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ABSTRACT 

Abstract 

The maturation of Atlantic salmon (Safmo safar) parr, and its effects on growth and 

smoltification, causes significant economic losses to commercial aquaculture. The 

current thesis investigates the role of environmental factors on freshwater 

development, with the aim of providing information which would help reduce the 

currently observed levels of maturation in farmed salmon. 

The effects of short day "winter" photoperiods were investigated by exposing three 

replicated groups of fish to an 8 week "winter" photoperiod (LDlO:14) commencing 

in May, August or September, in an otherwise continuous light (LD24:0) regime. A 

further group was held on LD24:0 throughout. 200 to 300 individuals were PIT 

tagged in each group in order to follow the growth of fish undergoing different 

developmental strategies, with the retrospective analysis of such development also 

possible. The highest incidence of maturation (>20%) was observed in the May winter 

photoperiod group, with low levels recorded in the August and September fish «4%), 

suggesting that maturation may be influenced during a "critical" period in early 

development. Maturation levels were intermediate «9%) in the continuous light 

group indicating that seasonally-changing photoperiodic cues are not necessarily 

required for gonadal development. The size of mature fish was initially the same as 

both immature parr and smolts, although the growth of mature individuals 

subsequently declined, and at the conclusion of the experiment they were significantly 

smaller. The August photoperiod resulted in the highest incidence of smoltification, 

with all other treatments resulting in low levels. 

In a second experiment, PIT tagged fish were reared under an 8 or 12 week ''winter'' 

photoperiod (LD 10: 14) starting in Mayor June, in an otherwise continuous light 

(LD24:0) regime. The highest incidence of maturation (> 11 %) was found in the 12 
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week May fish, with intennediate levels in the 8 week May and 8 week June groups 

«8%). Low levels were found within the 12 week June group «0.6%) and it is 

suggested that a critical period when maturation is influenced may occur during a 

specific, short period in early development. Throughout the experiments, mature 

individuals maintained the same size as their immature siblings. The 12 week June 

photoperiod appeared to result in the highest level of smoltification, although those 

exposed to the 12 week May photoperiod showed the greatest seawater survival. 

In both photoperiod experiments, fish showing some signs of smoltification were also 

found to be undergoing gonadal development, indicating that maturation and 

smoltification are not completely mutually exclusive processes. 

Possible nutritional effects were considered using different dietary lipid inclusions 

(either 12.5% or 25%) and variable rations of feed (either full, 2/3 or 113 rations). 

Different dietary lipid inclusions had no effect on growth, although the whole body fat 

content of individuals was affected, with a switch in dietary fat content during 

development resulting in a rapid change in body composition. Fish size increased with 

ration and, although at the lowest ration of feed whole body fat levels were reduced, 

they were maintained at a set level under the high and intennediate rations, implying a 

lipostatic control of growth. Maturation levels were low throughout the nutrition 

experiments, suggesting that genetic influences may have been important. Dietary 

lipid level had a negligible effect on smoltification, although increases in ration 

resulted in a greater incidence of smoltification. Using a 0+ photoperiod regime (i.e. 

LD24:0 applied from March until December, with the exception of an 8 week period 

of LD17:7 applied from August), smolting individuals showed a reduction in smolt 

status when compared to those developed under a natural photoperiod. It is suggested 

that such regimes restrict the mobilisation of long-tenn energy stores, with the 
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subsequent development of seawater tolerance affected. However, it was noted that 

the 0+ regime had increased the incidence of smolts. 

In summary, it has been shown that environmental factors such as photoperiod, 

nutrition and temperature can play an important role in the developmental strategies 

taken by juvenile Atlantic salmon. Such factors are likely to greatly influence the 

attainment of size and/or nutritional thresholds necessary for various developmental 

strategies, in particular if such thresholds occur during seasonally-sensitive "critical" 

periods when development can be influenced. Furthermore, the life history strategy 

undertaken by an individual may be affected by endogenous rhythms, cued by 

seasonally-changing environmental factors. However, there are clear indications that 

the underlying genetic control of maturation may also be of importance. 

Keywords: Atlantic salmon, maturation, smoltification, growth, photoperiod, 

nutrition. 
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CHAPTER 1: GENERAL INTRODUCTION. 

Chapter 1: General introduction. 

The salmonidae are a teleost group that are naturally pre-adapted to cold, oxygen-rich 

waters, and although they historically became naturally habituated in the northern 

hemisphere (Netboy, 1974) examples have now become native to the majority of the 

worlds continents with the exception of Antarctica. 

The salmonidae comprise three main genera: the Atlantic salmon (Salrno sp), the 

Pacific salmon (Oncorhynchus sp) and the chars (Salve linus sp). However, within 

European waters one of the most important species is the Atlantic salmon, Salrno 

salar, and it is this species on which the investigations ofthe current thesis are based. 

Although parr maturation represents an important life history strategy in wild 

popUlations, during the freshwater production of Atlantic salmon maturation results in 

a significant economic loss to productivity, with environmental factors thought to play 

an important role in the developmental strategies undertaken by individuals during 

this juvenile stage (Thorpe, 1987a, 1989; Bromage et al., 1993; Duston and Saunders, 

1992). Therefore the current investigation was designed in order to address the 

environmental influences affecting growth, maturation and smoltification in juvenile 

Atlantic salmon with a view to providing commercially useful information that could 

be incorporated into production strategies aimed at maximising freshwater 

productivity. 
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CHAPTER 1: GENERAL INTRODUCTION. 

1.1. The Atlantic salmon: distribution and economic importance 

The Atlantic salmon has a native range spanning from northern Spain, up throughout 

mainland Europe and the British Isles, reaching northern Scandinavia and parts of the 

fonner USSR. It is also distributed across the north Atlantic ocean to north east 

America and eastern Canada (Jones, 1959; Netboy, 1974; MacCrimmon and Gots, 

1979). Furthennore, limited attempts have previously been made to naturalise it in 

non-native regions with success only being found in North America, Argentina, the 

Faeroes Isles and New Zealand (MacCrimmon and Gots, 1979), although in recent 

years concerns regarding the introduction of non-native species have meant that such 

attempts are now inhibited by regulation. However, although the introduction of 

Atlantic salmon to non-native regions is restricted its commercial aquaculture is now 

increasingly common throughout much of the world. It should be noted though that 

reference is often made to the Baltic salmon (e.g. Lundqvist and Fridberg, 1982; 

Mayer et al., 1990; Berglund, 1992). This does not refer to a separate species of 

salmonid but a physically isolated stock of Safrno safar that is found within the Baltic 

Sea (MacCrimmon and Gots, 1979). 

The Atlantic salmon has long been considered a viable species for commercial 

aquaculture and its production is now of considerable economic and social importance 

throughout much of Europe, Canada and South America. Within European waters the 

majority of production occurs in northern Europe, primarily throughout Scotland and 

much of Scandinavia particularly Norway. For example in Scotland during the year 

2000, Atlantic salmon farming employed over 1800 staff, producing 45.6 million 

smolts with a total harvest production of nearly 130,000 tonnes (FRS Annual 

production survey, 2000). 

2 



CHAPTER 1: GENERAL INTRODUCTION. 

1.2. The Atlantic salmon life cycle 

The life cycle of the Atlantic salmon shows considerable plasticity allowing the 

reproductive success of individuals to be maximised relative to the yearly conditions 

that present themselves. 

Maturing adult Atlantic salmon migrate from the oceans to their natal river from 

autumn through until late spring, where the female creates a gravel nest or "redd" into 

which eggs are deposited and fertilised (Fig. 1.1). After the eggs hatch the "alevins" 

then utilise their yolk sacs, remaining in or close to the gravel river bed. 

Subsequently, the alevins develop into free swimming fry and with time they develop 

the classical appearance of parr with distinct parr marks and a darkened coloration. 

These parr may then reside in fresh water for up to 8 years with males often able to 

mature during this juvenile stage. During springtime parr may undergo physiological, 

morphological and behavioural changes that result in smoltification and migration 

from the cryptic, territorial life of the river environment to the pelagic shoaling life of 

the sea. Such migrations are typically completed during late spring or early summer 

with individuals displaying a silvered and streamlined body form. 

Individuals will then remain in the sea for up to 5 years before returning to their natal 

stream to reproduce, with a small proportion returning as grilse after just one year at 

sea. After spawning the Atlantic salmon, unlike the Pacific salmon, may be able to 

return to the sea for a further oceanic period and subsequent spawning migration 

although it is likely that only a small number of these post-spawning "kelts" will 

survive and return to the sea (see Jones, 1959; Netboy, 1974; Laird and Needham, 

1988; Stickney, 1991 for detailed reviews of the Atlantic salmon life cycle). 
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2-5 years 
at sea 

1 year 
at sea 

Mature 
male parr ~---L...::":;:':...-1 

Under 
1 year 
at sea 
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SW transfer 

Deposited in a 
gravel redd 

Hatches 

Emerges from 
gravel and 
begins to feed 

Fresh water 

SmoIt after less 
than one year (0+) 

or up to 8yrs. 

Sea water 

Fig. 1.1 The life cycle of the Atlantic salmon, Salrno safar (adapted from Laird and 

Needham, 1988). 
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However, it is important to note that in commercial populations production regimes 

often result in early maturation and smoltification. In particular, the timing of 

smoltification is manipulated to permit the out-of-season transfer of fish to sea water 

with individuals transferred after a freshwater period of less than one year (0+), after 

one year (1+), between one and two years (1.5+), and less frequently after 2 years 

(2+). However, with such advanced regimes the incidence of parr maturation often 

increases with maturation shortly after seawater transfer (Le. post-smolt maturation) 

or after a period in sea water but prior to the grilse maturation (Le. as "jacks or "jills") 

also possible. 

Plasticity in the life history strategy of Atlantic salmon therefore arises from the 

differential timing of maturation or smoltification migrations that individuals within a 

particular year class perform. It is also evident that within natural populations such 

life history variations may result in the size of the spawning popUlation being much 

larger in a given year than might be expected from the particular year class size 

(Saunders and Schorn, 1985). 

Within commercial production different aspects of both the marine and freshwater 

stages of the Atlantic salmon life cycle are manipUlated. Typically, superior growth 

rates are achieved in sea water (c.f. Gjedrem and Gunnes, 1978; Thrush et at., 1994; 

Duncan et at., 1998) and as such freshwater production focuses on attaining good 

levels of smoltification, often at times other than during the natural spring period. 

Seawater production focuses on growing fish to a harvestable size as early and cost 

effectively as possible. However, it is important to mention that maturation in either 
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fresh- and sea water, other than when the fish are used as broodstock, will have a 

detrimental effect on productivity. 

1.3. Growth 

Growth involves the formation and interaction of many complex physiological and 

biochemical processes with an energetic input required to facilitate these systems 

(Jobling, 1994). However, for increases in growth to be made possible energy must be 

accumulated over and above that which is required for standard metabolic functions 

such as respiration. 

For fish, the acquisition and utilisation of energy necessary for growth will be affected 

by many factors. Growth has been found to be influenced by a genetic component 

(Nilsson, 1990; Gj0en and Bentsen, 1997) with environmental factors also exerting a 

major role. Primarily, growth will be influenced by the acquisition of food, in terms of 

the amount of food that a fish gains (i.e. ration) (Storebakken and Austreng, 1987a,b; 

McCormick et at., 1989; Hillestad et at., 1998) as well as the quality of the food (i.e. 

chemical composition) (Grisdale-Helland and Helland, 1997; Hemre and Sandnes, 

1999; Torstensen et al., 2001). It has also been well documented that light and in 

particular photoperiod (Stefansson et at., 1989; Stefansson et at., 1991; Hansen et at., 

1992; Duncan et at., 1999; Endal et al., 2000) will influence growth by affecting the 

visual recognition of food items (Higgins and Talbot, 1985; Bolliet et al., 2001) and 

the efficiency with which food is utilised (Higgins and Talbot, 1985; Jonassen et al., 

2000). Finally, the temperature of the water in which fish reside will have a major 

influence on growth (Elliott, 1975a, b; Clarke et al., 1978) by affecting both the rate 

and efficiency with which energy is utilised. 
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However, it is also important to note that the life history strategy of individuals will 

have an important effect on their yearly profile of growth (Thorpe et al., 1980; 

Higgins and Talbot, 1985; Skilbrei, 1989; Jobling and Baardvik, 1991) with such 

effects linked to changes in appetite (Kadri et al., 1995; Simpson et al., 1996) and the 

utilisation of energy for developmental processes (e.g. Jonsson et al., 1991). 

Therefore, environmental factors such as photoperiod, temperature and the 

availability of food items will further influence growth by cueing the daily and 

seasonal timing of endogenous rhythmic processes that influence developmental 

strategies (Baggerman, 1972; Erikson and Lundqvist, 1982; Duston and Bromage, 

1987; Duncan and Bromage, 1998). 

Atlantic salmon are anadromous and the energetic costs of migrating between hyper

and hypo- osmotic environments will have distinct effects on growth (Thorpe et al., 

1980; Kristinsson et al., 1985; Skilbrei, 1988). Furthermore, the variable timing of 

maturation, with its high energetic requirements (Jonsson et al., 1991), will also 

influence cycles of growth. Given the plasticity within the life cycle of the Atlantic 

salmon, it is clear that complex interactions between growth and developmental 

strategies will occur throughout both the juvenile and adult stages of life. 

One important aspect of salmonid growth, that is related to life history strategy, is a 

divide within the population which results in a bimodal community structure (Thorpe, 

1977, 1987a; Bailey et al., 1980; Kristinsson et al., 1985; Stewart et al., 1990). 

Indeed, the emergence of bimodality can have serious implications for overall 

productivity within commercial stocks, in particular during the freshwater stage of 

development. However, in the wild population bimodality is not a problem and it is 
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usually evident by the autumn of the first growing season (Thorpe, 1977, 1987a; 

Bailey et al. 1980; Kristinsson et al., 1985). Initially, all fish will grow at a similar 

rate (Kristinsson et al., 1985) although during late summer a clear difference in 

growth occurs between fish destined to enter the upper mode of the distribution 

(UMG) and those remaining in the lower mode (LMG) (Higgins and Talbot, 1985; 

Thorpe, 1987a; Kristinsson et al., 1985; Skilbrei, 1988, 1991; Stewart et ai., 1990). 

UMG fish will typically experience a period of rapid growth (Kristinsson et ai., 1985; 

Skilbrei, 1991) with the LM G fish reducing or ceasing their growth altogether 

(Higgins and Talbot, 1985; Skilbrei, 1991; Metcalfe and Thorpe, 1992). 

Furthermore, it is increasingly evident that the decision to enter the upper mode of the 

distribution is dependant upon the attainment of a specific size threshold (Elson, 

1957; Kristinsson et ai., 1985; Skilbrei, 1988; Stewart et ai., 1990), with fish that 

achieve the threshold at a particular time of the year entering the period of extended 

growth, and those failing to achieve this size reducing their growth. It is therefore 

likely that the development of bimodality is controlled by environmental factors, with 

most evidence indicating that photoperiod provides this cue (Thorpe, 1987a; Skilbrei, 

1991; Duston and Saunders, 1992; Duncan and Bromage, 1998). However, in the 

absence of photoperiodic cues it is likely that other environmental factors may 

become important (Solbakken et ai., 1994). 

In fresh water growth changes associated with the development of bimodality are 

clearly linked to life history strategy. Following the emergence of bimodality 

continued growth in UMG fish leads to the majority of such individuals undergoing 

the parr-smolt transformation in the following spring (Kristinsson et al., 1985; 
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Thorpe, 1987a; Skilbrei, 1988; Duston and Saunders, 1992; Saunders et al., 1994). It 

is likely that the critical threshold sizes that have previously been suggested for 

smoltification (Elson, 1957; Thorpe et al., 1980) will be linked to those also suggested 

for the development of bimodality (Kristinsson et al., 1985; Skilbrei, 1988), with the 

yearly growth profile of smolting individuals the same as that discussed for UMG 

fish. 

However, although mature parr have been found in greater numbers in the lower 

mode of a population distribution (e.g. Bailey et al., 1980; Kristinsson et al., 1985; 

Skilbrei, 1991; Duston and Saunders, 1992; Saunders et al., 1994), popUlation 

bimodality is not directly dependant on maturity status (Thorpe, 1977; Villarreal and 

Thorpe, 1985) since mature individuals have been found in both modes of a 

population distribution (Thorpe, 1977; Bagliniere and Maisse, 1985; Kristinsson et 

al., 1985; Saunders et al., 1994). It is more likely that the growth profile of maturing 

fish results in the majority of such individuals failing to reach the size threshold 

necessary to enter the upper modal group. 

For both parr and adult salmon that are destined to mature growth rates are initially 

greater than for their non-maturing siblings (Saunders et al., 1982; Dalley et al., 1983; 

Aksnes et aI., 1986; Skilbrei, 1989; Rowe and Thorpe, 1990a; Foote et al., 1991; 

Reimers et al., 1993) which typically results in such individuals being larger during 

the early stages of the growing season (Aksnes et al., 1986; Rowe and Thorpe, 1990a; 

Berglund, 1992, 1995; Berglund et al., 1992; Shearer and Swanson, 2000) 

Subsequently, the somatic growth of maturing individuals decreases (Dalley et al., 

1983; Skilbrei, 1989; Rowe and Thorpe, 1990a; Foote et al., 1991) as gonadal 
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development increases (Hunt et al., 1982; Foote et al., 1991). Furthermore, from this 

growth profile, as well as the suggestion by Polikansky (1983) that fish will mature as 

soon as they are able to do so, it is likely that either a size or developmental threshold 

regulates maturation (Bailey et al., 1980; Thorpe and Morgan, 1980; Saunders et al., 

1982; Thorpe, 1986; Berglund, 1995). 

It is interesting to note that within the current culture of salmonids some high grilsing 

stocks are used which might normally be considered detrimental since maturation has 

been linked to a range of unfavourable traits, in particular a loss in harvest quality 

(Aksnes et al., 1986) and reduced somatic growth rates (Skilbrei, 1989). However, by 

utilising the initial fast growth rates of such stocks and then harvesting prior to 

gonadal development, overall productivity can be greatly enhanced. 

1.4. Maturation 

1.4.1. Maturation in commercial production 

Within the commercial production of salmonids maturation at any stage of 

development is generally considered as detrimental to productivity. These detrimental 

effects of maturation can be linked to three main areas: a reduction in flesh quality 

(Aksnes et al., 1986), a reduction in growth (Skilbrei, 1989; Berglund et al., 1992) 

and a loss of immunocompetence (Richards and Pickering, 1978; Murphy, 1980). 

However, it should be noted that parr maturation has also been linked to a loss of 

seawater tolerance (Clarke and Blackburn, 1994; Saunders et al., 1994) although this 

subject will be discussed at a later stage. 
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Maturation involves a loss of body fat content (Aksnes et al., 1986; Rowe et al., 1991; 

Kadri et al., 1996) as energy reserves are mobilised for the production of gonadal 

tissue (Hunt et al., 1982; Jonsson et al., 1991; Rowe et al., 1991; Jorgensen et al., 

1997). Furthermore, as fat is lost it is replaced by water (Shearer 1994). These 

combined changes in body composition have the result of reducing flesh quality 

(Aksnes et al., 1986) and although such a reduction is not necessarily important for 

juvenile production it has severe implications for adult harvest quality. 

Maturation is also linked to a cyclical growth pattern. As mentioned previously, the 

initial enhanced growth rates of fish that are destined to mature can be utilised in adult 

production, but if fish are allowed reach maturity their growth rates reduce (Lee and 

Power, 1976; Dalley et al., 1983; Skilbrei, 1989; Rowe and Thorpe, 1990a; Berglund 

et al., 1992; Stead et al., 1999) as gonadal growth increases (Hunt et al., 1982; Foote 

et al., 1991). This reduction in growth has been linked to a decrease in appetite (Rowe 

and Thorpe, 1990a; Kadri et al., 1996; Tveiten et al., 1996; Stead et al., 1999) 

although some studies have suggested that maturation does not necessarily result in a 

reduction in feed intake (Simpson et al., 1996; Arndt, 2000; Shearer and Swanson, 

2000). However, even if a reduction in feeding does occur, maturation represents an 

inefficient utilisation of food with energy received and indeed that accumulated prior 

to maturation, used for the development of gonadal tissue as opposed to somatic 

growth. Although there is an increasing interest in the sale of salmon eggs for human 

consumption (Le. salmon caviar) this market is currently limited and gonadal tissue 

must generally be considered as a non-harvestable form. Therefore, the cost of feed 

that is not utilised for somatic growth represents a significant financial loss to the 

aquaculture industry. 
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Another problem linked to maturation is a loss of immunocompetence. Maturing 

individuals have been found to show an increased rate of infection by pathogens, in 

particular Sapro/egnia sp. (Richards and Pickering, 1978; Murphy, 1980) and recently 

links have been made between maturation and reductions in a range of endogenous 

immune parameters (Slater and Schreck, 1997; Suzuki et al., 1997). Therefore, not 

only are mature fish more likely to suffer increased mortality rates but they may also 

become vectors of disease risking the spread of pathogens to non-maturing 

individuals within the population. As such the losses of fish through mortality, 

combined with the increased need for disease treatment measures, mean that the 

economic costs of maturity rise. 

1.4.2. Parr maturation 

Typically the maturation of Atlantic salmon is found amongst adult fish that return 

from a period of seawater residence. However, it is also evident that a proportion of 

the population can undergo maturation as juveniles in fresh water. This parr 

maturation is generally restricted to males, almost certainly due to the different energy 

requirements of male and female maturation (Jonsson et al., 1991; Jorgensen et al., 

1997) combined with the limited food resources linked to freshwater residency. 

Adams and Thorpe (1989) found some gonadal investment in female parr from a 

range of populations and it is likely that female parr maturation may be possible in 

environments which allow sufficient nutritional gains. However, such studies are rare 

(e.g. Veda et al., 1983; Bagliniere and Maisse, 1985; Hindar and Nordland, 1989) and 

the frequency of such individuals is extremely low (e.g. 10-5
: Hindar and Nordland, 

1989). Due to the low recorded incidence of maturing female parr, their reproductive 

ability and ecological significance is not known. 

12 



CHAPTER 1: GENERAL INTRODUCTION. 

Shaw (1840) was the first to document the maturation of salmon parr and although 

studies continued from that early work it was not until the emergence of intensive 

salmon farming in the late 20th century that interest in the occurrence increased. 

Typically, in wild populations levels of maturation show great variability (Table 1.1) 

although it is evident that levels rise with the increasing duration of freshwater 

residency (c.f. Dalley et al., 1983; Whalen and Parrish, 1999), which is almost 

certainly due to the increased accumulation of energy reserves. 

Although the presence of mature male parr on the adult spawning grounds was not 

disputed. it was not until Jones and King (1952) documented male parr releasing milt 

during the spawning act that their role in fertilising adult females' eggs could be 

confirmed. Mature male parr generally play no role in the courtship act of the adult 

pair (Jones, 1959), but remain cryptic lying close to the adult nest awaiting the 

opportunity for "sneak" fertilisation (Jones, 1959; Fleming, 1996). Jones and King 

(1952) concluded that a significant fraction of eggs could be fertilised by male parr 

and this suggestion has more recently been confirmed by the genetic assessment of 

fertilised eggs (Hutchings and Myers, 1988; Jordan and Y oungson, 1992; Thomaz et 

al., 1997). It is therefore evident that in wild popUlations the maturation of male parr 

can provide an important ecological life history strategy aiding genetic diversity. 

However, parr maturity has serious implications for freshwater production. 

Previously, it has been suggested that maturation and smoltification are mutually 

exclusive processes (Thorpe and Morgan, 1980; Thorpe, 1986, 1987a; Herbinger and 

Friars, 1992), with smoltification a consequence of a fish failing to mature (Thorpe, 

1994a, Thorpe and Metcalfe, 1998). However, it does seem that the two 
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Location Year class Incidence (%) Source 

UK up to 3+ 83 
Stuart-Kregor et 

al.(l981) 

1+ 0-100 

2+ 9.4 - 100 Dalley et al . Canada 
3+ 72 - 100 (1983) 

4+ 100 

Canada up to 2+ 80 Myers (1984) 

0+ 4.2 - 6.4 Bagliniere and France 
1+ 0-100 Maisse (1985) 

1+ 
Canada 

0-100 Myersetal. 
2+ 0.7 - 100 (1986) 

USA 0+ 2.8 -74 Letcher and 
Terrick (1998) 

1+ 28 - 52 Whalen and USA 
2+ up to 67 Parrish (1999) 

Table 1.1 The incidence of male parr maturation among wild stocks of Atlantic 

salmon. 
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developmental processes do not completely inhibit one another since mature fish have 

been found to successfully undergo smoltification (Saunders et al., 1982; Bagliniere 

and Maisse, 1985; Berglund et al., 1991; Saunders et al., 1994; Duston and Saunders, 

1997). Indeed, it is likely that the reduced growth rates of maturing individuals and 

not their maturation per se results in the limited numbers of maturing fish that are 

recruited to the smolting population in the following spring (Bailey et al., 1980; 

Saunders et aI., 1994). Therefore, the smoltification of mature individuals is possible 

if their growth rates permit the attainment of a particular size threshold (Elson, 1957; 

Thorpe et al., 1980). 

However, it is clear that mature parr do have a reduced seawater adaptability when 

compared to classical smolts (Foote et al., 1991; Clarke and Blackburn, 1994; 

Saunders et al., 1994; Staurnes et al., 1994a) with changes in body androgen levels 

thought to playa role in this inhibitory process (Aida et al., 1984; Ikuta et al., 1985; 

Miwa and Inui, 1986; Lundqvist et al., 1989). Therefore, although the decisions to 

mature and smolt appear to be made independently (Bailey et al., 1980) it is likely 

that the ability of a mature fish to undergo smoltification will be dependant on the 

degree of recovery from maturation (Skilbrei, 1990). For commercial production 

though, the smoltification rates of mature parr are not considered to be economically 

viable. Given this, and to a lesser extent the other detrimental factors linked to parr 

maturation (i.e. reductions in growth, immunosuppression etc.) such individuals are 

generally culled from commercial populations as soon as they are identified. This is 

usually carried out prior to vaccination and subsequent seawater transfer. 
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1.5. Factors affecting growth, maturation and smoitification 

1.5.1. Genetic influences 

The genetic manipulation of salmonids is a topic that has received much attention in 

recent years. Within the trout industry the most notable manipulations to date have 

been the production of all female and triploid stocks, which enable the industry to 

produce table-sized fish without the detrimental problems linked to the early 

maturation of, in particular, male fish (Shepherd and Bromage, 1988; Stickney, 1991). 

Indeed, the use of such individuals is now widespread with the UK trout industry 

extensively utilising such techniques. However, the UK Atlantic salmon industry has 

not moved towards the use of such manipulated stocks primarily due to the possible 

public perception of techniques such as genetic manipulation. Therefore reductions in 

the incidence of early maturation, as well as improvements in growth and 

smoltification, have to be made through manipulating the genetic variation present 

within domesticated fish stocks. 

The majority of genetic enhancement has focused on maturation primarily due to the 

commercial problems linked to early maturity. Indeed, clear evidence suggests that an 

underlying genetic component influences maturation (Naevdal, 1983; Thorpe et al., 

1983; Gjerde, 1984; Myers and Hutchings, 1986; Herbinger and Newkirk, 1990; 

Gj0en and Bentsen, 1997). However, although Gjerde (1984) found that rates of 

maturation during fresh- and sea-water development could not be linked there is a 

lack of data addressing the relationship between adult and parr maturity status. 

As described earlier, stocks with an intrinsically high rate of maturation are often used 

in order to capitalise on the initial growth rates of maturing fish. However, it has been 
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suggested that growth is an individually heritable trait (Thorpe et al., 1983: Nilsson, 

1990; Silverstein and Hershberger, 1994; Gj0en and Bentsen, 1997) although it is also 

likely that such increases in growth will subsequently affect maturation, if not through 

direct genetic manipulation. 

Finally smoltification, as with maturation, may be affected by genetic influences on 

growth. However, it has been suggested that seawater adaptation is an inherited trait 

(Refstie et al., 1977; Saxton et al., 1984; Nielson et al., 2001) and therefore changes 

in smolt status of commercial populations may be possible (Saxton et a/., 1984). 

Growth, maturation and smoltification therefore appear to be influenced by an 

underlying genetic component with differences in these physiological processes 

clearly interacting to some degree. However, developmental processes will also be 

influenced by environmental manipulation. 

1.5.2. Environmental influences 

Generally, three environmental factors are thought to be of primary importance in the 

growth, maturation and smoltification of Atlantic salmon: light, diet and temperature. 

The experiments of the current thesis aim to investigate these influences and they are 

therefore reviewed in depth within the subsequent chapters. However, a general 

introduction to each parameter is now provided. 
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1.5.2.1. Light 

Three aspects of light have been identified: spectral composition, intensity and 

photoperiod (Boeuf and Le Bail, 1999). Of these photoperiod is most commonly 

manipulated in commercial fish culture. 

However, it is first important to categorise some nomenclature that is often used with 

reference to photoperiod regimes. Frequently day length regimes are referred to as 

"long" or "short" day photoperiods. Although this nomenclature can be used as a 

relative measure, Le. long day regimes have a longer period of daylight than short day 

photoperiods, short day regimes are generally less than 12 hours daylight, typically 8 

hours of light (Le. LD8: 16) (Fig. 1.2). Long photoperiods will generally be greater 

than 12 hours daylight, typically 16 hours oflight (Le. LD 16:8) and above. Similarly, 

"extended" photoperiod regimes refer to daylengths which are greater than the natural 

daylength at a particular time. An "advanced" or "delayed" yearly photoperiod cycle 

refers to the shifting of a yearly profile of daylength out of its natural phase. Finally, 

"accelerated" or "compressed" photoperiod cycles occur when the rate at which a 

natural photoperiod changes is increased or decreased. 

In general increases in daylength result in increased growth with periods of 

continuous light (LL) or constant long days extensively shown to enhance growth 

rates (Lundqvist, 1980; Stefansson et al., 1989; Krakenes et al., 1991; Hansen et al., 

1992; Solbakken et al., 1994; Sigholt et al., 1995; Handeland and Stefansson, 2001). 

Although some workers have suggested that it is the rate of the changing photoperiod 

that is of importance in growth (Clarke et al., 1978), it is generally accepted that the 

amount of daylight received per day is the primary influence. However, although long 
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natural photoperiod. 
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day photoperiods are conducive to growth it has been found that when applied over 

long periods of time such effects may not continue to be advantageous, with shorter 

day regimes resulting in enhanced growth (Saunders and Henderson, 1988; 

Stefansson et al., 1989; Saunders and Harmon, 1990; Berg et al., 1994; Solbakken et 

al., 1994). As a consequence some workers have concluded that there is a seasonal 

sensitivity to the photoperiodic cues (Saunders and Henderson, 1988; Saunders and 

Harmon, 1990). 

In fresh water, however, further support for the role of either continuous light or 

constant long days in growth dynamics can be found when population bimodality is 

considered. Under continuous light or long day regimes bimodality has been shown to 

be weak (Skilbrei, 1991) or delayed (Duncan and Bromage, 1998) highlighting the 

photoperiodically-enhanced growth of individuals. 

For both maturation and smoltification Duston and Saunders (1992) provided a model 

explaining the stimulatory effects of the natural photoperiod experienced by Atlantic 

salmon (Fig. 1.3). Smoltification appears to be initiated during the decreasing phase 

of the natural photoperiod, with its completion occurring during the increasing phase, 

whereas the initiation of maturation occurs on the increasing photoperiod, with final 

gonadal recrudescence completed on the decreasing phase. 

However, it has been shown that constant light regimes can result in both maturation 

(Erikson and Lundqvist, 1980; Bourlier and Billard, 1984a,b; Scott et al., 1984; 

Duston and Bromage, 1986; Skilbrei, 1991) and smoltification (Eriksson and 

Lundqvist, 1982; Sigholt et al., 1995) and it is believed that such physiological 
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processes are under some form of internal cyclic control. In particular, following early 

work by Whitehead et al. (1978), extensive evidence has suggested the presence of an 

endogenous rhythm of maturation (Lundqvist, 1980; Bourlier and Billard, 1984a; 

Bromage et al., 1984; Elliott et al., 1984; Duston and Bromage, 1986, 1987, 1991; 

Hansen et al., 1992). However, although it has been shown that a seasonally-changing 

day length is not essential for the cueing and modulation of reproductive development 

(Bromage et al., 1982) it has been shown that a rhythm of maturation is likely to be 

entrained by photoperiod, because spawning can occur at any time of the year 

provided the appropriate photoperiodic cues are received (Elliott et al., 1984). 

Indeed, as well a rhythm of maturation substantial evidence exists that other 

physiological processes are under similar, photoperiodically entrained, endogenous 

control, in particular growth (Clarke et al., 1978; Saunders and Harmon, 1988; 

Villarreal et al., 1988; Duncan and Bromage, 1998; Duncan et al., 1999) and 

smoltification (Clarke et al., 1978; Erikson and Lundqvist, 1982; Stefansson et al., 

1989; Thrush et al., 1994; Sigholt et al., 1995). 

However, in order to manipulate developmental processes such as maturation and 

smoltification, within commercial production, it is necessary to understand the 

photoperiodic cues that entrain such endogenous cycles. 

In fresh water the majority of work has focused on photoperiodic effects on 

smoltification in order to achieve early seawater transfer times and to improve levels 

of seawater adaptation. Much of the current smolt production is based on S 1 regimes 

(i.e. transfer after 1 year in freshwater) (FRS Annual production survey, 2000), which 
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generally utilise a natural yearly photoperiod. However, for earlier transfer times, in 

under one year (Le. 0+ regimes), altered photoperiods are used. For these regimes, 

continuous light is generally applied from first-feeding, which results in enhanced 

growth enabling individuals to reach the critical size for smoltification (Elson, 1957; 

Thorpe et al., 1980; Kristinsson et al., 1985; Sldlbrei, 1988) at an early time in the 

year. However, prolonged continuous light regimes can reduce the incidence of 

smoltification or produce fish with a poor or reduced smolt status (McCormick et al., 

1987; Skilbrei, 1991; Solbakken et al., 1994; Duston and Saunders, 1995; Handeland 

and Stefansson, 2001). Therefore a period of short days (generally of between 8 and 

10 hours daylength) of 6 to 10 weeks is required to initiate the parr-smolt 

transformation (Berg et al., 1994; Duston and Saunders, 1995; Sigholt et al., 1995; 

Duncan and Bromage, 1998; Duncan et al., 1998). Following the short day treatment 

a period of continuous light or long days is required during which smoltification is 

completed (Berg et al., 1994; Duston and Saunders, 1995; Sigholt et al., 1995; 

Duncan and Bromage, 1998; Handeland and Stefansson, 2001), although it is 

important to note that the length of these long and short day regimes is clearly 

affected by temperature (Handeland and Stefansson, 2001). Indeed, photoperiod 

regimes such as those described above are becoming of considerable importance to 

the successful out-of-season production of large numbers of competent smolts. 

Photoperiod regimes have also been found to advance or delay maturation. Early 

work by Bromage et al. (1984), Elliott et al. (1984) and Takashima and Yamada 

(1984) concluded that maturation could be initiated by a period of long days, with a 

period of short days necessary in later development during which maturation was 

completed. Subsequently light regimes have been used to restrict the maturation of 
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adults in sea water, although photoperiod manipulations have not currently been used 

to limit maturation in fresh water, due to the complex interactions that occur with the 

initiation and completion of smoltification. For adults, additional lighting, provided 

during the early winter months, has been shown to increase growth and reduce 

grilsing (Hansen et al., 1992; Taranger et al., 1995; Oppedal et al., 1997; Taranger et 

al., 1998; Porter et al., 1999a; Taranger et al., 1999a) although the results of some 

continuous light treatments have been contradictory (c.f. Saunders and Harmon, 1988; 

Krakenes et al., 1991; Endal et al., 2000) with such variations possibly linked to 

experimental differences, for example the timing of the continuous light treatment or 

the relative intensity of the lights used. 

However, although photoperiod manipulation will influence the timing of both 

maturation and smoltification it has also been suggested that the initiation of such 

physiological processes, in particular maturation, will be influenced by certain growth 

rates during seasonally-critical periods (Thorpe, 1986; 1987b; Duston and Saunders, 

1992; Metcalfe, 1998; Thorpe and Metcalfe, 1998; Taranger et al., 1999a). 

Thorpe (1986) initially proposed a model including such principles suggesting that if 

the rate of acquisition of energy was sufficient during early spring, then maturation 

would be initiated. Subsequently Duston and Saunders (1992) have supported this 

theory by observing that maturation was initiated during the increasing phase of the 

photoperiod provided sufficient growth thresholds were achieved. Indeed, there is 

growing evidence that the decision to mature can be influenced by the potential for 

growth during the natural spring period (Adams and Thorpe, 1989; Berglund, 1992; 

Rowe and Thorpe, 1990b; Thorpe et al., 1990; Rowe et al., 1991; Duston and 
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Saunders, 1997). However, although the attainment of a particular threshold may 

influence the initiation of maturation the rate at which a particular physiological 

parameter changes may also be of importance in the initiation of maturation during 

the seasonally-critical periods (Metcalfe, 1998; Thorpe et al., 1998). 

It is also important to note that an adjustment to the original model proposed by 

Thorpe (1986) has been suggested such that the initiation of maturation occurs in 

November, one year prior to maturation (Metcalfe, 1998; Thorpe et al., 1998), with a 

time prior to first-feeding, therefore, possible (Thorpe, 1994b). Subsequently, 

maturation can be "switched off' during a second sensitive period in spring (Metcalfe, 

1998; Thorpe et al., 1998). However, it is remains likely that environmental 

manipulation during the spring will be of considerable importance in altering the rates 

of maturation found within commercial populations (c.f. Hansen et al., 1992; 

Taranger et al., 1999a). 

1.5.2.2. Nutrition 

The acquisition and utilisation of food has clear effects on the ability of fish to grow 

in both size and composition (primarily adiposity and protein content). As such the 

food that a fish receives will ultimately affect its decision to undergo a particular 

developmental strategy. 

In wild populations the ability to find and utilise food is a major limiting factor in 

growth and development although it is clear that the effects of such seasonal 

fluctuations can be limited because salmonids, like other fish, are able to undergo 

periods of recovery growth following periods of nutritional restriction (Weatherley 
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and Gill, 1981; Dobson and Holmes, 1984; Miglavs and Jobling, 1989a, b; Quinton 

and Blake, 1990; Metcalfe and Thorpe, 1992). 

In commercial salmonid stocks feed is controlled and is rarely a limiting factor in 

development. However, it is clear that an understanding of how diet affects the 

growth and the development of fish will be required in order to maximise productivity 

and investigations have been conducted to consider the effects of feed, in terms of 

both its quality and its quantity. For the investigations of the current thesis the quality 

of diets was considered with regard to lipid inclusion, although it is important to note 

that it may be difficult to separate the effects of ration and diet composition since 

varying ration ultimately varies the absolute values of constituents a fish receives 

(Shearer, 1994). 

For growth, increases in ration clearly result in elevated growth (Reinitz, 1983; 

Storebakken and Austreng, 1987a, b; McCormick ef aJ., 1989; Stead et al., 1996) 

although it is also evident that lipid deposition can increase with ration size (Elliott, 

1976; Reinitz, 1983; Storebakken and Austreng, 1987a; Johansson et al., 1995; 

Hillestad et al., 1998). Increases in dietary lipid inclusion, however, have been shown 

to result in pronounced increases in body lipid content (Reinitz, 1983; Bjerkeng et al., 

1997; Grisdale-Helland and Helland, 1997; Einen and Skrede, 1998; Hemre and 

Sandnes, 1999; Torstensen et al., 2001) although a gain in weight has also been 

recorded (Hemre and Sandnes, 1999; Torstensen et al., 2001). Consequently Shearer 

et al. (1997) have postulated that ration affects growth whereas dietary lipid level 

affects adiposity. 
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Limited research presents itself for the effects of diet on the parr-smolt 

transformation, although it is likely that the attainment of a size threshold of 

smoltification will be affected by diet through changes in growth. Furthermore, these 

effects will prove important if they occur during seasonally-critical periods when 

developmental processes can be influenced by growth (Thorpe, 1986; Duston and 

Saunders, 1992; Thorpe, 1994b; Metcalfe, 1998; Thorpe et al., 1998). However, 

during the latter stages of freshwater development feed restriction has been shown to 

have a negligible effect on smoltification (Dickhoff et al., 1989; Thorpe and Metcalfe, 

1998; Larsen et al., 2001) with the long term exposure of parr to diets containing 

different lipid inclusions also found to have no effect on the parr-smolt transformation 

(Redell et al., 1988). It is therefore likely that high growth rates will be important for 

successful smoltification but not necessarily high levels of body lipid (Saunders et al., 

1982). 

Where maturation is concerned, an initial accumulation of body fat occurs (Aksnes et 

al., 1986; Rowe et al., 1991; Simpson, 1992; Kadri et al., 1996) with the energetic 

costs of spawning (c.f. Jonsson et ai., 1991; Jorgensen et ai., 1997) subsequently 

resulting in a reduction in lipid reserves. As such there has been the suggestion that 

maturation is dependent on an individual attaining a certain lipid threshold (Herbinger 

and Friars, 1992; Simpson, 1992; Shearer, 1994; Silverstein et al., 1997). 

Consequently, the accumulation of body lipid by feeding diets containing elevated 

lipid levels has been shown to result in an increase in maturation (Hillestad et al., 

1998; Shearer and Swanson, 2000). However, although there is only limited evidence 

that long-term ration of feed can affect maturation levels (e.g. McCormick and 

Naiman, 1984) it is evident that attempts to reduce maturation levels in salmon 

27 



CHAPTER 1: GENERAL INTRODUCTION. 

populations have primarily focused on periods of feed restriction. Indeed it is clear 

that for both adults (Thorpe et al., 1990; Reimers et al., 1993; Silverstein and 

Shimma, 1994; Hopkins and Unwin, 1997) and juveniles (Rowe arId Thorpe, 1990b; 

Clarke and Blackburn, 1994; Berglund, 1995; Morgan and Metcalfe, 2001) feed 

restriction has resulted in a reduction in the incidence of maturation. Although efforts 

have been made to investigate such restrictions throughout the year it appears that 

short-term treatments are most effective during spring (Rowe and Thorpe, 1990b). 

This further highlights the importance of spring as a critical period during which 

growth rates can influence the decision to undergo maturation (Thorpe, 1986; Duston 

and Saunders, 1992; Thorpe, 1994b; Metcalfe, 1998; Thorpe et al., 1998). 

1.5.2.3. Temperature 

Studies into the effects of temperature on salmonid development are particularly 

problematic primarily due to the costs of either chilling or heating water. However, 

the manipulation of temperature, in particular heating, is increasingly being used in 

commercial production. 

For the effects of temperature on growth, Allen (1940, 1941) noted that below 7°C 

Atlantic salmon parr were inactive feeding slowly without growth, although more 

recent studies suggest that growth will occur at temperatures lower tharI 7°C 

(Shelboume et al., 1973; Elliott, 1975a; Dwyer and Piper, 1987; Koskela et al., 1997). 

It is also evident that a clear relationship exists between temperature and growth. 

Typically, as temperature rises growth rates increase (Shelboume et al., 1973; Elliott, 

1975a; Clarke et al., 1981; Dwyer arId Piper, 1987; Bjomsson et al., 1989; Siemien 

and Carline, 1991; Solbakken et al., 1994; Koskela et al., 1997; Edsall et al., 1999) 
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although such increases will only occur up to a certain temperature, after which 

growth declines (Shelboume et al., 1973; Elliott, 1975a; Dwyer and Piper, 1987; 

Siemien and Carline, 1991; Edsall et al., 1999). Therefore, there is an optimum 

temperature for growth in Atlantic salmon parr and this appears to occur between 15 

and 18°C (Shelboume et al., 1973; Knutsson and Grav, 1976; Dwyer and Piper, 1987; 

Siemien and Carline, 1991; Edsall et al., 1999) although it should be noted that other 

factors such as fish size (Shelboume et al., 1973; Elliott, 1975a) and ration of feed 

(Elliott, 1975b) may affect the way in which temperature influences growth. 

For smoltification, negligible and even some slight detrimental effects have been 

found when increased temperatures are applied towards the end of the freshwater 

period (Dickhoff et al., 1989; Solbakken et al., 1994; Duston and Saunders, 1997; 

Larsen et al., 2001). However, the majority of evidence suggests that elevated 

temperatures during winter and spring photoperiod regimes increase the proportion of 

smolts and their hypo-osmoregulatory ability (Bjomsson el al., 1989; Soivio et al., 

1989; Berglund et aI., 1991; Staumes et al., 1994b; Duston and Saunders, 1997). 

Furthermore, it has also been reported that elevated temperatures can aid the further 

development of hypo-osmoregulatory ability following seawater transfer (Handeland 

et al., 1998; Handeland et al., 2000). 

Evidence relating to the effects of temperature on maturation are limited and 

contradictory. Herbinger and Friars (1992) found no effect of temperature on 

maturation in Atlantic salmon parr, whereas Taranger and Hansen (1993) and 

Taranger et al. (1999b) found that elevated temperatures inhibited ovulation in adult 

female Atlantic salmon. Berglund et at. (1991) recorded lower rates of rematuration in 
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previously mature salmon parr, which had been maintained at elevated winter 

temperatures. In contrast, Johnston et al. (1987) found that a temperature of 12°C 

stimulated gametogenesis whereas at lower temperatures oocyte maturation did not 

occur. Furthermore, Nakari et al. (1987) found that although an advanced photoperiod 

regime resulted in early maturation eggs were not ovulated until the temperature was 

>4°C. Given the contradictory evidence that exists further research is necessary in 

order to understand the effects of temperature on maturation. 

However, in the absence of environmental cues such as photoperiod, it is possible that 

temperature will act as a seasonal cue for development. It is also possible that 

temperature will affect the magnitude of the response that fish make to other 

environmental factors such as photoperiod (Clarke et al., 1978; Solbakken et al., 

1994) and it may therefore be appropriate to consider temperature as a factor that 

controls the rate at which physiological processes occur, as opposed to directly 

entraining development. 
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1.6 Experimental aims 

Currently the freshwater production of Atlantic salmon depends on transferring fish to 

sea at appropriate times of the year in order to aid the year round production of fish of 

harvestable size. However, during the freshwater stage it is also important to 

maximise growth rates as well as achieve a high incidence and quality of 

smoltification. Environmental manipulation plays a primary role in these 

physiological processes, but for maturation there is a clear lack of information 

regarding such effects. The interactions between growth, smoltification and 

maturation are also poorly understood and these are further investigated in the current 

thesis where the overall aims were as follows: 

1. To investigate the role of photoperiod on growth, maturation and 

smoltification in Atlantic salmon parr and to understand the interactions 

determining life history strategy. 

l.a. The effects of winter photoperiod timing on the development of 

Atlantic salmon parr. 

l.b. The effects of winter photoperiod timing and duration on the 

development of Atlantic salmon parr. 

2. To investigate the role of diet on growth and the accumulation of body lipid 

content and to elucidate the effects of such gains on development in Atlantic 

salmon parr. 
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2.a. The role of dietary lipid level on growth, lipid deposition and 

development in Atlantic salmon parr. 

2.b. The role of ration of feed on growth, lipid deposition and development 

in Atlantic salmon parr and the subsequent interactions with 

photoperiod. 

In summary, the experiments detailed in this thesis aimed to further our understanding 

of the environmental influences on freshwater development in a commercially 

important species and to elucidate the determining factors which result in an 

individual following a particular life history strategy. 
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Chapter 2: General Materials and Methods. 

2.1. Fish husbandry 

2.1.1. Experimental sites. 

The fish studied in the current experiments were investigated at seven different sites. 

Site 1 represented a freshwater hatchery and rearing facility, with water fed by a 

shallow river. Site 2 was a freshwater rearing site again fed by a shallow river, 

although the fish used at Site 2 were reared to first-feeding at a separate hatchery 

where water was again supplied through a shallow river. Sites 3, 4 and 5 were 

seawater on-growing sites located in sea lochs (salinity = 25.2±O.6 0/00). Site 6 was a 

freshwater hatchery and rearing facility, with water supplied through a loch fed, 

shallow river. Finally, Site 7 was a freshwater on-growing facility, with water fed 

from a shallow reservoir. All sites were located between 56°N and 57°N. 

2.1.2. Fish stocks. 

The fish used in experiments I and II, detailed in Chapter 3, were from a high grilsing 

Scottish stock (Marine Harvest Scotland) whereas those studied in experiment III 

were from a medium grilsing Scottish stock (Marine Harvest Scotland). Those used in 

the experiments detailed in Chapter 4 were from a low grilsing Scottish stock 

(Lakeland). 

2.1.3. Fish maintenance. 

All fish were held under flow through conditions in either square or circular, 

fibreglass tanks. All tanks were covered with light-proof polythene covers or 

fihreglass tank lids. Light was artificially supplied (detailed below) and unless 

otherwise stated, controlled by clockwork timers (±15min.) (Kingshield timer, 
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Powerbreaker PLC; Harlow, UK). In all cases light intensities were measured using a 

photosensitive meter (Skye Instruments Ltd.; Powys, UK). 

The fish used in experiment I were maintained throughout the experimental period in 

2m square, 1.6m3 tanks, with an external stand-pipe adjusted to maintain a water 

depth of approximately 0.3m. Light was supplied by one 500 watt halogen light (Ring 

lighting; Leeds, UK) creating approximately 3800 lux at the water surface and 1200 

lux at the tank bottom. In experiment II, fish were initially held under similar 

conditions before being moved to 4m diameter, 17m3
, circular tanks, with an external 

standpipe adjusted to maintain a water depth of 0.9m. Light in these tanks was 

supplied by two 500 watt halogen lights (Ring lighting; Leeds, England) creating 

3500 lux at the water surface and 1100 lux at the tank bottom. 

The fish described in Chapter 4, experiment IV, were maintained in 0.7m diameter, 

0.25m3
, circular tanks, with an internal standpipe adjusted to maintain a water depth 

of 0.5m. Light was supplied by one 100 watt filament light (RS Components Ltd.; 

Corby, UK) providing 80 lux at the water surface and 25 lux at the tank bottom. Both 

of the studies in experiment V were conducted in 1m square, OAm3, tanks, with an 

external standpipe adjusted to create a water depth of 0.3m. Light was supplied by one 

16 watt drum fitting light (RS Components Ltd.; Corby, UK) creating 1550 lux at the 

water surface and 320 lux at the tank bottom. During the natural photoperiod regime 

used for experiment Vb, light was controlled using a photosensitive switch (RS 

components Ltd.; Corby, UK) adapted by Alex Brewsters electrical contractors 

(Stirling, UK). 
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2.2. Anaesthesia 

For all experiments fish were anaesthetised for sampling purposes in a 1 :20,000 bath 

of 2-phenoxy ethanol (Sigma; Poole, UK) in farm water. Anaesthesia typically took 

approximately 3 min. Recovery from anaesthesia was achieved using a bath of aerated 

farm water. No mortalities were recorded following anaesthesia. 

2.3. Fish sacrifice 

For the removal of blood and tissue samples fish were considered too small for 

repeated sampling. They were therefore sacrificed prior to the removal of samples. To 

achieve this fish were anaesthetised in a 1: 1 0,000 solution of 2-phenoxy ethanol and 

then killed with a strong blow to the dorsal surface of the head such that death was 

instantaneous. 

2.4. P.I.T. tagging 

In order to identify individual fish within the respective popUlations passive integrated 

transponder (PIT) tags (Avid tags; Norco, USA) were used. Tags (12mm) were placed 

in the peritoneal cavity, by making a Smm incision in the posterior, ventral surface of 

the fish (slightly anterior to the pelvic fins) and injecting the tag into the cavity. The 

tag reader (Avid tags; Norco, USA) was then used to scan the tag to ensure that it was 

functioning correctly, after which a 3:1 mixture of Orahesive powder (Squibb and 

Sons Ltd.; Hounslow, UK) and Cicatrin antibiotic (The Well come Foundation Ltd.; 

Middlesex, UK) was applied to the incision area. To aid the identification of tagged 

individuals within the much larger non-tagged population the adipose fin of tagged 

fish was removed during the tagging procedure. Fish were tagged at as small a size as 
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possible «1.5g) with mortalities due to the procedure low «1%) and unrelated to 

size. 

2.5. Growth measurement 

Measurements of fish length and weight were made throughout the experiments. In all 

cases fork length was measured (±1mm) and weights (±O.lg) were recorded using an 

electronic balance (Model QC7DCE-S, Sartorius AG; Goettingen, Germany). 

2.6. Blood sampling 

Blood samples were taken via the dorsal caudal aorta of culled fish. Blood was drawn 

into Iml syringes (Terumo Europe N.V.; Leuven, Belgium) using either 23 or 25 

gauge sterile needles (Terumo Europe N.V.; Leuven, Belgium), for fish smaller and 

larger than 20g respectively. Where blood was to be used for serum testosterone 

analysis syringes were first rinsed with a 4mg. mrl solution of porcine intestinal 

heparin (Sigma; Poole, UK), whereas for serum osmolarity determination no such 

procedure was necessary. All blood samples were placed in 1.5ml microcentrifuge 

tubes and centrifuged at 2500 rpm for 15 min. at 4°C. Sera or plasma was then 

removed and stored at -70°C, until analysis was performed. Due to fish size blood 

samples were frequently pooled to achieve the necessary volumes for the respective 

analytical techniques. 

