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Abstract 

Biological invasions are a major driver of global change, for which models can attribute causes, assess 

impacts and guide management. However, invasion models typically focus on spread from known 

introduction points or non-native distributions and ignore the transport processes by which species 

arrive. Here, we developed a simulation model to understand and describe plant invasion at a 

continental scale, integrating repeated transport through trade pathways, unintentional release events 

and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used 

the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a 

globally-invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations 

starting in 1950 accurately reproduced ragweed’s current distribution, including the presence of 

records in climatically-unsuitable areas as a result of repeated introduction. Further, the model outputs 

were strongly correlated to spatial and temporal patterns of ragweed pollen concentrations, which are 

fully independent of the calibration data. The model suggests that recent trends for warmer summers 

and increased volumes of international trade have accelerated the ragweed invasion. For the latter, 

long distance dispersal because of trade within the invaded continent is highlighted as a key invasion 

process, in addition to import from the native range. Biosecurity simulations, whereby transport 

through trade pathways is halted, showed that effective control is only achieved by early action 

mailto:dcha@ceh.ac.uk
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targeting all relevant pathways. We conclude that invasion models would benefit from integrating 

introduction processes (transport and release) with spread dynamics, to better represent propagule 

pressure from native sources as well as mechanisms for long-distance dispersal within invaded 

continents. Ultimately, such integration may facilitate better prediction of spatial and temporal 

variation in invasion risk and provide useful guidance for management strategies to reduce the 

impacts of invasion. 

 

Introduction 

Human transport of species beyond their native ranges and their subsequent release, establishment and 

spread is one of the major components of global environmental change (Mack et al., 2000). Invasive 

non-native species are important drivers of biodiversity loss, alteration of ecosystem function and 

degradation of ecosystem services (Vilà et al., 2011). Particular non-native species also directly 

impact human wellbeing, for example being detrimental to public health or agriculture (Pyšek &  

Richardson, 2010, Smith et al., 2013). As such, there has been considerable interest in developing 

models that capture our understanding of invasion (Gallien et al., 2010, Yemshanov et al., 2009). Part 

of the motivation is to predict ongoing spread to anticipate ecological and economic costs of invasion 

(Hamaoui-Laguel et al., 2015). Models can also provide useful guidance for planning management or 

control strategies to reduce these impacts (Richter et al., 2013b). 

In reviewing biological invasion models, Gallien et al. (2010) distinguished between two major 

approaches. The first comprises broad-scale screening with species distribution models. These 

statistical niche models represent how species’ occupancy probability responds to climate and other 

factors and predict where the environment is suited to invasion (Thuiller et al., 2005). The second 

approach comprises more strongly process-based models for invasion dynamics. These are based on 

population growth and dispersal – the two major demographic processes influencing invasion 

(Neubert &  Caswell, 2000). Recently, ‘hybrid models’ have been developed to capitalise on the 

strengths of both approaches be representing the effects of environmental heterogeneity on the 
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demographic processes underlying invasion (Merow et al., 2011). However, despite much progress, 

these models are still typically restricted to spread from a known location of entry or already-

established non-native distribution and ignore anthropogenic transport, release or introduction 

processes (Yemshanov et al., 2009). 

We argue that a greater integration of introduction and spread models is needed for several reasons. 

Firstly, repeated introduction to multiple areas is a feature of many invasions (Gaudeul et al., 2011) 

and can increase genetic diversity, adaptive potential and invasion success (Dlugosch &  Parker, 

2008). Multiple introductions should also increase the rate that non-native species with limited 

dispersal abilities can track and respond to climatic and other environmental change. Furthermore, 

suitable areas may remain uninvaded if they receive little anthropogenic propagule pressure for 

introduction, while high propagule pressure may indicate apparent invasion in areas of low suitability 

(Lockwood et al., 2005). Both circumstances cause mismatch between the species’ observed invasive 

distribution and its true habitat or climatic niche, which will mislead models that do not account for 

such processes (Chapman et al., 2014). Finally, propagule pressure may change as a direct 

consequence of invasion. As a species establishes in part of an invaded continent, the same transport 

mechanism that imported the species from the native range may begin to operate within the invaded 

continent. Therefore anthropogenic transport processes may also become an important source of long-

distance dispersal within an invaded region. 

Given the need for better model integration, how might this be achieved? Many existing ‘hybrid 

models’ for invasion (Gallien et al., 2010) comprise simulation models with stochastic dispersal 

components representing the advent of new invasive populations via dispersal from established 

populations (Merow et al., 2011). In general, these should be well suited for the inclusion of new 

algorithms for stochastic introduction or entry events, which can readily be implemented alongside 

algorithms defining population growth and dispersal. Yemshanov et al. (2009) proposed that an entry 

sub-model should represent the likely transport pathways for the invading organism and the resulting 

spatio-temporal variation in introduction or entry probability in the modelled region. International 

trade is the principal transport mechanism for many, if not most, non-native species (Bradley et al., 
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2011, Hulme, 2009) and so economic data on networks of commodity movements between regions or 

countries may be used to define propagule pressure from transport pathways (Seebens et al., 2013). 

