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A B S T R A C T

Global environmental changes are driving shifts in forest distribution across the globe with significant im-
plications for biodiversity and ecosystem function. At the upper elevational limit of forest distribution, patterns
of forest advance and stasis can be highly spatially variable. Reliable estimations of forest distribution shifts
require assessments of forest change to account for variation in treeline advance across entire mountain ranges.
Multispectral satellite remote sensing is well suited to this purpose and is particularly valuable in regions where
the scope of field campaigns is restricted. However, there is little understanding of how much information about
forest structure at the mountain treeline can be derived from multispectral remote sensing data. Here we
combine field data from a structurally diverse treeline ecotone in the Central Mountain Range, Taiwan, with data
from four multispectral satellite sensors (GeoEye, SPOT-7, Sentinel-2 and Landsat-8) to identify spectral features
that best explain variation in vegetation structure at the mountain treeline and the effect of sensor spatial
resolution on the characterisation of structural variation. The green, red and short-wave infrared spectral bands
and vegetation indices based on green and short-wave infrared bands offer the best characterisation of forest
structure with R2 values reported up to 0.723. There is very little quantitative difference in the ability of the
sensors tested here to discriminate between discrete descriptors of vegetation structure (difference of R2

MF within
0.09). While Landsat-8 is less well suited to defining above-ground woody biomass (R2 0.12–0.29 lower than the
alternative sensors), there is little difference between the relationships defined for GeoEye, SPOT-7 and Sentinel-
2 data (difference in R2 < 0.03). Discrete classifications are best suited to the identification of forest structures
indicative of treeline advance or stasis, using a simplified class designation to separate areas of old growth forest,
forest advance and grassland habitats. Consequently, our results present a major opportunity to improve
quantification of forest range shifts across mountain systems and to estimate the impacts of forest advance on
biodiversity and ecosystem function.

1. Introduction

Rapid changes in global climate and land-use are driving shifts in
forest distribution (Améztegui et al., 2016, 2010; Harsch et al., 2009).
Mountain ecosystems are expected to experience higher than average
temperature increases (Dirnböck et al., 2011; IPCC, 2013; Pepin et al.,
2015) and are often subject to land abandonment as agricultural
practices change (Haddaway et al., 2014; MacDonald et al., 2000).
Naturally occurring elevational treelines (limits of forest distribution)
are predominantly climatically determined (Körner and Paulsen, 2004),
while the exact position of the treeline and response to environmental
change varies due to topographic or geological controls (Butler et al.,
2007; Malanson et al., 2011) as well as anthropogenic land-use

(Améztegui et al., 2016, 2010). Consequently, shifts in mountain forest
distribution have been used as indicators of the impacts of global en-
vironmental change (Martin and Bellingham, 2016). Increased forest
area and tree growth rates in mountain areas are expected to alter
ecosystem service provision, most notably increasing the carbon storage
potential of montane forests (Devi et al., 2008; Peng et al., 2009; White
et al., 2000). However, forest expansion is considered one of the most
significant threats to grassland biodiversity world-wide (Bond and Parr,
2010) and is of concern in mountain ecosystems where dis-
proportionately high numbers of endemic and rare species are found
(Steinbauer et al., 2016).

There is limited understanding of how shifts in forest distribution
will impact biodiversity and ecosystem function across entire mountain
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ranges due to variation in the response of mountain forests to en-
vironmental change both within-species and between geographic areas
(Greenwood and Jump, 2014). A meta-analysis of forest responses at
the upper elevational and latitudinal treelines, found that of 166 sites
investigated, 52.4% show upward or poleward migration of forest,
46.4% show no change and 1.2% show downslope movement (Harsch
et al., 2009). In areas where change in treeline elevation is not ex-
hibited, increased tree density below the upper limit of forest dis-
tribution and across-slope movement have been observed (e.g. Bharti
et al., 2012; Klasner and Fagre, 2002). Accurately identifying geo-
graphic variation in mountain forest response to environmental change
is, therefore, essential to improve the understanding of drivers of forest
change and to enable assessments of the impacts of changing treeline
position and structure on biodiversity and ecosystem function.