2.7. The identification of maturity. 

2.7.1. External identification 

During each sampling period experimental populations were examined for signs of 

maturation. Although mature parr have traditionally been identified based on their 
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external appearance (i.e. stunted size, dark coloration, increased mucus production) it 

was possible that such a procedure would not prove sufficiently precise. Therefore, 

for external identification individuals were only classified as mature if milt could be 

expressed following slight abdominal pressure. 

2.7.2. Internal identification 

During the experiments a number of fish were dissected to identify internal signs of 

maturation. Following dissection such fish were classified as maturing if their testes 

showed clear signs of development (i.e. thickening and whitening). 

2.7.3. Maturation index 

During the later experiments a more detailed classification of internal maturity status 

was made. Previously, Billard (1992) had listed 9 distinct stages of gonadal 

development including gonadal re-absorption. In the current experiments fish were 

categorised up to spermiation and a maturity index, adapted from that of Billard 

(1992), was used as shown below:-

Index 1: 

Index 2: 

Index 3: 

Index 4: 

Index 5: 

Gonadal tissue completely undeveloped, with pink and string

like testes. 

Slight thickening of gonadal tissue although testes remain pink 

in coloration. 

Clear gonadal development with thickened, white testes. 

Testes developed to full size although the external expression 

of milt is absent. 

Full gonadal development and the external expression of milt. 
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Fish with indices of 3 to 5 were considered to be maturing but not those with indices 

of 1 to 2. 

2.7.4. Plasma testosterone analysis 

Changes in the levels of plasma testosterone were used to investigate the development 

of maturation over time. The determination of plasma testosterone was measured by a 

direct radioimmunoassay, adapted from that of Duston and Bromage (1987):-

Testosterone standard 

A stock standard solution was produced by dissolving 1 ~g of freeze dried testosterone 

(Sigma; Poole, UK) in 10ml of Analar grade absolute ethanol (Sigma; Poole, UK) to 

create a testosterone concentration of 100ng.mr l
. This solution was stored at -20°C. 

A working standard solution was produced by diluting 1 OO~1 of stock standard in 

O.9ml of absolute ethanol to create a testosterone concentration of 10ng.mr1
• 

Assay buffer 

The following constituents were dissolved in 150ml of nanopure water and stirred at 

35°C. This solution was then made up to 500ml with nanopure water and chilled to 

4°. This buffer could be stored for 7 days at 4°C. 

Disodium hydrogen phosphate 8.88g 

Sodium dihydrogen phosphate 5.82g 

Sodium chloride 4.50g 

Gelatin O.50g 

All chemicals were Analar grade, purchased from BDH chemicals Ltd. (Poole, UK). 

38 



CHAPTER 2: GENERAL MATERIALS AND METHODS. 

Antibody 

1 g freeze dried anti testosterone rabbit antiserum (Biogenesis; Poole, UK) was diluted 

in Iml of nanopure water and stored in 100~1 aliquots at -20°C until required. A 

working antibody solution was created by diluting 200~1 of antibody in I9.8ml of 

assay buffer (sufficient for 200 assay tubes). 

Extraction 

Prior to determination it was necessary to extract the testosterone from the plasma 

samples according to the following protocol:-

1. Thaw samples thoroughly. 

2. Place 50~1 plasma into a polypropylene assay tube (LP3P tubes. Thermo Life 

Sciences; Basingstoke, UK). 

3. Add Iml ethyl acetate (Sigma; Poole, UK), stopper the tube and spin on a rotary 

mixer for 1 hr. 

4. Centrifuge the tubes at 1500rpm for 10min. at 4°C. 

5. Store tubes at 4°C until assayed. 

Assay protocol 

All samples and standards were assayed in duplicate according to the following 

protocol:-

1. Prepare a series of dilutions of the standard testosterone hormone with absolute 

ethanol in polypropylene tubes (LP3P, Thermo Life Sciences; Basingstoke, UK) 

to give a range of concentrations from 0-1 OOOpg/l 00111 (Fig. 2.1). Include a 

further tube containing 100llI ethanol which will be used to calculate the non-
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Fig. 2.1 A typical standard curve obtained from the radioimmunoassay of 

testosterone. Samples of unknown plasma testosterone content were evaluated using 

the curve, following radioimmunoassay to identify the samples relative percentage 

binding. 
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specific binding (NSB). 

2. Add IOOf..l1 of each sample extract to the sample tubes. 

3. Dry down the standards and sample extracts in a vacuum oven at less than 35°C. 

4. Cool the dry tubes to 4°C. 

5. Add IOOf..l1 of antibody to all standard and sample tubes except the NSB tubes. 

6. Add 100f..l1 of tritiated testosterone to each tube, vortex and incubate at 4°C for 18 

hours. 

7. Dissolve O.3g dextran-coated charcoal (Sigma; Poole, UK) in 125ml of assay 

buffer and stir on ice for 30min. 

8. Add 500f..l1 of charcoal solution to each tube, vortex and incubate for 10 min at 

4°C. 

9. Centrifuge at 2000rpm for 10 min at 4°C. 

10. Transfer 400f..l1 supernatant to 6ml polyethylene scintillation vials (Packard 

Biosciences; Groningen, The Netherlands) and add 4ml of scintillation fluid 

(Packard Biosciences; Groningen, The Netherlands). Transfer 4ml of scintillation 

fluid to 3 empty vials. Add 100f..l1 of tritiated testosterone to two of the vials for 

the calculation of total radioactivity. Use the remaining vial of scintillation fluid to 

calculate the background radioactivity. 

11. Vortex the vials thoroughly and count the radioactivity for 5 minutes in a 

scintillation counter (1900TR LSA, Canberra Packard Ltd.; Pangbourne., UK). 

Assay disintegration per minute (dpm) values were converted to pg testosterone.tube-1 

using the "Assayzap" computer program (Elsevier Biosoft) for the Apple Macintosh. 

41 



CHAPTER 2: GENERAL MATERIALS AND METHODS. 

Quality control and validation 

The sensitivity of the assay (Le. the minimum amount of testosterone able to be 

distinguished from zero) was 1.9pg. tube· I
. Pooled extractions with a testosterone 

content of approximately 55pg. tube- I were used to check the reproducibility of 

measurements, both between and within assays; the intra-assay coefficient of 

variation was calculated as 4.47% whereas the inter-assay coefficient of variation was 

6.60%. Serial dilutions of a pooled sample extract were used to obtain an inhibition 

curve (Fig. 2.2). No statistical difference (p>0.05) was found between the slopes of 

the inhibition plot and the standard curve regression lines. This confirmed that the 

testosterone being measured in the samples was immunologically similar to that in the 

standards. 

2.S. Assessment of smoltification 

During each experiment it was necessary to assess the development and completion of 

the parr-smolt transformation. This was achieved using several methods. 

2.S.1. Na\ Ie -ATPase determination 

Gill Na+, K+ -ATPase is an enzyme important in the ionic regulation of fish in sea 

water, with changes in enzyme activity often used as an indicator of the parr-smolt 

transformation in salmonids (McCormick, 1993). 

The determination of Na+, K+ -ATPase was performed according to the method 

detailed by McCormick (1993) which measures the oxidation of NADH by the 

ouabain sensitive hydrolysis of AlP. This method has been shown to highly sensitive 

and reproducible (McCormick, 1993). 
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Fig. 2.2 The parallelism of the inhibition curves obtained from the testosterone 

standard and a serial dilution of salmon plasma extract. The parallel nature of the lines 

indicates that the testosterone in the standards and samples was immunologically 

similar, therefore validating the assay for Atlantic salmon parr. 
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Assay constituents. 

All chemicals were Analar grade purchased from Sigma (Poole, UK). 

SEI buffer: The following constituents were dissolved in 475ml of nanopure water. 

The pH was adjusted to 7.3 with 1.0 M hydrochloric acid and a final volume of 500ml 

achieved by adding nanopure water. At 4 °C this buffer could be stored for three 

months. 

Sucrose 

Sodium EDTA 

Imidazole 

25.67g 

1.86g 

1.70g 

SEID: O.1g sodium deoxycholic acid dissolved in 20ml SEI buffer. At room 

temperature this solution could be stored for I week. 

Imidazole buffer: 1.702g imidazole dissolved in 475ml of nanopure water. The pH 

was adjusted to 7.5 with 1.0 M hydrochloric acid and a final volume of 500ml 

achieved by adding nanopure water. At 4 °C this solution could be stored for 3 

months. 

Salt buffer: The following constituents were dissolved in imidazole buffer to create 

500ml of solution. At 4 °C this solution could be stored for 3 months. 

Sodium chloride 5.52g 

Hydrous magnesium chloride I.07g 

Potassium chloride 1.57g 
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PEP: 0.491g phosphoenolpyruvate dissolved in lOOml imidazole buffer. Stored in 5ml 

aliquots at -70°C. 

Ouabain solution: O.382g ouabain dissolved in 50ml imidazole buffer. At room 

temperature this solution could be stored for three months. 

ADP standard: O.0489g adenosine diphosphate dissolved in a 25ml solution of sodium 

acetate buffer (0.4627g sodium acetate in lOOml nanopure water with pH adjusted to 

6.8). Stored at -70°C in 200JlI aliquots. 

Gill biopsy. 

4-6 filaments of gill tissue were removed from the second gill arch using fine tipped 

scissors. These were placed into 100JlI of ice-cold SEI buffer. Samples were 

immediately frozen in liquid nitrogen and stored at -70°C until enzyme determination. 

Enzyme activity 

All assay preparation was carried out on ice. 

Assay medium (AM) was prepared immediately prior to analysis with the following 

constituents:-

Pyrvuate kinase 

Lactate dehydrogenase 

NADH 

PEP 

ATP 

105Jll 

16.6JlI 

5mg 

Sml 

O.0l45g 

Imidazole buffer Make upto: 35ml 
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Pyruvate kinase (from rabbit muscle: activity 400-600 units per mg protein) and 

lactate dehydrogenase (from rabbit muscle: activity 800-1200 units per mg protein) 

were centrifuged at 12000rpm for 8 min. at 5 °C prior to mixing. 

NADH was purchased as a disodium salt in pre-weighed vials. 

Assay medium was stored at 4 °C until required. 

AM preparation: 

1. Transfer 17.5ml of AM to a vial and add 1.25ml of imidazole buffer (AM-I). 

2. Transfer 17.5ml of AM to a vial and add 1.25ml of ouabain solution (AM-O). 

3. Transfer 8.lml of AM-I to a vial and add 2.7ml of salt buffer. 

4. Transfer 8.lml of AM-O to a vial and add 2.7ml of salt buffer. 

These solutions were stored at 4°C until required. Prior to use the AM-llsalt and AM

O/salt were wanned in a water bath at 26°C for 10 minutes. 

ADP standard preparation: 

ADP standard solution was diluted with imidazole buffer to create ADP standards of 

0, 5, 10 and 20 nmoles. 1 o~rl concentration. 1 O~l of each standard was transferred, in 

triplicate, to wells on a 96 flat-well multi well plate (Elkay Laboratories Ltd; 

Basingstoke, UK). 

Sample preparation: 

1. Thaw samples thoroughly. 

2. Add 25JlI SEID to each sample. 
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3. Homogenise (after homogenisation enzyme activity declines. Therefore 

subsequent procedures must be completed within 30 min. of homo genis at ion). 

4. Centrifuge at 5000rpm for 30 sec. at 4°C. 

5. Transfer 1O~1 of sample to each of four wells on a 96 flat well multiwell plate. 

Assay completion: 

1. Add 200~1 of warmed AM-Usalt medium to wells containing all ADP standards as 

well as 2 replicates of each sample. 

2. Add 200~1 of wanned AM-O/salt medium to wells containing the remaining 2 

replicates of each sample. 

3. Measure the oxidation of NADH over 10 mm. at 340nm using a multiwell 

spectrophotometer (Multiskan Ex, Labsystems; Farnborough, UK). 

4. Using the plot of ADP standard samples (Fig. 2.3) and the colonnetric difference 

between the AM-J and AM-O wells after 10 min. establish the enzyme activity in 

tenns of ADP hydrolysed per hour. 

Protein determination: 

Na+, K+ -ATPase activity is expressed as ~mol ADP hydrolysed. mg protein-I. hr-I. 

Therefore the protein content of each sample was established. 

Samples were analysed using a bicinchoninic acid protein assay kit (Sigma; Poole, 

UK) using the following protocol: 

1. Prepare protein standards of 0, 5, 10 and 20~g. 1 o~rl by diluting 2mg. mrl 

bovine serum albumin standard with nanopure water. 

2. Transfer 1 O~l of each standard, in triplicate, to a 96 flat-well multiwell plate. 
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Fig. 2.3 Typical standard plots of enzyme activity (a) and protein content (b) used 

during the determination of Na +, K+ -ATPase activity in salmon parr. Samples of 

unknown enzyme activity and protein content were evaluated using the regression 

equations generated from the standard plots. 
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3. Centrifuge samples at 5000rpm for 30 sec. at 4°C. 

4. Transfer 10JlI of each sample. in triplicate, to the 96 flat-well multiwell plate. 

5. Add 200JlI of a 50:1 solution of bicinchoninic acid and copper II sulphate 

pentahydrate solution (4%) to each well of the multiwell plate. 

6. Incubate at 37°C for 30 min. 

7. Cool to room temperature and measure the absorbance at 560nm using a multiwell 

spectrophotometer (Multiskan Ex. Labsystems; Famborough. UK). 

8. Using the plot of protein standards (Fig.2.3) the protein content of each gill 

sample is calculated with ATPase activity then expressed as Jlmol ADP 

hydrolysed. mg protein-I. hr- l . 

2.8.2. Seawater tolerance 

As parr commence the physiological changes associated with the parr-smolt 

transformation their ability to survive in sea water increases. Seawater (37.5ppt) 

survival was therefore assessed at regular intervals using a protocol similar to that 

described by Saunders et al. (1985). 

1. In large. clear polythene bags, 1.875 kg of Instant Ocean synthetic sea salt 

(Animal House; Batley, UK) was allowed to dissolve in 50 I of continually aerated 

(Mistral 3 Air pump. Algarde; Nottingham. UK) water over 24h. Salinity was 

subsequently checked as being 37.5ppt using an optical refractometer (Amago 

mill; Japan). 

2. From each experimental treatment 15 randomly selected individuals were placed 

into separate seawater bags. Mortalities were recorded and removed daily for 96h. 

3. Total percentage mortality over 96h was then calculated for each treatment group. 
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2.8.3. Seawater challenge 

As parr commence and undergo the parr-smolt transformation they increase their 

ability to regulate the ion flux associated with seawater residence. This hypo

osmoregulatory ability can be studied using a seawater (35ppt) challenge with the 

subsequent assessment of the serum osmolality of surviving individuals. 

1. In large, clear polythene bags, 1.750 kg of Instant Ocean synthetic sea salt 

(Animal House; Batley, UK) was allowed to dissolved in 50 I of continually 

aerated (Mistral 3 Air pump, Algarde; Nottingham, UK) water over 24h. Salinity 

was subsequently checked as being 35ppt using an optical refractometer (Amago 

mill; Japan). 

2. From each experimental treatment 15 randomly selected individuals were placed 

into separate seawater bags. 

3. After 24h mortalities were recorded. Surviving individuals were culled and blood 

removed as described in Section 2.6. 

4. Blood samples were allowed to clot before being centrifuged at 2500 rpm for 

15min. at 4 °e. Serum was removed and stored at -70oe until osmolarity was 

determined. 

5. Samples were allowed to thaw thoroughly after which serum osmolality was 

determined using a 3MO plus, Advanced Micro-Osmometer (Advanced 

Instruments Inc.; Massachusetts, USA). 
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2.8.4. Smolt index 

Body silvering and fin coloration has often been used as a general measure of 

smoltification. During the current experiments the degree of body coloration was 

detennined using a index system described by Sigholt et al. (1995) as follows:-

Index 1: 

Index 2: 

Index 3: 

Index 4: 

2.8.5. Cohort analysis 

Typical parr, with parr marks clearly visible. 

Parr marks visible but some silvering. 

Silvered with visible parr marks. 

Typical smolt, no parr marks visible. 

At the conclusion of the experiments detailed in Chapter 3 it was evident that the 

photoperiod regimes had resulted in fish cohorts that could not easily be identified 

using either the smolt index system described above or by the division of fish into a 

particular mode of a bimodal distribution. Therefore a separate analytical system was 

developed which accounted for both fish size and coloration. The tenninology of Birt 

and Green (1986) and Sigholt et al. (1995) was used to aid in the interpretation of the 

each morphological nomenclature such that:-

Smolts: 

Large smolts: 

Fully silvered fish with no parr marks and blackened fin 

margins. These fish were typically >30g and <65g. 

Fully silvered fish with no parr marks and blackened fin 

margins although these fish were significantly larger 

than the smolts described above (i.e. > 1 OOg). 
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Silvered parr: 

Parr: 

Large parr: 

Small parr: 

Fish that were partially silvered with parr marks that 

were obscured but still visible. These fish were typically 

>30g and <65g. 

Fish showing no signs of silvering with the presence of 

distinct parr marks. These fish were typically >30g and 

<65g. 

Fish showing some slight silvering although distinct 

parr marks predominated. However, these fish were 

significantly larger than the parr described above (Le. 

>80g) 

Fish showing no signs of silvering with the presence of 

distinct parr marks although these fish were 

significantly smaller than the parr described above (Le. 

<15g). 

Although this nomenclature represents all of the cohorts identified during the 

experiments detailed in chapter three it is important to note that all cohorts were not 

necessarily identified within each treatment. Furthermore, the cohorts identified 

within the non-tagged populations were not necessarily all represented in the PIT 

tagged populations. Due to this the growth profiles of the PIT tagged fish may display 

different cohort structures to the graphs documenting total population structure. 

2.9. Whole body lipid determination 

Whole body samples that were taken for lipid determination were stored at -20°C 

until analysis. Lipid levels were initially calculated as a percentage of dry weight with 

samples dried to constant mass in a drying oven (Gallenkamp; Loughborough, UK) 
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held at 100°C. Dried samples were ground into a coarse powder using a small 

domestic electric food blender (Optiblend 2000, Moulinex; Paris, France). 

Lipid determination was performed by the soxhlet extraction method using a Soxtec 

HT 6 extraction unit (Tecator AB; Hoganas, Sweden) as follows:-

1. Approximately 1-3 g of sample was weighed into an extraction thimble (Whatman 

International Ltd.; Maidstone, UK) and the extraction thimbles were fitted to the 

Soxtec unit. 

2. An extraction cup containing 5 glass beads (BDH chemicals Ltd.; Poole, UK) was 

weighed. 

3. 50ml of petroleum ether (Fisher Scientific Ltd.; Loughborough, UK) was added to 

each extraction cup and the cups were fitted to the Soxtec unit. 

4. The extraction thimbles were lowered into the boiling petroleum ether for 20min. 

5. The thimbles were then rinsed for lhr 25min after which the petroleum ether was 

evaporated from the extraction cup for 15min. 

6. The extraction cup was placed into the oven for 1 hr at 100°C. 

7. The cooled extraction cup was then re-weighed. 

8. Percentage dry weight lipid was then calculated as:-

% lipid = extracted lipid weight/sample wt.l 00 

9. These values were then converted to % wet weight lipid content as follows:-

% wet wt lipid = (% dry wt)/lOO.% dry wt lipid 
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2.10. Analytical calculations 

2.10.1. Condition factor 

Condition factor (CF) has previously been used as a measurement of body fat content 

(Herbinger and Friars, 1991) and as such links have been made to the condition of 

maturing individuals. Furthermore, changes in condition have been used as a measure 

of smoltification (with a decline in CF from approximately 1.2 in salmon parr to about 

0.9 indicative of the parr-smolt transformation). Therefore in the current experiments 

condition factor was calculated from the measured length and weight of individual 

fish as follows:-

Condition factor = [Weight (g). 1 00] / length (cm)3 

2.10.2. Specific growth rate (SGR) 

Specific growth rate (SGR) was calculated based on changes in weight over a known 

time as follows:-

Where: 

Specific growth rate (%. day"l) = [Ln Wh - Ln Wtl] / (h -tl) 

Wtl = fish weight (g) at time tl 

Wh = fish weight (g) at time t2 

During the experiments detailed in Chapter 3 PIT tagging allowed the specific growth 

rate of individual fish to be calculated. In Chapter 4 growth was calculated from mean 

treatment weights. 
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2.11. Statistical analysis 

The statistical principles used within this thesis are described in Sokal and Rohlf 

(1995) and Zar (1999). The majority of calculations were performed using the 

Minitab statistical package (release 13.1). Where non-parametric multi-comparison 

tests were performed, using Dunn's procedure, "in house" software (courtesy of Dr. 

Mark Thrush) was executed using Minitab statistical package (release 12.1). Where 

statistical analyses were calculated by hand Microsoft Excel 97 was used to aid data 

manipulation. A significance level of 5% was used for all tests. 

2.11.1. Estimation of the population mean 

The arithmetic mean (X) was used to provide an estimation of the population mean 

(/l). In all cases X was used along with the standard error of the mean (S.E.M.) to give 

a representation of the sample distribution. 

Arithmetic mean (X) = I X 
n 

Where: Ix = the sum of observed samples 

n = the number of observations 

Standard error of the mean (S.E.M.) = J-;, 

Where s = sample standard deviation = 
n-l 
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2.11.2. Parametric assumptions. 

All parametric techniques are based on a number of fundamental assumptions. Firstly, 

all observations must be derived randomly and the variation of these observations 

should be independently distributed. Furthermore, parametric tests require sample 

variations to be identically distributed (i.e. homogeneous) with a normal population 

structure. Therefore all data were investigated to confirm normality and homogeneity 

of variance prior to detailed statistical analysis. 

2.11.3. Testing for normality and homogeneity of variance 

Where general linear models were performed (see section 2.11.4.) n was typically 

large enough to allow normality and homogeneity of variance to be confirmed by the 

examination of the residual plots. However, where n was insufficient to allow this or 

where other statistical techniques were performed the following tests were used:-

Normality 

Normality was checked using the Kolmogorov-Smimov test. This non-parametric test 

is typically used to compare two cumulative frequency distributions (F) but it can be 

adapted to compare the distribution of a known distribution with an expected 

distribution. This therefore allows sample populations to be compared to the normal 

distribution. 

Homogeneity of variance 

For the comparison of two sample variances the F-test was used as follows:-
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Where S]2 and s; are the greater and lesser variances respectively. 

Degrees of freedom Vi. V2 = nl-l, n2-1 

The F value was then compared to tabulated values such that if the calculated value 

was greater than or equal to the tabulated value, at the 5% level, the variances were 

considered as heterogeneous. 

Bartlett's test (B) was used to compare more than two sample variances. The 

distribution of B is approximated by the chi-squared distribution although an 

improved approximation can be obtained as follows:-

B B=
c C with k-l degrees of freedom 

Where: 

nj is the size of sample i 

s! is the pooled variance 

c= 1+ 1 
3(k -1) 

k 1 1 L---k 
;=1 Vi LVi 

;=1 

Again, if the calculated value was greater than or equal to the tabulated value, at the 

5% level, the variances were considered as heterogeneous. 

2.11.4. Sample comparison 

All parametric tests were perfonned usmg the analysis of variance technique. 

However, these calculations were manipulated by the use of General Linear Models 
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(GLM). Using the Minitab statistical package it was possible to manipulate the 

ANOV A by constructing model fonnulae which accounted for a number of factor 

levels with replication and repeated measures sampling also included. As such it was 

possible to increase the robustness of each test for the particular parameters that were 

available. Furthennore, where replicate differences occurred the GLM accounted for 

the variation between the replicates when presenting statistical significance levels. 

For post-hoc multiple comparisons Tukey tests were used. This method involves the 

pairwise comparison of group means to give the test statistic q such that:-

Where: XQ and X B are sample means 

nl and n2 are the number of observation in each sample 

i is the error mean square (calculated by the ANOVA) 

If the calculated q value was greater than the tabulated value, at the 5% significance 

level, the means of the two samples were considered to be significantly different. 

2.11.5. Non-parametric techniques 

Where the assumptions required for parametric analysis were not met it was necessary 

to perfonn a non-parametric equivalent to an ANOVA. In the current experiments a 

Kruskal-Wallis non-parametric test was performed by ranking the samples and 

calculating the test statistic Has follows:-
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12'" n, [1i; - liY H = --=L..J=-...,....-_..,.--_ 
N(N +1) 

Where: nj is the number of observations in group i 

N is the total sample size 

R; is the average of the ranks in group i 

R is the average of all ranks 

However where there is tied data it is suggested that H is adjusted such that:-

Where:J distinct values occur among the N observations 

and for the Jth value there are dj tied 

observations 

If the calculated H (adj) value was greater than the tabulated value, at the 5% 

significance level, the samples were considered as significantly different. Differences 

between samples were then compared using Dunn's multiple range test with the test 

statistic Q calculated as follows:-

Q=~======~~~==== 

Where: RA and RBare the mean ranks of the samples 

N is the total number of observations 

t is the number of ties for a given value 
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nA and ns are the number of observations 10 

each sample 

2.11.6. Analysis of proportions 

During the analysis of the data it was necessary to compare proportions. In order to 

achieve this 95% confidence limits were calculated for the respective proportions, 

detailed by Fowler and Cohen (1987) as follows:-

95% confidence limits = t.96( ~ P~ = i lJ 
Where:p is the sample proportion 

n is the number of sampling units 

If the upper and lower confidence limits of respective proportions were not found to 

overlap the two proportions were considered as statistically different at the 5% level. 

2.11.7. Correlation coefficient 

The degree of linear relationship between two variables was considered by calculating 

the Pearson product moment correlation coefficient (r):-

r= ~)x-xXY-Y) 
{n -1)sxsy 

Where: x and y are the means of the variables 

Sx and Sy are the standard deviations of the variables 

If the calculated r value was greater than the tabulated r value, at the 5% level, the 

correlation between variables was considered to be significant. 
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Chapter 3: Photoperiodic effects on growth, maturation and 

smoItification. 

3.1. Introduction. 

3.1.1. Light. 

In recent years the manipulation of light has become of increasing significance in 

salmonid aquaculture due to its influence on physiological processes linked to growth, 

maturation and smoltification. Accurately understanding how light influences such 

processes therefore requires investigation into the roles of spectral composition 

(wavelength), light intensity (energy) and photoperiod (daylength) (Boeuf and Le 

Bail, 1999). However, there are distinct differences in the amount of literature present 

for each of these aspects and this has led to some confusion concerning their 

individual significance (Boeuf and Le Bail, 1999). For the role of light intensity, 

limited research presents itself (e.g. Wallace et al., 1988; Stefansson, 1990; Hansen 

and Skilbrei, 1997) with even more sparse data present for the effects of spectral 

composition (e.g. Stefansson and Hansen, 1989). However, for photoperiod extensive 

literature can be found and it is generally accepted that it is the most important aspect 

of light controlling fish development (Stefansson, 1989) although it is also evident 

that some confusion remains concerning how it influences development, particularly 

injuvenile salmon. 

3.1.2. Light intensity 

Interest into the effects of light intensity on fish physiology has only become evident 

in recent years and is currently both limited and contradictory. Wallace et al. (1988) 
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provided some of the first work into the effects of light intensity by exposing juvenile 

Arctic chaIT and Atlantic salmon to intensities of either 700, 200, 50 or 10 lux over a 

35 day period. For the charr growth was highest at 50 lux indicating a light intensity 

optimum, whereas for the salmon ambiguous results were presented. Although 700 

lux proved most beneficial for growth this intensity also caused high levels of 

mortality indicating an increased level of stress (Wallace et at., 1988). Subsequently 

Oppedal et at. (1997) exposed post-smolt salmon to natural daytime light 

supplemented with additional night-time illumination of low, medium and high 

intensity, from January until June. Under the high intensity regime increases in live 

body weight were observed with gutted weight also correlated to light intensity. No 

mature fish were found amongst the additional light treatments with low levels 

present in the naturally lit groups and it was concluded that growth and the proportion 

of fish which mature may be influenced by light intensity thresholds (Oppedal et at., 

1997). Although the influence of light intensity on maturation may be disputed in 

these experiments (primarily due to the influence of continuous light as a function of 

daylength: see Section 3.1.4) some role of light intensity in fish growth does seem 

possible (Wallace et at., 1988; Oppedal et at., 1997). 

However, Stefansson et at. (1993) have provided results indicating that light intensity 

is not influential in fish development. In their experiments Atlantic salmon parr were 

exposed to a natural photoperiod regime using either 715, 335 or 27 lux between 

November and May. No differences in growth were found between groups with all 

fish completing the parr-smolt transformation successfully. Post-smolt maturation in 

the Autumn following seawater transfer was also unaffected by the light intensity 

regimes used in fresh water. Additionally, Oppedal et at. (1999) found that continuous 
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light regimes of either low, medium or high intensity had no effect on growth and the 

incidence of maturation in post-smolt salmon and it seems that growing evidence 

provides support that light intensity is not necessarily influential in fish development 

(Stefansson, 1990; Dahle et al., 1999). 

However, studies that investigate light intensity can only provide information 

regarding changes that occur within the range of intensities used and although in some 

cases no effects are seen it is likely that certain developmental processes will require a 

minimum threshold of light. In support of this Hansen and Skilbrei (1997) 

investigated the growth of salmon parr exposed to continuous light of either 1000, 

100, 10, 1 or 0 lux and concluded that growth was lower under the 1 lux intensity than 

under the other continuous light regimes. 

It is also likely that the difference between day- and night-time light intensity will be 

important in how fish perceive daylength. Thoranensen et al. (1988) used a 12 week 

period of short days, followed by 10 weeks of long days, to stimulate smoltification in 

coho salmon parr although during the night-time periods illumination of between 

0.0001 and 0.5 lux was provided. It was found that growth, body silvering and 

seawater adaptation were reduced in all groups receiving the night-time light and it 

was concluded that the threshold level for the inhibition of smoltification may be 

close to 0.0001 lux (Thoranensen et al., 1988). Similarly, Hansen and Skilbrei (1997) 

investigated the effects of day- and night-time light intensity on growth using 

combinations of 1000, 100, 10, 1 or 0 lux during the respective periods of a constant 

LD 8:16 regime. They found that groups given more than 10 lux during their "dark" 

period grew at similar rates to fish that were exposed to continuous light of 10 lux or 
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higher. They also concluded that fish measure daylength by comparing the light 

intensity of the respective light and dark periods of a photoperiod with 1 lux sufficient 

to be recognised as night-time illumination if the day-time intensity is sufficiently 

high. In support, Stefansson et al. (1991) found that if fish were exposed to a 

simulated natural photoperiod regime using 1400 lux during the day-time and 27 lux 

during the night-time growth was similar to fish exposed to a continuous 1400 lux 

light regime. 

In conclusion, there is now a preliminary understanding of the role that light intensity 

plays in both fish development and the perception of daylength although our current 

understanding of these processes is still relatively limited. However, from these 

principles it is possible that light intensity manipulations may prove important for 

future commercial gain. 

3.1.3. Spectral composition 

For the physiological effects of spectral composition Stefansson and Hansen (1989) 

provide the most notable work to date. In their study different light sources were used 

to manipulate both the colour temperature (K) and colour reproduction (Ra) of light to 

which fish were exposed. They concluded that neither fish growth nor the parr-smolt 

transformation were affected by light sources of different spectral composition. 

Stefansson and Hansen (1989) did not consider the effects of spectral composition on 

maturation and to date no such literature presents itself. 
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3.1.4. Photoperiod 

Although some evidence suggests that fish development is affected by, in particular, 

light intensity, it is generally accepted that photoperiod is the most important aspect of 

light controlling fish development (Stefansson, 1989). As such the role of photoperiod 

is now extensively investigated and its manipulation is of increasing importance in 

commercial aquaculture. 

3.1.4.1. Growth 

Light periodicity has been shown to exert a primary role on the growth of fish. In 

particular the effects of photoperiod have been extensively documented in both adult 

(Krakenes et al., 1991; Hansen et al., 1992; Oppedal et al., 1997; Duncan et al., 1999; 

Endal et al., 2000) and juvenile salmonids (Saunders et al., 1985; Villarreal et al., 

1988; Stefansson et al., 1989; Stefansson et al., 1991; Solbakken et al., 1994; Skilbrei 

et al., 1997) although similar relationships have been found in a range of other 

economically important species such as the Atlantic cod (Dahle et al., 1999; Hansen 

et al., 2001), the sea bass (Rodriguez et al., 2001) and the Atlantic halibut (Jonassen 

et al., 2000; Simensen et al., 2000). 

Daylength primarily influences growth by allowing an increase in food intake 

(Higgins and Talbot, 1985; Boujard and Leatherland; 1992; Stead, 1997; Bolliet et al., 

2001), which is linked to the visual recognition of feed items, as the photoperiod is 

extended. However, it has also been found that feed conversion efficiency is linked to 

daylength (Higgins and Talbot, 1985; Jonassen et al., 2000) with changes in activity 

and anabolic effects of photoperiod thought to contribute to this correlation (Jonassen 
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et al., 2000). It is therefore, likely that a general correlation will exist between light 

and growth. 

Most evidence suggests that actual daylength is of primary importance to fish growth. 

For Atlantic salmon in freshwater Komourdjian et al. (1976) provided the first early 

evidence that growth is enhanced by increased photoperiod. By investigating natural 

and reciprocal photoperiod regimes (Fig. 3.1) it was found that growth was dependant 

on daylength regardless of the direction of the changing photoperiod (Komourdjian et 

al., 1976). Subsequently Clarke et al. (1978) documented high growth rates in 

sockeye and coho salmon parr exposed to long day regimes. More recently it has been 

shown that continuous light results in bimodality being weakened (Stefansson et al., 

1989; Skilbrei, 1991) or delayed (Duncan and Bromage, 1998) with periods of 

extended light increasing the growth rate of small and medium size range fish 

allowing their entry into the upper modal group (UMG) (Stewart et al., 1990). It 

therefore seems that a clear link between daylength and growth is evident and indeed 

supporting evidence for the importance of long day or continuous light is now 

extensive (Lundqvist, 1980; Saunders and Henderson, 1988; Stefansson et al., 1989; 

Saunders and Harmon, 1990; Solbakken et al., 1994; Sigholt et al., 1995). 

However, it is also apparent that in freshwater, when such photoperiods are applied 

for long periods oftime, conflicting results can occur. Villarreal et al. (1988) exposed 

Atlantic salmon parr to either continuous light or a natural photoperiod shortly after 

first-feeding and recorded increased growth for continuously illuminated groups 

throughout the subsequent six month period. More recently Handeland and Stefansson 
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Fig. 3.1 Photoperiod regimes used during experiments conducted by Saunders and 

Henderson (1970) (a), Komourdjian et al. (1976) and Saunders and Henderson (1978) 

(b), as well as Clarke et al. (1985) (c). Nat. denotes a simulated natural photoperiod, 

Rec. denotes a reciprocal natural photoperiod, Const. denotes a constant photoperiod, 

Accel. denotes an accelerated natural photoperiod. 
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(2001) documented the growth of parr exposed to constant LD 24:0 being greater than 

for those exposed to shorter day regimes during the freshwater phase. 

However, over extended periods of time shorter day regimes may prove more 

beneficial to growth. Saunders and Henderson (1988) exposed first-feeding fry to 

either constant LD24:0, LDI6:8, LD 12:12 or an ambient photoperiod from May until 

January. Constant LD24:0 resulted in the highest growth rates for the initial three 

months after which fish exposed to LD16:8 grew faster than all other groups. 

Similarly, Berg et al. (1994) found that when constant LD24:0 was applied to first

feeding fry growth was only elevated for two months. Subsequently Solbakken et al. 

(1994) and Stefansson et al. (1989) have recorded similar differences between fish 

exposed to long days and those held on a range of other shorter day photoperiods. 

Generally, it seems that extended or continuous illumination for between three 

(Saunders and Henderson, 1988; Solbakken et al., 1994) and five months (Stefansson 

et al., 1989; Solbakken et al., 1994) will result in enhanced growth rates compared to 

individuals exposed to shorter day regimes. After this initial period growth rates tend 

to decrease (Stefansson et al., 1989; Solbakken et al., 1994) so that shorter day 

photoperiod regimes may result in higher growth rates with earlier size differentials 

often reduced (c.f. Stefansson et a!., 1989) or even reversed (c.f. Saunders and 

Henderson, 1988). 

In sea water, extended daylengths applied to tank-reared Atlantic salmon post-smolts 

have also resulted in enhanced growth rates (Saunders and Harmon, 1988; Taranger et 

aI., 1995) with such results observed when extended light has been applied between 
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August and either September or January (Saunders and Hannon, 1988) and between 

January and May (Taranger et al., 1995). Comparable results have also been found for 

Atlantic salmon in sea cages (Krakenes et al., 1991; Hansen et al., 1992; Taranger et 

al., 1995; Endal et al., 2000). Krakenes et al. (1991) recorded that post-smolt growth 

increased with additional night-time light supplied between late February and June 

and such growth increases have also been observed when additional lighting is 

applied from October until June (Hansen et al., 1992), from January until May 

(Taranger et al., 1995) and from either November, December or January until July 

(Endal et al., 2000). Oppedal et al. (1997) and Oppedal et al. (1999) have also 

recorded increased growth rates for salmon exposed to constant LD24:0 during their 

experiments into the effects of light intensity on fish growth. Therefore in sea water, 

unlike fresh water, long-term increases in growth seem to be related to additional 

lighting although it is important to note that growth differentials will not necessarily 

be observed during the period when additional light is supplied (c.f. Endal et al., 

2000; applied additional lighting from November, December or January until July, 

with resultant increases in mean body weight only observed from May onwards). 

It is also important to note that in sea water increases in growth due to the application 

of additional lighting may be preceded by an initial 1 to 2 month decrease in growth 

(Hansen et al., 1992; Taranger et al., 1995; Porter et al., 1999b; Endal et al., 2000). 

Hansen et al. (1992) documented an initial decrease between October and December 

whereas Endal et al. (2000) recorded a six week growth depression before rates rose. 

A similar initial growth depression has not been recorded in fresh water and it 

therefore seems to be linked to adult growth. However, there is a limited 

understanding of the causal factors involved in this growth depression and although 
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some evidence suggests that additional lighting causes an initial appetite suppression 

(Taranger et al., 1995) there is currently no detailed explanation for this occurrence. 

It is therefore possible to generalise that the growth of both adult and juvenile 

salmonids is enhanced by either continual illumination or long day photoperiod 

regimes. As might be expected from these findings periods of illumination shorter 

than the natural daylength have been shown to cause a reduction in growth. Saunders 

and Harmon (1990) reported a decrease in the growth rates of Atlantic salmon post

smolts following the reversion to natural light from a two-month period of constant 

LD24:0. Skilbrei et al. (1997) recorded reduced increases in length and a higher 

proportion of lower modal group (LMG) fish for juvenile Atlantic salmon exposed to 

short day regimes (i.e. 6 to 12 h daylight) when compared to those held under longer 

day (Le. 12+ h daylight) treatments. Similar changes have also been recorded when 

fish are moved from fresh to sea water. Lower growth rates were recorded for fish that 

were moved from continuous illumination in fresh water to a natural photoperiod in 

sea water (Duncan et al., 1998; Duncan et al., 1999), with the observed changes 

dissociated from any environmental effects linked to the transfer because no growth 

depression was observed in fish held on LD24:0 throughout both fresh- and sea-water 

development. 

However, although it is clear that actual daylength can be correlated with growth rate 

a further hypothesis presents itself. It is possible that the rate of change of photoperiod 

is influential in growth and indeed some works present conflicting results (e.g. 

Skilbrei, 1991). Komourdjian et al. (1976) stated that changes in growth were due to 

actual day length regardless of whether the photoperiod was increasing or decreasing, 
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but Clarke et al. (1978) reported the first evidence of a rate of change effect. They 

found that although growth was greatest for sockeye and coho salmon exposed to 

constant 20h illumination a decreasing photoperiod was conducive to rapid growth 

with the lowest rates observed on a rapidly increasing photoperiod. However, in a 

subsequent experiment conducted earlier in the growth season Clarke et al. (1978) 

recorded that growth was elevated under an increasing photoperiod indicating that as 

well as direction and rate of change seasonal sensitivity to the changing photoperiod 

was important. 

The results presented by Villarreal et al. (1988) and Duston and Saunders (1992) also 

provide tentative support for a rate of change hypothesis. Villarreal et al. (1988) 

recorded that Atlantic salmon exposed to compressed natural photoperiod regimes 

grew less well than controls. Similarly, Duston and Saunders (1992) observed that 

groups exposed to 6-, 12- and 18- month adjusted annual photoperiod cycles had 50, 

60 and 100% recruitment into the LMG respectively implying a distinct growth 

differential. Compressed/extended regimes, such as those observed in these 

experiments, lead to more rapid changes in photoperiod than would naturally occur 

and it is possible that changes in growth could occur as a function of the rate of the 

changing photoperiod. 

3.1.4.2. Maturation 

Although Villarreal and Thorpe (1985) found photoperiod to exert no role on 

spermatogenesis in juvenile Atlantic salmon, it is now generally accepted that 

photoperiod is the major environmental factor influencing maturation (Bromage et al., 

1984; Takashima and Yamada, 1984; Duston and Bromage, 1986, 1987, 1991; 
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Duston and Saunders, 1992; Taranger et al., 1999a). As such the use of photoperiod is 

now widespread in aquaculture for both the prevention or reduction of maturation as 

well as its enhancement e.g. for the out-of-season production of eggs and larvae (e.g. 

Macquarrie et al., 1979: for the pink salmon; Johnson, 1984: for the chinook salmon; 

Bromage et al., 1984: for the rainbow trout). It is therefore clear that a solid 

understanding of how photoperiod and maturation interact is required for future 

aquaculture advancement. 

Early work into the role of actual daylength on salmonid maturation provides some of 

the most useful and important work to date. Bromage et al. (1984) investigated the 

effects of various combinations of long and short day photoperiod on spawning in the 

rainbow trout. They found that long days early in the year initiated ovarian 

development, with a long day period of only six weeks sufficient to initiate 

maturation. Following the initiation with long days, a period of short days resulted in 

maturation being completed (Bromage et al., 1984). Elliott et al. (1984) supported this 

work by investigating the effects of both constant and seasonally-changing 

photoperiods on maturation in three strains of rainbow trout. These findings 

confirmed the importance of a long or increasing daylength cue during the early 

stages of gonadal development with a short day cue important later in the cycle. 

Further support for this theory was provided by Takashima and Yamada (1984) 

working on the masu salmon. In these experiments a range of photoperiod 

combinations were investigated the conclusions being in agreement with the findings 

of Bromage et al. (1984) and Elliott et al. (1984). Subsequently, Duston and Bromage 

(1987) found that an abrupt reduction in photoperiod successfully advanced 

maturation in rainbow trout, with Taranger et al. (1995) finding that, for adult Atlantic 

72 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

salmon, an abrupt increase in photoperiod reduced the proportion of fish maturing as 

grilse. By using 6-, 12- and 18-month annual photoperiod regimes, Duston and 

Saunders (1992) proposed that under a naturally-changing photoperiod maturation is 

initiated on the increasing phase (during spring) with its completion on the decreasing 

phase (autumn). 

From these studies, further insight into the role of actual daylength has been made. It 

has been suggested that the initiation of gonadal investment, by long day photoperiod, 

requires a certain day length threshold (Saunders and Henderson, 1988). Elliott et al. 

(1984) have suggested that the amount of daylight received in a daily cycle is 

important in maturation with a daily sensitivity to photoperiodic cues also indicated 

(Elliott et al., 1984; Duston and Bromage, 1986). Subsequently, for the completion of 

maturation it has also been shown that the reduction in photoperiod is more important 

than its actual magnitude (Duston and Bromage, 1987). 

However, it is evident that variations to these perceived models of salmonid 

maturation are becoming increasingly evident with such deviations most notable when 

constant photoperiods are applied for long periods of time. During the early work of 

Bromage et al. (1984) and Takashima and Yamada (1984) it was noted that spawning 

was also advanced by constant long days or continuous light. Similarly, Scott et al. 

(1984) found that constant LD18:6 resulted in the early spawning of rainbow trout 

and, subsequently, similar advancements have been documented for trout (Duston and 

Bromage, 1986) as well as both juvenile (Skilbrei, 1991) and adult (Hansen et al., 

1992) salmon. Although, it should be noted that for the adults investigated by Hansen 

et al. (1992), maturation was not advanced by constant LD24:0 throughout 
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development but by continuous additional light applied from October until June. It is 

also important to note that the constant light regimes used in the experiments detailed 

above were applied after a natural winter photoperiod and as such the period of short 

days prior to the experimental light regimes may have influenced the initiation of 

maturation. 

It is also evident that periods of continuous illumination or long days can delay 

maturation. For salmon parr exposed to constant LD 20:4 regimes a delay in ripening 

has been observed (Erikson and Lundqvist, 1980; Lundqvist, 1980), with a similar 

finding documented for rainbow trout exposed to constant LD 24:0 from June 

onwards (Bourlier and Billard, 1984a, b). For chinook salmon held in fresh water a 

delay in ripening has also been found when the natural ambient daylength was 

artificially extended between December and March (Johnson, 1984). However, for 

adult salmon held in sea water there is no evidence that maturation is delayed by 

extending the natural winter daylength. 

As well as the observed effects on the timing of maturation, the use of continuous 

light or long days has also been found to result in changes in the incidence of 

maturation. When day lengths longer than those naturally experienced have been 

applied between August and January (Saunders and Harmon, 1988) and February and 

June (Krakenes et ai., 1991), the proportion of grilse has been shown to increase when 

compared to fish exposed to natural light. Duncan et al. (1999) also recorded 

increased levels of maturation when smolts were exposed to continuous light and 

these findings were further supported by Endal et ai. (2000) who showed that the 
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proportion of maturing fish was affected by both early exposure, and the duration of, 

continuous light applied between November and July. 

Decreases in the incidence of maturation have also been found following long day 

treatment. Saunders and Henderson (1988) exposed Atlantic salmon parr to 

continuous light from first-feeding and found that levels of maturation decreased from 

67% of males in naturally lit groups to 55% in continuously illuminated treatments. 

Furthermore, decreases in the rate of maturation from 19% to 1% (Berg et al., 1994) 

and from 26% to 12% (Duston and Saunders, 1995) nave also been found when 

comparing fish exposed to a natural photoperiod to those continuously illuminated 

from first-feeding. Similar reductions have been noted in Atlantic salmon parr 

exposed to continuous light from December onwards (Skilbrei, 1991). 

In sea water reductions in maturation have also been recorded. However, for adult 

salmon constant long photoperiods have generally been investigated during the winter 

months onwards. Hansen et al. (1992) recorded a decrease in the level of maturation 

in sea cage reared Atlantic salmon exposed to continuous illumination from October 

until June. Similarly, Taranger et al. (1995) found reduced levels of maturation in 

tank-reared salmon exposed to continuous light between January and May. 

Subsequently, Oppedal et al. (1997), Taranger et al. (1998), Porter et al. (1999a) and 

Taranger et al. (1999) have all documented reductions in the incidence of grilse 

following exposure to additional lighting from winter through to early summer. 

It would therefore, seem that when constant daylength regimes are applied to salmon 

variations in the levels of maturation will occur. However, as seen with salmonid 
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growth there is some evidence suggesting that the rate at which a photoperiod changes 

is of primary importance in cueing reproduction. Eriksson and Lundqvist (1980) 

investigated the effects of a range of both constant and decreasing photoperiod 

regimes on maturation in Baltic salmon parr. Their experiments showed that an 

accelerated decreasing photoperiod brought forward maturation whereas a sudden 

switch from a long to a short photoperiod was not effective in advancing maturity. As 

with the effects of photoperiod on growth some support can be found by using 

compressed and extended annual photoperiod cycles. Duston and Saunders (1992) 

found negligible levels of parr maturation in groups subjected to an 18 month 

extended annual photoperiod whereas 6- and 12- month cycles provided high levels of 

maturity. In such experiments, the rate of change of the photoperiod may be providing 

the cue for maturation although it is possible that the actual period of time that such 

fish are exposed to a minimum or maximum day length is providing the most 

important cue. The exposure of fish to these actual daylengths may also be occurring 

at seasonally important times thus creating an effect that is not based on the rate of the 

changing photoperiod. 

Even if experimental designs of this nature can be used to support the rate of change 

hypothesis there is additional growing evidence that increasing or decreasing 

photoperiods are not the primary influence in salmonid reproduction. Stuart-Kregor et 

al. (1981) noted that for Atlantic salmon the initiation of maturation occurred around 

the time of the summer solstice, when little change in photoperiod is evident, although 

this study did use the relatively insensitive gonadal somatic index (OS I) to measure 

the timing of the initiation of maturation, with the documented changes in OSI 

possibly occurring some time after maturation was initiated. Elliott et al. (1984) and 
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Saunders and Henderson (1988) compared constant and seasonally-changing 

photoperiods concluding that it was the amount of daylight received and not the rate 

of the changing photoperiod that was the primary factor cueing reproduction. 

However, it has been found that the advancement of maturation is influenced by the 

reduction in daylength as opposed to the actual magnitude of the reduction with the 

importance of the direction of this change also highlighted (Duston, 1987; Duston and 

Bromage, 1986). It is therefore likely that, although daylength is the primary cue 

affecting maturation the changing photoperiod will be effective by providing the 

necessary daylength cue at particular times of the year, along with a required 

directional change. 

It is, therefore, clear that the initiation of maturation will reqUIre seasonal 

environmental signals (Thorpe, 1987b) such as changes in photoperiod. However, 

Polikansky (1983) has also proposed that fish will mature as soon as they are able to 

do so although it is likely that this initiation will first require the attainment of specific 

thresholds of growth or development (Bailey et al., 1980; Thorpe and Morgan, 1980; 

Saunders et al., 1982; McCormick and Naiman, 1984). Subsequently, it has been 

suggested that such developmental thresholds may influence maturation during 

seasonally-critical periods (Thorpe, 1986; 1987b; Duston and Saunders, 1992; 

Metcalfe, 1998; Thorpe and Metcalfe, 1998; Taranger et al., 1999). 

Thorpe (1986) provided one of the first models that explained the initiation of 

maturation. He proposed that for salmon parr photoperiod had a major role in 

regulating the decision to either maintain or reduce growth during mid-winter. 

Furthermore, it was suggested that if the rate of acquisition of energy was sufficient 
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during early sprmg, when fish are sensitive to the photoperiodic stimulation of 

hormone systems, maturation would be initiated (Thorpe, 1986). Subsequently, 

Duston and Saunders (1992) investigated annual photoperiods that were manipulated 

to occur in either 6-, 12- or 18-month periods. They concluded that the initiation of 

maturation would occur on the increasing phase of the photoperiod (Le. in spring) 

provided sufficient growth thresholds had been achieved although the length of this 

decision period remained unknown (Duston and Saunders, 1992). 

Indeed, there is growing evidence that the decision to mature will be influenced by the 

potential for growth during the natural spring period. Rowe and Thorpe (1990b) found 

that for salmon parr rates of maturation were reduced if feed restriction during spring 

resulted in sufficient reductions in growth. Berglund (1992) found that size and 

growth prior to the onset of gonadal growth affected the incidence of maturation, with 

Adams and Thorpe (1989), Thorpe et al. (1990), Rowe et al. (1991) and Duston and 

Saunders (1997) all providing additional evidence that spring is a critical period when 

the attainment of specific growth or developmental thresholds will influence 

maturation. It is important to note, though, that it may not necessarily be the 

attainment of a particular threshold that influences maturation. Metcalfe (1998) and 

Thorpe et al. (1998) have suggested that instead of the attainment of a particular 

threshold both the current state of a particular developmental parameter as well as its 

rate of change will be influential during the critical period. As such it may be more 

appropriate to consider a critical period as a time when maturation is influenced as 

opposed to it being triggered. 
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Thorpe (1994b), Metcalfe (1998) and Thorpe et al. (1998) have subsequently 

suggested an adjustment to the model presented by Thorpe (1986). They have 

suggested that the initiation of maturation occurs in November one year prior to 

maturation (Metcalfe, 1998; Thorpe et al., 1998), with a time prior to first-feeding 

therefore possible (Thorpe, 1994b). Subsequently, maturation can be "switched off' 

during a second sensitive period in spring (Metcalfe, 1998; Thorpe et al., 1998), as 

previously suggested. However, regardless of whether this new model is accurate it is 

clear that spring will provide the main period during which environmental 

manipulations will influence maturation. As such photoperiod regimes can be 

manipulated in order to adjust the timing of the critical period when maturation is 

influenced and rates of maturation in commercial populations can, therefore, be 

altered (c.f. Hansen et al., 1992; Taranger et al., 1999). 

