top 

ten kinases that were identified in all the groups were CDK2, GSK3B, MAPK14, CDK1, 

RSP6KA3, PRKCB, MAPK1, CHEK1, AKT1 and MAPK3. However, the kinases were 

more significantly enriched in poly(I:C) treated cells (Figure 3.10). In control and MDP 

treated cells similar enrichment was observed. Kinases having at least 4 associated genes 

from the identified genes in rainbow trout gill epithelia have been presented in the 

Supplementary Table S3.4.  
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Figure 3.10: Top ten identified kinases using Enrichr tool. Top ten kinases were selected on the basis 

of the combined score given by the tool. Negative logarithm of adjusted p values was plotted in Y-

axis while kinases in the X-axis.  

 

3.3.7 Activation of signaling pathways  

Pathway analysis was done using the tool Enrichr. Several signaling pathways were 

activated in steady-state and stimulated cells (complete pathway list presented in 

Supplementary Table S3.3). Pathways here presented were exclusively related to human 
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pathways as the Enrichr uses only the human database and therefore phosphoproteins 

identified in rainbow trout were converted to human counter gene symbols.  

 

Based on the findings of previous experiment related to cellular integrity, mRNA expression 

including tight junction and antiviral responses upon stimulation with viral and bacterial 

PAMPs, several unique and common pathways were found to be activated in control and 

stimulated cells. Three important pathways related to the previous findings were further 

explored. One of the important pathways that was found to be activated in all the groups was 

the spliceosome pathway (Figure 3. 11). In this study, proteins related to all small nuclear 

ribonucleoproteins (snRNP) groups (U1, U2, U4, U5, and U6) were phosphorylated. 

Moreover, some other proteins were also identified (Figure 3. 11). Supporting this, in 

poly(I:C) stimulated cells a higher number of phosphoproteins were identified that were 

related to this particular pathway.  

 

Another important pathway related to the innate immune responses was the mitogen 

activated protein kinase (MAPK) pathway which was found to be activated in MDP and 

poly(I:C) stimulated cells (Figure 3.12). In the present study, Raf and MAP2K2 (MEK), the 

initiators of MAPK pathway, were phosphorylated. The c-Jun N-terminal kinase (JNK) and 

p38 pathways were also found to be activated. Moreover, some of the intermediate proteins 

like MAP4K4, MAP3K1, PAK2, MAP14, MAPKAPK5 and JUN were also phosphorylated. 

Moreover, MAPK14 was found to phosphorylate TP53 and subsequently activated P53 

signaling pathway. Furthermore, a couple of DNA damage related proteins TAOK2 and 

TAOK3 were also found to be phosphorylated (Figure 3.12).  

 

The third pathway was related to cellular integrity which was regulation of the actin 

cytoskeleton. This pathway was found to be activated only in poly(I:C) stimulated cells 

(Figure 3.13). The phosphoprotein associated genes of this pathway were fibronectin 

binding protein integrins itga4 and itga5, RRAS2 (homology of Ras), raf1a and ARHGEF6 

which participated in the activation of regulation of actin cytoskeleton signaling. 
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Figure 3.11: Spliceosome signaling pathway. The pathway has been adopted from the KEGG pathway database for Homo sapiens (pathway id hsa03040; 

https://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=03040&mapscale=&show_description=hide). The pathway was activated in all 

the treatment groups. Phosphoproteins in green filled are associated with the phosphorylated proteins identified only in poly(I:C) stimulated RTgill-W1 cells 

while in pink filled are associated with the phosphoproteins identified in both poly(I:C) and MDP stimulated cells, grey filled are common in all the groups. 

Phosphoproteins without filled are from the KEGG database.

https://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=03040&mapscale=&show_description=hide
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Figure 3.12: MAPK signaling pathway. The pathway has been adopted from the KEGG pathway database for Homo sapiens (pathway id hsa04010; 

https://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=04010&mapscale=&show_description=hide). Phosphoproteins in green filled are 

associated with the phosphorylated proteins identified only in poly(I:C) stimulated RTgill-W1 cells while in pink filled are associated with the 

phosphoproteins identified in both poly(I:C) and MDP stimulated cells.

https://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=04010&mapscale=&show_description=hide
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Figure 3.13: Regulation of actin cytoskeleton pathway. The pathway has been adopted from the KEGG pathway database for Homo sapiens (pathway id 

hsa04810; https://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=04810&mapscale=&show_description=hide). Phosphoproteins in 

green filled are associated with the phosphorylated proteins identified in poly(I:C) stimulated RTgill-W1 cells. 

https://www.genome.jp/kegg-bin/show_pathway?org_name=hsa&mapno=04810&mapscale=&show_description=hide
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3.4 Discussion 

3.4.1 Phosphoproteomics method development for fish gill epithelial cells 

Global phosphoproteomics using different enrichment strategies coupled to LC-MSMS has 

been increasingly used specially in mammalian tissue and cell studies (Koch et al., 2016; 

Villen et al., 2007; Zhu et al., 2017) and in plants (Reiland et al., 2009; Sugiyama et al., 

2008; Wang et al., 2013b). However, very few studies on phosphoproteomics have been 

conducted in fish with work so far focussed on zebrafish (Kwon et al., 2016; Lemeer et al., 

2008; Lemeer et al., 2008). In the present study, methods on cell lysis, trypsin digestion, 

phosphopeptide enrichment and finally bioinformatics for the analysis of the 

phosphoproteome have been developed for the first time in rainbow trout gill epithelial cells 

which could be applied for the study of other fish cell systems.  

 

In the present study, TiO2 based enrichment technique was applied. This approach yielded 

around 80% of the recovered peptides being actually phosphorylated independently of the 

treatment. Similar levels of enrichment have been reported in HeLa S3 cells using TiO2 

based enrichment technique (Choi et al., 2017) indicating the capability of this approach to 

enrich phosphopeptides from complex cell protein samples. 

 

The most challenging part of phosphorylation study in fish is data analysis using current 

bioinformatic tools. There are a number of tools and software available for 

phosphoproteome analysis although unfortunately are mainly targeting mammalian 

organisms. Zebrafish has got attention in the research commonly because of the suitability 

of this fish to be used as model organism in human disease study. In the present study, 

different tools were used for fish phosphoproteome data analysis.  

 

Global phosphoproteomic approach has been used to reveal protein phosphorylation in fish 

gill epithelial cells in the current study where thousands of phosphorylation sites and almost 

one thousand phosphoproteins were identified from trout gill cell line RTgill-W1. Most of 

the phosphoproteins were characterized and some were uncharacterized due to the 

unavailability of information in protein database. A single database or tool has been found 

unable to provide the necessary information; thus, several tools and protein databases have 

been tested to characterize phosphorylation events in fish gill epithelia.  
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3.4.3 Phosphosites in rainbow trout proteome 

It is important to determine the site of phosphorylation as phosphosites determine the motif 

and kinases that are involved in phosphorylation, thus phosphosites provide the information 

about the function of phosphorylation events. In the current study around 70, 20 and 6% of 

phosphosites have been found at serine, threonine and tyrosine residues respectively. Similar 

phosphothreonine percentage have been reported in drosophila embryo by Zhai et al. (2008). 

However, in human the percentage is around 86, 12 and 2% respectively at serine, threonine 

and tyrosine residues (Olsen et al., 2006). In zebrafish embryo 88.9, 10.2, and 0.9% of serine, 

threonine and tyrosine phosphorylation sites have been reported (Kwon et al., 2016). The 

higher percentage of threonine and tyrosine phosphosites detected in the present study might 

have roles in cellular mechanisms that are particular in rainbow trout.  

 

3.4.4 PAMP mediated phosphorylation  

A viral PAMP poly(I:C) and a bacterial PAMP MDP were used in the study to trigger the 

phosphorylation events in RTgill-W1 cells. The number of phosphoproteins identified in 

poly(I:C) stimulated cells was more than double to control cells while MDP stimulated cells 

and control cells produced similar number of phosphoproteins. However, among the 

phosphoproteins sharaed by all groups, only 5 phosphoproteins were differentially expressed 

in poly(I:C) stimulated cells which involved one motif and one protein kinase CK2 (Figure 

3.5 and Table 3.1). The functions of those phposphoproteins are related to actin 

polymerization, transcription and translation (Table 3.1). MDP stimulated cells had only one 

differentially expressed phosphoprotein involved in transcription. The number of Motifs 

identified in poly(I:C) stimulated cells were higher than control and MDP stimulated cells. 

Although similar number of kinases were predicted by kinase enrichment analysis, poly(I:C) 

showed higher enrichment with higher number of associated genes in each kinase. 

Moreover, poly(I:C) induced signaling pathways were activated in fish gill epithelia. Even 

the higher number of phosphoproteins were identified in poly(I:C) stimulated cells and 

activation of some signaling pathways, no core antiviral signaling pathway such as TLR3 or 

RLR was not identified by phosphoproteomics in gill epithelial cells as was found to be 

activated by transcriptomics in poly(I:C) stimulated cells by qPCR assay (chapter 2 and 4). 

Overall, results confirm that poly(I:C) is, off course, a potent inducer for protein 

phosphorylation in RTgill-W1 cells.  
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3.4.5 Motif analysis 

Motif identification is also important to find the kinases responsible for the phosphorylation. 

Several online tools have been tested to identify the motifs at serine, threonine and tyrosine 

residues. In the present study pLogo tool (https://plogo.uconn.edu) has been used. The tool 

provides some statistic regarding the strength of the motif. Most of the motifs identified in 

the present study are at pSer residue (almost 96%) while the rest have been found at pThr 

residue. Even having 6% phosphotyrosine residue, no motif has been found at pTyr residue. 

Less than one third of the motifs associated kinases could be identified by literature while 

others are novel motifs that need further studies to identify related kinases.  

 

As motif analysis depends on the protein sequences, the motif can move around within the 

protein sequences in evolutionary distant animals thus the position of a motif in a protein 

might be different between animals (Lee & Yaffe, 2016). Taken together, the novel motifs 

for which there have not been found any kinases may be associated with a broad spectrum 

of kinases that play significant role in protein phosphorylation in fish gill epithelia.  

 

3.4.6 Protein kinases 

By modifying the substrate activity, protein kinases arbitrate most of the cellular processes 

including signal transduction, progression of cell cycle, rearrangement of actin cytoskeleton, 

cell differentiation, metabolism, transcription and many more (Manning et al., 2002). For 

better understanding of the dynamics of protein phosphorylation networks and their 

regulation inside the cells, the kinases that are mediating the phosphorylation event need to 

be known (Newman et al., 2014). More than 500 different kinases have been identified in 

humans (Manning et al., 2002). In the present study, more than100 different kinases have 

been predicted in rainbow trout gill epithelial cells. Stimulation with poly(I:C) have been 

found to play a vital role in activation of different protein kinases. 

 

In cancer biology, protein phosphorylation plays a vital role where protein kinases contribute 

to the advancement of cancer of nearly every cell type. Thus, the pathways mediated by 

kinase can be blocked with targeted treatment which have an important clinical-therapeutic 

application (Ardito et al., 2017). The advancement of phosphoproteomics research has 

enabled the researchers to identify potential inhibitors against activated tyrosine kinases 

involved in cancer where some of them are already in use in cancer treatment and many of 
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them are tested (reviewed by De Castro et al. 2013). Similarly, fish phosphoproteome might 

be useful in designing and developing antiviral drugs for inhibiting viral replication and 

infection. 

 

From the motif analysis, the most enriched kinase family that have been identified is proline-

directed MAPK which is a subclass of protein serine-threonine kinases that phosphorylate 

proteins on a serine or threonine residue that is immediately preceding a proline residue. 

Proline directed kinases include cyclin dependent kinases (CDKs), glycogen synthase 

kinases (GSK3) and mitogen activated protein kinases (MAPKs).  

 

In the present study, the most prevalent and enriched kinases that have been predicted (by 

KEA) are cyclin dependent kinases (CDKs) including CDK1, 11A, 14, 15 and 18. CDK1, 

14 and 15 have been shown to be involved in cell cycle regulation. CDK inhibitors can be 

used to stop cell cycle to interrupt cancer development or in the treatment of chronic 

inflammation (Rossi et al., 2006). However, some CDKs like CDK5, 7, 8, and 9 are involved 

in transcription, physiology of neuron and homeostasis of glucose (Sausville, 2002). 

CDK11, apart from cell cycle progression, has been found to play role in promoting pre-

mRNA splicing (Hu et al., 2003) while CDK18 has been reported to be involved in signal 

transduction cascades. The next highly enriched kinase predicted by KEA in the present 

study is GSK3B which is a member of GSK3 family. GSK3 is an enzyme playing a key role 

in glycogen metabolism, in one hand, while act as an important component of Wnt pathway 

on the other hand, which is essential in forming body architecture during embryonic 

development (Barford, 1996). Another highly enriched and prevalent predicted kinase 

family is the MAPK including MAPK14, 1, 3, 9, 8 and 10. MAP kinase play a key role in 

the signal transduction. MAPK has been shown to regulate MAPK pathway controlling 

many cellular processes including cell proliferation, differentiation and death (Sundaram, 

2006).  

 

Another highly enriched kinase that has been identified by motif analysis is 

Ca2+/calmodulin-dependent protein kinase II (CaMKII). CaMKs phosphorylate proteins in 

response to the increase of intracellular calcium ion and regulate many genes and 

transcription factors (Racioppi & Means, 2012; Wayman, Tokumitsu, Davare, & Soderling, 

2011).  
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Casein kinase 2 (CK2) has also been identified by motif analysis and KEA. CK2 has been 

reported to be involved in cellular processes, such as cell cycle progression, apoptosis and 

transcription, as well as viral infection. CK2 has also been reported to play role in 

antiapoptotic mechanism which might be involved in cancer development in human. Thus 

development of CK2 inhibitors can be used in cancer treatment (litchfield 2003). However, 

Sayed et al. (2001) demonstrated the role of CK2 in p53-mediated apoptosis.  

 

Three members of the protein kinases of AGC family, PKA (also known as cyclic AMP 

dependent kinase) and PKC and PKG (cGMP dependent protein kinase) have also been 

identified by motif substrate analysis in the present study. AGC kinases are involved in a 

number of cellular functions including signal transduction, which influence a collection of 

biological processes related to health and diseases. The dysregulation of AGC kinases have 

serious consequences that may cause cancer and diabetes in humans (Pearce et al., 2010).  

 

Taking together, it can be suggested that, kinases identified in RTgill-W1 cells might play 

significant role in the regulation of different cellular functions including cell cycle 

progression, transcription, signal transduction and regulating viral infection. The 

development of inhibitors to cease some of the targeted kinase activities might be useful in 

preventing viral diseases.  

 

3.4.7 Signaling pathways 

To uncover different signaling pathways essential for innate immune responses and 

activated by protein phosphorylation in trout gill epithelia, the identified phosphoproteins 

were used as input employing the Enrichr tool (http://amp.pharm.mssm.edu/Enrichr). The 

signaling pathways are the main player in the cellular activity which is controlled by protein 

phosphorylation. Interaction of PAMPs and host cell receptors induces intracellular 

signaling pathways controlling the expression of antimicrobial genes and augmentation of 

other cellular functions (Mikkelsen et al., 2009). Thus, to identify the pathway that is in 

action in response to certain stimulus or infection agents is of prime importance. In the 

present study, poly(I:C) has been found to activate several unique signaling pathways 

including actin cytoskeleton regulation and also participated in activation of other pathways 

including spliceosome and MAPK by incorporating more related phosphoprotein related 

genes.  

http://amp.pharm.mssm.edu/Enrichr
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3.4.7.1 Activation of spliceosome signaling pathway 

As mentioned earlier (section 3.3.6), spliceosome signaling pathway was activated in both 

control and stimulated cells. However, the number of pathway- associated phosphoproteins 

identified in poly(I:C) simulated cells (16 genes) were higher than that of control (12 genes) 

and MDP (13 genes) stimulated cells.  

 

Spliceosome is an important signaling pathway for effective gene expression in eukaryotes, 

where the absence or dysregulation of splicing impairs the synthesis of functional proteins 

(Meyer, 2016). Spliceosome signaling pathway has been found to be activated in control 

and stimulated RTgill-W1 cells in the present study. This pathway initiates splicing of exons 

and excision of introns from transcribed precursor mRNA in a macromolecular complex. 

The standard spliceosome is made up of five small nuclear ribonucleoproteins (snRNPs), 

U1, U2, U4, U5, and U6 snRNPs, and several spliceosome-associated proteins (SAPs). In 

this study, proteins related to all snRNP groups were found to be phosphorylated. This 

suggests that spliceosome signaling pathway is spontaneously activated in trout gill 

epithelial cells for the translation of required proteins. Moreover, CDK11 which has been 

identified in trout gill epithelial cells (Appendix 3, Supplementary table S3.4), have been 

shown to be involved in transcription and splicing (reviewed by Loyer et al., 2005) which is 

in accordance with the activation of spliceosome signaling pathway. 

 

3.4.7.2 The mitogen-activated protein kinase (MAPK) pathway activation 

MAP kinases play important roles in cellular processes including cytokine signaling 

(Platanias, 2005) and innate immunity regulation (Arthur & Ley, 2013). MAPK pathway 

contributes in the induction of interferon responses. MAPK signaling cascade is the principal 

signaling pathway regulating a diverse cellular process including cell proliferation, 

differentiation, apoptosis, stress responses stimulated by external stimuli. Transcription of 

many of the regulatory genes are MAPK dependent (Plotnikov et al., 2011). 

 

In the present study, MAPK signaling pathway was found to be activated in poly(I:C) and 

MDP stimulated cells. However, poly(I:C) stimulation has induced higher number of 

phosphoprotein associated genes associated with MAPK pathway compare to MDP 

stimulation.  
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The classical MAPK pathway includes the signaling molecules Ras, Raf, MEK, and ERK. 

In the present study, Raf has been found to be phosphorylated which further phosphorylated 

MAP2K2 (MEK). The c-Jun N-terminal kinase (JNK) and p38 pathway, major signalling 

cassettes of the MAPK pathway, have also been found to be activated as well as some of the 

intermediate proteins like MAP4K4, MAP3K1, PAK2, MAP14, MAPKAPK5 and JUN. 

Moreover, Phosphorylation of MAPK14 has been found to phosphorylate TP53 of which 

activation subsequently activated P53 signaling pathway (Figure 3.12). DNA damage 

related proteins TAOK2 and TAOK3 have also found to be phosphorylated. These together 

suggest the activation of classical MAPK, JNK, p38 and p53 signaling pathways. In previous 

study, poly(I:C) has been shown to activate MAPK cascade via the activation of TAKI and 

subsequent activation of MKK6 and JNK pathway (Dunlevy et al., 2010).  

MAPK pathway has previously been shown to be activated in gill by bacterial infection by 

transcriptomic analysis (Rebl et al., 2014). Upon PAMP (flagellin peptide, flg22) 

stimulation three MAPKs namely MAPK3, MAPK4 and MAPK6 have been shown to be 

activated through phosphorylation in plant (Arabidopsis) (Nitta et al., 2014). In Jurkat 

human T lymphoma cells, JNK and p38 MAPK have been found to be activated by bacterial 

PAMPs LPS, PGN and flagellin and triggered the production of cytokines (Zhong & 

Kyriakis, 2007). Environmental stresses have also been shown to activate p38 MAPK, 

ERK1/2 and JNK in mammals (reviewed by Cargnello & Roux, 2011). 

In rainbow trout primary macrophages, LPS induced activation of ERK, p38MAPK and 

JNK signaling pathways and subsequent production of cytokine TNF have been 

demonstrated by western blotting (Roher et al., 2011). Moreover, PGN induced activation 

of p38 MAPK has been shown by inhibition study in carp macrophages (Ribeiro et al., 

2010).  

3.4.7.3 Regulation of actin cytoskeleton pathway activation 

Regulation of actin cytoskeleton pathway has also been found to be activated only in the 

poly(I:C) stimulated RTgill-W1 cells. The pathway associated proteins that have been found 

to be phosphorylated are fibronectin binding protein integrins (associated genes are itga4 

and itga5) and RRAS2 (homology of Ras). RRAS2 is a key regulator of the actin 

cytoskeleton which subsequently phosphorylates raf1a and ARHGEF6 which are also key 
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regulators of this pathway that can be activated by extracellular stimuli. Phosphorylation of 

these two proteins were found to phosphorylate other proteins and initiate the activation of 

the regulation of actin cytoskeleton pathway. 

 

The actin cytoskeleton signaling pathway is related to cellular integrity of epithelial cell 

which has been found to be modulated by poly(I:C) (Chapter 2, section 2.1). Higher 

percentage of phosphoproteins related to cytoskeleton has also been found in the poly(I:C) 

stimulated cells (Figure 3.8) which is in accordance with the activation of actin cytoskeleton 

signaling pathway. Moreover, Rho GTPases has been shown to play critical role in the 

regulation of actin cytoskeleton and tight junction barrier in MDCK cells (Jou et al., 1998). 

In the present study, several isoforms of rho GTPase-activating protein have been found to 

be phosphorylated in the poly(I:C) stimulated cells (Supplementary table S3.5) which might 

play roles in the activation of actin cytoskeleton signaling pathway regulation.  

 

3.4.8 Validation of findings from phosphoproteomics analysis 

In the present study, it is important to note that no validation on the detected phosphoproteins 

was performed. Further trials using specific antibodies were not possible due to time 

constrains. One of the potential limitations to validate the data obtained is that commercially 

available antibodies are specific mostly to human, mouse, rat and a few of them are suitable 

for zebrafish. The generation of custom antibodies are costly, time consuming and 

sometimes with unsuccessful results.  

 

Nevertheless, the functional analysis of phosphorylation mediated cell signaling identified 

in the present study should be validated. Phosphate-affinity polyacrylamide gel 

electrophoresis can be used to detect stoichiometric protein phosphorylation (Kinoshita-

Kikuta et al., 2007). Phosphorylation levels of cellular proteins of interest can be assessed 

by subsequent Western blotting which would be useful to evaluate the obtained 

phosphoproteomic data when antibodies are available (Mahmood & Yang, 2012). Thus, 

future studies are recommended on targetted phosphoproteomics for the detection and 

expression of TLR and RLR members in salmonid gill epithelia by western blotting or flow 

cytometry. Moreover, some of the kinases such as p38 MAPK, CDK, AKT, CK2, PKA/B/C 

and CaMKII should be validated by antibody based western blotting or flow cytometry. 
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Kinase specific inhibitors could also be used to investigate the involvement of the kinase in 

activating specific signaling pathway.  

 

3.5 Conclusion 

The phosphoproteome in rainbow trout gill epithelial cells has been investigated using LC-

MS/MS coupled with TiO2 phosphopeptide enrichment of trypsin digested peptides to 

identify phosphoprotein in steady state and stimulated condition. In total 2,612 

phosphorylation sites on 1,789 phosphopeptides in 691 different phosphoproteins have been 

identified in the present study. The majority of the phosphorylation events in the trout gill 

epithelia might be occurred by the proline-directed motifs such as glycogen synthase kinase, 

CDK2 and MAPK which have been found to be dominating in the identified kinase.  

 

Moreover, in the present study, poly(I:C) has been found to trigger the phosphorylation in 

trout gill epithelial cells to a greater extent in all aspects of phosphorylation event which 

include higher number of phosphopeptides and subsequent phosphoprotein, higher number 

and highly enriched motifs and associated kinases, signaling pathways and highly enriched 

GO. As poly(I:C) is believed to play roles in innate antiviral response, activation of antiviral 

signaling pathways such as TLR3 and RLR is expected. Many of the pathways were related 

to human viral diseases including cancer, information of which might be useful in studing 

fish diseases. Apart from the viral diseases, some bacterial diseases related to human have 

also been activated which will be usefull to study bacterial pathogenesis in fish and to 

develop potential therapeutics against bacterial pathogenesis.  

 

The dynamic phosphorylation, for the first time, in rainbow trout gill cells, has been reported 

in the present study which can be used for the future studies to elucidate further functional 

characterization of phosphoproteins, motifs and kinases, investigation of signaling pathways 

and development of potential inhibitors.  
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Chapter 4 

RTgill-W1 cells -pathogens interactions 

 

4.1 Introduction 

To understand disease pathogenesis, it is important to understand host-pathogen 

interactions. As an aquatic organism, the fish body including the gill, is subjected to 

continuous contact with many different types of microorganisms (Tort et al., 2003). The first 

barrier against pathogens is the integumentary surface which is equipped with mechanisms 

protecting against pathogen entry (Secombes & Oliver, 1997). Some microorganisms can 

evade the barriers and can cause diseases to host while some hosts have evolved the 

mechanisms to kill or eradicate the pathogens. Mucus secretion, and production of diverse 

groups of antimicrobial molecules are some of the important protective mechanisms (Tort 

et al., 2003).  

 

Viral and bacterial pathogens are the predominant agents causing huge loss to aquaculture 

production. Among them, salmonid alphavirus (SAV) is one of the viruses causing pancreas 

disease and sleeping disease in farmed Atlantic salmon and rainbow trout in Europe 

(Graham et al., 2011). Recent molecular taxonomic studies demonstrate six salmonid 

alphavirus subtypes where subtype 2 (SAV-2) is associated with sleeping disease which is 

a serious infectious disease of rainbow trout in freshwater aquaculture in several European 

countries (McLoughlin & Graham, 2007). Several organs of fish are infected with virus, 

where gill is the most vulnerable to viral infections. However, the interactions between fish 

gill epithelia and viruses are still unclear. In the present study, the infectivity of SAV-2 was 

tested in a trout epithelial cell line RTgill-W1. 

 

Bacterial pathogens also contribute to the huge aquaculture loss. In case of rainbow trout, 

several bacterial species have been reported to cause different diseases like furunculosis 

caused by A. salmonicida, enteric red mouth disease (ERM) by Yersinia ruckeri; and 

infections with Flavobacterium psychrophilum called cold water disease or rainbow trout 

fry syndrome (RTFS) depending on the size of the diseased fish (Bernardet et al. 1996).  

 

Hosts’ responses against viral and bacterial infections depend on the recognition of 

pathogens by the host receptors. Antiviral immunity starts upon recognition of pathogens by 

the host pattern recognition receptors mostly Toll-Like Receptor 3 (TLR3) and RIG- like 
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Receptor (RLRs) comprising MDA5 (melanoma differentiation-associated gene 5), RIG-I 

(retinoic acid-inducible gene I) and LGP2 (laboratory of genetics and physiology 2). RLRs 

are cytosolic pattern recognition receptors and are broadly expressed in most tissues where 

they signal innate immune activation in a variety of cell types including epithelial cells (Loo 

& Gale, 2012). RIG-I and MDA5 detect a variety of viruses and signal the production of 

IFN and induction of an antiviral response while LGP2 regulates MDA5 and RIG-I signaling 

(Jiang et al., 2012). Studies in mammals differentiated the roles of RIG-I and MDA5 in 

response to RNA viruses where RIG-I preferentially binds to short (<300 bp) or up to 1 kb 

dsRNAs that have blunt ends and a 5’ triphosphate (5’ppp) moiety, facilitating 

discrimination between host and viral dsRNA or 5′-triphosphate end of single-stranded 

(ss)RNA while MDA5 preferentially binds to long dsRNA (>1,000 bp) without end 

specificity (Kato et al., 2006; Pichlmair et al., 2006). 

 

Interaction of RIG-I and MDA5 with IPS1 helps to relocate the RLRs to IPS1-associated 

membranes where they and downstream signaling molecules accumulate to form an IPS1 

signalosome that drives IFN production (Hiscott et al., 2006). Upon recognition of RNA by 

RIG-I or MDA5, a complex signaling downstream pathway is activated where IPS1 

(interferon-b promoter stimulator 1; Kawai et al., 2005) serves as a critical signaling adaptor 

for RIG-I/MDA5.  

 

Tank-binding kinase protein 1, TBK1 has serine-threonine protein kinase activity and has 

been identified as one of the kinases that phosphorylate IRF3 and 7 (Hiscott et al., 2003; 

Yoneyama et al., 2002). TBK1 integrates multiple signals induced by receptor- mediated 

pathogen detection and thus modulating interferon levels (Ma et al., 2012). IRF3 is a unique 

member of the IRF family whose transcriptional activity is regulated solely by 

phosphorylation, a posttranslational modification (Yoneyama et al., 2002). On the other 

hand, IRF7 (the closest relative of IRF-3) has several common with and distinct features 

from IRF3.  

 

Several interferon stimulated genes have been identified in response to viral infections. 

Interferon signaling is initiated by IPS1 upon interacting with TBK1 and IRF 3. IRF 3 is 

phosphorylated in the cytoplasm and is transported to the nucleus where it initiates the 

production of interferon and interferon stimulated genes (ISGs). ISGs then translated in the 
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cytoplasm and interfere viral replication. The most common interferon stimulated genes are 

Mx, ISGs, PKR, and Viperin.  

 

Research on fish immunology has progressed significantly over the last few decades, where 

mammalian gene markers have been based and many of them have been identified in fish, 

and their function has been investigated in a range of fish species such as RIG-I, TBK1 and 

PKR have been identified and characterized in a range of fishes. However, complete RLR 

signaling pathway and the expression pattern of relevent genes in fish gill epithelia in 

response to alpha virus is still unknown. Present study was thus designed to investigate the 

host response to SAV-2 at cellular level by transepithelia electrical resistance and molecular 

level by investigating the expression of different antiviral response gens.  

 

Antibacterial response, on the other hand, can be explained as inflammatory response and 

the expression and production of antimicrobial peptides (AMPs). A significant number of 

inflammatory cytokines have been studied and found functionally active in teleost. Several 

cytokines and regulatory molecules reported in fish include a number of interleukins (IL-6, 

IL-8, IL-10, IL- 12) and Tumour Growth Factor (TGF)-β, and interferon regulatory factor 

(IRF)-1 and Tumour Necrosis Factor alpha, TNF-α (Tort et al., 2003). Antimicrobial 

molecules are peptide-based molecules commonly known as antimicrobial peptides (AMPs) 

that act both directly and indirectly on components of the bacterial cell wall resulting in lysis 

of the cell (Tort et al., 2003).  

 

As part of the innate immune system, animals including fish produce a range of cationic 

antimicrobial peptides (AMPs) as a first line of defence (De Bruijn et al., 2012). Several 

AMPs have been identified in different fishes having antimicrobial properties against 

bacterial infection. Most common AMPs are defensin, cathelicidins, hepcidins, piscidins, 

etc. which have been shown as effective antibacterial agents (Rakers et al., 2013). Several 

other innate immune genes like c-type lectin CD209a and b, COX-2, MMP9/13 and LECT2 

have also been shown to be upregulated upon parasitic infection in rainbow trout (De Bruijn 

et al., 2012). However, antibacterial properties of fish gill epithelia are not well studied.  

 

Expression of selected AMPs, cytokines and innate immune genes in rainbow trout gill 

epithelial cells RTgill-W1 in response to fish pathogenic bacteria A. salmonicida and viral 

and bacterial PAMPs were also investigated in the present study.  
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4.2 Materials and Methods 

4.2.1 Cellular and molecular response of RTgill-W1 cells upon SAV-2 infection 

To investigate the response of RTgill-W1 cells to viral infection, the cells were infected with 

salmonid alphavirus subtype 2 (SAV-2). Cellular integrity in terms of Transepithelial 

Electrical Resistance (TER) and tight junction gene expression, and antiviral responses were 

investigated using absolute RT-qPCR technique. Initially, SAV-2 was grown and the 

infectivity titer was determined by TCID50. 

 

4.2.1.1 Culture and titration of SAV2  

Three fish cell lines CHSE-214, CHH-1 and TO were initially tested for growing SAV-2 

(Isolate V0702, Passage 1, cell line: CHH-1). Two different inoculation methods; adsorption 

inoculation where virus was inoculated on preformed cell monolayer, and simultaneous 

inoculation where cell seeding and virus inoculation were done simultaneously, were used. 