Remote sensing provides an opportunity to expand the scope of field
surveys which are often restricted to localised, easily accessible
mountain areas due to high time and financial costs. However, char-
acterising variation in forest structure from remote sensing data pre-
sents significant challenges for accurately quantifying variation in
forest response to environmental change. In some areas, a sharp, well-
defined boundary between the forest and the grassland exists. However,
mountain treelines are often represented as an ecotone, with a gradual
transition between forest and grassland habitats. Despite the prevalence
of gradual forest changes globally, there is no optimal method for
characterising structural variation in mountain forest-grassland transi-
tions that lack clear boundaries between vegetation classes (Fortin
et al., 2000; Hill et al., 2007).

The type of sensor and platform used to acquire remotely sensed
data will impact the degree of forest structural information that can be
identified and the geographic extent of investigations at mountain
treelines. Airborne Laser Scanning (ALS) data are an attractive remote
sensing data source for detecting vegetation boundaries across treeline
ecotones because of the ability to determine 3-dimensional vegetation
structure (Bolton et al., 2018; Coops et al., 2013; Ørka et al., 2012). ALS
data have been used to describe vegetation structure within the treeline
ecotone (Coops et al., 2013), have been integrated with multispectral
satellite imagery to produce maps of vegetation cover types over large
areas (Ørka et al., 2012) and have helped improve the interpretation of
spectral trends identified from the Landsat data archive (Bolton et al.,
2018). Despite the benefit of capturing 3-dimensional information on
vegetation structure and the possibility of integrating ALS data with
other remote sensing datasets, ALS data are not widely available in
many mountainous areas and acquisition of new data sets can be pro-
hibitively expensive. Consequently, there are relatively few published
studies using ALS data in mountain treeline ecotones (e.g. Bolton et al.,
2018; Coops et al., 2013; Næsset and Nelson, 2007; Ørka et al., 2012).

Synthetic Aperture Radar (SAR) data are sensitive to vegetation
structure and, combined with data available from satellite-borne plat-
forms, are attractive for identifying variation in vegetation structure at
the treeline ecotone across large areas. Despite the rapid expansion of
SAR data availability and the reducing cost of data acquisition, with
data from sensors such as Sentinel-1 freely available and high-

resolution SAR data available from commercial providers, the use of
SAR data in mountain ranges has been restricted due to challenges
associated with image processing in mountainous regions. The use of a
directional signal in areas with complex and steep terrain often results
in geometric distortion of the land surface and occultation due to lay-
over and radar shadowing (Sinha et al., 2015). The capability of Syn-
thetic Aperture Radar (SAR) to penetrate cloud presents obvious ben-
efits for characterising forest structure at mountain treelines. However,
there remain significant difficulties in obtaining and processing SAR
data with suitable geometric and radiometric properties (Shimada and
Ohtaki, 2010) that could be used for large area assessments of forest
distribution shifts in mountain ranges.

The most common source of remote sensing data used in the as-
sessment of mountain treeline change to date has been aerial photo-
graphy or multispectral satellite remote sensing data (Morley et al.,
2018). Many studies examine change in forest distribution by classi-
fying multiple remotely sensed multispectral images into forest/non-
forest classes, identifying changes in maximum elevation and forest
extent over time (e.g. Dinca et al., 2017; Luo and Dai, 2013; Mihai
et al., 2017). The simple forest/non-forest definition is an efficient
descriptor of the forest-grassland transition and can provide an accurate
indicator of change in forest extent if assessed in images from multiple
dates. The definition does not, however, capture sufficient information
about forest structure to improve the characterisation or understanding
of variation in forest response to environmental change (Table 1).