Although photoperiod manipulations are clearly influential in the cueing of salmonid 

reproduction some consideration should be made of the effects that such regimes have 

on milt and egg quality. There is evidence that photoperiod treatment can result in a 

decline in gamete quality. Macquarrie et al. (1979) noted increased egg mortality in 

pink salmon exposed to an out-of-phase natural photoperiod, although Macquarrie et 

al. (1979) did consider this species to have a very inflexible life cycle and as such it 

might not adapt well to photoperiod manipulation. However, photoperiod 

manipulation will not necessarily affect gamete quality. Bourlier and Billard (1984b) 

found that although exposure to continuous light reduced the milt yield of rainbow 

trout egg diameter and fecundity were unaffected. Similarly, Bourlier and Billard 

(1984a) and Johnson (1984) found that photoperiod did not affect gamete quality, 

with Bromage et al. (1984) recording that although photoperiod affected egg size in 
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the rainbow trout such changes did not have a detrimental effect on fecundity. It 

therefore seems that the out-of-season production of gametes may not result in a lack 

oflarval quality. 

3.1.4.3. Smoltification 

The control of smoltification in commercial salmon production is becoming 

increasingly important to aid the year round supply of fish of harvestable size. By 

manipulating the timing of smoltification it is possible for producers to utilise the 

seawater growth rates of adults, which are greater than those for juveniles in fresh 

water (c.f. Thrush et al., 1994; Duncan et al., 1998) and as such, by shortening the 

freshwater phase greater productivity can be achieved. Photoperiod manipulation has 

proved the most productive method for altering the timing of seawater transfer, 

although a clear understanding of the photoperiodic control of smoltification is vital 

for its successful use in production. 

Typically in natural populations of Atlantic salmon smoltification occurs during the 

spring (Jones, 1959; Netboy, 1974; Hoar, 1976; Duston and Saunders, 1992). 

Saunders and Henderson (1970) conducted one of the first experiments that 

investigated the actual role of photoperiod on smoltification. In their studies it was 

found that fish exposed to a constant long days in spring developed as natural smolts 

and were successfully transferred to sea. However, it was also noted that a reciprocal 

photoperiod (Fig. 3.1) applied during spring (with a decreasing photoperiod) resulted 

in fish showing silvering but not developing as true smolts (Saunders and Henderson, 

1970). Komourdjian et al. (1976) further investigated such regimes by exposing parr 

from mid-winter to either a natural photoperiod regime or a reciprocal photoperiod 
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that resulted in a declining daylength during the natural spring. Under the natural 

photoperiod smoltification occurred in the spring with the reciprocal photoperiod 

resulting in an earlier parr-smolt transformation in FebruarylMarch (Komourdjian et 

ai., 1976). Similar findings were documented by Saunders and Henderson (1978) in 

an identical study suggesting that smoltification could be completed under both an 

increasing (natural) and a decreasing (reciprocal) photoperiod (Fig. 3.1). 

However, Clarke et al. (1985) applied natural and accelerated photoperiod regimes 

between February and June (Fig. 3.1) with the accelerated regime significantly 

advancing smoltification. From this Clarke et al. (1985) concluded that the findings of 

Komourdjian et ai. (1976) and Saunders and Henderson (1978) were due to the 

reciprocal photoperiod being applied in mid-winter, so that although a decreasing 

photoperiod had been applied initially an abrupt increase from the natural short winter 

daylength to the long reciprocal photoperiod, had occurred. Therefore, smoltification 

was advanced when compared to the increase experienced under a natural 

photoperiod regime. 

It is clear that short and then long day regimes are required for the development of 

smoltification with both the magnitude and duration of these daylengths of 

importance. Indeed this can be highlighted when constant photoperiods are applied for 

long periods at different times of the year. Saunders et ai. (1985) found that salmon 

parr exposed to continuous light between November and February appeared silvered 

but did not achieved true smolt status in the spring, although it should be noted that 

the experimental light regime used would have resulted in an increase in daylength 

after the natural short November photoperiod and this may have provided a similar 
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stimulus to that experienced during spring by naturally produced smolts. McCormick 

et al. (1987) exposed fish from first-feeding to continuous light or simulated natural 

photoperiods. Continuous light inhibited smolting in the spring whereas under the 

natural photoperiod fish successfully underwent the parr-smolt transformation 

(McCormick et al., 1987). However, in their experiments it was also found that fish 

exposed to continuous light until October with a subsequent natural winter and spring 

photoperiod successfully completed smoltification (McCormick et al., 1987). 

Subsequently, Okumoto et al. (1989), Skilbrei (1991), Solbakken et al. (1994), Berge 

et al. (1995), Duston and Saunders (1995), Duncan and Bromage (1998) and 

Handeland and Stefansson (2001) all found continuous light or constant long days to 

inhibit smoltification or produce fish with a poor or reduced smolt status in the spring. 

For short photoperiod regimes Stefansson et al. (1989) found that constant LD 8:16 

applied from late winter onwards inhibited smoltification. Furthermore, Okumoto et 

al. (1989) also found a reduction in the smolt status of masu salmon when they were 

exposed to a constant short day regime from October onwards. 

It is therefore becoming increasingly evident that the initiation and completion of 

smoltification is determined by photoperiod and indeed the model proposed by 

Duston and Saunders (1992) appears most appropriate: with the initiation of 

smoltification typically occurring on the decreasing phase of a natural photoperiod 

(winter) and its completion occurring on the increasing phase (spring). 
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However, for the commercial manipulation of smoltification to prove productive 

further insight into these long and short periods has been made. Where the short 

daylength is concerned Okumoto et al. (1989) investigated a range of short day 

regimes to elucidate the most appropriate "winter" daylength. They observed that 

only fish exposed to 6 hours of daylight showed signs of smoltification one month 

after the transfer to long days (LD 13: 11) with short days of 10 hours or less resulting 

in smoltification after 2 months. Eleven and twelve hour short day regimes required 

three months of long days before smolt status was evident. It therefore seems that the 

initiation of smoltification can occur under a range of photoperiods although shorter 

daylengths will cause the completion of the parr-smolt transformation to occur more 

rapidly. However, Bjornsson et al. (1989) investigated a range of winter photoperiod 

regimes (i.e. LD2:22, LD8:16 and LDI4:10) in Atlantic salmon. In contrast to the 

work ofOkumoto et al. (1989) winter photoperiod regime had no effect on the hypo

osmoregulatory ability of fish in the spring (Bjornsson et al., 1989). 

It is clear that a minimum duration of the winter photoperiod will be necessary to 

successfully initiate smoltification (Berge et al., 1995). Berg et al. (1994) found that 

10 weeks of LD14:10 in an otherwise continuous light regime was sufficient to 

initiate smoltification. However, in their experiments parr were exposed to a very 

early winter photoperiod during late May after first-feeding in February. Sigholt et al. 

(1995) further investigated the short day initiation of smoltification in Atlantic salmon 

parr in fish previously grown under a continuous light regime until the development 

as Sl's. In these experiments a short day period ofLD 8.45:15.15 for 2 weeks was 

found to be ineffective at stimulating smoltification with a period of between 5 and 7 

83 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

weeks considered most beneficial. Subsequently, Duston and Saunders (1995) and 

Duncan et al. (1998) have both suggested that a period of 2 months is sufficient 

although Duston and Saunders (1995) also discuss unpublished data that indicated 

three months being more beneficial than two when applied in June. Finally, Duncan 

and Bromage (1998) have suggested that at least 6 weeks of short days will stimulate 

the parr-smolt transformation. It would therefore seem that a sensible approximation 

for short day initiation would be a period of between 8 and 10 hours daylight for 

about 2 months. 

After the short day initiation a period of long days will be necessary during which 

smoltification can be completed. Typically for the completion of smoltification 

continuous light regimes are used (e.g. Berg et al., 1994; Sigholt et al., 1995; Duncan 

and Bromage, 1998; Handeland and Stefansson, 2001) although other long day 

regImes are also in use (e.g. LD 17:7: Duston and Saunders, 1995; LD 23:1, 

LDI9.5:4.5: Duncan and Bromage, 1998). However, Okumoto et al. (1989) 

investigated such long daylengths in detail after a short day treatment of LD 8:16. 

Using LD 16:8 smolts were first identified 1 month after the period of short days with 

LD 13:11 resulting in smoltification after 2 months. Under LD 11:13 three months 

proved most successful with some pre-smolts also observed on the constant short day 

regime (LD 8:16) after this time (Okumoto et a/., 1989). It therefore seems that the 

greater the day length after short day initiation the earlier smoltification occurs. 

As far as the optimum duration of long days is concerned Bjornsson et al. (1989) 

found that hypo-osmoregulatory ability peaked between 1 and 2 months after short 
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day treatment had ended. Similarly, Sigholt et al. (1995) found that gill Na+, K+ -

ATPase levels peaked after 6 to 8 weeks of long days in Atlantic salmon parr, 

although Handeland and Stefansson (2001) found that hypo-osmoregulatory ability 

peaked after only 2 to 3 weeks. However, it is important to note that temperature will 

play a significant role in determining the required duration of such long day regimes 

before smoltification can proceed. Clarke et al. (1978), Bjomsson et al. (1989), 

Duston and Saunders (1997) and Handeland and Stefansson (2001) have all suggested 

that increases in temperature will have a positive effect on smoltification. However, 

Solbakken et al. (1994) found that although salmon exposed to elevated temperatures 

showed normal hypo-osmoregulatory ability they subsequently grew poorly in sea 

water indicating that the increased temperature had interfered with the parr-smolt 

transformation. This suggests that an optimum temperature exists for smoltification 

and that these optima may also influence the role of the stimulatory short day regimes 

as winter photoperiod temperatures have also been found to affect the parr-smolt 

transformation (Duston and Saunders, 1997). It would appear, therefore, that 

temperature will control the rate of response to photoperiod (Clarke et al., 1978; 

Solbakken et al., 1994) and it is likely that this occurs through the temperature 

sensitive manipulation of enzymatic processes within the fish. Furthermore, from 

these suggestions Sigholt et al. (1998) and Handeland and Stefansson (2001) have 

proposed that the period of long days, after short day treatment, should continue for at 

least 400 degree days. 

However, there is some confusion as to how long hypo-osmoregulatory ability 

remains elevated. Erikson and Lundqvist (1982) investigated continuous light regimes 

and found that silvering remained for up to 4 months, although it has been noted that 
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coloration is not necessarily a good measure of smoltification (Saunders et al., 1985; 

Duncan and Bromage, 1998). Bjornsson et al. (1989) found that hypo-osmoregulatory 

ability remained for at least one month after peak levels, although Thorpe and 

Metcalfe (1998) suggested that an interval of only 2 or 3 weeks permits seawater 

transfer in fish exposed to a natural photoperiod. It therefore seems that although there 

is a window where seawater transfer is possible the closer to the peak in hypo

osmoregulatory ability the better. Furthermore, it would appear that the determination 

of this peak will be dependant upon the timing of the return to long days as opposed 

to the timing of the decrease in photoperiod or the duration of the short day period 

(Duncan and Bromage, 1998). 

It is also possible that as with growth and maturation the rate of the changing 

photoperiod is important in cueing smoltification. Under a naturally-changing 

photoperiod smoltification is initiated and completed on the decreasing and increasing 

phases of the photoperiod respectively (Duston and Saunders, 1992) and manipulating 

the changing photoperiod has been shown to affect the parr-smolt transformation. 

Saunders and Henderson (1970) found that following a decreasing photoperiod 

applied in early spring salmon parr showed signs of silvering in early summer but 

they had a poor seawater tolerance. Similarly Komourdjian et al. (1976) found that a 

reciprocal photoperiod applied from November onwards resulted in early 

smoltification during February, 

The use of compressed/extended as well as out-of-phase annual photoperiod regimes 

has also been found to affect the timing ofsmoltification. Duston and Saunders (1992) 

found that smoltification was delayed when an 18 month extended photoperiod 
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regime was applied and Thrush et al. (1994) and Duncan et al. (1998) have used 

compressed natural daylight cycles to produce smolts during a range of times of the 

year. Furthermore, Handeland and Stefansson (2001) used a 10 month out-of-phase 

natural photoperiod regime to manipulate parr into smolting during November 

concluding that the use of naturally-changing photoperiod treatments could be used 

for the successful production of out-of-season smolts. However, variable results have 

been found when compressed natural photoperiods have been used to produce smolts 

with aberrations in both the expected timing (Duston and Saunders, 1992) as well as 

the seawater survival (Thrush et al., 1994) of such individuals, although it is possible 

that compressed photoperiodic cycles will cause such variations by influencing 

endogenous rhythms of smoltification (see Section 3.1.4.4). It is clear that the rate of 

the changing photoperiod is important in cueing smoltification but given the results 

documented when constant daylength triggers have been investigated it is likely that 

instead of the rate of changing photoperiod having a direct role its influence is more 

through manipUlating the time to which fish are exposed to a particular stimulatory 

daylength. 

Finally, it is important to consider the long-term quality of smolts produced by 

photoperiod manipulation and it would seem that seawater growth and mortality are 

two of the most appropriate determinants. For growth rates Thrush et al. (1994), 

Duncan et al. (1998) and Handeland and Stefansson (2001) have all found the growth 

of out-of-season smolts, produced by photoperiod manipulation, to be comparable to 

those produced under natural regimes. Indeed, Duston and Saunders (1995) found that 

fish transferred after a 2 month winter photoperiod treatment showed initial growth 

rates that were higher than naturally produced smolts. Furthermore, Saunders et al. 
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(1985) and Handeland and Stefansson (2001) have found that continuous light 

regimes applied in fresh water resulted in poor seawater growth highlighting the poor 

hypo-osmoregulatory ability of such fish. 

Variable levels of post-transfer mortality have been found in out-of-season smolts. 

Duston and Saunders (1995) and Duncan et al. (1998) found that smolts produced by 

photoperiod manipulation had lower mortality rates than those produced naturally. 

However, Thrush et al. (1994) found that such advanced fish did not necessarily fair 

as well as natural smolts although it should be noted that the fish investigated were 

relatively small at seawater transfer (e.g. 33.2 ±0.87g). Sigholt et al. (1995) found that 

for fish exposed to 3 months of continuous light after short day treatment seawater 

mortality rates of 40% occurred. In groups exposed to 2 months of continuous light 

34% mortality occurred with 1 month resulting in 15% mortality. However, given that 

hypo-osmoregulatory ability peaks after one to two months of long days (Bjomsson et 

al., 1989) and remains elevated for only 2 to 4 weeks (Bjomsson et al., 1989; Thorpe 

and Metcalfe, 1998) it is possible that previously recorded seawater mortality rates 

may have resulted from transferring individuals that have already passed through the 

smolt "window" and subsequently started to de-smolt. 

Therefore, it is clear that although fish size will be an important determinant in the 

development of smoltification (Elson, 1957; Thorpe et al., 1980) the quality of out-of

season smolts will also be dependant on the photoperiod used to create them, with the 

timing of such photoperiodic cues critical in order to transfer individuals when their 

hypo-osmoregulatory ability is at its greatest. 
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3.1.4.4. Endogenous rhythms 

It is clear from the literature presented that light has a distinct influence on 

physiological processes linked to growth, maturation and smoltification in salmonids. 

However, these findings only provide insight into the ultimate responses of fish to 

light without considering the underlying mechanisms controlling these responses. 

Although suggestions have been made that such physiological processes are 

controlled by the direct stimulation of light (i.e. direct photo stimulation) (Saunders 

and Harmon, 1988, 1990; Saunders et al., 1989; Krakenes et al., 1991; Duncan et aI., 

1999) there is an absence of strong supporting evidence for such a theory. However, 

from the growing evidence that is now apparent it seems likely that the development 

offish is influenced by photoperiodically entrained endogenous rhythm(s). 

Baggerman (1972) was one of the first authors to suggest the presence of an 

endogenous rhytlun in fish although such findings had previously been documented in 

other taxa. In her experiments Baggerman (1972) identified a photoperiodic response 

to light in the stickleback that followed a circadian rhythm of sensitivity. Daily 

rhytluns of photosensitivity have also been identified in salmonids (Duston and 

Bromage, 1987) but more interestingly it seems that circannual endogenous rhythms 

entrained by photoperiod affect growth, maturation and smoltification. 

For the presence of an endogenous circannual rhytlun to be confirmed, Gwinner 

(1981, 1986) proposed four criteria that should be adequately satisfied such that: the 

rhythm should be observed for at least 2 full cycles to establish that it is self

sustaining; it should free-run with a periodicity that approximates to, but is 

significantly different from, 12 months; it should be entrainable by an environmental 
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zeitgeber, and it should be temperature compensated. Unfortunately these criteria are 

seldom achieved in the literature, in particular the monitoring of development over 

long periods of time has proved problematic, but there are notable works that provide 

important supporting evidence. 

Whitehead et al. (1978) presented an early indication of a photoperiodically entrained 

endogenous circannual rhythm in salmonids by exposing rainbow trout to compressed 

annual photoperiod cycles as well as constant long and short day regimes. Although 

these experiments were only conducted over 12 months, changes in both the spawning 

times and serum components of constant photoperiod groups indicated the presence of 

an endogenous reproductive rhythm. Similar findings were presented by Bromage et 

al. (1982) when rainbow trout were again exposed to a range of photoperiod regimes 

including constant photoperiods. This work supported the earlier work of Whitehead 

in establishing the presence of an endogenous rhythm of reproduction concluding that 

a seasonally-changing daylength was not essential for the cueing and modulation of 

reproductive development. In another short-term (14 month) experiment Eriksson and 

Lundqvist (1982) found a similar rhythm with growth and smoltification showing a 

cyclic nature in Baltic salmon held under constant LD12:12 conditions. 

However, Elliott et al. (1984) provided the first long-term experiment using rainbow 

trout exposed to various photoperiods over a 2.5 year period. The cyclic nature of 

maturation events observed in these experiments led to the conclusion that an 

endogenous circannual rhythm was present but that this rhythm was entrained by the 

ambient photoperiod because spawning could occur at any time of the year provided 

the appropriate cues were received. Subsequently, long-term experiments have 
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provided further support for the endogenous rhythm hypothesis (e.g. Duston and 

Bromage, 1987, 1991; Duston, 1987) but the most thorough work to date has been 

provided by Duston and Bromage (1986). In their experiments studying spawning in 

the female rainbow trout groups were exposed to continuous light (LL) and constant 

long (LDI8:6) and short (LD6:18) days, as well as skeleton (6L:4D:2L:12D, 

6L:6D:2L:I0D and 6L:8D:2L:8D) and resonance (6L:42D, 6L:48D and 6L:54D) 

procedures. Their observations supported the presence of photoperiodically entrained 

endogenous rhythms of reproduction and also found that spawning was not influenced 

by the total length of a light period nor by the accumulation of the number of light

dark cycles. 

It is now clear that changes in the profiles of growth (Clarke et al., 1978; Saunders 

and Harmon, 1988; Villarreal et al., 1988; Duncan and Bromage, 1998; Duncan et al., 

1999), maturation (Whitehead et al., 1978; Lundqvist, 1980; Bourlier and Billard, 

1984a; Bromage et al., 1984; Elliott et al., 1984; Duston and Bromage, 1986, 1987, 

1991; Hansen et al., 1992) and smoltification (Clarke et al., 1978; Erikson and 

Lundqvist, 1982; Clarke et al., 1985; Stefansson et al., 1989; Thrush et al., 1994; 

Sigholt et al., 1995) of salmonids can be analysed by considering the actions of 

photoperiod entrained rhythms. The documented variations of whether maturation 

will be delayed or advanced when photoperiods are altered can often be explained 

using a model incorporating photoperiodically entrained endogenous rhythms. 

Whether maturation is advanced or delayed (to critical periods when maturation can 

be arrested (Taranger et al., 1999a) or advanced (Hansen et al., 1992)) by photoperiod 

manipUlation will therefore depend on: the natural spawning time of the species (Scott 

et al., 1984); the relative time of year or position in the phase of the rhythm (Scott et 
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al., 1984; Duston, 1987) and the direction of the change in photoperiod (Duston, 

1987). 

It is, however, important to note that although endogenous rhythms are found to have 

a strong influence on both growth (e.g. Clarke et al., 1978; Villarreal et al., 1988; 

Duncan and Bromage, 1998; Duncan et al., 1999) and maturation (e.g. Elliott et al., 

1984; Duston and Bromage, 1986, 1987, 1991; Hansen et at., 1992) such a clear 

system may not necessarily be the case for smoltification. Erikson and Lundqvist 

(1982), Clarke et al. (1985), Saunders and Hannon (1990), Sigholt et al. (1995) and 

Duncan and Bromage (1998) have all shown smoltification to be strongly influenced 

by an endogenous cycle but Stefansson et al. (1989) found that under a continuous 

light regime smoltification was incomplete. It was subsequently concluded that an 

endogenous rhythm was too imprecise to provide complete smolting in the absence of 

photoperiodic cues. 

However, Erikson and Lundqvist (1982) conducted a long-term experiment in which 

salmon parr were exposed to LD 12:12 for 14 months. In their experiments changes in 

the growth, condition factor and coloration of individuals all showed cyclical patterns 

with the conclusion that smolting consists of a number of seasonal processes that will 

run at their own frequency, being brought into synchrony by the changing 

photoperiod. Subsequently, Bjornsson et al. (1989) and Thrush et al. (1994) have 

found increases in hypo-osmoregulatory ability to occur in advance of decreases in 

condition factor with Duncan and Bromage (1998) also finding the dissociation of a 

range of smolt parameters under artificial photoperiod regimes. It therefore seems that 

smoltification is controlled by more than one endogenous rhythm and although these 
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cycles will be synchronised by a naturally-changing annual photoperiod such 

synchronisation may not necessarily occur under other photoperiod regimes. As such 

it is important that when endogenous rhythms of smoltification are considered care is 

taken to consider the cyclical nature of the various smoltification parameters 

separately. 

3.1.5. Aims 

In commercial salmon farming the use of freshwater photoperiod treatments is now 

widespread producing increasingly early seawater transfer and allowing the year 

round supply of fish to both seawater on-growing sites and, subsequently, to the 

market. The influence of these progressively early photoperiod treatments on parr 

maturation and the interactions with smoltification are currently poorly understood. 

Therefore the aims of this chapter are: 

• To investigate the importance of the timing of winter photoperiod on maturation 

in Atlantic salmon parr. 

• To further investigate this relationship by considering the role of winter 

photoperiod length on parr maturation. 

• To investigate how parr maturation and smoltification interact and to elucidate the 

role of winter photoperiod in this interaction. 
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3.2. Experiment I. The effects of winter photoperiod timing 

on growth, maturation and smoltification. 

3.2.1. Objectives. 

The experiment detailed in this section aimed to investigate the importance of winter 

photoperiod timing on growth, maturation and smoltification. Large numbers of PIT 

tagged fish allowed the growth and development of individuals to be followed, with 

the retrospective analysis of such fis~ also possible, and as such investigations were 

conducted at both the individual and population level. 

3.2.2. Materials and Methods. 

The experiment was carried out at Site 1 (Section 2.1.1). Ova from a high grilsing 

Scottish stock (Loch Lochy) were fertilised and held in heated water (8.0°C) under 

darkness until hatching (20th February 2000). The fry were then held under continuous 

light (LD24:0) in heated water (13.S±0.SOC) until first-feeding (29th March 2000). At 

first-feed 6000 fish were transferred into each of two 2m2 tanks and exposed to a 

natural temperature regime (Fig. 3.2) under LD24:0. On 18th May 2000800 fish were 

transferred to each of eleven 2m2 tanks and held under LD24:0 until experimental 

winter photoperiods were applied (see Fig. 3.3 for experiment protocol). 

On 18
th 

May three of the 11 tanks of fish were exposed to an 8 week winter 

photoperiod (LDIO:14) after which they were returned to LD24:0 until the conclusion 

of the experiment. Two further triplicate tanks of fish were exposed to the 8 week 

winter photoperiod on 9th August and 22nd September respectively. 
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Fig. 3.2 The ambient temperature profile at Site 1 and the experimental photoperiod 

regimes used during the experiment. a) Continuous light, b) May photoperiod, c) 

August photoperiod, d) September photoperiod. 
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Fig. 3.3 The experimental protocol used during experiment I. For further details of the 

sampling regime refer to Section 3.2.2. 
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Treatments were subsequently termed the May, August, and September photoperiod 

groups (Fig. 3.2). A further group was held in duplicate tanks under LD24:0 

throughout the experiment. On 25th July 100 fish per tank were PIT tagged (Section 

2.4) (mean tagging weight = 6.5±O.lg) with mortalities due to tagging <5% and 

unrelated to size. Due to their small size and the timing of exposure to continuous 

light the May photoperiod fish were left untagged. 

From 25th July onwards all tagged fish and 30 fish from each of the three May 

photoperiod replicates were measured at fortnightly intervals until the conclusion of 

the experiment on t h February 2001. On 9th August, 20th September, 4th November 

2000 and 4th January 2001 30 non-tagged individuals from each replicate were 

measured in order to identify possible growth differentials between tagged and non

tagged fish. Neither fish weight nor fork length was found to be affected by tagging 

(p>0.05). All fish whether tagged or untagged were examined at each sample point for 

signs of maturation (see Section 2.7.1). 

At fortnightly intervals from 25th July blood and gill samples were taken from 5-10 

culled non-tagged fish per tank to identify changes in serum testosterone (Section 

2.7.4) and gill Na+, K+ -ATPase (Section 2.8.1). Also from 3rd October at two week 

intervals 15 individuals per treatment were exposed to a 96h seawater tolerance test 

(Section 2.8.2.). 

On 4th January 2001 all non-tagged fish were culled and the remaining tagged fish 

randomly divided into two 2m2 tanks held under LD24:0. The culled fish were 

examined for external signs of maturation and their relative cohort recorded (Table 
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3.1) (see Section 2.8.5). From the culled fish approximately 100 fish per treatment 

were dissected to establish the sex of the individual and internal signs of maturation 

(i.e. enlarged gonadal tissue) recorded. On 7th February 2001 all PIT tagged fish were 

culled. All fish were examined externally and cohort ratios identified, although all of 

the cohorts that had been identified in the non-tagged fish (see Table 3.1) were not 

necessarily represented in the PIT tagged populations. All tagged fish were then 

dissected to remove the PIT tags and internal maturation status recorded. 

On 14th October a blocked inlet resulted in the loss of all fish from one of the three 

August photoperiod replicates. The growth data from this group have therefore been 

removed from the subsequent analysis although plasma testosterone and gill Na+, K+

ATPase measurements taken prior to this incident were included. 

Growth data and plasma testosterone levels were compared using a General Linear 

Model (Section 2.11) although for testosterone levels a natural log transfonnation was 

used to improve nonnality and homogeneity of variance. Gill Na +, K+ -ATPase levels 

were analysed using the Kruskal-Wallis non-parametric test with Dunn's multiple 

range procedure (Sokal and Rohlf, 1995; Zar. 1999). For changes in percentage 

maturation, population structures and seawater tolerance 95% confidence limits were 

calculated and compared (Fowler and Cohen, 1987). 

98 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

Cohort 

Smolts 

Large smolts 

Silvered parr 

Parr 

Small parr 

Description offish 

Fully silvered fish with no parr marks and blackened fin 
margins. These fish were typically >30g and <65g. 

Fully silvered fish with no parr marks and blackened fin 
margins although these fish were significantly larger than the 
smolts described above (Le. > 1 ~Og). 

Fish that were partially silvered with parr marks that were 
obscured but still visible. These fish were typically >30g and 
<65g. 

Fish showing no signs of silvering with the presence of 
distinct parr marks. These fish were typically >30g and 
<65g. 

Fish showing no signs of silvering with the presence of 
distinct parr marks. although these fish were significantly 
smaller than the parr described above (Le. <15g). 

Table 3.1. The nomenclature used to assign individuals to a particular developmental 

cohort. Cohorts were based on the level of smoltification achieved at the conclusion 

of the experiment. The cohorts denote groups of fish that were identified within the 

entire experiment although some treatments as well as the PIT tagged groups did not 

necessarily contain all of the cohorts that have been described. 
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3.2.3. Results 

3.2.3.1. Growth 

Weight 

Within treatment differences: 

Differences within each cohort over time 

All cohorts, except the small parr exposed to LL and mature fish from the May 

photoperiod group, showed an overall increase in weight (p<0.01) over the 

experimental period (Fig. 3.4). 

For the PIT tagged groups parr increased in weight throughout the experiment under 

all photoperiod regimes whereas mature and small parr groups showed no consistent 

increases between consecutive sample points. For the smolts some differences 

occurred between treatments. Smolts exposed to LL showed no consistent increases 

between consecutive time points whereas under an August photoperiod increases in 

weight were seen throughout the experiment (p<0.05). Under the September 

photoperiod significant increases in weight were only observed up to November 

(p<0.05). 

For the May photoperiod groups immature fish showed increases in weight between 

consecutive sample points until early October (p<0.05) with mature fish exhibiting no 

significant increases. 
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Fig. 3.4 The change in weight (mean ± S.E.M. n=90 to 300) of fish cohorts identified 

in groups exposed to either continuous light (a), or to 8 week periods of short days 

(LDIO:14) commencing in May (b), August (c), or September (d), in an otherwise 

continuous light regime. In some cases error bars may be to small to be depicted. The 

respective photoperiod regimes are shown to aid interpretation. 
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Within treatment differences: 

Differences between cohorts at each sample point. 

Parr and mature parr under LL had similar weights until 4th October after which they 

were significantly different through to 7th February 2001 (p<0.01). All other cohorts 

differed from one another from 25th July until the conclusion of the experiment 

(p<0.01). Under the August photoperiod mature parr had similar weights to both 

smolts and parr until 4th October and 4th November respectively although smolts and 

parr were only similar in July. All other cohorts differed from one another from July 

until the conclusion of the experiment (p<0.05). For fish exposed to the September 

photoperiod mature parr had similar weights to both smolts and parr until 8th 

September and 18th October respectively. On 25 th July smolts and parr as well as 

small parr and mature parr were similar but at all other times all cohorts were 

different (p<0.05). For the May photoperiod fish no differences were observed 

between mature and immature fish. 

Between treatment differences: 

Differences between cohorts at each sample point 

Differences occurred for smolts, parr and mature parr. Smolts exposed to LL were 

heavier than both August and September photoperiod smolts throughout the 

experiment (p<0.01). September photoperiod smolts were significantly heavier than 

August smolts from 4th October until 16th November (p<0.01) with August smolts 

heavier than September smolts on 19th December and 7'h February (p<0.01). Parr 

exposed to LL were heavier than August and September parr throughout the 

experiment (p<O.Ol) with the exception that on 7th February parr from the LL and 
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August groups had similar weights (p>O.05). August parr were only heavier than 

September parr from 16th November onwards. For mature parr those exposed to LL 

were heavier than August and September fish from 20th September and 9th August 

respectively (p<O.OI). Mature parr from the August and September groups were 

different throughout (p<0.01) although the September photoperiod fish were heavier 

between 4th October and 16th November, with August fish heavier at all other times. 

Length 

Within treatment differences: 

Differences within each cohort over time 

All cohort groups, except mature fish from the May photoperiod group, showed an 

increase in length over the course of the experiment (p<O.OI) (Fig. 3.5). For PIT 

tagged groups, parr from all treatments and August photoperiod smolts increased in 

length significantly throughout the experiment until 4th January (p<0.05). September 

photoperiod smolts increased in length between consecutive time points until early 

November, although LL smolts showed no consistent increases. Similarly no 

consistent increases were seen in any treatment for both small parr or mature parr 

groups. All groups showed increases in length between 23rd August and 8th 

September. Immature fish from the May photoperiod group increased from July until 

23
rd 

August and then from 8th September until 4th October with mature fish showing 

no significant increases in length. 
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Fig. 3.5 The change in length (mean ± S.E.M. n=90 to 300) of fish cohorts identified 

in groups exposed to either continuous light (a), or to 8 week periods of short days 

(LDIO:14) commencing in May (b), August (c), or September (d), in an otherwise 

continuous light regime. In some cases error bars may be to small to be depicted. The 

respective light regimes have been shown to aid interpretation. 
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Within treatment differences: 

Differences between cohorts at each sample point. 

Under LL, parr and mature parr had similar lengths until 20th September, but at all 

other time points all cohorts differed from one another (p<O.OI). For the August 

photoperiod group parr and smolts were similar in length to mature parr from 23rd 

August until 18th October and 29th September respectively (p>0.05). At all other times 

all cohorts were significantly different (p<O.Ol). The September photoperiod resulted 

in all cohorts being different throughout the experiment (p<0.01) with the exception 

of mature parr which were similar to both smolts and parr from July until 8th 

September and 4th October respectively (p>0.05). The immature and mature fish in 

the May photoperiod group did not differ significantly (p>0.05). 

Between treatment differences: 

Differences between cohorts at each sample point 

Smolts exposed to LL were longer than those from the August and September 

photoperiods throughout the experiment. September photoperiod smolts were longer 

than those from the August photoperiod from 20th September until 18th October with 

the August smolts longer from 30th November onwards (p<O.OI). Parr exposed to LL 

were longer than those exposed to the August photoperiod until 19th December when 

the August parr were longer (p<O.Ol) but from then onwards no significant 

differences occurred (p>O.05). The parr exposed to LL were longer than those from 

the September photoperiod throughout the experiment (p<O.O 1). The parr from the 

September group were longer than those from the August group from 20th September 
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untillSth October with August fish longer from 16th November onwards (p<0.01). For 

mature parr those exposed to LL were longer than those from the August group from 

23rd August onwards (p<0.05) with September parr shorter throughout the experiment 

(p<0.0l). Mature parr from the August and September groups had similar lengths 

throughout the experiment. Small parr exposed to LL and the August photoperiod 

remained similar throughout the experiment although the September small parr were 

smaller than those exposed to LL and the August photoperiod from 8th September and 

9th August (p<0.05) respectively. 

Condition factor (CF) 

Within treatment differences: 

Differences within each cohort over time 

Differences in condition factor were observed following photoperiod treatment (Fig. 

3.6). Under LL both immature and mature parr showed increases in CF between 25th 

July and 9th August with an overall decrease by the conclusion of the experiment 

(p<O.OI) and with parr showing a decrease in CF between 8th September and 4th 

October, 18th October and 4th November, and 16th and 30th November. For the smolts 

and small parr no consistent changes in CF were observed throughout the experiment. 

Under an August photoperiod all cohorts showed an overall increase in CF from July 

until early September with a subsequent decline by January (p<O.OI). Following this 

smolts, parr and small parr all showed a rise in CF by February (p<0.01). 

Furthennore, smolts showed decreases in CF between consecutive sample points 

during October (p<0.01). Under a September photoperiod all cohorts, except mature 

parr, showed increases in CF between July and early August (p<0.01) with only the 
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Fig. 3.6 The change in condition factor (mean ± S.E.M. n=90 to 300) of fish cohorts 

identified in groups exposed to either continuous light (a), or to 8 week periods of 

short days (LDIO:14) commencing in May (b), August (c), or September (d), in an 

otherwise continuous light regime. In some cases error bars may be to small to be 

depicted. The respective photoperiod regimes are shown to aid interpretation. 
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CF of smolts and parr decreasing by the conclusion of the experiment and with parr 

showing decreases in CF between consecutive time points during November. For 

immature fish exposed to a May photoperiod an overall decrease in CF was observed, 

with mature fish also showing a decline in CF from 18th October onwards (p<O.Ol). 

Interestingly all cohorts showed reductions in CF on 23rd August with this decline 

linked to an increase in length, as opposed to a loss in weight (see Fig. 3.5). 

Within treatment differences: 

Differences between cohorts at each sample point. 

Immature parr exposed to LL had a significantly lower CF from 20th September 

onwards (p<O.05) with all other cohorts similar throughout the experiment. Under an 

August photoperiod both smolts and parr had a lower CF than the mature and small 

parr from mid-December onwards (p<O.Ol) with the exception that on 4th January the 

CF's of parr and small parr were similar (p>O.05). Under May and September 

photoperiods no consistent differences were observed between cohorts. 

Specific growth rate (SGR) 

Within treatment differences: 

Differences within each cohort over time 

Due to the absence of tagged data for the May photoperiod it was not possible to 

statistically analyse the SGR of these fish. However, an overall decrease in SGR was 

observed in the immature fish from this group (Fig. 3.7). For all tagged cohorts an 
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Fig. 3.7 The change in SGR (mean ± S.E.M. n=90 to 300) offish cohorts identified in 

groups exposed to either continuous light (a), or to 8 week periods of short days 

(LD10:14) commencing in May (b), August (c), or September (d), in an otherwise 

continuous light regime. In some cases error bars may be to small to be depicted. The 

respective photoperiod regimes are shown to aid interpretation. 
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overall decrease in SGR was observed over the experiment (p<O.OI). Under LL the 

growth rate of parr decreased between consecutive time points until 18th October 

(p<0.05) with parr from the September photoperiod also showing decreased growth 

rates until 16th November (p<0.05). These September parr then showed an increase in 

growth rate during December (p<0.01) after which SGR declined through to February 

(p<0.01). In all other cohorts and treatments no consistent changes over time were 

observed. 

Within treatment differences: 

Differences between cohorts at each sample point. 

The SGR of small parr exposed to LL was lower than that of parr and mature parr 

from July until 8th September and 23rd August respectively (p<0.05). The SGR of all 

other cohorts under LL remained similar throughout the experiment. Under the 

August photoperiod the SGR of small parr was lower than that of both smolts and parr 

until 16th and 30th November respectively (p<0.05). Until 9th August the SGR of 

smolts was also higher than for the parr and mature parr (p<0.05) although the SGR of 

all other cohorts remained similar throughout the experiment (p>0.05). Under a 

September photoperiod the SGR of small parr was lower than that of the smolts and 

parr with this difference remaining until 18th October (p<0.01). Apart from small and 

mature parr being different on 23rd August (p<0.01) all other cohorts remained similar 

throughout the experiment. 
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Between treatment differences: 

Differences between cohorts at each sample point 

Differences were only found within in the parr cohort. Parr exposed to LL had a 

higher SGR than August parr on 20th September and 4th October (p<O.05) with the 

SGR of August parr higher on 9th August, 4th and 16th October and 19th December 

(p<O.05). The SGR of LL parr was higher than that of September parr on 4th October 

(p<O.05) and lower on 20th September, 18th October, 4th November and 19th December 

(p<O.01). September photoperiod parr had a higher SGR than August parr on 20
th 

September and 4th October although it was lower on 16th November. 

Weight-frequency 

Photoperiod treatment affected the development of weight-frequency structure (Fig. 

3.8). However, the timing of the emergence of modality was not greatly affected by 

photoperiod regime with all groups developing a bimodal divide by either 4th or 18th 

October. LL resulted in a weak bimodal divide with clearer divisions occurring in all 

other treatments. The May photoperiod resulted in the greatest percentage of lower 

modal group fish with low frequencies of very large fish in the LL and May 

populations. 

3.2.3.2. Maturation 

Rates of maturation 

Photoperiod treatment had clear effects on maturation (Fig. 3.9) with mature fish first 

identified in early October. Until early November maturation levels in the LL and 

August photoperiod groups were similar and greater than those of the May and 
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Fig. 3.8 The weight-frequency distribution of populations (n=90-300) exposed to 

either continuous light (a), or to 8 week periods of short days (LDIO:14) commencing 

in May (b), August (c), or September (d), in an otherwise continuous light regime. 

The popUlations shown represent the weight-frequency distributions just prior to, and 

at the emergence of modality, as well as at the final sample point. 
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Fig. 3.9 The percentage maturation recorded within the non-tagged population (n=900 

to 2200) of fish exposed to either continuous light or to 8 week periods of short days 

(LDlO:14) commencing in May, August or September in an otherwise continuous 

light regime. 
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September photoperiod groups (p<0.05). By November maturation rates in the LL 

group had reached levels of approximately 8%, which then remained throughout the 

experiment, being higher than the levels found in either the August or September 

photoperiod groups (p<0.05). In the August and September photoperiods levels rose 

during early November with levels remaining at approximately 3% until the 

conclusion of the experiment. For May photoperiod fish levels remained low until 

mid-November after which levels rapidly increased to above 20% being significantly 

higher than all other treatments (p<0.05). Levels remained at approximately 20% until 

the conclusion of the experiment. 

Plasma testosterone 

When the testosterone profiles of mature and immature individuals were considered 

separately differences were found (Fig. 3.10). The mean levels of immature fish were 

similar between treatments, with the exception that on 20th September the levels found 

in both the LL and August groups were lower than those in the May group (p<0.01). 

Furthermore the testosterone levels of immature fish within each treatment remained 

unchanged over the course of the experiment. 

When the profiles of mature and immature fish within the LL, May and September 

groups were compared as expected the mature fish had higher testosterone levels than 

their immature siblings (p<0.01). This was also the case for the August group with the 

exception that on 30th November the testosterone levels of mature and immature fish 

were similar (p>0.05). However, between consecutive time points changes in the 

testosterone profiles of mature fish only occurred in the August and September 

groups. For the August treatment a decline in testosterone occurred between 4th and 
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Fig. 3.10 Plasma testosterone levels (mean±S.E.M. n=20-30) of mature and immature 

fish exposed to either continuous light (a), or to 8 week periods of short days 

(LDIO:14) commencing in May (b), August (c) or September (d), in an otherwise 

continuous light regime. Closed symbols denote immature fish, open symbols denote 

mature fish. The respective photoperiod regimes are shown to aid interpretation. 
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16th October with a decline also occurring for the September group between 30th 

November and 19th December (p<O.OI). 

3.2.3.3. Cohort structure 

Total population 

Total population structure was affected by the timing of winter photoperiod treatment 

(Fig. 3.11). Under LL 93% of the population developed as parr with only 1% 

developing as small parr. Furthermore only 5% of the population consisted of silvered 

parr. For fish exposed to a May photoperiod high numbers of parr were observed 

(82%) with the lowest incidence of silvered parr (3.0%) (p<0.05). However, in the 

May photoperiod the highest incidence of small parr (12%) was observed (p<0.05) 

and it was the only treatment that resulted in large smolts (2%). 

Under an August photoperiod the lowest percentage of parr (7%) was recorded with 

similar numbers of small parr (8%). However, it was in this treatment that the highest 

incidence of both silvered parr (60%) and smolts (25%) were observed (p<0.05). For 

the September photoperiod 84% developed as parr with low numbers of both small 

parr (5%) and silvered parr (11 %). 

Male: female ratios 

Both male and female fish were observed in each of the observed cohorts (Fig. 3.12), 

Furthermore, within each cohort the incidence of males was the same as that of the 

females (p>0.05). 
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Fig. 3.11 The cohort structure of fish exposed to either continuous light (a), or to 8 

week periods of short days (LDIO: 14) commencing in May (b), August (c) or 

September (d), in an otherwise continuous light regime. Data are based on the non-

tagged population of each treatment (n=900 to 2000). 
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Fig. 3.12 The male: female ratios found in cohorts of fish, that were exposed to either 

continuous light (a), or to 8 week periods of short days (LDIO:14) commencing in 

May (b), August (c) or September (d), in an otherwise continuous light regime. Data 

are based on a sample population of dissected individuals (n= lOO). 
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Maturity status of cohort groups 

By dissecting a sample of each population the maturity status of the cohorts found 

within each treatment could be assessed (Fig. 3.13). No mature females were 

observed in any of the treatment groups. For fish exposed to LL mature males (10%) 

were only observed in the parr cohort. Under a May photoperiod mature males were 

observed in all of the cohorts that were identified although the greatest incidence of 

maturation was found in the parr cohort (14%). This resulted in the incidence of 

female parr being greater than immature male parr (p<O.05). Furthermore, all large 

male smolts in this treatment were found to be maturing. Under an August 

photoperiod all of the cohorts that were identified contained mature male fish with 

silvered parr and parr cohorts having the highest incidence of mature individuals 

(p<0.05). Under the September photoperiod mature fish were primarily found in the 

parr cohort (9%) with lower numbers (p<0.05) in the small parr group. No mature fish 

were observed in the silvered parr cohort. 

3.2.3.4. Assessment of smoltification 

Seawater tolerance 

The seawater tolerance of individuals was affected by photoperiod treatment (Fig. 

3.14). Under the August photoperiod survival rates rose sharply during October and 

early November becoming significantly higher than all other groups from 16th 

November (p<0.05) until the conclusion of the experiment. Furthermore, by 30th 

November survival rates reached 100% in the August photoperiod fish remaining so 

until early January when a slight decline in survival was observed. Under the LL, May 

and September photoperiods seawater survival showed variable results over time. 

During early October all groups had low survival rates with the LL and May 

119 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

100 _ Immature female 
c=:=J Immature mal e 

80 _ Mature ma le Continuous light 
60 a) 
40 r-

20 

0 - ,--, • 
100 

80 
May photoperiod 

= 60 b) 0 .... - 40 ~ -= Q. 20 
0 
Q. 

0 -~ -0 100 -c... 
0 

80 - August photoperiod = c) Q,j 60 '-I 
~ 
Q,j 

40 ~ 

20 

0 

100 

80 

60 
September photoperiod 

d) 

40 

20 

0 

Large smolts Smolts Silvered parr Parr Small parr 

Fish cohort 

Fig. 3.13 The cohort structure and maturational status found in cohorts of fish , that 

were exposed to either continuous light (a), or to 8 week periods of short days 

(LDlO:14) corrunencing in May (b), August (c) or September (d), in an otherwise 

continuous light regime. Data are based on a sample population of dissected 

individuals (n=1 00). 
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Fig. 3.14 Seawater survival of fish (n=15) following a 96h seawater (37.5%0) 

tolerance test, after previous exposure to either continuous light, or to 8 week periods 

of short days (LDI0:14) commencing in May, August or September, in an otherwise 

continuous light regime. 
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photoperiod groups showing a brief peak in survival on 18th October and 4th 

November respectively. After this survival dropped, with the May photoperiod fish 

showing a second peak, along with a peak in the September photoperiod fish, in 

December. However, survival rates in the LL, May and September photoperiod 

groups never reached consistently high levels. 

Gill Na\ K+ -ATPase 

Gill Na\ K+ -ATPase levels remained at low levels in most treatments (Fig. 3.15) 

until 4th October; the only exception being on 25 th July when levels in the September 

photoperiod fish were lower than all other groups (p<O.05). On 4th October the gill 

Na+, K+ -ATPase levels of the August photoperiod fish became significantly higher 

than all other groups (p<O.05). However, levels observed in the August group then 

declined to become similar to those of other groups until mid-December after which 

levels were again higher remaining so until the conclusion of the experiment (p<O.05). 

With the exception of the earlier difference on 25th July, the Na+, K+ - ATPase levels 

found in the LL, May and September groups remained similar throughout the 

experiment (p<O.05). 
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Fig. 3.15 Gill Na+, K+ -ATPase levels (Mean ± S.E.M. n=5-1O) of fish exposed to 

either continuous light (a), or to 8 week periods of short days (LDI0: 14) commencing 

in May (b), August (c) or September (d), in an otherwise continuous light regime. 

Regular samples were not taken throughout the August and September photoperiod 

treatments, therefore not all sample points have been connected to avoid mis-

interpretation. The respective photoperiod regimes are shown to aid interpretation. 
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3.2.4. Summary of the results from Experiment I. 

• The weight and length of mature and immature parr were similar throughout the 

early stages of growth in all treatments. 

• The CF of cohorts rose during initial stages of the experiment with most cohorts 

then showing a decline in CF over the experiment. However, no consistent 

differences in CF could be identified between cohorts. 

• SGR declined for all groups during the experiment with small parr having the 

lowest SGR. 

• All populations developed into bimodal distributions on similar dates regardless of 

photoperiod treatment. Under LL the division of modal groups was less clear than 

for the other treatments. 

• The May photoperiod resulted in the highest levels of maturation (>20%), with 

September and August photoperiod groups exhibiting low «3%), and LL 

intermediate, levels of maturation «10%). Photoperiod did not affect the timing 

of maturation. 

• Under LL. May and September photoperiods most fish developed as parr. The 

August photoperiod resulted in the highest incidence of smolts and silvered parr. 

• Large smolts were only observed in the May photoperiod group. 

• Mature fish were identified within all cohort groups. 

• Only fish exposed to an August photoperiod showed good hypo-osmoregulatory 

ability (Na+, K+ -ATPase and seawater tolerance). 

• Data presented in experiment I has been published In a paper entitled: 

Photoperiodic effects on precocious maturation, growth and smoltification in 

Atlantic salmon, Salrna salar (see Appendix 1). 
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3.3. Experiment II. The effects of early winter photoperiod 

timing and duration on growth, maturation and 

smoltification. 

3.3.1. Objectives. 

The experiment detailed in this section was developed from the findings presented in 

Section 3.2. The timing of early winter photoperiod was further investigated with the 

addition of winter photoperiods of different duration. Again large numbers of PIT 

tagged fish allowed the growth and development of individuals to be followed with 

the retrospective analysis of such fish also possible. As such investigations were 

possible at both the individual and population level. 

3.3.2. Materials and Methods. 

The experiment was carried out at Site 2 (Section 2.1.1). Ova from a high grilsing 

Scottish stock (Loch Lochy) were fertilised at a separate hatchery (Section 2.1.1) and 

held in heated water (6.4±2.2°C) in darkness until first-feeding (18th April 2001). 

Hatching occurred on 4th March 2001. On 19th April the fry were transferred to Site 2 

and held under LD24:0 and ambient temperature conditions (Fig. 3.16) in two 2m2 

tanks. On 21 st May 2001 1000 fish were transferred into each of eight 2m2 tanks and 

held under LD24:0 until experimental winter photoperiods were applied (see Fig. 3.17 

for experiment protocol). 

On 21 st May two groups, each in duplicate tanks, were exposed to either an 8 or 12 

week winter photoperiod (LDI0:14) after which they were returned to LD24:0 until 
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Fig. 3.16 The ambient temperature profile at Site 2 and the experimental photoperiod 

regimes used during the experiment. a) 8 week/May photoperiod, b) 12 week/May 

photoperiod, c) 8 week/June photoperiod, d) 12 week/June photoperiod. 
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Fig. 3.17 The experimental protocol used during experiment II. For further details of 

the sampling regime refer to section 3.3.2. 
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the conclusion of the experiment. On 18th June two further groups, each in duplicate 

tanks, were exposed to the 8 and 12 week winter photoperiod regimes. The four 

treatment groups were subsequently tenned the 8 weeklMay, 12 weeklMay, 8 

week/June and 12 week/June groups (Fig. 3.16). This treatment structure allowed a 

comparison with the results from experiment I: In experiment I fish were first-feeding 

earlier in the year. Therefore by comparing the results gained in the current 

experiment with those of the May photoperiod fish from experiment I it was possible 

to investigate whether developmental decisions were influenced by the developmental 

age of the individual or at a specific time of the year. 

On 13th August 100 fish per tank were PIT tagged (Section 2.4) (mean tagging weight 

= 4.4±O.lg) with mortalities due to tagging <1 % and unrelated to size. 

From 14th August onwards all tagged fish were measured at fortnightly intervals until 

29
th 

January 2002 and then monthly until the conclusion of the experiment on 23rd 

March 2002. On 3rd October, 14th November, 8th January and 23rd March 40-60 non-

tagged individuals from each tank were measured in order to identify possible growth 

differentials between tagged and non-tagged fish. Neither fork length nor weight was 

found to be affected by tagging (p>0.05). All fish, whether tagged or untagged, were 

examined at each sample point for signs of maturation (see Section 2.7.1). 

At each sample point from 13th August gill samples were taken from 20 culled non-

tagged fish per treatment to identify changes in gill Na+, K+-ATPase (Section 2.8.1). 

At fortnightly intervals from 4th October, 40 fish per treatment were dissected and 

t . . d th rna unty In ex scores recorded (Section 2.7.3). At each sample point, from 18 
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October, the smolt index score (see Section 2.8.4) of these fish was also recorded. 

On 23rd March 75 individuals from each treatment (except the 12 weeklMay group 

where n=20) were exposed to a 96h seawater tolerance test (Section 2.8.2) with the 

fork length of both mortalities and surviving individuals recorded. 

On 23rd March 2002 all fish (both tagged and non-tagged) were culled and examined 

for external signs of maturation (Section 2.7.1) and their relative cohort recorded 

(Table 3.2) (see Section 2.8.5), although all of the cohorts identified in the experiment 

were not necessarily represented within each treatment. Furthermore all tagged and 

approximately 150 non-tagged fish per treatment were dissected with the sex of the 

individual and internal signs of maturation (Le. enlarged gonadal tissue) recorded. 

Between the 14th September and 4th October sample points a blocked inlet resulted in 

the loss of one replicate of the 12 weeklMay group. The second replicate was 

subsequently divided to create a replicated group, although no further fish were 

tagged and sacrificial sampling in these groups was reduced to maintain population 

numbers. A broken stand-pipe resulted in further losses on 29th January, therefore the 

treatment was terminated at that time. 

Growth data as well as changes in gill Na+, K+ -ATPase were compared using a 

General Linear Model (Section 2.11) although for some weight comparisons natural 

log transformations were used to improve normality and homogeneity of variance. For 

changes in percentage maturation and population structures 95% confidence limits 

were calculated and compared (Fowler and Cohen, 1987). 
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Cohort 

Large smolts 

Parr 

Large parr 

Small parr 

Description offiSh 

Fully silvered fish with no parr marks and blackened fin 
margins. These fish were typically> 1 OOg 

Fish showing no signs of silvering with the presence of distinct 
parr marks. These fish were typically> 30g and <65g. 

Fish showing some slight silvering, although distinct parr 
marks predominated. However, these fish were significantly 
larger than the parr described above (Le. > 100g). 

