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Abstract

Statistical downscaling has been developed for the fusion of data of different
spatial support. However, environmental data often have different temporal sup-
port, which must also be accounted for. This paper presents a novel method
of nonparametric statistical downscaling, which enables the fusion of data of
different spatiotemporal support through treating the data at each location
as observations of smooth functions over time. This is incorporated within a
Bayesian hierarchical model with smoothly spatially varying coefficients, which
provides predictions at any location or time, with associated estimates of uncer-
tainty. The method is motivated by an application for the fusion of in situ and
satellite remote sensing log(chlorophyll-a) data from Lake Balaton, in order to
improve the understanding of water quality patterns over space and time.
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1 INTRODUCTION

Monitoring and understanding the changing patterns of lake health indicators has been increasingly recognised as vitally
important in recent years, due to the role of lakes as sentinels of climate change and due to the potentially severe effects
of climate change on the ecosystem services that lakes provide (Williamson, Saros, Vincent, & Smol, 2009). Traditionally,
this has been accomplished through in situ monitoring of individual lakes, for which samples are collected manually from
a small number of locations within a lake. Although this allows very accurate measurements to be recorded, it is costly
in terms of both time and resources, meaning that very few locations are sampled, often fairly infrequently. The result
of this is that these data do not provide us with a good understanding of the spatial patterns in the lake. More recently,
remote sensing data have become widely available. Satellite remote sensing techniques observe larger areas of the Earth,
providing maps on a temporally averaged time scale. Such data are often validated using data collected in situ, in order to
assess and ensure their accuracy. This leads to a change-of-support problem (Cressie & Wikle, 2011), where temporally
averaged grid-cell-scale remote sensing data must be fused with point-location, point-time in situ data.

Chlorophyll-a is an indicator of phytoplankton biomass and as such has been widely used as an indicator of lake
health. High levels of chlorophyll-a may be caused by excessive nutrient levels and are often associated with phytoplank-
ton blooms. These blooms can be poisonous to fish and other wildlife and, in the case of cyanobacteria, may form mats
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covering the lake surface and reducing light levels in the water (Bláha, Babica, & Maršálek, 2009; Teta et al., 2017).
Chlorophyll-a is a useful measure of lake water quality because it can be measured directly from in situ samples and
retrieved by an algorithm from optical remote sensing observations (Markelin et al., 2017; Palmer, Hunter, et al., 2015;
Palmer, Odermatt, et al., 2015).

Statistical downscaling has been developed to fuse data of different spatial support. For example, Berrocal, Gelfand, and
Holland (2010a, 2010b) fuse grid-cell-scale numerical model output for air quality with point-location monitoring station
data, using a Bayesian hierarchical model with smoothly spatially-varying coefficients. Wilkie et al. (2015) extend this to
lakes by presenting a statistical downscaling model for the fusion of point-scale in situ data and grid-cell-scale remote
sensing data for log(chlorophyll-a) in Lake Balaton. The statistical downscaling approach is successful in accomplishing
the fusion of data of different spatial support. However, the modelling requires the assumption that the in situ and remote
sensing data are available on the same temporal support, which may not be valid in practice. Typically, aggregation of the
in situ data to the same time scale as the monthly averaged remote sensing data may be required, potentially resulting
in an increase in uncertainty relating to the in situ data. This paper presents a new approach that extends statistical
downscaling to enable the fusion of data of different spatiotemporal support, avoiding the need for this aggregation and
allowing predictions to be made at any time, including during periods of time for which no in situ data are available.

This paper is organised as follows. Section 2 introduces the log(chlorophyll-a) data set that motivates the method-
ological development. Section 3 presents the novel nonparametric statistical downscaling model. Section 4 describes the
model-fitting procedure and presents the results. Finally, Section 5 presents the conclusions, along with some discussion.