For adsorption inoculation, virus was adsorbed on the preformed cells for 3 h. Five different 

dilutions of the virus (10-1 to 10-5) each in duplicate were used. Cells were monitored every 

day under the inverted microscope to check for CPE. Cells were grown at 15 °C with 1% 

CO2. Upon CPE formation and development, virus was harvested from each dilution at day 

18 following the standard protocol developed in the laboratory. Briefly, cells were scrapped 

with a cell scraper and collected in 4 mL growth medium, centrifuged at 4700 rpm for 15 

min at 10 ºC and stocked at -70 ºC until further use. Viral copy number was quantified by 

RT-q PCR (methods described in 4.2.4). The highest viral RNA copy number was found in 

CHSE-214 cell inoculated with a virus dilution of 10-3 which was further used for mass 

production in 25 cm2 TC flasks for both adsorption and simultaneous inoculation methods. 

At day 20, almost all the cells were infected with virus. Virus was harvested at this point 

following the method above and was stocked at -70 ºC until further use.  

 

4.2.1.2 Titration of virus for infectivity study (TCID50) 

The tissue culture infective dose indicates the quantity of a virus cytopathogenic to 50 % of 

the cells inoculated. To determine the titer, several dilutions of virus stock were prepared, 

in a 10-fold dilution from 10−1, to 10-11 and 5-fold dilution from neat to 210−1, 410−2 and 

so forth until 210−6. Both adsorption and simultaneous inoculation methods were used for 

virus titration (detailed method in Appendix 1.5). Viral titre was calculated using the 

following formula: 
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Mean log TCID50(m) = x + 1/2 d - d Σ(r/n);  

𝑀𝑒𝑎𝑛 log 𝑇𝐶𝐼𝐷50 = x + ½𝑑∑
𝑟

n
 

 

Where x = log of highest reciprocal dilution that has no positive wells, d = log of dilution 

interval, r = number of test subjects not infected at any dilution and n = number of test 

subjects inoculated at any dilution (last number will always be 1).   

 

𝑀𝑒𝑎𝑛 𝑡𝑖𝑡𝑟𝑒 (𝑚) =
10𝑚𝑒𝑎𝑛 log 𝑇𝐶𝐼𝐷50

𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛𝑛𝑜𝑐𝑢𝑙𝑎𝑡𝑒𝑑
 

 

4.2.1.3 Generating SAV-2 quantitative RNA standard 

To generate SAV-2 quantitative RNA standard, the target fragment of SAV-2 genome was 

amplified, ligated into pCRII vector, transformed into E. coli competent cells and plasmid 

DNA was extracted. To transcribe +strand RNA fragment from the plasmid DNA, M13 PCR 

was employed and RNA was transcribed from the purified PCR product following the steps 

in 4.2.3.5 to 4.2.3.10.  

 

4.2.1.3.1 Viral RNA extraction, RT-PCR and clean-up of PCR product 

Viral RNA was extracted from the virus supernatant using Roche High Pure Viral RNA 

extraction Kit (version 18) following the manufacturer’s instructions. Briefly, 400 µL of 

binding buffer supplemented with poly(A) was added into 200 µL of virus supernatant and 

mixed well and transferred to the filter tube assembly. Then the tube with filter was 

centrifuged for 15s at 8000g. The flow through and the collection tube was discarded, and 

the filter was placed into another collection tube. Then, 500 µL of inhibitor removal buffer 

was added into the filter and centrifuged for 1 min at 8000g. The flow through and the 

collection tube was discarded, and the filter was placed into another collection tube. Then, 

450 µL of wash buffer was added into the filter and centrifuged for 1 min at 8000g. The 

wash step was repeated once followed by another centrifugation for 10s at maximum speed 

and the flow through and the collection tube was discarded. Finally, 50 µL elution buffer 

was added into the filter and centrifuged for 1 min at 8000g. The supernatant (purified viral 

RNA) was used for subsequent application. 

 

Viral RNA was then reverse transcribed using Transcriptor Onestep RT-PCR kit (Roche). 

Primers used for RT-PCR were SD STD UP 5'-AAGAAATGCACCAGGTTYTCCAC-3' 
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and SD STD DP 5'-CACCTCTTTGCCTCCGCTG-3'. The RT-PCR was conducted in 50 

µL reaction volume containing 1 µL of viral RNA (around 250 ng), 2 µL of each primer 

(800 nM), 10 µL of 5X RT buffer, 1 µL RT enzyme mix and 34 µL of PCR grade water. 

The temperature profile was: 1 cycle of reverse transcription at 50 ºC for 30 mins, 1 cycle 

of activation at 94 ºC for 7 mins, followed by 35 cycles of denaturation for 10s at 94 °C, 

annealing for 30s at 60 °C and extension for 2.5 mins at 68 °C followed by final extension 

for 5 min at 68 °C. The RT-PCR product was then run on 1% agarose gel to check the correct 

amplification of the product. The target PCR product was then purified using the DNA Clean 

& Concentrator (Zymo Research), according to manufacturer’s instructions (Appendix 1.6). 

Purified PCR product was eluted in 20 µL DNA nuclease free water. Concentration of PCR 

product was determined using Nanodrop Spectrophotometer (ND-1000, Labtech 

International, Uckfield, UK). Purified PCR products were directly used for the ligation 

procedure, and the rest of the product was then kept at -20 °C for long-term storage. 

 

4.2.1.3.2 Ligation and transformation  

a) Calculation of ligation ratios for vector and insert 

𝑠𝑖𝑧𝑒 𝑜𝑓 𝑃𝐶𝑅 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (𝑏𝑝) × 50 𝑛𝑔 𝑝𝐶𝑅𝐼𝐼 (𝑣𝑒𝑐𝑡𝑜𝑟)

𝑆𝑖𝑧𝑒 𝑜𝑓 𝑝𝐶𝑅𝐼𝐼 𝑣𝑒𝑐𝑡𝑜𝑟 (3900 𝑏𝑝)
 𝑋 𝑛𝑔 𝑜𝑓 𝑃𝐶𝑅 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟 1: 1 𝑖𝑛𝑠𝑒𝑟𝑡: 𝑣𝑒𝑐𝑡𝑜𝑟  

The preferred insert and vector ratio was 3:1.  

Thus, the amount of product = 
315×50

3900
×3= 12.1 ng; product size was 315 bp 

Then 12.1 ng of PCR product was used in 10 µL of reaction volume containing 2 µL of 5X 

buffer, 2 µL of vector (50ng) pCRII, restriction enzyme, and nuclease free water. The 

reaction mix was then incubated for 1 h at room temperature.  

 

After incubation, 2 µL of ligation mix was transferred to 100 µL of TOP 10 F’ Escherichia 

coli competent cells (Invitrogen) and incubated on ice for 30 min. The subsequent steps were 

performed according to section 2.2.4.1.7 of Chapter 2. 
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4.2.1. 3.3 Plasmid purification and ligation confirmation  

Plasmid DNA was extracted using High Pure Plasmid Isolation Kit (Roche) according to the 

manufacturer’s instruction (Appendix 1.8). The concentration and quality of plasmid DNA 

was checked using Nanodrop Spectrophotometer (ND-1000, Labtech International, 

Uckfield, UK). To confirm the correct insertion into the vector, PCR was performed using 

SAV-2 SD STD UP/DP primers and also M13-FP (5’-GTAAAACGACGGCCAG-3’) and 

M13-RP (5’-CAGGAAACAGCTATGAC-3’) primers (as described in 4.2.3.5).  

 

4.2.1.3.4 Recombinant plasmid analysis 

Recombinant plasmid was analysed by restriction fragment length polymorphism (RFLP) 

and sequencing. RFLP was performed using the restriction enzyme KpnI-HF (New England 

BioLabs) using 10X NEBuffer (CutSmart) in a reaction volume of 50 µL containing 500 ng 

of plasmid DNA, 5 µL of buffer, 1 µL of restriction enzyme and nuclease free water. The 

reaction mix was incubated for 15 min at 37 ºC in a thermocycler and after incubation, the 

reaction was stopped by adding 10 ºC of 6X dye to 50 µL reaction. The reaction was then 

run onto a 1% agarose gel. The pattern of bands on gel was analysed on the basis of the 

figure 4.1. Plasmid DNA was also sent for sequencing to GATC Biotech, using LIGHTrun 

sequencing using M13 forward primer to further check the correct orientation of the insert 

into the vector (sample was prepared for sequencing according to section 2.2.5.2, Chapter 

2). When sequences were obtained, they were checked for the correct orientation into the 

pCRII vector using SAV-2 specific primer sequences.  
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Figure 4.1: Calculated expected RFLP pattern of KpnI digested plasmid DNA on agarose gel 

simulation. Positive (A) or negative (B) orientation of the SAV-2 fragment into pCRII vector was 

determined based on the size of the band.  

 

4.2.1.3.5 PCR using M13 FP-RP primers and purification of PCR product 

M13 PCR was conducted in 50 µL reaction volume containing 1 µL of diluted plasmid (1:10 

to 1: 10000), 2 µL of each primer (800 nM), 25 µL of 2X MyTaq HS Mix (Bioline) and 20 

µL of PCR grade water. The reaction condition was: 1 cycle of activation at 95 ºC for 3 

mins, followed by 35 cycles of denaturation for 15s at 95 °C, annealing for 15s at 60 °C and 

extension for 15s at 72 °C. The PCR product was then run on 1% agarose gel to check the 

correct amplification of the product. The target PCR product was then purified using the 

DNA Clean & Concentrator (Zymo Research), according to manufacturer’s instructions 

(Appendix 1.6). Purified DNA was eluted into 20 µL nuclease free water. DNA 

concentration was determined using Nanodrop Spectrophotometer (ND-1000, Labtech 

International, Uckfield, UK). Purified PCR product was directly used for in vitro 

transcription, and the rest of the product was then kept at -20 °C for long-term storage. 
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4.2.1.3.6 In vitro transcription  

Based on the RFLP and sequence analysis, the insert into the vector was found to be 

positively oriented. So, the transcription was performed using SP6 RNA polymerase 

(Roche) in a 40µL reaction volume containing 150 ng of purified PCR product, 4 µL of 25 

mM of rNTPs, 4 µL of 10X transcription buffer, 2 µL of SP6 polymerase (stock 20U/µL) 

and nuclease free water. The reaction was incubated at 37 °C for 2 h followed by inactivation 

at 65 °C for 2 min in a thermocycler.  

 

4.2.1.3.7 RNA clean-up and DNase treatment 

RNA was then purified using Clean ALL DNA/RNA clean up and concentration kit (Norgen 

Biotek Corp.) according to manufacturer’s instruction. Briefly, RNA sample was adjusted 

to 100 L by adding RNase-free water. Then 250 L of Binding Buffer H (working buffer 

was prepared by adding -mercaptoethanol at a concentration of 10 L per mL) was added 

followed by an addition of 200 L of absolute ethanol. Then the mixture was vortexed for 

10s and transferred into the binding column assembled in the provided collection tube and 

centrifuged for 1 min at 14000g. The flowthrough was discarded and the column was washed 

with 500 L of Wash Solution K by centrifuging for 1 min at the same speed followed by 

another was by adding another 500 L of Wash Solution K by centrifuging for 2 min at 

14000g. An additional centrifugation for 1 min was done at the same speed. The column 

was then transferred into a 1.5 mL eppendorf tube and 40 L of elution buffer was added 

and centrifuged for 2 min at 200g followed by an additional centrifugation for 1 min at 

14000g. The purified RNA was then collected in the eppendorf tube. In the next step, the 

purified RNA was then treated with DNase enzyme to remove DNA, using DNA free kit 

(Ambion) in a 50 µL reaction containing all the purified RNA, 5 µL of DNase buffer (10X), 

1 µL of DNase enzyme (2U/ µL) and nuclease free water. The reaction mix was then 

incubated for 30 min at 37 °C in a thermocycler. After 30 min, 1 µL of DNase enzyme was 

added and incubated for another 15 min at 37 °C. After incubation, the reaction was 

inactivated by adding 5 µL DNase inactivation agent followed by incubation for 2 min at 

room temperature. Finally, the supernatant (containing RNA) was collected by centrifuging 

for 1.5 min at 10000g avoiding the pellet. After DNase treatment, the RNA clean-up step 

was repeated to remove all traces of buffer and enzymes containing salts. In this RNA clean-

up step, RNA was eluted in 20 µL of elution buffer.  
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4.2.1.3.8 RT-qPCR testing for residual plasmid DNA  

The DNase treated purified RNA was analysed by real time one-step RT-PCR using 

QuantiTect Probe RT-PCR kit (Qiagen) to check for any residual plasmid DNA and their 

respective CT value. The reactions were set up in LightCycler capillary tubes (Roche) in a 

20 µL reaction volume. Two reactions were set; one with RT-enzyme (RT+), for PCR 

amplification of RNA and another without RT enzyme (RT-) for PCR amplification from 

residual DNA.  

 

The reaction contained 10 µL of RT-PCR mastermix, 1 µL of each primer (SAV-2 specific), 

0.4 µL of probe (200 nM), 1 µL of transcribed RNA and 1 µL of RT (for RT+ reaction) or 

1 µL of nuclease free water (for RT- reaction). The reactions were run in a LightCycler 2.0 

thermocycler (Roche). The temperature profile for RT-qPCR was: reverse transcription for 

20 min at 50 °C, activation for 15 min at 95 °C, followed by 45 cycles of amplification for 

1s at 95 °C and 1 min at 60 °C, and a final cooling stage for 40s at 40 °C. Analysis was 

conducted using LightCycler software version 4.1.1.21 (Roche), with the CT values 

obtained for both the RT+ and RT- reactions. Based on the difference of the CT values 

between the RT+ and RT- reactions, a decision was made on whether further DNase 

treatments were required to remove any residual plasmid DNA. A good separation (>10 CT) 

between RT+ and RT- is required for RNA standard.  

 

4.2.1.3.9 Quantification of transcribed RNA 

Quantification of transcribed RNA sample was conducted using the Quant-iT RiboGreen 

RNA Reagent Kit (Invitrogen), according to manufacturer’s instructions. The transcribed 

RNA was diluted in 1:10 and 1:100. RNA standard was diluted from 1 µg/mL to 20ng/mL. 

Each sample was used in triplicate. The samples were prepared in a black 96 well plate. The 

analysis was performed in a Synergy HT Multi-Mode Microplate Reader (BioTek) and Gen5 

2.04 software. Calculations were then made between the samples and negative control to 

determine the concentration of RNA in transcribed RNA sample. The number of molecules 

per microliter of RNA was calculated according to the section 2.2.5.3 of chapter 2 with some 

modifications. Transcribed RNA solution was then diluted in tRNA (100ng/µL) from neat 

until 101. RNA of 107 to 101 molecules/µL were used as standard for viral quantification.  
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4.2.1.3.10 Test run for SAV-2 standard 

TaqMan probe based real time RT-qPCR (Figure 4.2) was performed to quantify the viral 

RNA copy number using hydrolysis kit (Roche) and Roche LightCycler 2.0. Primer and 

probe used for RT-qPCR were as SAVSDUP 5'-TCCACCACCCCGAAGAAGTC-3',  

SAVSDDP 5'-ATGTCACCACGGTGCTGATCTC-3' and probe SAVSDLNAP 5'-

ATCTCGTTGATGTGTATGA-3'. The reaction contained 1 µL of each primer (400 nM), 

0.4 µL of probe (200 nM), 1.3 µL of activator (3.25 mM Mn(OAc)), 7.5 µL of buffer, 7.8 

µL of nuclease free water (to make up 19 µL) and 1 µL of each standard or 1 µL of nuclease 

free water (for NTC) to make 20 µL of reaction volume. Each standard was run in duplicate. 

The reactions were run in a LightCycler 2.0 thermocycler (Roche). The temperature profile 

for RT-qPCR was: reverse transcription for 3 min at 63 °C, activation for 30s at 95 °C, 

followed by 45 cycles of amplification for 5s at 95 °C and 15s at 60 °C, and a final cooling 

stage for 40s at 40 °C. Analysis was conducted using LightCycler software version 4.1.1.21 

(Roche). Three runs in duplicate of each dilution was performed and the mean CT value of 

each dilution was used to generate the standard curve.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: TaqMan chemistry: An oligonucleotide probe, containing a fluorescent reporter dye on 

the 5' end and a quencher dye on the 3' end is used. When the target sequence is present, the probe 

anneals downstream from one of the primer sites and is cleaved by the 5' nuclease activity 

of Taq DNA polymerase as this primer is extended. This cleavage of the probe separates the reporter 

dye from the quencher dye, increasing the reporter dye signal and removes the probe from the target 

strand, allowing primer extension to continue to the end of the template strand. 
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4.2.1.4 RTgill-W1 cell culture 

RTgill-W1 cells were maintained in accordance with protocols developed in the Virology 

laboratory in the Institute of Aquaculture, University of Stirling, Scotland, UK. Briefly, cells 

were maintained in Leibowitz L-15 media (GIBCO Life Technologies) supplemented with 

L-glutamax and 10% of fetal bovine serum (FBS) at 22 °C in 75 cm2 plastic flasks 

(SARSTEDT, Germany).  

 

4.2.1.5 Growth of SAV-2 in RTgill-W1 cells  

RTgill-W1 cells were grown onto the 12 well transwells and the cells were allowed to grow 

until confluency. Cells were then infected with SAV2 at MOI 10, 1 and 0.1 and let for 6, 12, 

18, 24 and 96 h. Uninfected cells were used as a control. Each treatment in both infected and 

uninfected groups was conducted in triplicate and cells in triplicates were pooled together 

for cytoplasmic extraction. For cytoplasmic RNA extraction, 0.2% 

octylphenoxypolyethoxyethanol (NP-40) was used to lyse cytoplasmic fraction and 

cytoplasmic fraction was collected by centrifuging for 1 min at 14000 rpm at 4 °C. 

Cytoplasmic RNA was then extracted following TRI-Reagent extraction protocol (detail in 

Appendix 1.1). RNA purity and quantity were also checked. RNA integrity was assessed by 

agarose gel electrophoresis. TaqMan probe based real time RT-qPCR (Figure 4.2) was 

performed to quantify the viral RNA copy number at defined time points and virus 

concentration using hydrolysis kit (Roche) and Roche LightCycler 2.0. Primer and probe 

used for RT-qPCR were as SAVSDUP 5'-TCCACCACCCCGAAGAAGTC-3', SAVSDDP 

5'-ATGTCACCACGGTGCTGATCTC-3' and probe SAVSDLNAP 5'-

ATCTCGTTGATGTGTATGA-3'. RT-qPCR was performed according to section 4.2.3.10. 

 

4.2.1.6 Replication of SAV-2 in RTgill-W1 cells 

To detect the replicative strand in RTgill-W1 cells, cytosolic RNA extracted in section 4.2.4 

was used for strand specific RT-qPCR. For the detection of replicative viral genome, a SAV-

2 specific tag was used for cDNA synthesis using superscript III kit (Invitrogen) following 

the manufacturer’s instruction (detail in Appendix 1.2) using a tailed SAVFPtag primer (5’-

ggccgtcatggtggcgaattccaccaccccgaagaagtc-3’). For the qPCR detection of SAV-2 

replicative strand the SSTag primer ((5’-ggccgtcatggtggcgaat-3’) complementary to the 

sequence introduced by the tailed primer (Figure 4.3) was used. The PCR temperature 

profile was initial denaturation at 95 °C for 10 mins followed by 55 cycles of denaturation 
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95 °C for 10s, annealing 58 °C for 20s, and extension 72 °C for 15s and cooling 40 °C for 

30s.  

 

 

 

Figure 4.3: Strand specific PCR for the detection of replicative strand of SAV 2. A replicative strand 

specific primer, SSTag primer is used for the synthesis of first strand which further is detected by 

qPCR where another primer, SStagFP was used as complementary to the SSTag primer.  

 

4.2.1.7 Effects of SAV-2 on TER of RTgill-W1 cells 

RTgill-W1 cells were seeded onto the 12 well transwells with a growth area of 0.9 cm2 and 

0.4-micron pore size. Each transwell insert (Corning) was seeded with 0.12106 cells. Post 

seeding TER was measured over time. When TER values were found to be stable, cells were 

infected with SAV-2 at the multiplicity of infection (MOI)10, 1 and 0.1 and a control group 

with no virus but diluent was added in the control wells at the time of infection. TER was 

measured at ½, 1, 3, 6, 24, 48, 72 and 96 h of post infection. Three independent experiments 

were conducted where each treatment was conducted in triplicate and TER in each well at 

each time point was measured three times. Blank wells without cells in triplicate was always 

used as a background control. TER in blank was subtracted from TER of each treatment to 
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have the true resistance in each treatment. TER was calculated following the method 

explained in chapter 2, section 2.2.3.  

 

4.2.1.8 Expression of tight junction gene and TLR 3 and RLR mediated antiviral response 

in RTgill-W1 cells upon SAV-2 infection  

4.2.1.8.1 Conducting experiment, extraction of RNA and cDNA synthesis 

RTgill-W1 cells were grown onto the 12 well transwells and the cells were allowed to grow 

until confluency. Cells were then infected with SAV2 at MOI (10) and incubated for 6, 12, 

18, 24 and 30 h. Uninfected control groups for each time point were maintained. Each 

treatment in both infected and uninfected groups was conducted in triplicate and cells in 

triplicates were pooled together for cytoplasmic and total RNA extraction. For cytoplasmic 

RNA extraction, cell lysate was collected in 100 µL of 0.2% NP-40 (Thermo Fisher 

Scientific). Then the cytoplasmic fraction was collected by centrifuging for 1 min at 14000 

rpm at 4 °C. Cytoplasmic RNA was then extracted following TRI-Reagent extraction 

protocol explained in section 2.2.4.1.1 of chapter 2. For total RNA extraction cells were 

lysed with TRI-Reagent followed by RNA extraction following the same RNA extraction 

protocol. RNA was quantified using Nanodrop Spectrophotometer (ND-1000, Labtech 

International, Uckfield, UK). RNA purity and quantity were also checked. RNA integrity 

was assessed by agarose gel electrophoresis. The experiment was repeated twice for 

reproducibility.  

 

The cDNA was synthesized from 500 ng of cytoplasmic or total RNA using Maxima H 

Minus First Strand cDNA Synthesis Kit with dsDNase (Invitrogen) (detail in 

Appendix 1.7). Briefly, 1 μL of 10X dsDNase, and 1 μL of 10X dsDNase buffer were 

added in required volume of nuclease free water and RNA to a final volume of 10 μL. Then 

the reaction mix was incubated at 37 °C for 2 min in a thermal cycler (Biometra) and placed 

on ice for at least 1 min. Then 10 μL of cDNA synthesis mix containing 4 μL of 5X Maxima 

cDNA H Minus Synthesis Master Mix and 6 μL of nuclease free water and the reaction was 

then incubated for 10 min at 25 °C followed by another incubation for 15 min at 50 °C in 

Thermal Cycler (Biometra). The reaction was terminated by incubating at 85 °C for 5 min. 

The cDNA synthesis reaction was stored at −20 °C or used for PCR immediately.  
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Each RLR primer pair (Table 4.1) was checked by conventional RT-PCR. Primers that 

yielded a single and specific band on the agarose gel, were used for qPCR.  

 

4.2.1.8.2 DNA standard generation for absolute quantification of mRNA transcript 

 For absolute quantification of mRNA transcripts of each gene, a plasmid DNA standard 

was generated. Plasmid standards for tight junction genes (claudin 3a, 8d and ZO-1), TLR3, 

IFN and Mx2 generated in Chapter 2, section 2.2.5 were used. DNA standards for RLR 

molecules were generated following the protocols described in Chapter 2, section 2.2.5.  

 

Table 4. 1: Primer for RLRs and RLR associated molecules for RT-qPCR (S and T before 

the name of each primer represents salmon and trout respectably) 

 

Name of 

the gene 

Sequence (5'-3') Ann. 

Tmp. 

(°C) 

Product 

size (bp) 

Reference 

sequence 

Acc. No. 

S-RIGI F1- ACTGATCGGGAGAGGACACAA 

R1- CTTGACCACATTGCCAACGTAT 

59 202 XM_021593781 

T-MDA5 F1- AGAGCCCGTCCAAAGTGAAGT 

R1- GTTCAGCATAGTCAAAGGCAGGTA 

59 357 NM_001195179 

T-LGP2b F1- GTGGCAGGCAATGGGGAATG 

R1-CCTCCAGTGTAATAGCGTATCAATCC 

59 212 FN396358 

T-IPS1 F1- AGCCAGCCATACTCAGGAGA 

R1- CGTCCTCAGACACGTGAACA 

59 268 NM_001195181 

S-TBK1 F1- GACCTGTATGCGGTGAAGGT 

R1- CAGACTCCCACAGGGACAAT 

59 161 XM_021592888 

T-IRF3 F1- TGTATACACAGCGGAGGGGA 

R1- CACCCACAGCATCCTCCATT 

59 209 NM_001257262 

T-PKR F1- GGAAAGCTAAGCGGGAGGTT 

R1- TCCTCTCGTCGATCCACACT 

59 219 NM_001145891 

S-ISG15 F1- AAGTGATGGTGCTGATTACGG 

R1- TTGGCTTTGAACTGGGTTACA 

56 118 NM_001124609 

T-VIG-1 F1- CTCCAGCTCCCAAGTGTCAG 

R1- TTGTACTTCCGGCACCAGTC 

60 206 NM_001124253 
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4.2.1.8.3 Absolute quantification of mRNA transcripts 

To investigate TLR3 and RLR mediate antiviral response and tight junction response in 

RTgill-W1 cells upon SAV-2 infection, TLR 3, IFN, Mx2, claudin 3a, 8d and ZO-1 primers 

were used (listed in Table 2.1). Moreover, RLRs and RLR associated gene markers (listed 

in Table 4.1) were used to investigate RLR mediated antiviral responses.  

 

SYBR green based RT-qPCR (Chapter 2, Figure 2.1) was performed to quantify the mRNA 

transcripts of each gene using Roche LightCycler 480 instrument and Luminaries Color 

HiGreen qPCR Master Mix (Thermo Scientific). The following qPCR temperature profile 

was used: pre-treatment to 50 °C for 2 min; initial denaturation at 95 °C for 10 min, 40 

cycles of denaturation 95 °C for 15s, annealing variable temperature depending on primer 

sets for 30s, and extension 72 °C for 30s; followed by dissociation curve: 95 °C for 10s, 55 

°C for 5s and 95 °C for 30s to confirm the generation of a single specific amplicon. 2 µL of 

diluted cDNA (1:5) was used in18 µL of mastermix which includes 10 µL of SYBR Green 

(2x), 0.5 µL of each primer (400 nM) and 7 µL of molecular grade water to make final 

volume of 20 µL.  

 

MIQE guidelines (Bustin et al., 2009) were followed in all the steps from RNA extraction 

to qPCR data analysis.  

 

4.2.1.9 RLR mediated antiviral response in RTgill-W1 cells upon poly(I:C) induction 

Similar experiment as described in section 4.2.8 was conducted in triplicate, where cells 

were stimulated with poly(I:C) at a concentration of 10 g/mL. RNA extraction and cDNA 

synthesis were conducted using the protocol described before. Standards of RLR molecules 

were used for absolute quantification of mRNA transcripts where Syber Green based RT-

qPCR was conducted in Roche LightCycler 480 instrument (Roche).  

 

4.2.2 A. salmonicida invasion model for RTgill-W1 cells 

4.2.2.1 Bacterial isolates and bacterial cell preparation for experiment 

A. salmonicida subsp. salmonicida (NCIBM1102) was used in the study. The isolate is in 

place in the Institute of Aquaculture, University of Stirling, UK. The bacterium was revived 

from the frozen stock using Tryptic Soya Agar (TSA) (Oxoid). A single colony of bacterial 

culture of no more than 48 h was grown in 20 mL of Tryptic soya broth (TSB) (Oxoid) in 
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50 mL sterile falcon tube and incubated at 22 °C in static for 48. After 48 h of incubation, 

bacterial cells were harvested by centrifugation at 4°C for 15 min. Cells were then re-

suspended in 5 mL 0.85% NaCl solution. An aliquot of cell suspension was used for flow 

cytometry analysis to enumerate the number of bacterial cells per microliter of cell 

suspension. Cells were always kept on ice to cease bacterial multiplication.  

 

4.2.2.2 RTgill-W1 Cell culture 

RTgill-W1 cells were maintained following the protocol described in section 4.2.1.4.  

 

4.2.2.3 Infection of epithelial cell monolayer 

4.2.2.3.1 Invasion of epithelial monolayer by A. salmonicida 

To investigate the ability of A. salmonicida to penetrate the epithelial monolayer, RTgill-

W1 cells were seeded onto transwells in a 12 well plate (Corning) with a growth area of 0.9 

cm2 and 3-micron pore size with a seeding density of 0.12106 cells/insert. Blank inserts 

with only medium in the apical and basolateral side were maintained. Cells were maintained 

in L-15 medium supplemented with 10% FBS at 22 °C until confluency. The confluent cell 

monolayer was infected with A. salmonicida prepared in section 4.2.2.1 at a MOI of 10. At 

5, 10, 15, 30 min, 1, 3 and 6 h post infection, 100 L of growth medium from the basolateral 

side of each insert was collected into sterile 1.5 mL eppendorf tube and kept on ice. After 

each sampling, the basolateral compartments were replenished with 100 L of fresh 

medium.  

 

For the enumeration of live bacterial cells in the collected medium, the LIVE/DEAD 

BacLight Bacterial Viability and Counting Kit (Molecular probes, Invitrogen) containing 

SYTO and Propidium iodide (PI) was used. First a working solution of SYTO and PI was 

prepared in PBS (3 L of SYTO + 3 L of PI in 1.0 mL of PBS; 2x of recommended 

concentration of each component was used because of further 2-fold dilution). The solution 

was mixed properly and 100 L of the solution was added into 100 L of each sample, 

mixed gently and incubated for 15 min in dark. After incubation samples were analysed by 

flow cytometer (Beckman Coulter).  

 



126 

 

The percentage of bacterial cell invading through the monolayer with or without stimulation 

was calculated according to the equation mentioned below where the bacterial cell passing 

thorough the blank insert was considered as 100%.  

 

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑖𝑛𝑣𝑎𝑠𝑖𝑜𝑛 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑐𝑒𝑙𝑙 𝑚𝑜𝑛𝑜𝑙𝑎𝑦𝑒𝑟 (%)

=  
𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑒𝑙𝑙𝑠 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑜𝑟 𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑔𝑟𝑜𝑢𝑝 × 100 

𝐵𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑙 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑏𝑙𝑎𝑛𝑘 
 

 

4.2.2.3.2 Modulation of epithelial monolayer by viral and bacterial PAMPs  

To investigate the effectiveness of viral and bacterial PAMPs in modulating cellular integrity 

against bacterial infection, RTgill-W1 cells were pre-treated with, LPS and PGN 24 h before 

bacterial infection. A blank group without RTgill-W1 were also inoculated with bacteria 

while a control group with RTgill-W1 cells and bacteria were maintained. In the treatment 

groups, RTgill-W1 cells were stimulated with, 10 µg/mL LPS and 10 µg/mL PGN 24 h 

before infection. Another group for CyD treatment was also maintained where the RTgill-

W1 cells were pre-treated with 2 µg/mL CyD 1 h before infection with A. salmonicida sub. 

salmonicida. The percentage of bacterial invasion through the epithelial monolayer was 

determined at 6 h post infection following the protocol of previous section. 

 

In the control group, the percentage of bacteria invading through the monolayer was the 

percentage of bacterial cell passing through the blank insert while in the treatment groups 

the percentage of bacteria through the stimulated/treated monolayer was the percentage of 

bacteria passing through the stimulated/treated cell monolayer. 