Fish showing no signs of silvering, with the presence of distinct 
parr marks, although these fish were significantly smaller than 
the parr described above (Le. <15g). 

Table 3.2. The nomenclature used to assign individuals to a particular developmental 

cohort. Cohorts were based on the level of smoltification achieved at the conclusion 

of the experiment. The cohorts denote groups of fish that were identified within the 

entire experiment although some treatments, as well as the PIT tagged groups, did not 

necessarily contain all of the cohorts that have been described. 

130 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

3.3.3. Results 

3.3.3.1. Growth 

Weight 

Within treatment differences: 

Differences within each cohort over time 

All cohorts showed an overall increase in weight (p<O.OO 1) over the experimental 

period (Fig. 3.1S). 

Parr increased throughout the experiment (p<O.Ol), except in the 12 week/May group 

where increases occurred until 16th October and then from 14th November until 17th 

December and finally from Sth until 29th January. 

In the S weeklMay and 8 week/June groups mature parr increased until 4th October 

and then from Sth January onwards. However, for the 12 week treatments no increases 

were observed between consecutive time points (p>O.05). 

For large parr the 8 weeklMay and 8 week/June groups increased until 16th October 

(p<O.OI) and then from 8th until 29th January for the June group and between 30th 

November and 1 i h December (p<O.05) and from 8th January (p<O.OI) onwards in the 

May group. For large parr under the 12 week/May treatment no consistent increases 

occurred whereas those in the 12 week/June group increased throughout the 

experiment (p<O.OI). 

For small parr no consistent increases occurred in either of the May groups with those 

131 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

Fig. 3.18 The change in weight (mean ± S.E.M., n=100-200) offish cohorts identified 

in groups exposed to 8 or 12 week periods of short days (LDlO:14), commencing in 

either Mayor June, in an otherwise continuous light regime. a) 8 weeklMay 

photoperiod, b) 12 weeklMay photoperiod, c) 8 week/June photoperiod, d) 12 

week/June photoperiod. In some cases error bars may be too small to be depicted. The 

relative photoperiod regimes are shown to the time to aid interpretation. 
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from the 8 week/June group only increasing until 16th October. The 12 week/June 

small parr increased until February (p<O.OI). 

The 8 weeklMay and 12 week/June treatments were the only groups where further 

cohorts were observed. In the 8 week/May group mature large parr increased until 

Ith September (p<O.OI) and from 8th January onwards (p<O.05). In this group only 

one mature small parr was observed. In the 12 week/June group smolts increased until 

early October (p<O.OI) and then between 8th January and 20th February (p<O.OI) with 

mature small parr showing no consistent increases over time (p>O.05). 

Within treatment differences: 

Differences between cohorts at each sample point. 

In the 8 weeklMay treatment large parr, mature large parr, parr and mature parr were 

all similar until Ith September with mature parr also similar to small parr until this 

time. Parr and mature parr remained similar throughout the experiment (p<O.OI) with 

all other groups being significantly different (p<O.05). In the 8 week/June group parr 

and mature parr were similar from 13th August until early January with all other 

groups different throughout the experiment (p<O.OI). Under the 12 weeklMay 

photoperiod all groups were similar until 4th October with large parr remaining of 

similar weight to both mature and immature parr until 31 st October. Parr and mature 

parr had similar weights throughout the experiment. In the 12 week/June group, 

smolts were similar to large parr throughout the experiment with this also the case for 

parr and mature parr, and small parr and mature small parr. Parr were similar to 

mature small parr until 17th December with smolts and large parr also similar to 
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mature parr until 12th September. At all other times cohorts were significantly 

different (p<O.05). 

Length 

Within treatment differences: 

Differences within each cohort over time 

All cohorts showed an overall increase in length (Fig. 3.19) over the experimental 

period (p<O.OOl). Parr grew consistently throughout the experiment in all photoperiod 

groups (p<O.05). 

In all but the 12 week/June group, where no increases occurred between consecutive 

time points, mature parr increased consistently until 4th October (p<O.05) with those 

from the 8 weeklMay group continuing to increase until 16th October (p<O.OI). The 

mature parr from this 8 weeklMay group also increased from 8th January onwards 

(p<O.OI), with those from the 8 week/June group increasing between 8th January and 

20th February (p<O.Ol). 

Under both 8 week regimes large parr grew consistently until 31 st October and then 

from 8
th 

January onwards (p<O.OI) with those from the 12 week/June group 

increasing throughout the experiment (p<O.OI). However, for the large parr from the 

12 weeklMay increases only occurred unti11ih September and then between 16th and 

31 st October (p<O.O 1). 
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Fig. 3.19 The change in length (mean ± S.E.M., n=100-200) offish cohorts identified 

in groups exposed to 8 or 12 week periods of short days (LDI0:14), commencing in 

either Mayor June, in an otherwise continuous light regime. a) 8 weeklMay 

photoperiod, b) 12 weeklMay photoperiod, c) 8 week/June photoperiod, d) 12 

week/June photoperiod. In some cases error bars may be too small to be depicted. The 

relative photoperiod regimes are shown to the time to aid interpretation. 
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In all groups small parr increased in length until early October (p<O.05) with those 

from the 12 week/June group continuing to increase until 31 st October (p<O.OI). 

Finally, the mature large parr in the 8 weekJMay group only increased until 12th 

September (p<O.OI) with mature small parr in the 12 week/June group showing no 

increases. Smolts from this group, however, increased until 16th October (p<O.05) and 

then from early January onwards (p<O.OI). 

Within treatment differences: 

Differences between cohorts at each sample point. 

In the 8 week/May group immature and mature parr had similar lengths throughout 

the experiment with all other cohorts different at all sample points (p<O.05). For the 8 

week/June group the lengths of immature and mature parr remained similar until 17th 

December with all cohorts differing at all other times (p<O.05). Under the 12 

weeklMay photoperiod large parr had similar lengths to both immature and mature 

parr until 31 st October, with immature and mature parr having similar lengths 

throughout the experiment. All other cohorts differed from one another throughout the 

experiment (p<O.OI). For the 12 week/June group, smolts and large parr were similar 

in length throughout the experiment with this also the case for immature and mature 

parr, and immature and mature small parr. Both immature and mature parr were also 

similar in length to mature small parr until 1 t h December and 8th January 

respectively, with smolts, large parr and small parr all statistically similar on 14th 

August (p>O.05). At all other times cohorts differed in length (p<O.05). 
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Condition factor (CF) 

Within treatment differences: 

Differences within each cohort over time 

Differences in condition factor were observed following photoperiod treatment (Fig. 

3.20). Under the 8 week/May photoperiod only large parr, parr and small parr showed 

an overall decline in CF over the course of the experiment (p<0.05) with mature parr 

and mature large parr showing no overall decline. Between consecutive time points 

both large parr and parr showed an initial decline in CF to 12th September with a 

subsequent rise by 4th October (p<O.OI) that was also observed in the mature parr 

cohort. Following this all three cohorts showed a decline between 16th and 31 st 

October with the CF of parr rising again by 14th November (p<O.OI). No further 

changes were seen in any cohort until February when both parr and small parr showed 

a decline in CF (p<O.05). 

In the 8 week/June group all cohorts showed an overall decline in CF (p<O.OI). Until 

12th September large parr, parr and small parr all showed a decline in CF with these 

groups showing a further decline between 16th and 31 st October (p<O.OI) although 

parr did show an increase immediately prior to this decrease. All groups then 

remained unchanged until 20th February when parr showed a further decrease in CF 

(p<0.01). 

For the 12 weeklMay group only parr and small parr showed overall declines in CF 

(p<0.05). However, a decline in CF between consecutive time points only occurred 

between 14th August and 12th September for the parr group and between 16th and 31 5t 
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Fig. 3.20 The change in CF (mean ± S.E.M., n=1 00-200) of fish cohorts identified in 

groups exposed to 8 or 12 week periods of short days (LDI0:14), commencing in 

either Mayor June, in an otherwise continuous light regime. a) 8 weeklMay 

photoperiod, b) 12 weeklMay photoperiod, c) 8 week/June photoperiod, d) 12 

week/June photoperiod. In some cases error bars may be too small to be depicted. The 

relative photoperiod regimes are shown to the time to aid interpretation. 
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October for both parr and small parr cohorts (p<O.05). 

For the 12 week/June group large parr, parr and small parr showed overall decreases 

in CF over the experimental period (p<O.OI). However, between consecutive time 

points decreases in CF were only observed between 12th September and 4th October 

for large parr and parr cohorts and then between 16th and 31 st October for the large 

and small parr (p<O.OI). No further changes were observed until 20th February when 

both parr and small parr showed a decline (p<O.OI). However, both smolts and large 

parr showed decreases in CF between 1ih September and 30th November (p<O.05) 

with large parr then showing an increase by the conclusion of the experiment 

(p<O.Ol). 

Within treatment differences: 

Differences between cohorts at each sample point. 

In the 8 weeklMay group the only consistent differences were that the CF of mature 

parr was higher than that of large parr and parr from early October until 17th 

December, with the CF of small parr lower than that of large parr and mature parr 

between 4th October and 1 t h December (p<O.05). For the 8 week/June group mature 

parr had a higher CF than large and small parr between 31 5t October and 8th January, 

and 4th and 31 st October respectively (p<O.05). On 4th and 31 st October as well as 30th 

November mature parr had a higher CF than parr (p<O.05). For the 12 weeklMay 

group no consistent differences in CF could be observed between groups (p>O.05). 

Under the 12 week/June photoperiod differences only occurred when the smolt and 

large parr cohorts were compared with the other groups. The smolt cohort had a lower 
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CF than parr, mature parr and small parr from 14th November, 30th November and 16th 

October respectively until 8th January with small parr different until 20th February 

(p<O.05). For large parr a similar situation occurred with the CF of parr, mature parr 

and small parr lower from 16th October, 14th November and 4th October respectively 

until 8th January (p<O.OI), with small parr again different until 20th February (p<O.OI). 

Specific growth rate (SGR) 

Within treatment differences: 

Differences within each cohort over time 

All groups under the 8 weeklMay photoperiod regime, except the small parr, showed 

an overall decline in SGR (p<O.OI) (Fig. 3.21). However, both small parr and parr 

showed an initial increase in SGR until 4th October after which the small parr group 

displayed an overall decline in SGR until the conclusion of the experiment (p<O.OI). 

For the parr and mature parr decreases in SGR were only observed between 

consecutive time points from 16th October until 14th November, with decreases 

occurring from 16th until 31 5t October for the large parr (p<O.OI). 

For the 12 weeklMay photoperiod group all cohorts showed an overall decline in SGR 

over the experiment (p<O.05). All cohorts showed a significant decrease in SGR 

between 16th 
and 31 5t October (p<O.05) with parr also showing a decrease in SGR 

from 17th December until early January (p<O.05). 

For the 8 week/June group all cohorts showed an overall decrease in SGR over the 

experiment (p<O.OI). Parr showed initial increases in growth until 16th October with 
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3.21 The change in SGR (mean ± S.E.M., n=100-200) of fish cohorts identified in 

groups exposed to 8 or 12 week periods of short days (LD 10: 14), commencing in 

either Mayor June, in an otherwise continuous light regime. a) 8 weeklMay 

photoperiod, b) 12 weeklMay photoperiod, c) 8 week/June photoperiod, d) 12 

week/June photoperiod. In some cases error bars may be too small to be depicted. The 

relative photoperiod regimes are shown to the time to aid interpretation. 
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large parr having a decrease in SGR until 4th October (p<O.OS). Then between 16th and 

31 st October all groups showed a decrease in growth rate (p<O.OS). 

Under the 12 week/June photoperiod smolts, large parr and small parr all showed a 

decline in SGR over the experiment (p<O.OS). However, both small parr and parr 

showed an increase in SGR from 4th until 16th October with the parr group 

subsequently having an overall decline in growth until the conclusion of the 

experiment (p<O.OI). Between 16th and 31 st October smolts, large parr, parr and small 

parr all showed significant decreases in growth rate (p<O.OS). 

Within treatment differences: 

Differences between cohorts at each sample point. 

Small parr from the 8 weeklMay group initially had a lower SGR than all other 

cohorts. For mature large parr this difference only occurred on 12th September but for 

mature parr the differential remained until 16th October (p<O.Ol), with large parr and 

parr growth higher until 31 st October (p<O.OI). In the 12 weeklMay treatment all 

groups had similar SGR's except the parr and small parr, which differed from each 

other until 31 st October (p<O.OS) and then on 30th November (p<O.OI). For those 

exposed to the 8 week/June photoperiod the most consistent difference was observed 

between the parr and small parr groups, with the growth of small parr lower than that 

of parr throughout the experiment (p<O.OS). Large parr had a higher growth rate than 

all other cohorts on 12th September, with the growth of small parr remaining lower 

until 31 st October (p<O.O 1). The SGR of small parr was also lower than that of both 

the parr and mature parr fish on 12th September (p<O.05). Finally, for the 12 
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week/June treatment smolts had a higher SGR than both parr and small parr until 16th 

October, with mature small parr growth also lower on 1th September (p<O.01). The 

SGR of large parr was higher than that of parr until 31 st October, with mature small 

parr growth lower on 12th September (p<O.OI). However, the growth of small parr 

was lower than that oflarge parr throughout most of the experiment (p<O.01). 

Weight-frequency distribution. 

Photoperiod treatment affected both the structure and timing of modality (Fig. 3.22). 

The emergence of modality was first observed on the 18th October in both June 

photoperiod groups. Subsequently, the 12 week/May group displayed a bimodal 

distribution on 30th November, with the 8 weeklMay group the last population to 

divide on 19th December. In both May photoperiod groups two clear modes were 

evident by the conclusion of the experiment although in both June photoperiod 

treatments the division of the population into two distinct modes was less clear with a 

more complex population structure present. 

3.3.3.2. Maturation 

Rates of maturation 

Mature fish were first identified in late October (Fig. 3.23) in both 8 week 

photoperiod treatments although the numbers found in the June treatment were 

extremely low. From late October levels of maturity steadily increased in the 8 week 

groups with the numbers of mature fish in the 12 weeklMay group increasing during 

early December reaching peak levels by 8th January (>11%). The 8 week/May and 8 

week/June groups had similar levels of maturity (p<O.05) from 16th November until 

23
rd 

March, peaking on 1 i h December and 8th January respectively, with levels at 
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Fig. 3.22 The weight-frequency distribution of populations exposed to 8 or 12 week 

periods of short days (LDIO:14), commencing in either Mayor June, in an otherwise 

continuous light regime. a) 8 week/May photoperiod, b) 12 week/May photoperiod, c) 

8 week/June photoperiod, d) 12 week/June photoperiod. (n=50-200). The populations 

shown represent the weight frequency distributions just prior to, and at the emergence 

of modality, as well as at the final sample point (except for the 12 week/May group 

where, due to population numbers, the 29th January sample point was displayed). 
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Fig. 3.23 The percentage maturation of recorded in groups exposed to 8 or 12 week 

periods of short days (LDlO:14), commencing in either Mayor June, in an otherwise 

continuous light regime (data are for all non tagged fish within the populations n= 

350-1500). 
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approximately 6%. Maturity in the 12 week/June group remained lower than all other 

groups from 16th November onwards «0.5%) although a minor peak in maturation 

could be identified on 8th January. 

Maturation index 

No differences in the mean maturity index scores of treatment groups were found at 

specific sample points (p>0.05) (Fig. 3.24) with the exception that on 31 st November 

the maturity index of 12 weeklMay fish was higher than for the 8 weeklMay group 

(p<0.05). 

For fish exposed to an 8 week/May photoperiod the mean index score rose initially, 

but then decreased reaching a low on 31 st November. Following this a sharp rise 

occurred with levels peaking on 8th January before the score started to decline through 

to the end of the experiment. The score for the 12 weeklMay group was consistently 

high from 4th October onwards reaching a peak on 29th January before the mean index 

decreased. Under the 8 week/June photoperiod levels remained fairly stable at 

approximately l.5, falling slightly to 1.4 by 8th January with a subsequent rapid 

increase in mean score peaking on 29th January. Levels then declined to the end of the 

experiment. Finally, maturity scores of the 12 week/June group increased initially 

reaching a low peak on 1 t h December before declining over the latter stages of the 

experiment. 

When the structure of the index scores for each treatment were analysed in more 

detail (Fig. 3.25), all photoperiods resulted in a high incidence of index scores 1 and 

2. Both of these scores are inconclusive in confirming maturation (Section 2.7.3). 

However, in the 8 weeklMay group index 3 fish were identified from 4th October, 
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Fig. 3.24 Mean maturity index scores (mean±S.E.M., n=7-27) of male fish, in 

populations previously exposed to 8 or 12 week periods of short days (LD10:14), 

commencing in either Mayor June, in an otherwise continuous light regime (points 

represent all male fish identified from a dissected population sample of 40 fish). a) 8 

week/May photoperiod, b) 12 week/May photoperiod, c) 8 week/June photoperiod, d) 

12 week/June photoperiod. Maturity scores: 1 = gonadal tissue pink and undeveloped, 

2 = gonadal tissue thickened, but remaining pink, 3 = gonadal tissue clearly thickened 

and white, 4 = testes fully developed without external expression of milt, 5 = testes 

fully development, with external expression of milt (see Section 2.7.3). Photoperiod 

regimes are omitted due to all groups being held on LD24:0 during the sample points. 
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Fig. 3.25 Maturity index scores of male fish, in populations previously exposed to 8 

or 12 week periods of short days (LDIO:14), commencing in either Mayor June, in an 

otherwise continuous light regime (points represent all male fish identified from a 

dissected population sample of 40 fish, n=7 to 27) . a) 8 week/May photoperiod, b) 12 

week/May photoperiod, c) 8 week/June photoperiod, d) 12 week/June photoperiod. 

Maturity scores: 1 = gonadal tissue pink and undeveloped, 2 = gonadal tissue 

thickened, but remaining pink, 3 = gonadal tissue clearly thickened and white, 4 = 

testes fully developed without external expression of milt, 5 = testes fully 

development, with external expression of milt (see Section 2.7.3 for details). 
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with index 4 and 5 fish being identified on 31 st October and 17th December 

respectively. Furthermore, index 3 and above fish were present throughout the 

experiment. In the 12 week/May group index 3 fish were identified from 4th October, 

with index 4 and 5 fish first identified on 16th November and 8th January respectively. 

In this group index 3 and above fish were identified throughout the experiment in 

reasonable numbers. For the 8 week/June group index 3 fish were present from 4th 

October onwards with index 4 and 5 fish present from 31 st October and 17th 

December respectively. However, low numbers of index 3+ fish were present until 

29
th 

January after which index 3 and 5 fish in particular became more abundant. For 

the 12 week/June group index 3 fish were only identified from 31 st October, with 

numbers remaining low from this point onwards. Index 4 fish were first identified on 

17
th 

December although no index 5 fish were identified throughout the experiment. 

3.3.3.3. Cohort structure 

Total popUlation 

Total population structure was affected by the timing and duration of winter 

photoperiod treatment (Fig. 3.26). The 8 week/May, 12 week/May and 8 week/ June 

groups exhibited similar population structures with large parr, parr and small parr 

present. The 8 and 12 week/May photoperiods resulted in similar numbers of parr 

(87% and 82% respectively) (p>0.05), with the 8 week/June photoperiod resulting in a 

lower (p<0.05), but still high, incidence (77%). Likewise, the 8 and 12 week/May 

populations had similar (p>0.05) numbers of small parr (10% and 13% respectively) 

although a higher incidence (p<0.05) was found in the 8 week/June population (15%). 

The lowest incidence of large parr (3%) was identified in the 8 week/May group 

(p<0.05) with the 12 weeklMay and 8 week/June groups having similar, low numbers 
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Fig. 3.26 The cohort structure of groups exposed to 8 or 12 week periods of short days 

(LD10:14), commencing in either Mayor June, in an otherwise continuous light 

regime. a) 8 week/May photoperiod, b) 12 weeklMay photoperiod, c) 8 week/June 

photoperiod, d) 12 week/June photoperiod. Data are based on the entire non-tagged 

population of each treatment (n=350 to 1250). 
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(6% and 8% respectively). The 12 week/June population was the most diverse of all 

groups. Large smolts were identified in this group (2%) with the highest incidence of 

both large parr (28%) and small parr (29%) (p<0.05). This group also had a lower 

incidence of parr (41 %) compared to the other treatments (p<0.05). 

Male: female ratios 

Both male and female fish were observed in each of the observed cohorts with the 

exception of the smolt cohort of the 12 week/June group where only females occurred 

(Fig. 3.27). In the 12 week/June treatment the incidence of male parr (26%) was 

greater than female parr (13%) (p<0.05) but in all other cohorts/treatments the 

incidence of males was the same as that of the females (p>0.05). 

Maturity status of cohort groups 

Photoperiod affected the proportions of mature or maturing individuals within the 

respective popUlations (Fig. 3.28). No mature females were observed in any of the 

populations. In the 8 week/May group mature fish were observed in all of the cohorts 

with the highest numbers (13%) in the parr cohort (p<0.05). Similar, low numbers of 

mature males (p>0.05) were identified in the large (1 %) and small (1 %) parr cohorts. 

In the 12 week/May group mature fish were only observed in the parr (20%) and 

small parr (2%) groups with significantly more occurring in the parr cohort (p<0.05). 

This resulted in a difference in the incidence of immature males and females (p<O.05). 

In the 8 week/June group mature fish were observed in all of the cohorts. However, 

the greatest incidence was found in the parr cohort (13%) (p<0.05) with similar low 

numbers in the large (1%) and small parr (1%) groups (p>0.05). Under the 12 

week/June photoperiod mature fish were only found in the parr and small parr 
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Fig. 3.27 The male: female ratio of fish cohorts, identified in groups exposed to 8 or 

12 week periods of short days (LDIO:14), commencing in either May or June, in an 

otherwise continuous light regime. Data are based on a dissected population sample 

(n=lSO). a) 8 weeklMay photoperiod, b) 12 week/May photoperiod, c) 8 week/June 

photoperiod, d) 12 week/June photoperiod. 
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Fig. 3.28 The maturity status of fish cohorts, identified in groups exposed to 8 or 12 

week periods of short days (LDIO:14), commencing in either Mayor June, in an 

otherwise continuous light regime. Data are based on a dissected population sample 

(n=150). a) 8 weeklMay photoperiod, b) 12 weekiMay photoperiod, c) 8 weeklJlme 

photoperiod, d) 12 weeklJune photoperiod. 
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cohorts, with similar, low numbers found (4% and 1 % respectively). 

3.3.3.4. Assessment of smoltification 

Smolt index 

No differences in the mean smolt index scores of treatment groups were found at 

specific sample points (p>0.05) (Fig. 3.29), with the exception that on 31 st November 

the smolt index of 12 week/June fish was higher than for the 8 week/May group 

(p<O.05). 

For the May treatments the mean smolt index remained <1.15 until 29th March when 

the score of the 12 week/May group rose above 1.2. For the 8 week/June group the 

mean index scores increased from low initial levels to 1.3 on 1 t h December. The 

mean score then declined to Lion 20th February before showing a slight rise by the 

conclusion of the experiment. The mean scores recorded in the 12 week/June group 

remained above 1.4 throughout the experiment with a peak on 31 st November before 

declining to a low of 1.35 on 29th January. After this the mean index rose steadily to 

the conclusion of the experiment. 

When the development of smolt index over time is viewed in more detail (Fig. 3.30), 

it can be seen that in both May photoperiod groups index 1 fish predominated. Index 2 

fish were present in low numbers throughout the experiment for both May treatments, 

with index 3 fish only observed on 23 rd March for the 12 week/May group. No index 

4 fish were identified within either May photoperiod group. In the 8 week/June group 

a slightly higher incidence of index 2 fish were observed with index 3 fish also noted 

from 16
th 

November onwards. However, as with the May groups no index 4 fish were 
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Fig. 3.29 Mean smolt index scores (mean±S.E.M .• n=40) of fish exposed to 8 or 12 

week periods of short days (LDI0:14). commencing in either Mayor June. in an 

otherwise continuous light regime. a) 8 week/May photoperiod. b) 12 weeklMay 

photoperiod. c) 8 week/June photoperiod, d) 12 week/June photoperiod. Smolt index 

scores: 1 = parr, 2 = parr with some silvering. 3 = silvered fish. with parr marks still 

visible. 4 = smolt (see Section 2.8.4 for details). Photoperiod regimes are omitted due 

to all groups being held on LD24:0 during the sample points. 
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Fig. 3.30 The smolt index of fish exposed to 8 or 12 week periods of short days 

(LDIO:14), commencing in either Mayor June, in an otherwise continuous light 

regime. a) 8 week/May photoperiod, b) 12 week/May photoperiod, c) 8 week/June 

photoperiod, d) 12 week/June photoperiod. Smolt index scores: 1 = parr, 2 = parr with 

some si lvering, 3 = silvered fish , with parr marks still visible, 4 = smolt (see Section 

2.8.4 for details). 

156 



CHAPTER 3: PHOTOPERIODIC EFFECTS. 

identified. For the 12 week/June group the greatest incidence of index 2 fish was 

observed (up to 45% on 31 st November) with the highest incidence of index 3 fish 

identified from 16th October onwards. This group was also the only treatment in 

which index 4 fish were identified although such fish were only identified on 23 rd 

March. Finally, it is important to note that although between treatment variation was 

found the incidence of fish showing at least some signs of silvering (i.e. index 2+) 

was much lower in all groups than that found in commercial smolt production. 

Na+, K+-ATPase 

The gill Na\ K+ -ATPase levels of fish showing no silvering (smolt index 1) and 

some level of silvering (smolt index 2 and above) have been separated (Fig. 3.31) to 

aid analysis. No overall increases in Na+, K+ -ATPase level were found over the 

course of the experiment with the exception of smolt index 1 fish from the 12 

week/June group. Furthermore, no increases were observed between consecutive 

sample points for any of the fish groups. 

No differences were found in the Na+, K+ -ATPase levels of either the smolt index 2+ 

or index 1 fish between the treatments (p>O.05). Within the 12 week/June group the 

Na\ K+ -ATPase levels of the smolt index 2+ were higher than those found in the 

index 1 fish until 17th December (p<O.05). However, within the 8 weekJMay, 12 

week/May and 8 week/June groups no consistent differences could be found between 

the Na+, K+ -ATPase levels of the index 2+ and index 1 fish. 
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Fig. 3.31 The Na+, K+ -ATPase levels (mean±S.E.M., n=20) offish exposed to 8 or 12 

week periods of short days (LDlO:14), commencing in either Mayor June, in an 

otherwise continuous light regime. a) 8 weeklMay photoperiod, b) 12 weeklMay 

photoperiod, c) 8 week/June photoperiod, d) 12 week/June photoperiod. The Na+, K+ -

ATPase levels of fish showing no signs of silvering, i.e. smolt index 1 (closed 

symbols), and those showing silvering, i.e. smolt index 2+ (open symbols), are 

separated to aid analysis. Photoperiod regimes are omitted due to all groups being 

held on LD24:0 during the sample points. 
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Seawater tolerance 

When fish were exposed to a 96h seawater tolerance test those in the 8 week/May 

treatment were the first to suffer mortalities after 7 h (Fig. 3.32). Subsequently, fish 

from the 8 and 12 week/June groups suffered their first mortalities after 21 h, with the 

cumulative mortalities recorded at this time significantly greater than for the 8 

week/May group (p<0.05). The first mortalities from the 12 week/May group 

occurred after 30 h. However, from 30 hours onwards the cumulative mortality of the 

8 weeklMay, 8 week/June and 12 week/June groups remained similar and higher than 

for the 12 week/May treatment (p<0.05). The overall increases in mortality, therefore, 

resulted in the 12 weeklMay group having 55% survival after the 96 h with all other 

groups only achieving 12% survival. 

When the lengths of mortalities were considered (Fig.3.33), for all groups the length 

of surviving individuals was significantly greater than for the mortalities (p<0.05). 

However, all groups showed poor linear correlations between fish length and duration 

in sea water. The 8 week/June treatment resulted in the highest r2 value (0.475) with 

the 12 weeklMay group showing the least confident linear regression (~=0.051). 
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Fig.3.32 The percentage cumulative mortality of fish exposed to a 96 hour sea water 

(37.5%0) tolerance test after previous exposure to 8 or 12 week periods of short days 

(LDlO:14), commencing in either Mayor June, in an otherwise continuous light 

regime. (for the 8 weeklMay, 8 week/June and 12 week/June photoperiods n=75, for 

the 12 weeklMay photoperiod n=20). 
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Fig. 3.33 The fork length of mortalities during a 96 hour seawater (37.5%0) tolerance 

test, after previous exposure to 8 or 12 week periods of short days (LDI0:14), 

commencing in either Mayor June, in an otherwise continuous light regime. (for the 8 

weeklMay, 8 week/June and 12 week/June photoperiods n=75, for the 12 weeklMay 

photoperiod n=20). Linear regression plots have been included with ~ values quoted. 

a) 8 week/May photoperiod, b) 12 week/May photoperiod, c) 8 week/June 

photoperiod, d) 12 week/June photoperiod. 
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3.3.4. Summary of the results from Experiment II. 

• The weight and length of mature and immature parr was similar throughout the 

experiment in all treatments. In the 12 week/June group this was also the case for 

large smolts and large parr as well as small parr and mature small parr. 

• The CF of all cohorts, except mature parr, declined over the experimental period. 

In the 8 week groups mature parr had high CF's during the initial stages of the 

experiment. In the 12 week/June group the CF of large smolts and large parr was 

lower than for other cohorts. 

• SGR declined for all groups during the experiment, with decreases occurring 

during the initial stages of the experiment. Small parr consistently had the lowest 

SGR within groups. 

• The 12 weeklMay photoperiod resulted in the highest levels of maturation 

(> 11 %), with the 12 week/June group having the lowest levels «1 %). The 8 week 

photoperiods resulted in similar intermediate levels (>6%). 

• The 12 week/June photoperiod resulted in the most diverse population structure 

with the only incidence of large smolts and the highest numbers of both large and 

small parr. All other treatments had similar population structures with a high 

incidence of parr and low numbers of both large and small parr. 

• Mature fish were identified within the large parr, parr and small parr cohorts. In 

the 8 week photoperiod groups mature fish occurred in all cohort groups but under 

the 12 week photoperiods mature fish only occurred in the parr and small parr 

cohorts. 

• Smolt index scores were slightly higher in the 12 week/June group compared to 

the other treatments, although the scores were relatively low for all groups. 
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• The gill Na +, K+ -ATPase levels of silvered fish were slightly elevated in only the 

12 week/June photoperiod group. 

• Fish exposed to the 12 week/May photoperiod exhibited moderate survival in sea 

water (55%). All other groups had high levels of mortality after 96h in sea water 

(i.e. 88%). 

• Some evidence suggested that larger fish were less susceptible to seawater 

mortality. 
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3.4. Experiment III. The effects of an individuals' sex and 

maturation status on post transfer mortality in smolts. 

3.4.1 Objectives 

Based on the findings of experiments I and II, where maturation had occurred in some 

fish which were also undergoing smoltification, it was suggested that post seawater 

transfer mortality rates may be linked to maturational status or an individuals' sex. 

Therefore, the current survey of commercial data aimed to investigate whether smolts 

suffering from post transfer mortality displayed any incidence of maturation or 

whether mortality was linked to an individuals' sex. 

3.4.2. Materials and Methods. 

A survey of the rates of maturation and sex, of individuals suffering post transfer 

mortality was conducted at three sites: Site 3, Site 4 and Site 5 (Section 2.1.1). For 

each site surveys of both 0+ and 1 + production were conducted. From the transfer 

date of each group (Table 3.3) each site was visited at weekly or two weekly intervals 

until approximately 6 weeks after transfer when mortalities due to transfer were found 

to become reduced (M. Thomson pers. comm.). At each sample point all mortalities 

identified in the respective sea cages were removed and dissected with the individuals 

sex and maturation status recorded. 

To analyse differences between the proportions of male and female mortalities 95% 

confidence intervals were calculated and compared (Fowler and Cohen, 1987) 

(Section 2.11). 
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Site 

Site 3 

Site 4 

Site 5 

Transfer date 
0+ 1+ 

09/02/02 

21102102 

16/02/02 

02/04/02 

04/04/02 

03/04/02 

Table 3.3. The dates on which both 0+ and 1+ smolts were transferred from 

freshwater hatcheries to three commercial sea cage rearing sites. Subsequently the 

mortality rates of these fish were recorded. 

3.4.3. Results. 

0+ production 

No signs of maturity were observed at any of the sites investigated. When the total 

numbers of fish were considered for each site (Fig. 3.34) more male mortalities were 

found than females at sites 3 (64% and 36% respectively) and 4 (60% and 40% 

respectively) (p<O.05). However, when the number of mortalities are considered at the 

respective sample points only on 1 i h May at Site 3 were there differences with more 

male mortalities (8% of the total mortality at Site 3) recorded than females (0% of the 

total mortality at Site 3). 

1 + production 

No signs of maturity were observed at any of the sites investigated. When the total 

fish numbers (Fig. 3.35) were considered no differences were found between male 

and female mortalities at any site (p>O.05). Furthermore, no differences were found 

when mortality rates at individual sample points were considered (p>0.05). 
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Fig. 3.34 The male: female ratio recorded in mortalities that occurred following 

transfer to sea water (n=66 to 185). Mortality rates were recorded, for up to six weeks 

after sea water transfer, at three commercial on-growing sites: a) Site 3, b) Site 4, c) 

Site 5 (see Section 2.1.1 for details). Smolts were produced under an 0+ photoperiod 

production regime. * = a significant difference (p<0.05) between the incidence of 

males and females. 
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Fig. 3.35 The male: female ratio recorded in mortalities that occurred following 

transfer to sea water (n=55 to 220). Mortality rates were recorded, for up to six weeks 

after sea water transfer, at three commercial on-growing sites: a) Site 3, b) Site 4, c) 

Site 5 (see Section 2.1.1 for details). Smolts were produced under an 1 + photoperiod 

production regime. 
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3.4.4. Summary of the results from Experiment III. 

• No post transfer mortalities were found to be mature or maturing. 

• For smolts produced using a the 0+ photoperiod regime the total incidence of male 

post transfer mortalities was greater than for females at two of the sites 

investigated. 

• For smolts produced using a the 1 + photoperiod regime no differences occurred 

between the post transfer mortality rates of males and females. 
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3.S. Discussion 

The experiments detailed in this chapter have shown that winter photoperiod has 

important effects on the growth, maturation and smoltification of Atlantic salmon 

parr. By using large numbers of individually tagged fish the development and 

retrospective analysis of such physiological processes was analysed with the 

interactions between maturation and smoltification investigated at both the individual 

and population level. 

Before a detailed discussion of the results presented in this chapter it is important to 

mention the different rearing conditions that were used in the two experiments. 

Because the fish were reared to first feeding with commercial production fish it was 

not possible to control the photoperiod regimes used during incubation. As a 

consequence different incubation regimes were used in the two experiments. It is 

therefore important to be aware that some of the findings documented in this chapter 

may have been influenced to some unknown degree by the photoperiod regimes used 

prior to first-feeding. 

3.5.1. Growth 

It is well documented that salmonid growth is enhanced by either long day 

(Komourdjian et al., 1976; Clarke et al., 1978; Lundqvist, 1980; Saunders and 

Harmon, 1990) or continuous light regimes (Saunders and Henderson, 1988; Villareal 

et al., 1988; Handeland and Stefansson, 2001) applied in both fresh- (Saunders and 

Harmon, 1990; Sigholt et aI., 1995) and sea water (Saunders and Harmon, 1988; 

Hansen et al., 1992; Taranger et al., 1995). In experiment I similar findings were 

observed with continuous light resulting in smolts, parr and mature parr being longer 
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and heavier than those from either the August or September winter photoperiod 

regimes. Furthermore, the growth of these cohorts appeared to display a seasonal 

sensitivity to photoperiod as previously noted by Stefansson et al. (1989), Saunders 

and Henderson (1988), Saunders and Harmon (1990) and Berg et al., (1994) and it 

would appear that although long day regimes are conducive to growth (Komourdjian 

et al., 1976; Clarke et al., 1978; Lundqvist, 1980; Saunders and Harmon, 1990; the 

present study), with short days regimes found to reduce growth (Higgins and Talbot, 

1985; Skilbrei et al., 1997), a seasonal sensitivity to such photoperiodic cues may 

result in daylength-related growth being affected. 

An overall increase in both the weight and length of individual cohorts occurred 

regardless of photoperiod regime. This would indeed be expected because although 

population bimodality has been shown to result in growth differentials between fish 

destined to enter different modes (Thorpe, 1977; Kristinsson et al., 1985; Stewart et 

al., 1990) there are no examples of fish failing to significantly increase their somatic 

growth over a yearly profile. 

There were differences in the profiles of growth of particular cohorts between the 

photoperiod groups. In both experiments parr grew consistently throughout the year. 

Smolts from the August photoperiod of experiment I also grew throughout the 

experiment although smolts from the continuous light and September groups did not 

show consistent increases and it is likely that this was due to the low observed 

incidence of such fish, which would have resulted in a loss of statistical robustness. 

None of the mature parr or small parr within experiment I showed increases during 

the experiment. In experiment II growth differentials between treatments were found. 
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Mature parr from the 8 week as well as the 12 week May photoperiod grew until 

October and then from January onwards with a similar growth arrest observed for the 

large parr from the 8 week photoperiods and the large smolts from the 12 week June 

photoperiod. 

These differences lend support to the theory that changes in winter growth are under 

photoperiod control. Although mature fish have previously been linked in greater 

numbers to the lower modal group (LMG) of a bimodal population (Kristinsson et al., 

1985; Duston and Saunders, 1992, 1995) maturation is not necessarily the primary 

cause of modality (Thorpe, 1977; Villareal and Thorpe, 1985; Thorpe, 1987a) with 

mature fish often identified within the different modes of a distribution (Bailey et al., 

1980; Baglinere and Maisse, 1985; Kristinsson et al., 1985; Saunders et al., 1994). 

Lower modal group fish generally show reduced growth rates during winter months 

with upper modal group (UMG) fish (such as the large parr and large smolts of 

experiment II) continuing to grow during the winter (Kristinsson et al., 1985; Duston 

and Saunders, 1992). However, in the current experiment a two month growth arrest 

was observed in large parr, large smolts and mature parr during the natural winter. 

Continuous light was applied during this time and it is possible that in the absence of 

any changing photoperiod cue the natural growth profiles of the respective modal 

group fish were influenced by the seasonal changes in temperature. 

Additionally, the winter growth arrest observed for the large parr and large smolts 

occurred when a continuation of growth, linked to photoperiod, might have been 

expected. This indicates support for the role for a photoperiodically entrained 

endogenous rhythm of growth (Clarke et al., 1978; Villareal et al., 1988; Duncan et 
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al., 1998). It therefore seems unlikely that growth is under a direct photostimulation 

as previously suggested by Saunders and Harmon (1988), Krakenes et al. (1991) and 

Duncan et al. (1999). 

In experiment I mature parr appeared to be initially amongst the largest fish in the 

August and September photoperiod groups (although such differences were not 

significant). Indeed it is well documented that mature fish are initially amongst the 

fastest growing individuals within a population (Saunders et al., 1982; Dalley et al., 

1983; Foote et al., 1991; Heath et al., 1996), which results in those fish that are 

destined to mature being heavier than their immature siblings during the early stages 

of a growing season (Lundqvist, 1980; Rowe and Thorpe, 1990a; Prevost et al., 1992; 

Berglund, 1995). In experiment I the mature fish remained of similar sizes to their 

immature siblings for a short period of time with the observed decreases in somatic 

growth and the divergence in size between mature and immature fish possibly linked 

to the energetic costs of gonadal recrudescence (Lee and Power, 1976; Dalley et al., 

1983; Foote et al., 1991) as well as a reduction in the feed intake of maturing 

individuals (Rowe and Thorpe, 1990a; Kadri et al., 1996; Stead et al., 1999). 

However, in experiment I there was a difference in the timing of the divide in growth 

between maturing and immature parr and it is likely that photoperiod was important in 

influencing this division. The earliest division between mature and immature parr 

occurred under continuous light (4th October) with the divide in growth of the August 

and September photoperiod fish occurring In early November and mid-October 

respectively. Although distinct differences in specific growth rate between the 

photoperiod groups could not provide support for these differences in timing it is 
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possible that subtle, photoperiod induced, growth differences could have occurred. 

Under continuous light growth potential is enhanced (Villareal et al., 1988; Berg et 

al., 1994; Sigholt et ai., 1995) allowing maturing fish to reach the point where energy 

is diverted from somatic growth into gonadal development (Foote et al., 1991) at an 

early stage. Growth potential when fish are exposed to short days is reduced (Higgins 

and Talbot, 1985; Berge et al., 1995; Skilbrei et al., 1997) so the mature and 

immature parr exposed to a September photoperiod diverged at a slightly later date 

than those in the continuous light treatment due to experiencing a long period of 

continuous light and then only four weeks of short days prior to the divergence. 

Finally, the August photoperiod group experienced 8 weeks of short days prior to the 

divide in growth, which resulted in the mature fish diverging at a later date than both 

the continuously illuminated and September photoperiod fish. 

However, it is evident that temperature would also have played an important role in 

the timing of these divergences in growth. The action of temperature is generally 

accepted to be one that controls the rate of response to photoperiod (Clarke et al., 

1978; Solbakken et al., 1994). Therefore, due to the increased natural summer 

temperatures the relative growth potential of the August photoperiod fish during their 

winter photoperiod would have been greater than for the September fish. 

Subsequently, the magnitude of the response of growth to photoperiod would have 

been different for the August and September fish. This would have resulted in the 

timing of the divergence between mature and immature fish being different to that 

which might have occurred under standardised temperatures. 
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In experiment II it was evident that mature and immature parr remained of similar 

length and weight throughout the experiment. Previously this finding has been 

observed by Naevdal (1983) although the majority of literature documents a size 

divergence between mature and immature fish during early development (e.g. Dalley 

et al., 1983; Rowe and Thorpe, 1990a; Berglund, 1995; experiment I). Naevdal (1983) 

assigned no reasoning to the finding but it is possible that the early timing of the 

experimental photoperiods can explain the observed profiles of growth. It has been 

hypothesised that the decision to mature is made at an early stage in development 

(Saunders and Henderson, 1988; Thorpe, 1994b; Metcalfe, 1998) with a time prior 

even to first-feeding suggested (Saunders and Henderson, 1988; Thorpe, 1994b). If 

such an early decision were made then a winter photoperiod applied during warmer 

months of the year, when the temperature sensitive growth response to photoperiod 

(Clarke et al., 1978; Solbakken et al., 1994) is enhanced, could result in fish that have 

chosen to mature maintaining similar sizes to immature fish. In the current experiment 

fish were fed to satiation and as such food availability would not have been a limiting 

factor in growth. 

If this is the case similar growth patterns would be expected in the fish exposed to 

continuous light in experiment I. However, if the decision to mature is not made prior 

to first-feeding (Saunders and Henderson, 1988; Thorpe, 1994b) and individuals are 

affected by a stimulus in early development (as will be suggested and discussed later), 

fish exposed to continuous light would not necessarily show the growth profiles 

observed in experiment II. Unfortunately, the lack of individual growth data for the 

May photoperiod fish of experiment I means that such a theory cannot be confirmed 
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but the high levels of maturation observed in this group certainly do not contradict the 

hypothesis. 

Changes in condition factor have been linked to both maturation (Rowe and Thorpe, 

1990a; Jobling and Baardvik, 1991; Duston and Saunders, 1997; Tveiten et al., 1998) 

and smoltification (Thrush et aI., 1994; Berge et al., 1995; Duncan et al., 1998; 

Handeland and Stefansson, 2001). Generally, for fish destined to mature condition 

factor becomes elevated during spring and summer (Rowe and Thorpe, 1990a; Jobling 

and Baardvik, 1991; Duston and Saunders, 1997) although levels subsequently fall 

(Aksnes et al., 1986; Tveiten et al., 1998). Saunders et al. (1982) suggested that the 

high condition factor of mature fish was due to increased gonadal mass although it has 

also been suggested that such changes in condition occur during times when gonadal 

increases are not significant (Tveiten et al., 1998). However, although distinct 

differences in condition factor have been found between mature and immature 

individuals Jobling and Baardvik (1991) and Duston and Saunders (1997) have both 

found it an unreliable parameter for predicting which fish will undergo maturation. 

In the present experiments differences in condition factor were found between fish 

destined to mature and those remaining immature. In experiment I, differences were 

only observed under continuous light and in the August photoperiod groups from late 

September and mid-December onwards. In experiment II mature fish from the 8 week 

photoperiods had higher condition factors than both the large parr and parr from 

October until December in the May group and only during the early stages of the 

experiment in the June treatment. These findings are in agreement with the those of 

Jobling and Baardvik (1991) and Duston and Saunders (1997) that such 
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measurements are unreliable for predictive purposes. However, in the present study 

mature fish had elevated conditions during periods when gonadal increases were 

present indicating that the condition factor of mature fish is due to increased gonadal 

mass as previously suggested by Saunders et al. (1982). 

A significant decline in condition is documented as fish undergo the parr-smolt 

transformation (Thrush et aI., 1994; Berge et al., 1995; Duncan et al., 1998; 

Handeland and Stefansson, 2001). In the present experiments smolts from the August 

photoperiod group in experiment I showed a lower condition factor than mature and 

small parr and in experiment II large smolts and large parr from the 12 week June 

group had a lower condition factor than other fish from October until February. 

However, in both of these experiments the reduction in condition was not of the 

magnitude normally seen in photoperiodically manipulated commercial smolts (c.f. 

Thrush et al., 1994; Duncan et al., 1998) suggesting that although some level of 

smoltification had been achieved the fish had not achieved full smolt status. 

In experiment I, a sudden decline in condition occurred during the early stages of the 

experiment. The reasoning for this is difficult to determine. By viewing the 

temperature profile it can be seen that during this period a brief decline in temperature 

was observed. However, such deviations occurred throughout the experiment without 

any effect on condition and it is probable that temperature was not the sole cause of 

this decline. It is notable, though, that from the growth profiles it appears that the 

decrease in condition was due to an increase in length as opposed to a loss of weight. 

Changes in length will affect condition to a greater extent than weight and it is 

possible that the actual length change reSUlting in this decrease in condition was quite 
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small. As such any number of factors could have been influential such as water 

quality or feeding regime. Unfortunately, due to the nature of the experimental site 

detailed records of such parameters are not maintained and therefore is not possible to 

establish if one of these factors was influential in the decline. However, it is also 

important to note the decline in condition may have been due to sampling error. Given 

that the length of individuals decreased on the sampling point following the decline in 

condition it is possible that some form of experimental error had occurred. 

Over the experimental period an overall decrease in SGR was observed in all groups 

with the most significant decreases occurring during the early stages of the 

experiment. This finding is in agreement with the documented observations of fish 

growth (Jobling, 1994) with small fish growing at a greatly increased rate during very 

early development after which growth falls fairly rapidly to be maintained at lower 

levels. However, the recorded changes in SGR between groups proved insensitive in 

supporting the overall changes in weight and length that were observed in both 

experiments. 

However, one notable exception was that the small parr (that could be considered as 

LMG fish) had lower growth rates than all other cohorts during the early stages of the 

experiments. Therefore, the current experiments indicate that a short-term growth 

differential occurs between upper and lower mode fish. Previously, it has been 

suggested that during September fish destined to enter the upper mode of a population 

will undergo a short period of rapid growth (Kristinsson et ai., 1985; Stewart et ai., 

1990). However, from the current findings it would appear that instead of a period of 

rapid growth by UMG fish (Kristinsson et ai., 1985; Stewart et ai., 1990) it is more 
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accurate to suggest a period when upper modal group fish maintain a higher SGR than 

LMG fish. Kristinsson et al. (1985) and Stewart et al. (1990) suggested that 

differential growth between the UM and LM fish occurred from September under 

natural photoperiod regimes. Skilbrei (1990) suggested that the changes in winter 

growth were under photoperiodic control with Thorpe (1987a) also indicating a role 

for photoperiod in the development of population bimodality. In the current 

experiments such differentials were observed at an earlier time of year than 

September although fish in many of the treatments were experiencing no change in 

photoperiod at that time. It therefore seems that in the absence of changing 

photoperiods other environmental cues, 'such as temperature, may become important 

in cueing growth (Solbakken et al., 1994) or that growth is controlled by an 

endogenous rhythm (Clarke et al., 1978; Villareal et al., 1988; Duncan and Bromage, 

1998). 

In the current experiments similar profiles of growth were observed in all cohorts 

during the time of year when winter would normally occur, under a naturally 

changing photoperiod (i.e. November to January). This provides further support that 

growth and bimodality are under photoperiodic control (Thorpe, 1987a; Skilbrei, 

1990). Thorpe et al. (1980) and Skilbrei (1991) found that during winter lower modal 

group fish cease or reduce their growth compared to those of the upper mode. 

However, in the current experiments instead of a changing photoperiod continuous 

light was applied throughout November to January resulting in fish from different 

modes maintaining similar profiles of growth. This suggests that photoperiod affects 

the growth dynamics of fish from different modal groups during winter in a naturally 

changing photoperiod regime. 
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Population bimodality has been well documented in salmonids (Thorpe, 1977, 1987a; 

Higgins and Talbot, 1985; Stewart et al., 1990; Skilbrei, 1991; Duston and Saunders, 

1992; Saunders et al., 1994) and in both experiments of the current study population 

modality was observed. However, it was evident that under continuous light the 

timing of the population divide was less clear compared to the other treatment groups 

and by the conclusion of the experiment modality was fairly weak. Similar findings 

have been documented for fish exposed to continuous light or constant long days 

(Skilbrei, 1991) with a delay in the emergence of modality also noted (Duncan and 

Bromage, 1998). Duston and Saunders (1995) suggested that because modality occurs 

under continuous light regimes it is not dependant on a decrease in photoperiod and as 

such it was suggested that bimodality was endogenously controlled. However, from 

the literature that presents itself it does seem likely that photoperiod has some 

influence on the development of population modality (Thorpe, 1987a; Stefansson et 

al., 1989; Skilbrei, 1991). 

In the current experiments some conflicting data are provided. In experiment I the 

timing of the population divide was unaffected by photoperiod. However, photoperiod 

did result in differences in the percentages of UM and LM fish. Under continuous 

light low numbers of LMG fish were observed with slightly higher percentages in the 

August and September photoperiod groups. For the May photoperiod group the 

highest percentages of LMG fish were found. Although it may be sensible to correlate 

this high incidence with the high percentage of mature fish within this group such 

links should be made cautiously because it has previously been found that maturation 

is not the primary cause of population modality (Thorpe, 1977, 1987a; Villarreal and 

Thorpe, 1985). It seems more likely that the division of modes is determined by a size 
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threshold and that such a size must be attained prior to winter before individuals can 

develop into UM fish (Kristinsson et aI., 1985; Skilbrei, 1991). If this is the case it is 

probable that in experiment I the May photoperiod fish were unable to attain the 

necessary size threshold prior to the application of the winter regime and as such a 

high incidence of LMG fish was recorded. In the August and September groups long 

periods of continuous light as well as elevated summer rearing temperatures enhanced 

growth so that a greater proportion of the fish could enter the upper mode. 

It is also possible that for the May group the high levels of maturation actually 

restricted the numbers of LMG fish. Mature fish are often found to have elevated 

growth rates and sizes during early development (Saunders et ai., 1982; Dalley et ai., 

1983; Berglund, 1995). In a situation where only a short period of continuous light is 

applied after first-feeding, prior to the application of short days (e.g. in the May 

population of experiment I), individuals destined to mature may be amongst the 

largest fish and contribute to those reaching the UM threshold. 

In experiment II there is evidence that both photoperiod and temperature affected the 

structure and timing of modality. Under the June photoperiod regimes the emergence 

of modality occurred in mid-October with this division developing later in the year for 

the May photoperiod treatments. For the May groups during the early stages of their 

winter photoperiods a brief reduction in temperature was observed but by the 

beginning of the June photoperiods the natural temperature had risen. Clarke et al. 

(1978) and Solbakken et al. (1994) have found that the growth response to 

photoperiod is affected by temperature and as such the growth response to the winter 

photoperiods of the June treatments would have been greater than for the May groups. 
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If a growth differential subsequently occurred between the UM and LM group fish 

during the winter photoperiod, as has been previously suggested (Kristinsson et al., 

1985; Skilbrei, 1991; this study), then where growth potential is enhanced during the 

short day regime (such as in the June photoperiod groups) the differential in size 

between modes may emerge more rapidly. 

Previously, it has been suggested that the size threshold necessary to enter a particular 

mode is influential prior to winter photoperiod treatment (Kristinsson et al., 1985; 

Stewart et al., 1990; Skilbrei, 1991). As such it should follow that the duration of a 

winter photoperiod will not affect the resultant percentage of fish within each mode. 

However, the results presented in the current study indicate that such a rigid 

determination time is unlikely with the final percentage of LMG fish, recorded in 

experiment II, higher in the 12 week photoperiods than in the 8 week groups. It 

therefore seems that if a size threshold influences the development of modality the 

recruitment of LMG fish into the upper mode will be possible during the winter 

photoperiod (Duston and Saunders, 1997). It would also follow that a growth 

reduction, due to the longer period of short days (Higgins and Talbot, 1985; Skilbrei 

et al., 1997), would affect the proportion of fish developing into each mode. 