2 DATA

Lake Balaton, in Hungary, is the largest lake in Central Europe. The lake is very shallow, with a mean depth of only
around 3 m but a surface area of around 596 km2 (Istvánovics, Osztoics, & Honti, 2004; Palmer, Odermatt, et al., 2015).
The lake has suffered from poor water quality since the 1960s, with one of its four basins reaching eutrophic status in
the 1970s, before beginning to recover after measures were taken to manage nutrient inflow to the lake in the 1980s
(Istvánovics et al., 2004). The lake is therefore of particular interest. The main inflow to the lake is the River Zala, which
flows into the southwest basin of the lake, bringing nutrient-rich water. The main outflow is the Sió Canal, which leaves
the northeast basin of the lake (Palmer, Odermatt, et al., 2015).

Data for chlorophyll-a were collected at nine in situ locations (shown in Figure 1), between the start of 2002 and the end
of 2012, by the Balaton Limnological Institute and by the Central Transdanubian Water and Environment Management
Board. The lake was sampled approximately fortnightly. The data are assumed to be accurate within measurement error
because they were derived directly from samples of water that were taken from the lake surface by boat and were then
analysed in a laboratory. However, the spatial coverage of the samples does not give a good indication of important spatial
patterns in chlorophyll-a across the lake surface. The in situ data used in this paper were made available by the GloboLakes
project (GloboLakes, 2014), which is a research consortium project investigating the changing state of the health of lakes
and their responses to environmental pressures on a global scale.

Remote sensing data are available for 7,616 grid cells (shown in Figure 1), covering the entire lake surface at up to
300 m resolution. These data were collected as Earth surface reflectance data by the MERIS (Medium Resolution Imaging
Spectrometer) instrument on board the ENVISAT satellite of the European Space Agency. These measurements were
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FIGURE 1 Remotely sensed log(chlorophyll-a) data (mg/m3) for 7,616 grid cells for March 2011, with the corresponding nine in situ data
points overlaid (surrounded by black circles and numbered) and remote sensing grid cell P1 marked with a cross
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FIGURE 2 Time series of data for three example locations: (a) in situ data for Location 1 and remote sensing data for the corresponding
grid cell, (b) in situ data for Location 2 and remote sensing data for the corresponding grid cell, and (c) remote sensing data for grid cell P1.
(See Figure 1)

converted to chlorophyll-a data using algorithms as part of the Diversity II project and are available from their website
(Diversity II, 2018).

The in situ and remote-sensing chlorophyll-a data on the original scale are right-skewed. Therefore, a natural
logarithm-transformation was applied to the data before analysis.

Figure 2a,b shows how the in situ data for Locations 1 and 2 (i.e., the two furthest left locations, in the western part
of the lake) relate to the remotely sensed data for the corresponding grid cells. The time series for each location follow
similar patterns overall, with two peaks in log(chlorophyll-a) per year. However, the trace of the remotely sensed data is
more variable than the trace of the in situ data for both locations, demonstrating the need for calibration of the remote
sensing data with the in situ data, to ensure accuracy. Additionally, Location 2 has no in situ data recorded in the early
part of the time period, with additional gaps around the year 2007. Figure 2c shows the remote sensing data for the grid
cell marked with a cross in Figure 1.

3 METHODS

3.1 Spatial statistical downscaling
Spatial statistical downscaling is a method for the fusion of data of different spatial support, where inference is to be
made at a finer spatial resolution than that of the original data series. The approach is motivated by the spatially varying
coefficient model of Gelfand, Kim, Sirmans, and Banerjee (2003), which was developed by Berrocal et al. (2010b) into a
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statistical downscaling model for the fusion of air quality data. For a vector of point-scale data y = (y1, … , yn)T collected
at n locations and a vector of grid-cell-scale data x = (x1, … , xn)T (where each xi is the remote sensing data point for the
grid cell containing the point-location of yi), the spatial statistical downscaling model is

𝑦i ∼ N
(
𝛼i + 𝛽ixi, 𝜎

2
𝜀

)
for i = 1, … ,n, (1)

where 𝜶 = (𝛼1, … , 𝛼n)T are the spatially varying intercept coefficients, 𝜷 = (𝛽1, … , 𝛽n)T are the spatially varying slope
coefficients, and 𝜎2

𝜀 is the error variance. The spatially varying intercept and slope parameters are given prior distributions