Defining intermediate classes between areas of old-growth forest
and treeless habitats improves the representation of structural variation
contained within the treeline ecotone. Grouping forest margins into
areas that share similar structural characteristics, such as tree canopy
cover, density, size and growth form, allows classes to be identified that
have reasonably homogeneous within-class forest structure while em-
phasising between-class variation. Underlying biotic and abiotic pro-
cesses determine forest structural classes at the treeline (Greenwood
et al., 2015, 2014; Harsch and Bader, 2011) and the impact of forest
distribution change on biodiversity and ecosystem function will depend
on the forest structure (Greenwood et al., 2016; Tomback et al., 2016).
Consequently, using structural classes to represent heterogeneity in the
treeline ecotone allows us to characterise variation in changes in forest
extent and structure in a manner that improves our understanding of
shifts in forest-grassland transitions and their implications (Table 1).
However, this level of structural detail is uncommon in studies utilising
remote sensing to examine mountain treelines (e.g. Allen and Walsh,
1996; Klasner and Fagre, 2002; Resler et al., 2004). This deficiency
exists despite structural classes being sensible ecological units and
being efficient to survey. There is also the possibility to identify classes
by image classification or by manual interpretation of aerial photo-
graphy or satellite images with a spatial resolution of 2m or better
(Table 1; Allen and Walsh, 1996).

Defining structural classes requires boundaries to be imposed onto
the mountain treeline ecotone. The decision of where to define
boundaries along a continuum of differing tree density, size and spatial
arrangement that vary over time is non-trivial (Arnot et al., 2004).

Table 1
Relative merits of different definitions of vegetation structure at the treeline ecotone for characterising variation in treeline response to environmental change and
potential ecological interpretations.

Treeline definition Field survey effort Sources of reference data Characterisation of structural variation Ecological interpretations Confidence

Forest/Non-forest Low Photointerpretation
Field Data
LiDAR

Low Distribution, Extent High

Structural classes Medium Photointerpretation
Field Data
LiDAR

High Distribution, Extent,
Average Tree Size,
Area standardised Stand Density & Biomass

High

Above-ground biomass High Field Data
LiDAR

High Spatial arrangement,
Area standardised Biomass

Medium
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Continuous variables can be used to map the mountain forest transition
and offer an attractive alternative to structural classes due to the ability
to represent vegetation heterogeneity on a continuous scale, avoiding
the use of subjective boundaries (DeFries et al., 2000; Hill et al., 2007).
Indeed, classifications of continuous forest descriptors have been used
to improve the structural representation of the treeline ecotone (Hill
et al., 2007; Král, 2009) and to identify changes in vegetation abun-
dance over time (Chen et al., 2015). However, canopy cover, the most
commonly used descriptor, is not always appropriate for monitoring
change in mountain treelines because of an inability to distinguish
differences in tree size class (Morley et al., 2018).

While multi-spectral sensors are the most commonly used source of
remote sensing data used in studies of the mountain treeline; there are
uncertainties in the ability of multi-spectral sensors to resolve structural
variation in mountain treelines. This uncertainty had led to a poor
understanding of which spectral properties best characterise structural
variation within the treeline ecotone (Morley et al., 2018). Vegetation
indices are used to transform two or more spectral bands into indices
that emphasise key biophysical characteristics of vegetated ecosystems.
The Normalised Difference Vegetation Index (NDVI) correlates with
Leaf Area Index (Wang et al., 2005) and fractional vegetation cover
(Carlson and Ripley, 1997) and has been used in estimates of tree ca-
nopy cover at the mountain treeline (Hill et al., 2007). Green-based
indices, such as the Green Normalised Difference Vegetation Index
(GNDVI) or the Green-Red Vegetation Index (GRVI), show an increased
sensitivity to chlorophyll-a concentration, and consequently, have been
suggested to improve the characterisation of subtle differences among
ecosystem types (Gitelson et al., 1996; Motohka et al., 2010). The
characterisation of forest structure has also been improved by using
vegetation indices based on short-wave infrared due to an increased
sensitivity to foliar moisture and vegetation density (Schroeder et al.,
2011). Indices that make use of shortwave infrared bands have been
used to monitor vegetation regrowth following disturbance events, with
particular emphasis placed on monitoring post-fire recovery. While
indices such as the Normalised Burn Ratio Index (NBRI) were first
conceived for monitoring vegetation regrowth post-fire, the sensitivity
to foliar moisture and vegetation density makes them potential candi-
dates for characterising variation in vegetation structure in areas of
ecological succession, such as across the treeline ecotone.