In the present study the current views regarding the development of modality in 

salmonid populations (e.g. Thorpe, 1977; Kristinsson et al., 1985; Stewart et al., 

1990; Skilbrei, 1991; Duston and Saunders, 1992, 1997) do not fully explain the 

results gained. In the June photoperiods of experiment II there appeared to be more 

than two modes within each population. It is likely that this was due to both the 

timing of the early winter photoperiod and the subsequent long period of continuous 
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light. As mentioned previously winter photoperiod may influence the development of 

modality with fish recruited into the UM throughout the winter period (Duston and 

Saunders, 1997; this study). With extended periods of continuous light after a winter 

regime it is probable that growth divergences become further complicated, especially 

if the UMG fish that should have constituted the smolting population (Kristinsson et 

al., 1985; Thorpe, 1987a), remain in fresh water. 

It is also possible that endogenous rhythms of growth (Clarke et al., 1978; Villareal et 

al., 1988; Duncan et at., 1998) may have played a role in the development of such 

population structures. In the current study the early winter photoperiod regimes 

experienced by the June treatments of experiment II may have acted as a zeitgeber 

entraining an endogenous rhythm of growth, although the winter photoperiod would 

also have resulted in the development of modality. Following this winter photoperiod 

the UM and LM fish were held in fresh water and during the subsequent long period 

of continuous light an endogenous rhythm of growth may have "free run", which 

could have resulted in a further population divide of the respective modes later in the 

year. However, it is also possible that in the May groups of experiment I and II, the 

duration of continuous light, prior to winter photoperiod treatment, was too brief to 

allow the entrainment of a rhythm of growth, therefore resulting in a distribution 

similar to those of a popUlation in its first year of development. 

Clearly photoperiod has a complex role in population modality and although in 

natural popUlations bimodality may be the norm, where increasingly early 

photoperiods are used in commercial production the emergence of further modes may 

become of significance. 
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3.5.2. Maturation 

Photoperiod treatment had distinct effects on maturation in both experiments. 

Currently, it is believed that maturation is under endogenous control with the rhythm 

of maturation entrained by photoperiod (Lundqvist, 1980; Bromage et al., 1984; 

Elliott et al., 1984; Duston and Bromage, 1986, 1987, 1991). As such the timing of 

maturation can be advanced using a period of long days or continuous light followed 

by a period of short days in later development during which maturation can be 

completed (Bromage et al., 1984; Elliott et al., 1984; Takashima and Yamada, 1984). 

In experiment I further evidence was provided that maturation is controlled by an 

endogenous rhythm. Mature fish were identified in the continuous light group 

indicating that in the absence of any photoperiodic change an internal rhythm had 

influenced maturation. However, it seems that a period of short days will not 

necessarily advance a rhythm of maturation. In experiment I although maturation 

occurred in the continuous light treatment no phase shift in the timing of maturation 

was observed amongst the respective winter photoperiod treatments as first 

maturation was observed on a similar date in all groups. Furthermore, from the 

testosterone profiles of the mature fish it seems that there was no phase shift in the 

endocrinological control of maturation. Similarly, Eriksson and Lundqvist (1980) 

found that a sudden switch from a long day photoperiod to short days was ineffective 

in advancing maturation in salmon parr although it is important to note that in their 

experiments the change in daylength was applied in August and the natural decline in 

photoperiod prior to the experimental regimes may have influenced the results to 

some degree. However, given the findings of the current experiments it may be that 
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juvenile Atlantic salmon are not as sensitive to the photoperiodic initiation of 

maturation as may be the case for adults. 

However, the results documented in experiment II, indicate that a phase shift in the 

endogenous rhythm of maturation may have occurred. Although, a phase shift was not 

observed in the 12 week photoperiod regimes it is important to note that due to the 

low levels of maturation recorded in the June group it would not be possible to 

accurately compare the levels of maturation recorded with these groups. However, 

when the 8 week photoperiods were compared the timing of the emergence of 

maturity as well as the peak of maturation occurred at least two weeks earlier in the 

May photoperiod group. From the findings of experiment II, it also seems that the 

timing of the increase in photoperiod may be most influential in the advancement of 

endogenous rhythms. Although some variation in timing was observed the timing of 

peak maturation was most accurately correlated with the end date of each winter 

regime. 

It is possible that the role of such internal rhythms influenced the low maturational 

levels found in the August and September photoperiod groups of experiment I. Up 

until their respective winter treatments the August and September groups experienced 

the same light regime as the continuous light group although lower maturational 

levels were observed. It is therefore possible that the late winter photoperiod 

treatment phase shifted such a rhythm to a point where maturation could not be 

completed before the conclusion of the experiment. 
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Interestingly, it is also possible that an endogenous rhythm of maturation influenced 

the high levels of maturity observed in the early photoperiod treatments of both 

experiments (Le. the May and June treatments). Prior to photoperiod treatment 

continuous light was used indicating a spring/summer period to the fish. 

Subsequently, by applying the early winter photoperiod the individuals may have had 

their rhythm of maturation entrained such that they believed that they were in their 

second year oflife. Dalley et al. (1983), Baglinere and Maisse (1985) and Whalen and 

Parish (1999) have documented the incidence of maturation rising during successive 

years in fresh water and it is possible that a photoperiodically entrained endogenous 

rhythm may result in maturation increasing over successive years. If so it is likely that 

such a rhythm acts on the assumption that with prolonged freshwater residency the 

size and energetic status of an individual increases and as such its maturational 

success will be enhanced. However, such an endogenous mechanism would not 

necessarily have to be directly linked to the size or nutritional status of the fish, 

although it is likely that the ability of an individual to respond to the rhythm would be 

dependant on their size or nutritional status at a specific period of the photoperiodic 

cycle. Therefore, if in the current experiments the photoperiod regimes resulted in 

individuals believing that they were in their second year of life they may have been 

more likely to mature than if they believed they were only in their first year of life. 

In experiment I it was found that the May photoperiod resulted in the highest levels of 

maturation. Similar findings have been recorded by Berg et al. (1994) who found that 

a 7 week period ofLD14:10 applied in May resulted in high levels of parr maturation 

compared to natural and continuous light regimes. 
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Previously, Thorpe (1986) and Duston and Saunders (1992) have proposed a model 

suggesting that the initiation of maturation will occur if particular growth or 

developmental thresholds are achieved during a critical period in spring. 

Subsequently, Metcalfe (1998) and Thorpe et al. (1998) have postulated that the 

initiation of maturation occurs during November, one year prior to final maturation 

with spring important as a period when maturation can be suppressed. This indicates 

that in some cases the initiation of maturation may occur during early development 

(Saunders et al., 1982; Saunders and Henderson, 1988; Thorpe, 1994b; Metcalfe, 

1998) or even prior to first-feeding (Saunders and Henderson, 1988; Thorpe, 1994b). 

The high levels of maturation in the May photoperiod group provide support that the 

initiation of maturation may be influenced during early development although they 

indicate that a period prior to first-feeding may be unlikely. However, it is possible 

that instead of initiating maturation the May photoperiod occurred during a 

developmentally critical stage when maturation could be enhanced or suppressed 

(Thorpe, 1986; Duston and Saunders, 1992; Metcalfe, 1998; Thorpe et al., 1998). 

Therefore if the initiation of maturation does take place prior to first-feeding then a 

short day regime during a critical time in early development may provide the stimulus 

for a greater incidence of maturation. As such it is likely that instead of a critical 

period occurring during spring per se it occurs during a particular period in 

development that follows a yearly cycle. 

Duston and Saunders (1992) found that maturation was initiated during the spring 

photoperiod regardless of whether the naturally-changing annual photoperiod regime 

had been extended or compressed. It is therefore possible that although such a critical 
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period will be influenced by a particular developmental stage individuals will utilise 

the seasonally-changing photoperiod to measure that developmental age or their 

ability to reproduce. 

However, the current findings do not support the theory that the initiation of 

maturation is dependant on the attainment of growth or developmental thresholds 

during such critical periods (Thorpe, 1986; Duston and Saunders, 1992; Metcalfe, 

1998; Thorpe et al., 1998). In the May photoperiod group maturation was enhanced 

using periods of short days, which have previously been shown to reduce growth 

(Skilbrei et aI., 1997). Therefore some other environmental factor may be influential 

during developmentally critical periods. 

As well as the early period during which maturation is influenced the results of 

experiment I indicate that a further period is of importance. Under both the August 

and September photoperiod groups significantly lower levels of maturation were 

recorded when compared to the May photoperiod and continuous light groups. It 

therefore seems that a period of short days some time after the early initiation period 

will suppress maturation, possibly through subtle reductions in growth (Thorpe, 

1994b) influenced by the short day regime. Although the results of the current 

experiment indicate that this period occurs during late summer it is possible that it is 

influential throughout a much longer period following the period when maturation can 

be enhanced. 

In experiment II photoperiod treatment resulted in variation in the incidence of 

maturation. The greatest incidence of maturation was observed in the 12 weeklMay 
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photoperiod group, with similar intermediate levels found in both of the 8 week 

regimes. It therefore seems that maturation is not inversely related to winter duration 

as previously suggested by Prevost et al. (1992) although it should be noted that low 

levels of maturation were observed in the long, 12 week, June photoperiod group. It is 

possible to suggest that the differences between the two studies were influenced by 

temperature given that the natural winter experienced in the study by Prevost's group 

occurred at colder regimes than those experienced in experiment II. However, 

temperature has been shown to control the rate of response to photoperiod (Clarke et 

al., 1978; Solbakken et al., 1994) with photoperiod being the main environmental 

factor influencing maturation (Whitehead et al., 1978). Furthermore, although Duston 

and Saunders (1997) found that elevated winter temperatures increased the incidence 

of maturation Herbinger and Friars (1992) found no effect of temperature on 

maturation. Therefore, it seems that although in the absence of changes in photoperiod 

temperature will be an important seasonal cue (Solbakken et al., 1994) it is likely that 

when manipulated (c.f. Duston and Saunders (1997) photoperiod will become the 

primary stimulus affecting maturation. 

The results of experiment II indicate that the suggested period in early development 

when maturation can be enhanced may be affected by the duration of stimulatory 

winter photoperiod used. Metcalfe (1998) suggested that small changes in growth rate 

may influence the proportion of maturing fish within a population and it is possible 

that such subtle changes, over extended periods, may have important effects on 

maturation. In experiment II, increasing the duration of the early winter photoperiod 

regime resulted in an increase in maturation with the highest incidence observed in 

the 12 weeklMay treatment and similar intermediate levels recorded in the 8 week 
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photoperiod regimes. However, the 12 week/June group resulted in low levels of 

maturation and it is possible that the timing of a period in early development when 

maturation can be enhanced may be inflexible. As such if the extended short day 

treatments continue outside of the period (e.g. in the 12 week/June group) maturation 

levels may start to reduce. 

If such an inflexible period exists is it important to elucidate whether it is influential 

at the developmental/chronological age of the fish or at a specific time of year? In 

experiment II first-feeding occurred approximately 3 weeks later in the year than in 

experiment I. Therefore, for developmental comparisons to be made the May 

photoperiod of experiment I and the June photoperiods of experiment II can be 

considered. Lower levels of maturation were found in the 8 week/June photoperiod of 

experiment II when compared to the May group from experiment I. Combined with 

the negligible levels of maturation in the 12/week June group this infers that during 

the June photoperiod of experiment II the period when maturation can be enhanced 

was nearing its end. Given the high levels of maturation in the May photoperiod in 

experiment II it may seem that the actual time of the year is most influential in 

determining the timing of an early enhancement period (c.f. Berg et al., 1994). 

However, if the May photoperiod of experiment I were applied during the latter stages 

of the enhancement period then an exposure to winter photoperiod earlier in 

development would have increased the levels of maturation even further. It is 

therefore difficult to elucidate whether developmental or yearly timing is of 

importance in influencing maturation. Indeed it may be that both yearly timing and 

developmental age interact to some degree with a seasonal adjustment in the timing of 

the period when maturation can be enhanced. 
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3.5.3. Smoltification 

During the experiments conducted in this chapter low levels of smoltification were 

observed. In experiment I, large smolts, smolts and silvered parr were identified 

although it is important to note that the smolts and silvered parr observed in this 

experiment were smaller than those grown in commercial freshwater rearing sites, 

possibly due to the experimental rearing conditions being different to those of 

production fish (e.g. lower stocking densities in the experimental groups and as such 

different social hierarchies and competition, different tank sizes/shapes/volumes, 

different water flow rates). As such some caution is required when comparisons are 

made to the findings of production fish. In experiment II large smolts and large parr 

(with some level of silvering) could be considered as those showing external signs of 

smoltification. 

It is well documented that the initiation of smoltification requires a period of short 

days with a subsequent period of long days during which the parr-smolt 

transformation is completed (Berg et ai., 1994; Duston and Saunders, 1995; Sigholt et 

ai., 1995; Duncan and Bromage, 1998; Duncan et ai., 1998). The results of 

experiment I provide further support for this theory with fish exposed to continuous 

light having a low hypo-osmoregulatory ability throughout the experiment. The 

August photoperiod group exhibited the greatest numbers of silvered parr and smolts 

and although external appearance is not always a good measure of smoltification 

(Saunders et ai., 1985; Duncan and Bromage, 1998) these fish also showed the 

greatest hypo-osmoregulatory capacity (in terms of both Na+, K+ -ATPase and 

seawater survival). 
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However, it was noted that fish exposed to the May and September photoperiod 

regimes had a low hypo-osmoregulatory ability, similar to that of the continuous light 

fish. Although some disagreement can be found (e.g. 0kland et al., 1993; McKinnell 

and Lundqvist, 1998) it is generally accepted that fish must first reach a particular size 

threshold before smoltification can be attempted (Elson, 1957; Thorpe et al., 1980; 

Kristinsson et al., 1985; Skilbrei, 1988). Therefore, it is probable that for the May 

photoperiod group it was not possible for high numbers of fish to achieve such a size 

prior to the winter photoperiod and as such a low incidence of smoltification was 

recorded. In the August group a longer period of continuous light prior to the winter 

photoperiod allowed more fish to reach the necessary size threshold for smoltification 

and therefore a high number of smolts were recorded. However, in the September 

group although the size threshold necessary for smoltification must have been 

achieved by a large number of fish (as the fish were of a similar size or larger than 

those from the August group on entry to their photoperiod) the numbers of smolts 

remained low. Previously, Johnston and Eales (1970), Bjomsson et al. (1989), Duston 

and Saunders (1997), Sigholt et al. (1998) and Handeland and Stefansson (2001) have 

found temperature to play an important role in smoltification with Sigholt et al. 

(1998) and Handeland and Stefansson (2001) suggesting that at least 400 degree days 

of long days, following short day treatment, are be required before for smoltification 

can be completed. It is therefore probable that the low temperatures experienced by 

the September fish during and after their winter photoperiod regime caused the lower 

numbers of smolting fish. In the September group although an extended period of 

long days was applied after the short day treatment (80+ days), the low winter 

temperatures resulted in only 260 degree days being achieved by the conclusion of the 
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experiment. Therefore, it is unlikely that the fish were able to develop into competent 

smolts. 

The findings of the current study provide further support that the development of 

hypo-osmoregulatory ability is reduced or inhibited (Saunders et al., 1985; 

McCormick et al., 1987; Solbakken et al., 1994; Berge et al., 1995; Duston and 

Saunders, 1995) by continuous light regimes. However, some fish that were exposed 

to continuous light did show signs of smoltification and as such there is support for 

the theory that an endogenous rhythm helps to control smoltification (Erikson and 

Lundqvist, 1982; Thrush et al., 1994; Duston and Saunders, 1995; Sigholt et al., 

1995; Duncan and Bromage, 1998). However, it is important to note that in the 

current experiment low numbers of smolting fish were observed in the continuous 

light treatment. Previously, Stefansson et al. (1989) has stated that endogenous cycles 

are too imprecise to provide complete smolting in the absence of a naturally changing 

photoperiod. However, the fish reared in the current experiment were small compared 

to those produced on commercial freshwater rearing sites (G. Beaton, M. Porter, N. 

Bromage pers. comm.) and given that they were of a similar size to those studied by 

Stefansson et al. (1989) it is possible that the role of an endogenous rhythm of 

smoltification will only become of importance if a particular size threshold for 

smoltification (Elson, 1957; Thorpe et al., 1980; Kristinsson et al., 1985; Skilbrei, 

1988) is also reached. 

In experiment II only fish from the 12 week/June photoperiod appeared as large 

smolts with this group also providing the highest incidence of large parr. Furthermore, 

this was the only group where gill Na+, K+ -ATPase levels in the silvered fish 
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increased compared to the other groups although the levels of ATPase never reached 

those previously recorded in competent smolts (c.f. Berge et al., 1995; Handeland and 

Stefansson, 2001). In contradiction to these findings, following exposure to the 96 

hour seawater tolerance test, the 12 week/June group suffered high levels of mortality 

with the 12 weeklMay group displaying the greatest seawater survival (55%). 

However, in the 12 week/June group the gill Na+, K+ -ATPase levels of silvered fish 

were only elevated until 1 i h December with the external appearance of these fish 

showing levels of silvering for over 5 months. Previously, Bjornsson et al. (1989) 

observed that hypo-osmoregulatory ability rose 1 to 2 months after short day 

treatment remaining high for at least one month, with Sigholt et al. (1995) suggesting 

that it is better to transfer fish to sea when hypo-osmoregulatory parameters are 

increasing as opposed to decreasing regardless of actual level. As such it is possible 

that the silvered fish from the 12 week/June group were ready for seawater transfer 

some time before the conclusion of the experiment and as such by the final sample 

point they had passed through the window when smoltification and seawater transfer 

was possible. In support of this Sigholt et al. (1998) and Handeland and Stefansson 

(2001) have suggested that following the conclusion of a stimulatory winter 

photoperiod approximately 400 degree days will be required before smoltification can 

be completed. Given the high summer temperatures experienced by the 12 week/June 

fish following their winter photoperiod regime it is likely that 400 degree days would 

have been achieved by mid to late October. As such it is possible that by the 

conclusion of the experiment the window during which smoltification can occur had 

passed and individuals were experiencing some level of de-smoltification. 
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However, it is important to note that given the gill Na +, K+ -ATPase levels and the 

smolt index values recorded in the 12 week/June fish it is more likely that those 

individuals that made an attempt at smoltification never truly achieved a good level of 

hypo-osmoregulatory ability (c.f. McCormick et al., 1987; Duncan and Bromage, 

1998; Handeland and Stefansson, 2001). 

During experiment II it was evident that individuals that attempted smoltification 

never achieved a good smolt status. Certain individuals within each population had 

clearly made the decision to smolt and they subsequently received the necessary 

photoperiodic cues and thermal requirements that would allow them to successfully 

complete the parr-smolt transformation. The reasoning for the clear lack of hypo

osmoregulatory ability is confusing and it is only possible to postulate why such 

results were observed. It seems most likely that environmental factors and rearing 

conditions were influential. For example, light contamination may have occurred 

during the dark phase of the winter photoperiod regimes. Similarly, water quality may 

have been influential in some way as could the size and shape of the rearing tanks, the 

water flow rates or the stocking densities used. 

The 12 weeklMay fish displayed the highest levels of seawater survival in the absence 

of high increases in body silvering or gill Na+, K+ -ATPase. However, it has been 

shown that body coloration is a poor indicator of smolt status (Saunders et al., 1985; 

Duncan and Bromage, 1998). It has also been found that gill Na +, K+ -ATPase levels 

do not necessarily correspond with the peak in hypo-osmoregulatory ability (Langdon 

and Thorpe, 1985; Saunders and Harmon, 1990; Solbakken et al., 1994; Handeland 

and Stefansson, 2001) with gill Na+, K+ -ATPase levels increasing once fish are 
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transferred to sea water (Saunders and Henderson, 1978; Solbakken et af., 1994). 

Although gill Na +, K+ -ATPase levels were not measured during the seawater 

tolerance test it is probable that such a mechanism aided the survival of the 12 

weeklMay fish and that these fish were in fact the most pre-adapted to seawater 

survival. 

The results of experiment II indicate that the duration of the winter photoperiod was 

important in the development ofsmolt status with only groups exposed to the 12 week 

photoperiods showing signs of seawater adaptation (silvering, gill Na+,K+ -ATPase, 

seawater survival). Previously, Sigholt et aZ. (1995), Duncan and Bromage (1998) and 

Duncan et aZ. (1998) have suggested that approximately 2 months of short days are 

sufficient to initiate smoItification, with Berg et aZ. (1994) observing that 10 weeks of 

short days were required. Although such differences in the time required to initiate 

smoltification may be explained by between experiment variations (e.g. different fish 

stocks or rearing temperatures), Duston and Saunders (1995) quote unpublished data 

indicating that 3 months of short days in June were better at stimulating smoltification 

than 2 months. It therefore seems that although 8 weeks of short days may be 

sufficient to initiate smoltification under previously good conditions of growth, where 

smaller fish or those experiencing poorer pre-photoperiod growth are present (such as 

in experiment II), the application of a longer period of short days will result in a 

greater incidence of smoltification. Therefore, it may be that smoltification is 

dependant on attaining a specific number of thermal days during the winter 

photoperiod (c.f. Sigholt et af., 1998; Handeland and Stefansson, 2001) and that the 

duration of these degree days will be influenced by the individuals size either prior to 

or during the winter photoperiod. 
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From the results of the seawater tolerance tests conducted in experiment II it seems 

that size is not necessarily important in the survival of individuals following seawater 

transfer. As mentioned earlier it has been suggested that a size threshold exists for 

smoltification (Elson, 1957; Thorpe et al., 1980; Skilbrei, 1988) and from this it has 

been found that larger fish show better signs of seawater adaptation when compared 

to smaller siblings (Thrush et al., 1994; Duston and Saunders, 1995) although 0kland 

et al. (1993) and McKinnell and Lundqvist (1998) have presented data contradicting 

such a theory. In experiment II although individuals surviving the 96 hour seawater 

tolerance test were larger than those which died this takes no account of fish that 

made no attempt at smoltification (i.e. small parr). Furthermore it was clear that the 

length of individuals which died and the time in sea water necessary to cause death 

were poorly correlated. Indeed the poorest correlations were found in the groups 

which exhibited the greatest seawater survival (12 week/May photoperiod) and the 

highest levels of silvering and gill Na+,K+ -ATPase (12 week/June photoperiod). 

However, in the current experiment the incomplete smoltification of groups, as well 

as the diverse population structures, mean that is not possible to compare such 

information to commercial populations where a high smolt status and larger size of 

fish is achieved. 

3.5.4. Maturation and smoltification interactions. 

Previously it has been suggested that maturation and smoltification are mutually 

exclusive processes (Thorpe and Morgan, 1980; Thorpe, 1986, 1987b; Herbinger and 

Friars, 1992) and that smolting occurs as a consequence of a fish failing to mature 

(Thorpe, 1994a; Thorpe and Metcalfe, 1998). Indeed there is much evidence that 

mature fish are not well adapted for seawater survival (Foote et al., 1991; Clarke and 
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Blackburn, 1994; Staurnes et al., 1994a). However, it is clear that mature fish are able 

to migrate to sea (Baglinere and Maisse, 1985; Saunders et al., 1994; Duston and 

Saunders, 1997) and in the current experiments fish showing signs of smoltification 

were found to be mature with such fish identified within all of the cohorts studied. It 

was also evident that in the fish showing signs of both maturation and smoltification 

milt was freely running for some weeks. 

However, it should be emphasised that in the current experiments mature fish that 

showed signs of smolting did not necessarily display the secondary sexual 

characteristics often linked to parr maturation (Le. reduced length/size, high condition 

factor, darkened coloration and distinct parr marks). A similar lack of secondary 

sexual characteristics has also been found in mature adult salmon (Duston and 

Saunders, 1995; Thrush et al., 1994) and it seems that in commercial production care 

must be exercised in identifying mature parr, which are often culled from a population 

prior to seawater transfer. 

It is clear that there is some interaction between maturation and smoltification and it is 

possible that a better understanding of these interactions can be gained by considering 

the size/developmental thresholds that influence freshwater life history strategy. It has 

been suggested that a size threshold influences both maturation (Bailey et al., 1980; 

Thorpe and Morgan, 1980; Saunders et al., 1982; Thorpe, 1986) and smoltification 

(Elson, 1957; Thorpe et aI., 1980; Kristinsson et al., 1985; Skilbrei, 1988) although it 

is probable that considering such a threshold related to size alone may be inaccurate 

(Saunders et al., 1982; 0kland et al., 1993) and that it would be more precise to 

consider a developmental threshold (Saunders et al., 1982). Polikansky (1983) has 
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stated that fish will mature as soon as they are ready to do so indicating that 

maturation is the primary physiological route for fish. Additionally several authors 

have made attempts to determine the actual length of such physiological thresholds 

(e.g. for maturation 70-72mm: Myers et al., 1986; 70mm: Berglund, 1992, for 

smoltification 100mm: Elson, 1957; 100-120mm Kristinsson et al., 1985; 70-80mm 

Skilbrei, 1988). 

It therefore seems likely that the threshold for maturation will be lower than that for 

smoltification (Saunders et al., 1982). Bailey et al. (1980) and Saunders et al. (1982) 

suggested that due to the reduced growth rate linked to gonadal recrudescence mature 

parr will rarely achieve the larger threshold required for smolting but that if such 

growth was possible smoltification could occur (Saunders et al., 1994). However, 

given the use of improved feeds, additional lighting regimes and elevated 

temperatures it is likely that the commercial freshwater production of salmon could 

result in the attainment of both thresholds within one year of life. 

The findings of the current study provide support for the two threshold hypothesis. 

High levels of maturation were observed in the May photoperiod group of experiment 

I and it is likely that this was due to the long periods of continuous light that were 

applied during the warm summer months. This would have allowed both mature and 

immature fish to grow and develop into either silvered parr or large smolts. However, 

it is interesting that in the continuous light group although mature silvered parr were 

observed the high growth potential of these fish (Saunders and Henderson, 1988; 

Villarreal et al., 1988; Handeland and Stefansson, 2001) did not result in the 

development of either mature or immature large smolts as might have been expected 
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from the results of the May photoperiod group in experiment I. Therefore, although 

the presence of silvered parr under the continuous light regime indicates the action of 

an endogenous rhythm(s) controlling smoltification (Erikson and Lundqvist, 1982; 

Thrush et al., 1994; Duston and Saunders, 1995; Sigholt et al., 1995; Duncan and 

Bromage, 1998) the finding of large smolts in only the May photoperiod group 

indicates that even in early development a winter photoperiod had been influential in 

advancing smoltification and that the subsequent long period of continuous light had 

allowed the smolting fish to develop as large smolts. 

In the August photoperiod group mature fish were seen in the smolt and silvered parr 

groups. It would therefore seem that although the winter photoperiod had advanced 

smoltification shorter periods of continuous light after the winter photoperiod were 

not sufficient for the fish to develop as large smolts. In the September group only 

immature fish were able to achieve any level of smolt status and it is probable that this 

was due to the short period of continuous light after the winter photoperiod combined 

with the low winter temperatures. 

However, it is important to note that in these current experiments it is not possible to 

state unequivocally that the mature fish that were identified in the cohorts with signs 

of smoltification were initially mature fish that developed into smolts. It is possible 

that such fish were initially smolts and that an internal decision was subsequently 

made to mature. If this is the case, however, it provides further evidence that 

maturation is the primary physiological process because the fish that had prepared 

themselves for seawater migration had then chosen to mature. 
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The results observed in experiment II provide further understanding of the 

interactions that occur between maturation and smoltification. Although all treatments 

resulted in large parr only those from the 8 week photoperiods underwent maturation. 

Under the 12 week photoperiods mature fish were only found within the parr and 

small parr cohorts. Therefore, the duration of the winter photoperiod affected the way 

in which the early stimulus and subsequent growth potential, under continuous light 

(suggested for the May photoperiod group in experiment I), influenced the initiation 

of both maturation and smoltification. The extended period of short days (12 week 

group) resulted in those individuals that had made the decision to mature having a 

longer photoperiod induced reduction in growth (Higgins and Talbot, 1985; Skilbrei 

et al., 1997) and as such they were only able to mature as parr or small parr. Under 

the 8 week photoperiod the early winter stimulated maturation in certain individuals 

but the short winter photoperiod allowed a longer, subsequent exposure to continuous 

light and as such they were able to grow sufficiently to attempt some level of 

smoltification as large parr (Saunders et al., 1982). 

Therefore, the current study is at variance with the suggestions of Thorpe (1994a), 

Thorpe and Metcalfe (1998) and Metcalfe (1998) that maturing fish are those that 

have failed to smolt. Maturing fish can make the decision to smolt after maturation 

but it is also possible that fish choosing to smolt may, under good conditions, undergo 

the physiologically dominant process of maturation. It therefore seems that where 

conditions for growth are good (such as in commercial freshwater rearing sites) and 

developmental thresholds can be exceeded fish can undergo a developmental decision 

that maximises their reproductive success. 
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Previously, developmental models have been proposed that aim to explain the factors 

involved in the initiation and completion of maturation and smoltification. Thorpe 

(1986) provided one of the first models that explained the initiation of maturation 

suggesting that if the rate of acquisition of energy was sufficient during early spring 

maturation would be initiated. Subsequently, Duston and Saunders (1992) proposed 

that the initiation of maturation and smoltification occurs on the increasing (Le. in 

spring) and decreasing (Le. autumn) phases of the photoperiod respectively provided 

sufficient growth thresholds had been achieved. However, the length of these decision 

periods was unknown (Duston and Saunders, 1992). More recently, Thorpe (1994b), 

Metcalfe (1998) and Thorpe et al. (1998) have suggested that the initiation of 

maturation occurs in November one year prior to maturation (Metcalfe, 1998; Thorpe 

et al., 1998) and that maturation can be "switched off' during a second sensitive 

period in spring (Metcalfe, 1998; Thorpe et al., 1998). Indeed growing evidence 

suggests that spring provides a sensitive period when growth rates influence the 

decision to mature (Adams and Thorpe, 1989; Rowe and Thorpe, 1990b; Thorpe et 

al., 1990; Rowe et al., 1991; Duston and Saunders, 1997). Furthermore, given that 

both maturation (Elliott et al., 1984; Duston and Bromage, 1986, 1987, 1991; Hansen 

et al., 1992) and smoltification (Erikson and Lundqvist, 1982; Clarke et al., 1985; 

Saunders and Harmon, 1990: Sigholt et al., 1995; Duncan and Bromage, 1998) are 

influenced by photoperiodically entrained rhythm(s) it is likely that following critical 

initiation periods the cueing of final maturation and smoltification will be assisted by 

internal processes. 

From the findings and discussions detailed in the current study adjustments to these 

models can be suggested. It is likely that maturation will be influenced during a 
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period in early development although it is not clear whether this period initiates 

maturation or whether it acts as a period when maturation can be enhanced/suppressed 

(Fig. 3.36). This period will be influential at a particular chronological or 

developmental age the timing of which will be aided by endogenous rhythm(s) that 

are adjusted by photoperiod. An endogenous rhythm of maturation will proceed, 

although this rhythm can be arrested during a second "sensitive" period later in 

development. 

Smoltification is primarily initiated by photoperiod (a period of short days) providing 

an individual has achieved certain size/developmental thresholds. The timing of this 

stimulatory photoperiod is relatively flexible although endogenous rhythm(s) of 

smoltification are also likely. If an individual has previously made the decision to 

mature it may subsequently undergo smoltification providing the necessary thresholds 

have been achieved. Typically in wild populations individuals that mature in autumn 

will not smolt in the following spring due to size constraints, although during the 

commercial culture of Atlantic salmon heightened production regimes may allow 

individuals to mature and undergo smoltification in one year. Finally it is possible that 

the period when maturation can be arrested could coincide with the photoperiod that 

is used to initiate smoltification (c.f. the August and September treatments of 

experiment I). As such a particular photoperiod may result in an individual smolting 

as opposed to undergoing maturation. In wild populations it is possible that these two 

developmental periods naturally coincide, which has led to suggestion that maturation 

and smoltification are mutually exclusive (Thorpe and Morgan, 1980; Thorpe, 1986, 

1987b; Herbinger and Friars, 1992). 
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Fertilisation 

t. ............... _ ... _ .... _ ..... _ ...... . 

Maturation 
influenced 

Freshwater development 

Final 
maturation 

*Smoltification initiated, primarily 
by photoperiod, providing specific size 

thresholds have been attained. An 
endogenous rhythm influencing the timing 

of smoltification is also likely. 

. ............... ~ Smoltification 

.- flexible timing -. 

Endogenous rhythm *Sensitive period 
of maturntion when maturation 

Duration determined by 
developmental/chronological 

age, with the endogenous 
timing of this aided 

by photoperiod. 

can be arrested 

~---~ --) y 
Period during which maturing individuals 
may achieve the necessary thresholds to 

smolt, following final maturation. 

*N.B. The periods when maturation 
can be arrested, and when smoltification 
can be initiated may have coincided in 
the August and September treatments 
of experiment 1. 

Fig. 3.36 A proposed model detailing the freshwater development of Atlantic salmon 

parr. 
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In conclusion it seems appropriate that models which aim to explain freshwater 

development avoid linking life-history strategies directly to phases of the natural 

photoperiod regime. It seems more appropriate to consider maturation and 

smoltification as events that are influenced during particular phases in freshwater life 

and then to understand how photoperiod affects these periods. 

Although it is clear that the smoltification of mature parr is possible (Baglinere and 

Maisse, 1985; Saunders et at., 1994; Duston and Saunders, 1997; this study) such 

individuals have been found to possess a poor tolerance to sea water (Foote et at., 

1991; Clarke and Blackburn, 1994; Staurnes et al., 1994a). As such fish exhibiting 

signs of maturation are liable to have a higher susceptibility to mortality after 

transfer/migration to seawater. However, although post-transfer mortality rates have 

previously been documented (e.g. Thrush et al., 1994; Duncan et al., 1998) attempts 

to identify the maturation status or sex of such individuals are limited. Staumes et al. 

(1994a) found mature males to be more susceptible to mortality than immature 

individuals after 10 days in sea water, with Saunders et al. (1994) also finding a 

higher mortality rate in mature fish following seawater transfer. In experiment III, no 

mature mortalities were found at any sites for both 0+ and 1 + production cycles. 

However, it was evident that at two sites 0+ males were more susceptible to transfer 

mortality than females. Skilbrei (1990) suggested that smolting in mature parr may be 

due to the degree of recovery from maturation and it is possible that the higher 

incidence of male mortalities was due to either a previous maturation episode or an 

attempted maturation, which was ceased due to a physiological decision made before 

final maturation could be completed. If this were the case then the physiological and 
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nutritional status of such individuals may result in a reduced smolt status without 

necessarily showing signs of gonadal development. 

However, it is important to note that the sites investigated during experiment III were 

located in regions where strong tidal currents are present and this physical stressor 

may have also been influential in the high mortality rates of males in particular when 

the fish were moved from calm freshwater rearing sites. Fish that exhibit a poor smolt 

status may be able to tolerate the salinity changes experienced as they are transferred 

to sea but the inclusion of a further stressor may have resulted in higher mortality 

rates than normal. As such males that have undergone some level of maturation 

previously may have a reduced nutritional or physiological status and as such they are 

likely to suffer from these combined stressors more than may be the case if only a 

change in salinity has to be overcome. 
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3.5.5. Conclusions 

• Photoperiod is an important environmental parameter influencing the growth of 

salmon parr. 

• Maturation can be greatly enhanced during a short, inflexible period during early 

development. Later in the year a second period may influence maturation acting in 

a suppressive role. 

• The timing of winter photoperiod affects smoltification mainly due to an 

individuals ability to achieve a critical size threshold prior to photoperiod 

treatment. Where conditions for the attainment of such a threshold are not 

favourable extending the winter photoperiod may improve the incidence of 

smoltification. 

• Growth, maturation and smoltification are all influenced by photoperiodically 

entrained endogenous rhythms. 

• Maturation and smoltification are not completely mutually exclusive processes. 
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Chapter 4: Nutritional effects on growth, maturation and 

smoltification. 

4.1. Introduction 

Growth involves the complex formation and interaction of many physiological and 

biochemical processes. As such increases in growth require an energetic input with 

the calorific intake of feed ultimately affecting the rate at which internal processes 

occur (Jobling, 1994). Physiologically demanding processes such as maturation and 

migration require inputs over and above those required for growth. Therefore, a clear 

understanding of how diet influences fish growth, maturation and smoltification is 

required before its manipulation can be utilised in current culture conditions. 

However, due to the commercial importance of harvest size and flesh quality it is 

evident that literature citing such dietary effects often focus on adult salmonids with 

studies concerning effects on juvenile development less frequent. 

4.1.1. Growth 

Since calorific intake ultimately influences fish growth (Job ling, 1994), diet regime 

will affect increases in size through changes in either diet composition or ration. 

Shearer (1994) stated that it is difficult to separate the effects of ration from those of 

dietary composition, since variations in feed amount ultimately affect the absolute 

values of constituents a fish receives. However, it is important to attempt such a 

separation of information in order to accurately understand their relative effects. 
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4.1.1.1. Diet composition 

Reinitz (1983) was one of the first authors to investigate the role of dietary lipid level 

in juvenile salmonids. Rainbow trout fry (initial weight of 2.1g) were fed diets 

containing either 13.6% or 7.2% lipid over a 308 day period. Three feed rates were 

investigated utilising arbitrary hatchery constants (HC) of either 4,8 or 12 in order to 

differentially adjust the ration to fish size. Reinitz (1983) concluded that under the 

low (HC 4) and medium (HC 8) feed rates growth was enhanced by increased dietary 

lipid level whereas at the high feed rate (HC 12) no differential was found. Shearer et 

al. (1997) investigated the effects of diets containing either 3% or 23% lipid on 

growth in chinook salmon parr in a 247 day experiment. Initially a slight increase in 

weight occurred with the higher dietary lipid level but it was noted that inaccuracies 

in the amount of feed used as well as the feed efficiency were influential in this gain. 

Consequently, when these interactions were included into the analysis the effects of 

dietary lipid on growth were negated (Shearer et al., 1997). 

Grisdale-Helland and Helland (1997) found that although low dietary lipid resulted in 

some detriment to growth this only occurred when the dietary protein content fell 

below 55% irrespective of energy level. Shearer and Swanson (2000) recently 

investigated the effects of a range of dietary lipid levels (from 4% to 22% inclusion) 

on growth with effects only observed at the end of a 13 month treatment period. 

However, it should be noted that the feed rates used in this experiment were 

calculated from only one treatment group and as such some ration related effect may 

have been influential in this difference. Therefore, it is probable that changes in 

dietary lipid will only be responsible for minor effects on the growth of juvenile 

salmonids and where feed is unlimited it is unlikely that such differences will arise. 
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For adults dietary lipid manipulation has resulted in more significant variations. 

Hemre and Sandnes (1999) investigated the effects of 310, 380 or 470 g kg-I dry 

weight dietary lipid inclusion on muscle composition and growth in Atlantic salmon 

(start weight: 1.2kg) between April and November. Dietary lipid level significantly 

affected growth with groups fed the 310 g kg-I diet having the lowest increases in 

weight and SGR and significantly greater weight gains and growth rates recorded in 

the 380 and 470 g kg"1 treatments (Hemre and Sandnes, 1997). Similarly, Torstensen 

et al. (2001) have recorded increased growth rates in Atlantic salmon post-smolts 

following long-term exposure to different dietary lipid inclusions (from 15±2 to 32±2 

g. kg-1 dry weight lipid inclusion). 

By contrast, Refstie et al. (2001) recorded only a slight increase in the body weight of 

adults fed diets containing either 32% or 39% lipid for 235 days with 91g of the 122g 

average weight gain attributed to increases in the accumulation of body fat. In a 

similar experiment Hillestad et al. (1998) found that long-term dietary lipid variation 

had no clear effects on adult growth. Therefore, it is possible that previously reported 

differences in the growth of adult salmon may have been influenced by lipid 

deposition, although without detailed information on lipid accumulation such 

suggestions cannot be confirmed. However, it is important to note that aside from 

specific nutritional requirements the source of dietary lipid appears to have little 

influence on the principles of growth documented above (Refstie et al., 2001; 

Rosenlund et al., 2001). 
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4.1.1.2. Ration 

Ration of feed has clear effects on growth. Although Quinton and Blake (1990) found 

no difference in the growth of fish fed at a ration of 3, 5 or 7% body weight per day 

for three weeks following a three week period of starvation, a distinct relationship 

between increased ration and growth is likely. Reinitz (1983) found a clear gain in 

weight with increasing ration of feed for rainbow trout fed at low, medium or high 

rates for 308 days. Similarly, McCormick and Naiman (1984) showed that brook trout 

fed at either high or low rates from shortly after first feeding grew at differential rates. 

More recently Shearer et al. (1997) found that the growth of chinook salmon parr was 

enhanced by increased feed rate and it is evident that such a correlation is well 

documented in a range of juvenile salmonids (Storebakken and Austreng, 1987b; 

Stead et al., 1996; Nicieza and Metcalfe, 1997; Silverstein et aI., 1998). Therefore, it 

would seem that in juvenile salmonids the ration of feed and not dietary lipid level 

will be of primary importance in fish growth (Shearer et al., 1997; Silverstein et al., 

1998). 

For adult salmonids a similar relationship between ration and growth is documented. 

McCormick et al. (1989) fed Atlantic salmon post-smolts at rates of 0, 0.2, 0.8 or 

1.6% wet body weight per day and concluded that growth increased with increasing 

ration. More recently further support for the ration related growth of fish immediately 

following seawater transfer was provided by Stead et al. (1996). Storebakken and 

Austreng (1987a) investigated the growth of large (0.5-1.0kg) rainbow trout fed a 

range of rations with growth increasing with ration up to a point where feed rate 

provided maximum growth. Indeed similar ration/growth correlations are well 
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documented in other, similarly sized, adult salmonids (Kreiberg, 1991; Johansson et 

al., 1995; Hillestad et al., 1998). 

The relationship between ration and growth can be further supported by the finding 

that population bimodality, commonly observed in juvenile salmonids (Thorpe, 1977, 

1987a; Kristinsson et al., 1985; Stewart et al., 1990; Skilbrei, 1991), is also affected 

by ration. Bimodality results from a size and growth differential between prospective 

upper and lower mode fish (Kristinsson et al., 1985; Stewart et al., 1990) and as such 

ration-related differences in growth would be expected to affect the structure of 

salmonid populations. Storebakken and Austreng (1987a, b) and Nicieza and Metcalfe 

(1997) reported that population structure was skewed towards the lower modal group 

when salmonids were fed low rations highlighting the importance of ration to growth. 

However, although ration clearly influences growth it is important to consider the 

scope for growth that increasing rations provide. From previous investigations into 

ration it has been possible to predict the maintenance ration required by a particular 

salmonid species and/or stock. Storebakken and Austreng (1987a) found that feeding 

0.5-1.0kg rainbow trout 25% of the ration necessary for maximum growth resulted in 

neither an increase nor a decrease in weight. Similarly, by manipUlating ration 

McCormick et al. (1989) suggested that 1.4% of dry body weight per day would 

provide maintenance rations for Atlantic salmon held in fresh water immediately prior 

to seawater transfer. Unfortunately such measurements may not be an accurate 

indication of maintenance ration (Storebakken and Austreng, 1987a). Elliott (1975b) 

has found that optimum ration size for growth decreased with decreasing temperature 

and O'Connor et al. (2001) noted that the standard metabolic rate of salmon declined 
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as ration was reduced. It is therefore likely that a range of environmental, 

physiological and genetic influences will hinder the accurate determination of 

maintenance ration by such methods although these experiments will allow a 

generalised understanding of the required basal feed rate. 

It is also evident that variations will occur in the response to high feed rates and 

accurately determining the scope for growth is further hindered. Storebakken and 

Austreng (1 987a, b respectively) fed rainbow trout and Atlantic salmon parr at 

various ration levels above and below that which was calculated to provide maximum 

growth. As might be expected rations above the rate necessary for maximum growth 

did not result in further increases in weight highlighting the fact that ration increases 

are only influential up to a certain level. Subsequently, McCormick et a1. (1989) 

showed that although food conversion efficiency and growth rate increased with 

ration, feed conversion efficiency increased at a diminishing rate. Elliott (l975b) 

found that the optimum ration for efficient growth was close to that which was 

required for 80% of maximum growth. Interestingly, Kreiberg (1991) reported that 

adult chinook salmon fed rations equivalent to 80% of the maximum ration grew at a 

similar rate to those on the 100% ration. Therefore it seems that the efficiency of 

feeding and growth are not necessarily maximised when feed rates are near to those 

which provide maximum growth (Storebakken and Austreng, 1987b; Nicieza and 

Metcalfe, 1997). 

4.1.1.3. Compensatory growth 

Following periods of starvation or feed restriction salmonids, as well as other species, 

have been shown to adjust their growth and correct for the lost growth incurred during 

212 



CHAPTER 4: NUTRITION. 

the period of reduced feeding. Weatherley and Gill (1981) highlighted this by 

investigating periods of restricted feeding (i.e. 3% dry body weight per day for 16 

weeks) or starvation (for either 3 or 13 weeks) in fingerling rainbow trout. Following 

these periods full rations were applied for 14 and 12 weeks for the restricted and 

starved fish respectively. Full compensation of size was recorded for both the 

restricted fish and those starved for 3 weeks with the fish starved for 13 weeks 

subsequently exceeding the size of controls, which were maintained on full rations 

throughout (Weatherley and Gill, 1981). Similarly, Dobson and Holmes (1984) 

investigated 3 week periods of starvation followed by 3 weeks of ad libitum feeding 

in rainbow trout at five different times of the year. In all but one of these periods 

compensatory responses equalled or exceeded those of controls (Dobson and Holmes, 

1984). Compensatory growth responses following periods of feed restriction or 

starvation have also been reported in other salmonids (Miglavs and Jobling, 1989b; 

Thorpe et al., 1990; Reimers et ai., 1993; Hopkins and Unwin, 1997). Therefore, 

following periods of nutritional stress (i.e. starvation or feed restriction) feed 

efficiency can be maximised so that growth differentials are eliminated. 

Although increases in growth are required to facilitate the recuperation of size 

Quinton and Blake (1990) found that growth responses do not necessarily follow a 

linear relationship. During an experiment in which rainbow trout were starved for 

three weeks and subsequently fed full rations for three weeks a distinct cyclical 

growth response was observed. During the starvation period weight loss in the first 

week was large although in the subsequent two weeks weight loss was significantly 

reduced. Following the return to feeding there was a moderate gain in weight in the 

first week with a slight decline during the second week. However, in the third week of 
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feeding the gain in weight and growth rate increased rapidly (Quinton and Blake, 

1990). It is also important to note that during the early stages of recovery growth feed 

conversion efficiency may be enhanced (Miglavs and Jobling, 1989b) although it is 

unlikely that such a short lived period of enhanced feed conversion efficiency will 

greatly affect compensatory responses (Miglavs and Jobling, 1989a). 

Although compensatory growth can result in fish fully regaining their lost size 

(Weatherley and Gill, 1981; Thorpe et at., 1990; Reimers et al., 1993; Hopkins and 

Unwin, 1997) or indeed exceeding the size of continuously fed controls (Weatherley 

and Gill, 1981; Dobson and Holmes, 1984) some evidence indicates that individuals 

do not necessarily regain the size lost through nutritional stress. Dobson and Holmes 

(1984) starved rainbow trout for three week periods at five different times of the year 

with growth measured over a subsequent three week period of feeding. Although full 

compensation of the growth lost was recorded in four of the five experiments, in one 

group individuals did not regain the size of continuously fed controls. Similarly, 

Miglavs and Jobling (1989a) found that Arctic char fed between 10% and 20% of the 

satiation ration (fed to controls) for 8 weeks did not regain the size of controls during 

the subsequent full ration feeding period. It would therefore seem that although the 

utilisation of sub-maximal growth performances near to the full ration rate can 

provide sufficient increases in growth to counteract nutritional deficiencies, such 

increases are not necessarily guaranteed. 

As a closing point it is also important to mention that the ability of an individual to 

regain its size will be affected by further biological and environmental influences. As 

mentioned previously Dobson and Holmes (1984) found that although at four times of 
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the year growth responses resulted in fish regaining the size of controls, during one of 

the periods an incomplete recovery of size occurred suggesting a possible seasonality 

to the compensatory response. It has also been shown that following periods of 

restricted feeding the compensatory response of pre-migratory Atlantic salmon parr is 

significantly greater than fish destined to remain in fresh water for a further year 

(Nicieza and Metcalfe, 1997) indicating a seasonal, developmental or size related 

effect on compensatory growth. Hence, comparisons of compensatory responses 

during different times of the year, or with different sized individuals, may not be 

appropriate. 

4.1.2. Lipid accumulation and feeding behaviour 

Salmonids exhibit a yearly cycle of lipid deposition with the feeding behaviour 

required to accumulate lipid stores also showing seasonal variation. However, the 

accumulation of fat reserves will also be affected by physiologically demanding 

processes such as migration and maturation. Therefore the decision of whether an 

individual will undergo a particular developmental route will affect its feeding 

behaviour. 

Juvenile salmonids show an accumulation of lipid during the summer (Vanstone and 

Markert, 1968; Saunders and Henderson, 1978; Gardiner and Geddes, 1980; Simpson, 

1992) with a decline noted during winter (Vanstone and Markert, 1968; Saunders and 

Henderson, 1978; Woo et al., 1978; Gardiner and Geddes, 1980; Rowe et al., 1991). 

However, the magnitude and timing of these changes is clearly affected by both 

smoltification and maturation. 
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Although Larsen et al. (2001) and Nordgarden et al. (2002) found that smoltification 

did not result in a loss of body fat during winter the majority of evidence suggests that 

whole body lipid levels decrease during the parr-smolt transfonnation. Komourdjian 

et al. (1976) and Saunders and Henderson (1978) both provided evidence that 

smoltification results in a decrease in lipid content by investigating natural 

(increasing) and reciprocal (decreasing) photoperiod regimes during spring (refer to 

Fig. 3.1) in Atlantic salmon parr. Smolting fish had a lower muscle fat content than 

non-smolting individuals generated from the non-stimulatory photoperiod regime 

(Komourdjian et al., 1976; Saunders and Henderson, 1978). Woo et al. (1978) 

provided support by investigating the whole body lipid changes occurring in parr, 

smolts or fish undergoing de-smoltification. Furthennore, these fish were reared under 

the same photoperiod regime so unlike the studies of Komourdjian et al. (1976) and 

Saunders and Henderson (1978) individuals undergoing different developmental 

routes could be compared at the same time of the year. It was found that individuals 

that were undergoing smoltification had lower serum, total liver and muscle fat levels 

than parr. Furthennore, if fish underwent de-smoltification in fresh water they 

regained the biochemical characteristics of parr (Woo et al. 1978). 

Subsequently, Higgins and Talbot (1985) found that upper mode fish had higher 

whole body lipid levels than lower mode fish at the emergence of bimodality in 

September with levels remaining higher throughout the winter. However, during 

winter the lipid levels of both the upper and lower mode fish showed a decline of 

similar magnitude (Higgins and Talbot, 1985). Therefore, although growing support 

can be provided that smoltification results in a loss of body lipid (Birt and Green, 
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1986; Helland and Grisdale-Helland, 1998) it is likely that individuals remaining in 

fresh water will also loose some fat during the winter. 

Clearly the physiological constraints of smoltification play an important role in the 

changes that occur in lipid content but for a full understanding of these variations the 

feeding behaviour of both parr and smolts must be considered during the winter 

period. 

It is evident that a division of feeding behaviour occurs between upper and lower 

mode fish. Higgins and Talbot (1985) found that upper mode fish consistently took 

larger meals than lower mode individuals with Metcalfe et al. (1986) and Metcalfe 

and Thorpe (1992) both observing a decrease in the feeding of lower mode fish during 

autumn. Metcalfe et al. (1988) found that the appetite of upper and lower mode fish 

remained similar until August after which the upper mode fish increased their appetite 

until October with a decreased appetite in the lower mode fish. Additionally, it has 

been noted that upper mode fish have a far greater feed efficiency than their lower 

mode siblings (Valdimarsson and Metcalfe, 1999). Therefore, a difference in the feed 

intake of upper and lower mode fish will occur during autumn and winter with this 

occurring despite decreases in the whole body lipid level of fish from both modal 

groups (c.f. Higgins and Talbot, 1985). 

In support it has been shown that following a period of feed restriction during winter 

lower mode fish show only a brief period of re-feeding (Metcalfe and Thorpe, 1992), 

with the compensatory response of prospective smolts stronger and more persistent 

(Nicieza and Metcalfe, 1997). Therefore, during over-wintering the lipid losses 
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incurred by lower mode fish appear to be due to a reduction in feeding motivation 

(anorexia) whereas in the upper mode fish losses are primarily due to the energetic 

demands of smoltification. Consequently, under some circumstances, such as yearly 

fluctuations in temperature or feed availability, smolting individuals may exhibit a 

lower body lipid level than non-migratory individuals (c.f. Woo et al., 1978). It would 

also seem that if the lipid reserves of both upper and lower mode fish fall below a 

certain internally determined level a compensatory feeding response will occur, 

although it is likely that this response will be different for the two developmental 

groups (Metcalfe and Thorpe, 1992; Nicieza and Metcalfe, 1997). 