Such models may also have potential to consider how biosecurity measures during transport (e.g. 

border inspections, commodity treatments etc.) affect the resulting probabilities of species arrival. 

Here, our aim is to develop a simulation model that integrates the accidental transport, establishment 

and spread of common ragweed (Ambrosia artemisiifolia L.) in Europe. Native to North America, 

ragweed has invaded human-modified habitat in Europe, Asia, Australia and South America (Bullock 

et al., 2012, Essl et al., 2015). Where large populations establish, ragweed is a serious agricultural 

weed and severely impacts public health via highly allergenic pollen (Prank et al., 2013, Smith et al., 

2013). Ragweed seed is a common contaminant of internationally traded planting and bird seed 

commodities (Bullock et al., 2012, EFSA Panel on Contaminants in the Food Chain (CONTAM) et 

al., 2010) and historical and genetic analyses have identified strong signatures of repeated 

introduction to Europe (Chauvel et al., 2006, Gaudeul et al., 2011). As with many invasive species 

(e.g. Petitpierre et al., 2012) another key mediator of ragweed invasion is climate, and there is concern 

that climatic warming will allow expansion of ragweed’s invasive distribution and impacts (Bullock et 

al., 2012, Chapman et al., 2014, Cunze et al., 2013, Hamaoui-Laguel et al., 2015). Therefore, we 

developed the model to integrate transport and release through seed trade pathways with climatic 

effects on population growth. This allowed us to simulate the interacting effects of recent trade 

patterns, climate change and biosecurity measures (which involve preventative steps to reduce the risk 

of accidental transport and release to the wild of ragweed) in mediating the invasion. 
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Materials and methods 

Model overview 

We developed a simple model to simulate ragweed invasion of Europe through repeated transport on 

trade pathways, unintentional release events and the population dynamics and local anthropogenic 

dispersal that drive subsequent spread (see Fig. S1 and S2 for overviews). Importation from the native 

range and transport from already-invaded regions was modelled stochastically, based on volumes of 

international bird and planting seed trade from the native and invaded countries. Establishment and 

spread were modelled through a combination of deterministic adult and seedbank population 

dynamics and stochastic neighbourhood seed dispersal. The population dynamics were forced by land 

cover and inter-annual variation in climate and trade. The model was calibrated against the current 

invasion, validated against independent data and then used to simulate the impact of hypothetical 

historical biosecurity scenarios. The model contained several simplifying assumptions, which reflect 

the lack of more detailed information on certain processes, but also the need to maintain tractability 

and avoid excessive parameterisation (Grimm et al., 2005). We specify these below and address them 

further in the Discussion. 

 

Ragweed transport model 

Imports of bird seed and planting seed (for sowing crops) are known to be the principal pathways for 

ragweed transport (Bullock et al., 2012, Chauvel et al., 2006, EFSA Panel on Contaminants in the 

Food Chain (CONTAM) et al., 2010). In the absence of more detailed data, our model assumed that 

exported seed is gathered evenly across cropland in the exporter country, transported through 

international trade networks and then distributed evenly across the importer country’s urban areas (for 

bird seed) or cropland (for planting seed). These are the principal habitats for ragweed invasion 

(Bullock et al., 2012). Therefore, we modelled transported propagule pressure as a function of trade 

flows and ragweed abundance in cropland in the source countries. Exporter sources comprised the 

USA - capturing nearly all of ragweed’s native range and all potentially-invaded European countries. 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

For the bird seed pathway, we were able to obtain relevant trade flow data in the form of exports from 

the USA to Europe (see below). Therefore we modelled the bird seed transport pathway only from the 

native range. The model assumes that bird seed is only used within urban areas, where the great 

majority of consumers live. Using the cumulative distribution function of the exponential distribution, 

a simple survival function for constant risk of importation per unit of imported bird seed over one 

year, we formulate the probability of transport and release with bird seed ( ) to grid cell i in year t 

as: 

 

where  is the bird seed import rate (tonnes km
-2

) from the USA to urban land in X (the 

country to which i belongs) in year t, Ui is the proportion urban cover in i and κ is a scaling parameter. 

The quantity  is the hazard function for no introduction occurring in that grid cell and 

year. 

For the planting seed pathway we obtained data on seed imports from the native range (USA) as well 

as bilateral trade flows within Europe, allowing us to use a similar model for importation from the 

native range as well as transport from already-invaded parts of Europe. Because the ragweed 

population of European countries changed over time, we included a term representing the relative 

ragweed contamination of planting seed gathered and exported from each country, defined here as the 

amount of ragweed seed per unit area of cropland. For the USA this was a constant model parameter, 

ΩUSA. For European countries, the contamination for country X in year t, ΩX,t depends on its current 

level of cropland ragweed infestation, 

 

where j indexes the grid cells within country X. N is the adult ragweed population size and F is its 

fecundity (see below), so their product represents seed production. C is the proportion cover of 

cropland, so that C + U is the invadable proportion of the grid cell (Richter et al., 2013b). We 
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assumed cropland and urban areas support similar ragweed populations. Therefore the numerator 

sums ragweed seed production from infested cropland, assuming an even distribution between crops 

and urban, and the denominator is the total cropland in the country (in grid cells).  