𝜶 ∼ N
(
0, 𝜎2

𝛼 exp(−𝜙𝛼Ddata)
)

and
𝜷 ∼ N

(
1, 𝜎2

𝛽
exp(−𝜙𝛽Ddata)

)
,

where Ddata is an (n × n) matrix of Euclidean distances between the in situ data locations, with (Ddata)j,k = |yj − yk| (for
j = 1, … ,n and k = 1, … ,n), 𝜎2

𝛼 and 𝜎2
𝛽

are the spatial variances, and 𝜙𝛼 and 𝜙𝛽 are the spatial decay parameters that
control how fast the correlations in the intercept and slope parameters decrease towards zero as the distance between
locations increases. The error variance parameter and the spatial variance parameters are typically given noninformative
inverse-gamma prior distributions.

Model (1) was applied by Wilkie et al. (2015) to log(chlorophyll-a) data for Lake Balaton. However, this model and that
of Berrocal et al. (2010b) only account for the spatial change of support and ignore the temporal change of support. In
this paper, the temporal change of support is accounted for in the nonparametric statistical downscaling model, through
smoothing.

3.2 Nonparametric (spatiotemporal) statistical downscaling
In order to combine data sources with different spatial and temporal support, the novel nonparametric statistical
downscaling model, Model (2), allows for the temporal change of support through treating the data at each location
as observations of smooth functions over time, whereas the spatial change of support is accounted for through the
spatially-varying coefficients part of the model. This hierarchical model, fitted in the Bayesian framework, allows the
errors at each stage of the model to be propagated, so that all predictions have error estimates that account for the
uncertainty at each stage of the model.

Model (2) fits smooth curves to the in situ data yi for each location i (i = 1, … ,n) and to the remote sensing data xi
for the grid cells containing each in situ location i. These smooth curves are estimated through the use of basis functions
of identical dimension m (Ramsay & Silverman, 2005). The same basis must be used for each xi and yi and must also be
defined over the same time period, although the times at which it is evaluated may differ for each xi and yi. The resulting
vectors of basis coefficients (ci for the in situ data and di for the remote sensing data) are related through a spatially-varying
coefficients regression, which accommodates the spatial aspect of the data fusion.

Given a point-time data set of in situ data yi at each point-location i (i = 1, … ,n) and a data set of remotely sensed
data xi for each grid cell containing each point-location i, the full description of the nonparametric statistical downscaling
model is as follows:

yi|ci, 𝜎
2
𝑦 ∼ Nqi

(
Φici, 𝜎

2
𝑦Iqi

)
,(

𝜎2
𝑦

)−1 ∼ Ga(a𝑦, b𝑦),
ci𝑗|𝛼i𝑗 , 𝛽i𝑗 , di𝑗 , 𝜎

2
c ∼ N

(
𝛼i𝑗 + 𝛽i𝑗di𝑗 , 𝜎

2
c
)
,

𝜶𝑗|𝜎2
𝛼 ∼ Nn

(
0, 𝜎2

𝛼 exp(−𝜙𝛼Ddata)
)
,

𝜷𝑗|𝜎2
𝛽
∼ Nn

(
1, 𝜎2

𝛽
exp(−𝜙𝛽Ddata)

)
,(

𝜎2
𝛼

)−1 ∼ Ga(a𝛼, b𝛼),(
𝜎2
𝛽

)−1
∼ Ga(a𝛽 , b𝛽),(

𝜎2
c
)−1 ∼ Ga(ac, bc),

xi|di, 𝜎
2
x ∼ Npi

(
Ψidi, 𝜎

2
x Ipi

)
,(

𝜎2
x
)−1 ∼ Ga(ax, bx),

di ∼ Nm(𝝁d,Σd),

(2)
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where:

• yi = (𝑦i1, … , 𝑦iqi)
T is the vector of in situ data at point location i (i = 1, … ,n) for times 1 to qi.

• xi = (xi1, … , xipi)
T is the vector of remote sensing data for the grid cell containing point location i, for times 1 to pi.