 

4.2.2.4 Antibacterial response of RTgill-W1 cells upon bacterial infection 

To investigate the antibacterial response of RTgill-W1 cells to bacterial infection, RTgill-

W1 cells were seeded onto the 12 well transwells (Corning) with a growth area of 0.9 cm2 

and 3-micron pore size with a seeding density of 0.12106 cells/insert. Cells were 

maintained in L-15 medium supplemented with 10% FBS at 22 °C until confluency. The 

confluent cell monolayer was infected with A. salmonicida prepared according to the section 

4.2.2.1 at a MOI of 10. The infection was continued for 3 and 6 h. Then cells were harvested 

using TRI-reagent for the extraction of total RNA following the protocol as explained in 

section 2.2.4.2.1 of chapter 2 and cDNA was synthesized using Maxima H Minus First 

Strand cDNA Synthesis Kit with dsDNase (Invitrogen) following th e protocol 
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explained in section 4.2.4.1. Each cytokine and antimicrobial peptide primer pair (Table 

4.2) was checked by conventional RT-PCR. The primers were designed, synthesized and 

validated by Primer Design Company. Each PCR product was then purified and ligated for 

DNA standard was generated following the protocols described in Chapter 2, section 2.2.5.  

 

SYBR green based RT-qPCR was performed to quantify the mRNA transcripts of each gene 

using Roche LightCycler 480 instrument and Luminaries Color HiGreen qPCR Master Mix 

(Thermo Scientific) following the protocol described in section 4.2.4.3. 

 

Table 4. 2: List of primers used for the study of expression of selected cytokines, innate 

immune gene and antimicrobial peptides in RTgill-W1 cells. 

 

Target gene Sequence (5’-3’) Ann. 

Temp. 

(°C) 

Product 

size (bp) 

Reference sequence 

Acc. No. 

IL-8 F- GCTGCATTGAGACGGAAAGC 

R- ACATGATCTCAGTGTCTCTG 

60 96 AY221022.1 

CD209b F- CACCTTAGCATCCTGCACAGCAA 

R- CGAGCTGTACGGTTGCCAGAAGTTAT 

60 177 NM_001160495.1 

rtCATH2 F- ACATGGAGGCAGAAGTTC 

R-GAGCCAAACCCAGGACGAGA 

60 133 NM_001124463.1 

omDB3 F- GCTTGTGGAATACAAGAGTCATCTGC 

R- GCATACATTCGGCCATGTACATCC 

60 138 NM_001195183.2 

 

4.2.2.5 Viral and bacterial PAMP induced immune response RTgill-W1 cells  

Similar experiment as described in section 4.2.2.4 was conducted in triplicate where cells 

were stimulated with poly(I:C), LPS and PGN at a concentration of 10 g/mL. Syber Green 

based RT-qPCR was conducted in Roche LightCycler 480 instrument following the 

protocols already explained. 

 

4.2.3 Statistical analysis 

TER data were analysed using 2-way repeated measure ANOVA followed by Bonferoni’s 

multiple comparison using GraphPad prism version 6.0 (San Diego, CA, USA). RT-qPCR 

data were also analysed using 1-way ANOVA followed by Bonferoni’s multiple comparison 

using GraphPad prism version 6.0. In all analyses, differences between groups were 

considered statistically significant at p<0.01 unless otherwise mentioned. 
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4.3 Results 

4.3.1 Response of RTgill-W1 cells to Salmonid alphavirus subtype 2 (SAV-2) infection 

SAV-2 was used as an infectious agent to investigate the cellular and molecular response 

of salmonid gill epithelial cell line RTgill-W1 upon viral infection. SAV-2 was grown in 

the laboratory and quantified the virus titer before used. 

  

4.3.1.1 SAV- 2 culture in fish cell line 

Three fish cell lines CHSE-214, CHH-1 and TO were initially tested for growing SAV-2 

using two inoculation methods: (i) the adsorption inoculation method where virus was 

inoculated on preformed cell monolayers, and (ii) the simultaneous inoculation method 

where cell seeding, and virus inoculation were done simultaneously. Five different dilutions 

of the virus (10-1 to 10-5) were used.  

 

Cells were monitored everyday under the inverted microscope to check for CPE. CPE was 

found to form at day 5, 3 and 6 in CHSE-214, CHH-1 and TO cells respectively inoculated 

by adsorption method while in cells inoculated by the simultaneous method CPE started to 

form at day 4, 4 and 6 in CHSE-214, CHH-1 and TO cells respectively. Although, CPE 

started earlier in the CHH-1 cell line, CPE was much more progressive in CHSE-214 cells. 

Virus was harvested at day 18 from all the cells and was quantified by real time PCR. The 

highest viral RNA copy number was found in CHSE-214 cell inoculated with a dilution of 

10-3. For mass production of SAV in 25 cm2 TC flasks, dilutions of 10-2 and 10-3 using both 

adsorption and simultaneous inoculation methods were inoculated. CPE started to form at 

day 4 and day 5 in adsorption inoculation with 10-2 and 10-3 respectively while in 

simultaneous inoculation method CPE started to form at day 5 in both dilutions. CPE was 

found to progress slowly up to day 10, later it progressed rapidly. The CPE was more 

progressive in the 10-3 dilution in simultaneous inoculation where at day 18 almost all the 

cells were detached from the surface of the flask. At day 20, virus was harvested from all 

four flasks of the simultaneous inoculation inoculated with a dilution of 10-3 (method section 

4.2.1.1). 

 

4.3.1.2 TCID50 of SAV2, viral standard generation and viral copy number determination 

Virus titter was done in CHSE-214 cells where a TCID50 of 106.35±0.2 per ml was detected. 

For the generation of a quantitative SAV-2 standard, viral RNA was extracted from the viral 
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supernatant. A target region was amplified by PCR, ligated into pCRII and RNA was 

transcribed from the plasmid (method section 4.2.3). A SAV-2 RNA standard from 107 - 101 

copies per microliter was diluted using tRNA as the diluent. A standard curve was generated 

by three TaqMan probe based real time RT-qPCR runs of the entire RNA standard (Figure 

4.4 show standard graph (r2 = 0.9877, efficiency = 2.4 and sensitivity 101) (method section 

4.2.3). The viral copy number in the stock was then also determined using TaqMan probe 

based real time RT-qPCR which gave copy number of around 107 per mL. 

 

 

Figure 4.4: Standard curve of SAV-2. The graph was generated using the Log10 of copy number (X-

axis) and the corresponding CT value (Y-axis). Each standard was run in duplicate and mean of three 

independent runs was used. Graph was generated and analysed using GraphPad Prism v. 6.0 

 

4.3.1.3 Growth and replication of SAV-2 in RTgill-W1 cells 

To investigate the load of SAV-2 in the cytoplasmic fraction of RNA of RTgill-W1 cells in 

a time dependent manner as a result of viral replication, cytosolic RNA was used where 

Taqman probe-based RT-qPCR was employed. Very low viral copy number was detected 

in the cytosolic RNA throughout the experimental period (Figure 4.5). However, 

significantly higher viral copy number was detected at 30 h post infection (p<0.01).  

 

Further, to investigate the replication efficiency of SAV-2 in RTgill-W1 cells, cells were 

infected with SAV-2 at a concentration of MOI10, 1 and 0.1 using strand specific RT-qPCR.  

SAV-2 was found to replicate in the MOI 10 and 1 infected cells. In MOI0.1 infected cell 

replication was detected. Virus replication inside the RTgill-W1 cells was detected as early 
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as 6 h of post infection. However, viral replication was significantly higher at 12 and 24 h 

post infection (p<0.01).  

 

 
 

Figure 4.5: Viral load (A) and replication (B) in RTgill-W1 cells at different time points of post 

infection with SAV-2 at MOI 10. Viral copy number was determined using Taqman probe-based 

RT-qPCR and SAV-2 replicative strand was detected using strand specific RT-qPCR. Values are 

mean ± SEM. Data were analysed by One-Way ANOVA followed by Bonferoni’s multiple 

comparison. Bar with different letters are significantly different with a level of significance p<0.01. 

Data were analysed using GraphPad prism version 6.0.  

 

 

4.3.1.4 Effects of SAV-2 on cellular integrity 

To investigate the effects of SAV-2 on TER, polarized RTgill-W1 cells in the transwell 

inserts were infected with SAV-2 at a concentration of MOI 10, 1 and 0.1. Before SAV2 

infection, TER in each group was monitored overtime until it reached at peak and remained 

stable (16-20 Ω.cm2) in 72 to 96 h (Figure 4.6A). Post infection TER in the MOI 10 infected 

group started to decrease from as early as 30 min until 6 h post infection (hpi) and the 

decrease was significant at 1, 3 and 6 hpi (p<0.005) while in MOI 1 and MOI 0.1 infected 

group, TER was similar to the control group until 6 hpi (Figure 4.6B). However, TER in all 

the groups coincided at 24 hpi and then increased gradually until end of experiment in 

infected groups with some fluctuations where cells showed slightly significant higher 

resistance at 48 and 72 hpi in MOI 0.1 and 48 hpi in MOI 10 infected groups (p<0.005).  
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Figure 4.6: Modulation of transepithelial resistance (TER) of RTgill-W1 cells. (A) TER before 

infection where cells were seeded onto the transwells and left uninfected until TER reached at peak 

and remained stable. (B) TER in response to SAV-2 infection at MOI 10, 1 and 0.1 at different time 

points. In all cases 3 independent experiments in triplicate were conducted with 3 measurements at 

a single time point in each replicate. Values are mean ± SEM (n=3×3=9). TER of infected groups 

was compared to control group in each time point at the significance level of *=p<0.005, 

**=p<0.0005 using repeated measure two-way ANOVA, GraphPad Prism version 6.0.  

 

4.3.1.5 Molecular response upon SAV-2 infection 

To investigate the molecular response upon viral infection, tight junction related genes, 

genes related to TLR3 and RLR signaling pathways were tested. The expression patterns 

were monitored by SyberGreen based absolute qPCR where copy number was calculated 

from the standard curve (detailed in the method section). For each standard curve, co-

efficient of determination (R2), efficiency and sensitivity were calculated (Table 4.3). 
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Table 4. 3: Co-efficient of determination (r2), efficiency and sensitivity for the target genes 

generated from the standard curve. Efficiency was calculated using the formula, E =10(-1/-

slope). E value of 2.0 is equivalent to 100% efficiency. N represent the number of qPCR run 

for each gene to make standard curve while sensitivity is the lowest copy number detected 

by qPCR.  

 

Target r2 Efficiency N Sensitivity 

TLR3 0.99 1.93 3 101 

Mx2 0.99 1.95 3 101 

ZO-1 0.99 1.93            3 101 

RIG-I 0.99 1.88 3 102 

MDA5 0.99 1.84 3 101 

LGP2b 0.99 1.93 3 101 

IPS1 0.99 1.87 3 101 

           TBK1 0.99 1.95 3 101 

IRF3 0.99 1.82 3 101 

PKR 0.99 1.80 3 101 

ISG15 0.98 2.01 3 102 

Viperin 0.99 1.95 3 102 

 

Standard curve of each of the gene is presented in Appendix 2.2, Figure S2.2. 

 

4.3.1.5.1 Expression of tight junction genes 

SAV-2 was not found to induce the expression of tight junction regulatory gene ZO-1 

(Figure 4.7) and tight junction gene claudin 3a and 8d (data not shown).  
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Figure 4.7: Expression of tight junction regulatory protein ZO-1 in cytoplasmic and total RNA 

fractions of RTgill-W1 cells. Cells were infected with SAV-2 for different time points and level of 

expression was compared between infected and control cells. One-way ANOVA, Bonferoni’s 

multiple comparison was done to analyse the data where statistical significance was determined with 

the level of significance of p<0.01 using GraphPad Prism version 6.0. Green line denotes control 

group while purple line denotes SAV-2 infected group.  

 

4.3.1.5.2 Antiviral response through TLR3 signaling pathway  

Antiviral response of RTgill-W1 cells was detected in SAV-2 infected cells. Initially, three 

different MOI were used to infect the cells to optimize the virus concentration for the 

experiment. Expression of the response molecule, Mx2 was used as an indication of antiviral 

response where expression of Mx2 in RTgill-W1 cells infected with MOI 10 was higher 

than that of MOI 1 and MOI 0.1 in the cytoplasmic RNA at 96 h post infection. Expression 

of Mx2 in MOI 10 infected cells was around 2.5-fold higher than that of MOI 0.1 (Figure 

4.8A). In control cells no expression of Mx2 was detected. Then for the final experiment 

virus concentration of MOI10 was used. As a low level of Mx2 expression had been detected 

in cytoplasmic RNA at 96 h post infection, the time course of Mx2 expression was monitored 

at 6h intervals in cytoplasmic and total RNA fractions from 6 h up to 30 h. In both 

cytoplasmic and total RNA fractions, the highest yield of Mx2 mRNA transcripts was 

observed at 30 h post infection with a significantly higher Mx2 copy number than at any of 

the other time points (p<0.0001; Figure 4.8B).  

 

To investigate the endosomal sensor of dsRNA, TLR3 expression upon SAV-2 infection 

was investigated where a significantly higher copy number of TLR3 was detected in SAV-

2 infected cells than that of non-infected cells at early stage of infection until 18h (p<0.001; 
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Figure 4.8C). Moreover, IFN expression upon infection was investigated where the 

expression remained stable but low throughout the experiment (data not shown).  

 

 

 

Figure 4.8: Expression profile of viral dsRNA receptor molecule TLR3 and antiviral response gene 

Mx2 in the cytoplasmic RNA of RTgill-W1 cells. (A) Expression of Mx2 after 96 h of post infection 

with SAV-2 at MOI of 10, 1 and 0.1 and (B) expression of Mx2 in control and SAV-2 infected cells. 

(C) TLR3 expression in control and SAV-2 infected RTgill-W1 cells at different post infection 

duration where in the control cells no expression of Mx2 was detected. One-way ANOVA, 

Bonferoni’s multiple comparison was done to analyse the data where statistical significance was 

determined with p<0.01 using GraphPad Prism version 6.0. 

 

4.3.1.5.3 Antiviral response through RLR signaling pathway  

To investigate whether RTgill-W1 cells can sense SAV-2 by RLR signaling molecules and 

can activate the RLR signaling pathway, several genes associated with the pathway were 

selected. RIG-I, MDA5 and LGP2b were used as the perception molecules while IPS1 and 

TBK1 were used as integrating molecules. IRF3 was used as one of the transcription factors 

while PKR, ISG15 and viperin were used as antiviral response molecules.  

 

4.3.1.5.3.1 Response upon poly(I:C) 

Poly(I:C) is an analogue of dsRNA and is sensed by different host receptors. To investigate 

whether RTgill-W1 cells can sense poly(I:C) through cytoplasmic RLR molecules, cells 

were stimulated with poly(I:C) and expression pattern was monitored in cytoplasmic and 

total RNA fractions.  

 

Poly(I:C) was found to enhance the upregulation of all of the tested receptor molecules RIG-

I, MDA5 and LGP2b at all the time points in both cytoplasmic and total RNA (p<0.0001) 

except MDA5 at 6 and 30 h of post stimulation in cytoplasmic RNA and 30 h of post 



135 

 

stimulation in total RNA (Figure 4.9). Signaling molecules IPS1 and TBK1 remained stable 

upon stimulation while expression of IRF3 in both mRNA fractions was significantly and 

constitutively upregulated upon stimulation (Figure 4.10). All the interferon stimulated 

genes PKR, ISG15 and viperin constitutively and significantly upregulated in both 

cytoplasmic and total RNA upon stimulation (p<0.0001) (Figure 4.11).   

 

4.3.1.5.3.2 Response upon SAV-2 infection 

SAV-2 replicates in the cytoplasm where dsRNA is formed and is available to be sensed by 

host’s sensors. To assess whether SAV-2 indeed triggers the expression of the molecules 

associated with RLR pathway, the parameters shown to respond to poly(I:C) stimulation 

were also measured upon SAV-2 infection.  

 

  

Figure 4.9: The absolute expression of dsRNA receptor molecules RIG-I, MDA5 and LGP2b in 

cytoplasmic and total RNA fractions of RTgill-W1 cells comparing between control and SAV-2 

infected cells and Poly(I:C) stimulated cells at different time points. Data are mean ± SEM of three 

course independent experiment. One-way ANOVA, Bonferoni’s multiple comparison was done to 

analyse the data where statistical significance was determined with p<0.01 using GraphPad Prism 

version 6.0. Green, blue and purple lines represent control, SAV-2 infected and poly(I:C) stimulated 

group respectively. 

 

In the cytoplasmic RNA, the RIG-I mRNA transcript was significantly and constantly 

upregulated in response to SAV 2 infection which was significantly higher than the control 
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group at all time points (p<0.0001; Figure 4.9). Moreover, in total RNA, the mRNA 

transcript of RIG-I was upregulated at 12 and 24 h post infection in response to SAV2 

(Figure 4.9). Expression of MDA5 in the cytoplasmic RNA was upregulated at the early 

stage of infection until18 h post infection and did remain unchanged at the late stage of 

SAV2 infection in both cytoplasmic and total RNA. Expression of LGP2b, a splice variant 

of LGP2 was also upregulated until 24 h post infection with a little decrease at 12 h in the 

cytoplasmic RNA (p<0.0001) while in the total RNA, the expression was found to be stable. 

In the cytoplasmic RNA, IPS1 remained stable in both control and infected cells throughout 

the experiment. However, in the total RNA fraction, IPS1 was downregulated at the early 

stage of infection at 6 (p<0.01) and 12 (p<0.001) h which was maintained to normal level at 

18 and 24 h and again downregulated at 30 h (p<0.001) of infection. TBK1 in the 

cytoplasmic fraction was slightly upregulated at 12 (p<0.01), 18 (p<0.01) and 24 (0.001) h 

post infection. In the total RNA, TBK1 expression was unaffected by SAV-2 infection. In 

the cytoplasmic RNA, IRF3 was constitutively and significantly upregulated following 

SAV2 infection, while in total RNA expression was upregulated at 18 h post infection 

(p<0.0001) (Figure 4.10).  

 

Interferon stimulated genes PKR upregulated upon SAV-2 induction at 12 h and onwards in 

cytoplasmic RNA fraction and remained unchanged except 18 h post induction in total RNA 

fraction. Other ISGs, ISG15 and Viperin were significantly upregulated throughout the 

experiment in the cytoplasmic RNA fraction (p<0.0001; Figure 4.11). In the total RNA 

fraction, ISG15 upregulated at all the time points except 24 h post SAV-2 infection.  
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Figure 4.10: The absolute expression of the signaling molecules IPS1, TBK1 and IRF3 in the 

cytoplasmic and total RNA fractions of RTgill-W1 cells comparing between control and SAV-2 

infected groups and control and poly(I:C) stimulated groups at different time points. Data are mean 

± SEM of three course independent experiment. One-way ANOVA, Bonferoni’s multiple 

comparison was done to analyse the data where statistical significance was determined with p<0.01 

using GraphPad Prism version 6.0. Green, blue and purple lines represent control, SAV-2 infected 

and poly(I:C) stimulated group respectively. 
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Figure 4.11: The absolute expression of the interferon stimulated genes PKR, ISG15 and viperin in 

the cytoplasmic and total RNA fractions of RTgill-W1 cells comparing between control and SAV-2 

infected groups and control and poly(I:C) stimulated groups at different time points. Data are mean 

± SEM of three course independent experiment. One-way ANOVA, Bonferoni’s multiple 

comparison was done to analyse the data where statistical significance was determined with p<0.01 

using GraphPad Prism version 6.0. Green, blue and purple lines represent control, SAV-2 infected 

and poly(I:C) stimulated group respectively. 

 

The level of expression of each molecule at each time point has been demonstrated in Figure 

4.12 (cytoplasmic RNA fraction) and 4.13 (total RNA fraction) where each rectangle 

represents replicate for respective gene, treatment group and duration.  
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Figure 4.12: Heat map showing the absolute quantification of expression of mRNA transcripts of 

RLRs, integration and effector molecules in cytoplasmic RNA fraction RT-gill-W1 cells as depicted 

in the colour scale. Significant upregulation at p<0.0001, p<0.001 and p<0.01 were expressed by the 

asterisk ***, ** and * respectively. Black color in the heat map represents no sample. 

 



140 

 

 
 

Figure 4.13: Heat map showing the absolute quantification of expression of mRNA transcripts of 

RLRs, integration and effector molecules in total RNA fraction of RT-gill-W1 cells as depicted in 

the colour scale. Significant upregulation or downregulation at p<0.0001, p<0.001 and p<0.01 were 

expressed by the asterisk ***, ** and * respectively. Black color in the heat map represents no 

sample. 
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4.3.2 A. salmonicida invasion model for RTgill-W1 cells 

To investigate the barrier function of RTgill-W1 cells against bacterial infection, the cell 

monolayer was infected with A. salmonicida, a common pathogen of rainbow trout. Then 

the invasion of bacteria through the cell monolayer was studied by FACS analysis.  

 

4.3.2.1 Rapid translocation of polarized RTgill-W1 cell monolayers 

To investigate how fast pathogenic A. salmonicida sub. salmonicida can penetrate the 

epithelial monolayer, after apical infection of RTgill-W1 cells with bacteria, medium from 

the lower chamber of the transwell apparatus was sampled at different time points and 

bacterial load was determined flow cytometer using bacterial viability and counting kit.   

 

The bacterial penetration was found to follow a time-dependent fashion where the recovery 

of A. salmonicida from the basolateral side at 5 min post-infection was less than 2% of the 

bacterial count from the basal side of blank insert with only medium and bacteria which 

remained stable until 1h of post-infection (Figure 4.14). The bacterial count increased to 

around 10% at 3 h and around 60% at 6 h of post-infection.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: (A) Recovery of A. salmonicida subsp. salmonicida from the basolateral side of the 

transwells after penetration of polarized RTgill-W1 cell monolayers between 5 min and 6 h post-infection. 

RTgill-W1 cells were allowed to grow onto the transwells with 3µm pore size until they reached 

confluency. Each point is the mean cell count standard deviation by FACS analysis; each assay was done 

in triplicate for typical. Bacteria was recovered from 100 µL of L-15 medium from serosal side of the 

transwells. Sytox and propidium iodide were added into the sample and incubated for 15 min followed 

by FACS analysis by CytoFlex flow cytometer. The percentage represents the percentage of bacteria 

recovered from the transwells with RTgill-W1 cells compare to the blank (without cells).  
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4.3.2.2 Modulation of cellular integrity by viral and bacterial PAMPs against bacterial 

infection 

To further investigate whether viral and bacterial PAMPs can modulate cellular integrity 

against bacterial infection, RTgill-W1 cells were pre-treated with poly(I:C), LPS and PGN 

24 h before bacterial infection. Moreover, as bacterial invasion was very low until 3 h post-

infection, the bacterial count was done only at 6 h of post infection. CyD which has been 

found to disrupt the cell monolayer (Chapter 3, section 3.2.1), was also used as a control 

treatment.  

 

In the control group (RTgill-W1 cells + bacteria), around 45% bacterial cells were recovered 

from the basolateral side which was reduced to 7, 10 and 13% (Figure 4.15) when the RTgill-

W1 cells were pre-treated with poly(I:C), LPS and PGN which were significantly lower than 

control group (p<0.0001, 0.0001 and 0.001 respectively). However, in the CyD treatment 

group, bacterial cell count in the basolateral side remained similar to the control group.   

 

  
Figure 4.15: Percentage of recovery of A. salmonicida compared to blank after penetration of 

polarized RTgill-W1 cell monolayers at 6 h post-infection. RTgill-W1 cells were allowed to grow 

onto the transwells with 3µm pore size until reach confluency. For treatment groups with PAMPs, 

cells were pre-treated with respective PAMPs (poly(I:C), LPS and PGN) at 10 µg/ml 24 h before 

bacterial infection. For CyD treatment, cells were pre-treated with CyD at 1µg/ml 3 h (dose and 

duration optimized in Chapter 3, section 3.2.1) before bacterial infection. Data presented as mean 

±SEM of cell count by FACS analysis where each assay was done in triplicate. Bacterial cells were 

recovered from 100 µL of L-15 medium from serosal side of the transwells after adding Sytox and 

propidium iodide and incubated for 15 min followed by FACS analysis by CytoFlex flow cytometer. 

One-way repeated measure ANOVA followed by Bonferoni’s multiple comparison was conducted 

using GraphPad Prism 6.0 where the level of significance was p<0.01. Data were compared between 

control and treatment groups where ** and *** represent p<0.001 and p<0,0001 respectively 
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4.3.2.3 Molecular response upon bacterial infection 

To further investigate the effects of A. salmonicida on RTgill-W1 cells at the molecular 

level, the expression of some selected gene markers was monitored. Pro-inflammatory 

cytokine, IL-8, innate immune gene C-type lectin CD209b and antimicrobial peptides 

rtCATH2 and omDB3 were tested. The expression pattern was monitored by SyberGreen 

based absolute qPCR. For absolute quantification of copy number of mRNA transcripts, 

DNA standard was generated for each gene (as described in the section 4.1.6). For each 

standard curve, co-efficient of determination (R2), efficiency and sensitivity were calculated 

(Table 4.4). 

 

Table 4. 4: Co-efficient of determination (r2), efficiency and sensitivity for the target genes 

generated from the standard curve. Efficiency was calculated using the formula, E =10(-1/-

slope). E value of 2.0 is equivalent to 100% efficiency. N represent the number of qPCR run 

for each gene to make standard curve while sensitivity is the lowest copy number detected 

by qPCR.  

 

Target r2 Efficiency N Sensitivity 

omDB3 0.99 1.91 3 101 

IL-8 0.98 1.83 3 101 

CD209b 0.96 1.86 3 101 

rtCATH2 0.99 1.85 3 101 

 

Standard curve of each of the gene is presented in Appendix 2.3, Figure S2.3. 

 

4.3.2.3.1 Expression of cytokines (IL-8) and innate immune gene (CD209b) antimicrobial 

peptides (AMPs) in RTgill-W1 cells upon bacterial infection  

The expression of the target genes was monitored upon infection for 3 and 6 h with typical 

A. salmonicida. IL-8 was significantly upregulated upon infection of A. salmonicida in both 

time points (Figure 4.16). Moreover, the innate immune gene C-type lectin CD209b was 

also significantly upregulated in similar fashion to IL-8. However, the antimicrobial peptide 

cathicidin (rtCATH2) was only upregulated significantly at late stage of infection with A. 
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salmonicida. Surprisingly, another antimicrobial peptide -defensin (omDB3) was 

significantly downregulated at 6h of post infection with A. salmonicida (p<0.001).  

  
 
Figure 4.16: Expression of cytokine IL-8 (A), innate immune gene CD209b (B) and antimicrobial 

peptides rtCATH2 (C) and omDB3 (D) in RTgill-W1 cells after 3 and 6 h of infection with A. 

salmonicida subsp. salmonicida. Data have been presented as log10 copy number of mRNA 

transcripts (mean±SEM) of target gene per microlite of cDNA. Three course independent 

experiments were conducted each with biological duplicate where each replicate was a pooled 

sample of 2 inserts. One-way ANOVA followed by Bonferoni’s multiple comparison was conducted 

to analyse the data where statistical significance was determined with p<0.01 using GraphPad Prism 

version 6.0. Data were compared between control and treatment groups at each time point where *, 

** and *** represent p<0.01, p<0.001 and p<0,0001 respectively.  

 

4.3.2.3.2 Expression of cytokine (IL-8) and innate immune gene (CD209b) antimicrobial 

peptides (AMPs) in RTgill-W1 cells upon viral and bacterial PAMP stimulation 

Poly(I:C), LPS and PGN were used as stimulants in this study, to mimic viral and bacterial 

infection where poly(I:C) was found to significantly upregulate the expression of IL-8 and 

CD209b at both 3 and 6 h of stimulation and rtCATH2 at only 6 h of stimulation (Figure 

4.17; p<0.0001). Another AMP, omDB3 remained stable upon stimulation. 
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LPS and PGN were found to upregulate the expression of IL-8 significantly at 3 h of 

stimulation (p<0.001) while at 6 h of stimulation, surprisingly, expression was found to be 

significantly downregulated (p<0.001). CD209b, rtCATH2 and omDB3 did not vary 

significantly upon stimulation (p>0.01).  

 
 

 
 
Figure 4.17: Expression of cytokine IL-8 (A), innate immune gene CD209b (B) and antimicrobial 

peptides rtCATH2 (C) and omDB3 (D) in RTgill-W1 cells after 3 and 6 h of stimulation with viral 

and bacterial PAMPs. Data have been presented as log10 copy number of mRNA transcripts 

(mean±SEM) of target gene per microlite of cDNA. Three course independent experiments were 

conducted each with biological duplicate where each replicate was a pooled sample of 2 inserts. One-

way ANOVA followed by Bonferoni’s multiple comparison was conducted to analyse the data where 

statistical significance was determined with p<0.01 using GraphPad Prism version 6.0. Data were 

compared between control and treatment groups at each time point where *, ** and *** represent 

p<0.01, p<0.001 and p<0,0001 respectively.  
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4.4 Discussion 

4.4.1 SAV-2 infection and epithelial barrier function 

To validate the response of RTgill-W1 cells to poly(I:C), a mimic of viral dsRNA, infections 

with SAV-2 virus were performed. Transepithelial electrical resistance (TER) measurement 

by milicell ERS volt-ohm meter and assessment of the expression of some selected tight 

junction genes by absolute RT-qPCR were performed. The experiments revealed a decrease 

of TER until 24 h post infection followed by a subsequent increase to a stable TER. 

Decreasing TER at an early stage of infection with a high viral concentration and recovery 

of TER at 24 h suggests a short-term loss of cellular integrity at early stages of virus entry. 

The transient loss of integrity may be due to the initial stress due to the microbial insult in 

the epithelial cell monolayer and later integrity recovers and even increases TER.  

 

As no CPE was observed in the epithelial monolayer at any stage of infection, there might 

not be any damage to the cellular integrity. It is believed that microbial infection may cause 

leakage to the epithelial monolayer caused by the reduction of cellular integrity. Viruses 

especially can cause changes to the host cell morphology by damaging the cell cytoskeleton, 

which is connected to the tight junction regulatory protein ZO-1 and therefore can modulate 

or even break the cell to cell junctions (Kanlaya et al., 2009). This ultimately reduces cellular 

integrity which can be monitored by in vitro measurement of transepithelial electrical 

resistance. The observations made in RTgill-W1 cells post SAV infections have also been 

made in epithelial cell lines infected with other viruses. A drop of TER was reported in 

CaCo-2 and MDCK-1 cells post infection with rotavirus without any visible CPE (Svensson 

et al., 1991). Decrease of TER has also been found in CaCo-2 and KB cells (human 

squamous carcinoma cell line) within 30 min post infection by Coxsackie B viruses (Riabi 

et al., 2014).  

 

In the present study, tight junction genes claudin 3a and 8d and tight junction regulatory 

gene ZO-1 were not modulated by SAV-2. Similar findings have been reported in 

mammalian cells. In primary human bronchial epithelial cells (HBECs), increased TER has 

been reported upon infection with respiratory syncytial virus (RSV). In this case, tight 

junction genes claudin and occludin were not upregulated by RSV infection just as observed 

in this study (Kast et al., 2017). Moreover, Porcine epidemic diarrhoea virus (PEDV) 

infection in Vero E6 (African green monkey kidney epithelial cells) and IPEC-J2 (porcine 
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intestinal epithelial cell clone J2) cells have not been found to have an effect on mRNA 

levels for claudin-1 while occludin mRNA expression was found to be significantly 

upregulated in virus infected cells at 24 and 48 h post infection in both cell lines (Luo et al., 

2017).  