 

The total propagule pressure from transport of planting seed into country X (KX,t) was modelled as the 

product of the contamination index and planting seed import rate  (tonnes km
-2 

cropland), 

summed over all source countries modelled (USA and Europe, indexed by Y): 

 

Finally the probability of colonisation from planting seed ( ) to a grid cell i in year t was 

formulated equivalently to the model for the bird seed pathway: 

 

where ν is a scaling rate parameter for the planting seed pathway. Note that it is straightforward to 

calculate  arising from either native or invaded propagule pressure to contrast the 

importance of both types of transport. 

The combined probability of a new population arising through both trade pathways is therefore: 

 

The model requires input data on land cover and bird and planting seed trade flows. Gridded land 

cover was taken from the Global Agro-Ecological Zones portal (Fischer et al., 2012). Bilateral trade 

data was obtained from the Global Agricultural Trade System 

(http://apps.fas.usda.gov/gats/default.aspx) (Fig. 1). Seed exports from the USA to each European 

country were available for 1991-2010 for bird seed (commodity 1206000090, sunflower seed 

excluding human use) and for 1967-2010 for planting seed (aggregate group 0120AT). Bilateral 

http://apps.fas.usda.gov/gats/default.aspx
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import volumes of planting seed for European countries were obtained for 1992-2010 (older data are 

available, but are incomplete). Prior to the changed status of certain countries (former USSR, 

Yugoslavia and Czechoslovakia), import rates of the former country were applied to all modern-day 

constituents. To account for incomplete temporal coverage of the trade data during simulations, we 

randomly sampled from the first ten years of trade data to simulate years prior to the beginning of the 

time series. 

 

Invasive spread model 

The spread model combines deterministic population dynamics with stochastic dispersal over a 

discrete annual time step. The first computation in each year t is establishment of the adult population 

N from the seedbank B in each grid cell, indexed by i:  

 

where Hi = Ci + Ui and represents the proportion invadable and λ scales the increase in establishment 

of adults with the seedbank density. N was specified with the general form of , which 

increases asymptotically from 0 and 1 with increasing values of x. Therefore N represents the 

proportion of the grid cell infested by ragweed, i.e. it is an infested area and not strictly population 

size, and is limited in the model by a small seedbank. Establishment from transported or dispersed 

seeds is accounted for by the stochastic binary variable δ, which is set to 0 if there is no transport or 

dispersal into the grid cell or to a small value (β = 0.0001) if immigration occurs from either process. 

Next, we compute the change in relative seedbank density B, accounting for its persistence at rate α 

and input of new seed from the adult population: 
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Seedbank addition from the adult population is in proportion to a fecundity index F, depending on the 

climate (see below). Note that we divide by H, so B represents the seedbank density within the 

invaded part of the grid cell. This reflects the assumption that ragweed’s extremely limited primary 

dispersal ability (Bassett &  Crompton, 1975) means nearly all seeds are deposited within the already 

invaded area, and means the maximum population growth rate is independent of H. We assume 

extinction when B falls below β/4, preventing persistence of tiny seedbanks in highly unsuitable grid 

cells. 

The fecundity index F captures the climatic niche of ragweed. We specified fecundity limitation by 

warm winter temperature, cool summer temperature and low summer moisture availability (Essl et al., 

2015). Ragweed seeds require chilling to break dormancy (Willemsen, 1975) so warm winters should 

delay germination, causing adult plants to be small and of low fecundity. Low summer temperature 

retards seed maturation and is considered an important determinant of ragweed’s range (Chapman et 

al., 2014, Reznik, 2009). Drought during the growing season affects ragweed survival (Hodgins &  

Rieseberg, 2011) and limits colonisation of dry environments (Reznik, 2009, Storkey et al., 2014). 

Therefore, F was modelled with logistic functions for winter temperature W (coldest mean monthly 

temperature from January to March – the time of seed stratification), summer temperature S (mean 

monthly temperature from July to September – the time of flower and seed maturation) and moisture 

availability M (ratio of total precipitation to potential evapotranspiration, estimated following 

Hargreaves et al. (1985), from June to August – the period of maximal growth and drought stress): 

 

Parameters a and b are inflexions and slopes, respectively. The climatic variables W, S, and M were 

derived from gridded monthly temperature and precipitation data for each year between 1950 and 

2010 from the E-OBS database (Haylock et al., 2008). Some parts of Europe had missing data in the 

earlier of these years, which we filled with their average values over the whole time period. 
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Ragweed long-distance seed dispersal between neighbouring populations at this scale is mainly 

anthropogenic, and caused by movements of machinery and soil (Bullock et al., 2012). In a previous 

study of spread in Austria this was modelled with a power law kernel (Richter et al., 2013b) which we 

used here to ensure realistic spread rates. Dispersal pressure J was calculated by summing seed 

production in the previous year (product of adult infestation N and fecundity F) in a set of 

neighbouring cells Λi, downweighted by their distance from the focal cell (d km) according to the 

dispersal kernel g: 