In addition to remotely sensed vegetation indices, textural features
that describe the statistical distribution of pixel data within a defined
neighbourhood have been shown to correlate with forest structural
variables, such as tree density or average stem diameter (e.g. Meng
et al., 2016; Ozdemir and Karnieli, 2011). Sensors with a finer spatial
resolution allow for textural features to be calculated at the scale of the
individual plots. However, consideration is required to determine if the
increased number of textural parameters that can be defined from
imagery of higher spatial resolution results in data that will be ecolo-
gically meaningful if used in image classification algorithms given the
high degree of collinearity present in spectral remote sensing data.
Identifying spectral features that show the strongest relationship with
forest structure is important to maximise the amount of structural in-
formation that can be resolved in multispectral remote sensing data.

Delineation of structural variation at forest margins is required to
improve our understanding of the underlying processes that govern
variation in forest response to environmental change and to estimate
the impacts of forest distribution shifts on biodiversity and ecosystem
services. Here we focus on the use of multispectral satellite remote
sensing data because it is the most accessible form of remotely sensed
data for assessing mountain treeline change across large areas.
However, the issue of how best to characterise variation in vegetation
structure at the mountain treeline using multispectral satellite remote
sensing data remains unresolved. To address this knowledge gap, this
work aims to improve the characterisation of mountain treeline eco-
tones by i) determining which spectral features derived from multi-
spectral satellite remote sensing best explain variation in vegetation

structure at the mountain treeline and ii) quantifying the ability of
sensors with different spatial resolutions to resolve variation in vege-
tation structure at the mountain treeline.

2. Methods

2.1. Study location

The Central Mountain Range of Taiwan has> 200 mountains over
3000m a.s.l., the highest of which, Yushan (Jade Mountain), reaches
3952m. Although Taiwan spans the Tropic of Cancer, the highest ele-
vations experience temperate and alpine conditions. At the highest
elevation of forest distribution, the canopy is dominated by four conifer
species, primarily Abies kawakamii and Tsuga chinensis with areas of
Pinus taiwanensis and Pinus armandii establishment. The adjacent
grassland is dominated by the bamboo Yushania niitakayamensis which
extends to the peaks with a low density of shrubby species, of which
Juniperus spp. and Rhododendron spp. are the most common.

Climate is considered to be the primary regulatory factor of the
treeline in the Central Mountain Range, with temperature and topo-
graphic sheltering identified as two fundamental controls on treeline
structure, position and advance (Greenwood et al., 2015, 2014). Nat-
ural disturbances caused by small-scale fires and landslides that result
in a localised reduction of the treeline and removal of substrate affect
the treeline sporadically. However, routine disturbance events are
considered to be of low impact at the landscape scale, with little evi-
dence to support widespread anthropogenic disturbance or grazing by
large herds of herbivores (domesticated or wild).

2.2. Field data

To identify limitations to an accurate characterisation of structural
variation this work considers three definitions of vegetation structure at
the mountain treeline that have been used across the ecological, bio-
geographical and remote sensing literature. The forest/non-forest de-
finition is based on the FAO Global Forest Resources Assessment (2018)
criteria of a forest with at least 10% canopy cover and trees higher than
5m or able to reach these thresholds in situ. The FAO (2018) definition
was chosen because the leading edge of forest expansion is often
characterised by a few trees< 5m in height. Consequently, the FAO's
forest definition aligns with ecological and biogeographic studies in-
vestigating pattern-process responses of the treeline ecotone because it
captures a greater area of the forest-grassland transition than forest
definitions with a higher canopy cover threshold. Six structural classes
were identified based on criteria proposed by Harsch and Bader (2011)
and subsequently adapted by Greenwood et al. (2014) for the A. ka-
wakamii treeline in Taiwan. Areas of forest advance were first identified
using repeat aerial photography and subsequently defining the struc-
tural characteristics of forest plots in field surveys (Greenwood et al.,
2014; Table 2). Structural classes are based on differences in stand
density, average tree size and successional stage that the dominant
canopy forming species belongs to and include classes that exhibit sharp
boundaries as well as diffuse areas (Fig. 1). Complete species separation
was not possible due to insufficient field data for species that are
sparsely distributed at high elevation in the Central Mountain Range.
Consequently, two forest successional stages are defined; the late suc-
cessional stage is defined as a canopy dominated by A. kawakamii or T.
chinensis and the early successional stage dominated by P. taiwanensis or
P. armandii. Above-ground woody biomass is investigated as the con-
tinuous variable in this analysis because of the correlation with tree size
and density from which the categorical groupings are defined (Fig. 1)
and its importance for the estimation of global carbon storage as an
Essential Climate Variable (Bojinski et al., 2014).