When the changes in lipid content of fish destined to mature are considered care must 

be taken not to make direct links to the findings documented above. Previously more 

mature male parr have been found in the lower mode of bimodal populations 

(Kristinsson et al., 1985; Saunders and Henderson, 1988; Herbinger and Friars, 1992) 

and it may be suggested that changes in the lipid content of maturing fish are linked to 

those of lower modal group fish. However, bimodality is not thought to be caused by 

differences in maturational status (Thorpe, 1977; Villarreal and Thorpe, 1985) and 

such inferences should not be made. 

Where maturation is concerned recorded changes in the lipid content of juveniles are 

similar to those found in adults and consequently data from maturational episodes in 

both adults and parr can be viewed together in order to understand the changes that 

are observed. 
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Although Herbinger and Friars (1992) found that maturation was not very dependent 

on spring lipid storage growing evidence highlights a cyclical nature of lipid 

deposition in fish destined to mature. Rowe et al. (1991) investigated fat accumulation 

in juvenile Atlantic salmon. For individuals that were destined to mature both total 

and mesenteric fat levels began to accumulate during April and May respectively, 

although a similar lipid deposition did not occur for a further month in fish destined to 

remain immature. Therefore, by June the mesenteric fat levels of maturing fish were 

significantly greater than those of immature fish, although by September these levels 

had declined with this reduction occurring as as! (gonadal somatic index) increased 

(Rowe et al., 1991). Similarly, Simpson (1992) noted that the fat content of Atlantic 

salmon parr, which were destined to mature, was higher than their immature 

counterparts by February. This differential remained until October by which time the 

fat levels of maturing individuals had declined to levels similar to those found in 

immature fish. However, Simpson (1992) also noted that although the fat content of 

mature individuals was greater than that of immature fish during the summer, from 

February onwards the difference was not increasing suggesting that the mature fish 

had experienced an early accumulation of fat. 

For adults Aksnes et al. (1986) found that the fat level of fillets from maturing fish 

peaked between June and July with levels higher than those in the immature fish. 

Subsequently, a decline occurred through to November with the lipid levels of mature 

fish clearly lower than immature individuals during September, November and 

December. Kadri et al. (1996) also found that the lipid content of mature adult 

Atlantic salmon peaked in June with a subsequent decline. However, it was also noted 

that although the lipid content of all fish was similar in the September one month later 
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those destined to mature had a higher fat content. The lipid levels of both fish destined 

to mature and those remaining immature then rose during early winter. It therefore 

seems that maturing salmonids show a brief period of enhanced lipid deposition with 

peaks during spring and early summer. Subsequently levels decline as gonadal 

development progresses. 

The feeding behaviour of maturing individuals also shows a clear cyclic behaviour. 

Early work by Scott (1962) showed that the feed intake of rainbow trout was lower 

during the 3 to 4 months of final maturation with Rowe and Thorpe (1990a) observing 

that between August and October maturing Atlantic salmon parr had a higher 

proportion of non-feeding individuals than their immature siblings. For the Arctic 

charr Tveiten et aJ. (1996) found that low feed intake occurred for all fish from 

December until April with appetite increasing in late spring/summer. However, 

increases in appetite were observed between 1 and 2 months earlier in maturing fish 

although such fish subsequently ceased or reduced feeding during late summer 

(Tveiten et al., 1996). Kadri et al. (1996) found that mature adult salmon had a high 

feeding rate from April with a cessation of feed intake during spring/summer 

indicating a non-temperature related 2 month surge in feeding before the onset of 

anorexia and indeed further support for this two-phase feeding response linked to 

maturation is present (Stead et al., 1999). 

However, Simpson et al. (1996) found that the appetite of both maturing and non

maturing individuals declined after a peak in feed intake during May with the appetite 

of maturing individuals never greater than immature fish and it was concluded that 

maturation had no direct role on appetite. Similarly, it has been found that maturing 
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individuals may show a considerable feed response during the time of maturation 

(Arndt, 2000; Shearer and Swanson, 2000). Where maturation-induced anorexia has 

been found there has often been considerable variation in the response of maturing 

individuals within a particular population (Kadri et aZ., 1995; Stead et aZ., 1999). 

Kadri et aZ. (1995) linked the cessation of feeding to fat reserves, with Tveiten et al. 

(1996) observing that the anorexic response of maturing individuals was possibly 

correlated to condition factor. It has been suggested that if maturation progresses 

without sufficient lipid stores then the rate of post-spawning mortality is likely to 

increase (Thorpe, 1994b). Therefore, where the lipid reserves of previously anorexic, 

maturing individuals fall below a certain level the fish may recommence feeding in 

order to prevent post-maturation mortality in a similar manner to the re-feeding 

response of over-wintering immature parr. 

Following periods of starvation or restricted feeding a recovery in the size of 

individuals is well documented (Weatherley and Gill, 1981; Dobson and Holmes, 

1984; Quinton and Blake, 1990; Thorpe et al., 1990; Reimers et aZ., 1993; Hopkins 

and Unwin, 1997). However, it is also important to consider the behavioural 

responses to such periods of nutritional stress. After an 8 week period of restricted 

feeding (Le. feeding individuals between 10 and 20% of the food consumed by fish 

that were fed to satiation) Miglavs and Jobling (1989b) found that Arctic charr 

increased their food intake (hyperphagia) in the weeks immediately following the 

transfer back to a satiation diet with this response peaking after three to four weeks. 

Similarly, Metcalfe and Thorpe (1992) found that following a period of induced 

starvation during winter Atlantic salmon parr showed a subsequent hyperphagic 

response for four weeks. More recently, Nicieza and Metcalfe (1997), Johansen et al. 
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(2001) and Morgan and Metcalfe (2001) have all documented a hyperphagic response 

following periods of nutritional stress. 

Traditionally, recovery growth has been viewed in terms of the ability of a fish to 

replenish a certain size following a period of starvation or restricted feeding. 

However, some evidence shows that fish fed restricted rations can either exceed the 

size of fully-fed controls (Weatherley and Gill, 1981; Dobson and Holmes, 1984; 

Nicieza and Metcalfe, 1997) or that they may not achieve such sizes (Miglavs and 

Jobling, 1989a). More recently the focus of these compensatory responses has moved 

towards investigating the changes that occur in body lipid content. Metcalfe and 

Thorpe (1992) found that following a period of starvation feeding increased until fat 

stores were restored to the levels of constantly fed controls. Similarly, Simpson et al. 

(1996) found that reductions in body fat were counteracted by increases in appetite. 

Johansen et al. (2001) investigated two restricted feeding regimes observing that in 

one instance hyperphagia continued where body size had been fully compensated, 

whereas in the second experiment fish were smaller following the decrease in 

hyperphagic response although their body lipid contents were similar to those of 

controls. Furthermore, Jobling and Miglavs (1993); Shearer et al. (1997); Silverstein 

et al. (1999) and Morgan and Metcalfe (2001) have all provided evidence that 

supports a role for lipid content in regulating feeding and recovery growth during and 

following periods when feed availability is limited. It is therefore becoming 

increasingly evident that the appetite and growth of salmonids is not set to control a 

particular size status but that a mechanism using lipostatic regulation is more likely 

(Jobling and Miglavs, 1993; Silverstein et al., 1999; Johansen et al., 2001). 
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4.1.3. Proximate composition correlations 

Although it is clear that both seasonal and developmental variations occur in the lipid 

content of salmonids it is also evident that further correlations concerning proximate 

composition can occur with such relationships possibly affecting the way in which 

experimental data are treated. 

In their comprehensive reviews of salmonid proximate composition Shearer (1994) 

and Rasmussen (2001) highlighted the importance of fish size on proximate 

composition and in particular its effect on lipid content. Shearer (1994) considered 

such a relationship significant enough that in experimental analyses it was suggested 

that size should be included as a covariate in lipid determinations. It seems that there 

is significant evidence to suggest that such a procedure is necessary in order to avoid 

inaccuracies. Early evidence of such a relationship was provided by Reinitz (1983) 

when the feeding of juvenile (2.1 g) rainbow trout was investigated. Although 

nutritional history was found to have a primary role in proximate composition it was 

also found that fat content increased with increasing fish size (Reinitz, 1983). 

Similarly, Storebakken and Austreng (1987b) reported an increase in the fat content 

of Atlantic salmon parr with increasing size and suggested that such effects may have 

masked the effects of the different rations used in their experiments. More recently, 

further support can be found particularly when considering adult salmonid 

composition (Bjerkeng et al., 1997; Einen and Skrede, 1998; Hemre and Sandnes, 

1999; Torstensen et al., 2001). 

However, M0rlmre and R0rvik (2001) stated that the relationship between fish size 

and adiposity is ambiguous since the fat content of post-smolts in their experiments 
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remained stable or declined slightly during winter and spring whereas fish weight 

increased. Shearer (1994) concluded that lipid content increases with fish size 

although it is also affected by life cycle stage. Interestingly much of the evidence for 

such a relationship presents itself for adult salmonids and it is evident that where such 

a correlation has been found in juvenile salmon it has only been recorded during early 

development (e.g. Storebakken and Austreng, 1987b) or in fish which do not exhibit 

natural smoltification (e.g. Reinitz, 1983). It therefore seems likely that although 

whole body lipid levels may be correlated to body size during the early development 

of salmonids, with the onset of physiologically demanding processes such as 

maturation or smoltification the relationship becomes less apparent. Consequently, 

including fish size as a covariate in analyses of juvenile fish may result in a loss of 

statistical robustness. 

Interestingly, a further correlation can be found when considering the whole body fat 

and moisture content of individuals. A negative correlation has been found between 

the moisture content and whole body lipid level of both adult and juvenile salmonids 

(Elliott, 1976; Reinitz, 1983; Saunders and Henderson, 1978; Bjerkeng et al., 1997; 

Reviews by Shearer, 1994; Rasmussen, 2001). Indeed this negative correlation is 

strong enough that it may be possible to predict the level of whole body fat from the 

moisture content of fish (Elliott, 1976). 

4.1.4. Dietary influences on development 

Previously, it has been suggested that the developmental decision of whether an 

individual juvenile salmonid will undergo maturation and/or smoltification is 

determined by the attainment of a certain critical size threshold (for smoltification: 
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Elson, 1957; Thorpe et al., 1980; Skilbrei, 1988; Kristinsson et al., 1985; for 

maturation: Bailey et al., 1980; Saunders et al., 1982; Berglund, 1995; Silverstein et 

al., 1997). However, there is evidence that size is not correlated to either maturation 

(Prevost et al., 1992) or smoltification (McKinnell and Lundqvist, 1998) with 

Saunders et al. (1982) and 0kland et al. (1993) suggesting that a size threshold alone 

may not account for such physiological decisions. McCormick and Naiman (1984) 

proposed that other factors that correlate well with size may be more influential. It has 

therefore been suggested that an energetic or nutritional threshold may have to be 

surpassed before either maturation (Herbinger and Friars, 1992; Simpson, 1992; 

Shearer, 1994; Silverstein et al., 1997) or smoltification (Thorpe, 1986; Shearer, 

1994) can be successfully completed. 

It has also been suggested that such thresholds may influence development, in 

particular maturation, during seasonally-critical periods (Thorpe, 1986; 1987b; 

Duston and Saunders, 1992; Metcalfe, 1998; Thorpe and Metcalfe, 1998; Taranger et 

al., 1999a). Thorpe (1986) proposed that if the rate of acquisition of energy was 

sufficient during early spring maturation would be initiated. Further support was 

provided by Duston and Saunders (1992) who investigated annual photoperiods that 

were manipulated to occur in either 6-, 12- or 18-month periods, concluding that the 

initiation of maturation would occur on the increasing phase of the photoperiod (Le. in 

spring) provided sufficient growth thresholds had been achieved. Indeed growing 

support for such a theory is present in the literature (Adams and Thorpe, 1989; Rowe 

and Thorpe, 1990b; Thorpe et al., 1990; Rowe et al., 1991; Berglund, 1992; Duston 

and Saunders, 1997) although it is likely that both the current state of a physiological 
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parameter as well as its rate of change will be influential during the suggested critical 

period (Metcalfe, 1998; Thorpe et al., 1998). 

Thorpe (1994b), Metcalfe (1998) and Thorpe et al. (1998) have suggested that the 

initiation of maturation occurs in November one year prior to maturation (Metcalfe, 

1998; Thorpe et al., 1998) with a time prior to first-feeding therefore possible 

(Thorpe, 1994b). Subsequently, maturation will be influenced during a second 

sensitive period in spring (Metcalfe, 1998; Thorpe et al., 1998) as previously 

suggested. As such it remains clear that spring will provide the main period during 

which environmental manipulations can influence maturation. It is also likely that if 

such a model influences maturation other developmental processes such as 

smoltification may be influenced during critical periods of the year. 

Although lipid levels may influence development during seasonally-critical periods, 

Herbinger and Friars (1992) have suggested that a lipid threshold for parr maturation 

may be very low, with Saunders et al. (1982) also suggesting that high fat levels are 

not necessary for smoltification. Given that only low levels of fat may be required to 

exceed developmental lipid thresholds it is unlikely that the non-sacrificial 

determination of fat content using electronic instruments (e.g. the Torrymeter) will 

prove accurate enough to identify individuals that have reached a particular lipid 

threshold. Furthermore, the estimation of fat content using morphometric 

measurements (e.g. Herbinger and Friars, 1991; Simpson et al., 1992; Sutton et al., 

2000) has provided variable results. Consequently, it can be concluded that the use of 

energetic thresholds for predicting which fish will undergo a particular developmental 

route may not be practicable on a commercial scale. 
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Although it may not be possible to use lipid thresholds to accurately predict which 

individuals will undergo either smoltification or maturation in commercial 

populations it is possible that the attainment of such thresholds can be affected 

through diet manipulation. In this way dietary manipulations can be used to adjust 

either the timing or the incidence of fish choosing to undergo a particular 

developmental route. 

During commercial production an understanding of the dietary influences affecting 

maturation is important primarily to limit the numbers of mature fish during the 

ongrowing stages of production, but also to enhance the productivity of broodstock 

programmes. Although ration level has been shown to influence growth, with dietary 

lipid level affecting adiposity (Shearer et al., 1997), it is dietary restrictions that are 

generally used to reduce maturation. 

Shearer and Swanson (2000) investigated the role of dietary lipid on maturation in 

chinook salmon parr. Following a 7 month period where fish were maintained on a 

commercial diet groups were fed diets containing either 4, 9, 14, 18 or 22% lipid for 

l3 months. Maturation levels were 34% in the group fed the 4% lipid diet increasing 

to 45% in the 22% lipid group with the growth of all groups similar throughout the 

experiment. Therefore, whole body lipid levels derived from the dietary lipid regime 

and not growth had influenced maturation (Shearer and Swanson, 2000). Hillestad et 

al. (1998) found a higher incidence of maturation in adult Atlantic salmon in groups 

fed a diet containing 300g kg-1 fat, rather than 220 g kg-1 fat. Unfortunately, the 

experiment of Hillestad et al. (1998) focused primarily on growth and carcass quality 

and it is evident that due to the effects of dietary fat on adiposity such experiments 
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tend to focus on ultimate harvest quality as opposed to maturation. However, the 

works of Hillestad et al. (1998) and Shearer and Swanson (2000) provide evidence 

that increases in dietary fat will result in an increased incidence of maturation almost 

certainly through elevated lipid deposition and the attainment of maturational 

thresholds by a greater number of individuals within the popUlation. 

Silverstein et al. (1998), working with male chinook salmon parr, found that dietary 

lipid level only affected maturation through an interaction with ration rate. When 

dietary lipid was considered alone no effect was observed although ration did 

singularly influence maturation. It is therefore clear that further investigation is 

required to help identify the true role of dietary lipid on maturation. 

For investigations regarding the effects of feed restriction on maturation Scott (1962) 

provided some preliminary work by studying the effects of periods of starvation on 

maturation and gamete quality in female rainbow trout. During the summer months 

prior to spawning, at both the second and third year of age, female rainbow trout were 

exposed to reduced feeding (Le. fed for three days each week) for differential periods. 

It was concluded that semi-starvation in the second year clearly reduced the 

percentage of mature fish in the third year. Furthermore, in mature fish an increase in 

atresia and a reduction in fecundity was noted, although feed restriction did not affect 

the size of eggs (Scott, 1962). Subsequently, Bagenal (1969) found that feeding 

brown trout either half or one-third rations for much of the year resulted in a lower 

number of maturing fish than under full ration regimes. However, it was also noted 

that unlike the work of Scott (1962) fish fed restricted rations had larger eggs than full 
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ration controls, although feed restriction had resulted in a reduction in the number of 

eggs (Bagenal, 1969). 

Although, it would seem that long-term feed restriction will be detrimental maturation 

(Scott, 1962; Bagenal, 1969) it is unlikely that short-term starvation immediately prior 

to spawning will have an effect on gamete quality (Ridelman et al., 1984). 

Consequently, the manipulation of maturation in commercial populations, for 

example to improve broodstock programmes, will require long-term dietary 

manipulation. 

Given these early works it is clear that feed restriction can be used to reduce the 

incidence of maturation and indeed investigations aimed at limiting maturation in 

commercial salmon production have focused on such manipulations. Rowe and 

Thorpe (I 990b ) exposed 2+ Atlantic salmon parr to 2 month periods of either 

enhanced or restricted feeding opportunity between November and September. It was 

found that feed enhancement during April to July increased the incidence of 

maturation, with the two month period between April and May most influential. 

Furthermore, only restricted feeding during April, May and June resulted in a 

reduction in the numbers of mature individuals (Rowe and Thorpe, 1990b) although it 

is important to note that the sample populations of 2+ parr used in these experiments 

were fairly small. Further evidence has documented that restricted feeding regimes 

applied between November and June (Clarke and Blackburn, 1994), March and 

September (Silverstein et al., 1998) and September and October (Morgan and 

Metcalfe, 2001) can reduce the incidence of male parr maturation. 
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Similar findings have been presented for adults. Thorpe et al. (1990) found a decrease 

in the incidence of maturation in adult female Atlantic salmon that were supplied feed 

every second week between December and April, with February and March the most 

effective times for limiting maturation in both sexes. By starving adult Atlantic 

salmon between February and April, Reimers et al. (1993) have reduced female and 

male maturation by 48% and 32% respectively and similar reductions in adult 

maturity have been observed following feed restriction in other salmonid species 

(Silverstein and Shimma, 1994; Hopkins and Unwin, 1997). 

However, dietary manipulations have been found to result in extremely varied effects 

on maturation in particular for juvenile salmon. Although decreases in the incidence 

of maturation have been documented following periods of feed restriction (e.g. Clarke 

and Blackburn, 1994; Morgan and Metcalfe, 2001) some studies have recorded only 

slight or negligible effects on maturation (Herbinger and Friars, 1992; Berglund, 

1995). Interestingly, although feeding regimes have been found to affect maturation at 

a range of times during the year (c.f. Thorpe et al., 1990; Clarke and Blackburn, 1994; 

Morgan and Metcalfe, 2001) an increase in the response to feed restriction occurs 

during spring. Rowe and Thorpe (1990b) and Thorpe et al. (1990) showed that 

maturation could be influenced to the greatest extent during a short period in spring 

and subsequently many authors have focused their experimental restrictions on this 

period (Reimers et al., 1993; Silverstein and Shimma, 1994; Berglund, 1995; Hopkins 

and Unwin, 1997). Indeed, this early spring period is becoming increasingly viewed 

as a developmental period during which maturation can be influenced (Thorpe, 1986; 

Duston and Saunders, 1992; Thorpe, 1994b; Metcalfe, 1998; Thorpe et al., 1998) and 
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dietary manipulations in particular will influence the decision as to whether a fish will 

mature later in the year. 

There is limited literature on the effects of dietary lipid level on the parr-smolt 

transformation. Redell et al. (1988) provided the most comprehensive experiment to 

date. In their experiments no variation was found in the quality of smolting 

individuals that were fed diets containing different levels of dietary lipid (between 11 

and 18% inclusion) (Redell et al., 1988). 

Limited literature is also available on the effects of ration on smoltification. However, 

given the changes in fat accumulation and feeding behaviour that occur during the 

parr-smolt transformation, as well as the documented effects of feed restriction on 

maturation, a greater level of investigation might be expected. Dickhoff et al. (1989) 

reported that fully-fed Atlantic salmon parr showed similar increases in gill Na+, K+ -

ATPase and seawater tolerance in spring as individuals which were starved during 

November and December. More recently Thorpe and Metcalfe (1998) found that 

restricted feeding (Le. full ration for only one week in four) between February and 

June did not directly affect smolt status. However, an indirect role of ration was 

suggested because growth was limited under the restricted feed regime and these 

smaller fish faired less well in sea water (Thorpe and Metcalfe, 1998). It has also been 

shown that fasting between January and February does not impair smoltification in 

coho salmon parr (Larsen et al., 2001). However, in this study fish that were fed 

during January and February were larger than those that were starved and the indirect 

role of feed regime on growth suggested by Thorpe and Metcalfe (1998) may 

therefore have been important in smoltification given that a distinct size relationship 
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in seawater survival has been well documented (Elson, 1957; Thorpe et al., 1980; 

Kristinsson et al., 1985; Skilbrei, 1988; 0kland et al., 1993). 

Therefore, although clear changes in body lipid occur during smoltification diet 

regime during the latter stages of freshwater development has negligible effects on 

smoltification. The suggestion by Saunders et al. (1982) that high fat levels might not 

be necessary for smoltification may therefore be true. As such differences between the 

effects of feed regime on maturation and smoltification may be linked to differences 

in the feeding opportunity that occurs in fresh and sea water, as well as the subsequent 

survival that occurs after maturation or seawater transfer. However, for smoltification 

in particular investigation into the effects of long-term diet manipulation is necessary 

in order to enhance the understanding of such physiological processes. 

4.1.5. Experimental aims 

Within commercial salmon culture complex diet formulations are increasingly used 

primarily to aid growth and harvest quality. However, the effects of diet manipulation 

on juvenile life history strategy are not well understood, in particular with reference to 

the incidence of maturation and the developmental decision of whether an individual 

undergoes maturation and/or smoltification. Therefore, the aims of this chapter are:-

• To investigate the effects of long-term differences in dietary lipid regime on 

growth, maturation and smoltification in Atlantic salmon parr. 

• To consider the effects of differing rations of feed on the "decisions" to mature 

and/or to smolt. 
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• To investigate the interaction between the rations of feed and photoperiod in 

Atlantic salmon parr reared under both natural and photoperiodically-manipulated 

regimes. 
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4.2. Experiment IV. The role of dietary lipid level on growth, 

maturation and smoltification. 

4.2.1. Objectives. 

The experiment detailed in this section aimed to investigate the role of differing levels 

of dietary lipid on growth, maturation and smoltification. 

4.2.2. Materials and Methods. 

The experiment started at Site 6 (Section 2.1.1). Ova from a low grilsing Scottish 

stock were fertilised and held in heated water (6.0±1.2°C) under darkness until 

hatching (24th January 2000). The fry were then held under a natural photoperiod in 

heated water (6.2±1.4°C) until first-feeding (16th March 2000). At first-feed 2500 fish 

were transferred into each of two, 1m square, OAm3 tanks and exposed to LD24:0 

with the gravity fed water heated slightly above the natural temperature regime (Fig. 

4.1), From first-feed each tank was supplied with one of two experimental diets 

(EWOS; Scotland, UK) containing either 12.5% or 25% lipid (Table 4.1) fed at the 

manufacturers' recommended rate throughout the 24h illuminated period (see Fig. 4.2 

for experiment protocol). Although the lipid levels of the diets deviated slightly from 

those formulated similar variations would normally be expected during the 

manufacture of diets and as such the diets were considered appropriate for the 

experiment. 

On 16
th 

May 2000 the fish were moved to Site 7 (Section 2.1.1) with 400 fish from 

each diet group placed into each of six, 0.7m diameter, 0.25m3 tanks and exposed to 
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Fig. 4.1 The photoperiod, temperature and feed regimes at Sites 6 and 7 during the 

2000-2001 dietary lipid experiment, where groups were fed diets containing either 

25% or 12.5% lipid. First-feeding is denoted by 'a', 'b' denotes the date that fish were 

moved from Site 6 to Site 7. Between a and b the water was artificially heated. a) 25% 

lipid throughout the experiment, b) 25% lipid until 21 st June, 12.5% thereafter, c) 

12.5% lipid until 21 st June, 25% thereafter, d) 12.5% lipid throughout the experiment. 
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Diet 

Feed size 12.5% lipid 25% lipid 

Mean S.E.M Mean S.E.M 

Crumble 1.0 12.6 0.04 25.5 0.2 

Crumble 2.0 12.5 0.08 25.7 0.06 

Crumble 3.0 12.4 0.06 24.8 0.2 

1.5mm Pellet 10.4 0.1 22.7 0.01 

2.0mm Pellet 13.3 0.03 24.7 0.08 

Table 4.1 Lipid levels (mean±S.E.M., n=3) in the different sizes of diet containing 

either 12.5% or 25% lipid. 
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Fig. 4 .2 The experimental protocol used during experiment IV. For further details of 

the sampling regime refer to section 4.2.2. 
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ambient temperature regimes under LD24:0 (Fig. 4.1). Fish were then maintained on 

their respective diets until 21 st June 2000 after which the fish in three tanks from the 

25% diet group received the 12.5% diet and those in three of the 12.5% diet tanks 

changed onto the 25% diet. This resulted in four diet treatments in triplicate tanks 

(Fig. 4.1). The treatments were subsequently termed the 25/25, 25/12.5, 12.5/25 and 

12.5/12.5 groups. From 21st June, fish were exposed to a natural photoperiod regime 

(Fig. 4.1) and fed at the manufacturers' recommended rate during the light phase of 

the photoperiod. 

On 16th March and 16th May 100 individual length and 6 batch weight measurements 

were made for each treatment group. From 21 st June onwards 30 individual length and 

weight measurements were taken for each tank at monthly intervals. However. during 

the latter stages of the experiment a large size distribution was noted and from 15th 

January monthly samples were taken from 60 individuals per tank. Each month 18 

samples per treatment were taken for whole body lipid determination (Section 2.9). 

Up until 19th September samples were pooled in order to achieve the necessary dry 

weight to accurately perform lipid analysis. 

At each monthly sample all measured fish were examined for external signs of 

maturation (Section 2.7.1). From 13th November due to the low incidence of mature 

fish an additional 70 individuals per tank were checked for maturity. 

On 16
th 

February 2001 and twice monthly from 15th March gill samples were taken 

from 5 individuals from the upper modal group of the population per tank for the 

determination of gill Na +, K+ ·ATPase. 
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On 14th May 2001 20 individuals selected at random per treatment were exposed to a 

96h seawater tolerance test (Section 2.8.2). The remaining fish were culled with the 

numbers of 1 + smolts and parr in each group recorded based on both size and the 

presence of external silvering. 

Growth data, whole body lipid level, moisture content and gill Na +, K+ -ATPase level 

were compared using a General Linear Model (Section 2.11) although for changes in 

weight, length and condition factor a natural log transformation was used to improve 

normality and homogeneity of variance. Correlations between whole body lipid and 

moisture level were analysed using the Pearson's product moment method. For the 

analysis of population structure, 95% confidence limits were calculated and 

compared. 

4.2.3. Results. 

4.2.3.1. Growth 

Weight 

All treatments resulted in an overall increase III weight (p<0.00 1) over the 

experimental period (Fig. 4.3) with fish from all groups increasing between 

consecutive time points until 19th September (p<0.05) and fish in the 12.5/12.5 group 

increasing until 15th October (p<0.01). However, no differences were observed 

between the weight offish from each treatment at individual time points (p>0.05). 

Length 

All treatments resulted in an overall increase in length (p<0.001) over the 

experimental period (Fig. 4.4) with all groups increasing between consecutive time 
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Fig. 4.3 Changes in weight (mean ±S.E.M., n=90-180) of parr fed diets containing 

different levels of lipid, for different periods of development. 
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Fig. 4.4 Changes in length (mean ±S.E.M., n=90-180) of parr fed diets containing 

different levels of lipid, for different periods of development. 
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points all groups until 19th September (p<O.05) and fish from the 12.5/12.5 group 

increasing until 15th October (p<O.Ol). However, no differences were observed 

between the length of fish from each treatment at individual time points (p>O.05). 

Condition factor 

All treatments except the 25/25 group showed an increase in CF between 21 st June 

and 19th September (p<O.05) with all groups then displaying an overall decline to the 

end of the experiment (p<O.OOI) (Fig. 4.5). However, between consecutive time 

points the CF of the 25/25 fish only increased between 17'h August and 19th 

September with a decrease only observed between 15th March and 17'h April (p<O.OI). 

For the 25/12.5 fish, a decrease in CF was found between 19th September and 15th 

October (p<O.05). The 12.5/25 fish exhibited an increase in CF between 21 st June and 

19
th 

August with a decline occurring between 13th November and 15th January 

(p<O.Ol) and between 15th March and 17'h April (p<O.OI). However, for the 12.5/12.5 

fish changes only occurred between 17th April and 14th May when a decline in CF was 

observed (p<O.OI). 

For differences between treatments at individual time points no consistent trends 

could be identified. However, on 21 st June 25/25 and 25/12.5 fish both had higher CF 

values than the 12.5/25 and 12.5/12.5 fish (p<O.05). 

SGR 

Because changes in SGR were calculated from the mean weights of fish from each 

treatment no statistical analysis could be performed. However, a generalised trend in 

SGR could be found (Fig. 4.6). Between 16th May and 21 51 June SGR increased in 
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Fig. 4.5 Changes in condition factor (mean ±S.E.M., n=90-180) of parr fed diets 

containing different levels of lipid, for different periods of development. 
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Fig. 4.6 Changes in specific growth rate (SGR) of parr fed diets containing different 

levels of lipid, for different periods of development. 
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all groups to give a peak of between 2.8 and 3.2. Growth then declined in all groups 

by 19th July with the 25/25, 25/12.5 and 12.5/12.5 treatments exhibiting increased 

growth by 17th August. The SGR of the 12.5/25 fish showed a later increase on 19th 

September. Subsequently, the SGR of all groups decreased up to the end of the 

experiment. 

Weight-frequency distribution 

All treatments resulted in the development of bimodality (Fig. 4.7). For the 25/25, 

25/12.5 and 12.5/25 treatments the bimodal divide was first evident on 15th October. 

However, for the 12.5/12.5 group the emergence of bimodality seemed to occur at an 

earlier date on 19th September. Furthermore, by the conclusion of the experiment the 

25/25, 25/12.5 and 12.5/25 groups had similar population structures although the 

25/25 group did contain the largest individuals of all the groups. For the 12.5/12.5 

group a similar UM as the other treatment groups occurred but the LM fish were 

smaller than those from the other treatments. 

4.2.3.2. Body composition 

Lipid content 

All treatments resulted in an overall increase in whole body lipid level until 15th 

October with a subsequent decline by the end of the experiment (p<O.OOI) (Fig. 4.8). 

For between treatment differences at individual time points the lipid content of 

individuals remained at levels that were relative to the dietary lipid inclusion they 

were being fed. As such on 16th May the 25/25 and 25/12.5 fish had higher lipid 

levels than the 12.5/25 and 12.5/12.5 fish. Then following the change in diet on 21 5t 

June the lipid level of the 12.5/25 group increased significantly (p<O.O 1) until 19th 
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Fig. 4.7 The weight-frequency distributions of parr maintained on diets containing 

different levels of lipid, for different periods of development (n=90-180). Plots 

represent the sample points just prior to, and at the emergence of bimodality, as well 

as at the final sample point. Dotted lines depict the division of modes. a) 25% lipid 

throughout the experiment, b) 25% lipid until 21 51 June, 12.5% thereafter, c) 12.5% 

lipid until 21 5t June, 25% thereafter, d) 12.5% lipid throughout the experiment. 
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Fig. 4.8 Changes in the whole body lipid levels (mean±S.E.M., n=18) of parr 

maintained on diets containing different levels of lipid, for different periods of 

development. Closed symbols represent the mean lipid content for the respective 

treatment, open symbols represent the lipid content of mature fish identified within a 

population. 
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July to give similar lipid levels as those in the 25/25 fish. Then from 1 t h August until 

the conclusion of the experiment the lipid levels of the 25/25 and 12.5/25 fish 

remained similar but different from those of the 25/12.5 and 12.5/12.5 groups 

(p<O.05). 

During the random sampling of fish for lipid determination two mature individuals 

were identified and analysed. Both fish were found in the 25/12.5 group and although 

statistical analysis could not be performed on the data from these fish it was clear that 

maturation had resulted in a reduction of whole body lipid. 

Moisture content 

All treatments resulted in an overall decrease in whole body moisture level until 19th 

December with a subsequent increase by the end of the experiment (p<O.OOI) (Fig. 

4.9). For between treatment differences at individual time points the moisture content 

of individuals remained at levels that were relative to the dietary lipid inclusion they 

were being fed. As such on 16th May the moisture levels of the 25/25 and 25/12.5 fish 

were lower than those of the 12.5/25 and 12.5/12.5 fish. Then from 17th August 

onwards, following the change in diet, the 25/25 and 12.5/25 fish maintained lower 

moisture levels than those of the 25/12.5 and 12.5/12.5 fish (p<O.05). 

Although statistical analysis could not be performed on the moisture content data of 

the two mature fish that were identified from the 25/12.5 group it was clear that 

maturation had resulted in an increase in moisture content. 
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Fig. 4.9 Changes in the whole body moisture levels (mean±S.E.M., n=18) of parr 

maintained on diets containing different levels of lipid, for different periods of 

development. Closed symbols represent the mean moisture content for the respective 

treatment, open symbols represent the moisture content of mature fish identified 

within a population. 
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LipidlMoisture correlation 

When the lipid contents of individual fish were plotted against their respective 

moisture content for each treatment but regardless of sample time good linear 

regressions were achieved (Fig. 4.10). Furthermore, for each treatment the correlation 

between lipid and moisture level was found to be highly statistically significant 

(p<O.OOI). 

Lipid/Size correlation 

In order to investigate whether the changing lipid level of fish was affected by fish 

size scatter plots of individual fish weight and their respective lipid level were made. 

Due to the changes in lipid and size during smoltification it was necessary to consider 

such a relationship at each time point. However, this resulted in low numbers of fish 

used for each regression. Therefore, to give a general representation of the accuracy 

of any size/lipid level relationship only the changing r2 values of such regressions 

have been presented for the experimental period (Table 4.2). 

A poor relationship between size and lipid level was found during the initial stages of 

the experiment. Between 21 sl June and 13th November linear regressions were higher 

with the r2 values of all treatments subsequently declining tm:ough to the conclusion 

of the experiment. 

4.2.3.3. Maturation 

Incidence 

Unfortunately the incidence of maturity was extremely low (Table 4.3) and as such 

statistical analyses were not possible. Mature fish were only present in the 25/12.5 
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Fig. 4.10 The correlation between whole body lipid level and moisture content in parr 

fed diets containing different levels of lipid during different periods of development 

(n=230). a) 25% lipid throughout the experiment, b) 25% lipid until 21 st June, 12.5% 

thereafter, c) 12.5% lipid until 21 st June, 25% thereafter, d) 12.5% lipid throughout 

the experiment. 
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Date 
Diet regime 

25/25 25/12.5 12.5/25 12.5/12.5 

16/3/00 0.285 0.285 0.285 0.285 

16/5/00 0.078 0.078 0.177 0.177 

2116/00 0.731 0.701 0.446 0.574 

19/7/00 0.540 0.368 0.771 0.536 

17/8/00 0.411 0.132 0.171 0.816 

19/9/00 0.746 0.715 0.862 0.836 

15/10/00 0.738 0.676 0.561 0.332 

13/11/00 0.781 0.423 0.627 0.440 

11112/00 0.155 0.364 0.300 0.014 

15/1100 0.178 0.156 0.254 0.125 

15/2/00 0.397 0.001 0.159 0.374 

15/3/00 0.066 0.008 0.269 0.058 

17/4/00 0.126 0.000 0.313 0.082 

14/5/00 0.038 0.021 0.049 0.059 

Table 4.2 The changing r values of linear regressions between the weight and whole 

body lipid level of parr fed diets containing different levels of lipid during different 

periods of development (n=18). 

252 



CHAPTER 4: NUTRITION. 

Incidence of maturity (%) 

Date Diet regime 

25/25 25/12.5 12.5/25 12.5/12.5 

13/11100 0 1.1 0 0 

19/12/00 0 0 0.7 0 

15/01101 0 0 0.3 0 

15/02/01 0 0 0.2 0 

15/03/01 0 0 0.5 0 

17/04/01 0 0 0 0 

16/05101 0 0 0 0 

Table 4.3 The incidence of maturity observed in groups of parr that were fed diets 

containing different levels of lipid during different periods of development (n=90-

300). 
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and 12.5/25 treatments. In the 25/12.5 group mature fish were only observed on 13th 

November whereas in the 12.5/25 group low levels were found from 19th December 

until 15th March. 

4.2.3.4. Smoltification 

Gill Na+, ~ -ATPase 

An overall increase in gill Na+, K+ -ATPase level occurred in all treatment groups 

between 16th February and 14th May (p<O.OOI) (Fig. 4.11). Between consecutive time 

points an increase in the ATPase levels of the 12.5/12.5 treatment group was observed 

from 29th March until 1 t h April (p<O.05). The levels recorded in the 25/25, 25/12.5 

and 12.5/25 groups then increased between 1 t h April and 3rd May (p<O.05) with those 

of the 25/25 fish continuing to increase until 14th May (p<O.OI). However, when 

between treatment variations were considered differences only occurred on 14th May 

when the gill Na\ K+ -ATPase levels of the 25/25 fish were greater than those of the 

12.5/12.5 fish (p<O.OI). 

Seawater survival 

All groups showed good levels of survival following a 96h seawater tolerance test 

(Fig. 4.12). The 25/25 fish exhibited the highest level of mortality after 96h (25%) 

although throughout the test no statistical differences were found between the 

mortality rates of the treatment groups (p>O.05). Furthermore, although not 

quantified, it was noted that all mortalities were small fish with distinct parr markings 

(i.e. no silvering). 
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Fig.4.11 Changes in the gill Na+, K+ -ATPase level (mean±S.E.M., n=15), during 

spring, of parr fed diets containing different levels of lipid, during different periods of 

development. 
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Fig. 4.12 The cumulative mortality rates of fish exposed to a 96h seawater tolerance 

test, after being fed diets containing different levels of lipid during different periods of 

development. Seawater tolerance tests were performed on 14th May 2001 (n=20). 
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Population structure 

Dietary lipid level had only a slight effect on the incidence of 1 + smolts and parr at 

the conclusion of the experiment (Fig. 4.13). In all treatment groups the incidence of 

1 + smolts was greater than that of parr (p<O.05) although there were differences 

between the numbers of 1 + smolts and parr within each treatment group. The number 

of 1 + smolts in the 25/12.5 group (69%) exceeded those within the 12.5/12.5 group 

(60%) whereas the incidence of parr in both the 25/25 (31%) and the 25/12.5 groups 

(69%) was lower than that in the 12.5/25 group (76%) (p<0.05). 
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Fig. 4.13 The population structure recorded at the conclusion of the experiment 

where groups were fed diets containing different levels of lipid during different 

periods of development (n=320-440). 
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4.2.4. Summary of the results from Experiment IV. 

• The weight and length of fish within all treatments increased during the 

experiment. There were no differences in the weight and length of individuals 

between treatments at individual time points. 

• CF rose initially then declined to the end of the experiment. Fish fed the 25% lipid 

diet initially had the highest CF values but no consistent differences were 

subsequently found. 

• SGR increased initially then declined up to the end of the experiment. Following 

the change in diet/photoperiod regime a decline in SGR occurred. 

• All treatment groups developed a bimodal population structure. The 25/25 group 

contained some of the largest individuals whereas in the 12.5/12.5 group the LM 

fish were smaller than in all other groups. The emergence of bimodality occurred 

at an earlier date in the 12.5/12.5 group than in the other three treatments. 

• Whole body lipid levels increased initially then declined up to the end of the 

experiment. Parr fed the high lipid diet had higher whole body lipid levels than 

parr fed the low dietary lipid. 

• Moisture levels declined throughout the experiment. Parr fed high lipid diet had 

lower whole body moisture levels than the parr fed the low dietary lipid. There 

was a good negative correlation between whole body lipid and moisture level. 

• Initially a poor correlation occurred between whole body lipid level and fish size. 

Subsequently the correlations improved and then decreased from 13th November 

up to the end of the experiment. 

• Low levels of maturity were found in all treatment groups. 

• Gill Na+, K+ -ATPase levels increased in all groups during spring. Differences 

between the ATPase levels of the groups was only found at the final sample point. 
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• Following a 96h seawater tolerance test high survival rates were recorded in all 

treatment groups. 

• At the final sample point the incidence of 1 + smolts was greater than that of parr, 

in all treatment groups. 
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4.3. Experiment V. The effects of different rations of feed on 

growth, maturation and smoltification. 

4.3.1. Objectives. 

The experiment detailed in this section aimed to investigate the role of ration of feed 

on growth, maturation and smoltification. However, the interaction between 

photoperiod and ration was also investigated by rearing different groups under two 

photoperiod production regimes. 

4.3.2. Experiment Va. The effects of ration of feed on 

growth, maturation and smoltification in 0+ production fish. 

4.3.2.1. Materials and Methods. 

The experiment was started at Site 6 (Section 2.1.1). Ova from a low grilsing Scottish 

stock were fertilised and held in heated water (6.0±1.2°C) under darkness until 

hatching (11 th February 2001). The fry were then held under a natural photoperiod in 

heated water (6.1±1.9°C) until first-feeding (loth March 2001). From first-feed, fish 

were maintained in hatchery stock tanks (2m square, 4m3 tanks) and exposed to 

LD24:0 with water heated slightly above the natural temperature regime (Fig. 4.14). 

From first-feed fish were supplied a commercial diet (EWOS; Scotland, UK) fed at 

the manufacturers' recommended rate throughout the 24h illuminated period. On 29th 

May 2001 3000 fish were moved to Site 7 (Section 2.1.1) with 500 individuals placed 
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Fig. 4.14 The photoperiod, temperature and feed regime of parr during experiment 

Va. The time of first-feed is denoted by 'a', 'b' denotes the time when fish were 

moved from Site 6 to Site 7. Between a and b the ambient temperature was artificially 

raised. 
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into each of six, 1m square, 0.4m3 tanks that were exposed to ambient temperature 

regimes under LD24:0 (Fig. 4.14). Duplicate groups were then fed a commercial diet 

(EWOS; Scotland, UK) (Table 4.4) at either full, 2/3 or 1/3 of the manufacturers' 

recommended daily ration throughout the 24h light period (see Fig. 4.15 for 

experiment protocol) with the actual weight of feed given to each tank of fish re

calculated at weekly intervals. On the 16th August 2001 all groups were exposed to an 

8 week period of short days (LD7:17) during which rations were only applied during 

the light phase of the photoperiod. On 11 th October all groups were returned to the 

LD24:0 regime and held for a further 8 weeks after which the experiment was 

terminated. 

On 23
rd 

March and 20th April 1 00 individual length and 6 batch weight measurements 

were made and then on 16th and 29th May 100 individual length and weight 

measurements were made prior to the fish being moved to Site 7. At twice monthly 

intervals from 11 th June 50 individual length and weight measurements were taken 

per tank. 

Until 29
th 

May 6 samples were taken at each sample point for whole body lipid 

determination (Section 2.9). Then at twice monthly intervals from 11th June 12 

samples were taken per treatment for lipid determination. Until 23rd July samples 

from individual fish were pooled in order to achieve the necessary dry weight to 

accurately perform lipid analysis; this was necessary until 2th September for the 1/3 

ration group. Whilst drying the samples taken on 29th May an oven fault resulted in 

the tissues burning and these data were lost. 
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Diet lipid levels (%) 

Diet size Quoted level Actual level 

Mean S.E.M 

Crumble 1.0 16.0 17.2 0.04 

Crumble 2.0 20.0 21.1 0.09 

Crumble 3.0 20.0 18.2 0.18 

Crumble 4.0 22.0 21.7 0.31 

1mmPellet 20.0 19.7 0.10 

2mmPellet 22.0 20.7 0.14 

Table 4.4 The levels of lipid quoted as being in different sizes of the commercial diet 

used in the ration of feed experiment, as well as the actual levels of lipid identified 

following lipid determination (n=3). 
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Fig 4. 15 The experimental protocol used during experiment Va. For further details of 

the sampling regime refer to section 4.3.2.1. 

265 



CHAPTER 4: NUTRITION. 

At each sampling all measured fish were examined for external signs of maturation 

(Section 2.7.1). From 11th September due to the low numbers of mature fish identified 

an additional 50 individuals per tank were checked for maturity. 

On 11 th September and then twice monthly from 11 th October gill samples were taken 

from 20 individuals at random per treatment for the determination of gill Na+, K+ -

ATPase (Section 2.8.1). At twice monthly intervals from 27th September seawater 

challenge tests were performed on 15 fish per treatment (Section 2.8.3). Furthermore, 

at each sampling from 25th October all measured fish were examined and the level of 

body silvering classified using the smolt index (see Section 2.8.4), with a range from 

index 1 to 4 representing the morphological change from a typical parr to a smolt. 

On 1 t h 
December 2001 all fish were culled with the numbers of 0+ smolts and parr in 

each group recorded based on both size and the presence of external silvering. The 

number of mature fish within each smolt class were also recorded. In addition, 

approximately 100 individuals per treatment were dissected with both the individuals' 

sex and internal signs of maturation recorded. 

Growth data, whole body lipid level, moisture content and gill Na+, K+ -ATPase level 

were compared using a General Linear Model (Section 2.11). Natural log 

transformations were used to improve the normality and homogeneity of variance of 

the weight, length and condition factor data. Changes in serum osmolality were 

compared using the non-parametric Kruskal-Wallis test, with Dunn's multiple range 

procedure. Pearson's product moment correlation was used to compare scatter plots of 

whole body lipid and moisture level. For the analysis of population structure, sex 
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ratios, mortality and seawater survival, 95% confidence limits were calculated and 

compared. 

4.3.2.2. Results. 

4.3.2.2.1. Growth 

Weight 

Feeding with different rations resulted in an overall increase in the weight of all 

groups over the experimental period (Fig. 4.16) (p<0. 001 ). 

Prior to the application of different rations fish increased in weight between 20th April 

and 29th May. After the rations were applied all groups had similar weights on 11 th 

June but from 25th June until the conclusion of the experiment the weight of both the 

full and two-thirds ration fish were greater than the one-third ration fish (p<0.05). The 

full and two-thirds ration fish had similar weights until 16th August from which time 

the full ration fish became heavier remaining so until the conclusion of the experiment 

(p<O.OI). 

Between consecutive sampling points the weight of the full and two-thirds ration fish 

increased until 11th and 2ih September respectively (p<0.05) although the one-third 

ration group showed no consistent increases. 

Length 

All groups showed an overall increase in length over the experimental period (Fig 

4.17) (p<O.OOI). 
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Fig. 4.16 Changes in weight (mean±S.E.M., n=100) of parr reared on different rations 

of feed during the course of experiment Va. Groups were grown under a 0+ 

photoperiod production regime, with the regime of daylength displayed. 
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Fig. 4.17 Changes in length (mean±S.E.M., n= 1 00) of parr reared on different rations 

of feed during the course of experiment Va. Groups were grown under a 0+ 

photoperiod production regime, with the regime of daylength displayed. 
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Prior to the application of the different rations the length of fish increased until 29th 

May. After rations were applied all groups had similar lengths on 11 th June, although 

from 25th June and 9th July respectively until the conclusion of the experiment the full 

and two-thirds ration fish were longer than the one-third ration fish (p<0.05). The full 

and two-thirds ration fish had similar lengths until 16th August from which time the 

full ration fish were longer until the conclusion of the experiment (p<0.0 1). 

Between consecutive sampling points the full and two-thirds ration fish increased in 

length until 11th and 27th September respectively (p<0.05) although no consistent 

increases were observed in the one-third ration group. 

Condition factor 

The different rations had distinct effects on the condition factor of individuals (Fig. 

4.18). Prior to the application of rations CF increased until 16th May although such 

changes could not be analysed statistically. 

After the application of rations the CF of the full ration fish increased (p<O.Ol) to 

peak levels on 11 th September, with the two-thirds ration fish showing a peak on 27th 

September although overall increases up to this peak were not significant. The CF of 

the full and two-thirds ration fish subsequently declined to the conclusion of the 

experiment (p<0.01). The CF of the one-third ration group decreased over the 

experimental period (p<O.OI). 

The CF of the full and two-thirds ration fish was higher than the one-third ration fish 
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Fig. 4.18 Changes in condition factor (mean±S.E.M., n=100) of parr reared on 

different rations of feed during the course of experiment Va. Groups were grown 

under a 0+ photoperiod production regime, with the regime of daylength displayed. 
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from 25 th June onwards (p<0.01) with the CF of the full and two-thirds ration groups 

similar throughout the experiment (p>0.05), with the exception on the 11 th September 

sampling. 

SGR 

Because changes in SGR were calculated from the changes in mean weight statistical 

analyses could not be performed on the data. However, prior to the application of the 

different rations SGR declined rapidly (Fig. 4.19). The growth of the full ration group 

then increased to a peak on 23rd July after which growth rates declined. For the two

thirds ration group SGR remained fairly constant until 23rd July after which it 

declined. The growth of the one-third ration group decreased throughout the 

experiment. From September onwards all groups displayed variable, but low, growth 

rates. 

Weight-frequency distribution 

Differing rations of feed had effects on the weight-frequency distribution of the fish 

populations (Fig. 4.20). In both the full and two-thirds ration groups bimodality was 

evident by 16th August. However, in these two groups the structure of the respective 

modes differed slightly. The full ration group had less LM fish than the two-thirds 

ration population with the UM of the full ration group also covering a wider size 

range and containing larger fish than in the two-thirds ration group. For the one-third 

ration group a bimodal divide in the population did not occur at any point during the 

experiment. 
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Fig. 4.19 Changes in SGR (mean±S.E.M., n=100) of parr reared on different rations 

of feed during the course of experiment Va. Groups were grown under a 0+ 

photoperiod production regime, with the regime of daylength displayed. 
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Fig. 4.20 The weight-frequency distributions of parr reared on different rations of 

feed , with groups grown under an 0+ photoperiod production regime (n=100). Plots 

represent the sample points just prior to, and at the emergence of bimodality, as well 

as at the final sample point. a) full ration, b) two-thirds ration, c) one-third ration. 
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4.3.2.2.2. Body composition 

Lipid content 

Whole body lipid levels increased consistently prior to the application of the different 

rations (Fig. 4.21) although immediately after the rations were applied there were no 

significant changes in lipid (p>O.05). 

The lipid levels of the full and two-thirds ration fish remained similar throughout the 

experiment (p>0.05). The full ration fish had higher levels of lipid than the one-third 

ration fish from 9th July until the conclusion of the experiment with the exception of 

the 25
th 

October sampling (p<0.05). Lipid levels in the two-thirds fish were greater 

than in the one-third ration fish on 9th July (p<O.OI) and then from 27th September 

until the conclusion of the experiment (p<O.05). 

The full, two-thirds and one-third ration groups showed overall increases in lipid to 

their respective peaks on 2ih September, 11th October and 25th October (p<0.001). 

The lipid levels of the two and one-third ration groups declined by the end of the 

experiment (p<0.05) with the full ration fish declining by 22nd November (p<O.OI). 

However, no consistent changes in lipid level were found between consecutive time 

points. 

During the random sampling of fish for lipid determination one mature individual was 

identified in the full ration group. Although statistical analysis could not be performed 

it was clear that maturation had resulted in a 20% reduction in whole body lipid 

content compared to its full ration counterparts. 
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Fig. 4.21 Changes in whole body lipid content (mean±S.E.M., n=12) of parr reared on 

different rations of feed during the course of experiment Va .. Groups were grown 

under a 0+ photoperiod production regime, with the regime of daylength displayed. 

Closed symbols represent the mean lipid content for the respective treatments, open 

symbols represent the lipid content of mature fish identified within the respective 

treatments. 
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Moisture content 

Prior to the application of different rations whole body moisture levels declined (Fig. 

4.22) although this decrease was only significant between 23rd March and 20th April 

(p<O.05). 

The moisture content of the full and two-thirds ration fish remained similar 

throughout the experiment (p>O.05) with both groups having lower moisture contents 

than the one-third ration fish from 25th October until the conclusion of the experiment 

(p<O.OI). The moisture content of the full ration fish was also lower than the one-third 

ration fish on 9th July (p<O.05). 

The full, two-thirds and one-third ration groups showed overall decreases in moisture 

content to their respective minimum levels on 27th September, 11th October and 16th 

August respectively (p<O.OOI) although subsequent increases were not significant by 

the conclusion of the experiment. Between consecutive time points all groups showed 

a reduction in moisture content between 11 th and 25th June (p<O.OI) with the one-third 

ration group showing a significant increase between 25th October and 11 th November 

(p<O.05). 

The mature fish identified in the full ration group had a 5% increase in moisture 

content. 