Note that the times of the remote sensing data may differ from those of the in situ data.
• n is the number of in situ data point locations.
• qi is the number of in situ data points collected at point location i.
• pi is the number of remotely sensed data points collected for grid cell i.
• 𝚽i is the (qi × m) matrix of basis functions evaluated at the qi times of data collection for yi.
• 𝚿i is the ( pi × m) matrix of basis functions evaluated at the pi times of data collection for xi. Note that the basis being

evaluated here is the same as for 𝚽i.
• m is the basis dimension, that is, the number of basis functions in each 𝚽i and 𝚿i.
• Ddata is the (n × n) matrix of distances between the n point locations of the in situ data.
• 𝜙𝛼 and 𝜙𝛽 are the spatial decay parameters that are selected a priori.
• ay, by, a𝛼, b𝛼, a𝛽 , b𝛽 , ac, bc, ax, bx, 𝜇d, and 𝚺d are values of hyperparameters, to be chosen a priori. Suitable values for 𝜇d

and 𝚺d are 0 and some multiple of Im, respectively, reflecting a lack of knowledge of the signs of the coefficients di
and of their dependence structure. It is suggested by Lunn, Jackson, Best, Thomas, and Spiegelhalter (2013) that a
small value for each of ay, by, a𝛼, b𝛼, a𝛽 , b𝛽 , ac, bc, ax, and bx, such as 0.001, leads to noninformative priors. However,
Gelman et al. (2014) note that there is no proper limiting distribution with these values, so that the posterior inferences
are sensitive to the values of the coefficients of the prior distribution, implying that this prior is informative. Based
upon Sahu, Gelfand, and Holland (2006) and Sahu, Gelfand, and Holland (2010), a suggestion is instead to set each of
ay, a𝛼, a𝛽 , ac, and ax equal to 2 and each of by, b𝛼, b𝛽 , bc, and bx equal to 1, so that each of their corresponding prior distri-
butions has mean 1 and infinite variance. A sensitivity analysis showed that this choice did not affect predictions from
the model, but that the posterior distributions of the variance terms displayed high skewness when Ga(0.001, 0.001)
prior distributions were used. Therefore, the Ga(2, 1) prior distribution is preferred.

The model is represented as a directed acyclic graph in Figure 3, which visually displays the dependencies between the
model parameters.

FIGURE 3 The directed acyclic graph (DAG) for Model (2). The circles are variables and the rectangles are constants. The arrows
represent direct dependencies between the variables and constants
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Note that the model uses shared variance parameters over time (𝜎2
𝛼 and 𝜎2

𝛽
) and over space and time (𝜎2

x , 𝜎2
𝑦 , and 𝜎2

c ).
It is possible to use separate variance parameters for each spatial location and time point. However, the use of shared
parameters was found to result in more accurate predictions from the model.

The full conditional posterior distributions of each parameter in Model (2) can be derived, allowing the model to be
fitted using Gibbs Sampling (Gelman et al., 2014). These distributions are given in Section 1 of the supplementary material.
At each iteration of the MCMC algorithm, a q̃i-length vector of predictions ỹi at location i (i = 1, … , ñ, where ñ is the
number of prediction locations) is obtained for times 𝑗 = 1, … , q̃i by drawing from the posterior predictive distribution,
conditional on the updated values of the other parameters, as follows:

ỹi|c̃i, 𝜎
2
𝑦 ∼ Nq̃i

(
𝚽̃ic̃i, 𝜎

2
𝑦Iq̃i

)
,

c̃i𝑗|𝛼̃i𝑗 , 𝛽i𝑗 , d̃i𝑗 , 𝜎
2
c ∼ N

(
𝛼̃i𝑗 + 𝛽i𝑗 d̃i𝑗 , 𝜎

2
c
)
,

𝜶̃𝑗|𝜶𝑗 ∼ Nñ
(
0 + exp(−𝜙𝛼Dpred:data) exp (−𝜙𝛼Ddata)−1(𝜶𝑗 − 0) ,

𝜎2
𝛼

(
exp(−𝜙𝛼Dpred) − exp(−𝜙𝛼Dpred:data) exp (−𝜙𝛼Ddata)−1 exp(−𝜙𝛼Ddata:pred)