 

In a study with alphavirus CHIKV, TER and ZO-1 expression were not modulated by apical 

or basolateral infection, for 24 h in non-polarized Vero and polarized Vero C1008 and 

HBMEC cells (Lim & Chu, 2014). However, effects of salmonid alphavirus on the cellular 

integrity and tight junctions of fish gill epithelia were not observed in this study. Thus, the 

current findings suggest that, salmonid gill epithelia have the ability to retain the barrier 

function when infected with salmonid alphavirus.   

 

4.4.2 SAV-2 replication in RTgill-W1 cells 

Alphavirus replication takes place inside the cytoplasm of host cells. To investigate the 

ability of SAV-2 to replicate in RTgill-W1 cells, strand specific RT-qPCR was employed to 

detect the replicative strand of SAV-2. The cytoplasmic RNA fraction was used to 

synthesize cDNA. SAV-2 was found to replicate in the cytosol of RTgill-W1 cells as early 

as 6 h post infection. A low level of replication (CT between 30 and 33) was detected in 

cells infected at MOI 10 and 1. Viral replication was significantly higher at 12 and 24 h post 

infection (p<0.01; Figure 4.1). 

 

Low replication of SAV-2 was observed in several previous studies on salmonid alphavirus. 

SAV (1-6) was shown to replicate in heart and gill of Atlantic salmon parr at 2-8 weeks post 

challenge in gills yielding CT values for SAV-2 of around 35.5 at week 3 and 36.5 at week 

8 (Graham et al., 2011). In another study, SAV-1 virus titers of 6.6, 7.1 and 6.4 (Log10 

TCID50/g) from heart, kidney and gill respectively were determined at day 11 post challenge 

in Atlantic salmon parr (Herath et al., 2016). A low SAV titer (104 TCID50/mL) has also 

been reported in RTG-2 cells (Graham et al., 2008), and in CHSE-214 cells (105 TCID50/mL, 

SAV-1) (López-Dóriga et al., 2001). In contrast a higher titer of SAV-2 (around 10 

7PFU/mL) has been reported in RTG-2 cells (Villoing et al., 2000). 
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Usually rhbadoviruses (-ssRNA) grow very fast and to high titers in cell culture. While a 

moderate titer of VHSV of around 106 TCID50/mL was reported in RTG-2 cells (Campbell 

& Wolf, 1969), low replication and virus load of VHSV was reported in RTgill-W1 cells 

(Al-Hussinee et al., 2016). In the same study, a low titer of ISAV of 103 TCID50/mL without 

any CPE was in contrast to in vivo studies in other cell types.  

 

Various viruses have been shown to inhibit signaling pathways to prevent antiviral host 

responses. For example the nucleoprotein N of lyssavirus (a rhabdovirus) inhibits RIG-I 

recognition of viral RNA (Masatani et al., 2010). The V protein of paramyxoviruses is able 

to interact with MDA5 and block the interaction of MDA5 with MAVS and the subsequent 

downstream cascade whereas MAVS is selectively inhibited by influenza A and hepatitis 

viruses (Beachboard & Horner, 2016; Chan & Gack, 2016; Schulz & Mossman, 2016). NsP2 

of the alphavirus CHIKV has been shown to induce cellular shutoff and promote viral 

replication by interacting with several host proteins (Bourai et al., 2012). However, 

overexpression of the innate immune response effector viperin has been found to strongly 

decreased CHIKV nsP2 expression levels in HEK293T cells (Teng et al., 2012). Many ISGs 

have been shown to directly block different phases of the viral replication cycle (Blondel et 

al., 2015). 

 

 Demonstrably RTgill-W1 cells have effective mechanism against -ssRNA virus such as 

VSHV (Al-Hussinee et al., 2016) and apparently also against +ssRNA viruses as 

demonstrated here. The overexpression of RLRs including RIG-I, MDA5 and LGP2b and 

ISGs including ISG15, PKR, Mx2 and viperin in RTgill-W1 cells upon SAV-2 infection 

indicate potentially strong interference with viral replication may be through conserved 

activation pathways in vertebrate history (as mentioned in Chapter 2).  

 

4.4.3 TLR3 signaling and SAV-2 infection 

TLR3 is one of the important TLRs sensing viral dsRNA (Edelmann et al., 2004). As 

demonstrated for poly(I:C) (chapter 2, section 2.1 and 2.2), In this study, SAV-2 was too 

found to upregulate TLR3 and subsequently IFN, and Mx2 in RTgill-W1 cells. TLR 3 

upregulation had been shown in TO cells in response to SAV-3 infection (Xu et al., 2016). 

TLR3 and Mx mRNA transcripts have been shown to be upregulated by VHSV infection in 

rainbow trout liver (von Gersdorff Jørgensen et al., 2014). TLR3, interferon and Mx mRNA 
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transcripts have also been shown by VHSV induction in rainbow trout spleen (Abós et al., 

2014). TLR3 upregulation in spleen of grass carp has also been reported upon infection with 

GCRV, a dsRNA virus (Su et al., 2009). Mx expression was also shown to be upregulated 

in the brain of European sea bass in response to Viral Nervous Necrosis Virus (VNNV, 

+ssRNA virus) infection (Valero et al., 2015). Responses to +ssRNA viruses appear TLR3 

mediated not only in trout but also in other fish species. This suggest the activation of TLR3 

signaling pathway by SAV-2 in RTgill-W1. 

 

4.4.4 SAV-2 and poly(I:C) induced RLR expression  

As a +ssRNA virus, SAV-2 forms dsRNA inside the cytoplasm of the host cells which is 

recognised by the host receptors. These receptors then transmit the downstream signals to 

other proteins to produce antiviral genes to inhibit viral replication. In this study, a low level 

of viral replication was detected as early as 6 h post infection using strand specific RT-

qPCR. This was accompanied by early upregulation of mRNAs of RIG-I, MDA5.LGP2b 

and RLR family members. 

 

The activation of the RIG-I signaling pathway depends on IPS1 which acts as an adaptor 

protein located in the outer mitochondrial membrane (Seth et al., 2006) where in association 

with TBK1 it initiates downstream signaling (Meylan et al., 2005). The upregulation of the 

receptor molecule RIG-I and the presence of IPS1 (constitutive expression) suggest the 

activation of RIG-I signaling pathway in RTgill-W1 cells. The further upregulation of 

transcription factor IRF3 and antiviral response molecules ISG15, Mx2, viperin and PKR 

confirm the activation of this pathway by SAV-2 infection.  

 

One noteworthy finding in the present study is the significant upregulation of LGP2b which 

is in contrast to previous finding by Chang et al. (2011) which did not detect overexpression 

of LGP2b in trout fibroblast and macrophage cells in response to VHSV, even though RIG-

I and MDA5 were overexpressed. Overexpression of LGP2b along with RIG-I and MDA5 

in the present study, might play a role in inducing overexpression of downstream signalling 

genes IPS1, IRF3 and TBK1 and IFN stimulated genes ISG15, and viperin.  

 

In this study, expression of ISGs including ISG15, viperin and PKR was found to be 

upregulated by SAV-2 and poly(I:C). Different molecules involved in the RIG-I signaling 
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pathway have been identified in different fishes and their induction by different viruses and 

viral PAMP have also been reported (Table 4.5). Upregulation of MDA5 and LGP2 by 

poly(I:C) stimulation or VHSV infection has been shown to result in significant increase of 

the Mx transcript in RTG-2 cells (M. Chang et al., 2011). PKR like gene, PKZ has also been 

found to be upregulated by poly(I:C) stimulation in Atlantic salmon head kidney (M. Chang 

et al., 2011). An orthologue of ISG15 in Atlantic salmon (AsISG15) has been found to be 

induced by poly(I:C) and ISAV infection (Røkenes et al., 2007). Moreover, viperin has been 

shown to be upregulated upon infection with infectious hematopoietic necrosis virus (IHNV) 

in rainbow trout fry (Purcell et al., 2011), and in rainbow trout leucocytes in response to 

infection with viral haemorrhagic septicaemia virus (VHSV) (Boudinot et al., 1999).  

 

These reports and the results obtained here together suggest the activation of RIG-I and 

MDA5 and TLR3 (as shown in chapter 2) mediated antiviral response in RTgill-W1 cells 

upon SAV-2 and poly(I:C) induction.   

 

4.4.5 Cytoplasmic vs total RNA 

The majority of published gene-expression studies have used total cellular RNA where the 

inclusion of the nuclear transcriptome in the analyses might have a potential confounding 

impact (Solnestam et al., 2012). During RNA synthesis, mRNAs are transcribed, spliced, 

capped, and polyadenylated in the nucleus and the resulting steady-state RNA is transported 

from nucleus to cytoplasm via nuclear pore complexes for translation (Solnestam et al., 

2012). The mRNA molecules that are not needed immediately to produce proteins, are 

retained in the nucleus (Prasanth et al., 2005). 

 

For a more realistic view of cellular response using gene expression profiles, the nuclear and 

cytoplasmic RNA fractions should be analysed separately (Trask et al., 2009). In this study, 

mRNA fractions from the cytoplasm and total RNA from RTgill-W1cells were used for all 

gene expression experiments (methods in section 4.2.4.1). Expression patterns of different 

genes varied greatly in cytoplasmic and total RNA fractions. Most of the RLR molecules 

showed constitutive and stable expression in the cytosolic fraction while significant 

upregulation was noticed in total RNA. This is likely due to unprocessed mRNAs found in 

the nucleus. 
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Table 4. 5: Relevance of the findings of the current study to previous studies on fish RLRs 

 
Targets Fish species Findings  Reference Relevance to the present study 

RIG-I, MAVS 

Common carp 

 

carp RIG-I and MAVS mRNAs were up-regulated in spleen, head 

kidney and intestine tissues in response to SVCV  

(Feng et al., 2011) In agreement to the present study for RIG-I.  

IRF3 IRF-3 mRNAs transcripts were significantly up-regulated in 

different tissues of SVCV infected fish  

(Feng et al., 2011) Agreement with cytoplasmic RNA fraction but 

contrasting to the total RNA fraction  

MDA5, LGP2, 

IRF3, MX and 

PKR  

European sea bass Upregulated in the brain in response to VNNV   (Valero et al., 2015) Agreement except LGP2b and IRF3 

expression in the total RNA. 

In total RNA fractions at 18 h PKR 

upregulated significantly 

RIG-I, MDA5 and 

LGP2 

Channel catfish Significantly increased expression of the mRNA transcripts of 

RIG-I, MDA5 and LGP2 were detected in channel catfish virus 

and bacterial infected fish 

(Rajendran et al., 2012) In favour to the current study except LGP2b 

expression in the total RNA which is 

downregulated 

MDA5 Sea perch LjMDA5 was ubiquitously expressed and up-regulated 

significantly in all selected tissues in vivo post VNNV infection 

(Jia et al., 2016) Late stage expression of the present findings is 

in agreement with this finding 

 

MDA5 Grass carp Early stage up-regulation of MDA5 at 12- and 24-h following 

grass carp reovirus (GCRV) injection and thereafter decreased to 

normal level 

(Su et al., 2010) Relevance to the present study at 12- and 24-h 

expression 

MDA5 and LGP2 Rainbow trout (RTG-

2) cells 

Up-regulated by poly(I:C) or VHSV infection resulting significant 

increase in Mx transcript 

(Chang et al., 2011) In agreement except LGP2b expression in the 

total RNA for SAV2 infection experiment. 

LGP2 

 

Black carp LGP2 upregulated mRNA transcript in all the tested tissues except 

gill following infection by GCRV or SVCV 

(Xiao et al., 2016) Cytoplasmic mRNA transcript is in agreement 

but contrasting in the total RNA 
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Mylopharyngodon 

piceus fin (MPF) cells 

(black carp cell line) 

LGP2 up-regulated by poly(I:C) treatment, GCRV or SVCV 

infection, but not by LPS or PMA treatment. 

(Xiao et al., 2016) Cytoplasmic fraction in response to SAV 2 

infection and both fractions in response to 

poly(I:C) stimulation support these findings. 

TBK1 Black carp Up-regulated by the stimulation of SVCV, GCRV  (Yan et al., 2017) In response to SAV 2 induction, cytoplasmic 

mRNA transcript ubiquitously and total 

mRNA fraction at 18 h post infection in the 

present study are in agreement with the 

findings of these studies while TBK1 

expression in both mRNA fractions except 18h 

in total mRNA fractions in response to 

poly(I:C) stimulation, does not agree to the 

findings related to poly(I:C) treatment.  

Grass carp Up-regulated upon infection challenge with grass carp reovirus 

(GCRV) in vivo and in vitro  

(Feng et al., 2014) 

Common carp Upregulated following SVCV infection. (Feng et al., 2011) 

Goldfish  Overexpression of TBK1 has been found to induce interferon 

production 

(F. Sun et al., 2011) 

Gilt-head sea bream Upregulation upon infection with viral nervous necrosis virus 

(VNNV) in the brain of resistant to VNNV  

(Valero et al., 2015) 

PKR Zebra fish Highly induced by poly(I:C) injection in vivo. (Rothenburg et al., 2005) both fractions in response to poly(I:C) 

stimulation, in agreement to all the findings 

related to poly(I:C) treatment 

Atlantic salmon Upregulated by interferon in Atlantic salmon cell line, TO and by 

poly(I:C) stimulation in the head kidney. 

(Bergan et al., 2008) 

Rare minnow Upregulated by virus (Grass carp reovirus) and bacteria 

Aeromonas hydrophila. 

(Su et al., 2008) 

Grass carp Up-regulated after intraperitoneal (ip) injection with grass carp 

haemorrhagic virus.  

(Hu et al., 2013) 

Japanese flounder Upregulated by viral infection and also found to inhibit the 

replication of rhabdovirus in flounder embryonic cells.  

(Zhu et al., 2008) 

Fugu Significantly induced by poly(I:C) but not by LPS. (del Castillo et al., 2012) 

Rock bream Upregulated at 12 h poly(I:C) injection.  (Zenke et al., 2010) 

ISG15 Atlantic salmon Induced by poly(I:C) and ISAV infection. (Røkenes et al., 2007) ISG15 expression in response to SAV 2 and 

poly(I:C) in both cytoplasmic and total Grass carp and 

crucian carp 

Upregulated by poly(I:C) and LPS.  (Zhang et al., 2007) 
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Atlantic cod High expression of ISG15 by poly(I:C) stimulation but not with 

LPS. 

(Seppola et al., 2007) mRNA fractions in the present study is in 

agreement to all the previous findings. 

Upregulated after poly(I:C) stimulation.  (Furnes et al., 2009) 

Japanese flounder Highly induced by poly(I:C).  (Yasuike et al., 2011).  

Viperin (vig1) Rainbow trout High level of expression has been detected upon infection with 

viral haemorrhagic septicaemia virus (VHSV) 

(Boudinot et al., 1999). All the findings are in agreement with the 

findings of the current study. 

 Rainbow trout (fry) Upregulated upon infection with infectious hematopoietic 

necrosis virus (IHNV). 

(Purcell et al., 2011) 

 Crucian carp Overexpression of crucian carp viperin has been found to protect 

culture cells against grass carp reovirus (GCRV) 

(Wang et al., 2014). 

 Mandarin fish Viperin in gill has been shown to express only in virus infected 

and poly(I:C) induced fish. 

(Sun & Nie, 2004). 

 Grass carp Overexpression of viperin has been reported upon infection with 

GCRV 

(B. Wang et al., 2014) 

 Tilapia  Upregulated upon induction with LPS and poly(I:C) (Lee et al., 2013)   

 Rock bream viperin has been shown to be upregulated upon infection with 

megalocytivirus 

(cun Zhang et al., 2014). 

 Large yellow croaker Significant upregulation of viperin has been reported upon in vivo 

poly(I:C) stimulation  

Zhang et al. (2018) 

 TO cell line Overexpressed upon interferon alpha stimulation (Sun et al., 2011).  

 Fathead minnow 

(FHM) cells (ATCC: 

Viperin and a splice variant have been shown to be upregulated 

by Spring varimia of carp virus (SVCV) while poly(I:C) has been 

found to upregulate only viperin not the splice variant.  

(Wang et al., 2019b)  
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4.4.6 Bacterial invasion through epithelial monolayer 

A. salmonicida is an infectious bacterium causing furunculosis in rainbow trout. To 

investigate the effects of this bacterium on trout gill epithelia, a bacterial invasion 

experiment was conducted in transwells. The ability of viral and bacterial PAMPs to prevent 

bacterial invasion through the RTgill-W1 cell monolayer was also investigated. A. 

salmonicida sub. Salmonicida was found to invade the epithelial monolayer as early as 5 

min post infection even though a very low percentage of bacterial cells was recovered from 

the basolateral side of the transwell set which reached 60% at 6 h post infection. Rapid 

invasion by Leptospira interrogans (1.6%) as early as 15 min post infection (the earliest 

time point investigated) through polarized MDCK cell monolayers has been reported by 

Barocchi et al. (2002) which increased to 40% at 4 h post infection. Differential migration 

of different strains of L. interrogans through two human endothelial cell lines (HMEC-1 

and EA.hy926) (Martinez-Lopez et al., 2010) which varied from 0% to 80% at 1 and 72 h 

post infection was reported. These findings suggest that RTgill-W1 cells have a similar 

efficiency as mammalian epithelial and endothelial cell lines to prevent bacterial invasion.   

 

To further investigate the effectiveness of viral and bacterial PAMPs in reducing or 

preventing bacterial entry through the cell monolayer, RTgill-W1 cells were pre-stimulated 

with poly(I:C), LPS and PGN. The viral PAMP poly(I:C) and bacterial PAMPs LPS and 

PGN were found to reduce the percentage of bacterial invasion significantly. This may be 

linked to the ability of these PAMPs to increase the cellular integrity of epithelial cells 

(Chapter 2) and reduce the space for bacterial entry. No previous data on using PAMPs in a 

bacterial invasion model have been reported. Thus, the current report will facilitate further 

studies on the effectiveness of viral and bacterial PAMPs in preventing bacterial entry 

through epithelia for better understanding of the infective window.  

 

Further to reveal the mechanism of bacterial entry, the actin cytoskeleton inhibitor CyD 

(Chapter 2), was used to pre-treat the cell monolayer. However, CyD was not found to 

promote bacterial invasion which is in accordance with the findings of Merien et al. (1997) 

who did not find any significant difference in invasion of pathogenic Leptospira interrogans 

through vero cells (African green monkey kidney fibroblast cells) after CyD treatment. This 

indicates actin independent invasion of A. salmonicida through the epithelial monolayer.    



155 

 

4.4.7 Bacterial infection and innate immunity 

A major role in antiviral or antibacterial defense is played by the innate immune system in 

bony fish by acting as a barrier against the invasion of microbial pathogens (Aoki et al., 

2013). To examine the response of RTgill-W1 cells to bacterial pathogen A. salmonicida 

and viral and bacterial PAMPs the expression of pro-inflammatory cytokines and 

antimicrobial peptides was investigated. An RT-qPCR quantification of IL-8 and CD209b 

as innate immune gene markers and of antimicrobial peptides defensin and catilicidin was 

employed.  

 

IL8, a chemokine related to pro- inflammatory mechanism that directs immune cells to 

migrate to the infection sites (Reyes-Cerpa et al., 2012), was upregulated upon infection of 

RTgill-W1 cells with A. salmonicida as well as after stimulation with viral and bacterial 

PAMPs poly(I:C), LPS and PGN. These observations are supported by the literature as a 

recent study has also shown the upregulation of IL-8 in rainbow trout gills in response to 

typical A. salmonicida by a global transcriptome study (Rebl et al., 2014). Atlantic salmon 

macrophages have been shown to upregulate IL-8 expression upon infection with A. 

salmonicida (unpublished cited by Brown & Johnson 2008). Moreover, Brietzke et al. 

(2015) have shown IL-8 mRNA elevation in different tissues of rainbow trout upon infection 

with typical A. salmonicida. IL-8 has also been shown to upregulate in channel catfish after 

infection with Edwardsiella ictaluri (Chen et al., 2005).  

 

LPS stimulation for 24 h has also been shown to induce IL-8 expression in primary cultures 

of rainbow trout leukocytes (Reyes-Cerpa et al., 2012). Moreover, PGN has also been 

reported to induce IL-8 expression in mammals (Cheon et al., 2008; Lee et al., 2015).  

 

In the present study, CD209b, a C-type lectin receptor present on the surface of macrophages 

(and dendritic cells), was found to be upregulated by A. salmonicida infection and poly(I:C) 

stimulation while LPS and PGN did not induce its expression. CD209 has been speculated 

to be an important player in the immune response of rainbow trout against A. salmonicida 

as it is upregulated in the spleen of rainbow trout at mRNA and protein levels upon A. 

salmonicida infection (Long et al., 2015). The upregulation of CD209b has also been 

reported in rainbow trout cell lines RTgill-W1, RTL, RTS11 and RTG-2 upon infection with 

Saprolegnia parasitica for 16 and 24 h (De Bruijn et al., 2012). The results obtained in 

RTgill-W1 cells confirm these reports.  
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Cathilicidin (rtCATH2) and defensin are important AMPs that have been identified in 

various fishes. These two AMPS have been shown to have immunomodulatory functions in 

fish. The expression of cathilicidin and defensin in RTgill-W1 in response to pathogens or 

PAMPs was investigated. In the present study, rtCATH2 was upregulated in RTgill-W1 cells 

by A. salmonicida at 6h h post infection. However, among the tested PAMPs only poly(I:C) 

at 6 h post stimulation induced rtCATH2 expression. Upregulation of rtCATH2 in gill, head 

kidney and intestine, but not in liver of rainbow trout upon bacterial infection has been 

reported by Chang et al. (2006). Bacterial infection and bacterial DNA also induced the 

upregulation of rtCATH2 in CHSE-214 cells while purified LPS failed to upregulate the 

expression (Maier et al., 2008) as observed in the RTgill-W1 cells.  

 

Further evidence comes from a study where rtCATH2 was shown to be induced in CHSE-

212 and Atlantic cod larvae cells by bacterial infection and poly(I:C) stimulation showing a 

weak response in salmonid and a strong response in cod cells (Broekman et al., 2013).  

 

The expression of another AMP, -defensin was downregulated in RTgill-W1cells by the 

infection of A. salmonicida whereas no regulation was observed through the induction of 

viral and bacterial PAMPs. Cuesta et al. (2011) have also reported the failure of poly(I:C) 

and LPS stimulation to induce -defensin mRNA transcript expression in gilthead seabream 

while -defensin upregulation has been reported in Japanese medaka (Oryzias latipes) upon 

LPS injection (Zhao et al., 2009) which partially supports the findings of the present study. 

-defensin including omDB-2 upregulation at early stage of stimulation (4h) with poly(I:C) 

has also been described in different tissues of rainbow trout while no induction has been 

detected at late stage of stimulation (24h) (Casadei et al., 2009). They also reported 

upregulation of omDB2 upon bacterial infection which was not observed in RTgill-W1 cells. 
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4.5 Conclusion 

The findings of the current study suggest that trout gill epithelia have the ability to mount a 

defence against SAV-2 infection which can be induced to a greater extent by using poly(I:C) 

as an immuno-stimulant. SAV-2 replication was limited in RTgill-W1 cells which might be 

due to the activation of TLR3 and RLR signaling pathways by SAV-2 infection. Pre-

treatment with poly(I:C), LPS and PGN were shown to reduce bacterial invasion through 

the trout gill epithelial cell monolayer. The mRNA expression of chemokine IL-8, innate 

immune marker CD209b and antimicrobial peptide cathilicidin were induced by viral and 

bacterial PAMPs suggesting the application of PAMPs in fish innate immunity.  
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Chapter 5 

General discussion 

 

5.1 Epithelium  

Epithelium is a membranous tissue which is one of the basic cell types in animals covering 

internal and external surfaces of the body and its organs. Epithelium is composed of one or 

more layers of epithelial cells forming a polarized structure where the apical junctional 

complexes orchestrate the epithelial integrity and signaling across the epithelium (Tervonen 

et al., 2011).  

 

5.2 Fish gill epithelial cells and cell lines 

Fish gill epithelia cover the gill filament and lamellae and comprise of several cell types 

including pillar cells, pavement cells, mitochondria rich cells or chloride cells and mucous 

cells or goblet cells (Wilson & Laurent, 2002). Highly complex vasculature surrounded by 

a large surface area constitutes the fish gill (Evans et al., 2005). The surface area of fish gill 

has been recorded as 5412 cm2 in freshwater carp (Chirrhinus mrigalla) (Palzenberger & 

Pohla, 1992). This large surface area separates the blood circulating through the gills from 

the external aquatic environment by a thin epithelial barrier (Evans et al., 2005). As a fish 

gill’s main function is respiration which involves the uptake of oxygen from water across a 

huge surface area of tissue susceptibility to infection by different types of pathogens is a 

significant risk to the organism. Thus, the fish gill is a major portal of entry for pathogens. 

Structurally, fish gills are heterogeneous with different cell types and a complex branchial 

circulatory system, which makes it difficult to assess the contributions of each cell type to 

the various gill functions, particularly the defence mechanism. In vitro studies using primary 

and secondary fish gill cells minimize the cellular complexity and are widely used in 

immunological and toxicological studies. Accordingly, RTgill-W1 cells have been used for 

several but a limited number of in vitro studies. One of the important functions of epithelial 

cells is the barrier function through which epithelia control the movement of deleterious 

agents from the outside world to the interior of the fish body (Powell, 1981). This barrier 

between the external environment and the fish body protects the fish from being affected by 

microorganisms.  
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For basic research, use of fish gill cells is very limited. Ebner et al. (2007) have reported the 

pattern of activation of MAPK/ERK in RTgill-W1 cells. Moreover, Krumschnabel et al. 

(2007) has studied apoptotic mechanism in RTgill-W1 cells. These studies suggest that fish 

gill epithelial cells have similar functions as mammalian epithelial cells. The study of host-

pathogen interaction using fish gill cells could allow researchers to elucidate the 

mechanisms of pathogen entry into and between the epithelial cells (Lee et al., 2009). The 

RTgill-W1 cell line has been shown to allow the growth of fish viruses like Atlantic salmon 

paramyxoviruses (ASPV) (Kvellestad et al., 2003) and infectious salmon anemia virus 

(ISAV) (Falk et al., 1997). These studies suggest the suitability of RTgill-W1 cell line for 

in vitro experiments.  

 

5.3 Modulation of tight junction in fish gill epithelia 

A major role in the innate immunity against microbial infection is played by the epithelial 

integrity of cells. The epithelial integrity of RTgill-W1 as measured by TER was found to 

increase if exposed to viral and bacterial PAMPs (Chapter 2. Section 2.1). The tight junction 

genes Claudin 8d and ZO-1 were found to be upregulated by viral and bacterial PAMPs 

which correlates to the observed increased epithelial resistance (Chapter 2. Section 2.3).  

 

RTgill-W1 cell monolayer shows very low TER as has been shown in the current and 

previous studies even after stimulation (Claire, 2016; Trubitt et al., 2015) while in primary 

trout gill cells showed high TER in control and stimulated conditions in symmetrical and 

asymmetrical culture environments (Kelly & Wood, 2001a; Kelly and Wood, 2001b; 

Sandbichler et al., 2011) (Detail list in Appendix 3, Table S3.1). Trubitt et al. (2015) have 

shown cortisol induced an increase of TER in RTgill-W1 cells from around 40 Ω-cm2 to 80 

Ω-cm2. In the same study, tetrabromocinnamic acid (an inhibitor of casein kinase 2) induced 

an increase of TER in RTgill-W1 cells which elevated from around 20 Ω-cm2 to 27 Ω-cm2. 

The low epithelial resistance observed in this study demonstrates the leakiness of RTgill-

W1 cells.   

 

Epithelial integrity is maintained mostly by tight junctions maintaining polarity and 

therefore the diverse molecular characteristics of apical and basolateral membranes (Jain et 

al., 2011). To investigate the barrier function of fish gill epithelia, cellular integrity was 

investigated upon viral infection and stimulation with viral and bacterial PAMPs. The 
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integrity measured in TER increased upon stimulation with viral and bacterial PAMPs as 

evidenced by the upregulation of the tight junction regulatory gene ZO-1 (Chapter 2). ZO-1 

and other proteins related to cellular integrity were phosphorylated in RTgill-W1 cells 

(Chapter 3). ZO-1 was found to be phosphorylated on multiple serine residues in the protein 

sequence where S288 and S461 are common in control and stimulated groups and S1147 in 

MDP and poly(IC) stimulated cells. Several other studies have demonstrated the association 

between occludin phosphorylation by certain kinases and tight junction modulation. For 

example, ZO-1 phosphorylation and upregulation and subsequent increase of TER by Rho 

kinase in the human endothelial cell line ECV304; MAP kinases including ERK, p38/MAPK 

and JNK in MDCK cells; CK1 and PKC in MDCK cells; and PI3K in human 

adenocarcinoma have been reported (Dörfel & Huber, 2012). Taken together this suggests 

the modulation of tight junction gene expression and TER in PAMP stimulated RTGgill-

W1 cells through activation of kinases. Moreover, poly(I:C) also activated the actin 

cytoskeleton signaling pathway which further suggests the modulation of cellular integrity 

by poly(I:C). Protein kinases also have roles in controlling cellular integrity. PKC, one of 

the kinases identified in the present study (Chapter 3, Section 3.3.5), has been shown to 

control the cell integrity pathway by controlling cell wall synthesis in fission yeast in 

response to external stimuli (Madrid et al., 2014).  

 

5.4 The antiviral response is conserved in RTgill-W1 cells 

For millions of years viruses and hosts are in continuous struggle that has driven the hosts 

to develop effective antiviral immune responses (Maxmen, 2017). The antiviral response 

initiates upon sensing viral gene materials or viral PAMPs by host’s pattern recognition 

receptors (PRRs) including TLRs, RLRs and NLRs (Jun et al., 2016). Among TLRs, TLR3 

is an important pattern recognition receptor that senses synthetic or viral dsRNA in the 

endosomal compartment of the cells. TLR3 signaling is important for interferon induction 

where interferon-/ prevent viral replication by the induction of ISGs. The TLR3 mediated 

antiviral response has been reported in several fish species including rainbow trout (Abós et 

al., 2014; von Gersdorff Jørgensen et al., 2014) upon either poly(I:C) stimulation or viral 

infection (both dsRNA and ssRNA viruses). Zebrafish interferon has been shown to be 

induced by poly(I:C) in zebrafish liver cells (ZFL) (Altmann et al., 2003). In vivo infection 

with sole aquabirnavirus (solevirus) and poly(I:C) stimulation have been shown to induce 

Mx expression in Senegalese sole (Fernandez-Trujillo et al., 2008). In the present study, 
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mRNA expression of TLR3, IFN- and Mx2 have been found to be upregulated by SAV-2 

infection and poly(I:C) stimulation in RTgill-W1 cells.  

 

Another important group of PRRs sensing viral RNA in the cytoplasmic compartment are 

the intracellular RLRs. The RLR family are ubiquitously expressed in the cytoplasm and 

regulate the production of interferon and interferon stimulated genes, thus playing a major 

role in the antiviral response (Zou et al., 2016). TLR independent and RIG-I mediated 

antiviral responses has been reported in mammals upon viral infection (Gack, 2014; Jiang 

et al., 2012; Reikine et al., 2014; Rothenfusser et al., 2005; Schlee, 2013). Poly(I:C) 

stimulation and viral infection have been shown to upregulate RLR molecules and RLR 

family members in a wide range of fish species (Chang et al., 2011; Xiao et al., 2016; 

Rothenburg et al., 2005; Furnes et al., 2009; Bergan et al., 2008; Røkenes et al., 2007; Zhang 

et al., 2007; Sun and Nie, 2004; Yasuike et al., 2011; Wang et al., 2019; Lee et al., 2013) as 

observed in mammals. In the present study three members of RLR molecules (RIG-I, 

MDA5, LGP2b) and RLR family members (TBK1, IRF3, PKR, ISG15 and viperin) were 

upregulated upon poly(I:C) stimulation and +ssRNA viral infection in salmonid gill 

epithelia.  