 

The parameters of the kernel g were fixed at values fitted in the previous study: d0 = 0.63 km and 

γ = 2.02 (Richter et al., 2013b), but re-scaled by the squared ratio of grid cell surface areas in both 

studies (100/35). Rescaling approximately corrects for the scale-dependence of emigration and 

immigration (Chipperfield et al., 2011). To improve computational efficiency, the dispersal 

neighbourhood Λ only contained grid cells within 500 km of the focal cell, at which distance dispersal 

is extremely rare (g = 1.1 x 10
-5

). 

Using an equivalent model for dispersal through trade, the seed dispersal probability into the grid cell 

increased with J scaled by the parameter μ: 

 

Model calibration 

The model was calibrated or fitted to the current distribution of ragweed, using a pattern-oriented 

approach related to the rejection sampling used in Approximate Bayesian Computation (Beaumont, 

2010). The distribution was constructed on a 10x10 km grid with the European Terrestrial Reference 

System 1989 Lambert Azimuthal Equal Area projection (Fig. 2). An equal area projection avoids 
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increases in grid cell area at high latitude that could confound the modelled dynamics. The primary 

source was the database of occurrence records from 1991-2010 compiled by Bullock et al. (2012) and 

updated by Chapman et al. (2014). Underlying this presence map is massive variation in population 

size, clearly evidenced through pollen monitoring (Prank et al., 2013, Skjøth et al., 2013) and allergy 

reports (Déchamp et al., 2009). To represent this, we assigned records as representing large and 

damaging versus small and casual populations. For France, this was achieved using high quality 

records differentiating heavily and lightly invaded locations (Petermann, 2011). For the Pannonian 

Plain, known to be the most invaded region in the EU (Smith et al., 2013), ‘region grouping’ on the 

presence records was used to assign all records connected to the Pannonian region as ‘large’ 

populations. This may have overestimated ragweed invasion at the periphery of the group but better 

data were not available. Cruder polygons depicting heavily or lightly invaded regions in Romania, 

Ukraine, Moldova and Russia were obtained from published sources to fill major gaps in the 

distribution (Afonin et al., 2008, Hodisan, 2011). For Italy, the main data source was ragweed 

populations recently surveyed for the newly invasive beetle Ophraella communa (Müller-Schärer et 

al., 2014). All these records are from the only region of Italy with high pollen counts (Smith et al., 

2013), so we assumed they represent large populations. We consider the resulting map to be the best 

available high-resolution information on ragweed’s distribution at the European scale (Fig. 2). 

However, for our analysis we differentiated between countries where we considered ragweed was 

well recorded and those where recording was less reliable, consisting of regional polygons or sparse 

records (see Chapman et al., 2014). 

For calibration, we defined uniform ranges for the 12 free parameters (Table 1), based on plausible 

biological limits and preliminary model simulations, and randomly drew 10000 individual 

parameterisations. Five replicate invasions were simulated with each parameterisation from 1950-

2010, and the mean adult infestation in 2010 was compared to the observed distribution. Rather than 

identify a single best parameterisation we instead averaged over the top 50 (0.5%) parameterisations, 

to account for parameter uncertainty and the stochasticity in individual model runs. To quantify model 

fit, we calculated the sum of squares difference between the locations of large ragweed populations 
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(coded large = 1, other = 0) and the simulated population size in 2010 (Gilbert et al., 2004). We only 

used the ‘large’ populations, since we were only concerned with accurate prediction of damaging 

invasive populations and wanted to ensure the simulated state of invasion by 2010 approximately 

matched the current extent of observed invasion. Because of variation in ragweed recording, we 

calculated separate sum of squares values for the regions where ragweed was considered as well-

recorded (‘good data’) and those regions where we considered otherwise (‘poor data’), based on the 

quality and quantity of contributing data obtained for each country (Bullock et al., 2012). Their 

weighted mean was used as an overall measure of performance, giving treble weighting to the ‘good 

data’ area. 

Simulations were initiated in 1950 with a mainly ragweed-free Europe. Although ragweed was 

recorded in Europe since the 19
th
 century, most range expansion has occurred since 1950 (Bullock et 

al., 2012, Csontos et al., 2010). We lack good information on the status of earlier populations and so 

preferred to simulate invasion from an empty map. The exception to this was southern Russia, where 

as early as 1940 there was major invasion throughout Stavropol and Krasnodar provinces (Reznik, 

2009). To account for this, simulations were initiated with a moderate seedbank (B = 1) in grid cells in 

both provinces, from which populations could grow or decline according to their suitability for 

ragweed. 