))
,

𝜷̃𝑗|𝜷𝑗 ∼ Nñ
(
1 + exp(−𝜙𝛽Dpred:data) exp (−𝜙𝛽Ddata)−1(𝜷𝑗 − 1) ,

𝜎2
𝛽

(
exp(−𝜙𝛽Dpred) − exp(−𝜙𝛽Dpred:data) exp (−𝜙𝛽Ddata)−1 exp(−𝜙𝛽Ddata:pred)

))
,

d̃i ∼ Nm
(
Σ̃di Ãdi , Σ̃di

)
,

with
Σ̃di =

(
Σ−1

d + Ψ̃T
i
(
𝜎2

x Ip̃i

)−1Ψ̃i

)−1
and

Ãdi = Σ−1
d 𝝁d + Ψ̃T

i
(
𝜎2

x Ip̃i

)−1x̃i,

where c̃i = (c̃i1, … , c̃im)T, 𝜶̃𝑗 = (𝛼̃1𝑗 , … , 𝛼̃ñ𝑗)T, 𝜷̃𝑗 = (𝛽1𝑗 , … , 𝛽ñ𝑗)T, and d̃i = (d̃i1, … , d̃im)T, and where Φ̃ is the (q̃i × m)
matrix of basis functions evaluated at the q̃i prediction times for the in situ data at location i, Ψ̃ is the ( p̃i × m) matrix of
basis functions evaluated at the p̃i sampling times for the remotely sensed data for the grid cell containing location i, and
x̃i is the p̃i-length vector of remotely sensed data for the grid cell containing the location i at which prediction is to be
made. The matrices of distances between in situ data locations and prediction locations are defined as follows:

D =

(
Dpred Dpred:data

Ddata:pred Ddata

)
,

where Dpred is the (ñ × ñ) matrix of distances between the ñ prediction locations, Ddata is the (n × n) matrix of distances
between the n locations of the in situ data, Dpred:data is the (ñ×n) matrix of distances between the prediction locations and
the in situ data locations, and Ddata:pred = DT

pred:data.

3.2.1 Choosing the basis type
There are many types of basis that could be used with the nonparametric statistical downscaling model. See, for example,
the list given by Ramsay and Silverman (2005). The Fourier basis is most appropriate for periodic data and has the benefit
of enabling computationally efficient calculations (Ramsay & Silverman, 2005). It is therefore focussed on for the Lake
Balaton log(chlorophyll-a) data in this paper.

3.2.2 Choosing the basis dimension
Choosing the number of basis functions, m, can be considered as a bias-variance trade-off problem (Ramsay &
Silverman, 2005). The larger the basis dimension, the closer the fitted curve tracks the data. A large-enough basis dimen-
sion is required for the curve to capture the important features of the data, but too large a dimension means that the curve
is greatly influenced by noise, with high variance (Ramsay & Silverman, 2005).

For a function fitted to a single time series, Ramsay and Silverman (2005) note that stepwise procedures are often used
to select the basis dimension, whereas Wood (2017) suggests setting the basis dimension to be larger than is thought to
be necessary, with excess curvature in the smooth function penalised using a penalty term in the model.

In the nonparametric statistical downscaling model, the basis coefficients are used in the spatially varying regression
level of the model and the basis dimension must therefore be the same at each location, for the in situ data and the
remotely sensed data. This means that the usual methods for selecting the basis dimension of a function fitted to a single
time series cannot be used. A suggested approach to basis dimension selection is to re-fit the model using a range of basis
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dimensions and make a choice using cross-validation, through comparing statistics for the resulting predictions, such as
root mean squared error (RMSE), mean absolute error (MAE), mean bias, variance, and credible interval (CI) coverage
and width. This method of basis dimension selection is demonstrated in the application to the Lake Balaton data in the
following section.

4 RESULTS

The nonparametric statistical downscaling model, Model (2), was fitted to the data for Lake Balaton, with the data for
nine in situ locations as the response vectors yi (i = 1, … , 9) and the remotely sensed data for 115 months between
June 2002 and December 2011, for the grid cells containing the corresponding in situ locations, as the explanatory data
set X = (x1, … , x9).