 

RLRs and their family members have been shown to be present in the earliest animals from 

mammals to other vertebrates including fish which suggest that RLR mediated antiviral 

immunity is evolutionary conserved throughout vertebrate history as a result of co-

evolutionary history with host cells and viruses (Levraud et al., 2013; Mukherjee et al., 2014; 

Zou et al., 2016). TLR mediated antiviral response is also thought to be conserved 

throughout the animal evolutionary history from drosophila to higher vertebrates (Zou et al., 

2016). Thus, antiviral immunity in salmonid gill epithelia in response to viral infection and 

stimulation with viral particles is, of course, evolutionary conserved from earliest animals.  

 

5.5 Bacterial pathogen and PAMPs mediated innate immune response in 

RTgill-W1 cells 

Unlike the mechanisms of recognition of viral nucleic acids by TLR3 and RLRs and 

subsequent antiviral response pathways, recognition of bacterial molecules by host cells and 

subsequent innate immune responses are not well conserved among mammals and other 

vertebrates throughout evolutionary history. Bacterial molecules LPS, PGN and MDP 

recognition receptors are well conserved in mammals (Munford & Varley, 2006; Akira et 
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al., 2006; Dziarski, 2003) while among fish species these receptors are less conserved 

(Ribeiro et al., 2010) and some of the receptors are absent in some fish species. For example, 

TLR4 is absent in salmonid fishes (Reviewed by Palti, 2011). Some bony fishes including 

zebrafish and common carp possess orthologs of TLR4, however, TLR4 of this two fishes 

does not recognize LPS (Sepulcre et al., 2009). Iliev et al. (2005) have reported the absence 

of TLR4- mediated LPS recognition in fish. Recently, zebrafish caspy2 has been shown to 

recognise bacterial LPS (Zhang et al., 2018). Moreover, for use of the same ligands to induce 

innate immune signal transduction, fish cells require high concentrations which show lower 

or no induction in comparison to mammalian counterparts (Ribeiro et al., 2010). This might 

be because of the continuous exposure of fish to bacteria and bacterial molecules where the 

development of the gill microbiome has prompted a different set of recognition and response 

pathways. 

 

In mammals, LPS is recognised by LPS binding protein (LBP), TLR4, and CD14 which also 

participate in this pathway (Reviewed by Rebl et al., 2010; Palti, 2011). Thus stimulation 

with LPS and subsequent production of interferon and interferon stimulated genes like Mx 

might follow the MyD88 pathway in mammals (Reviewed by Rebl et al. 2010). This 

involves the participation of both CD14 and MD2. The LBP like gene has been reported in 

some teleosts for example in Atlantic cod (Solstad et al., 2007). However, the other 

important molecules CD14 and myeloid differentiation protein 2 (MD2) have not yet been 

identified in teleost (Reviewed by Rebl et al., 2010). Thus, the pathway by which IFN and 

Mx2 are induced in trout gill epithelia in response to LPS stimulation is not clear and needs 

further investigation.  

 

PGN, on the other hand, has been reported to induce interferon production in mammalian 

cells (Clua et al., 2017; Liu et al. 2004). In HEK293T cells, MDP has been shown to be 

sensed by NOD2 (Girardin et al., 2003; Inohara et al., 2003) and NOD2 expression has been 

reported in rainbow trout (Chang et al., 2011). Since there is a marked innate immune 

response (expression of IFN and Mx2) induced by PGN in RTgill-W1 cells (Chapter 2, 

Figure 2.5), it appears that MDP (a structural component of PGN) was indeed internalized 

(as shown in Chapter 2, Figure 2.9 A, B and 2.12). Thus, MDP might be sensed by NOD2 

in RTgill-W1 cells which, of course, was further internalized and leading to the initiation of 

an antiviral response.  
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Interleukin-8 (IL-8) is an important chemokine that has been identified in several fishes 

including flounder (Choi et al., 2006), trout (Sangrador-Vegas et al., 2002), channel catfish 

(Chen et al., 2005) and lamprey (Najakshin et al., 1999). IL-8 has been shown to be induced 

by different bacteria and bacterial PAMPs such as LPS in different fish cells and tissues 

(Brietzke et al., 2015; Chen et al., 2005; Reyes-Cerpa et al., 2012). Li & Waldbieser (2006) 

reported the rapid induction (2 and 4 h) of IL-8 in the channel catfish spleen by LPS 

injection. In the present study, IL-8 has been found to be upregulated by A. salmonicida 

infection and stimulation with viral and bacterial PAMP. Another innate immune response 

effector, CD209b, was upregulated by A. salmonicida infection and viral and bacterial 

PAMP stimulation. CD209b has been shown to bind -D-glucan and polysaccharides, thus 

functioning in the recognition and detection of bacteria (specifically Gram-negative), in 

phagocytosis and as positive regulator of endocytosis (Taylor et al., 2004). The upregulation 

of CD209b in trout gill epithelial cells suggests the potential use of PAMPs in augmenting 

immune response against bacterial infection.  

 

As one of the first line of defences, along with innate immune responses, animals and animal 

cells produce a massive number of antimicrobial peptides (AMPs). A couple of AMPs, 

cathilicidin and defensin have been tested by quantitative RT-PCR in the present study to 

evaluate the ability of trout gill epithelial cell RTgill-W1 to express AMPs in response to 

bacterial pathogen and viral and bacterial PAMPs (Chapter 4). In the present study, 

rtCATH2 has been shown to be slightly upregulated by A. salmonicida infection and PAMP 

stimulation. Cathilicidin has been shown to be a potent antimicrobial agent expressed in 

different organs of rainbow trout (Chang et al., 2006). In some fishes cathilicidin has been 

shown to be highly active against Gram-negative bacteria, but not against Gram-positive 

bacteria, for example in cod (Broekman et al., 2011), while in hagfish cathilicidin has been 

shown to be active against both Gram-positive and -negative bacteria (Uzzell et al., 2003). 

In mammals, cathilicidins have been shown to possess immune and non-immune functions 

(reviewed by Choi et al., 2012). The immunomodulatory activities of cathilicidins in 

mammals are likely shared by their fish counterparts through a conserved evolutionary 

mechanism of the innate immune response (Masso-Silva & Diamond, 2014). Another AMP, 

β-defensin was downregulated by bacterial infection and was not induced by viral and 

bacterial PAMPs. Similar findings were reported by Cuesta et al. (2011) who have also 
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reported the failure of poly(I:C) and LPS stimulation to induce -defensin mRNA transcript 

expression in gilthead seabream. This suggests that fish defensin expressed in gill epithelia 

might not be involved in innate immune response.  

 

5.6 From perception to response: A cascade of events regulates immune response in 

RTgill-W1 cells 

Antiviral response starts upon recognition of pathogens from the environment by the host 

PRRs. After perception, a cascade of events is required for signal transduction, a cellular 

process that converts primary extracellular signal into intracellular second messengers and 

even third or fourth messengers. The ultimate aim of the signal transduction process is the 

regulation of production of mRNA (transcription) and subsequent production of specific 

proteins (translation) (Figure 5.1). Both TLR3 and RLR recognize viral or synthetic dsRNA. 

While TLR3 recognizes dsRNA in the endosome, RLRs sense dsRNA in the cytoplasm and 

trigger innate immune responses (Figure 5.2). Upon sensing dsRNA, TLR3 or RLRs employ 

specific intracellular adaptor molecules to initiate respective signaling pathways. TBK1 and 

IKK-/ are the kinases that can be activated by both TLR3 and RLRs where TBK1 

phosphorylates IRF3/IRF7 and initiates interferon production, and IKK-/ phosphorylates 

NF-B and initiates pro- inflammatory cytokine production. These together play key roles 

in preventing viral infection (Kawai & Akira, 2008b). In RTgill-W1 cells the RLR signaling 

pathway was activated by SAV-2 infection and poly(I:C) stimulation as shown by the 

upregulation of signaling molecules upon recognition by the receptor molecules RIG-I, 

MDA5 and LGP2 (Chapter 4).  

 

Integration of different molecules associated with specific signaling pathways is very 

important for the immediate and proper gene regulation through signal transduction against 

microbial pathogens. In these signal transduction mechanisms, protein expression, 

localization, activity and protein-protein interaction play critical roles which allow the cells 

to respond with high specificity and efficiency (Lee & Yaffe, 2016). A key player in this 

gene regulation is phosphorylation which activates the transcription factors associated with 

the expression of target genes (Hunter & Karin, 1992). Protein phosphorylation by specific 

kinases is a fundamental mechanism of increasing protein activity or expression of related 

genes for immune defence. TLR3 and RLR signaling pathways are further regulated by 

phosphorylation of various kinases and transcription factors. Sun et al. (2011) reported the 

phosphorylation in the RIG-I signaling pathway by casein kinase II (CKII) in the resting 
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stage of 293T cells while dephosphorylation occurred in RNA virus infected cells. Another 

study by Willemsen et al. (2017) reported death-associated protein kinase-1 (DAPK1, a 

Ca+2/camodulin dependent serine/threonine kinase; CaMKII) to negatively regulate RIG-

I/IRF3 signaling. Upon silencing DAPK1, increased transcriptional activity of IRF3 and a 

subsequent decrease in viral replication in human and mouse cell lines have been reported. 

Dixit & Kagan (2013) reported that IPS1, an important component of the RIG-I signaling 

pathway, promotes the activation of the transcription factors ATF-2/c-Jun through MAPK 

activation. ATF-2/c-Jun in turn induces transcription of IFN-, IRF3/IRF7, and NF-B. In 

this study, CKII and CaMKII were identified as actively phosporylating kinases in RTgill-

W1 cells in all groups studied (Chapter 3) and most of the RIG-I signaling molecules were 

overexpressed in response to SAV-2 infection and poly(I:C) stimulation (Chapter 4).  

 

Loegering & Lennartz (2011) reported the direct involvement of PKC in multiple steps of 

TLR signaling pathways. Johnson et al. (2007) have shown the role of PKC in the induction 

of interferon- production in human dendritic cells by the activation of the TLR3 signaling 

pathway. They have also shown the inhibition of interferon- expression by  G6976 (a potent 

inhibitor of PKC). In another study, TLR3 has been shown to regulate the activation of p38-

MAPK (Silva et al., 2004). In humans, TLR3 has five tyrosine residues two of which have 

been shown to be phosphorylated and to activate IRF3 and NF-B mediated gene 

expression. The phosphorylation of tyrosine residues is involved in the activation TBK1 and 

subsequently induces the partial phosphorylation and activation of IRF3. Another two 

kinases PI3K and Akt kinase (PKB) have been shown to play role in the phosphorylation 

and activation of IRF3 in the nucleus (reviewed by Vercammen et al., 2008). The fully 

functioning IRF3 then initiates the production of interferon and interferon stimulated genes. 

In the present study, tyrosine phosphorylation covered 6% of total phosphosites detected in 

RTgill-W1 cells, even though no tyrosine kinase was identified. Moreover, PKB has been 

identified in this study (Chapter 3) which might be involved in TLR3 signaling pathway in 

trout gill epithelia. However, the role of RTK in immune response in fish requires further 

investigation.  

 

In the present study, a number of signaling pathways have been found to be triggered by the 

stimulation with poly(I:C) and MDP (Chapter 3). One of the pathways is the MAPK 

signaling pathway which has been shown to play a central role in the induction of pro-
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inflammatory cytokines and interferon production (Barton & Medzhitov, 2014). In 

eukaryotes, MAPK pathway has been reported to be involved in the cellular and molecular 

processes including cell cycle progression, cell proliferation, survival and differentiation, 

mRNA stabilization and translation and finally gene expression (reviewed in Plotnikov et 

al., 2011). Other MAPK associated pathways including JNK and p38 MAPK were found to 

be activated by viral and bacterial PAMPs.  

 

Several effector molecules were found to be upregulated upon viral and bacterial pathogens 

and PAMPs (Figure 5.2). Upon SAV-2 infection and poly(I:C) stimulation interferon and 

ISGs including PKR, ISG15, Mx2 and viperin were found to be upregulated. IFN and Mx2 

were also found to be induced by bacterial PAMPs LPS and PGN. A chemokine IL-8, an 

innate immune gene marker CD209b and an AMP cathilicidin were also found to be 

upregulated as explained in previous section.  
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Figure 5.1: Innate immune response in salmonid gill epithelia. Upon perception of viral or bacterial molecules by host’s sensors, a cascade of events is 

activated where protein phosphorylation plays central roles which lead to the production of interferon and pro-inflammatory cytokines 
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Figure 5.2: TLR3 and RLR cross talk. (A) TLR3 and RLR signalling pathways showing the common molecules, (B) pathway of activation of different 

kinases that leads to the transcription of ISGs from IFN-/ (modified from Rodríguez Pulido & Sáiz 2017; Koshiba et al. 2011; McNab et al. 2015). 
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Chapter 6 

General conclusions and future recommendations 

 

6.1 Conclusions 

Viral and bacterial PAMPs have been found to be able to induce the innate immune response 

in trout gill epithelia. The barrier function of trout gill epithelia was also found to be 

modulated to a greater extent by viral and bacterial PAMPs. The recognition and uptake 

pathways of LPS and PGN in RTgill-W1 cells were respectively shown to be by both actin 

dependent and independent endocytosis.  

 

Salmonid alphavirus subtype 2 (SAV-2) which is responsible for sleeping disease in 

salmonids, has been found to multiply in trout gill epithelia at a low rate without affecting 

the barrier function of the epithelia. On the other hand, trout gill epithelium shows robust 

antiviral response upon SAV-2 infection triggered through the TLR3 and RIG-I signaling 

pathways. Viral and bacterial PAMPs were found to reduce bacterial invasion through 

salmonid gill epithelia.  

 

Poly(I:C) triggered the phosphorylation in trout gill epithelia and activated different kinases 

and signaling pathways related to innate immunity. Taking together, RTgill-W1 cell line is 

an ideal in vitro biological model to study host-pathogen interaction.  

 

6.2 Future perspectives 

The present study suggests several future investigations. Other salmonid alphavirus subtypes 

should be tested in RTgill-W1 cells including viral replication, effects on barrier function 

and molecular responses in trout gill epithelia to better understand the barrier function of 

trout gill epithelia. The interactions between viral protein and host ISGs should be 

investigated by western blotting, confocal microscopy or flow cytometry to validate the 

antiviral activity of different ISGs in fish gills and for the potential therapeutic application 

in aquaculture. Some other aquatic viruses like IPNV, ISAV should be tested to complete 

knowledge on cellular and molecular responses of trout gill cells. A wide range of bacterial 

pathogens including Gram positive and negative bacteria should be used to study host-

bacteria interactions and to identify potential therapeutic agents to prevent the bacterial 

infections. Some other cytokines and chemokines should be tested upon bacterial infection 

and PAMP stimulation. Viral and bacterial pathogens should be used to evaluate their effects 
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on protein phosphorylation in trout gill epithelia. A series of in vivo experiments including 

viral and bacterial challenge experiments to investigate the innate immune responses by 

transcriptomics and phosphoproteomics in salmonid gills, therapeutic use of poly(I:C) 

against the viral and bacterial infection are recommended to validate the in vitro findings 

found in this thesis. Finally, the expression of the innate immune effectors should be 

investigated by primary salmonid gill cell cultures to compare with the transwells.  
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Appendices 

Appendix 1: Protocols  

Appendix 1.1: RNA extraction protocol using TRI-reagent (Sigma) 

This RNA extraction protocol was adapted for cells growing onto 12 well plate/12 well 

transwells 

Step 1: Cell lysis 

1. Cells were washed twice with1 ml of PBS.  

2. 500 µL of TRI-Reagent was added in each well. 

3. Cell lysate was collected in 2 mL screw capped tube. 

4. Kept in -20 °C or directly used for RNA extraction. 

Step 2: Phase Separation 

1. If from frozen, was allowed to thaw at room temperature (RT), then 100 µL BCP 

(per mL TRI Reagent used) was added and the tube was shaken vigorously by hand 

for 15 seconds. 

2. Samples were incubated at room temperature for 15 min. 

3. Samples were centrifuged at 16900 × g for 15 min, at 4ºC. 

4. After centrifugation, the upper aqueous phase was transferred to a new tube 

without disturbing the interface. 

Step 3: RNA precipitation 

1. ½ volume (half of total volume of upper phase) of RNA precipitation solution 

(prepared in house with 1.2M NaCl and 0.8M Sodium Citrate Sesquihydrate in 

nuclease free water, 0.2 nm filter sterilized) and the same ½ volume of isopropanol 

were added and mixed properly by inverting gently for 4-6 times followed by 

incubation for 10 min at room temperature. 

2. Sample was then centrifuged at 16900 × g for 15 min, at 4ºC. The RNA precipitate 

forms a gel like pellet on the side/bottom of the tube. 

Step 4: RNA Wash 

1. The supernatant was removed carefully without disturbing the pellet by pipetting 

and the pellet was washed with 1 mL of 75% ethanol for 15 mins at RT. 

2. The pellet was flicked to lift the pellet from the bottom and invert a few times so 

that the entire surface of the pellet and tube are washed, then centrifugation at 

16900 × g for 15 min, at room temperature was done.  
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3. Most of the supernatant was removed carefully by pipetting. 

4. The sample was re-spined for just 2 pulses and all the remaining ethanol was 

removed with a small volume pipette (preferable 10-20 µL). 

5. Finally, the RNA was air dried at room temp for 5 min.  

 

Step 5: Dissolving the RNA 

1. RNA pellet was re-suspended in an appropriate amount of RNase free water  

2. RNA was incubated at RT for 30-60 min with gentle flicking of the tubes every 10 

min to aid resuspension.  

3. RNA was kept at -70oC overnight. 

Step 6: RNA quantification 

1. RNA was thawed and quantified by Nanodrop 

2. An aliquot of RNA (250 ng) was used for gel run to check the integrity of the 

RNA. For this, 250 ng of RNA was incubated at 65 °C for 2 min (preferable in 

thermocycler), and chilled on ice. 

1. Required volume of loading dye was added into the RNA and run on 1.5% agarose 

gel to check the quality of RNA (a good quality RNA gives 2 band as Figure  

2. RNA was stored at -70oC until further use.  

  

 

 

 

 

 

 

 

Figure 1.1: Agarose gel electrophoresis of RNA. L, 100 bp marker, 1-4 RNA sample.  
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Appendix 1.2: Protocol for cDNA extraction using Superscript III (Invitrogen) 

1. Each component was thawed, mixed and centrifuged before use. 

2. Combine the following component in PCR tube 

 

Component  Amount  

RNA up to 5 µg of total RNA X μL  

Primer: 50 μM oligo(dT) 1 μL  

10 mM dNTP mix  1 μL  

DEPC-treated water Y μL (to make up 10 μL 

 

3. Tube was incubated at 65°C for 5 min, then placed on ice for at least 1 min.  

4. The following cDNA Synthesis Mix was prepared, adding each component in the 

indicated order.  

 

Component  1 reaction 

10X RT buffer  2 μL  

25 mM MgCl2  4 μL  

0.1 M DTT  2 μL  

RNaseOUT™ (40 U/μL)  1 μL  

SuperScript® III RT (200 U/μL)  1 μL 

 

5. 10 μL of cDNA Synthesis Mix to each RNA/primer mixture was added, mixed 

gently, and collected by brief centrifugation and then incubated for 50 min at 50°C  

6. The reaction was terminated by incubating at 85°C for 5 min. Then chilled on ice. 

7. The reaction was collected by brief centrifugation. And then 1 μL of RNase H was 

added to each tube and incubated the tubes for 20 min at 37°C.  

8. cDNA synthesis reaction was stored at −20°C or used for PCR immediately.  

 

 



218 

 

Appendix 1.3: PCR clean-up protocol  

Using Nucleospin PCR clean-up and Gel extraction kit (Macherey-Nagel) 

Step 1: Adjusting DNA binding condition 

1. Volume of PCR product was adjusted to 50 µL with miliQ water  

2. 2 volume of NTI buffer (100 µL of buffer) was added into PCR product 

Step 2: Binding DNA 

1. A PCR clean-up column was placed into a 2 mL collection tube  

2. PCR product and NTI mixture was transferred into the column 

3. Centrifuged for 30s at 11,000 g 

4. Flow-through was discarded 

5. Column was placed back into the tube 

Step 3: Washing silica membrane 

1. 700 µl NT3 buffer was added into the column 

2. Centrifuged for 30s at 11,000 g 

3. Flow-through was discarded 

4. Column was placed back into the tube 

Step 4: Drying silica membrane 

1. The column with collection tube was entrifuged for 1 min at 11,000 g to remove 

the NT3 buffer completely 

Step 5: DNA elution 

1. PCR clean-up column was placed into a new 1.5 mL microcentrifuge tube. 

2. 20 µL NE buffer (previously incubated at 72°C) was added into the column, 

incubated for 2 min at 72°C. 

3. Centrifuged for 1 min at 11,000 g 

4. Column was discarded and the tube with supernatant as ultrapure PCR product was 

kept at -20°C until further use. 

(For the higher efficiency, at the beginning sufficient volume of NE buffer was taken into 

a tube and incubated at 72°C)  
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Appendix 1.4: Plasmid extraction protocol  

Using NucleoSpin plasmid DNA purification kit (Macherey-Nagel) 

The overnight grown bacterial culture used for plasmid extraction. 

1. Tube with bacterial culture was centrifuged at 11000g for 30 seconds 

2. The supernatant was discarded 

3. Then 150 µL of buffer A1 was added and vortexed to re-suspend the pellet 

completely 

4. Then 250 µL of buffer A2 was added and inverted for 5 times – (avoiding vortex) 

5. The tube was incubated for 2 min at RT to lyse the cells 

6. Then 350 µL of buffer A3 was added and inverted until lysate has turned colourless 

7. Centrifuged for 3 min at full speed (16000g) 

8. A nucleaspin plasmid EasyPure column was placed into a collection tube 

9. Clear supernatant was added onto the spin column 

10. Centrifuged for 30s at 2000g 

11. Flow-through was discarded 

12. Then 450 µL of buffer AQ was added into the spin column 

13. Centrifuged for 1 min at full speed (16000g) 

14. Tube was discarded 

15. The spin column was placed into a new 1.5 ml Eppendorf tube  

16. Then 50 µL pre-heated (at 72°C) buffer AE was added onto the membrane and 

incubate at 72 °C for 2 min 

17. Centrifuged for 1 min at full speed (16000g) 

18. The column was discarded and the tube with supernatant was kept 

19. Nano drop was performed to quantify the plasmid DNA 

20. Plasmid DNA was kept at -20 °C 

(For the higher efficiency, at the beginning sufficient volume of AE buffer was taken into 

a tube and incubated at 72°C).  
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Appendix 1.5: Titration of virus for infectivity study 

After a virus is propagated in cell culture, we need to know the infectivity titre of the virus. 

This can be determined by inoculating increasing dilutions of the virus to a cell line based 

on CPE seen in different dilutions. Viral titter is the lowest concentration of a virus that still 

infects cells. To determine the titter, several dilutions are prepared, such as 10−1, 10−2, 10−3, 

10−4 and so forth. This is virus specific as well as cell line. 

 

There are mainly two methods for the determination of virus titter. One is the adsorption 

inoculation method where virus is inoculated on a preformed cell monolayer and another is 

the simultaneous inoculation method where cells and virus are inoculated at the same time. 

 

1. Adsorption inoculation method 

For the adsorption inoculation method CHSE-214 cells were seeded on to two 96 well plates 

at a seeding density of 0.03×106 cells/well. Two 96 well plates were seeded one for 10-fold 

dilution and another for 5-fold dilution and incubated overnight at 22 C with 4% CO2. 

 

2. Simultaneous inoculation method 

For simultaneous inoculation method virus and cells are inoculated at the same time. First 

the plate for simultaneous inoculation is inoculated with virus supernatant and the kept in 

the incubator and then cells are harvested and seeded onto the plate.  

 

SAV-2 keeping at 4C was used for adsorption and simultaneous inoculation for 10-fold and 

5-fold dilutions across the plate. 
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Titration Method 

Perform virus titration using an appropriate dilution series for the virus concerned. Here is 

the example of 10-fold dilution series. 

 

                                Stock    TITRATE             Dilute 

             Virus   >>> 10-fold serial dilution across plate >>>>>> Virus 

 

         1       2      3      4      5       6      7      8       9     10      11    12 

 

Negative control= 
 

Virus 

       

     

 

 

 

 

 

 

 Virus          

 

Negative control                      

    NEAT   10-1      10-2    10-3     10-4    10-5    10-6    10-7    10-8    10-9    10-10    10-11 

 

Virus titration method 

 

1. Add 90 l of diluent (HBSS+2%serum) to all wells of the 96 well plate except the 

first wells of column 1. 

2. Add 100l of diluent (HBSS+2%serum) to the first well of row A and row H 

(controls). 

3. Add 100 l of the virus preparation to the first well of rows B to G. 

4. FOR EACH ROW, make ten–fold dilutions across the plate by transferring 10l into 

the next well across the plate, and mix well at each stage. Use a different tip for each 

well (to minimise the potential carry over of virus across the titration plate). 

5. Remember to discard 10l from the last wells to the discard container. 

6. Nescofilm the plate and incubate at appropriate temperature/CO2 incubator. 

 

7. Trypsinise a recently prepared 25cm2 flask of cells and re-suspend cells in 

approximately 13 ml medium. Follow the method for ‘Preparing subcultures of a fish 

A 

B 

C 

D 

E 

F 

H 

G 
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cell line’ (page 5-6) up to point 8. At this point add 13mls medium and re-suspend 

the cells by gently pipetting up and down.  

8. Dispense 1.5ml of cell suspension into each channel of a high walled reservoir. 

9. Starting from the last well in the row add 100l of cell suspension to each well using 

the multi-channel pipette and the high walled reservoirs. (RHS, low concentration of 

virus to LHS, high concentration of virus) 

10. Label plate with name and date of preparation. Please do not obscure any wells of 

the plate with marker pen. Keep all writing to the edges.  

11. Seal titration/neutralisation plate using Nescofilm around the perimeter, taking care 

not to disrupt or mix the contents of the wells. 

12. Incubate the inoculated cell culture plate at appropriate temperature for virus culture 

but also within the normal temperature range for those particular cells. 

13. Check the plate every day for 1 week and record results. 
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Appendix 1.7: Protocol for PCR product clean up using DNA Clean & Concentrator-

5 (Zymo Research) 

1. In a 1.5 mL microcentrifuge tube, 5 volumes of DNA Binding Buffer were added to 

each volume of PCR product  

2. Mixed briefly by vortexing 

3. The mixture was transferred to a provided Zymo-Spin Column in a collection tube 

4. Centrifuged at 10,000 - 16,000 x g for 30 seconds 

5. Flow-through was discarded 

6. Then 200 µL DNA Wash Buffer was added to the column  

7. Centrifuged at 10,000 - 16,000 x g for 30 seconds 

8. The flow-through was discarded and back into collection tube 

9. Steps 6 – 8 were repeated 

10. The column was transferred to a 1.5 mL microcentrifuge tube 

11. Then 15-20 μL DNA Elution Buffer
 
or water was directly added to the column matrix 

and incubated at room temperature for one min.  

12. Centrifuged for 30 seconds to elute the PCR product 

13. Nano drop was performed to quantify the PCR product 

14. Ultrapure PCR product was used immediately or stored at −20°C for future use.  
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Appendix 1.7: Protocol for cDNA synthesis using Maxima H Minus Synthesis Master 

Mix 

1. The following components were combined in a PCR tube 

 

Component  Amount  

10XdsDNase 1 μL  

10XdsDNase buffer 1 μL  

RNA up to 500 ng of 

cytoplasmic or total RNA 

X μL  

DEPC-treated water Y μL (to make up 10 μL 

 

2. The reaction was mixed gently and briefly centrifuged 

3. Tube was incubated at 37 °C for 2 min, then placed on ice for at least 1 min.  

4. The following cDNA Synthesis Mix was prepared, adding each component in the 

indicated order.  

 

Component  1 reaction 

5X Maxima cDNA H Minus 

Synthesis Master Mix 

4 μL 

DEPC-treated water 6 μL 

 

5. The reaction was mixed gently and briefly centrifuged  

6. Tube was incubated at 25 °C for 10 min, 50 °C for 15 min and termination at 85°C 

for 5 min.  

7. The cDNA synthesis reaction was stored at −20°C or used for PCR immediately.  
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 Appendix 1.8: Plasmid DNA extraction protocol  

Using High Pure Plasmid Isolation Kit (Roche) with some modifications 

The overnight grown bacterial culture used for plasmid extraction. 

1. The bacterial culture was centrifuged at 11000g for 30 seconds 

2. The supernatant was discarded 

3. Then cell pellet was resuspended in 250 µL of suspension buffer supplemented 

with RNase followed by addition of 250 µL lysis buffer  

4. The mixture was incubated for 5 min at room temperature followed by addition of 

300 µL of chilled binding buffer and then centrifuged for 10 min at maximum 

speed.  

5. Clear supernatant was transferred to high pure filter tube followed by 

centrifugation at maximum speed for 1 min.  

6. Flow-through was discarded 

7. Then 500 µL wash buffer I was added 

8. Centrifuged for 1 min at 13000g 

9. Flow through was discarded 

10. Then 700 µL wash buffer II was added 

11. Centrifuged for 1 min at 13000g followed by an additional 1min centrifugation 

after discarding flow through  

12. The filter tube was placed into a new 1.5 ml Eppendorf tube  

13. Then 30 µL of elution buffer was added and centrifuged for 1 min at 13000g 

14. The column was discarded and the tube with supernatant was kept 

15. Nano drop was performed to quantify the plasmid DNA 

16. Plasmid DNA was kept at -20 °C 
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Appendix 2: DNA standard curves 

 

Appendix 2.1: Plasmid DNA standard of antiviral and tight junction genes used in the study 
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Figure S 2.1: Plasmid DNA standard of antiviral gene TLR3 (A), IFNb (B), MX2 (C) and tight junction genes claudin 3a (D), claudin 8d and 

ZO-1 (F). Each standard curve was generated with the average CT values of each concentration of standard of three independent runs.  

 

Appendix 2.2a: Plasmid DNA standard of RLRs and related genes used in the study 
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Figure S 2.2a: Plasmid DNA standard of RLRs and associated molecules. Each standard curve was generated with the average CT values of each 

concentration of standard of three independent runs.  

 

 

Appendix 2.2b: Plasmid DNA standard of RLRs and related genes used in the study 

 

 
Figure S 2.2b: Plasmid DNA standard of ISGs namely PKR (A), ISG15 (B) and viperin (C). Each standard curve was generated with the average CT values 

of each concentration of standard of three independent runs.  
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Appendix 2.3: Plasmid DNA standard of cytokines and antimicrobial peptide genes used in 

the study 

 

 
Figure S2.3: Plasmid DNA standard of cytokine IL-8(A), innate immune gene CD209b (B) 

antimicrobial peptide rtCATH2 (C) and omDB3 (D). Each standard curve was generated with the 

average CT values of each concentration of standard of three independent runs. 
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Appendix 3: Transwell literature and supplementary phosphoproteome information 

 

Supplementary Table S3.1: Literature on use of transwell system 

 

SL Instrument used to measure 

TER 

Findings  Experimental animal and 

tissue 

References 

1 Custom modified EVOM 

Voltohmmeter (World 

Precision Instruments, 

Sarasota, FL, USA).  