Model validation 

To validate the model outputs against data that are independent of the distribution data used for model 

calibration, we obtained total annual aerial Ambrosia pollen counts from monitoring stations across 

Europe. Daily pollen counts for each year between 1995 and 2010 were obtained from 56 stations in 

Bulgaria France, Hungary, Italy, Poland, Serbia and Switzerland. Pollen counts for 2010 were also 

obtained for 139 stations, extending spatial coverage into Croatia, Romania, Russia, Slovakia, 

Slovenia and Ukraine. For quality assurance, we calculated the proportion of days that were missing 

data within the ragweed pollen season for each station-year combination. If more than 25% of days 

were missing data, that station-year combination was excluded. Otherwise, the pollen count over the 
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non-missing days was corrected by dividing by the proportion of days with data. This procedure 

meant that 42.7 % of the 1995-2010 data and 33.8% of the 2010 data were excluded. The reduced 

dataset represented 47 stations for the 1995-2010 data and 92 stations from 2010 (see map in Fig. S3). 

Pollen production, emission and long range transport were not represented in our model and have an 

impact on the pollen counts recorded at the stations (Hamaoui-Laguel et al., 2015, Prank et al., 2013). 

Although the majority of ragweed pollen is deposited close to its source, about 1% of released pollen 

remains airborne for >1 km from the source edge (Raynor et al., 1970). Consequently, we expected 

that the simulated ragweed population size and fecundity in the landscape around each station should 

be correlated to the station data, as is assumed when estimating ragweed pollen source inventories 

(Skjøth et al., 2010, Thibaudon et al., 2014). Therefore we compared the pollen counts with the mean 

simulated population-fecundity (product of adult population and fecundity, NF) in the grid cell in 

which each station was located. Results were qualitatively identical if N was used as the comparator 

rather than NF. 

Hypothetical biosecurity simulations 

The model does not account for biosecurity measures, such as seed certification regulations (Winge, 

2012), that may have reduced ragweed introduction pressure over time. Because of this, and also to 

establish the general potential for biosecurity to limit invasive spread, we ran hypothetical historical 

biosecurity simulations with the calibrated models. For this, we halted the process of transport and 

release through trade after various years during the simulations, and compared the resulting 

population sizes in 2010 to those produced by the default version of the model. We ran two alternative 

biosecurity scenarios: (1) biosecurity applies to both the planting seed and bird seed pathway, and (2) 

biosecurity applies only to the planting seed pathway. The latter was considered because there is 

evidence of widespread ragweed contamination of bird seed throughout the simulation period (EFSA 

Panel on Contaminants in the Food Chain (CONTAM) et al., 2010), while levels of compliance to 

European Directives on planting seed certification have apparently been high (Winge, 2012).
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Results 

Model calibration 

When calibrated by averaging over the top 0.5% of random candidate parameterisations, the model 

outputs showed a very strong correspondence to the observed distribution of large invasive 

populations (Figs. 2, 3a). To quantify model accuracy, we applied the area under the receiver 

operating characteristic curve (AUC) statistic. Because AUC is not sensitive to rank-preserving 

transformations of the model prediction, such as a function translating predicted population sizes into 

detection probabilities, it is an appropriate measure of the models’ ability to discriminate various 

subsets of the data (Lobo et al., 2008). Across the whole modelled domain, the discrimination ability 

(AUC) between all ragweed records and grid cells without records (‘absences’) was AUC = 0.892, 

meaning there was an 89.2% probability that a randomly selected observed presence has a higher 

modelled population size than a randomly selected ‘absence’. The discrimination between grid cells 

with records of damagingly invasive versus casual or small populations (see Fig. 2) was AUC = 0.820 

and the discrimination between casual or small records and ‘absences’ was AUC = 0.835. 

The most important parameters for calibration were those defining niche responses to summer 

temperature and moisture, adult establishment from the seedbank and dispersal from neighbouring 

populations (Table 1). In the simulations, ongoing spread in heavily invaded regions was primarily 

caused by dispersal from neighbouring populations rather than transport through international trade 

networks (Fig. 3c-f, Fig. 4d). By contrast, small and casual populations tended to occur in areas where 

the model predicted high propagule pressure through trade but were rarely reached by neighbourhood 

dispersal (Fig. 3c-e, Fig. 4d). Imports from North America were primarily affecting central and 

western Europe, while seed imports from already-invaded countries were relatively more important 

for spread into north-eastern Europe (Fig. 3c-e). 

Variability in climate and trade patterns over the simulation period played a key role in the modelled 

invasion. Climate variability had a greater effect on the seedbank than the adult population, the latter 

being buffered by the persistent seedbank (Fig. 4a). However climate trends caused average adult 
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fecundity to increase over time (Spearman’s ρ = 0.309, P = 0.016), especially after 1980 (Fig. 4b). 

Planting seed imports from the native range peaked around 1990, while releases because of trade 

within Europe increased over time (Fig. 1a) which, in parallel with the growing invasion, increased 

the importance of the invaded range for generating new colonisations (Fig. 4c). 