4.1 Basis dimension selection
The data follow a seasonal pattern of two peaks per year (Palmer, Odermatt, et al., 2015), as shown in Figure 2,
with a smaller bloom in winter or spring and a larger bloom between late summer and early autumn (Palmer,
Odermatt, et al., 2015). A simple heuristic for the Fourier basis is to use a basis dimension of at least 2r + 1, to be able
to adequately represent a pattern with at least r peaks per year, giving more flexibility than that for a simple temperature
curve. This leads to an estimate for the basis dimension of 5 for this application.

A leave-one-out cross-validation was performed, where the in situ data and the corresponding remotely sensed data for
each of the nine in situ locations were removed in turn and predicted using the nonparametric statistical downscaling
model, Model (2), fitted to the data for the eight remaining in situ locations. This was carried out for each of a sequence
of basis dimensions (3, 5, 7, 9, 11, 13, and 15). Using these predictions, RMSE, MAE, the variance of the predictions, the
mean 95% credible interval coverage, and the mean 95% credible interval length were calculated for each basis dimension.

There was very little change in the values of the summary statistics between Dimensions 5 and 15. However, the RMSE,
MAE, and mean 95% credible interval length reached their minima for Dimension 9, which was therefore chosen as the
basis dimension for the following work. This value for the basis dimension suggests that the temporal patterns in the
in situ and remote sensing data are more complex than a simple pattern of two peaks per year.

4.2 Choice of 𝝓𝜶 and 𝝓𝜷

The spatial decay parameters, 𝜙𝛼 and 𝜙𝛽 , were each set equal to 0.1 because a sensitivity analysis determined that varying
these estimates between 0.001 and 0.5 made very little difference to the resulting model fit and predictions. The values of
RMSE, MAE, variance of predictions, mean 95% credible interval coverage, and 95% credible interval mean width were
each calculated for a range of values of 𝜙𝛼 and 𝜙𝛽 , with minima for RMSE and MAE reached at 0.1 for both 𝜙𝛼 and 𝜙𝛽 .
An illustrative plot is available in the supplementary material. The value of 0.1 is therefore an appropriate choice for this
data set.

This small value for each of the spatial decay parameters means that these parameters are estimated to have strong
spatial correlation. At the maximum distance between data points in the lake, the spatial correlation for each of the
intercept and slope parameters is around 0.9. This means that the intercept and slope of the relationship between
the in situ and remote sensing data do vary over the lake but not by a large amount, indicating that the calibration of the
satellite data to the in situ data is fairly stable spatially over the lake, even though the lake is large.

4.3 Choice of prediction locations
In order to gain a good understanding of the spatial patterns in log(chlorophyll-a) across Lake Balaton, predictions must be
made at locations that provide a comprehensive spatial coverage of the lake. In this paper, this was accomplished through
a Delaunay triangulation, constrained by points on the lake boundaries that were selected manually. The Delaunay trian-
gulation results in the optimal coverage of the lake, for the number of prediction locations chosen, through maximising
the minimum angles between the points of all possible triangulations (Shewchuk, 1997). A triangulation was carried out
using the R package RTriangle (Shewchuk, 1996), with the maximum allowable triangle area set to 4.53 × 10−5units2,
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giving the optimal spatial coverage of the lake for 997 prediction locations. A plot showing the resulting spatial coverage
of the lake is available in the supplementary material.

4.4 Predictions
Having chosen the basis dimension, the nonparametric statistical downscaling model, Model (2), was fitted to the data
and predictions were made. Figure 4 illustrates the predictions from the model and the measured data, taking the example
of in situ Locations 1 and 2 and remote sensing grid cell P1, for the Fourier basis of dimension 9. Figure 4a,b illustrates
that the fitted lines follow the data fairly closely, reflecting the main patterns over time in the data for each location,
specifically the pattern of two peaks of log(chlorophyll-a) per year. Figure 4b shows that the model performs well in the
presence of periods with no in situ data, whereas Figure 4c demonstrates that the model is able to predict over time at
locations without in situ data. For Location 2, the model predicts using information both from neighbouring locations
with in situ data and from time periods when data are available for Location 2. Through the sharing of information over
space, predictions can be made for locations within remote sensing grid cells that contain no in situ data at all.