LipidlMoisture correlation 

When the lipid content of individual fish was plotted against their respective moisture 

content for each treatment but regardless of sampling time good linear regressions 
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Fig. 4.22 Changes in whole body moisture content (mean±S.E.M., n=12) of parr 

reared on different rations of feed during the course of experiment Va. Groups were 

grown under a 0+ photoperiod production regime, with the regime of daylength 

displayed. Closed symbols represent the mean moisture content for the respective 

treatments, open symbols represent the moisture content of mature fish identified 

within the respective treatments. 
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were achieved (Fig. 4.23). Furthennore, for each ration group the correlation between 

lipid and moisture level was found to be highly statistically significant (p<O.OOI). 

Lipid/Size correlation 

The relationship between changing size and whole body lipid content was 

investigated in a similar way to that described in experiment IV. Therefore, the 

changing r2 values of fish exposed to the different rations have been presented (Table. 

4.5). 

Highly variable r2 values were found throughout the experiment for all ration groups 

with no consistent trends identified. However, the one-third ration fish generally 

displayed the highest ~ values throughout the experiment. 

4.3.2.2.3. Maturation 

Incidence 

Throughout the experiment the incidence of maturity was extremely low (::;;1%) 

(Table 4.6) and consequently statistical analyses could not be perfonned. No mature 

female parr were found with mature males only present in the full and two-thirds 

ration groups. In the full ration treatment mature fish were first observed on 11 th 

September and they remained until the conclusion of the experiment. In the two-thirds 

ration group one mature fish was identified on 25 th October although mature 

individuals were only found until 25th November. 
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Fig. 4.23 The correlation between whole body lipid level and moisture content in parr 

reared on different rations of feed during the course of experiment Va (n=160). a) full 

ration, b) two-thirds ration, c) one-third ration. 
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Ration of feed 
Date 

Full Two-thirds One-third 

11/06/01 0.418 0.140 0.570 

25/06/01 0.166 0.660 0.338 

09107/01 0.322 0.650 0.766 

23/07/01 0.755 0.156 0.519 

16/08/01 0.516 0.492 0.836 

11109101 0.013 0.455 0.593 

27/09101 0.375 0.317 0.673 

11/10101 0.327 0.309 0.702 

25/10101 0.280 0.667 0.598 

08/11101 0.133 0.389 0.478 

22/11101 0.280 0.072 0.499 

06/12/01 0.231 0.141 0.726 

Table 4.5 The changing r2 values of linear regressions between the weight and whole 

body lipid level of parr, reared on different rations of feed during the course of 

experiment Va (n=12). Groups were grown under a 0+ photoperiod production 

regIme. 
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Incidence of maturation (%) 

Date Ration of feed 

Full Two-thirds One-third 

11109101 1.0 0 0 

27/09101 0.5 0 0 

11110/01 1.0 0 0 

25110/01 0.5 0.5 0 

08/11101 0 0.5 0 

25/11101 0 0.5 0 

06/12/01 0.5 0 0 

Table 4.6 The incidence of maturity of parr reared on different rations of feed, during 

the course of experiment Va (n=200). 
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4.3.2.2.4. Smoltification 

Gill Na\ K+ -ATPase 

During the period in which gill Na+, K+ -ATPase was measured it was possible to 

identify individuals destined to develop as smolts and those which would remain as 

parr (this prediction was based primarily on fish size). Consequently the gill Na+, K+ -

ATPase profiles of fish destined to smolt and remain as parr have been plotted 

separately for each treatment group (Fig. 4.24). 

All smolting fish showed an overall increase in gill Na+, K+ -ATPase over the 

experimental period (p<O.05) whilst those remaining as parr showed no overall 

increases (p>O.05). Between consecutive time points increases were only observed in 

the smolts from the full and two-thirds ration groups. Full ration smolts increased 

from 2Sth October onwards (p<O.Ol) with those from the two-thirds ration group 

increasing from 2Sth October until 22nd November (p<O.OS). 

The gill Na+, K+ -ATPase of all fish were initially the same but by the conclusion of 

the experiment on 6th December the levels found in the full ration smolts exceeded 

those of all other groups with the ATPase activities of the two-thirds ration smolts 

higher than the one-third ration smolts (p<O.OS). 

Serum osmolality 

Serum osmolality was measured following a 24h seawater (35%0) challenge (Fig. 

4.25a). However, it is important to first consider the survival rates of fish fed the 

different rations (Fig. 4.2Sb) in order that the changes in osmolality can be viewed in 

context. Seawater survivals in the full and two-thirds ration fish were similar 
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Fig. 4.24 Changes in gill Na +, K+ -ATPase (meaniS.E.M., n=20) of fish reared on 

different rations of feed during the course of experiment Va. Groups were grown 

under a 0+ photoperiod production regime, with the regime of day length displayed. 

The gill Na +, K+ -ATPase of fish developing as smolts and those remaining as parr are 

plotted separately for each treatment group. 

284 



CHAPTER 4: NUTRITION. 

Photoperiod 
regime 

500 -.- Unchallenged/full ration 
--- Unchallenged/two-thirds ration a) 
--.- Unchallenged/one-third ration 

450 -0- Challenged/full ration 
-0- Challenged/two-thirds ration -~ ~ Challenged/one-third ration 

'" 0 400 e -£' 
'; 

350 Q e 
'" -=-==1::::>- i 0 :> , 

300 

of 

Photoperiod 
regime 

100 

80 b) 

-.- Full ration - 60 ___ Two-thirds ration 
~ --.- One-third ration -'; 
~ 40 'E 
::I 

00 

20 

0 
01109/01 01110/01 01111101 01/12101 01101102 

Date 

Fig. 4.25 Changes in serum osmolality (mean±S.E.M., n=1 to 15) (a) and the 

percentage survival (b) offish following a 24h seawater (35%0) challenge. Individuals 

were previously reared on different rations of feed during the course of experiment 

Va. Groups were grown under a 0+ photoperiod production regime, with the regime 

of daylength displayed. Serum osmolalities were measured in fish surviving the 24h 

challenge. Due to the low survival rates of the one-third ration fish, some osmolality 

measurements are absent. 
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throughout the experiment and higher than that of the one-third ration group. Survival 

rates in these two groups were initially between 50 and 60% although levels rapidly 

increased to between 95 and 100% remaining so until the conclusion of the 

experiment. For the one-third ration fish surviving individuals were only present from 

25th October with total survival rates never exceeding 60%. Due to this low survival 

of fish the subsequent analysis of the serum osmolality data must be viewed with 

caution. 

The serum osmolality of challenged fish from the full and two-thirds ration groups 

was initially high (approximately 475mOsM) and significantly greater than 

unchallenged controls (approximately 320mOsM) (p<0.05). After the return to 

continuous light from the short day winter photoperiod the serum osmolality of 

challenged fish rapidly declined but remained higher than the control fish (p<0.05) 

until 22nd November. On 22nd November the challenged full and two-thirds ration fish 

had similar osmolalities to at least one of the control groups. By 6th December all 

challenged fish showed a slight increase in osmolality, although the two third ration 

fish had similar osmolalities to the unchallenged controls (p>0.05). 

The serum osmolality of the one-third ration fish was only similar to controls on 6th 

December. 

Smolt index 

Ration of feed affected the smolt index scores that were recorded during the parr

smolt transformation (Fig. 4.26). The smolt index (see Section 2.8.4) ranged from 1 to 

4, where smoIt index 1 was a typical parr and smolt index 4 was a typical smolt. 
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Fig. 4.26 Changes in the smolt index score of fish reared on diffe rent rations of feed 

during the Course of experiment Va (n=100). a) full ration, b) two-thirds ration, c) 

one-third ration. Smolt index 1 = typical parr, with parr marks clearly visible, Smolt 

index 2 = parr marks visible, but some silvering, smolt index 3 = silvered with visible 

parr marks, Smolt index 4 = typical smolt, no parr marks visible. 
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The highest number of individuals developing good smolt characteristics (measured 

using the smolt index) occurred in the full ration group with low numbers of fish 

showing similar characteristics in the one-third ration group. The development of 

smolt characteristics was intermediate in the two-thirds ration group. 

In the full ration group index 2 fish were first identified on 25th October with the 

incidence of such fish greater than the index 1 fish at that time. By 8th November 

index 3 and 4 fish were also present with index 3 predominating. At this time there 

was a very low incidence of index 1 and 2 fish. The numbers of index 1 and 2 fish 

then remained fairly constant with the incidence of index 4 fish increasing as the 

experiment progressed. 

In the two-thirds ration group index 2 fish were present on 25th October although 

there were more index 1 fish at this time. By 8th November index 3 and 4 fish were 

also evident with index 3 fish predominating. The incidence of index 1 fish had 

reduced to approximately 20% remaining at such levels until the conclusion of the 

experiment. As the experiment progressed the incidence of index 4 fish increased as 

the numbers of index 2 and 3 fish decreased. However, by 6th December there were 

more index 4 fish in the full ration group than in the two-thirds ration group. 

In the one-third ration group index 2 and 3 fish were first evident in low numbers on 

22
nd 

November, although the incidence of these fish had only increased slightly by the 

conclusion of the experiment. No index 4 fish were found in this group. 
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4.3.2.2.5. Population structure 

At the conclusion of the experiment the total population structure was analysed: 

Sex ratios 

Similar numbers of males and females were found within each treatment (p>O.05) 

(Table 4.7). 

Life history strategy 

Similar high numbers of 0+ smolts were observed in both the full and two-thirds 

ration groups (95.8% and 87.0% respectively) (Table 4.7) with lower numbers in the 

one-third ration group (42.3%) (p<0.05). Furthermore, in both full and two-thirds 

ration treatments the numbers of 0+ smolts was significantly higher than parr (p<O.05) 

with significantly more parr present in the one-third ration group (p<0.05). 

Survival 

Different rations had an overall effect on the survival of individuals (Table 4.7). High 

survival rates were found in the full and two-thirds ration groups (93.5% and 93.8% 

respectively) with the one-third ration fish having a significantly lower survival rate 

(80.4%) (p<0.05). However, it was not possible to record the size of the mortalities. 
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Sex (%) Population structure (%) Survival (%) 

Ration level O+smolts Parr 

Male Female imm mat imm mat 

Full 54.0 Aa 46.0 Aa 95.8 Aa O.OAb 2.8 Ac 1.4 Ac 93.5 A 

Two thirds 51.0 Aa 49.0 Aa 87.0Aa O.OAb 12.2 Be 0.9 Ad 93.8 A 

One third 51.0 Aa 49.0 Aa 42.3 Ba O.OAb 57.7 Cc O.OBb 80.4 B 

Table 4.7 The population structure, sex ratio and survival of individuals recorded at 

the conclusion of experiment Va, where fish, under a 0+ production regime, were 

reared on different rations of feed (for population structure n=250-450, sex ratio 

n=IOO, survival n=750). imm denotes immature fish, mat denotes mature fish. Similar 

lettering denotes statistical similarity (p<0.05). Capital lettering denotes differences 

between treatment groups, lower case lettering denotes differences within treatments. 
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4.3.2.3. Summary of the results from Experiment Va. 

• Fish fed full and two-thirds rations showed initial increases in length and weight 

becoming longer and heavier than the one-third ration fish soon after the different 

rations were applied. The full ration fish then became longer and heavier than the 

two-thirds ration fish. 

• The CF of the full and two-thirds ration groups remained similar throughout the 

experiment increasing initially and subsequently declining. The lowest CF values 

were found in the one-third ration fish with condition declining throughout the 

experiment. 

• Initially the SGR of the full ration fish increased with that of the two-thirds ration 

fish remaining stable and the growth of the one-third ration fish declining. From 

September all groups displayed variable but relatively unchanged growth rates. 

• Full and two-thirds ration groups developed bimodal distributions at the same 

time although the proportion of LMG fish was higher in the two-thirds ration 

group. Fish fed one-third ration exhibited a unimodal distribution throughout the 

experiment. 

• The whole body lipid level of all groups initially increased with a subsequent 

decline. The levels recorded in the full and two-thirds ration fish remained similar 

throughout with lower levels found in the one-third ration fish. 

• Moisture levels initially declined in all groups with a subsequent rise. Full and 

two-thirds ration groups had lower moisture levels than the one-third ration fish. 

• There was a significant negative correlation between whole body lipid level and 

moisture content in all groups. 

• No clear relationship was found between whole body lipid level and fish size. 
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• Mature fish were only identified in the full and two-thirds ration group although 

levels of maturity were low throughout the experiment. 

• All smolting fish showed an increase in gill Na+, K+ -ATPase. The full and one

third ration smolts had the highest and lowest enzyme activities respectively, with 

intermediate levels in the two-thirds ration smolts. 

• Following a seawater challenge the one-third ration group had poor survival rates. 

The subsequent osmolalities of surviving individuals from all groups decreased to 

similar levels as unchallenged controls. 

• At the conclusion of the experiment the full ration group had more fish displaying 

well developed smolt characteristics (i.e. smolt index 4 fish) than the two-thirds 

ration groups. One-third ration resulted in low numbers of fish that were showing 

some signs of developing smolt characteristics (smolt index 2 and 3) with such 

fish developing later than in the other treatment groups. 

• At the conclusion of the experiment the full and two-thirds ration groups 

comprised of mainly 0+ smolts with the one-third ration group having more parr 

than 0+ smolts. 
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4.3.3. Experiment Vb. The effects of ration of feed on 

growth, maturation and smoltification in 1+ production fish. 

4.3.3.1. Materials and Methods. 

The experiment was started at Site 6 (Section 2.1.1). Ova from a low grilsing Scottish 

stock were fertilised and held in heated water (6.0±1.2°C) under darkness until 

hatching (28th February 2001). The fry were then held under a natural photoperiod in 

heated water (6.1±1.9°C) until first-feeding (22nd April 2001). At first-feed 2500 fish 

were placed into each of three 1m square, 0.4m3 tanks and exposed to LD24:0, with 

water heated slightly above the natural temperature regime (Fig. 4.27). From first-feed 

fish were fed a commercial diet (EWOS; Scotland, UK) (Table 4.4) at either full, 2/3 

or 1/3 of the manufacturers' recommended daily ration throughout the 24h light 

period, with the actual weight of feed given to each tank of fish re-calculated at 

weekly intervals. On 28th June 2001 fish were moved to Site 7 (Section 2.1.1) with 

each treatment group randomly divided into two, 1 m square, 0.4m3 tanks and exposed 

to an ambient temperature regime and a simulated natural photoperiod (Fig. 4.27). 

The duplicated treatments were maintained on their respective rations of feed with 

feed supplied during the light phase of the photoperiod (see Fig. 4.28 for experiment 

protocol). 

On 20
th 

April, 16th May and 11 th June, 100 individual length and 6 batch weight 

measurements were made. Then at monthly intervals from 28th June 50 individual 

length and weight measurements were taken per tank. 
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Fig. 4.27 Photoperiod, temperature and feed regime of parr during experiment Vb, 

where groups were fed different rations of feed. The time of first-feeding is denoted 

by 'a', ' b' denotes the time when fish were moved from Site 6 to Site 7. Between a 

and b the ambient temperature was raised by artificial heating. 
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Fig. 4.28 The experimental protocol used during experiment Vb. For further details of 

the sampling regime refer to section 4.3.3 .1. 
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At each sample point from first-feeding 6 samples per tank (Le. between 6 and 12 per 

treatment) were taken for whole body lipid determination (see Section 2.9). Up until 

16th August individual samples from the full and two-thirds ration groups were pooled 

in order to achieve the necessary dry weight to accurately perform lipid analysis. 

Pooling was also necessary throughout the experiment for the one-third ration group. 

Whilst drying the samples taken on 16th Mayan oven fault resulted in the tissues 

burning and the samples were lost. 

At each sample point all measured fish were examined for external signs of 

maturation (Section 2.7.1). From 11th October, due to the low numbers of mature fish 

identified, an additional 50 individuals per tank were checked for maturity. 

On 14th February and then twice monthly from 14th March gill samples were taken 

from 20 individuals at random per treatment for the determination of gill Na+, K+ -

ATPase (Section 2.8.1), with seawater challenge tests also performed on 15 fish per 

treatment (Section 2.8.3). At twice monthly intervals from 14th February 100 fish per 

treatment were examined and classified for external smolt appearance using the smolt 

index (Section 2.8.4), with the range from index 1 to 4 representing the morphological 

change from a typical parr to a smolt. 

On 15th May 2002 all fish were culled with the numbers of 1 + smolts and parr in each 

group recorded based on both size and the presence of external silvering. The total 

number of mature fish within each smolt class was also recorded. Furthermore, 

approximately 100 individuals per treatment were dissected with the individuals, sex 

and internal signs of maturation recorded. 
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Growth data, whole body lipid level, moisture content, gill Na+, K+ -ATPase and 

serum osmolality were compared using a General Linear Model (Section 2.11), 

although for changes in weight and length a natural log transformation was used to 

improve normality and homogeneity of variance. Pearson's product moment 

correlation was used to compare scatter plots of whole body lipid and moisture level. 

For the analysis of population structure, sex ratios, mortality and seawater survival, 

95% confidence limits were calculated and compared. 

4.3.3.2. Results. 

4.3.3.2.1. Growth 

Weight 

All groups showed an overall increase in weight over the experimental period (Fig. 

4.29) (p<O.OOI). Between consecutive time points increases were only observed for 

the full and two-thirds ration groups. Full ration fish increased between 28th June and 

11 th September (p<0.01) with the two-thirds ration fish increasing between 28th June 

and 16
th 

August (p<0.01) and then between 11th September and 11th October (p<0.05). 

Both full and two-thirds ration fish became heavier than one-third ration fish from 

23
rd 

July onwards (p<O.05) with those fed the full ration then heavier than the two

thirds ration fish from 16th August until the conclusion of the experiment (p<0.01). 

Length 

All groups showed an overall increase in length over the experimental period (Fig. 

4.30) (p<O.OOI). Between consecutive time points all groups increased in length until 

11th June (p<O.Ol). Subsequently, the length offish increased from 28th June until1l th 
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Fig. 4.29 Changes in weight (mean±S.E.M., n=100) of parr, reared on different 

rations of feed during experiment Vb. Groups were grown under a 1 + photoperiod 

production regime. 
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Fig. 4.30 Changes in length (mean±S.E.M., n=100) of parr, reared on different 

rations of feed during experiment Vb. Groups were grown under a 1 + photoperiod 

production regime. 
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September, 16th August and 23 rd July for the full, two-thirds and one-third ration 

groups respectively (p<0.01), with the two-thirds ration fish also increasing between 

11th September and 11th October (p<0.01). 

Both the full and two-thirds ration fish were longer than one-third ration fish from 

23 rd July onwards with the full ration fish longer than the two-thirds ration fish from 

16
th 

August until the conclusion of the experiment (p<0.01). 

Condition factor 

Condition factor showed an initial increase in all groups peaking on 23 rd July for the 

one-third ration fish and then on 16th August for the full and two-thirds ration groups 

(p<O.OOl) (Fig. 4.31). Subsequently the CF of all groups declined up until the 

conclusion of the experiment (p<0.001), although for the one-third ration group an 

increase in CF was observed between 11th April and 15th May (p<O.Ol). 

The full and two-thirds ration fish had a higher CF than the one-third ration fish from 

11th September until 7th November (p<0.01). Then on 10th December and from 14th 

March until 15th May the CF of the full ration fish was higher than the one-third ration 

fish although the CF of the two-thirds ration fish was only higher on 11 th April 

(p<0.01). Finally, on 15th May the CF of the one-third ration fish had become higher 

than that of the full ration group (p<0.05). 

SGR 

Although differences in SGR could not be examined statistically a general trend in 

growth could be observed (Fig. 4.32). Initially all groups showed an increase in 
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Fig. 4.31 Changes in condition factor (mean±S.E.M., n=100) of parr, reared on 

different rations of feed during experiment Vb. Groups were grown under a 1 + 

photoperiod production regime. 

301 



CHAPTER 4: NUTRITION. 

5 

4 

--- Full ration 
--- Two-thirds ration 
-.- One-third ration 

o 

-1 +---~--~~--~--~--~--~--~--r-~--~---r--~ 

01/05/01 01/08/01 01111/01 

Date 

01/02/02 01/05/02 

Fig. 4.32 Change in SGR of parr, reared on different rations of feed during 

experiment Vb. Groups were grown under a 1 + photoperiod production regime. 
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growth with that of the one-third ration fish peaking on 16th June. Between 16th and 

28th June the growth of the full and two-thirds ration groups declined with a 

subsequent rise to peak levels on 23 rd July. The SGR of all groups then declined until 

November from which time growth remained unchanged until the conclusion of the 

experiment. 

Until November the SGR of the full and one-third ration fish was highest and lowest 

respectively with intermediate growth in the two-thirds ration group. From November 

onwards the SGR of the full and two-thirds ration fish remained similar although 

slight fluctuations in the growth of all groups could be seen. 

Weight-frequency distributions 

Different rations of feed affected the weight-frequency distribution of populations 

(Fig. 4.33). For the full and two-thirds ration fish bimodal divides developed by 11 th 

September and 11th October respectively. By the conclusion of the experiment the full 

ration group contained more, and larger, UM fish than the two-thirds ration group 

although the size of the LMG fish was similar in both the full and two-thirds ration 

groups. 

For the one-third ration group bimodality was weak throughout the experiment with 

the suggestion of a population divide by 14th March. However, the population was 

more skewed than bimodal throughout the experiment. 
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Fig. 4.33 The weight-frequency distributions of parr, reared on different rations of 

feed during experiment Vb. Groups were grown under a 1 + photoperiod production 

regime (n=100). Plots represent the sample points just prior to, and at the emergence 

of bimodality as well as at the final sample point. a) full ration, b) two-thirds ration, c) 

one-third ration. 
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4.3.3.2.2. Body composition 

Lipid content 

Feeding different rations resulted in an overall increase in the whole body lipid level 

of all groups until 11th October (Fig. 4.34) with a subsequent decrease by the 

conclusion of the experiment (p<0.001). 

The lipid content of the full ration fish was higher than the one-third ration fish from 

23rd July until the conclusion of the experiment (p<0.05) with the exception of the 14th 

February (p>O.05). The two-thirds ration fish had a higher lipid content than the one

third ration fish from 23rd July until 10th December and then on 15th May (p<O.OI). 

The full and two-thirds ration fish maintained similar whole body lipid levels 

throughout the experiment (p>0.05). 

Moisture content 

The moisture content of the full and two-thirds ration fish declined until 11 th October 

(Fig. 4.35) with that of the one-third ration fish initially increasing until 16th August 

and then declining by 11th October (p<0.01). All groups then showed an overall 

increase in moisture content by the end of the experiment (p<O.OOI). 

The moisture content of the full ration fish was lower than the one-third ration fish 

from 23
rd 

July until the conclusion of the experiment (p<0.05), with levels in the two

thirds ration fish lower from 23rd July until 14th January (p<O.05) and then from 14th 

March until the end of the experiment (p<O.05). The moisture content of the full and 

two-thirds ration fish remained similar throughout the experiment (p>O.05). 
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Fig. 4.34 Changes in whole body lipid content (mean±S.E.M., n=12) of parr, reared 

on different rations of feed during experiment Vb. Groups were grown under a 1 + 

photoperiod production regime. 
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Fig. 4.35 Changes in whole body moisture content (mean±S.E.M., n=12) of parr, 

reared on different rations of feed during experiment Vb. Groups were grown under a 

1 + photoperiod production regime. 
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Lipid/Moisture correlation 

When the lipid content of individual fish was plotted against their respective moisture 

content, for each treatment but regardless of sample time highly significant linear 

regressions were achieved (p<0.001) (Fig. 4.36). 

Lipid/Size correlation 

The relationship between changing size and body lipid content was investigated in a 

similar way to that described in experiment IV. Therefore, the changing ~ values of 

fish exposed to the different rations have been presented (Table 4.8). 

Highly variable r2 values were found throughout the experiment for all ration groups 

with no distinct or consistent trends identified within each ration group. 

4.3.3.2.3. Maturation 

Incidence 

No mature male or female fish were found at any time during the experiment. 

4.3.3.2.4. Smoltification 

Gill Na\ K+, ATPase 

The gill Na +, K+ -ATPase profiles of fish which were liable to smolt and those 

remaining as parr are shown (Fig. 4.37). 

The gill Na+, K+ -ATPase levels of all smolting fish showed an increase over the 

duration of the sampling period (p<0.001) with the enzyme activities of the parr 

remaining unchanged (p>0.05). 
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Fig. 4.36 The correlation between the whole body lipid level and moisture content of 

parr, reared on different rations of feed during experiment Vb (n=160). Groups were 

grown under a 1 + photoperiod production regime. a) full ration, b) two-thirds ration, 

c) one-third ration. 
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Ration of feed 
Date 

Full Two-thirds One-third 

20104/01 0.495 0.495 0.495 

11/06/01 0.172 0.112 0.363 

28/06/01 0.925 0.462 0.815 

23/07/01 0.393 0.065 0.037 

16/08/01 0.536 0.202 0.348 

11/09101 0.912 0.411 0.260 

11110/01 0.538 0.797 0.451 

07/11101 0.353 0.469 0.362 

10/12/01 0.499 0.807 0.574 

14/01/02 0.315 0.529 0.855 

14/02/02 0.495 0.258 0.567 

14/03/02 0.520 0.509 0.856 

11/04/02 0.269 0.508 0.562 

15/05/02 0.674 0.413 0.014 

Table 4.8 The changing? values of linear regressions between the weight and whole 

body lipid level of parr, reared on different rations of feed during experiment Vb 

(n=12). Groups were grown under a 1 + photoperiod production regime. 
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Fig. 4.37 Changes in the gill Na+, K+ -ATPase activity (mean±S.E.M., n=20) of fish, 

reared on different rations of feed during experiment Vb. Groups were grown under a 

1 + photoperiod production regime. The gill Na +, K+ -ATPase of fish developing as 

smolts and those remaining as parr are plotted. 
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There were initially no differences between the gill Na+, K+ -ATPase levels of the 

ration groups. Then from 26th March until the end of the experiment both the full and 

two-thirds ration smolts had higher ATPase levels than the parr, with levels in the 

one-third ration smolts higher from 11th April (p<O.O 1). 

Serum osmolality 

Serum osmolality was measured following a 24h seawater (35%0) challenge (Fig. 

4.38a). However, to accurately interpret the changes in osmolality the survival rates of 

the fish must first be considered (Fig. 4.38b). 

On 14th February the survival of the full ration group was 70% being higher than that 

of both the two-thirds and one-third ration fish (p<0.05). Then on 14th March the 

survival of both the full and two-thirds ration fish increased to similar high levels 

(>90%) with lower levels in the one-third ration fish (p<0.05). A similar situation 

occurred on 11 th April, although on 30th March and 25th April survival rates in the 

one-third ration fish were similar to those of the two-thirds ration fish. On 15th May 

the survival rates of all groups were similar. 

The serum osmolality of challenged fish from the full and one-thirds ration group 

were initially high (approximately 440mOsM) and significantly greater than the 

unchallenged controls (approximately 320mOsM) (p<0.05), which had similar and 

unchanged osmolalities throughout the experiment. The osmolality of challenged fish 

subsequently declined remaining higher than the control fish (p<0.05) until 11th April 

when the challenged two-thirds ration fish had similar osmolalities to the 

unchallenged fish (p>0.05). On 25th April the challenged one-third ration fish had 
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Fig. 4.38 Changes in serum osmolality (mean±S.E.M., n=1 to 15) (a) and the 

percentage survival (b) offish following a 24h seawater (35%0) challenge. Individuals 

were previously reared on different rations of feed during experiment Vb. Groups 

were grown under a 1 + photoperiod production regime. Serum osmolalities were 

measured in fish surviving the 24h challenge. Due to the low initial survival rates 

some osmolality measurements are absent. 
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similar osmolalities to the unchallenged fish (p>O.05) and by the conclusion of the 

experiment the osmolality of all challenged groups had become similar to the 

unchallenged fish (p>O.05). 

Smolt index 

Different rations of feed affected the changes in smolt index that were recorded 

during the parr-smolt transformation (Fig. 4.39). The smolt index (see Section 2.8.4) 

ranged from 1 to 4, where smolt index 1 was a typical parr and smolt index 4 was a 

typical smolt. 

The highest number of individuals developing good smolt characteristics (measured 

using the smolt index) occurred in the full ration group with low numbers of fish 

showing similar characteristics in the one-third ration group. The development of 

smolt characteristics was intermediate in the two-third ration group. 

In the full ration group index 2 fish were first identified on 14th March with numbers 

increasing until 11 th April. Index 3 fish were first identified on 11 th April with 

numbers increasing as the incidence of index 2 fish decreased. By 25 th April index 4 

fish were also present. At the end of the experiment no index 2 fish were present with 

index 3 and 4 fish predominating and only low numbers of index 1 fish. 

In the two-thirds ration group index 2 fish were first identified on 14th March with 

numbers increasing until 11 th April. Index 3 fish were first identified on 25 th April 

with index 4 fish identified on 15th May when all index 2 fish had developed into 

either index 3 or 4 fish. However, at this time although index 3+ fish predominated 
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Fig. 4.39 Changes in the smolt index score of fish, reared on di ffere nt rations of feed 

during experiment Vb (n= 100). a) full ration, b) two-thirds ration, c) one-third ration. 

Groups were grown Lmder a 1 + photoperiod production regime. Smolt index 1 = 

typical parr, with parr marks clearly visible, molt index 2 = parr marks visible, but 

some silvering, smolt index 3 = silvered with visible parr marks, Smolt index 4 = 

typical smolt, no parr marks visible. 
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40% remained as index 1 fish. 

For the one-third ration group index 2 fish were first identified on 11th April with 

numbers then increasing until 25th April. By 15th Mayall index 2 fish had developed 

into index 3 and 4 fish although the incidence of index 4 fish was extremely low. 

Throughout the experiment the incidence of index 1 fish predominated. 

4.3.2.2.5. Population structure 

At the conclusion of the experiment the total population structure was analysed: 

Sex ratios 

Within each group similar numbers of males and females were found (p>0.05) (Table 

4.9). 

Life history strategy 

The highest incidence of 1 + smolts was found in the full ration group (84.9%) (Table 

4.9) with significantly lower numbers in the two-thirds ration treatment (64.3%) and 

the lowest incidence present in the one-third ration group (27.3%) (p<0.05). Both the 

full and two-thirds ration fish had significantly higher numbers of 1 + smolts than parr 

(p<0.05) although for the one-third ration fish more parr than 1 + smolts were found 

(p<0.05). 

Survival 

Varying the ration of feed had an overall effect on the survival of individuals (Table 

4.9). The full ration fish had the highest survival (90.4%) with that of the two-thirds 

ration fish significantly lower (76.5%). The survival of the one-third ration group 
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Sex(%) Population Structure (%) Survival (%) 

Ration level Male Female 1+ smolts Parr 

Full 53.0 Aa 47.0 Aa 84.9 Aa 15.1 Ab 90.4 A 

Two thirds 50.0 Aa 50.0 Aa 64.3 Ba 35.7 Bb 76.5 B 

One third 41.7 Aa 58.3 Aa 27.3 Ca 72.4 Cb 27.8 C 

Table 4.9 The population structure, sex ratio and survival of individuals recorded at 

the conclusion of experiment Vb, where fish, under a 1 + production regime, were 

reared on different rations of feed (For population structure n=250-450, sex ratio 

n=100, survival n=450). Similar lettering denotes statistical similarity (p<0.05). 

Capital lettering denotes differences between treatment groups, lower case lettering 

denotes differences within treatments. 
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was the lowest of all groups (27.8%). However, it was not possible to record the size 

of the mortalities. 

4.3.3.3. Summary of the results from Experiment Vb. 

• Fish fed full and two-thirds rations showed initial increases in length and weight 

becoming longer and heavier than the one-third ration fish soon after the different 

rations were applied. The full ration fish then became longer and heavier than the 

two-thirds ration fish. 

• The CF of all groups increased initially and then declined to the end of the 

experiment. The CF values of the full and two-thirds ration groups were similar 

throughout the experiment with lower CF values in the one-third ration fish. 

• Initially the SGR of all fish increased with the growth of all groups subsequently 

declining until November from which time growth remained constant. The highest 

and lowest growth rates were found in the full and one-third ration fish 

respectively with the SGR of two-thirds ration fish intermediate. 

• Full and two-thirds ration groups developed clear bimodal distributions although 

the timing of the emergence of modality differed. In the one-third ration fish 

bimodality was weak. 

• Whole body lipid levels initially rose in all groups with a subsequent decline. The 

levels recorded in the full and two-thirds ration fish remained similar throughout 

with lower lipid levels found in the one-third ration fish. 

• Moisture levels initially declined in all groups although the decrease of the one

third ration fish was preceded by a brief increase in moisture. Subsequently, the 

moisture levels of all groups rose. Full and two-thirds ration groups had similar 

moisture levels throughout that were lower those in the one-third ration fish. 
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• Whole body lipid levels were negatively correlated to moisture content in all 

groups. 

• No clear relationship was found between whole body lipid level and fish size. 

• No mature fish were found in any treatment group throughout the experiment. 

• All smolting fish showed an increase in gill Na+, K+ -ATPase although no 

difference was found between the smolts from each treatment group. 

• Following a 24h seawater challenge the one-third ration group had the poorest 

survival rates. The osmolalities of surviving individuals from all groups decreased 

to similar levels as unchallenged controls. 

• At the conclusion of the experiment both the full and two-thirds ration groups had 

a high number of fish displaying well developed smolt characteristics (Le. smolt 

index 4 fish), although the two-thirds ration fish still had high numbers of parr 

(Le. smolt index 1 fish). One-third ration resulted in low numbers of fish 

displaying smolt characteristics (i.e. smolt index 2+ fish) with such fish 

developing later than in the other treatment groups. 

• At the conclusion of the experiment full and two-thirds ration groups comprised 

mainly of 1 + smolts whereas the one ration group had more parr. 

• The lowest and highest mortality rates were found in the full and one-third ration 

groups respectively with intermediate survival in the two-thirds ration group. 
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4.4. Discussion 

The experiments detailed in this chapter have shown that changes in dietary lipid level 

and ration of feed exert profound effects on the growth and smoltification of Atlantic 

salmon parr. Unfortunately, levels of maturation were low in all of the experimental 

groups and as such it was difficult to correlate differences in maturation to the relative 

dietary regimes. 

4.4.1. Growth 

From the results of experiment IV it seems that differences in dietary lipid regime will 

not affect the growth of individuals. Regardless of dietary lipid inclusion both the 

weight and length of fish from the respective treatments were similar throughout the 

experiment. Previously, differences have been found in the growth of seawater reared 

salmon fed diets containing different lipid inclusions (Hemre and Sandnes, 1999; 

Torstensen et al., 2001). However, although Refstie et al. (2001) found a slight effect 

of increased dietary lipid on growth in adult salmon, of the 122g difference in body 

weight between individuals fed either 32% or 39% dietary lipid for 235 days, 91g 

could be accounted for by increases in whole body lipid content. In support of this 

Shearer et al. (1997) suggested that ration level influences growth whereas dietary 

lipid determines adiposity. Therefore, it is possible that where dietary lipid induced 

differences in weight have previously been documented much of the weight 

differential may be accounted for by lipid deposition as opposed to skeletal or muscle 

growth. 

It is interesting to note that where dietary lipid treatment has been found to influence 

changes in weight such findings have primarily been documented in adult salmonids. 
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In adults it is possible that increases in lipid accumulation are more significant than in 

juvenile fish with parr utilising body lipid accumulation for early organ development 

and physiologically demanding processes such as smoltification (Woo et al. 1978; 

Birt and Green, 1986; Helland and Grisdale-Helland, 1998). Reinitz (1983) found that 

dietary lipid did not affect growth when high rations of feed were fed to 2.1g rainbow 

trout although at low and medium ration levels a difference was noted. It is therefore 

likely that when fed to satiation (as in the current experiment) juvenile salmonids fed 

different dietary lipid inclusions will grow at a similar rate although it is probable that 

such a relationship only holds above a certain minimum lipid threshold that allows at 

least maintenance metabolic rates to be achieved. 

The changes in SGR found in experiment IV also indicate that dietary lipid levels are 

ineffective in altering juvenile fish size. Following the change in diet of both the 

25/12.5 and the 12.5/25 groups a large decrease in SGR was noted in the 25/12.5 fish 

suggesting that the dietary lipid regime had influenced growth. However, a decline in 

growth was observed in all groups in particular the 25125 treatment indicating that the 

diet regime had not necessarily affected the growth of individuals. Indeed, it is more 

likely that the concurrent reduction in photoperiod (from a continuous light regime to 

the ambient summer photoperiod) resulted in this growth decline with similar 

reductions in growth due to photoperiod well documented (Saunders and Harmon, 

1990; Skilbrei et al., 1997; Duncan et al., 1998; Duncan et al., 1999). 

In experiment V evidence was provided that ration affects growth. Both the 0+ and 1 + 

groups rapidly showed a division of size relative to the rations that they were fed. 

Previously, this finding has been well documented in both adults (Elliott, 1975b; 
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Storebakken and Austreng, 1987a; Johansson et al., 1995; Hillestad et ai., 1998) and 

juveniles (Storebakken and Austreng, 1987b; McCormick et al., 1989; Stead et al., 

1996; Shearer et al., 1997) and it is clear that a strong relationship exists between 

ration and growth. 

However, it is possible that the magnitude of the response to ration will be affected by 

other factors. Elliott (1975b) found that for brown trout the optimum temperature for 

growth declined as ration was reduced. In experiment V the growth rate (SGR) of the 

1 + fish became similar as the experiment progressed and it is possible that during 

autumn and winter the low water temperatures caused the growth of the one-third 

ration fish to increase relative to those of the full and two-thirds ration fish. In support 

of this both the weight and length of the full and two-thirds ration fish remained 

unchanged between consecutive time points from October suggesting that growth had 

been influenced by temperature in these groups. Further support can be found when 

the growth rates of the 0+ fish are considered. Again, until late September the growth 

rates of fish from the respective treatments remained different. Subsequently, the 

growth of all fish became erratic and no consistent differences between ration groups 

could be found suggesting an effect of temperature. However, it is also interesting to 

note that the decline in SGR of all groups during this stage was not of a similar 

magnitude to that of the 1 + fish. It is therefore possible that as well as temperature 

photoperiod plays some role in the growth response to ration given that continuous 

light regimes were applied to the 0+ fish during the time when a reduction in the 

seasonally-changing temperature occurred. 
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From the weight-frequency distributions it was clear that both dietary lipid inclusion 

and ration had affected the development of bimodality although the effect of ration 

appeared more influential. In experiment IV the 25/25, 25/12.5 and 12.5/25 dietary 

lipid regimes resulted in a similar timing of bimodal divide, although for the 12.5/12.5 

fish an earlier divide occurred. Interestingly, this implies that dietary lipid inclusion 

will only influence the development of bimodality if it occurs for a long period of 

time possibly over a series of important developmental periods. Exposing individuals 

to low dietary lipid during either early (12.5/25 group) or late (25/12.5 group) 

development resulted in a similar timing of bimodal divide as fish maintained on the 

high dietary lipid throughout (25/25 group). For the fish fed low levels of dietary lipid 

throughout development (12.5/12.5 group) a different timing of bimodal divide 

resulted. 

The results of experiment V indicate that ration also affects bimodality. Fish 

maintained on full rations had a larger UMG with the two-thirds ration fish containing 

slightly more LMG fish. Furthermore, the one-third ration generally resulted in only 

LMG fish. Previously, it has been found that feeding restricted rations to adult 

rainbow trout (Storebakken and Austreng, 1987a) and Atlantic salmon parr 

(Storebakken and Austreng, 1987b; Nicieza and Metcalfe, 1997) resulted in a greater 

percentage of lower modal group fish. Thorpe (1977) suggested that population 

bimodality resulted from genetic, social and environmental interactions and it would 

seem that the current study supports the suggestion by Storebakken and Austreng 

(1987b) that ration is also significant environmental factor affecting bimodality. The 

mechanisms by which this is achieved are not well understood. 
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However, the results of the current experiments may provide some insight into the 

mechanisms influencing growth, feeding and bimodality. Previously, it has been 

found that bimodality can result from differential feeding motivation and appetite in 

fish destined to enter the respective modes (Higgins and Talbot, 1985; Metcalfe et al., 

1986, 1988; Metcalfe and Thorpe, 1992) although this difference is not thought to be 

linked to food availability with an internal control mechanism postulated (Metcalfe et 

al., 1986, 1988). It has been suggested that photoperiod would synchronise such an 

internal rhythm of appetite (Villarreal et al., 1988). In the current experiments the full 

and two-thirds ration 0+ fish developed bimodal populations prior to any change in 

photoperiod whereas the 1 + fish that were fed the respective rations developed 

bimodality at different times during both the decreasing and increasing phases of the 

natural photoperiod. From this it may be suggested an endogenous rhythm of appetite 

and growth (Villarreal et al., 1988) is not influential in bimodality. However, it may 

be that the respective rations mediated a differential response to the respective 

endogenous rhythms and ration may have interacted with the rhythms of growth and 

appetite to result in bimodality. 

The current experiments also provide support for the influence of a developmental or 

size threshold in bimodality (Kristinsson et al., 1985; Stewart et al., 1990; Skilbrei, 

1988). For the 0+ fish the continuous light regime (Komourdjian et al., 1976; 

Lundqvist, 1980; Solbakken et al., 1994; Sigholt et al., 1995) as well as the high 

summer temperatures (Elliott, 1975a, b, 1976; Clarke et al., 1978) would have 

resulted in the rapid growth of individuals allowing such a size or developmental 

threshold to be achieved at a similar date in both the full and two-thirds ration fish. 

The natural photoperiod regime experienced by the 1 + fish would have resulted in 
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reduced photoperiodic and temperature effects on growth so that ration would have 

been more influential in the attainment of such critical thresholds with a resultant 

differential in the timing of modality. It may be possible that changes in appetite and 

feeding motivation, previously suggested as a controlling mechanism in population 

structure (Higgins and Talbot, 1985; Metcalfe et al., 1986, 1988; Metcalfe and 

Thorpe, 1992) may be a result of rather than an influencing mechanism in bimodality. 

It is also important to note that in the ration experiments growth and indeed other 

parameters may have been influenced by the ration related mortality of individuals. 

For the 0+ regime a low rate of survival was found in the one-third ration fish whereas 

in the 1 + group this ration resulted in a very low survival rate with the survival of the 

two-thirds ration fish lower than that of the full ration fish. Clearly the 1 + regime had 

a greater effect on survival possibly linked to the length of time that rations were 

applied for combined with the low temperature regimes experienced by individuals 

during the natural winter period. High mortality rates have previously been found 

where restricted feed regimes were applied for long periods of time with such 

mortality linked to fish size (Storebakken and Austreng, 1987b). It is therefore 

possible that in the one-third ration groups of the 1 + photoperiod regime in particular 

size-dependant mortality occurred which subsequently affected population structure 

and growth, especially during the latter stages of the experiment. 

However, it is important to note that in the current experiments the size of mortalities 

was not recorded and as such it is not possible to determine the precise effect of any 

size dependant mortality on the results found. It is certainly possible that smaller 

individuals within the population suffered high mortality rates due to a reduced 
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accumulation of lipid reserves that would have obviously resulted in their low growth 

rates and size. Alternatively, it may be that with time the smaller individuals reduced 

their activity and metabolic rates relative to their feed rates. This would have resulted 

in a reduction on energy requirements and a higher probability of survival when fed 

low rations. The larger individuals within the population may have maintained a high 

level of activity with high metabolic rates and as such they may have suffered more 

from the low feed rates than the smaller individuals within the population. Certainly 

given the importance of over-wintering survival rates future experiments should 

ensure that the size of mortalities is recorded, with consideration of the metabolic 

requirements of fish on different rations for long periods of time also important. 

4.4.2. Lipid accumulation 

Previously, it has been suggested that dietary lipid level determines adiposity whereas 

ration influences growth (Shearer et al., 1997) and indeed there is much evidence in 

the literature suggesting that whole body lipid content is correlated to dietary lipid 

level. Although Hillestad et al. (1998) found a negligible effect of dietary lipid on 

cutlet or carcass fat levels in adult salmon a clear relationship has now been 

documented for both adults (Bjerkeng et al., 1997; Einen and Skrede, 1998; Hemre 

and Sandnes, 1999; Torstensen et al., 2001) and juveniles (Reinitz, 1983; Grisdale

Helland and Helland, 1997; Shearer et al., 1997; Shearer and Swanson, 2000). 

In experiment IV further support is provided that dietary lipid affects lipid 

accumulation with fish fed the 25% lipid diet consistently maintaining higher body 

lipid levels than for those fed the 12.5% diet. Over time all fish regardless of dietary 

lipid level had initial increases in body fat content followed by a period where levels 
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remained fairly constant. From December onwards a decline in whole body lipid level 

occurred. Therefore, although many studies investigating dietary lipid only measure 

body fat at the beginning and the end of the experiment (e.g. Bjerkeng et al., 1997; 

Grisdale-Helland and Helland, 1997; Einen and Skrede, 1998; Hemre and Sandnes, 

1999) it appears that in juvenile salmonids unlike larger adults, (c.f. Bjerkeng et al., 

1997; Einen and Skrede, 1998; Hemre and Sandnes, 1999; Torstensen et al., 2001), 

seasonal changes in lipid content will occur. Initially levels rise (M0rk0re and R0rvik, 

2001; Shearer and Swanson, 2000; this study) to reach a point where levels are 

maintained at a constant level dependant on dietary lipid (Reinitz, 1983; Shearer et 

ai., 1997; this study) after which a decline will occur over winter (M0rk0re and 

R0rvik, 2001; Shearer and Swanson, 2000; this study). Furthermore, it would seem 

that in juveniles the winter reduction in body lipid content could be due to a number 

of reasons in particular temperature (Elliott, 1976; Saunders et al., 1982) or 

physiologically demanding processes such as smoltification (Komourdjian et al., 

1976; Saunders and Henderson, 1978; Shearer, 1994) or maturation (Jonsson et at., 

1991; Rowe et al., 1991; Kadri et ai., 1995). 

In experiment IV it was evident that following the change in dietary lipid level 

individuals rapidly re-adjusted their body fat content to similar levels to fish which 

had been maintained on the same diet throughout development. Previously, Miglavs 

and Jobling (1989a) showed that following an 8 week period of restricted feeding 

juvenile Arctic charr recovered their lipid store after only 8 weeks of ad libitum 

feeding, with Morgan and Thorpe (2001) observing that body fat was replenished in 

two weeks by Atlantic salmon parr following a 6 week period where feed was only 

available on one day per week. Similarly, Metcalfe and Thorpe (1992) found that the 
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lipid deficit created by three weeks of starvation was replenished within 4 weeks of 

re-feeding in Atlantic salmon parr. It is therefore possible that rapid changes in body 

composition are primarily due to the small size of juvenile fish. 

Given the findings of the current experiment it is likely that for small juvenile 

salmonids at least previous dietary lipid regime will have only a minimal effect on an 

individuals body fat content at a particular time with the current dietary regimes used 

having a greater influence. Unfortunately, there are few studies that incorporate a 

change in dietary lipid inclusion such as in experiment IV but it is important to note 

that there are many studies where experimental diets are used after a period of 

commercial diet application (e.g. Reinitz, 1983; Bjerkeng et al., 1997; Grisdale

Helland and Helland, 1997). Therefore, in future some effort should be made to 

document the composition of the commercial diets used with information also 

necessary on the body lipid content of fish prior to the application oftest diets. 

It is well documented that ration size will affect whole body fat levels in both adults 

(Elliott, 1976; Storebakken and Austreng, 1987a; Johansson et al., 1995; Hillestad et 

al., 1998) and juveniles (Reinitz, 1983; Silverstein et al., 1998). However, Shearer et 

al. (1997) found that ration level had no effect on lipid content with a review by 

Rasmussen (2001) also highlighting variable results related to ration induced changes 

in body fat content. 

The current work as well as that ofStorebakken and Austreng (1987b) help to explain 

the role of ration. Storebakken and Austreng (1987b) found effects of ration on body 

lipid content at low feed rates but at higher rates no differences were found. Similarly, 
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in experiment V the lipid content of both full and two-thirds ration fish (under both 

photoperiod regimes) remained similar with the fat levels of the one-third ration 

groups generally lower. Therefore, up to a certain level changes in ration will affect 

the whole body fat content of fish, but above this level adiposity is maintained at an 

internally determined point irrespective of additional feed. Indeed during experiments 

that have investigated the effects of different dietary lipid inclusions it has been found 

that above a certain level, increases in dietary lipid will not increase the whole body 

lipid content of individuals suggesting a maximum lipid attainment (Einen and 

Skrede, 1998; Hemre and Sandnes, 1999). In support of this during experiment V the 

full and two-thirds ration fish had similar body lipid contents despite there being 

distinct differences in size. 

The current experiments therefore provide further support for the theory that salmonid 

growth is under lipostatic control. Previously, it has been found that following periods 

of starvation or restricted feeding individuals are able to fully recover their size 

compared to that of fish that were fed throughout (Weatherley and Gill, 1981; 

Reimers et al., 1993; Hopkins and Unwin, 1997). However, it has also been shown 

that following periods of restricted feeding individuals may either become larger or 

remain smaller than fish that are maintained on full rations throughout (Weatherley 

and Gill, 1981; Dobson and Holmes, 1984; Miglavs and Jobling, 1989a; Nicieza and 

Metcalfe, 1997). Subsequently, Jobling and Johansen (1999), Silverstein et al. (1997) 

and Johansen et al. (2001) have suggested that the growth of salmonids is under 

lipostatic control such that increases in size are controlled by the maintenance of a 

distinct body fat content. In the current experiments it seems that the full and two

thirds ration fish achieved such a lipid level although for the one-third ration fish 
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differences were found between the two production regimes. Under the 0+ regime 

individuals could not achieve the lipostatic level regardless of the large reductions in 

size. However, for the 1 + fish similar lipid levels were achieved in the one- and two

third ration fish towards the conclusion of the study indicating that the one-third 

ration fish had achieved the lipid level that is maintained under lipostatic control. 

O'Connor et al. (2000) found that when juvenile salmon were deprived of food their 

standard metabolic rate fell, with Elliott (1976) noting that the optimum temperature 

for growth declines with decreasing ration. It would therefore seem that in experiment 

Vb the lower metabolic rate of the one-third ration fish combined with the low winter 

temperatures experienced, resulted in these fish increasing their lipid deposition 

relative to that of the full and two-thirds ration fish thus allowing them to achieve the 

lipid level that individuals fed ad libitum maintain through lipostatic regulation. 

During the current experiments a strong negative correlation was found between 

whole body lipid level and moisture content; such relationships are well documented 

in the literature (Reinitz, 1983; Elliott, 1976; Miglavs and Jobling, 1989a; Bjerkeng et 

aI., 1997; see reviews by: Shearer, 1994; Johansen et aI., 2001; Rasmussen, 2001). It 

seems the current study as well as the majority of the literature suggest that as fish 

become fatter moisture is replaced by lipid (Bjerkeng et al., 1997). Furthermore, due 

to the strong negative correlation that was found between lipid and moisture content 

in the current study it is probable that whole body water levels can be used to 

accurately predict the body fat content of fish (Elliott, 1976). 
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For the interpretation of proximate composition Shearer (1994) suggested that it is 

important to incorporate fish size as a covariate within the analysis because changes 

in body composition are influenced by fish growth. Indeed there is reasonable support 

in salmonids that fat levels increase with increasing weight (Reinitz, 1983; 

Storebakken and Austreng, 1987b; Bjerkeng et al., 1997; Einen and Skrede, 1998; 

Hemre and Sandnes, 1999; Torstensen et aI., 2001). In the current experiments poor 

lipid/size correlations were found throughout development in both ration experiments 

with high, although variable, ~ values found during the early stages of development 

in the dietary lipid experiment. Similarly, Gardiner and Geddes (1980) found only 

slight increases in the water content of small fish when compared to larger 

individuals, with Vanstone and Markert (1968) only finding a lipid/size relationship in 

parr that were not undergoing exponential growth. 

Interestingly, the majority of literature identifies such a relationship in adult salmon 

(e.g. Bjerkeng et al., 1997; Einen and Skrede, 1998; Hemre and Sandnes, 1999; 

Torstensen et al., 2001) and where clear relationships have been found in juveniles 

they have been identified in studies which have focused on early development 

(Reinitz, 1983; Storebakken and Austreng, 1987b). Therefore, for juveniles it would 

seem that a correlation between body fat level and size may only occur during a brief 

period in early development. During the majority of development there will be little 

correlation with this possibly linked to the onset of physiologically demanding 

processes such as maturation (Jonsson et al., 1991; Rowe et al., 1991; Kadri et al., 

1995) and smoltification (Komourdjian et al., 1976; Saunders and Henderson, 1978; 

Shearer, 1994). During the commercial production of juvenile salmonids, where 

freshwater development and smoltification are achieved in a short period of time, 
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correcting for size during the analysis of proximate composition data may result in a 

considerable loss of valuable information. 

4.4.3. Maturation 

It has been well documented that increases in both dietary lipid level (Hillestad et aZ., 

1998; Silverstein et aZ., 1998; Shearer and Swanson, 2000) and ration (Storebakken 

and Austreng, 1987b; Clarke and Blackburn, 1994) result in increases in the number 

of fish choosing to mature. In the current studies low levels of maturation were 

observed throughout the year with no mature fish found during experiment Vb. 

Consequently, conclusions regarding the effects of ration and dietary lipid inclusion 

on maturation are difficult. 