Model validation 

Comparison with independent pollen monitoring station data suggested our model predicted well the 

changing distribution of ragweed at a European scale. The temporal trend in normalised annual 

Ambrosia pollen counts from 1995-2010 was strongly correlated to the simulated trend in ragweed 

population-fecundity (Spearman’s ρ = 0.694, P = 0.004) (Fig 5a). There was also a strong spatial 

correlation between pollen counts in 2010 and the simulated population sizes (Spearman’s ρ = 0.720, 

P < 0.001), which was even stronger within the ‘good data’ region (see Fig. 2) where ragweed was 

most well-recorded (ρ = 0.804, P < 0.001) (Fig. 5b). 

Hypothetical biosecurity simulations 

Simulations with historical biosecurity measures had a greater effect on the extent of ragweed’s 

modelled invasion if the action was initiated earlier in the invasion (Fig. 6). The importance of the 

bird seed pathway was illustrated when comparing the scenario in which biosecurity applied to both 

pathways with the more realistic scenario where only the planting seed pathway was controlled (Fig. 

6). Preventing introductions through both pathways caused a much greater reduction in ragweed 

invasion than when only the planting seed pathway was targeted. 

The effect of simplifying the model by removing the anthropogenic transport process on model 

discrimination accuracy was also calculated. Biosecurity on both pathways starting in 1950 markedly 

reduced the AUC values (ragweed record vs absence ΔAUC = -0.056, large vs casual record 

ΔAUC = -0.112, casual vs absence ΔAUC = -0.055) indicating that repeated introduction through 

trade contributed towards the fit of the model.
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Discussion 

The model accurately simulated Ambrosia artemisiifolia’s current invasive distribution across Europe. 

Over the past three decades, growing international trade has increased modelled propagule pressure 

through the planting and bird seed trade pathways, but with a shift in dominance from native sources 

to importation from invaded countries. In parallel, the model indicates that the recent trend for warmer 

summers has increased climatic suitability for ragweed invasion. These model outputs coincide with 

the period in which ragweed has rapidly extended its range and impacts in southeast Europe and 

started to establish isolated populations further north (Bullock et al., 2012, Déchamp et al., 2009, 

Hodisan, 2011, Smolik et al., 2010) supporting the hypothesis that trade and recent climate change 

have driven ragweed’s invasion. 

More generally, we consider that our model contains a number of biologically-important features not 

present in previous computational models for biological invasions, including those for ragweed. From 

the broad-scale screening perspective (Gallien et al., 2010), ragweed’s potentially-invaded region has 

been modelled with statistical species distribution models (Cunze et al., 2013, Essl et al., 2015, Essl et 

al., 2009) as well as newer process-based distribution models (Chapman et al., 2014, Hamaoui-Laguel 

et al., 2015, Storkey et al., 2014). Our model advances beyond these, and equivalent models for other 

species, by resolving the niche through the dynamic simulation of invasive spread in a changing 

environment. Other ‘hybrid’ invasion models also have coupled niche and dispersal models to predict 

spread (Gallien et al., 2010, Merow et al., 2011), including some for ragweed colonisation in central 

Europe (Richter et al., 2013a, Richter et al., 2013b, Smolik et al., 2010, Vogl et al., 2008). However, 

these models simulate spread from an existing invasive distribution, while the model presented here 

represents the transport and release process mechanistically - incorporating multiple trade pathways as 

a driver of unintentional introduction and long-distance dispersal at continental scales.  

This turned out to be extremely important for explaining ragweed’s distribution pattern (Fig. 2). For 

example, the apparent colonization of the Netherlands is qualitatively different from that further 

south, the former being driven by repeated introduction but poor persistence (Fig. 3). This finding is 
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validated by pollen monitoring stations indicating a lack of pollen production from Netherlands 

(Hamaoui-Laguel et al., 2015, Prank et al., 2013). Therefore, unless the roles of transport and release 

process are explicitly represented in generating the observed distribution, models may over-estimate 

ragweed’s climate tolerance. Although our model was developed for the trade pathways through 

which ragweed disperses, an association between invasion and trade in specific commodities is by no 

means unique to ragweed (Hulme, 2009, Seebens et al., 2013). For example, the ladybird Harmonia 

axyridis is known to have been inadvertently transported to previously uninvaded countries in 

consignments of fruit, vegetables, flowers and timber (Brown et al., 2011). Therefore approaches 

similar to the one developed here, but using trade flows of relevant commodities, should prove useful 

for predicting the spread of other species. 