In symmetrical and SSI, TER observed in control group as 5026 ± 127 Ωcm2 in 

6-9 days 

Sea bass (Dicentrarchus 

labrax) gill 

(Avella et al., 1999) 

2 ,, TER value nearly 30 KΩ cm2 in pre-exposure period while decreased to ~7.7 kΩ 

cm2 after exposure to sea water (SW).  
puffer fish (Tetraodon 

nigroviridis) gill 

(Bui & Kelly, 2015) 

3 ,, Highest TER of 3.5 kΩcm2 by day 6 of seeding  rainbow trout gill primary 

cells 

(Wood &  Part 1997) 

4 ,, Initial TER was measured as 3 kΩcm2 in symmetrical culture condition in SSI rainbow trout gill (Carlsson & Pärt, 2001) 

5 ,, Highest TER of 1150 ± 46 Ωcm2 after 36-42 h of seeding in SSI Gold fish  

Carrasius auratus 

(Chasiotis & Kelly, 2011) 

6 ,, In gold fish, TER of 1.75 and 1.25 K Ωcm2 at 48 and 96 h of seeding in one 

experiment and 1 K Ωcm2 in another experiment where TER was observed as 2.5 

K Ωcm2 in rainbow trout gill epithelia after 96 h of seeding 

Gold fish  

Carrasius auratus and 

Rainbow trout 

(Chasiotis & Kelly, 2011a) 

7 ,, TER of nearly 2900 Ωcm2 in symmetrical and nearly 10000 Ωcm2 asymmetrical 

culture condition was observed. 

rainbow trout gill (Chasiotis et al., 2010) 

8 ,, TER was found as 1.2, 1.5 and 1.8 K Ωcm2 respectively after 24 h of seeding. Gold fish (Chasiotis et al., 2012) 

9 ,, TER values as high as 2,000 Ω cm2  MDCK cells (Damek-Poprawa et al., 

2013) 
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10 ,, TER observed between 1.3 and 34 kΩcm2 in DSI whereas, between 1.2 and 21 

kΩcm2 in SSI preparations. 

rainbow trout gill (Fletcher et al., 2000) 

11 ,, The plateau TER of control and cortisol- treated (1000 ng/ml cortisol) inserts was 

3.79 ± 0.35 and 24.38 ± 0.70 KΩ cm2, respectively. 

rainbow trout gill (Kelly & Wood, 2001a) 

12 ,, TER found as 18.2±2.7 kΩcm2 at day 7 in control group which increased up to 

31 kΩcm2 and gradually dropped to 10 kΩcm2 and remained nearly constant. 

rainbow trout gill (Kelly & Wood, 2001b) 

13 ,, TER values as 18.00± 3.41 kΩ cm2 and 27.05±2.60 kΩ cm2 in freshwater rainbow 

trout gill epithelia in symmetrical and asymmetrical culture condition. 

rainbow trout gill (Kelly & Wood, 2003) 

14 ,, TER values ranged between 27.33 ± 2.49 kΩ cm2 and 24.82±2.79 kΩ cm2 in 

control and cortisol-treated rainbow trout gill epithelia respectively. 

rainbow trout gill (Kelly & Wood, 2008) 

15 ,, Symmetrical culture condition in SSI had TER values nearly 4 kΩ cm2 in control 

condition. 

rainbow trout gill (Kolosov & Kelly, 2013) 

16 ,, TER in primary culture of rainbow trout gill cells was measured as 22.8±6 kΩ 

cm2 in control group 

rainbow trout gill (Leguen et al., 2011) 

17 ,, TER in control Nile tilapia gill epithelia in SSI was 1.83 ± 0.19 kΩ cm2 in 

symmetrical culture condition while TER in asymmetrical culture conditions was 

18.58±0.83 kΩ cm2. 

Nile tilapia gill (Kelly & Wood, 2002) 

18 ,, TER in SSI and symmetrical control cultures has been recorded as 10 kΩ cm2 

after 24 hrs of seeding in pre-stress and control conditions. 

rainbow trout gill (Sandbichler et al., 2011) 
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19 ,, TER of 6.84 ± 1.99 kΩcm2 in control and 13.54 ± 2.30 kΩcm2 in continuous 

cortisol treatment cells  

rainbow trout gill (Sandbichler et al., 2011) 

20 ,, TER values have been reported as 2.5 ± 0.9 kΩ cm2 in symmetrical control 

cultures and 4.3 ± 1.3 kΩcm2 in symmetrical cortisol-treated cultures.   

rainbow trout gill (Sandbichler et al., 2011) 

21 ,, Found TER as 0.98± 0.09 KΩ cm2 in control and 1.09± 0.23 KΩ cm2 oPRL 

treated after 6 days culture of freshwater 

In asymmetrical culture condition, found TER values higher than 10 KΩ cm2 in 

control group and nearly 22 KΩ cm2 in oPRL treated group after 3 h of exposure 

to apical freshwater. 

rainbow trout gill (Kelly & Wood, 2002) 

22 ,, TER as 7.6±1.4 kΩcm2 in control culture rainbow trout gill (Shahsavarani et al., 2006) 

23 ,, TER value nearly 13 KΩ cm2 in control group of primary rainbow trout gill cells. rainbow trout gill (Smith et al., 2001) 

24 ,, TER values as 18.1 ± 1.3 kΩ cm2 after 8 days in DSI Rainbow trout primary gill 

epithelia 

(Stott et al., 2014) 

25 ,, TER between 20 and 80 Ωcm2 which remained stable for at least the following 

6–12 days 

RTgill-W1 (Trubitt et al., 2015) 

26 ,, TER reached a plateau of approximately 30 kΩ cm2 by Day 9, while the first 3 

days the value was nearly zero kΩ cm2. At day 6 and 7, TER value was nearly 8, 

13 and 17, 22 kΩ cm2 respectably in two treatments. 

rainbow trout gill (Wood et al., 2002) 

27 ,, Symmetrical culture condition in DSI had TER values nearly 34 kΩ cm2 in 

control condition at day 7. 

rainbow trout gill (Zhou et al., 2003) 

28 ,, TER of 25–30 kΩ cm2 (plateau phase) in 7–9 days in DSI in symmetrical 

condition 

rainbow trout gill (Zhou et al., 2005) 
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29 ,, TER reached at 5000–8000 Ωcm2 in DSI in symmetrical condition while 12,000–

15,000 Ωcm2 at 3h in asymmetrical condition. 

Nile tilapia gill (Zhou et al., 2006) 

30 Millicel-ERS TER values were observed between 141±81 and 711±79 Ωcm2 in different 

models. 

Caco-2/TC7 cells (Da Violante et al., 2004) 

31 ,, TER measures nearly 500 Ωcm2 in Caco-2 and 100-300 Ωcm2 in Caco-2 co-

culture with HT29-MTX. 

Caco-2 and HT29-MTX (Béduneau et al., 2014) 

32 ,, TER values were detected as 283±70 Ωcm2 in Caco-2 cells and 60±17 to 122±31 

Ωcm2 in co-culture. 

Caco-2, HT29-MTX and 

Raji 

(Bazes et al., 2011) 

33 ,, TER was observed in control and treated cells as nearly 275 to 500 Ωcm2 and 50-

500 Ωcm2 respectively 

RBE4 cells (Balbuena et al., 2010) 

34 ,, Maximum TER value was 152 Ωcm2 which was detected at 4-5 days. A549 cells (Tavana et al., 2011) 

35 ,, Mean TER values ranged between 100 and 1200 Ωcm2 in different cells. Caco-2, IEC-18 and HCEC 

cells 

(Steensma et al., 2004) 

36 ,, TER was measured between 140 and 180 Ωcm2. A549 cells (Rothen-Rutishauser et al., 

2005) 

37 ,, TER was measured between 170 and 1470 Ωcm2 in mono and co-culture. 16HBE140-, 

A549 and hAEpC cells 

(Lehmann et al., 2011) 

38 ,, TER values detected in different cells in different duration ranged between 

147±27 and 463 ±54 Ωcm2. 

Caco-2 and Raji (des Rieux et al., 2007) 

39  ,, TER values were 120 and 140 Ωcm2 in submerged and air-exposed cultures 

respectably. 

A549 (Blank et al., 2006) 

40 ,, Observed TER as 500 to 1300 Ωcm2 in different groups. Caco-2 (Ferruzza et al., 2012) 

41 ,, Maximum TER value was detected as nearly 3000 Ωcm2. NHBE cell line (Oshima et al., 2011) 
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Table S3.2. List of proteins identified in different treatment groups from rainbow trout gill epithelial cells RTgill-W1 with their functional 

groups, associated genes in zebra fish and human 

 
Uniprot or NCBI  

 ID for rainbow 

trout 

Zebrafish 

gene symbol 

Human gene 

symbol 

Protein name Functio

nal 

group1 

Localization Treatment 

group 

P26351 tmsb4x TMSB4Y Thymosin beta-11 N  Cytoplasmic All 

XP_021479457.1   rho GTPase-activating protein 32-like isoform 

X1 

T Nuclear PIC 

XP_020339660.1   SLIT-ROBO Rho GTPase-activating protein 2-

like 

T Extracellular PIC 

XP_021476300.1   rho GTPase-activating protein 12-like T Nuclear PIC 

XP_024236905.1   rho GTPase-activating protein 39-like isoform 

X2  

T Nuclear PIC 

A0A060W1R7 - - Phosphate transporter P Plasmamembrane Control+PIC 

XP_021476300.1 arhgap12b ARHGAP12 rho GTPase-activating protein 12-like T nuclear PIC 

XP_020317074.1 ssb SSB lupus La protein homolog B-like A  nuclear All 

XP_021439759.1 sqstm1 SQSTM1 sequestosome-1-like J  nuclear All 

Q5KT34 hsp70l HSPA1L Heat shock 70kDa protein O   All 

XP_021415075.1 lmna LMNA lamin-A-like DY  nuclear All 

A0A060VVL3 eif3c EIF3CL Eukaryotic translation initiation factor 3 subunit 

C 

J  Cytoplasmic All 

XP_021417537.1 ahnak AHNAK neuroblast differentiation-associated protein 

AHNAK-like 

O  Cytoplasmic_ 

nuclear 

All 

XP_020342305.1 srsf3a SRSF3 serine/arginine-rich splicing factor 3-like A  nuclear All 

XP_021427140.1 gsk3b GSK3B glycogen synthase kinase-3 beta-like isoform 

X4 

G Cytoplasmic_ 

nuclear 

All 

XP_021459134.1 sgta SGTA small glutamine-rich tetratricopeptide repeat-

containing protein alpha-like 

S  Cytoplasmic _nuclear Control+PIC 

A0A060WCN2 rps6 RPS6 40S ribosomal protein S6 J Cytoplasmic Control+PIC 

XP_020340664.1 srsf9 SRSF9 serine/arginine-rich splicing factor 9-like A  nuclear All 

XP_021478340.1 dbh DBH dopamine beta-hydroxylase E extracellular PIC 
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XP_021438926.1 ahnak AHNAK neuroblast differentiation-associated protein 

AHNAK-like 

S nuclear All 

XP_021417537.1 ahnak AHNAK neuroblast differentiation-associated protein 

AHNAK-like 

s  nuclear All 

XP_021480987.1 myh9a MYH9 myosin-9-like isoform X2 Z Endoplasmic reticulum All 

A0A060X654 aco2 ACO2 Aconitate hydratase, mitochondrial  C  mitochondrial  Control+PIC 

XP_021415820.1 abcf1 ABCF1 ATP-binding cassette sub-family F member 1-

like 

J nuclear All 

XP_021435177.1 pdcl3 PDCL3 phosducin-like protein 3 T  Cytoplasmic Control+PIC 

A0A060XB41 gapdhs GAPDHS Glyceraldehyde-3-phosphate dehydrogenase G  Cytoplasmic All 

A0A060YAX6 mcm2 MCM2 DNA helicase  K  nuclear All 

XP_021417046.1 sqstm1 SQSTM1 sequestosome-1-like J  Cytoplasmic All 

XP_021458415.1 srsf9 SRSF9 serine/arginine-rich splicing factor 9-like A  nuclear All 

XP_021430220.1 srrm1 SRRM1 serine/arginine repetitive matrix protein 1-like 

isoform X1 

A  nuclear All 

A0A1S3SB33 snw1 SNW1  SNW domain-containing protein 1-like AB  Cytoplasmic All 

A0A060XAK4 map2 MAP2 Microtubule-associated protein Z nuclear PIC 

XP_021430686.1 dync1h1 DYNC1H1 Cytoplasmicplasmic dynein 1 heavy chain 1 Z  Cytoplasmic All 

A0A1S3N9Q2 zgc:55733 CH17-409J4.1 heterogeneous nuclear ribonucleoprotein C-like 

isoform X3 

A  nuclear All 

A7UH96 map4k4 MAP4K4 Mitogen-activated protein kinase kinase kinase 

kinase 4-like protein 

T nuclear MDP+PIC 

XP_021471377.1 adamts9 ADAMTS9 A disintegrin and metalloproteinase with 

thrombospondin motifs 20-like 

O  plasma membrane All 

XP_021467095.1 srsf5b SRSF5 serine/arginine-rich splicing factor 5-like 

isoform X2 

A  nuclear All 

XP_021461826.1 srsf9 SRSF9 serine/arginine-rich splicing factor 9-like 

isoform X1 

A  extracellular All 

XP_021456437.1 akap12b AKAP12 A-kinase anchor protein 12 isoform X1 T  nuclear All 

XP_021440312.1 srrm1 SRRM1 serine/arginine repetitive matrix protein 1-like A  nuclear All 

XP_020309176.1 nifk NIFK syntaxin-4-like U  nuclear All 

XP_021458386.1 parvaa PARVA alpha-parvin-like isoform X1 Z  nuclear All 
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XP_021468057.1 ccdc6a CCDC6 coiled-coil domain-containing protein 6-like S  nuclear All 

A0A060WML4 coro1b CORO1B Coronin 
 

nuclear All 

XP_020322254.1 map2k2b MAP2K2 dual specificity mitogen-activated protein kinase 

kinase 2-like 

T Cytoplasmic_ nuclear All 

XP_021447377.1 srsf1b SRSF1 serine/arginine-rich splicing factor 1B-like 

isoform X1 

A nuclear All 

XP_021428409.1 hivep1 HIVEP1 zinc finger protein 40-like isoform X1 K nuclear PIC 

XP_020315797.1 prkar1ab PRKAR1A cAMP-dependent protein kinase type I-alpha 

regulatory subunit-like 

T  nuclear All 

XP_021413834.1 myh9a MYH9 myosin-9-like isoform X2 S nuclear Control+PIC 

A0A1S3RBB5 limd2 LIMD2 LIM domain-containing protein 2-like isoform 

X1 

T  nuclear All 

XP_021454842.1 fnbp1l FNBP1L formin-binding protein 1-like isoform X2 Z  nuclear All 

XP_021436746.1 rnf213b RNF213 E3 ubiquitin-protein ligase rnf213-beta-like 

isoform X8 

O Plasmamembrane PIC 

XP_021465920.1 ccdc114 CCDC114 coiled-coil domain-containing protein 63 S  Cytoplasmic PIC 

XP_021478308.1 add1 ADD1 alpha-adducin-like TZ  nuclear PIC 

XP_021412395.1 add3a ADD3 gamma-adducin-like TZ  nuclear Control+PIC 

Q53HX4 map2k2a MAP2K2 MAPK /ERK kinase  T Cytoplasmic All 

XP_021420114.1 larp1 LARP1 la-related protein 1 JO   nuclear All 

XP_021458770.1 tcp11l1 TCP11L1 T-complex protein 11-like protein 1 T  Cytoplasmic All 

A0A1S3QC57 pdha1a PDHA2 Pyruvate dehydrogenase E1 component subunit 

alpha 

C  Cytoplasmic Control+PIC 

NP_001117896.1 map2k2a MAP2K2 MAPK /ERK kinase T Cytoplasmic All 

XP_021460427.1 lmnb2 LMNB2 lamin-B2 DY nuclear All 

XP_020346920.1 pea15 PEA15 astrocytic phosphoprotein PEA-15-like D plasma membrane PIC 

B5XE27 ensab ENSA alpha-endosulfine TU Cytoplasmic All 

XP_021464580.1 itsn1 ITSN1 intersectin-1-like isoform X3 T nuclear All 

XP_021476221.1 neurod6a NEUROD6 neurogenic differentiation factor 6 K nuclear PIC 

XP_021460036.1 tpra TPR nucleoprotein TPR-like U  nuclear PIC 

A0A060VQQ6 fkbp8 FKBP8 Peptidylprolyl isomerase  O  endoplasmic reticulum PIC 
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XP_021429469.1 ahi1 AHI1 jouberin isoform X1 T  nuclear PIC 

XP_024263477.1 eef1da EEF1D elongation factor 1-delta-like K Cytoplasmic PIC 

XP_021458987.1 uhrf1 UHRF1 E3 ubiquitin-protein ligase UHRF1 isoform X1 K nuclear PIC 

XP_021439199.1 trappc11 TRAPPC11 trafficking protein particle complex subunit 11 U Cytoplasmic PIC 

Q6L767 raf1a RAF1 Serine/threonine protein kinase RAF1 T   PIC 

XP_024261818.1 tcea1 TCEA1 transcription elongation factor A protein 1-like 

isoform X1 

K mitochondrial  PIC 

XP_021442370.1 tp53bp1 TP53BP1 TP53-binding protein 1 L  Cytoplasmic_ 

nuclear 

PIC 

XP_021418521.1 prpf4bb PRPF4B serine/threonine-protein kinase PRP4 homolog nuclear All 

XP_021469369.1 jun JUN transcription factor AP-1-like K  Cytoplasmic MDP+PIC 

XP_021431726.1 cbx1b CBX1 chromobox protein homolog 1-like isoform X1 B  nuclear Control+PIC 

XP_021453040.1 ptpn4a PTPN4 tyrosine-protein phosphatase non-receptor type 

4 isoform X4 

T nuclear PIC 

XP_021431200.1 wdr24 WDR24 WD repeat-containing protein 24-like isoform 

X2 

U  mitochondrial  PIC 

A0A060XAI2 itgb1a ITGB1 Integrin beta W Plasmamembrane PIC 

XP_020330313.1 cdk2 CDK2 cyclin-dependent kinase 2  Cytoplasmic _nuclear All 

XP_021478144.1 sh2d3ca SH2D3C SH2 domain-containing protein 3C-like T Cytoplasmic PIC 

XP_021439502.1 map7d3 MAP7D3 ensconsin-like isoform X8  S nuclear PIC 

XP_021420688.1 calcoco2 CALCOCO2 calcium-binding and coiled-coil domain-

containing protein 2-like 

Z  Cytoplasmic PIC 

XP_021432999.1 cdc123 CDC123 cell division cycle protein 123 homolog D  Cytoplasmic _nuclear All 

XP_021438069.1 tbx4 TBX4 T-box transcription factor TBX4-like K nuclear PIC 

XP_021454979.1 prrc2c PRRC2C protein PRRC2C-like S nuclear PIC 

XP_021452805.1 ssb SSB lupus La protein homolog B-like A  nuclear All 

XP_021431031.1 ccdc186 CCDC186 coiled-coil domain-containing protein 186 W  nuclear PIC 

XP_021439469.1 dgkaa DGKA diacylglycerol kinase theta-like I Cytoplasmic PIC 

A0A060W1Z3 xrn2 XRN2 5'-3' exoribonuclease A  nuclear Control+PIC 

XP_021456912.1 usp24 USP24 biquitin carboxyl-terminal hydrolase 24-like O  nuclear All 
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XP_021423224.1 mcm2 MCM2 DNA replication licensing factor mcm2-like K  nuclear All 

XP_021476751.1 ostf1 OSTF1 osteoclast-stimulating factor 1 T  Cytoplasmic All 

XP_021420675.1 cbx1b CBX1 chromobox protein homolog 1 isoform X1 B  nuclear All 

 XP_021417045.1 canx CANX calnexin-like O Cytoplasmic Control+PIC 

XP_021479552   rps3 RPS3 40S ribosomal protein S3-like J  mitochondrial  All 

XP_021474353.1 pold3 POLD3 DNA polymerase delta subunit 3 isoform X1 L  nuclear All 

XP_021434739.1 ppig PPIG peptidyl-prolyl cis-trans isomerase G O  nuclear All 

XP_021446638.1 prrc2b PRRC2B protein PRRC2B-like isoform X5 S Endoplasmic reticulum PIC 

XP_021458154.1 prrc2b PRRC2B protein PRRC2B-like isoform X2 S nuclear PIC 

XP_021447025.1 ccdc82 CCDC82 coiled-coil domain-containing protein 82-like S  nuclear PIC 

XP_021429897.1 klc1a KLC1 kinesin light chain 1-like isoform X2 Z  Cytoplasmic All 

XP_021478624.1 rictorb RICTOR rapamycin-insensitive companion of mTOR-like 

isoform X1 

D nuclear PIC 

XP_021441892.1 sltm SLTM SAFB-like transcription modulator K  nuclear All 

XP_021456220.1 lbr LBR lamin-B receptor-like I  plasma membrane All 

XP_021423882.1 irf2bp2b IRF2BP2 interferon regulatory factor 2-binding protein 2-

B-like 

K nuclear PIC 

XP_021479352.1 bckdk BCKDK -methyl-2-oxobutanoate dehydrogenase 

[lipoamide] 

T  mitochondrial  All 

XP_021452802.1 ppig PPIG peptidyl-prolyl cis-trans isomerase G-like O  nuclear PIC 

XP_021466982.1 fntb FNTB protein farnesyltransferase subunit beta-like O extracellular PIC 

XP_021446580.1 ddx54 DDX54 ATP-dependent RNA helicase DDX54 A  nuclear PIC 

XP_021427993.1 top2b TOP2B DNA topoisomerase 2-beta-like B  nuclear All 

XP_021467718.1 cad CAD CAD protein isoform X2  F  Cytoplasmic All 

XP_021415194.1 chd4a CHD4 chromodomain-helicase-DNA-binding protein 

4-like 

K nuclear Control+PIC 

A0A1S3SFE2 tmpoa TMPO lamina-associated polypeptide 2, isoform beta-

like isoform X7 

D  nuclear All 

C0PUT2 flna FLNA Filamin-A Z  nuclear All 

XP_021415751.1 map7d1b MAP7D1 MAP7 domain-containing protein 1-like isoform 

X7 

Z  nuclear PIC 
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XP_021435215.1 cwc22 CWC22 pre-mRNA-splicing factor CWC22 homolog 

isoform X1 

A nuclear PIC 

XP_024249913.1 rb1 RB1 retinoblastoma-associated protein D  nuclear All 

XP_021468770.1 chd7 CHD7 chromodomain-helicase-DNA-binding protein 7 K nuclear All 

XP_021472273.1 hspg2 HSPG2 basement membrane-specific heparan sulfate 

proteoglycan core protein-like 

T plasma membrane PIC 

XP_021430202.1 marcksl1a MARCKSL1 MARCKS-related protein-like  S  nuclear All 

XP_021427379.1 zfpm2a ZFPM2 zinc finger protein ZFPM2-lik K  Cytoplasmic _nuclear Control+PIC 

XP_021464990.1 cep68 CEP68 entrosomal protein of 68 kDa-like  nuclear PIC 

XP_021473878.1 mink1 MINK1 misshapen-like kinase 1 isoform X6 T  Endoplasmic reticulum Control+PIC 

XP_021474808.1 patl1 PATL1 protein PAT1 homolog 1-like J  extracellular PIC 

A0A060XTD4 jak2b JAK2 Tyrosine-protein kinase T Cytoplasmic Control+PIC 

XP_021419524.1 ppp1r12a PPP1R12A protein phosphatase 1 regulatory subunit 12A-

like isoform X1 

OT nuclear Control+PIC 

XP_021420296.1 nolc1 NOLC1 nucleolar and coiled-body phosphoprotein 1 

isoform X5 

S  nuclear All 

P_021421553.1 ikzf4 IKZF4 zinc finger protein Eos-like K nuclear PIC 

XP_021454181.1 dnah5 DNAH5 dynein heavy chain 8, axonemal Z  mitochondrial  All 

XP_021427372.1 prrc2a PRRC2A protein PRRC2A-like isoform X1  S  nuclear PIC 

A0A060XUS8 dhh DHH Hedgehog protein T mitochondrial  PIC 

XP_021438852.1 rnf20 RNF20 E3 ubiquitin-protein ligase BRE1A-like O  nuclear Control+PIC 

XP_021457356.1 lmnb1 LMNB1 lamin-B1 DY  nuclear PIC 

XP_021466280.1 itga5 ITGA5 integrin alpha-5-like W  extracellular PIC 

XP_020362322.1 tuba8l TUBA8 tubulin alpha-8 chain-like Z mitochondrial  All 

XP_021440620.1 tacc3 TACC3 transforming acidic coiled-coil-containing 

protein 3-like isoform X2 

S  nuclear All 

XP_021418498.1 cdk13 CDK13 cyclin-dependent kinase 13-like T nuclear Control+PIC 

XP_021459894.1 prrc2c PRRC2C protein PRRC2C-like S nuclear Control+PIC 

XP_021471773.1 exosc10 EXOSC10 exosome component 10 J  nuclear PIC 

XP_020357923.1 rbmx RBMY1J RNA-binding motif protein, X chromosome-like 

isoform X1 

K nuclear All 
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XP_021415580.1 tra2a TRA2A transformer-2 protein homolog alpha-like A  nuclear All 

XP_021479399.1 bcl7ba BCL7B B-cell CLL/lymphoma 7 protein family member 

B-A-like 

S  mitochondrial  Control+PIC 

XP_021443245.1 tekt1 TEKT1 tektin-1 Z Cytoplasmic PIC 

XP_021412770.1 wipf2b WIPF2 WAS/WASL-interacting protein family member 

2-like 

Z nuclear PIC 

A0A1S3Q1N9, 

XP_021415540.1 

cbx3a CBX3 chromobox protein homolog 3-like isoform X1 B  nuclear All 

XP_021415540.1 cbx3a CBX3 chromobox protein homolog 3-like isoform X1 B nuclear All 

XP_021438214.1 proca1 PROCA1 mucin-5AC-like I nuclear PIC 

XP_021441805.1 btbd10b BTBD10 BTB/POZ domain-containing protein 10-like S plasma membrane PIC 

W5S0M1 ptges3a PTGES3 Peroxiredoxin 4 O   Control+PIC 

XP_021481712.1 srrm2 SRRM3 serine/arginine repetitive matrix protein 2-like 

isoform X2 

A nuclear All 

C1BF32 ptges3a PTGES3 Prostaglandin E synthase 3 O Cytoplasmic All 

A0A060VN95 dis3l2 DIS3L2 DIS3-like exonuclease 2 J  Cytoplasmic _nuclear PIC 

XP_021449714.1 lmna LMNA lamin-A-like DY nuclear PIC 

XP_021427551.1 sfpq SFPQ splicing factor, proline- and glutamine-rich-like A  Cytoplasmic All 

XP_021479384.1 dyrk1ab DYRK1A dual specificity tyrosine-phosphorylation-

regulated kinase 1A-like isoform X3 

T  Cytoplasmic _nuclear Control+PIC 

XP_020307840.1 eif4h EIF4H eukaryotic translation initiation factor 4H-like 

isoform X1 

J nuclear PIC 

XP_021470616.1 acin1b ACIN1 apoptotic chromatin condensation inducer in the 

nucleus-like 

B  nuclear All 

A0A060W734 ciapin1 CIAPIN1 Anamorsin J  nuclear Control+PIC 

XP_021445248.1 eif4g3b EIF4G3 extended synaptotagmin-2-B-like isoform X1  nuclear PIC 

XP_021445248.1 eif4g3b EIF4G3 eukaryotic translation initiation factor 4 gamma 

3-like isoform X13 

J   PIC 

XP_021465211.1 ncl NCL nucleolin AJ nuclear All 

XP_021447382.1 rpl23a RPL23A 60S ribosomal protein L23a-like J Cytoplasmic PIC 

A0A060XX58 ncapd2 NCAPD2 Condensin complex subunit 1  BD  Cytoplasmic _nuclear All 
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XP_021428051.1 abcf1 ABCF1 ATP-binding cassette sub-family F member 1-

like isoform X2 

J Cytoplasmic PIC 

A0A060VNP2 esyt2a ESYT2 C12orf43 S endoplasmic reticulum All 

XP_021480998.1 pdcl3 PDCL3 ubinuclein-2-like isoform X2 KT  Cytoplasmic PIC 

XP_021432914.1 rpap3 RPAP3 RNA polymerase II-associated protein 3-like 

isoform X1 

J  Cytoplasmic _nuclear PIC 

XP_021454383.1 api5 API5 apoptosis inhibitor 5-like T Cytoplasmic _nuclear All 

P_020321066.1 ssh2b SSH2 protein phosphatase Slingshot homolog 2-like 

isoform X2 

V nuclear PIC 

XP_021460839.1 rbm15b RBM15B putative RNA-binding protein 15B S nuclear PIC 

XP_020349866.1 rpl22l1 RPL22L1 60S ribosomal protein L22-like 1 J  nuclear All 

A0A060VRL5 katna1 KATNA1 Katanin p60 ATPase-containing subunit A1 O  Cytoplasmic PIC 

XP_021436210.1 ptprea PTPRE receptor-type tyrosine-protein phosphatase 

epsilon-like isoform X2 

S Cytoplasmic PIC 

XP_021480762.1 poldip3 POLDIP3 polymerase delta-interacting protein 3-like 

isoform X1 

A  Cytoplasmic PIC 

XP_021427160.1 pdxkb PDXK pyridoxal kinase-like H Cytoplasmic PIC 

XP_021449661.1 phf3 PHF3 PHD finger protein 3-like K nuclear PIC 

XP_021423059.1 lsp1 LSP1 non-muscle caldesmon-like T nuclear Control+PIC 

XP_021471795.1 ube4b UBE4B ubiquitin conjugation factor E4 B isoform X4 O  nuclear All 

A0A060XMQ3 u2af2b U2AF2 U2 snRNP auxiliary factor large subunit  A  nuclear All 

XP_021425993.1 fblim1 FBLIM1 filamin-binding LIM protein 1-like S nuclear MDP+PIC 

XP_021419904.1 snd1 SND1 staphylococcal nuclease domain-containing 

protein 1-like 

K  Cytoplasmic Control+PIC 

XP_021430107.1 srsf11 SRSF11 serine/arginine-rich splicing factor 11-like 

isoform X1 

A  extracellular Control+PIC 

XP_020308207.1 map7d3 MAP7D3 ensconsin-like isoform X1 Z  nuclear PIC 

XP_021426653.1 pspc1 PSPC1 paraspeckle component 1-like K Cytoplasmic Control+PIC 

XP_021453368.1 mphosph8 MPHOSPH8 M-phase phosphoprotein 8-like isoform X3  B  nuclear PIC 

XP_021469759.1 ranbp3b RANBP3 ran-binding protein 3-like isoform X1 U  nuclear PIC 

XP_021451121.1 map7d1a MAP7D1 MAP7 domain-containing protein 1-like Z  nuclear PIC 
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O93245 ar AR Androgen receptor beta T nuclear PIC 

XP_024253232.1 fubp3 FUBP3 far upstream element-binding protein 3-like 

isoform X8 

A  Cytoplasmic 

_cytoskeleton 

PIC 

XP_021419484.1 parpbp PARPBP PCNA-interacting partner-like L nuclear PIC 

XP_021454601.1 cdkn1ba CDKN1B cyclin-dependent kinase inhibitor 1B-like T nuclear PIC 

XP_021467118.1 papola PAPOLB poly(A) polymerase type 3 A  nuclear PIC 

XP_020317820.1 itga4 ITGA4 integrin alpha-4-like W extracellular MDP+PIC 

XP_021480553.1 smg9 SMG9 protein SMG9 isoform X2 A plasma membrane PIC 

XP_021430418.1 mtfr1l MTFR1L mitochondrial fission regulator 1-like isoform 

X1 

K  mitochondrial  All 

NP_001265967.1 sap30l SAP30L Histone deacetylase complex subunit SAP30L K nuclear PIC 