Predictions were made over space at the 997 locations that were determined by the Delaunay triangulation. Figure 5a
shows the predictions over the lake for March 15, 2011, with the corresponding in situ data for that month overlaid.
The predictions in Figure 5a are generally slightly higher than the original remotely sensed data plotted in Figure 1. The
in situ data in Figure 5a are almost indistinguishable from their surrounding predictions, illustrating the capacity of the
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FIGURE 4 Plots of predictions from Model (2) using a Fourier basis of dimension 9, for three locations: (a) in situ Location 1, (b) in situ
Location 2, and (c) centre of grid cell P1. (See Figure 1.) The in situ data are plotted as points, the predictions are plotted as solid lines, and
95% credible intervals for predictions are plotted as dashed lines
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FIGURE 5 (a) Plot of the predictions from Model (2) for the middle of March 2011 at 997 locations as determined by a Delaunay
triangulation, with the corresponding in situ data overlaid (surrounded by black circles). (b) Plot of the standard errors of the predictions
from Model (2) for the middle of March 2011, with the in situ data locations marked with black crosses

model to calibrate the remotely sensed data. Figure 5b shows the standard errors associated with the predictions. The
smallest values are located close to the in situ data locations, as expected. The standard errors are all small in comparison
to the variation across the lake shown in Figure 5a, providing some evidence of a true pattern in log(chlorophyll-a) across
the lake.

The plot of predictions shows higher levels of log(chlorophyll-a) in the southwestern part of the lake for this time point,
suggesting that this part of the lake may need to be studied in more detail by water quality experts. The spatial patterns
may reflect the flow of water through the lake, with the nutrient-rich inflow from the River Zala leading to high levels
of log(chlorophyll-a) in the southwest basins of the lake, whereas the northwest basin has lower levels of nutrient inflow
and, therefore, lower levels of log(chlorophyll-a). Validation of the model is additionally provided by the fact that the
spatial and temporal patterns in the predictions appear to reflect the known spatial and temporal patterns in the ecology
of the lake.

4.5 Comparison between the models
A comparison was carried out, to investigate how the accuracy and precision of the predictions vary between the spa-
tial statistical downscaling model, Model (1), and the nonparametric (spatiotemporal) statistical downscaling model,
Model (2). Here, the in situ data were aggregated to the monthly scale, to enable the spatial statistical downscaling model,
Model (1), to be fitted. The nonparametric statistical downscaling model was fitted using a Fourier basis with the optimal
dimension chosen in the previous section (i.e., Dimension 9). A leave-one-out cross-validation was carried out, with pre-
dictions made at the in situ data locations. The summary statistics resulting from comparing the predictions to the values
of the in situ data are given in Table 1.

These results show that the nonparametric statistical downscaling model results in more accurate predictions in com-
parison to the spatial statistical downscaling model because the RMSE and MAE are lower. The absolute value of mean
bias is also lower for the nonparametric model. The predictions from the nonparametric model have lower variance,
which may be explained by the fact that the predictions are constrained by the nonparametric model to lie along a smooth



10 of 12 WILKIE ET AL.

TABLE 1 Table of model summary statistics for the spatial statistical downscaling model, that is, Model (1), and the
nonparametric statistical downscaling model, that is, Model (2), fitted with a Fourier basis of dimension 9

Model RMSE MAE Mean bias Variance of Mean 95% Mean 95%
predictions CI coverage CI length

(1) Spatial 0.561 0.392 −0.036 0.648 0.911 1.584
(2) Fourier Dimension 9 0.455 0.355 0.006 0.305 0.967 2.052

Note. RMSE = root mean squared error; MAE = mean absolute error; CI = credible interval.

curve at each location. The mean 95% credible intervals are wider for the nonparametric model than for the spatial model,
but this apparent decrease in precision results in empirical credible interval coverage that is equal to, or greater than, the
nominal 95%, in contrast to that of the spatial model.