Indeed, the main novelty of the work presented here was the integration of a mechanistic model for 

propagule pressure from trade networks with the invasive spread model. Long-distance anthropogenic 

transport processes have largely been ignored in models for invasive spread, despite much evidence 

that propagule pressure is of major importance in explaining biological invasions (Lockwood et al., 

2005, Seebens et al., 2013). For ragweed, previous studies show that signals of repeated introduction 

are evident in the genetic diversity of established populations (Gaudeul et al., 2011) and distribution 

records from regions unsuitable for population establishment (Chapman et al., 2014, Cunze et al., 

2013). Here, we used historical bilateral trade flow data for planting and bird seed commodities to 

define a simple pathway model for ragweed transport and release. The model estimated propagule 

pressure from both native seed sources and, as simulations progressed, invaded ones. This allowed us 

to model introductions from the native range as well as long-distance dispersal via trade networks in 

the invaded continent. Ongoing globalisation of trade in combination with changes in the climate have 

been identified as increasing the risk for new plant invasions (Bradley et al., 2011). However to our 

knowledge, this is the first invasion model to capture such an interaction, as a historical decline in 

import from the native range was compensated by an increase in intra-European trade and its 

increasing contamination by ragweed seed as the species rapidly spread. Furthermore, the structure of 

the trade network played a key role in the simulated invasion. For example, north-eastern Europe was 
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historically relatively isolated from the native range in terms of the seed trade, but imports of seed 

commodities from invaded parts of Europe increased propagule pressure for invasion of this region 

(Fig. 3d). 

This study also demonstrates the important role of modelling in investigating management measures 

for the control of invasive species (Richter et al., 2013b). We investigated the effectiveness of 

biosecurity measures (i.e. precautions against the introduction of ragweed seed)_targeting the two 

major trade pathways for ragweed dispersal – planting seed and bird seed. The simulations showed 

that both pathways were important in driving spread and that biosecurity was most effective when 

targeting both introduction routes at an early stage of the invasion. This may explain why ragweed has 

continued to invade Europe rapidly over recent decades. Despite improved biosecurity measures 

targeting planting seeds, such as several European Union seed certification regulations (Winge, 2012), 

high levels of contamination of bird seed remain. A recent review of 12 European studies found 58% 

of samples were contaminated and had a mean of 142 ragweed seeds kg
-1

 (EFSA Panel on 

Contaminants in the Food Chain (CONTAM) et al., 2010). Therefore the real situation may be similar 

to our simulations of biosecurity for the planting seed pathway beginning only around 2000, which 

had virtually no effect on the simulated invasion by 2010. If so, then we can speculate that the areas of 

northwest Europe receiving the largest amounts of imported bird seed (Fig. 3e) may be most 

vulnerable to rapid invasion if future climate change increases their suitability for ragweed. We did 

not use our model to simulate this directly (as this would require gridded time series projections of 

future climate, land use and global trade), but projections of the model’s climatic suitability index F 

under 2050 climate scenarios from IPCC AR5 suggest those areas will experience large increases in 

suitability (Fig. S4). This is also true for northeast Europe (Fig. S4) but the trade data suggests this 

region has lower propagule pressure from bird seed (Fig. 3e), so colonisation may take longer.Our 

model was developed to be as simple as possible to capture a range of known interacting drivers of 

ragweed invasion without excessive complexity and an associated loss of tractability. To represent 

transport and release through two trade pathways, population dynamics, the climatic niche and 

anthropogenic neighbourhood dispersal we used only 12 free parameters. Inevitably this means that 
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all the modelled processes are simplified representations. Nevertheless we consider that the model 

captured the essence of important features of the invasion, including reproducing the complex current 

non-equilibrium distribution through an interaction between dynamic climate and trade drivers. There 

will always be large uncertainty in the predictions of any simulation model of the type used here 

(Hamaoui-Laguel et al., 2015), especially when there are limited data on the modelled processes so 

that parameterisation must rely heavily on fitting to distribution data from a wide range of sources of 

varying quality (Fig. 2). We attempted to account for this by differentiating between regions where 

ragweed is known to be highly invasive compared to those where it is only casual, and by giving 

greater weighting to the calibration data from well-recorded countries (the ‘good data’ region in Fig. 

2). Nevertheless we acknowledge that this is large source of uncertainty in the model. Therefore, 

further model development would clearly benefit from greater empirical parameterisation. Likewise, 

the calibration would be more precise if accurate snapshots of the European distribution over time 

were available, as is currently the case for some regions (Richter et al., 2013b, Vogl et al., 2008).  

However, a strength of this study is that we were able to validate our model outputs with airborne 

pollen monitoring data, which was fully independent of the distribution data used for calibration. This 

showed that the model explained much of the variation in the overall increasing trend in ragweed 

pollen levels across Europe over 16 years and the spatial pattern of pollen counts in 2010. Many 

processes not captured in the current model will affect pollen data, such as the production, emission 

phenology, transport and deposition of pollen grains (Prank et al., 2013). Nevertheless we showed 

that the level of modelled invasion in the landscape surrounding the pollen stations was strongly 

correlated to the observed pollen counts. We emphasise that the purpose of this model is not to 

provide input to pollen transport models or to yield specific details of ragweed invasion for specific 

locations. Rather we aimed to develop a model that produces an overview of the invasion at a 

continental scale, for which we consider we were successful. 