Field data were collected in the Mt. Hehuan area of the Central
Mountain Range. A purposive sampling strategy was used to ensure
representation of all forest sub-classes present at the Hehuan treeline. A
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Table 2
Description of full structural classes based on successional stage and stand structure identified in the Mt. Hehuan region of the Central Mountain Range, Taiwan, and
the number of sampling plots.

Vegetation class
(Number of plots)

Description

Late – Old growth forest
(33)

Canopy dominated by A. kawakamii or T. chinensis. Areas of the forest interior where the forest has persisted for many years and
characterised by a few large trees.

Late – Static treeline
(12)

Canopy dominated by A. kawakamii or T. chinensis. Forested areas at the forest-grassland boundary with trees representative of old growth
and no signs of forest advance. Usually with a sharp boundary with the adjacent grassland.

Late – Abrupt advancing treeline
(24)

Canopy dominated by A. kawakamii or T. chinensis. Areas of forest advance that have a high density of establishing trees usually over short
distances and a sharp, well-defined boundary with the adjacent old growth forest and grassland.

Late – Diffuse advancing treeline
(32)

Canopy dominated by A. kawakamii or T. chinensis. Areas of forest expansion with a low density of establishing trees usually over long
distances and a diffuse, poorly defined boundary with the adjacent grassland.

Early – Diffuse advancing treeline
(22)

Canopy dominated by P. taiwanensis or P. armandii. Areas of forest expansion with a low density of establishing trees usually over long
distances and a diffuse, poorly defined boundary with the adjacent grassland.

Grassland
(31)

Areas devoid of tree species but may include a low density of shrubs.
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Fig. 1. Definitions of structural classes are based on differences in tree size and tree density (median values for stand height and tree density are shown with standard
error). The combination of tree size and density results in a significant difference in above-ground woody biomass between structural classes (ANOVA: F
(5,148)=55.96, p < 0.001), with the Early-Diffuse advancing and Late-Diffuse advancing treeline classes not separable due to a similar forest structure but defined
by a different successional stage (median values for above-ground woody biomass are shown with standard error).
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total of 154 plots were sampled, split among the different vegetation
classes (Table 2). Early successional species are only found in localised
areas of low-density establishment, therefore, are only represented in a
single structural class. Data from Greenwood et al. (2014) were com-
bined with data from an additional survey conducted by the authors in
2016. To retain consistency in plot size, transect data from Greenwood
et al. (2014) were split into 84 subplots measuring 20× 20m returning
a sample area of 0.04 ha. The 70 plots surveyed in 2016 used a 10m
fixed radius design returning a sample area of 0.03 ha. Since quantity
measures are area-standardised, this difference in plot size has no
consequence for subsequent analyses. Field plot location were recorded
using a handheld Garmin GPSMAP 62s (best accuracy±3m). All trees
were measured for Diameter at Breast Height (DBH) at 1.3 m and the
height of all live saplings< 1.3 m in height was recorded in all plots.
During the 2016 survey, a sample of live trees within each plot was also
measured for height. Height was related to DBH using nonlinear least
squares regression, thereby allowing estimation of height for any plots
where it was not recorded (data not shown). Stand above-ground
woody biomass was calculated from stand basal area and median stand
height, accounting for differences in specific wood gravity between
species. Sapling data were used to inform the designation of structural
classes but were not used to calculate stand above-ground biomass
values.