NP_001167391.1 aldoaa ALDOA fructose-bisphosphate aldolase A G Cytoplasmic All 

XP_021456165.1 itpkb ITPKB inositol-trisphosphate 3-kinase B-like I extracellular PIC 

XP_024295229.1 scaf11 SCAF11 protein SCAF11-like O nuclear All 

XP_021419608.1 scaf11 SCAF11 protein SCAF11-like A  nuclear All 

XP_021458454.1 nup155 NUP155 uclear pore complex protein Nup155 UY Cytoplasmic PIC 

XP_021461664.1 pdlim2 PDLIM2 PDZ and LIM domain protein 2-like isoform X2 TZ  mitochondrial  PIC 

P_021443651.1 synrg SYNRG synergin gamma-like isoform X3 TU  nuclear PIC 

XP_020338646.1 ift52 IFT52 intraflagellar transport protein 52 homolog W Cytoplasmic PIC 

A0A060XY23 mep1b MEP1B Metalloendopeptidase O plasma membrane PIC 

XP_021454850.1 bend5 BEND5 BEN domain-containing protein 5-like isoform 

X2 

S  nuclear PIC 

XP_021427847.1 akap9 AKAP9 A-kinase anchor protein 9-like isoform X8 T  nuclear PIC 

A0A1S3Q8Y9 scrib SCRIB protein scribble homolog isoform X13 S nuclear All 

XP_020351123.1 srsf2a SRSF8 serine/arginine-rich splicing factor 2-like A  nuclear PIC 

XP_021448119.1 rnf146 RNF146 E3 ubiquitin-protein ligase rnf146-like O  nuclear PIC 

XP_024276922.1 dock7 DOCK7 dedicator of Cytoplasmickinesis protein 7 

isoform X9 

T  endoplasmic reticulum Control+PIC 

XP_021465597.1 smarcc2 SMARCC2 SWI/SNF complex subunit SMARCC2-like B  nuclear PIC 
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XP_021430590.1 ndufaf1 NDUFAF1 complex I intermediate-associated protein 30, 

mitochondrial  

S mitochondrial  PIC 

XP_021440829.1 pnn PNN pinin-like Z nuclear PIC 

A0A1S3PUV7 rras2 RRAS2 ras-related protein R-Ras2 isoform X1 S extracellular PIC 

XP_021423409.1 cdkn1bb CDKN1B cyclin-dependent kinase inhibitor 1B T nuclear PIC 

XP_021476489.1 cdk13 CDK13 cyclin-dependent kinase 13-like isoform X2 T nuclear All 

XP_021459082.1 rabgap1l RABGAP1L rab GTPase-activating protein 1-like T  nuclear PIC 

XP_021476126.1 cct5 CCT5 T-complex protein 1 subunit epsilon O  Cytoplasmic PIC 

XP_021465141.1 frmd4ba FRMD4B FERM domain-containing protein 4B-like 

isoform X5 

Z plasma membrane PIC 

XP_021412677.1 sept9b 40057 neuronal-specific septin-3-like isoform X1 DTZ Cytoplasmic _nuclear PIC 

XP_021469967.1 lig1 LIG1 DNA ligase 1-like L  nuclear PIC 

XP_021441910.1 tcf12 TCF12 transcription factor 12 isoform X5 K  nuclear PIC 

XP_021431928.1 snx20 SNX20 sorting nexin-20 U  Cytoplasmic PIC 

XP_021430325.1 iars2 IARS2 isoleucine--tRNA ligase, mitochondrial J mitochondrial  PIC 

XP_021424998.1 strip1 STRIP1 striatin-interacting protein 1 homolog  S  Cytoplasmic PIC 

XP_021470667.1 fxr2 FXR2 fragile X mental retardation syndrome-related 

protein 1-like  

A  nuclear Control+PIC 

XP_021444732.1 nfatc4 NFATC4 nuclear factor of activated T-cells, 

Cytoplasmicplasmic 4-like 

K  nuclear PIC 

XP_021449500.1 smarcc1a SMARCC1 SWI/SNF complex subunit SMARCC1 B  nuclear All 

A0A060W7T9 aclya ACLY ATP-citrate synthase C  Cytoplasmic Control+PIC 

A0A060Z0A8 pds5b PDS5B bad matching D mitochondrial  PIC 

XP_021418579.1 asap1b ASAP1 arf-GAP with SH3 domain, ANK repeat and PH 

domain-containing protein 1-like isoform X1  

T  nuclear PIC 

XP_021460938.1 mapkapk5 MAPKAPK5 MAP kinase-activated protein kinase 5-like 

isoform X2 

T  Cytoplasmic PIC 

XP_021464499.1 prkx PRKX cAMP-dependent protein kinase catalytic 

subunit PRKX-like 

 mitochondrial  PIC 

XP_021432988.1 pfkfb3 PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase 3-like isoform X1 

G nuclear PIC 

XP_021456230.1 cd2ap CD2AP CD2-associated protein-like isoform X3 D/Z/T mitochondrial  Control+PIC 
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A0A060ZEH8 papss1 PAPSS1 Adenylyl-sulfate kinase F nuclear Control+PIC 

XP_021427476.1 nelfe NELFE negative elongation factor E-like isoform X1 K nuclear PIC 

XP_021465957.1 eif4enif1 EIF4ENIF1 eukaryotic translation initiation factor 4E 

transporter-like isoform X1 

J extracellular PIC 

XP_021428272.1 slc30a8 SLC30A8 regulation of nuclear pre-mRNA domain-

containing protein 1A-like isoform X2 

A nuclear PIC 

XP_021473547.1 prr11 PRR11 proline-rich protein 11-like isoform X2 S mitochondrial  PIC 

XP_024241945.1 pnisr PNISR arginine/serine-rich protein PNISR-like isoform 

X1  

S nuclear PIC 

XP_021474937.1 pcm1 PCM1 pericentriolar material 1 protein-like isoform X1 Z nuclear PIC 

XP_021419722.1 zc3hc1 ZC3HC1 nuclear-interacting partner of ALK-like isoform 

X1  

S extracellular PIC 

XP_020344432.1 iqgap1 IQGAP1 ras GTPase-activating-like protein T  extracellular PIC 

A0A060Y486 kif23 KIF23 Kinesin-like protein Z nuclear Control+PIC 

XP_021470370.1 papolg PAPOLG poly(A) polymerase gamma-like  A plasma membrane PIC 

XP_021446539.1 cicb CIC protein ca3ua homolog K nuclear PIC 

XP_021462871.1 ctdspl2a CTDSPL2 CTD small phosphatase-like protein 2 isoform 

X1 

 nuclear PIC 

XP_021437744.1 arhgef1b ARHGEF1 rho guanine nucleotide exchange factor 1-like T Cytoplasmic PIC 

A0A1S3MJG6 tbc1d15 TBC1D15 TBC1 domain family member 15-like  T  plasma membrane PIC 

XP_021430154.1 zfyve19 ZFYVE19 abscission/NoCut checkpoint regulator S mitochondrial  PIC 

XP_021448714.1 nacad NACAD mucin-17-like isoform X1 K nuclear PIC 

A0A060WAA1 gpatch8 GPATCH8 
  

nuclear PIC 

XP_021476532.1 atxn2 ATXN2 ataxin-2-like A mitochondrial  PIC 

XP_021457298.1 map3k1 MAP3K1 mitogen-activated protein kinase kinase kinase 1 

isoform X1 

T nuclear PIC 

XP_021453584.1 phf11 PHF11 PHD finger protein 11-like isoform X2 K nuclear PIC 

XP_021416851.1 foxo4 FOXO4 forkhead box protein O4 K  nuclear PIC 

XP_020341969.1, 

XP_021413269.1 

igf2bp1 IGF2BP1 insulin-like growth factor 2 mRNA-binding 

protein 1 isoform X1 

A  Cytoplasmic PIC 

XP_021432795.1 ppp1r12a PPP1R12A protein phosphatase 1 regulatory subunit 12A-

like isoform X9 

OT  nuclear Control+PIC 
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XP_021441573.1 dync1li2 DYNC1LI2 Cytoplasmicplasmic dynein 1 light intermediate 

chain 2-like isoform X1 

N  mitochondrial  PIC 

XP_021443363.1 ccdc9 CCDC9 coiled-coil domain-containing protein 9-like 

isoform X2 

S  nuclear PIC 

XP_021460778.1 tmcc3 TMCC3 transmembrane and coiled-coil domains protein 

3-like isoform X1 

S  plasma membrane PIC 

C1BFZ7 ndufs7 NDUFS7 NADH dehydrogenase iron-sulfur protein 7, 

mitochondrial  

C  mitochondrial  PIC 

XP_024242025.1 sec24c SEC24C protein transport protein Sec24C-like U nuclear PIC 

 XP_021413419.1 trim33l TRIM28 transcription intermediary factor 1-alpha-like O nuclear PIC 

XP_021447324.1 alg5 ALG5 dolichyl-phosphate beta-glucosyltransferase M extracellular PIC 

XP_020310264.1 znf292b ZNF292 zinc finger protein 292-like nuclear PIC 

NP_001167240.1 akt1s1 AKT1S1 Proline-rich AKT1 substrate 1 T nuclear PIC 

XP_021428626.1 evx1 EVX1 homeobox protein XHOX-3-like K nuclear PIC 

XP_021467890.1 ubr7 RP11-371E8.4 putative E3 ubiquitin-protein ligase UBR7 T  Cytoplasmic Control+PIC 

XP_021438926.1 ahnak AHNAK neuroblast differentiation-associated protein 

AHNAK-like 

O  Cytoplasmic PIC 

XP_021455136.1 serbp1a SERBP1 plasminogen activator inhibitor 1 RNA-binding 

protein-like isoform X4 

J nuclear PIC 

XP_021467627.1 igf2r IGF2R cation-independent mannose-6-phosphate 

receptor-like 

T  plasma membrane PIC 

XP_021473170.1 sh3pxd2b SH3PXD2B SH3 and PX domain-containing protein 2B-like 

isoform X3  

C nuclear PIC 

XP_021454947.1 rabggta RABGGTA geranylgeranyl transferase type-2 subunit alpha O Cytoplasmic PIC 

XP_021455047.1 fryl FRYL protein furry homolog-like isoform X10 S plasma membrane PIC 

A0A060YNW5 dusp1 DUSP1 Dual specificity protein phosphatase V plasma membrane PIC 

XP_021469626.1 sugp1 SUGP1 SURP and G-patch domain-containing protein 

1-like  

S nuclear PIC 

XP_024279969.1 celf2 CELF2 CUGBP Elav-like family member 2 isoform 

X11 

A  Cytoplasmic _nuclear PIC 

ACN58663.1 psmd11b PSMD11 26S proteasome non-ATPase regulatory subunit 

11, partial 

O Cytoplasmic PIC 
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XP_020327183.1 xirp2a XIRP2 xin actin-binding repeat-containing protein 2-

like 

TZ Cytoplasmic PIC 

XP_021457465.1 odf2a ODF2 outer dense fiber protein 2-like isoform X2 Z nuclear PIC 

A0A060XPG0 mvda MVD Diphosphomevalonate decarboxylase I Cytoplasmic _nuclear PIC 

XP_021422086.1 csde1 CSDE1 cold shock domain-containing protein E1-like 

isoform X12 

J nuclear PIC 

XP_021417540.1 synpo SYNPO synaptopodin-like isoform X1 S nuclear PIC 

XP_021478237.1 wdr91 WDR91 WD repeat-containing protein 91  S extracellular PIC 

 XP_021460781.1 zfr ZFR zinc finger RNA-binding protein-like  C  nuclear PIC 

XP_021421461.1 atf7a RP11-

793H13.10 

cyclic AMP-dependent transcription factor 

ATF-7-like isoform X5 

K  nuclear PIC 

XP_020308224.1 arhgef6 ARHGEF6 rho guanine nucleotide exchange factor 6-like 

isoform X1 

T  nuclear All 

XP_021424546.1 tacc1 TACC1 transforming acidic coiled-coil-containing 

protein 1-like 

S nuclear PIC 

XP_021448247.1 slc4a7 SLC4A7 sodium bicarbonate cotransporter 3-like, partial P extracellular PIC 

XP_021474011.1 atrx ATRX transcriptional regulator ATRX-like K  plasma membrane All 

XP_021456107.1 igf2r IGF2R cation-independent mannose-6-phosphate 

receptor-like 

T  plasma membrane PIC 

XP_021473208.1 pwwp2a PWWP2A PWWP domain-containing protein 2A-like S nuclear PIC 

XP_021419104.1 tmpoa TMPO lamina-associated polypeptide 2, isoforms 

beta/gamma-like isoform X2 

S periplasmic PIC 

XP_021431770.1 kctd2 KCTD2 BTB/POZ domain-containing protein KCTD5-

like 

S nuclear PIC 

XP_021425240.1 slc2a1b SLC2A1 solute carrier family 2, facilitated glucose 

transporter member 1-like 

 plasma membrane All 

P_021420027.1 kmt2ca KMT2C histone-lysine N-methyltransferase 2C-like  nuclear PIC 

XP_021429951.1 tacc3 TACC3 transforming acidic coiled-coil-containing 

protein 3-like 

S  nuclear PIC 

A0A060WTG1 ybx1 YBX1 nuclease-sensitive element-binding protein 1-

like isoform X2 

J nuclear PIC 

XP_021466471.1 nol8 NOL8 nucleolar protein 8 S nuclear PIC 
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XP_021442129.1 cpsf6 CPSF6 cleavage and polyadenylation specificity factor 

subunit 7-like isoform X2 

A nuclear PIC 

XP_021471729.1 ndrg3b NDRG3 protein NDRG3-like isoform X5 S  Cytoplasmic PIC 

 XP_021443382.1 baz1b BAZ1B tyrosine-protein kinase BAZ1B-like T  nuclear PIC 

XP_021479768.1 pdlim4 PDLIM4 PDZ and LIM domain protein 4-like  TZ  nuclear PIC 

XP_024230633.1 yes1 YES1 tyrosine-protein kinase Ye mitochondrial  PIC 

P_021423546.1 sh3pxd2aa SH3PXD2A SH3 and PX domain-containing protein 2A-like 

isoform X2 

C  nuclear PIC 

XP_021419890.1 slc41a2b SLC41A2 solute carrier family 41 member 2-like P  plasma membrane PIC 

XP_021430362.1 kif13ba KIF13B kinesin-like protein KIF13B Z nuclear PIC 

XP_020358161.1 rapgef2 RAPGEF2 rap guanine nucleotide exchange factor 2 

isoform X2 

S nuclear PIC 

P_020341796.1 taok2a TAOK2 serine/threonine-protein kinase TAO2 isoform 

X2 

T nuclear PIC 

XP_021422254.1 vapb VAPB vesicle-associated membrane protein-associated 

protein B-like isoform X1 

U  plasma membrane PIC 

XP_021479505.1 vps11 VPS11 vacuolar protein sorting-associated protein 11 

homolog 

U  Cytoplasmic PIC 

XP_021428177.1 chkb CHKB-CPT1B choline/ethanolamine kinase I  Cytoplasmic PIC 

A0A060WUI1 aldoaa ALDOA Fructose-bisphosphate aldolase G  Cytoplasmic PIC 

XP_021468445.1 sec62 SEC62 translocation protein SEC62-like U  nuclear PIC 

XP_021457356.1 lmnb1 LMNB1 lamin-B1 DY Cytoplasmic  PIC 

XP_021417149.1 zbtb33 ZBTB33 transcriptional regulator Kaiso K  nuclear PIC 

XP_021463255.1 cpsf6 CPSF6 cleavage and polyadenylation specificity factor 

subunit 7-like isoform X1 

A nuclear PIC 

XP_021454164.1 utrn UTRN utrophin-like Z  nuclear PIC 

XP_021471861.1 csde1 CSDE1 cold shock domain-containing protein E1-like 

isoform X8 

k  nuclear PIC 

XP_020317393.1 rbm45 RBM45 RNA-binding protein 45-like  S Cytoplasmic _nuclear PIC 

A0A060X9N5 sf3b3 SF3B3 
 

A Cytoplasmic _nuclear PIC 

XP_021451939.1 baiap2l1b BAIAP2L1 brain-specific angiogenesis inhibitor 1-

associated protein 2-like protein 1 

T extracellular PIC 
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XP_021473697.1 flot2a FLOT2 flotillin-2a UZ Cytoplasmic PIC 

XP_020313968.1 atp2a2b ATP2A2 sarcoplasmic/endoplasmic reticulum calcium 

ATPase 2-like isoform X2 

P  plasma membrane PIC 

XP_020336675.1 ccnd2a CCND2 1/S-specific cyclin-D2 isoform X1 D  extracellular PIC 

XP_021416130.1 anp32e ANP32E acidic leucine-rich nuclear phosphoprotein 32 

family member E-like 

T  nuclear PIC 

XP_021413021.1 tomm20b TOMM20 mitochondrial import receptor subunit TOM20 

homolog 

U  extracellular PIC 

XP_021420218.1 taf6 TAF6 transcription initiation factor TFIID subunit 6-

like isoform X1 

K  nuclear PIC 

 XP_021438876.1 arhgef6 ARHGEF6 rho guanine nucleotide exchange factor 6-like T nuclear PIC 

XP_021440826.1 ctage5 CTAGE6 cTAGE family member 5-like isoform X8 J Cytoplasmic PIC 

XP_020328076.1 srsf5b SRSF5 serine/arginine-rich splicing factor 5-like 

isoform X2 

A  nuclear Control+PIC 

XP_021458140.1 gpsm1b GPSM1 G-protein-signaling modulator 1-like T  extracellular PIC 

A0A060YZ54 arhgef7b ARHGEF7 bad matching T extracellular PIC 

XP_021460947.1 hsp90b1 HSP90B1 endoplasmin-like O Cytoplasmic PIC 

A0A060WE27 atp6v0a2a ATP6V0A2 V-type proton ATPase subunit a C  plasma membrane PIC 

XP_021461659.1 rab11fip1a RAB11FIP1 titin-like isoform X1 S  nuclear PIC 

A0A060VPK5 cnn3b CNN3 Calponin Z  Cytoplasmic  PIC 

XP_021413811.1 ilf3b ILF3 interleukin enhancer-binding factor 3 isoform 

X2 

J  endoplasmic reticulum All 

A0A060VWT9 rnf217 RNF217 RBR-type E3 ubiquitin transferase O  Cytoplasmic _nuclear PIC 

XP_021434978.1 safb SAFB scaffold attachment factor B2-like isoform X1 K  nuclear All 

A0A060W0C6 top2a TOP2A DNA topoisomerase 2 B  nuclear All 

XP_021429354.1 wdhd1 WDHD1 WD repeat and HMG-box DNA-binding protein 

1 isoform X1 

S  nuclear All 

XP_021455314.1 nasp NASP histone-binding protein N1/N2-like isoform X1 BD  nuclear PIC 

XP_021421617.1 cbx5 CBX5 chromobox protein homolog 5-like  B  nuclear Control+PIC 

XP_021463802.1 polr2m POLR2M early endosome antigen 1-like K  nuclear PIC 

XP_021458500.1 rai14 RAI14 ankycorbin-like isoform X1 nuclear All 
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XP_021468954.1 toe1 TOE1 target of EGR1 protein 1-like L  nuclear All 

XP_021439667.1 ctnnd1 CTNND1 catenin delta-1 TW  nuclear All 

XP_021429616.1 irf2bpl IRF2BPL interferon regulatory factor 2-binding protein-

like 

K  nuclear Control+PIC 

XP_021442908.1 iws1 IWS1 protein IWS1 homolog K  nuclear All 

A0A060W6N3 lect2l LECT2 uncharacterized S extracellular PIC 

XP_021419110.1 calua CALU calumenin-A-like isoform X1 TU extracellular MDP+PIC 

XP_021473945.1 ercc6l ERCC6L DNA excision repair protein ERCC-6-like 

isoform X2 

KL  nuclear MDP+PIC 

XP_021459326.1 safb SAFB scaffold attachment factor B2-like isoform X2 K nuclear MDP+PIC 

XP_021418844.1 iws1 IWS1 protein IWS1 homolog isoform X1 K nuclear MDP+PIC 

A0A060WE49 kpna2 KPNA2 Importin subunit alpha U Cytoplasmic _nuclear All 

XP_021465682.1 atf7a RP11-

793H13.10 

cyclic AMP-dependent transcription factor 

ATF-7-like isoform X6 

K  nuclear PIC 

XP_021420911.1 usp31 USP31 ubiquitin carboxyl-terminal hydrolase 31-like O mitochondrial  PIC 

XP_021477387.1 morc2 MORC2 MORC family CW-type zinc finger protein 2A-

like isoform X2 

D nuclear MDP+PIC 

XP_021462858.1 tjp1a TJP1 tight junction protein ZO-1 isoform X11 T nuclear All 

A0A060WGZ9 psma3 PSMA3 Proteasome subunit alpha type  O Cytoplasmic _nuclear All 

A0A060WHD0 wnt11r WNT11 Protein Wnt T extracellular Control+PIC 

NP_001153993.1 fth1a FTMT Ferritin, heavy subunit P Cytoplasmic All 

XP_021427474.1 skiv2l SKIV2L helicase SKI2W A Cytoplasmic Control+PIC 

XP_021459691.1 eif4g2a EIF4G2 eukaryotic translation initiation factor 4 gamma 

2-like 

J Cytoplasmic PIC 

XP_021456229.1 trim44 TRIM44 tripartite motif-containing protein 44-like 

isoform X1 

S extracellular PIC 

XP_021424996.1 
 

 putative RNA-binding protein 15 K nuclear Control 

A0A060WJD0 lta4h LTA4H Leukotriene A(4) hydrolase EIOV  Cytoplasmic MDP+PIC 

XP_021454809.1 pak2b PAK2 serine/threonine-protein kinase PAK 2-like 

isoform X2 

S mitochondrial  PIC 

XP_021479558.1 capn5b CAPN5 calpain-5-like OT mitochondrial  PIC 
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XP_021441376.1 wdr43 WDR43 WD repeat-containing protein 43-like S nuclear All 

XP_021471344.1 srsf6a SRSF6 serine/arginine-rich splicing factor 6-like A nuclear Control+PIC 

XP_021413250.1 cbx1a CBX1 chromobox protein homolog 1-like B nuclear All 

XP_020359488.1 eif4h EIF4H eukaryotic translation initiation factor 4H-like 

isoform X2 

J  nuclear All 

XP_021413914.1 ddx5 DDX5 probable ATP-dependent RNA helicase DDX5 

isoform X1 

A nuclear All 

XP_021479220.1 rps6kb1b RPS6KB1 ribosomal protein S6 kinase beta-1-like isoform 

X2 

T Cytoplasmicplasmic_n

uclear 

PIC 

XP_021455731.1 pum2 PUM2 pumilio homolog 2-like isoform X5 J  nuclear All 

XP_021468674.1 pcyt1aa PCYT1A choline-phosphate cytidylyltransferase A-like I nuclear PIC 

XP_021423892.1 psen2 PSEN2 presenilin-2 T Cytoplasmic Control+PIC 

XP_021429038.1 cfap44 CFAP44 cilia- and flagella-associated protein 44 S nuclear Control+PIC 

XP_021460965.1 smn1 SMN2 survival motor neuron protein 1-like A nuclear All 

XP_021437541.1 tmem120a TMEM120A transmembrane protein 120A-like S Cytoplasmic PIC 

XP_021414111.1 dek DEK protein DEK-like isoform X1 B  nuclear All 

 XP_021466363.1 ncoa5 NCOA5 nuclear receptor coactivator 5 isoform X2 UY  nuclear Control+PIC 

XP_020313564.1 pi4kaa PI4KA phosphatidylinositol 4-kinase alpha-like isoform 

X1 

T plasmamembrane PIC 

A0A060X7V7 mapk14b MAPK14 Mitogen-activated protein kinase K Cytoplasmic PIC 

XP_021412908.1 trim25 TRIM25 E3 ubiquitin/ISG15 ligase TRIM25-like isoform 

X1 

O nuclear All 

XP_024235446.1 phrf1 PHRF1 PHD and RING finger domain-containing 

protein 1-like isoform X1 

O nuclear Control+PIC 

XP_021479535.1 mark4a MARK4 MAP/microtubule affinity-regulating kinase 4-

like isoform X2 

T nuclear MDP+PIC 

XP_021465514.1 nucks1a NUCKS1 nuclear ubiquitous casein and cyclin-dependent 

kinase substrate 1-like 

T nuclear All 

XP_021422062.1 spen SPEN msx2-interacting protein isoform X3 K nuclear MDP+PIC 

XP_021433892.1 rbm4.2 RBM14-RBM4 RNA-binding protein 4.1-like isoform X3 A  nuclear All 

XP_021433911.1 eml3 EML3 echinoderm microtubule-associated protein-like 

3 isoform X1 

S nuclear PIC 
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XP_021428007.1 anln ANLN anillin-like isoform X1 DZ nuclear PIC 

A0A060XDM3 stmn1b STMN1 Stathmin Z nuclear PIC 

XP_021478448.1 fam169ab FAM169A soluble lamin-associated protein of 75 kDa-like  S Cytoplasmic _nuclear PIC 

A0A060XNQ2 smc4 SMC4 Structural maintenance of chromosomes protein  BD mitochondrial  All 

XP_024236216.1 ciz1a CIZ1 cip1-interacting zinc finger protein-like isoform 

X3 

S nuclear MDP+PIC 

XP_024299836.1 abi2b ABI2 abl interactor 2-like isoform X2 T mitochondrial  PIC 

XP_021472426.1 cbx5 CBX5 chromobox protein homolog 5-like B nuclear Control+PIC 

XP_021441913.1 znf280d ZNF280B zinc finger protein 280D  K  nuclear Control+PIC 

XP_021425058.1 nucks1a NUCKS1 nuclear ubiquitous casein and cyclin-dependent 

kinase substrate 1-like isoform X1 

T nuclear All 

XP_021428072.1 nsun2 NSUN2 tRNA (Cytoplasmicsine(34)-C(5))-

methyltransferase-like isoform X1 

A nuclear All 

XP_021471434.1 tpx2 TPX2 targeting protein for Xklp2-like isoform X1 Z nuclear Control+PIC 

XP_021469599.1 cactin CACTIN cactin-like T nuclear PIC 

ACO07861.1 ptges3a PTGES3 Prostaglandin E synthase 3  O extracellular All 

XP_021457136.1 hdlbpa HDLBP vigilin I Cytoplasmic Control+PIC 

XP_021457627.1 purba PURB transcriptional activator protein Pur-beta-like K  Cytoplasmic All 

 XP_021475652.1 taok3a TAOK3 serine/threonine-protein kinase TAO3-like T nuclear MDP+PIC 

A0A060Y668 cav1 CAV1 Caveolin T  plasma membrane MDP+PIC 

XP_021432401.1 lrit2 LRIT2 leucine-rich repeat, immunoglobulin-like 

domain and transmembrane domain-containing 

protein 2 

T plasma membrane Control+PIC 

XP_021417518.1 g3bp1 G3BP1 ras GTPase-activating protein-binding protein 1-

like  

T Cytoplasmic All 

XP_021461836.1 morc2 MORC2 MORC family CW-type zinc finger protein 2A-

like isoform X1 

D nuclear MDP+PIC 

XP_021440591.1 rbm12b RBM12B RNA-binding protein 12B-like  S nuclear Control+PIC 

XP_021436768.1 exoc7 EXOC7 exocyst complex component 7 isoform X11  U  Cytoplasmic PIC 

XP_021439069.1 hnrnph1 HNRNPH1 heterogeneous nuclear ribonucleoprotein H-like A  nuclear Control+PIC 
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XP_021419839.1 nap1l4a NAP1L4 nucleosome assembly protein 1-like 4 isoform 

X1 

BD nuclear Control+PIC 

XP_021475129.1 g3bp2 G3BP2 ras GTPase-activating protein-binding protein 2-

like isoform X2  

T Cytoplasmic All 

XP_021480823.1 rangap1a RANGAP1 ran GTPase-activating protein 1-like isoform X1 T Cytoplasmic MDP+PIC 

XP_021463402.1 nipa2 NIPA2 magnesium transporter NIPA2 isoform X1 G  plasma membrane All 

XP_021449693.1 gpatch4 GPATCH4 G patch domain-containing protein 4  AD nuclear MDP+PIC 

XP_021415506.1 cdca7b CDCA7L cell division cycle-associated 7-like protein D nuclear Control+PIC 

XP_021449193.1 
  

protein DEK-like isoform X2 |B nuclear Control 

XP_024264953.1 tacc2 TACC2 transforming acidic coiled-coil-containing 

protein 2-like isoform X2 

S nuclear PIC 

A0A060Z608 tp53 TP53 Cellular tumor antigen p53 K  nuclear All 

XP_021414894.1 rbbp6 RBBP6 E3 ubiquitin-protein ligase RBBP6-like O nuclear PIC 

A9Z0N2 
  

Ribosomal protein S3 J mitochondrial  Control 

C0KIP5 tk1 TK1 Thymidine kinase F Cytoplasmic All 

C1BEG9 stmn1b STMN1 Stathmin Z nuclear PIC 

C1BER5 syap1 SYAP1 Synapse-associated protein 1 U Cytoplasmic All 

C1BF68 psma3 PSMA3 Proteasome subunit alpha type O  Cytoplasmic All 

C1BH87 ppa1b PPA1 Inorganic pyrophosphatase C Cytoplasmic All 

C1BHT0 rbm8a RBM8A RNA-binding protein 8A A nuclear PIC 

Q1XG85 pum2 PUM2 Pumilio-2B J nuclear MDP+PIC 

 
1Functional groups: A= RNA processing and modification, B= Chromatin structure and dynamics, C =Energy production and conversion, D =Cell cycle control, 

cell division, chromosome partitioning, E =Amino acid transport and metabolism, F= Nucleotide transport and metabolism, G = Carbohydrate transport and 

metabolism, H = Coenzyme transport and metabolism, I =Lipid transport and metabolism, J= Translation, ribosomal structure and biogenesis, K =Transcription, 

L = Replication, recombination and repair, N =Cell motility, O =Post-translational modification, protein turnover, and chaperones, P =Inorganic ion transport 

and metabolism, S =Function unknown, T =Signal transduction mechanisms, U =Intracellular trafficking, secretion, and vesicular transport, V =Defence 

mechanisms, W =Extracellular structure and Z =Cytoskeleton. PIC denotes poly(I:C).  
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Table S3.3: Predicted pathways identified from the phospho-proteins using Enrichr tool. Pathways that are significantly enriched was selected.  