We conclude that models for species invasion would benefit from integrating mechanistic pathway 

models for transport through trade networks with invasive spread models based on demography and 

dispersal. Ultimately such integrated models could predict where the next invasive species are likely 
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to be introduced and how quickly they may spread. In particular, they can inform the targeting of 

surveillance and rapid eradication responses during the early stages of invasion, when the substantial 

costs of invasive non-native species can still be reduced. 
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Supporting Information captions 

Figure S1. A simplified overview of the anthropogenic transport and release model. 

Figure S2. Scheduling of events in the simulation model for invasive species introduction and spread. 

Figure. S3. Map of the pollen stations used for model validation. 

Figure S4. Projections of ragweed fecundity to the 2050s under a range of climate change scenarios.
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Table 1. Calibration of the ragweed invasion model. Using random parameterisations drawn from 

within the specified ranges, 10000 simulations of the model were performed and the best-fitting 0.5% 

of parameterisations were selected. As a measure of importance to model fit, well-fitting parameter 

distributions were compared to their uniform proposal distribution using the Kolmogorov-Smirnov 

statistic D. D varies from 0 to 1, with larger values indicating divergence from the proposal 

distribution and a greater importance. 

 Parameter Meaning Uniform 

proposal 

distribution 

Median in best 0.5% of 

parameterisations 

Importance 

(D) 

In
tr

o
d
u

ct
io

n
 

ΓUSA Cropland contamination rate 

for USA. 

0.1-0.8 0.59 0.280 

ν Increase in colonisation with 

planting seed propagule 

pressure to cropland. 

0-10 7.53 0.328 

κ Increase in colonisation with 

bird seed propagule pressure 

to urban areas. 

0-300 212 0.255 

D
y

n
am

ic
s λ Increase in adult 

establishment with seedbank 

size. 

2-4 3.56 0.487 

α Seed bank persistence rate. 0.5-0.8 0.71 0.313 

C
li

m
at

ic
 n

ic
h

e 

bW Slope of winter temperature 

on fecundity. 

-3--1 -2.14 0.200 

aW Winter temperature 

inflexion point. 

2-5 3.97 0.197 

bS Slope of summer 

temperature on fecundity. 

1-3 2.15 0.185 

aS Summer temperature 

inflexion point. 

18-21 18.2 0.752 

bM Slope of moisture on 

fecundity. 

30-40 35.8 0.151 

aM Moisture inflexion point. 0.2-0.3 0.21 0.724 

D
is

p
er

sa
l μ Increase in colonisation with 

neighbourhood propagule 

pressure. 

1-2 1.76 0.433 
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Figure 1. (a) Recent trends in total imports of bird and planting seed to the modelled region from the 

native range (USA) and within Europe (data available for planting seed only). (b) The network in seed 

trade for countries in the model, averaged for 1992-2010. Darker shading indicates higher import rates 

per unit area of urban cover for bird seed (labelled) or cropland for planting seed, on a logarithmic 

scale. Country abbreviations are labelled alternately on either side of the plot, following UN ISO 

3166-1 alpha-3 codes with XK for Kosovo. 

Figure 2. Ragweed’s approximate 1991-2010 distribution in the modelled domain. We differentiated 

between presence records in regions with large and damaging populations versus those with small or 

casual populations, and also between countries where the species was considered to be recorded well 

or poorly. The graticule intervals are 20 ° longitude and 10 ° latitude. 

Figure 3. Calibrated model outputs averaged over five simulations of the top 0.5% of 

parameterisations and from 1991-2010. 

Figure 4. The modelled ragweed invasion is driven by climate and trade. (a) Modelled relative 

population growth of adults and the seedbank, averaged over the 0.5% top model parameterisations. 

(b) Time series of the mean fecundity index in the modelled region from the top parameterisations, 

showing a significant increase in climatic suitability over time (generalised additive model [GAM], 

P = 0.004, R
2
=0.188). (c) Stacked time series of simulated introductions by all trade pathways, where 

shaded areas represent the numbers of introduction. (d) Boxplots of the average annual modelled 

probabilities of introduction from all trade pathways and neighbourhood seed dispersal into a grid cell 

with different population statuses (see Fig. 2). Outlying observations are omitted for clarity. 

Figure 5. Validation of the model by comparison against independent data on temporal and spatial 

trends from ragweed pollen monitoring. (a) The observed temporal trend in total annual pollen counts 

over 16 years at 47 monitoring stations (between 11 and 45 stations in each year, because of missing 

data), plotted against the trend in simulated ragweed population-fecundity (NF) in the grid cells 

containing the same stations. For comparison, both trends are normalised to sum to unity. (b) The 

observed total ragweed pollen counts at 92 stations in 2010 plotted against the mean simulated 
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population fecundity in 2010 in the grid cells containing each station. Points represent the countries of 

each station (abbreviated following UN ISO 3166-1 alpha-3 codes) with black shading for the ‘good 

data’ region and grey shading for the ‘poor data’ region (see Fig. 2). 

Figure 6. Results from historical biosecurity simulations, in which introduction through both trade 

pathways or only the planting seed pathway is prevented after a specific year. The plot shows the 

ragweed adult population size in 2010 relative to simulations in which no biosecurity is implemented. 
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