4.6 Computation details and assumptions
The nonparametric statistical downscaling model was fitted using Gibbs Sampling because every full conditional posterior
distribution could be derived. The model was fitted inC++, via theR packageRcpp (Eddelbuettel, 2013), allowing efficient
computation. Summaries of the MCMC chains were calculated using the R package coda (Plummer, Best, Cowles, &
Vines, 2006). Each model was run for 10,000 iterations, for 2 chains, with every 10th iteration saved (to reduce the memory
requirements). The derived full conditional distributions are given in Section 1 of the supplementary material.

The convergence of the model parameters was checked, using trace and density plots. Examples of a selection of these
are given in Section 2 of the Supplementary Material. These provide no evidence against the validity of the assumption
that the MCMC chains have converged for each parameter. Additionally, diagnostic plots provide no evidence against
the assumptions of mean-zero, Normally distributed, homoscedastic residuals. Example diagnostic plots are also given in
Section 2 of the Supplementary Material.

Stationary, isotropic spatial covariance functions are used in the model. It may be of interest to investigate more complex
nonstationary or anisotropic spatial covariance functions for such a model, but the nature of the Lake Balaton data makes
this difficult because there are only nine in situ data locations, which are arranged almost linearly.

Potential spatial and temporal autocorrelation in the residuals and the cij parameters was investigated. Variograms with
Monte Carlo envelopes were produced, which showed no statistically significant evidence of spatial autocorrelation in the
residuals or cij parameters. Because the model regresses a measure of a variable on another measure of the same variable,
and because the in situ data are at most fortnightly at each location, it is not expected that there will be any remaining
residual temporal autocorrelation. The Fourier basis should also account for the seasonal patterns over time. This was
investigated through plotting the autocorrelation functions of the residuals at each in situ location. These plots showed
no statistically significant evidence of temporal autocorrelation for all in situ locations except Location 5, which has data
for only 19 time points and is therefore prone to being affected by unusual patterns. It does not appear that temporal
autocorrelation is a problem for the model in general. Should any residual autocorrelation be encountered in a future
application of the model, prior distributions that account for this can be investigated. However, this is beyond the scope
of the current work.

5 CONCLUSIONS AND DISCUSSION

Nonparametric statistical downscaling fuses data of different spatiotemporal support, such as point-location, point-time
in situ data and grid-cell-scale, monthly averaged remotely sensed data. The method does this successfully, through a
novel combination of statistical downscaling, to account for the spatial change of support, and smoothing over time, to
account for the temporal change of support. Nonparametric statistical downscaling can be applied to real life data sets,
without the requirement that one data set is aggregated over time, allowing predictions to be made at any location and
time point, including during time periods for which no data are available. This is accomplished through the sharing of
information over space and over time.

The development of the model was motivated by an application to the fusion of in situ data and remote sensing data for
log(chlorophyll-a) in Lake Balaton, Hungary. The resulting predictions from the nonparametric statistical downscaling
model, fitted to data for nine in situ point locations and 7,616 remote sensing grid cells, followed the known pattern
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of two peaks in log(chlorophyll-a) per year. The resulting spatial maps of predictions across the lake may be used to
monitor spatial patterns in water quality and to identify regions of the lake of particular concern. For example, the map
of predictions in Figure 5a reflected the effect of the inflow of nutrient-rich water from the River Zala into the west of the
lake, which might suggest a need for further measures to control the water quality entering the lake from the river.

In this work, the basis dimension for the nonparametric statistical downscaling model was selected through
cross-validation. Future work could investigate the development of a more automatic procedure for basis dimension
selection.

It is hoped that the motivational example given in this paper demonstrates the utility of the nonparametric statistical
downscaling model as a tool for the fusion of environmental data of different spatiotemporal support. For the example
of Lake Balaton, which motivated the development of the nonparametric statistical downscaling model, the resulting
predictions and corresponding uncertainty estimates should be useful for those interested in understanding the spatial
and temporal changes in the water quality of the lake, over both space and time.
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Section 1 gives the full conditional posterior distributions of the parameters of the nonparametric statistical down-
scaling model. Section 2 contains additional plots. R package. An R package NSD has been developed to demonstrate
the use of the nonparametric statistical downscaling model that was introduced in this paper. The package is available at
http://dx.doi.org/10.5525/gla.researchdata.651.
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