 
Pathways Adjusted p-value Control_ Associated genes MDP_ Associated genes Poly(I:C)_ Associated genes 

Control MDP PIC 

Spliceosome 0.00 0.00 0.00 SNW1;HSPA1L;U2AF2;SRSF1;T

RA2A;SRSF3;ACIN1;SRSF5;SR

SF9 

DDX5;SNW1;HSPA1L;U2A

F2;SRSF1;TRA2A;SRSF3;A

CIN1;SRSF5;SRSF9 

DDX5;SF3B3;HSPA1L;RBM8A;SRSF1;SNW1;U2AF2;

TRA2A;SRSF3;ACIN1;SRSF5;SRSF6;SRSF8;SRSF9 

Salmonella infection 0.02 0.00 0.01 TJP1;DYNC1H1;MYH9;FLNA;K

LC1 

TJP1;DYNC1H1;JUN;MYH

9;FLNA;KLC1 

TJP1;DYNC1H1;JUN;DYNC1LI2;MYH9;FLNA;MAPK

14;KLC1 

HIF-1 signaling pathway 0.02 
 

0.02 PDHA2;MAP2K2;RPS6;SLC2A1;

ALDOA 

 PDHA2;MAP2K2;PFKFB3;CDKN1B;RPS6KB1;RPS6;S

LC2A1;ALDOA 

Citrate cycle (TCA cycle) 0.03 
  

ACLY;PDHA2;ACO2   

Herpes simplex infection 0.03 0.01 0.01 SRSF1;CDK2;SRSF3;SRSF5;JAK

2;SRSF9 

JUN;SRSF1;CDK2;SRSF3;S

RSF5;TP53;SRSF9 

JUN;EEF1D;SRSF1;CDK2;SRSF3;TAF6;SRSF5;SRSF6;

JAK2;TP53;SRSF8;SRSF9 
Epstein-Barr virus infection 0.04 0.01 0.03 RB1;GSK3B;SNW1;HSPA1L;CD

K2;SND1 

RB1;GSK3B;JUN;SNW1;HS

PA1L;CDK2;TP53 

RB1;GSK3B;JUN;SNW1;CDKN1B;PSMD11;HSPA1L;

CDK2;MAPK14;TP53;SND1 
Viral carcinogenesis 0.04 0.02 

 
RB1;SNW1;CDK2;SCRIB;CHD4;

SND1 

RB1;JUN;SNW1;CDK2;SCR

IB;TP53 

 

Prostate cancer 0.04 0.01 0.00 RB1;GSK3B;MAP2K2;CDK2 RB1;GSK3B;MAP2K2;CDK
2;TP53 

RB1;GSK3B;AR;MAP2K2;CDKN1B;CDK2;RAF1;TP5
3;HSP90B1 

Apoptosis 
 

0.01 0.05  JUN;MAP2K2;LMNA;TP53;

LMNB2;TUBA8 

JUN;MAP2K2;LMNA;RAF1;TP53;LMNB2;TUBA8;LM

NB1 
Influenza A 

 
0.02 

 
 GSK3B;JUN;MAP2K2;HSP

A1L;TRIM25;KPNA2 

 

RNA transport 
 

0.02 0.00  SMN2;TACC3;EIF3CL;ACI
N1;RANGAP1;SRRM1 

NUP155;RBM8A;RANGAP1;SRRM1;PNN;FXR2;TPR;
SMN2;TACC3;EIF3CL;ACIN1;EIF4G3;EIF4G2 

Thyroid cancer 
 

0.02 0.03  MAP2K2;CCDC6;TP53 MAP2K2;TPR;CCDC6;TP53 

MAPK signaling pathway 
 

0.02 0.00  JUN;MAP2K2;HSPA1L;TA

OK3;FLNA;TP53;MAP4K4 

JUN;MAP3K1;MAP2K2;HSPA1L;DUSP1;RRAS2;MAP

K14;TAOK3;STMN1;TAOK2;RAPGEF2;FLNA;MAPK
APK5;RAF1;TP53;PAK2;MAP4K4 

Cell cycle 
 

0.02 0.03  RB1;GSK3B;CDK2;TP53;M

CM2 

RB1;GSK3B;CDK7;CCND2;CDKN1B;CDK2;TP53;MC

M2 
Focal adhesion 

 
0.02 0.01  GSK3B;JUN;ITGA4;CAV1;

FLNA;PARVA 

ITGB1;GSK3B;JUN;CCND2;PPP1R12A;ITGA4;CAV1;

FLNA;PARVA;ITGA5;RAF1;PAK2 

Bladder cancer 
 

0.02 
 

 RB1;MAP2K2;TP53  

Hepatitis B 
 

0.03 0.01  RB1;JUN;MAP2K2;CDK2;T
P53 

RB1;JUN;MAP3K1;MAP2K2;CDKN1B;CDK2;RAF1;T
P53;HSPG2;NFATC4 

Pathways in cancer 
 

0.04 0.04  RB1;GSK3B;JUN;MAP2K2;

CDK2;CCDC6;SLC2A1;TP5
3 

RB1;ITGB1;GSK3B;JUN;CDKN1B;MAP2K2;SLC2A1;

HSP90B1;AR;WNT11;TPR;CDK2;CCDC6;ARHGEF1;
RAF1;TP53 

Endometrial cancer 
 

0.04 
 

 GSK3B;MAP2K2;TP53  



254 

 

Non-small cell lung cancer 
 

0.05 
 

 RB1;MAP2K2;TP53  

Proteoglycans in cancer 
  

0.00   ITGB1;DDX5;MAP2K2;PPP1R12A;CAV1;RPS6;RRAS

2;IQGAP1;MAPK14;HSPG2;WNT11;RPS6KB1;FLNA;
ARHGEF1;ITGA5;RAF1;TP53 

Regulation of actin cytoskeleton 
  

0.00   ITGB1;MAP2K2;PPP1R12A;ITGA4;RRAS2;IQGAP1;S

SH2;ABI2;TMSB4Y;MYH9;ARHGEF1;ITGA5;ARHGE
F7;RAF1;PAK2;ARHGEF6 

ErbB signaling pathway 
  

0.02   GSK3B;JUN;MAP2K2;CDKN1B;RPS6KB1;RAF1;PAK

2 
HTLV-I infection 

  
0.02   RB1;GSK3B;JUN;RANBP3;MAP3K1;SLC2A1;RRAS2;

NFATC4;POLD3;CCND2;WNT11;CANX;TP53 

mRNA surveillance pathway 
  

0.03   PNN;CPSF6;RBM8A;PAPOLG;ACIN1;PAPOLB;SRRM

1 

Neurotrophin signaling pathway 
  

0.03   GSK3B;JUN;MAP3K1;MAP2K2;PSEN2;MAPK14;RAF
1;TP53 

Prolactin signaling pathway 
  

0.03   GSK3B;CCND2;MAP2K2;MAPK14;RAF1;JAK2 

Leishmaniasis 
  

0.03   ITGB1;JUN;MARCKSL1;ITGA4;MAPK14;JAK2 

Insulin signaling pathway 
  

0.05   GSK3B;MAP2K2;RPS6KB1;PRKAR1A;EXOC7;RPS6;

FLOT2;RAF1 

 



255 

 

Table S3.4: Predicted kinases identified from the phospho-proteins using Enrichr tool. Kinases that are significantly enriched was selected.  

 
Kinases Adjusted p value Control _Associated genes MDP_ Associated genes Poly(I:C)_ Associated genes 

Control MDP PIC 

CDK2 7.81E-20 6.32E-23 8.32E-32 RB1;AHNAK;CHD7;NOLC1;CHD4;AD
D3;LMNB2;LARP1;LMNA;RPS3;LBR;S

RSF11;USP24;SMARCC1;API5;ATRX;U

BE4B;PRPF4B;SRRM1;ACLY;ILF3;SN
W1;PRKAR1A;NCL;CDK2;XRN2;CCD

C6;TACC3;PPIG;SQSTM1;SRSF9;MCM

2 

RB1;AHNAK;SYAP1;CHD7;NOLC1
;NUCKS1;SMC4;LMNB2;LARP1;L

MNA;RPS3;TK1;LBR;USP24;JUN;S

MARCC1;API5;ATRX;UBE4B;PRP
F4B;RANGAP1;SRRM1;PUM2;ILF3

;SNW1;PRKAR1A;NCL;CDK2;CCD

C6;TACC3;PPIG;SQSTM1;TP53;SR

SF9;MCM2 

RB1;CDKN1B;SYAP1;CHD7;NUCKS1;CHD4;SMC4;LMNB2;LMNB
1;EIF4ENIF1;STMN1;TK1;CIC;SYNPO;LBR;CAST;SMARCC1;PCY

T1A;LIG1;ATRX;UBE4B;PRPF4B;RANGAP1;EML3;SRRM1;ACLY;

DYNC1LI2;ILF3;PRKAR1A;HNRNPH1;NCL;XRN2;AKT1S1;PPIG;S
QSTM1;TP53;SRSF9;MCM2;AHNAK;UHRF1;NOLC1;PDS5B;ADD3

;ADD1;ARHGAP12;LARP1;MAP2;TPR;LMNA;RPS3;RBBP6;TP53B

P1;SRSF11;USP24;JUN;API5;PRRC2A;PUM2;ZC3HC1;TPX2;CDK7;

SNW1;RPS6KB1;CDK2;CCDC6;TACC3;EIF4G2 

GSK3B 1.17E-19 2.08E-19 4.85E-27 RB1;TOP2A;GSK3B;AHNAK;ITSN1;CT
NND1;DOCK7;CHD4;ADD3;LMNA;RP

S3;FLNA;LBR;USP24;SMARCC1;API5;

SGTA;PRPF4B;SRRM1;TJP1;ACLY;SFP
Q;SNW1;NCL;CANX;CCDC6;TACC3;P

PIG;SQSTM1;MCM2;ARHGEF6 

RB1;TOP2A;GSK3B;AHNAK;ITSN
1;CTNND1;SYAP1;SMC4;LMNA;R

PS3;FLNA;LBR;MAP4K4;USP24;SP

EN;JUN;SMARCC1;API5;PRPF4B;S
RRM1;TJP1;SFPQ;SNW1;NCL;CCD

C6;TACC3;PPIG;SQSTM1;TP53;MC

M2;ARHGEF6 

RB1;TOP2A;GSK3B;CDKN1B;ITSN1;CTNND1;SYAP1;DOCK7;HD
LBP;CHD4;SMC4;LMNB1;EIF4ENIF1;CCND2;PAPOLG;STMN1;CI

C;SYNPO;LBR;SMARCC1;SMARCC2;PCYT1A;PRPF4B;SRRM1;A

CLY;SFPQ;NCL;CANX;PPIG;SQSTM1;TP53;MCM2;ARHGEF6;AH
NAK;PDS5B;ADD3;ADD1;ARHGAP12;MAP2;LMNA;RPS3;FLNA;

RBBP6;TP53BP1;PDLIM4;MAP4K4;USP24;SPEN;JUN;ODF2;API5;S

GTA;TJP1;TPX2;ANLN;SNW1;RPS6KB1;CCDC6;TACC3;TAF6 
MAPK14 3.28E-12 3.47E-13 1.33E-23 RB1;SMARCC1;AHNAK;ATRX;DOCK

7;NOLC1;PRPF4B;CHD4;IWS1;SRRM1;

TJP1;ACLY;ILF3;SNW1;NCL;CANX;T
ACC3;FLNA;SKIV2L;SQSTM1;LBR 

RB1;SPEN;JUN;SMARCC1;DDX5;

AHNAK;ATRX;NOLC1;PRPF4B;R

ANGAP1;IWS1;SRRM1;TJP1;ILF3;
SNW1;NCL;G3BP2;TACC3;FLNA;S

QSTM1;LBR;TP53 

RB1;PHF3;CDKN1B;DOCK7;HDLBP;CHD4;EIF4ENIF1;CCND2;PA

POLG;STMN1;LBR;SMARCC1;ATRX;PRPF4B;BAZ1B;RANGAP1;

SRRM1;AR;ACLY;ILF3;NCL;CANX;AKT1S1;MAPKAPK5;SQSTM
1;TP53;DDX5;AHNAK;NOLC1;IWS1;ARHGAP12;MAP2;G3BP2;HI

VEP1;FLNA;PDLIM4;SPEN;JUN;MAPK14;NFATC4;TJP1;TPX2;AN

LN;SNW1;RPS6KB1;TACC3;TCEA1;SKIV2L;TAF6 
CDK1 2.01E-11 5.03E-14 9.40E-23 RB1;TOP2A;TOP2B;SMARCC1;AHNA

K;SGTA;NOLC1;PRPF4B;LMNB2;SRR

M1;ACLY;SNW1;U2AF2;NCL;CANX;L
MNA;RPS3;FLNA;SKIV2L;SQSTM1;LB

R;TMPO 

RB1;TOP2A;TOP2B;ERCC6L;AHN

AK;NOLC1;NUCKS1;LMNB2;U2A

F2;LMNA;RPS3;FLNA;TK1;LBR;T
MPO;MAP4K4;SPEN;SMARCC1;P

RPF4B;RANGAP1;SRRM1;SNW1;N

CL;SQSTM1;TP53 

RB1;TOP2A;TOP2B;ERCC6L;NUCKS1;LMNB2;LMNB1;STMN1;TK

1;CIC;LBR;TMPO;SMARCC1;SMARCC2;PCYT1A;LIG1;DUSP1;PR

PF4B;RANGAP1;SRRM1;AR;ACLY;EEF1D;NCL;CANX;AKT1S1;S
QSTM1;TP53;AHNAK;NOLC1;PDS5B;ADD1;U2AF2;MAP2;TPR;L

MNA;RPS3;FLNA;RBBP6;TP53BP1;PDLIM4;MAP4K4;SPEN;ODF2;

SGTA;ZC3HC1;TPX2;ANLN;CDK7;SNW1;NASP;RPS6KB1;SKIV2L 
RPS6KA

3 

9.46E-10 8.74E-09 1.35E-21 TOP2B;GSK3B;SMARCC1;AHNAK;ITS

N1;RPS6;NOLC1;PRPF4B;KIF23;ADD3;

SRRM1;ACLY;LMNA;FLNA;SKIV2L;P
PIG;LBR 

TOP2B;USP8;GSK3B;SMARCC1;A

HNAK;ITGA4;ITSN1;NOLC1;PRPF

4B;SRRM1;PUM2;LMNA;FLNA;PP
IG;TP53;LBR 

TOP2B;GSK3B;CDKN1B;AHNAK;ITSN1;NOLC1;ATP2A2;FOXO4;

PDS5B;YBX1;ADD3;ADD1;ARHGAP12;PNN;TRIM28;MAP2;STMN

1;PEA15;LMNA;FLNA;CIC;PAK2;LBR;USP8;SMARCC1;RANBP3;
RBM15;SMARCC2;ITGA4;SYNRG;RPS6;PRPF4B;KIF23;SRRM1;P

UM2;NFATC4;AR;TPX2;ACLY;SKIV2L;PPIG;RAF1;TP53 

PRKCB 1.25E-09 1.43E-11 3.56E-10 TOP2A;GSK3B;AHNAK;CTNND1;NOL
C1;UBE4B;SAFB;ADD3;SRRM1;PSMA

3;ILF3;LMNA;FLNA;LBR;TMPO 

TOP2A;GSK3B;AHNAK;CTNND1;
NOLC1;UBE4B;SAFB;RANGAP1;S

RRM1;PSMA3;ILF3;LMNA;FLNA;

LTA4H;TP53;LBR;TMPO 

TOP2A;GSK3B;AHNAK;CTNND1;NOLC1;ADD3;ADD1;LMNB1;ST
MN1;PEA15;LMNA;FLNA;LTA4H;PAPOLB;PAK2;LBR;TMPO;PCY

T1A;UBE4B;SAFB;RANGAP1;SRRM1;PSMA3;ILF3;TP53 

MAPK1 4.28E-09 7.81E-09 5.26E-15 TOP2A;GSK3B;AHNAK;CAD;CHD4;S

AFB;KLC1;SRRM1;AKAP12;LARP1;X

RN2;LMNA;CDK2;RPS3;JAK2;RAI14 

TOP2A;GSK3B;JUN;AHNAK;CAD;

SAFB;KLC1;SMC4;SRRM1;AKAP1

2;LARP1;LMNA;CDK2;RPS3;TP53;
RAI14 

TOP2A;GSK3B;CDKN1B;AHNAK;CHD4;KLC1;SMC4;AKAP12;EIF

4ENIF1;LARP1;STMN1;LMNA;TPR;RPS3;CIC;JAK2;JUN;DUSP1;E

XOC7;CAD;SAFB;SRRM1;NFATC4;ZC3HC1;AR;TPX2;RPS6KB1;H
NRNPH1;XRN2;CDK2;MAPKAPK5;TAF6;RAF1;TP53;RAI14 
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CHEK1 1.25E-09 2.01E-08 4.77E-16 RB1;MAP2K2;SLTM;SCAF11;LMNA;M

INK1;CHD7;CCDC6;PRRC2C;CDK13;K
PNA2;ADD3 

RB1;SPEN;MAP2K2;SLTM;SCAF11

;LMNA;CHD7;CCDC6;CDK13;KPN
A2;TP53 

RB1;POLDIP3;CHD7;HDLBP;YBX1;ADD3;ADD1;TRIM28;LMNA;

HIVEP1;TP53BP1;KPNA2;SPEN;MAP2K2;LIG1;SCAF11;MINK1;PR
RC2C;PRRC2B;EML3;ZC3HC1;SLTM;CCDC6;CDK13;TP53 

AKT1 1.17E-08 1.39E-07 1.16E-12 GSK3B;SMARCC1;SSB;ITSN1;RPS6;A

CLY;ILF3;LMNA;CDK2;RPS3;FLNA;A
CIN1;LBR 

USP8;GSK3B;ILF3;SMARCC1;SSB;

ITSN1;LMNA;CDK2;RPS3;FLNA;A
CIN1;LBR 

GSK3B;CDKN1B;PFKFB3;ITSN1;FOXO4;YBX1;MAP2;PEA15;LM

NA;RPS3;FLNA;RICTOR;LBR;USP8;SMARCC1;SSB;RANBP3;SM
ARCC2;RPS6;AR;ACLY;ILF3;AKT1S1;CDK2;ACIN1;RAF1 

MAPK3 8.19E-07 6.92E-07 3.26E-12 TOP2A;GSK3B;SNW1;CANX;LMNA;C

DK2;CAD;CCDC6;RPS3;JAK2;KLC1 

TOP2A;GSK3B;JUN;SNW1;LMNA;

CDK2;CAD;CCDC6;RPS3;KLC1;TP
53 

TOP2A;GSK3B;CDKN1B;KLC1;STMN1;LMNA;RPS3;CIC;JAK2;JU

N;RANBP3;DUSP1;EXOC7;CAD;BAZ1B;NFATC4;ZC3HC1;AR;SN
W1;RPS6KB1;CANX;CDK2;CCDC6;RAF1;TP53 

PRKAC

A 

2.34E-06 1.31E-05 1.67E-07 RB1;GSK3B;PPP1R12A;SSB;AHNAK;C

BX3;SRSF1;CAD;NOLC1;ADD3;AKAP
12;POLD3;ACLY;FLNA 

RB1;GSK3B;SSB;AHNAK;ITGA4;C

BX3;SRSF1;CAD;NOLC1;AKAP12;
POLD3;FLNA;TP53 

RB1;GSK3B;PFKFB3;AHNAK;UHRF1;SRSF1;NOLC1;ADD3;ADD1;

AKAP12;POLD3;MAP2;STMN1;TPR;FLNA;PDLIM4;PPP1R12A;SS
B;ITGA4;CBX3;CAD;NFATC4;ACLY;AKAP9;MAPKAPK5;RAF1;T

P53 
PRKAC

B 

5.31E-06 4.01E-07 1.40E-05 BCKDK;AHNAK;CBX3;FLNA;PRPF4B;

PPIG;SRRM1;ABCF1 

BCKDK;AHNAK;CBX3;FLNA;PRP

F4B;PPIG;TP53;SRRM1;ABCF1 

BCKDK;AHNAK;CBX3;STMN1;FLNA;PRPF4B;PPIG;RAF1;TP53;S

RRM1;ABCF1;LMNB1 

MAPK9 1.72E-05 1.40E-08 1.96E-13 USP24;MAP2K2;XRN2;ITSN1;RPS3;TM
PO;MCM2;ARHGEF6 

PURB;USP24;JUN;MAP2K2;ITSN1;
RPS3;TP53;TMPO;MCM2;ARHGEF

6;MAP4K4 

USP24;JUN;MAP2K2;ITSN1;FOXO4;BAZ1B;ADD1;ARHGAP12;NF
ATC4;LMNB1;PURB;RPS6KB1;XRN2;STMN1;RPS3;MAPKAPK5;S

YNPO;TP53;TMPO;MCM2;ARHGEF6;MAP4K4 

ATM 6.10E-05 0.0004 3.13E-08 RNF20;WDHD1;RPS6;LMNA;CANX;C
CDC6;PRPF4B;CHD4 

WDHD1;JUN;TAOK3;LMNA;CCD
C6;PRPF4B;TP53 

RNF20;WDHD1;JUN;SMARCC2;RPS6;PSEN2;PRPF4B;CHD4;NASP
;TAOK3;TRIM28;LMNA;TPR;CANX;CCDC6;PAPOLB;TP53BP1;TP

53 

SGK1 3.83E-05 0.000 4.45E-05 GSK3B;AHNAK;PRPF4B;KIF23;LBR;S
RRM1 

GSK3B;AHNAK;PRPF4B;LBR;SRR
M1 

GSK3B;CDKN1B;AHNAK;PRPF4B;KIF23;RICTOR;FOXO4;LBR;SR
RM1 

CSNK2A

1 

9.18E-05 4.01E-07 1.17E-07 TOP2A;PSMA3;SSB;CBX5;PTGES3;CA

NX;CBX1;MYH9;ABCF1;MCM2 

TOP2A;JUN;SSB;PTGES3;CAV1;C

BX1;DEK;RANGAP1;PSMA3;MYH
9;TP53;ABCF1;MCM2 

TOP2A;JUN;SSB;CDKN1B;CBX5;LIG1;PTGES3;CAV1;CBX1;PSEN

2;DEK;RANGAP1;IGF2R;PSMA3;RPS6KB1;EEF1D;STMN1;PEA15;
CANX;MYH9;TP53;ABCF1;MCM2 

CSNK2A

2 

9.39E-05 3.34E-07 1.05E-08 TOP2A;AKAP12;PSMA3;SSB;CBX3;NC

L;CANX;PPIG;MCM2 

TOP2A;AKAP12;JUN;PSMA3;SSB;

CBX3;NCL;CAV1;PPIG;TP53;MAP
4K4;MCM2 

TOP2A;JUN;SSB;LIG1;CBX3;CAV1;HDLBP;PSEN2;BAZ1B;ADD1;

AKAP12;PSMA3;NCL;CANX;AKT1S1;PPIG;SYNPO;ARHGEF7;UT
RN;TP53;MAP4K4;MCM2 

PRKCA 0.000 0.000 1.05E-08 TOP2A;GSK3B;PPP1R12A;NCL;RPS6;C

TNND1;LMNA;MYH9;PRPF4B;ADD3;
CORO1B;TMPO 

TOP2A;GSK3B;DDX5;NCL;CTNN

D1;LMNA;MYH9;PRPF4B;TP53;CO
RO1B;TMPO 

PHF3;ITGB1;TOP2A;GSK3B;DDX5;CDKN1B;PFKFB3;CTNND1;IQ

GAP1;FOXO4;ADD3;CORO1B;ADD1;PDLIM2;MAP2;PEA15;LMN
A;TP53BP1;TMPO;PPP1R12A;RBM15;RPS6;PRPF4B;AR;TPX2;AN

LN;HNRNPH1;NCL;MYH9;RAF1;TP53 

CSNK1E 9.80E-05 1.35E-07 1.93E-06 TOP2B;AHNAK;CTNND1;PRPF4B;PPI
G;SRRM1;ABCF1 

PURB;TOP2B;AHNAK;CTNND1;G
3BP1;PRPF4B;PPIG;TP53;SRRM1;A

BCF1 

TOP2B;AHNAK;SYNRG;CTNND1;PSEN2;PRPF4B;BAZ1B;SRRM1;
PURB;G3BP1;PPIG;TP53;PAK2;ABCF1 

RPS6KC
1 

6.10E-05 
  

GSK3B;RPS6;FLNA;LBR   

RPS6KL

1 

6.10E-05 
  

GSK3B;RPS6;FLNA;LBR   

PRKDC 0.004 
 

4.41E-06 PPP1R12A;RPS6;LMNA;CANX;PRPF4B

;LSP1 

 JUN;PPP1R12A;RPS6;ATP2A2;PRPF4B;LSP1;ANLN;NASP;RPS6K

B1;LMNA;TPR;CANX;PAPOLB;TP53BP1;RAF1;TP53 

RPS6KA
6 

7.95E-05 
  

GSK3B;RPS6;FLNA;LBR   

RPS6KA

1 

0.003 
  

GSK3B;RPS6;FLNA;LSP1   
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AURKB 0.006 0.000 0.000 RB1;CBX5;AHNAK;KIF23 RB1;AHNAK;NSUN2;DEK;TP53 RB1;CBX5;AHNAK;NSUN2;ATP2A2;KIF23;DEK;TP53;NELFE 

CDK15 
 

0.000 
 

 RB1;LMNA;TP53;LBR  

AURKA 
 

0.000 
 

 GSK3B;TACC3;TP53;MCM2  

CDK18 
 

0.000 
 

 RB1;LMNA;TP53;LBR  

CDK11A 
 

0.000 
 

 RB1;LMNA;TP53;LBR  

PLK3 
 

3.43E-05 
 

 TOP2A;JUN;CALU;TP53  

MTOR 
 

0.000 0.000  JUN;LARP1;AHNAK;FLNA;SRRM

1 

JUN;LARP1;AHNAK;RPS6KB1;AKT1S1;FLNA;PATL1;NFATC4;SR

RM1 

CDK14 
 

0.000 
 

 RB1;LMNA;TP53;LBR  

MAPK8 
  

9.41E-07   CAST;JUN;RBM15;SMARCC2;AHNAK;FOXO4;NFATC4;AR;EIF4E

NIF1;DYNC1LI2;NASP;RPS6KB1;STMN1;LMNA;MAPKAPK5;TP5

3BP1;CIC;TP53;MAP4K4 
MAPK10 

  
8.08E-06   JUN;PCYT1A;RPS6KB1;SYAP1;ITSN1;STMN1;CCDC6;PDS5B;IQG

AP1;ADD1;ARHGAP12;LMNB1 

SRC 
  

9.03E-05   CDKN1B;DGKA;CAV1;CTNND1;ASAP1;ARHGAP12;CNN3;AR;SF
PQ;SH3PXD2A;RPS6KB1;SH3PXD2B;G3BP1;MYH9;JAK2;RAF1;P

AK2 
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Figure S3.1: List of motifs identified in RTgill-W1 cells at different substrates in the phospho-peptide data 
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Table S3.5: List of kinases identified from the motifs at serine residue in RTgill-W1 cells in the study.  

 

Motif Kinases 

Foreground matching Background matching Reference 

Control MDP Poly(I:C) Control MDP Poly(:IC) 

.......sP...... Proline directed MAPK 156 153 242 3910 3910 3910 (Schwartz & Gygi, 2005) 

....R..s....... CaMK II 121 96 210 3455 3455 3455 (Pearson & Kemp, 1991) 

.K.....s.......   63 58 95 2721 2721 2721  

.....R.s.......  PKB 61 52 96 2653 2653 2653 (Pearson & Kemp, 1991) 

..R....s.......  Casein II 64 52 111 3102 3102 3102 (Pinna & Ruzzene, 1996) 

...R...s.......  cGMP dependent protein kinase 58 48 85 2900 2900 2900 (Pearson & Kemp, 1991) 

.......sD......  CK2 51 40 68 2464 2372 2372 (Villen et al., 2007) 

.......s......R   58 58 80 3034 3034 3034  

R......s.......   48 47 72 2989 2989 2989  

.......s..E....  CK2 63 53 97 3476 3476 3476 (Villen et al., 2007) 

.......s.D.....  CaMK II/CK2 49 43 77 2500 2500 2500 

(Schwartz & Gygi, 2005)/ 

(Villen et al., 2007) 

.......s.....R.   46 47 68 2835 2835 2835  

.......s.E.....  G-CK/CK2 49 48 79 3128 3128 3128 

(Schwartz & Gygi, 2005)/ 

(Villen et al., 2007) 

.....R.sP......   29 27 38 270 270 270  

.......sP.....R   30 30 36 326 326 326  

....R..sP......   35   51 430   430  

....R..s..P....   26   37 35   351  

.K....Ds.......   17     180      

.KR....s.......   16   22 242   242  

....RR.s.......  PKA kinase  22   32 320   320 (Pearson & Kemp, 1991) 

..R....s..E....   19   21 231   231  

..R...Ds.......   12   14 152   152  
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..R....sD......   14 14   182 182    

......DsD......  CK-II like 18 17 23 256 2124 256 (Schwartz & Gygi, 2005) 

......Ds..E....   18 14 22 266 266 266  

....R..s......R   21     403      

R......sP......   19 24 27 326 326 326  

.......s.D..E..  CK2 15     238     (Villen et al., 2007) 

....R..sD......   11   20 147   147  

.......sD.E....  CK2 21 20 33 297 297 297 (Schwartz & Gygi, 2005) 

....R..s.....R.   16     351      

.K.....s.E.....   12 10   230 2999    

......Ds.E.....   13 14 19 221 221 221  

.......sP..E...   14   26 232   232  

....R..s...E...   18   31 272   272  

.K.....s...E...   14     208      

..R....s...E...   12     230      

....R..s......                

......Ds.......     44 65   2464 2464  

.......sPE.....     16     267    

.......sDE.....  CK2   10 16   2292 213 (Schwartz & Gygi, 2005) 

.....D.sD......     10     1842    

.P..R..s.......  Protein kinase B   20     290    

.P..R..sP......     11     380    

.K.....sD......     14     170    

..RR...s.......     13     242    

...R...sD......     14     182    

...R...s..E....     15     231    

...R...sP......     16 22   294 294  

.......s..E.E..  CK2   18     451   (Villen et al., 2007) 
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......Ds.......  CK2   44 65   2464 2464 (Villen et al., 2007) 

.......s.....R.   46 47 68 2835 2835 2835  

...K...s.......  PKA kinase substrate     77     2864 (Pearson & Kemp, 1991) 

.......s.S.....       141     6531  

.......s...E...  CK2     82     3338 (Villen et al., 2007) 

....K..s.......  PKA kinase      76     2824 (Pearson & Kemp, 1991) 

.......s..P....       78     3403  

.......s.P.....       76     3278  

.......sP....R.       39     312  

....RT.s.......       24     168  

..R.R..s.......  p70 S6 kinase     35     535 (Leighton et al., 1995) 

..R....sP......       31     349  

K......sP......       24     225  

K.....Ds.......       18     180  

K......s...E...       20     208  

.......sED.....       17     206  

.......s.D.E...  CK2     21     238 (Villen et al., 2007) 

....R..s..E....       31     240  

...RR..s.......  ZIP kinase     29     393 (Burch et al., 2004) 

...KR..s.......  PKA/PKC kinase     33     286 (Pearson & Kemp, 1991) 

...K...sP......       23     217  

....K..s......R       27     403  

....R..s.S.....       56     746  

..R....s.S.....       29     582  

.......sPS.....       50     596  

.......s.SP....       35     690  

....R..s.SP....       20     150  

.......sPSP....       16     117  
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....R..s.E.....       21     258  

.......sDEE....  CK2     12     58 (Villen et al., 2007) 

.......s.EE....       18     466  

.......s...E..R       15     207  

.....DDs.......       14     156  

....K..sP......       17     244  

R...R..s.......       24     409  

..K....sD......       18     171  

.......s..R..R.       21     351  

.......s ....       35     346  

......Gs.......       72     3050  

......GsP......       20     247  

....R.Gs.......       18     246  
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Table S3.6: List of kinases identified from the motifs at threonine residue in RTgill-W1 cells in the study.  

 

Motif Kinase Foreground Background % 

matching 

Score Reference 

Control group 

.......tP...... Proline directed MAPK  18 2252 34.62 7.07 (Schwartz & Gygi, 2005) 

...R...t.......  11 1427 21.15 4.14  

MDP treated group 

.......tP......  15 2252 30.61 5.24  

Poly(I:C) stimulated group 

...R...t....... cGMP dependent protein kinase 21 1427 17.5 5.95 (Pearson & Kemp, 1991) 

K......t.......  21 1845 17.5 4.27  

.......tP......  30 2252 25 7.51  

...R...tP......  10 115 
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