4.4.3.1. Incidence of maturation 

During the dietary lipid experiment mature fish were only found in the 25/12.5 and 

12.5/25 groups. However, it is unlikely that these findings and the lack of mature fish 

within either of the other treatment groups are linked to dietary lipid influences since 

these levels actually constituted only one or two fish per group. 

From the results of experiment Va it may be possible to suggest a role for diet 

manipulation in parr maturation. Mature fish were identified within the full and two

thirds ration groups although no such individuals were found in the one-third ration 

treatment. Previously, it has been suggested that maturation is influenced by a lipid 

threshold (McCormick and Naiman, 1984; Simpson, 1992; Herbinger and Friars, 

1992; Silverstein et aZ., 1997) and it possible that fish fed either the full or two-thirds 

ration were able to achieve this threshold whereas those under the one-third ration 
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regime did not. Previously, Herbinger and Friars (1992) suggested that a fat threshold 

for male parr maturation may be very low and it would seem that such a threshold will 

be achieved by feeding between one-third and two-thirds of the suggested ration for 

maximum growth. 

Regardless of the experimental regime applied the low levels of maturation found 

within the current experiments are interesting and there are a number of possible 

reasons for the lack of gonadal development. Firstly, it is possible that the levels of 

dietary lipid used were insufficient to generate a high incidence of maturation. In a 

parallel growth study performed with the same diets as those used in experiment IV, 

but with a different stock of fish, similar low levels of maturation were found (G. 

Bell, unpublished data) indicating a possible effect of the dietary inclusions used. 

However, it seems unlikely that the lack of maturation in both of these experiments 

was due to the insufficient accumulation of lipid within individuals. The 25% diet that 

was used contained a greater lipid level than most commercial diets and mature fish 

have been found in experimental groups where both higher and lower dietary 

inclusions have been used for long periods of time (Hillestad et al., 1998; Silverstein 

et al., 1998; Shearer and Swanson, 2000). Furthermore, during experiment V the feed 

rates of the full ration fish were similar to those used in commercial production where 

high levels of maturation are frequently recorded (D. Mitchell, A. Smart, O. Beaton, 

pers comm). Given that a lipid threshold for male parr maturation may be fairly low 

(Herbinger and Friars, 1992) it is extremely unlikely that the diets and regimes used in 

the current experiments can sufficiently explain the observed lack of maturation. 
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It is possible that temperature played an important role in the low maturational levels 

recorded in the present work. Although Herbinger and Friars (1992) found 

temperature to exert little effect on maturation growing evidence exists that 

maturation is affected in some way by temperature (Mackinnon and Donaldson, 1976; 

Berglund, 1995; Davies et al., 1995; Duston and Saunders, 1997). Both growth 

(Elliott, 197 Sa, b) and body composition (Elliott, 1976) are affected by temperature 

and it is clear that either a direct role on maturation, or an indirect influence through 

the manipulation of the complex interactions between growth and body composition, 

may have occurred. In the current experiments the reservoir providing water for Site 7 

is at a high altitude and water temperature fluctuations are modest. It is generally 

accepted that the water temperatures at Site 7 are colder than at many rearing sites (R. 

Murray, M. Porter, pers comm) such as Sites 1 and 2 where water is supplied from a 

shallow river. If the temperature at Site 7 were influential in the low incidence of 

maturation it might be expected that the 0+ groups of experiment Va would have high 

numbers of mature males due to the high summer rearing temperature. Indeed some 

mature fish were found in this group compared with the absence of maturation in the 

1 + fish of experiment Vb suggesting a possible role of temperature. Previously, it has 

been shown that maturation will be influenced by growth potential during a critical 

period in spring (Thorpe, 1986; 1987b; Duston and Saunders, 1992; Metcalfe, 1998; 

Thorpe and Metcalfe, 1998) and it is therefore possible that instead of directly 

affecting maturation temperature affected the growth of the 0+ fish during their 

seasonally adjusted spring with a resultant increase in the incidence of maturation. 

However, it does seem that the evidence for an effect of temperature on maturation 

levels is at best circumstantial. 
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A more likely cause for the low levels of maturity may be the genetic influence of the 

stock used. Previously, a clear genetic component in both fresh- and seawater 

maturation has been documented (Naevdal, 1983; Thorpe et al., 1983; Gjerde, 1984; 

Myers and Hutchings, 1986; Herbinger and Newkirk, 1990; Gj0en and Bentsen, 1997) 

although the genetic links between adult and parr maturity are poorly understood. 

Gjerde (1984) found that maturation in both fresh- and sea water were traits that were 

not inherited from one another. However, it is possible that early maturation, 

regardless of whether maturity occurs as a juvenile or adult, is of genetic importance 

with the underlying genetic components of growth (Thorpe et al., 1983: Nilsson, 

1990; Silverstein and Hershberger, 1994; Gj0en and Bentsen, 1997) also of 

importance in maturation. In the current experiments it is likely that the low grilsing 

Scottish stock used had an intrinsically low rate of parr maturation as well as a low 

rate of grilsing. As a result the incidence of maturation may not have been high 

enough to show between treatment variation. Indeed, the commercial production fish 

used at Site 7 are from the same stock as that used in the current study and maturation 

rates <1 % are regularly noted under both 0+ and 1 + production cycles CA. McPhee, 

pers comm). 

It is therefore likely that the genetic stock used in the current study was the main 

cause of the lack of maturity within groups. Clearly, care must be used in future 

experiments to ensure that the genetically determined rates of maturation in the test 

stock are high enough, as well as consistent enough, to allow the between treatment 

variation to be greater than the within stock variation. 
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4.4.3.2. Lipid accumulation 

It is well documented that fish destined to mature show an increased accumulation of 

body fat followed by a reduction in lipid which occurs either slightly prior to, or 

during, gonadal development (Aksnes et al., 1986; Jonsson et al., 1991; Rowe et al., 

1991; Kadri et al., 1996; Arndt et al., 2000). In the current experiments only three 

maturing fish were found and it was not possible to follow the development of fat 

accumulation in these fish. However, in agreement with the literature all of these fish 

had much lower lipid contents than their immature counterparts highlighting the 

importance of lipid reserves in gonadal development. 

Interestingly, in experiment IV the two mature fish that were identified had 4.4% and 

3.0% body lipid compared to 7.8±0.3% and 7.7±0.4% for their respective immature 

counterparts. In experiment Va the mature fish found within the full ration treatment 

of the 0+ group contained 7.6% lipid compared to 10.1±0.3% for its immature 

counterparts. Similar variations were recorded by Shearer and Swanson (2000) when 

it was found that mature chinook salmon parr that were fed diets containing either 4 

or 22% lipid contained 6.3±0.2% and 8.5±0.6% fat respectively whereas immature 

fish contained 5.2±0.4% and 10.1±0.4% lipid. Although care must be taken when 

comparing the lipid contents of individuals from different experiments, the variations 

in lipid content of mature and immature fish in the current experiments as well as 

those of Shearer and Swanson (2000) indicate that the fat threshold previously 

suggested for parr maturation (McCormick and Naiman, 1984; Simpson, 1992; 

Silverstein et al., 1997) may not be of importance. However, it may be that a lipid 

threshold does influence maturation and that it is affected by environmental 
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parameters that influence the utilisation of energy such as temperature and 

photoperiod. 

4.4.4. Smoltification 

Throughout the literature various parameters have been used for the assessment of 

smoltification and in the current experiments a range of determinants were used. 

Previously, a decline in condition factor (CF) has been indicative of the parr-smolt 

transformation (Solbakken et al., 1994; Thrush et aI., 1994; Duncan and Bromage, 

1998; Duncan et al., 1998; Handeland and Stefansson, 2001). In experiment IV, all 

groups showed a peak in CF during September with condition subsequently declining 

in all groups to levels of around 1.1 in May indicating the progression of the parr

smolt transformation. However, it is important to note that Duncan and Bromage 

(1998) found the decrease in condition to be correlated with the decrease in autumnal 

temperature and it was questioned whether the decrease in condition was due solely to 

smoltification. In the current experiments the decline in CF occurred around the time 

of the autumn reduction in temperature although it should be noted that during spring 

the rise in water temperature did not result in an increase in condition. As such, a 

temperature/CF correlation does not hold throughout the parr-smolt transformation. 

However, in experiment IV it was evident that whole body lipid levels showed a 

reasonable association with the decline in condition. Previously, although some 

contradictory evidence has been presented (Simpson et al., 1992; Shearer and 

Swanson, 2000; Sutton et al., 2000) good correlations have been found between 

condition and whole body lipid level (Herbinger and Friars, 1991). A decline in the 

337 



CHAPTER 4: NUTRITION. 

lipid level of fish undergoing the parr-smolt transformation has been found (Vanstone 

and Markert, 1968; Komourdjian et aZ., 1976; Woo et aZ., 1978; Helland and Grisdale

Helland, 1998) with such decreases ascribed to the increased metabolic constraints 

imposed by smoltification (Woo et aZ., 1978; Saunders and Henderson, 1978; review 

by Shearer, 1994). Therefore, the results of experiment IV indicate that smoltification 

and CF may not be directly linked but that as the parr-smolt transformation progresses 

the utilisation of lipid reduces the condition of such individuals. 

In experiment V a similar decline in CF was recorded as the parr-smolt transformation 

progressed in the 1 + fish and further supporting evidence is provided that whole body 

lipid levels were correlated with the decline. However, when the changes in condition 

of the 0+ fish were compared a different situation occurred. Although a clear decline 

in CF was found amongst the full and two-thirds ration fish the whole body lipid 

levels did not decline greatly and although the decline in CF has previously been 

correlated with temperature (Duncan and Bromage, 1998) during experiment Vb the 

decline in CF occurred some time after a decrease in temperature. Therefore, given 

that temperature controls the rate of growth response to photoperiod (Clarke et aZ., 

1978; Solbakken et aZ., 1994) the current study indicates that temperature will 

regulate the rate at which body lipid is utilised as opposed to directly cueing the 

timing of the decline in body fat or CF. 

For a complete understanding of the interactions that occur during smoltification it is 

necessary to consider the effect of photoperiod. Photoperiod has an important role in 

smoltification (Duston and Saunders, 1992, 1995; Sigholt et aZ., 1995; Duncan and 

Bromage, 1998; see chapter 3 for a detailed review). Therefore, by incorporating the 
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findings presented in this chapter it is likely that following the photoperiodic initiation 

of smoltification lipid reserves will be mobilised for the energetic process of hypo

osmoregulation although the rate with which this occurs will be determined by 

temperature. Condition factor will subsequently fall and although lipid levels may 

correlate well with this decline (especially in the case of 1 + fish) condition will not 

necessarily be a measure of whole body lipid status (Simpson, 1992; Shearer and 

Swanson, 2000; Sutton et al. 2000). 

It is important to discuss the differences in condition and lipid content that occurred 

between the one-third ration fish from the 1 + and 0+ regimes. Under the 0+ 

photoperiod regime the one-third ration fish had a lower CF and lipid content than the 

full and two-thirds ration fish throughout the experiment although for the 1 + fish CF 

and lipid content were only lower until December. It is likely that temperature was 

influential in this between treatment difference. Previously, it has been found that the 

optimum temperature for growth and the accumulation of body lipid decreases with 

ration size (Elliott, 1975b, 1976) with the standard metabolic rate (SMR) of fish fed 

lower rations also shown to be reduced (O'Connor et al., 2000). Therefore, during the 

colder months of winter growth and the accumulation of lipid in the one-third ration 

fish from the 1 + regime would have increased relative to the full and two-thirds ration 

fish. For the 0+ fish, rearing temperatures were high and as such the one-third ration 

fish did not experience an optimisation of growth at lower temperatures. 

It is also interesting to note that a decrease in CF was observed in the one-third ration 

fish from both production regimes as the parr-smolt transformation progressed with 

this decline of similar timing and magnitude to that observed for the full and two-
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thirds ration fish. Therefore, although the one-third ration fish were clearly under 

some level of nutritional stress they were still influenced by the relative smoltification 

cues with their growth and changes in body fat affected in a similar way to fish where 

full smoltification was likely. 

During experiment IV gill Na+, K+ -ATPase levels were also recorded and used as a 

measure of smoltification (Johnston, 1983; McCormick et al., 1987; Handeland and 

Stefansson, 2001). It should also be noted that in this experiment only the largest 

individuals were sampled thus those which were likely to undergo smoltification 

(Kristinsson et aI, 1985; Thorpe, 1987a; 0kland et al., 1993). Differing dietary lipid 

level had no effect on the ATPase level of smolting fish until the final sample point 

when the levels recorded in the 12.5/12.5 group were lower than those of the 25/25 

fish. Redell et al. (1988) previously reported that dietary lipid had no effect on 

smoltification in Atlantic salmon with Saunders et al. (1982) stating that high fat 

levels were not necessary for smolting. Incorporating the findings of the current 

experiment it would seem that dietary lipid plays only a minor role on smolt status. 

In the current experiment although no consistent statistical differences could be 

highlighted the 12.5/12.5 regime appeared to result in a lower incidence of smolts 

compared to the other treatment groups although it should be noted that this 

distinction was made by external appearance (Johnston and Eales, 1970; Saunders and 

Henderson, 1978; Erikson and Lundqvist, 1982; Birt and Green, 1986; Tanguy et al., 

1994; Sigholt et al., 1995), which is not necessarily a good measure of smoltification 

(Saunders et al., 1985; Duncan and Bromage, 1998). Therefore, it seems that dietary 

lipid will have only a negligible effect on the incidence of smoltification. 
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Previously, feed restriction (Thorpe and Metcalfe, 1998) and starvation (Larsen et al., 

2001) during winter has been shown to have negligible effects on smoltification 

although unlike the current study there are no previous studies which have 

investigated the role of long-term rations of feed on smoltification. In experiment V, 

ration affected both the number of fish choosing to smolt, as well as the quality of 

such smolts. In both the 0+ and 1 + experiments feeding with full rations resulted in 

the highest numbers of smolts with high numbers in the two-thirds ration group but 

only low numbers in the one-third ration group. Thorpe and Metcalfe (1998) 

suggested that food restriction had an indirect role on smoltification by affecting the 

size of fish. Therefore, since ration will affect growth (Elliott, 1975b; Storebakken 

and Austreng, 1987a, b; McCormick et al., 1989; Shearer et al., 1997) the attainment 

of certain growth thresholds necessary for smoltification (Elson, 1957; Thorpe et al., 

1980; Skilbrei, 1988) will be achieved to a greater or lesser degree in the respective 

ration groups. 

During experiment V it was evident that the 0+ fish had a higher incidence of smolts 

than their 1 + counterparts. Given the increased scope for growth under continuous 

light regimes (Higgins and Talbot, 1985; Saunders and Henderson, 1988; Villarreal et 

al., 1988; Sigholt et al., 1995; Taranger et al., 1995) it is likely that the attainment of 

growth thresholds necessary for smoltification was achieved by a greater number of 

fish within the 0+ production regime especially if such growth advantages occurred 

during seasonally critical times when smoltification could be enhanced. 

It is also important to note that the numbers of smolts found within the one-third 

ration group should be considered with some caution. High levels of mortality were 
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found amongst the low ration groups and it is likely that size selective mortality 

occurred within these populations (Storebakken and Austreng, 1987b). Since 

smoltification has been linked to size (Elson, 1957; Thorpe et al., 1980; Kristinsson et 

al., 1985; Skilbrei, 1988; 0kland et al., 1993) it is likely that the percentage of smolts 

observed in this treatment was, to some degree, influenced by the survival of a 

particular size of individual. However, as mentioned earlier during the current 

experiments it was not possible to record the size of mortalities and as such it is 

difficult to determine the precise effects of any size-selective mortality. In particular, 

it is difficult to establish whether large or small individuals would have been more 

susceptible to mortality and consequently the effect of this on the smolting 

population. 

Different rations of feed had variable effects on the hypo-osmoregulatory ability of 

smolting fish. For the 1 + fish neither the gill N a +, K+ -ATPase nor serum osmolarities 

of smolting fish showed differences between treatments with smolts from all groups 

attaining a good smolt status. For the 0+ fish the osmolarities of both the full and two

thirds ration fish decreased to similar levels as those of unchallenged individuals 

although the one-third ration fish did not show a decline of similar magnitude. 

Furthermore, at the final sample point, gill Na+, K+ -ATPase increased with increasing 

feed ration. Although the changes in serum osmolarity indicated a good smolt status 

in the full and two-thirds ration fish, with the differences in the ATPase level possibly 

negated in affecting ultimate seawater performance because A TPase levels have been 

shown to rise following seawater transfer (Saunders and Henderson, 1978; Solbakken 

et al., 1994; Berge et al., 1995), an effect of ration is likely in the 0+ fish. 
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Previously, Shearer (1994) suggested that a nutritional threshold was necessary for 

smoltification to progress. However, it is unlikely that the attainment of a nutritional 

threshold can account for the differential effects of ration on smoltification in the 0+ 

and 1 + fish of the current experiments since the levels of body lipid in the respective 

ration groups were similar regardless of photoperiod. Previous investigations have 

found good rates of survival following the out-of-season transfer of fish to sea 

(Duncan et al., 1998) and as such understanding the mechanisms influencing the 

results of the current experiments is difficult. 

It is possible that by adjusting the timing of the winter photoperiod the endogenous 

rhythms of smoltification had been disrupted (Clarke et al., 1978; Eriksson and 

Lundqvist, 1982; Saunders and Harmon, 1990; Sigholt et al., 1995; Duston and 

Saunders, 1995; Duncan and Bromage, 1998). Alternatively, it is possible that during 

the development of the 1 + fish the formation of osmoregulatory mechanisms utilised 

energy from both long and short term lipid stores. The liver is known as a short term 

energy store and Storebakken and Austreng (1987a) found that the weight of the liver 

increased with increased rations. Furthermore, Woo et al. (1978) found that both 

muscle and liver fat declined during smoltification, with Helland and Grisdale

Helland (1998) also finding that visceral fat declined during the parr-smolt 

transformation concluding that visceral lipids were the preferred energy source for 

smoltification. However, in the studies of Woo et al. (1978) and Helland and 

Grisdale-Helland (1998) a natural photoperiod regime was used. It is therefore 

possible that under accelerated photoperiod regimes fish may not be able to mobilise 

their preferred long-term energy stores (such as the viscera). As such, short-term 

reserves (i.e. the liver) may be utilised and those fish that have achieved enhanced 
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short-tenn lipid deposits (c.f. Storebakken and Austreng, 1987a) will develop an 

enhanced smolt status. In support of this the 0+ fish of the current study had only 

slight reductions in whole body lipid content, with Nordgarden et al. (2002) finding 

no changes in muscle or body lipid levels when a manipulated photoperiod regime 

was used suggesting that long-tenn energy reserves had not been mobilised. It is 

therefore clear that although a high smolt status can occur following photoperiod 

manipulation further study will be required into the changes in body composition that 

occur during the parr-smolt transfonnation before a clear understanding of variations 

in smolt status can be made. 

In summary, it appears that dietary lipid will have only a minor effect on both the 

quality and incidence of smolts. The ration of feed, however, will have distinct effects 

on the number of fish choosing to undergo the parr-smolt transfonnation with some, 

although slight, effects on the quality of such fish. However, it is possible that 

whereas the effects of decreased ration may be more detrimental to smolt quality 

under advanced photoperiod production regimes such techniques may result in a 

reduced incidence of fish remaining as parr. 
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4.4.5. Conclusions 

• Ration of feed has a primary affect on the growth of Atlantic salmon parr whereas 

dietary lipid exerts a greater influence on adiposity. 

• The growth of parr appears to be under lipostatic regulation. 

• Variable evidence exists that either maturation or smoltification are influenced by 

nutritional thresholds. 

• Parr maturation may have a strong underlying genetic component, which could 

influence the environmental manipulation of maturity. 

• Ration of feed affects the number of fish undergoing the parr-smolt transformation 

with dietary lipid having only a minor effect on the decision to smolt. 

• The use of photoperiod manipulation to create out-of-season smolts may have 

detrimental effects on smolt quality especially where feed is limiting. 
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Chapter 5: General Conclusions and Future Work. 

The present study aimed to investigate the role of photoperiod and diet on growth, 

maturation and smoltification in Atlantic salmon parr. By understanding how such 

environmental determinants and developmental processes interact their role in life 

history strategy could be investigated with such information utilised to increase the 

freshwater productivity of farmed Atlantic salmon. 

5.1. Maturation 

During the current investigation parr maturation was enhanced by a winter 

photoperiod applied during early development, i.e. in the Mayor June following first

feeding, in late Marchi April. This suggested that an early period during development 

was influential in the decision to mature (Saunders et al., 1982; Saunders and 

Henderson, 1988; Thorpe, 1994b; Metcalfe, 1998) and it is probable that such a 

period was only influential during a strict developmental window, with extended 

exposure to the winter photoperiod during this period increasing the incidence of 

maturation. Continued exposure to this regime outside the developmental window 

would not necessarily cause increases in the incidence of maturation. It was also 

found that some of the mature parr were initially amongst the largest individuals 

providing further support for the importance of an early decision period in maturation. 

Given that commercial production utilises increasingly early winter photoperiods for 

the year round supply of smolts (Thrush et al., 1994; Duncan et al., 1998) it may be 

possible that such regimes will influence the seasonal timing of the decision to mature 

and subsequently the incidence of maturation in populations. Between stock variation 
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in the timing of such a decision period may also result in an increased incidence of 

maturation in photoperiodically manipulated stocks. Furthermore, during the current 

investigation it was not possible to conclude whether the decision to mature was 

influenced at a particular chronological age of the fish or during a specific time of the 

year. Therefore further work will now be required to investigate the role of this early 

decision period in order to avoid increased rates of maturation following the out-of

season production of smolts. 

During the current experiments there was the indication that a winter photoperiod 

later in the year (during either August or September) influenced a period when 

maturation was suppressed. Therefore further research will be required to identify if 

stocks with previously high levels of maturation can have their rates of maturation 

suppressed by photoperiod treatment during late summer. 

During investigations into the effects of diet on freshwater development a clear lack 

of maturation was observed. Although some tentative suggestions were drawn from 

the mature fish that were identified it was evident that the between treatment variation 

in the incidence of maturation had been considerably lower than the natural variation 

within the test stock. Dietary, photoperiodic, and thermal regimes all had negligible 

effects on maturation and as such it was suggested that parr maturation may be 

influenced by a strong genetic component, which overrides environmental influences. 

In further support, when fish from the diet treatments were compared to groups 

exposed to similar experimental regimes during the photoperiod experiments (e.g. the 

August photoperiod treatment of experiment I) it could be seen that there was a clear 

difference in the incidence of maturation, with the photoperiod groups recording 
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higher rates of parr maturation. Given that the fish used in the photoperiod 

experiments were from a high grilsing stock, with the diet experiments utilising a low 

grilsing stock, it is possible that stocks with a high rate of grilsing also have an 

intrinsically high rate of parr maturation. It may therefore be more appropriate to 

consider stocks in terms of their rates of early maturation as opposed to their rates of 

grilsing. 

5.2. Smoltification 

Smoltification was dependant on the attainment of a particular size/developmental 

threshold either prior to, or during, a stimulatory winter photoperiod regime (Elson, 

1957; Thorpe et al., 1980; Kristinsson et al., 1985; Skilbrei, 1988). However, it was 

evident that for individuals which had not achieved these thresholds following 

exposure to an 8 week winter photoperiod smolt status and incidence could be 

enhanced by exposure to a 12 week winter photoperiod. From these findings it was 

suggested that a critical size threshold influenced recruitment to the smolting 

population during, and not solely prior to, the winter photoperiod (Duston and 

Saunders, 1997). However, it was also suggested that the magnitude of the critical 

size for smoltification was influenced by the duration of the winter photoperiod. As 

such further work will be required to identify whether a model can be provided that 

will give the most appropriate duration of winter photoperiod to stimulate 

smoltification for the size of a particular fish. Such a model may also allow the 

increasingly early production of smolts by exposing individuals traditionally 

considered too small to undergo smoltification to extended winter photoperiods 

regimes. However, it is also important that when investigating such a model 
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consideration is made to the effects that such photoperiod regimes might have on parr 

maturation and the obvious effects that this will have on seawater adaptability. 

Dietary lipid level had no effect on the incidence of smoltification (Redell et al., 

1988) with the smolt status of individuals only slightly reduced by long-term exposure 

to low lipid inclusions (12.5%) over a range of developmental periods. As such, it is 

clear that a high lipid threshold is not necessary for smoltification (Saunders et al., 

1982) and it is likely that this was due to the different dietary lipid inclusions having 

no effect on growth. It is therefore probable that the commercial goals of freshwater 

development (Le. good growth and a high incidence and quality of smolts) would not 

be affected by a reduction in the current dietary lipid inclusions used during juvenile 

production. However, further investigations will be required to elucidate the effects of 

freshwater dietary lipid inclusion on long-term survival and harvest quality in 

individuals following seawater transfer. Only after such research would it be possible 

to confirm the profitability of reducing the dietary lipid levels fed to juveniles. 

Ration of feed was correlated with the incidence of smoltification with some 

reduction in the hypo-osmoregulatory ability of smolting individuals also found in 

fish fed the lower rations of feed. These results implied that such effects occur 

through ration mediated growth (Storebakken and Austreng, 1987b; McCormick et 

al., 1989; Shearer et al., 1997) highlighting the importance of a size threshold in 

determining smoltification (Elson, 1957; Thorpe et ai., 1980; Kristinsson et ai., 1985; 

Skilbrei, 1988). Therefore research is necessary to identify the most productive 

rations of feed to maximise smolt production. It is also important that this research 

349 



CHAPTER 5: GENERAL CONCLUSIONS AND FUTURE WORK. 

takes into consideration interactions that occur between photoperiod, temperature and 

feed regime, in order to maximise productivity. 

Under a 0+ photoperiod regime smolt status was affected by ration of feed with the 0+ 

treatment also resulting in a higher incidence of smolts compared to the 1 + 

photoperiod. These results indicated that the use of long periods of constant LD24:0, 

prior to short day treatment, enhanced growth (Saunders and Henderson, 1988; 

Stefansson et al., 1989; Solbakken et al., 1994) allowing a large proportion of the 

population to reach the threshold required for smoltification. It was also suggested 

that during the manipulated photoperiod regimes individuals could not utilise long

term energy reserves in order to undergo the morphological, behavioural and 

physiological changes required for full smolt development. As such short-term energy 

stores (e.g. the liver) may have been utilised as the primary energy source, which 

could have subsequently led to incomplete smolt development. Therefore, individuals 

under nutritional stress may not necessarily achieve a good hypo-osmoregulatory 

ability. Further research will be required to elucidate the role of ration of feed in 

smoltification and in particular it will be important to identify how energy reserves 

are mobilised and used during the development of smoltification. Such studies will 

provide important information regarding an individuals' energetic requirements 

during different developmental periods, in particular where manipulated photoperiod 

regimes are used to produce out-of-season smolts. 

5.3. Maturation and smoltification interactions 

Maturation and smoltification were not found to be completely mutually exclusive 

processes as previously suggested by Thorpe and Morgan (1980), Thorpe (1986, 
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1987a) and Herbinger and Friars (1992). Some smolting fish were found to be 

undergoing some level of gonadal maturation and since maturation is thought to be 

the preferred developmental route it is likely that mature fish subsequently developed 

to smolts. It may therefore be possible for commercial farms to use photoperiod 

treatments in order to recondition maturing parr and transfer them to sea shortly after 

gonadal maturation. In the light of the current findings further research will be 

required to elucidate the scope that such photoperiod treatments can provide for 

transferring previously mature parr to sea. Additional work will then be required to 

establish the potential for seawater growth in such individuals and whether they will 

be more susceptible to maturation following transfer. Subsequent cost-benefit analysis 

will also be necessary to establish whether it is financially advantageous to transfer 

mature parr to sea or whether it is more beneficial to cull the individuals from 

population, as is currently undertaken. 

5.4. Endogenous rhythms 

The results of the current experiments imply that growth (Clarke et al., 1978; Duncan 

and Bromage, 1998; Duncan et al., 1999), maturation (Whitehead et al., 1978; 

Bromage et al., 1984; Elliott et al., 1984; Duston and Bromage, 1986, 1987, 1991) 

and smoltification (Clarke et al., 1978; Erikson and Lundqvist, 1982; Stefansson et 

al., 1989; Sigholt et al., 1995) are all under some degree of endogenous control. 

However, the importance of such mechanisms may vary for the respective 

developmental strategies. Furthermore, although maturation occurred in the absence 

of photoperiodic changes when winter photoperiods were applied at different times of 

the year a phase shift in the timing of gonadal recrudescence was not observed. It is 

therefore important that further research is conducted into the role of endogenous 
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developmental rhythms in juvenile salmonids. Indeed, given the current commercial 

use of long periods of continuous light as well as winter photoperiods at increasingly 

early times of the year it will be important to establish how production regimes 

influence endogenous cycles of development. 

5.5. Lipid accumulation 

Whole body fat content was found to be correlated with dietary lipid inclusion 

(Reinitz, 1983; Shearer et al., 1997; Shearer and Swanson, 2000) although no such 

correlation was found for fish growth. However, long-term variations in ration of feed 

did affect the growth of parr and although whole body lipid levels were reduced for 

those fed low rations of feed (i.e. one-third ration) at higher rations (i.e. full and two

thirds ration) whole body fat levels were maintained. This maintenance of body fat 

status through reductions in size provided support for the theory that growth is under 

lipostatic control (Silverstein et al., 1997; Jobling and Johansen, 1999; Johansen et 

al., 2001). 

5.6. Summary 

In commercial aquaculture freshwater productivity focuses on achieving good growth 

rates and a high incidence of fully competent smolts. Such goals are increasingly 

achieved through the manipulation of environmental parameters but the effects of 

such regimes should be considered in depth before such manipUlations are used on a 

commercial scale. 

From the investigations detailed in the current thesis it is likely that in the longer term 

genetic manipulations will provide the most effective method of limiting parr 
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maturation. Environmental influences, in particular photoperiod, will continue to be 

used to control maturation (Berg et at., 1994; Taranger et at., 1998; Porter et at., 

1999a; Duston and Saunders, 1995) but it is likely that a strong genetic component 

underlies such parameters. However, in order to further reduce levels of maturation 

through environmental manipulation more research will be necessary. Furthermore, it 

is clear that whether environmental or genetic manipulations are to be used some 

investigation will be required into the links between the age at maturity of both 

juvenile and adult fish. 

Although the manipulation of photoperiod and nutrition is extensive within salmonid 

aquaculture the effects of temperature on salmonid development are less well 

documented. Although it has been suggested that temperature affects the rate of 

response to particular environmental factors such as photoperiod (Clarke et al., 1978; 

Solbakken et a/., 1994) a clear understanding of its role in particular with regards to 

its seasonality is required. The control of temperature in experimental and production 

facilities can prove problematic (primarily due to the costs of heating and chilling 

water) but through either direct temperature manipulation, or through the out-of

season use of experimental parameters to utilise different components of the yearly 

temperature profile, some investigation into thermal influences is required. 

Similarly, during future experiments it is important that there is consideration of the 

effects that different rearing conditions have on growth and development. During the 

current experiments it was not possible to standardise factors such as tank size, flow 

rates and water quality throughout all of the experimental treatments. Indeed this is 

frequently the case in both production and research populations. The influence of such 
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factors is not currently well understood and it is important that in future studies there 

is a better standardisation of rearing conditions. Furthennore, future research is 

required to elucidate the effects that such factors have on fish development. 

Finally, it is evident that the way in which current salmon research is undertaken 

needs to be built upon. Typically, experiments focus on either freshwater or marine 

development without considering interactions that occur between the two phases. For 

example many of the suggestions for further study detailed in this chapter should only 

be conducted if the long-tenn effects on subsequent adult development are properly 

considered. With the now increased understanding of developmental strategies it is 

important to consider the wider picture and assess investigations throughout the life of 

the salmon. 

This thesis has extended our understanding of freshwater development and the 

interactions which occur to detennine the life history strategies undertaken by 

juvenile Atlantic salmon. It has provided useful infonnation to aid both aquaculture 

and fisheries enhancement programmes although it is clear that substantial further 

research will be required before a more complete understanding of parr growth, 

maturation and smoltification might be provided. 
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. Current Atlantic salmon farming practice induces early smoltification with artificial photoperiod 
regimes. however th<: importance of these photoper.oo. on parr maturation a~d intel'3ctions with 
smoltitication are poorly understood. These questions wen: al!Jressed in the present investigation. 
which examined the effects of photoperiod rnanipubtion on the development. m:lturation and 
smoltification of individually tagged parr. 

Approxirnatdy 9000 salmon parr from a high grilsing stock were exposed to continuous light 
(LL) from first f,,-eding. Three sub-groups of 2400 parr. each sub-group in triplicate tanks, were then 
exposed to an 8-week "winter photoperiod" (LD 10: 14) sbrting on either the 18th May. the 9th 
August or the 20th S~"Ptember (defined. rt."Spectively. as the ~Iay. August and Sc:ptemb.:r groups). 
Following the artificial winter. each group was returned to LL. A four.h group of 1600 fish was 
maintained in replicate tanks on LL throughout 

The highest levels of maturation (approx. 20%) were recorded in the May group. August and 
September groups showed low levels of maturity « 5%) with constant lL throughout resulting in 
intermediate levels «9%). However. only groups exposc:d to the August photop.:riod showed high 
levels of smoltification. 

It is concluded that the photoperiod to which parr ar~ exposed early in their lif.: acts as an 
important trigger for precocious maturation but does not necessarily phase shift the endogenous 
rhythm which is thought to control its timing. Smoltification is strongly influenced by the timing of 

• Corresponding author. 
E-mail address:ikbl@stir.ac.uk (I.K. Berri\l). 
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exposure to winter photoperiod with clear evidence indicating that maturation and smoltification are 
not mutually exclusive processes. 
<0 2003 Elsevier Science B.Y. All rights reserved. 

Keywords: Atlantic salmon; Parr; Maturation; Smoltification; Photoperiod 

1. Introduction 

Understanding the plasticity of the Atlantic salmon, Sa/rno salar, life cycle (Thorpe, 
I 994a; Fleming, 1998; Metcalfe, 1998) is an important determinant of the success of 
its culture. Of particular importance to growth and smoltification is the "precocious" 
maturation of a proportion of parr in fresh water. Early maturation, although rare in 
females (cf. Bagliniere and Maisse, 1985; Hindar and Nordland, 1989) is common
place among males under both wild (Dalley et aI., 1983; Myers, 1984; Bagliniere and 
Maisse, 1985; Whalen and Parrish, 1999) and farmed conditions (Thorpe et al.. 1990; 
Rowe and Thorpe, 1990a; Duston and Saunders, 1992, 1997). However, the environ
mental, physio:ogical and genetic interactions which result in precocious maturation 
are poorly understood. 

Early maturing fish are initialIy among the fastest growing individuals within the 
popUlation (Saunders et al.. 1982; Rowe and Thorpe. 1990a). However, somatic 
gr~wth then decreases in favour of gonadal growth. Population bimodality may occur 
as a consequence of such growth differentials related to life history strategy (Thorpe, 
1977; Bailey et aI., 1980; Thorpe et al., 1980; Porter et aI., 1998). Various 
thresholds of size, growth rate and energetic status suggested for smoltification 
(Elson, 1957; Thorpe et aI., 1980) and maturation (Berglund. 199:!; Herbinger and 
Friars, 1992; Whalen and Parish, 1999; Porter et aI., 1999) are important in 
determining when smoltification and maturation are initiated. Thorpe and Morgan 
(1980) and Thorpe (1986) suggested that smolting and maturation are mutually 
exclusive and that smoltification is the result of a fish failing to mature (Thorpe, 
1994b; Thorpe and Metcalfe, 1998). However, Saunders et al. (1982), Myers (1984), 
Bagliniere and Maisse (1985) and Kristinsson et al. (1985) have all described mature 
fish which smolt in the subsequent spring suggesting that the two are not mutualIy 
exclusive. 

The manipulation of environmental parameters, such as temperature (Adams and 
Thorpe, 1989), photoperiod (Adams and Thorpe, 1989) and feed availability (Rowe 
et aI., 1991; Berglund, 1995) at seasonally critical times, has resulted in reduced 
parr maturation. Photoperiod manipulation is the tool most used by fanns to 
control growth, reproduction and smoltification (Hansen et aI., 1992~ Thrush et aL, 
1994; Duncan et aL, 1998; Porter et aI., 1999; Endal et aI., 2000). However, the 
effects of photoperiod on parr maturation (e.g. Lundqvist, 1980; Saunders nnd 
Henderson, 1988) are still largely unknown and are further addressed in the present 
study. 
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2. Materials and methods 

2.1. Fish stock and rearing conditions 

Experimental fish were of Loch Lochy stock, maintained at the Buckiebum 
Freshwater Research Facility, Scotland (56 ON) under ambient water temperatures 
(Fig. I). From first feeding on 29th March, 800 fish were placed into each of 11 
2_m

2 
tanks which were constantly illuminated (LL) by 500 W halogen lights 

providing 3800 Ix at the water surface and 1200 Ix at the tank floor (0.3 m) 
(photometric sensor, Skye Instruments, UK). Flow rates were 1 1 s-' and oxygen 
levels remained above 8 mg 1-'. Feed was supplied at the manufacturer's recom
mended rate (Trouw Aquaculture) and was distributed ev~nly throughout the light 
phase. 

LL LL 
a) 

LL LL LL 
b) I 

LDIO:l~ 

LL LL LL c) I 
25 LDla:!4 

LL LL LL d) I 
20 

'\JV~\ 
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0 

01/03/00 01105/00 01107/00 01/09/00 01111100 01101101 01103/01 
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Fig. I. Ambient water temperature relative to the four experimental photoperiod regimes. (a) Constant 
illumination (Ll). (b) May photoperiod. (e) August photoperiod. (d) September photoperiod. 
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On 18th May, four experimental treatments were created (Fig. I) within the 11 tanks as 
follows: 

• May winter photoperiod-Triplicate tanks with an 8-week winter photoperiod (LO 
10:14) starting on 18th May. LL thereafter. 

• August winter photoperiod-Triplicate tanks with an 8-week winter photoperiod (LO 
10:14) starting on 9th August. LL thereafter. 

• September winter photoperiod-Triplicate tanks with an 8-week winter photoperiod 
(LD 10:14) starting on 22nd September. LL thereafter. 

• Constant light (LL}-Ouplicate tanks exposed to LL throughout. 

On 25th July, 100 individuals from each tank were PIT tagged (AVID tags, Norco, CA, 
USA) and the adipose fin removed. Size at tagging was approximately 4 g and mortality 
< 5%. Individuals from the May photoperiod group were not tagged as they were too 
small. 

2.2. Sampling regime 

From 25th July, individual fork lengths (± I mm) and weights (± 0.1 g) were 
recorded, under anaesthesia, twice monthly in al1 groups to ensure the identification of 
first maturation and the timing of growth divergences between cohorts. Condition 
factor was calculated as: weight (g) x fork length (cmr 3 x 100. At each sampling, al\ 
non-PIT tagged fish were assessed for maturity, i.e. the presence of running milt 

.At 2-week intervals, from 4th October, 15 randomly selected individuals per treatment 
were exposed to a 96-h seawater (37.5 ppt) tolerance test (Saunders et al.. 1985) and 
mortalities recorded. 

On 4th January 2001, 100 non-tagged individuals per treatment group were killed 
and dissected to quantify internal signs of maturation, i.e. enlarged gonadal tissue. The 
tagged fish from all groups were then randomly divided into two 2_m2 tanks and 
maintained on LL until 7th February 2001 at which point they were measured for fork 
length and weight; sacrificed and maturity assessed by internal examination. 

At the conclusion of the experiment, fish were classified into five cohorts based on 
morphology (Birt and Green. 1986) as fol1ows: 

1. Smolts: Ful1y silvered fish with no parr marks and black margins on the fins. 
2. "Large" smolts: Fully silvered fish with no parr marks with black margins on 

the fins. These fish were significantly larger than the smolts described above (i.e. 
>100 g). 

3. "Silvered" parr: Fish that were partial1y silvered with parr marks that were obscured 
but still visible. 

4. Parr: Fish showing no signs of silvering and with the presence of distinct parr 
marks. 

5. SmaU parr: Fish showing no signs of silvering. with the presence of distinct 
parr marks but that were significantly smal1er than the parr described above (i.e. 
< 10 g). 



LK. Berrill el al. I Aquaculture 222 (2003) 239-252 243 

2.3. Statistical analysis 

Data were analysed using Minitab vI3.l. Changes in weight and condition factor 
were compared using a General Linear Model. Residual plots were used to con finn 
nonnality and homogeneity of variance. A significance level of 5% was applied to 
statistical tests (Zar, 1999). 

3. Results 

3.1. Maturation 

The four photoperiod regimes had clear effects on maturation (Fig. 2). Maturing 
fish were first observed in early October and continued to be identified until the 
conclusion of the experiment in all groups. In the May photoperiod group, the 
percentage of mature males rose sharply between early and mid-November with levels 
reaching approximately 20% of all fish by December and remaining above 20% until 
February. Under constant light, the percentage of maturing fish increased to 8% 
during early November and remained unchanged through to February. August and 
September treatments resulted in maturity levels of approximately 3% from October 
onwards. 

25 

20 

~ IS 

1 
i: 10 

~ 
s 

o 

-.- Constant illumination (LL) 
-0- May photoperiod 
~ August photoperiod 
-c;>- September photoperiod 

01110/00 01111100 01112100 

Date 

01101101 

Fig. 2. Cumulative percentages of precocious males in the four experimentallre3tments. Values were for all non
tagged individuals within the population with maturity based on the presence of running mill 
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3.2. Growth 

Under LL, fish destined to become small parr were significantly smaller than all other 
cohorts in August (Fig. 3a). Smolts were significantly larger than mature parr by mid
September (p < 0.05) with immature parr differing from smolts by early October. 
However, it was not until mid-October that the parr cohort showed significant differences 
between immature and mature fish (p < 0.05). 

In the August photoperiod group, all cohorts except small parr remained of a similar 
size until 16th November (Fig. 3b). Fish destined to mature as parr were significantly 
larger than small parr by July (p < 0.05), whereas remaining cohorts did not differ 
significantly until August. In mid-November, smolts were significantly larger than 
precocious parr (p<0.05). Immature parr only differed significantly from the smolts 
and precocious parr from late November (p < 0.05). 

All the cohorts except small parr in the groups under the September photoperiod 
remained of similar size until mid-December (Fig. 3c). Immature parr diverged from small 
parr in early August with smolts larger by mid-August and mature parr heavier by early 
September (p < 0.05). Smolts and parr had similar weights until mid-December when 
smolts were heavier than mature parr. In early January, the weights of all groups were 
statistically different (p < 0.05). However, by the end of the experiment, in early February, 
the weights of immature parr and smolts were similar (p>o.05). 

In the May photoperiod group, only the growth of immature or mature fish could be 
studied (Fig. 3d). However, no significant differences in weight were observed between 
immature and mature fish (p>0.05) . 

. Under LL, both immature and mature parr showed initial increases in condition factor 
(Fig. 4a) with immature, mature and small parr showing an overall decline in CF, from 
approximately 1.25 to 1.15, by January (p < 0.05). However, with the exception of 
immature and mature parr, which were significantly different from late September 
onwards, no consistent differences occurred between cohorts throughout the experiment. 

In the August photoperiod, CF initially rose in smolt, immature parr and small parr 
groups (Fig. 4b) with all cohorts showing an overall decline in CF by January (p < 0.05). 
Smolts also showed a significant decline during October although no consistent differ
ences were observed between cohorts. 

Smolts, immature parr and small parr all showed initial increases in CF under the 
September photoperiod (Fig. 4c) with only the condition factor of immature parr 
significantly decreasing by January (p < 0.05). Again, no consistent differences were 
observed between cohort groups. 

A May photoperiod resulted in an initial rise in the CF of immature fish (Fig. 4d) with 
an overall decrease by January (p<0.05). However. the CF of mature fish did not decline 
or differ significantly with the CF of immature parr throughout the experiment (p>O.05). 

Between treatment, differences in CF only occurred in immature parr and smolt 
cohorts. For immature' parr, the CF of LL and August photoperiod groups remained 
similar, with the CF of both groups higher than that of the immature parr from the 
September photoperiod. These differences remained from July until late September for the 
LL group and throughout the experiment for the August photoperiod fish. The CF of 
smolts only differed between August and September photoperiod groups with August 
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Fig. 3. Changes in weight of the four cohorts of individually PIT tagged fish following exposure to constant 
illumination (tL) (a). August photoperiod (b). September photoperiod (e) and May photoperiod (d) regimes 
(mean ± S.E.M., n - 100 for constant illumination, August photoperiod and Sqltember photoperiod BJUUps. 
n - 30 for May photoperiod fish). For the May photoperiod group. only mature and immature fish are sho\\'1\ due 
to the absence of lagging in that group. Values with difTerentletter labels are significantly different (p < 0.05). 
Lettering has been stacked in the same order as the graph lines. 
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Fig. S. Percentage survival following a 96-h seawatc:r (37.S ppt) tolerance test for fi"h expoiCd to the four 
photoperiod regimes. 

photoperiod smolts having a higher CF from November until the end of the experiment 
(p<0.05). 

3.3. Seawater tolerance 

Survival rates following seawater exposure showed variable results in the lL group as 
well as in the May and September photoperiod groups throughout the experiment (Fig. 5). 
However, fish exposed to an August winter photoperiod showed increases in survival from 
4th October, reaching 100% during late November, before declining slightly in early 
January. 

3.4. Cohort structure 

Photoperiod manipUlation resulted in distinct differences in population structure (Table 
1). LL resulted in 92% of the popUlation remaining as parr, including 10% that matured. 

Fig. 4. Changes in condition factor of the four cohoN of individually PIT-tagged fish following exposure to 

constant illumination (LL) (a), August photoperiod (b). Septc:rnbcr photoperiod (c) and t.l3y photoperiod (d) 
regimes (mean ± S.E.M., /I- 100 for constant illumination, August photoperiod and Septc:rnbcr photoperiod 
groups, /I- 30 for May photoperiod fish). For the May photoperiod group, only mature and immature fish are 
shown due to the absence of tagging in that group. Values with different 1enc:r labels are signific:lIl1ly dIfferent 
(p < O.OS). tenering has been stacked in the same ordc:r as the graph lines. 
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Table I 
The cffeclS of varying the timir.g of exposure to an 8-week winter photoperiod on the cohon structure (!las.:d on 
c:\tcmaJ appearance) and into:mal signs of marur:llion of non-tagged in.!iviJuals wilhin the population at the 
conclusion of the e:\periment (4th January 200!) 

Const:lnt illumination May photIJreriod August rhotoperiod September photoperiod 

Imm (%) Mat (%) Imm ('Yo) Mat (~.) Imm (0/.) Mat (%) Imm (e,.) Mal ('Y.) 

"Large" smolts - 14 " SmollS I 1 19 1 
Silvered parT 6 10 3 30 7 28 
ParT 82 10 38 11 13 7 SO 9 
Small parT 2 13 S 21 2 12 I 

Refer 10 Materials and methods for det:lils of cohort nomenclature. Imm denoles immature fi"h. Mat denotes 
mature fish. 

The May photoperiod treatment caused 49% of the population to develop as parr. The 
remainder of the population included fish from all cohort classes ar.d it was only in this 
group where the presence of "large" smolls was observed. Every cohort in this group 
exhibited mature individuals. A wintc::r photoperiod in August provided the highest 
percentage of immature smolts (19%), silvered parr (30%) and small parr (21 %). Again. 
all cohort classes included maturing fish. A winter photoperiod in September resulted in 
the majority of fish remaining as parr (59%) with 2S% appearing as silvered parr. Small 
parr were also observed (13%) but the incidence of maturing individuals was restricted to 
parr (9%) and small parr (1 %). 

4. Discussion 

Varying the time of exposure of Atlantic salmon parr to 8 week pc!riods of s~ort <!ays 
resulted in signiticant effects on both smoltification and maturation with early exposure 
resulting in the highest levels of maturation. 

The timing of maturation in salmon ids is said to be most stimulated by an initial 
period of long days followed by a period of short days (Bromago:: et aI., 198~; Elliott 
et aI., 1984; Takashima and Yamada. 1984). In the present work, high levels of 
maturation were observed in the May photoperiod group confirming the importance of 
a reduction to short days in the control of maturation in parr development. However. 
the absence of high levels of maturing fish in the No'O groups exposed to winter 
photoperiods in August and September indicates that a period of short days is not 
necessarily required for maturation to be completed. Eriksson and lundqvist (19(\0) 
noted that a sudden change from long to short days did not necessarily induce 
maturation in Baltic salmon parr. However. Berg et al. (I9~4). reported similar results 
to the present study. with a 7-week period of LD 14:10 resulting in high b'els of 
maturation in Atlantic salmon parr. The early period of reduced daylength may initiate 
reproductive development or phase shift the reproductive cycle (Duston and Bromage. 
1986). It has been shown that photoperiod manipulation (Poner et a!.. 1999; T3ran~er 
et al.. 1999) and feeding restriction (Rowe and Thorpe, 199001; Berglund, 1995; 
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Hopkins and Unwin, 1997) at seasonally critical times, can suppress maturation with 
springtime being suggested as the critical perioe (Rowe and Thorpe, 1990a; Ber~lund. 
1995; Taranger et al.. 1999). However, this implies that the developmental choice to 
mature has already been taken and it may be that it is not the timing that is as 
important as the developmental stage of the fish. Furthermore, it is well documented 
that maturing fish are initially among the fastest growing individuals within a 
popUlation (Saunders et aI., 1982; Dalley et al.. 1983; Rowe and Thorpe, 1990b; 
Berglund. 1992) and it seems from the present work that the period, shortly after first 
feeding, may be an important one in the decision to mature. 

Under LL, maturation still occurred indicating that maturation is controlled by an 
endogenous rhythm, entrained by photoperiod, as suggested by Eriksson and Lundqvist 
(1982), Bromage et al. (1984), Elliott et al. (1984) and Duston and Bromage (1986). 
However, the timing of maturation between treatment groups was similar, therefore a 
phase shift of the rhythm had not occurred. 

Previously, Thorpe and Morgan (1980) and Thorpe (1986) suggested that smoltifi
cation and maturation were mutually exclusive and smolting occurred as a consequence 
of failing to mature (Thorpe, 1994b; Thorpe and l\letcalfe, 1998). The results presented 
here, as well as those of Bagliniere and Maisse (l985), Whalen and P~:Tish (1999) and 
Utrilla and Lobon-Cervia (1999) show that Liese processes are not exclusive. Salmon 
need to attain a threshold size before they can either mature (Berglund. 1992) or smolt 
(Elson, 1957; Skilbrei, 1988) and Saunders et al. (19~C) suggested that Lie maturation 
threshold is lower than that for smoltification. Furthemlore, Lie reduced growth rate of 
maturing fish (Rowe and Thorpe, 1990b) may preclud\! such indh,jdt.:als from smolting. 
]n the current study, the May and August photoperiod:> were proceeded by long p<!riods 
of constant light and under such conditions of good gro\vth it has been suggested that 
certain fish may first attain a suitable size to mature, and then continue to grow such 
that smoltitication is also possible (Vil\;:real et a1., 19S8; Solbkk<!n et aI., 199~). 
Furthermore, templlrature is an important factor in growt.i (Herbing~r anJ friars, 1992; 
Duston and Saunders, 1997) and as such can be a dllt~rminant in the decisio:l to both 
mature (Adams and Thorpe, 1989; Solbakken et aI., 1994) ar.d smolt (Solbakken et aI., 
1994; Duston and Saunders, 1997). In the May photoperiod group, the rerioJ of 
increased ambient temperature, prior to the application of the winter photoperiod, as 
well as elevated temperatures during the applied winter and spring/summer may h:lVe 
enhanced the number of fish choosing to mature. For August photoperiod fish, it is 
possible that the decline in temperature following the return to LL may have resulted in 
fish opting to undertake smoltification as opposed to maturation. For Scph!mber 
photoperiod fish, it seems that the winter photoperiod and subsequent LL o.:curred at 
temperatures which were too low to greatly enhance the numbers of either mature or 
smolting fish. 

Finally, the feeding regime applied to treatment groups may have influenced the 
decisions to both mature and smolt. All groups were fed at the same rate t!'.roughout 
the respective light phases of the specified photoperiods. Higgins and Talbot (1985) 
noted that photoperiod was influential in regulating food intake, and indeed in the 
current study fish exposed to winter photoperiod regimes were fed over a shorter 
period of time (although total feed rates were not reduced). During artificial winter 



2S0 IX Berrill el al. / Aquaculturt 112 (2003) 239-151 

photoperiods, growth is always suppressed and therefore it is unlikely that the feeding 
regime curtailed growth rates. 

In conclusion, the current study shows that photoperiod has a major influence on the 
incidence of precocious maturation as welt as smoltification in Atlantic salmon parr. It also 
showed that some individuals were able to mature and then undergo smoltitication 
showing that the two processes are not mutually exclusive. A period of short days, early 
in development, increased the percentage of the population which showed early matura
tion. These results suggest that under current farming conditions the use of increasingly 
early winter photoperiods, to further advance smoltification, may result in increased 
incidences of precocious maturation. 
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