2.3. Earth observation data

To investigate the importance of sensor spatial resolution on the
characterisation of treeline structural variation, data from four multi-
spectral satellite-borne sensors are compared; 2m pixel size GeoEye
multispectral data captured in October 2012, 6m pixel size SPOT-7
multispectral data captured in October 2016, 10m and 20m pixel size
Sentinel-2 MSI data captured in October 2016 and 30m pixel size
Landsat-8 OLI data captured in January 2017. Sentinel-2 and Landsat-8
are delivered as orthorectified products and GeoEye and SPOT-7 images
were orthorectified using a 30m resolution SRTM DEM. The spectral
bands were calibrated and converted to top-of-atmosphere reflectance
in ENVI 5.3 using gain and offset values, accounting for solar irra-
diance, sun elevation and time of image acquisition. Atmospheric cor-
rection was not implemented as single date images are considered in-
dependently and pseudo-invariant features (roads and buildings) did
not indicate differences in atmospheric conditions between individual
images (Song et al., 2001; data not shown). All images were collected in
the same season (Autumn-Winter) to avoid differences in vegetation
phenology.

Where available, up to seven spectral bands (blue, green, red, near
infrared (NIR), red-edge and two short-wave infrared (SWIR) bands)
and four vegetation indices were considered (Table 3). The vegetation
indices considered were the Normalised Difference Vegetation Index
(NDVI), calculated as:

= − +NDVI (NIR RED)/(NIR RED) (1)

where NIR and RED are the near infrared and red spectral bands re-
spectively; the Green-Red Vegetation Index (GRVI), calculated as:

= − +GRVI (GREEN RED)/(GREEN RED) (2)

where GREEN and RED are the green and red spectral bands respec-
tively; the Green Normalised Difference Vegetation Index (GNDVI),
calculated as:

= − +GNDVI (NIR GREEN)/(NIR GREEN) (3)

where NIR and GREEN are the near infrared and green spectral bands
respectively; and Normalised Burn Ratio Index (NBRI), calculated as:

= − −NBRI (NIR SWIRII)/(NIR SWIRII) (4)

where NIR and SWIRII are the near infrared and second short-wave
infrared (approx. 2200 nm) spectral bands respectively. Five measures Ta
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of statistical distribution were considered as textural features, the
mean, two measures of dispersion (standard deviation and coefficient of
variation) and two measures of shape (skewness, kurtosis) were cal-
culated for each spectral band and vegetation index in all sample plots.
Due to differences in spatial resolution of the different remote sensing
images, we are unable to calculate dispersion and shape statistics for all
sample plots. Consequently, the number of sample points that are used
in the analysis of the dispersion and shape statistics varies; 154 plots for
GeoEye and SPOT-7 and 101 for 10m pixel size Sentinel-2 (Table 3). It
was not possible to calculate dispersion and shape statistics at the plot
scale from 20m pixel size Sentinel-2 data or 30m pixel size Landsat-8
data, consequently, only the mean spectral response is considered and
no other descriptors of spectral response are investigated. Statistical
descriptors of spectral response were calculated in R (R Core Team,
2017) using packages raster (Hijmans, 2016) and rgdal (Bivand et al.,
2016).

2.4. Statistical analysis

Each spectral feature was regressed independently to assess the
strength of the relationship between each band or vegetation index and
the forest biophysical properties due to the high degree of correlation
between spectral bands. The relationship between the forest/non-forest
definition and spectral features was assessed using binomial logistic
regression with a logit link function. Multinomial logistic regression
was used to investigate the probability of separating different structural
classes (Table 1) from the spectral data. The results from multinomial
regression of the full structural classes indicated that some forest classes
could not be separated and consequently, class simplification was car-
ried out. The simplified class structure considered three vegetation
classes in multinomial logistic regression: Old-growth forest (an amal-
gamation of the old-growth forest and static treeline classes), areas of
forest advance (an amalgamation of the three classes of forest advance:
Early-Diffuse, Late-Diffuse and Late-Abrupt advancing treeline classes)
and the grassland class. Least squares regression was used to explore the
relationship between above-ground woody biomass and spectral fea-
tures. The inclusion of zero values of above-ground woody biomass
from grassland plots caused heteroscedasticity in model residuals.
Consequently, the analysis was conducted as a two-stage procedure,
first considering the forest/non-forest definition through binomial lo-
gistic regression and subsequently conducting least squares regression
on data points from the forest class with a log transformation on above-
ground woody biomass.

Multiple regression was carried out for each of the four definitions
of vegetation structure (Forest/non-forest, full and simplified structural
classes and above-ground woody biomass) to ascertain if the char-
acterisation of structural variation at the treeline could be significantly
improved by using multiple spectral predictors. Multi-collinearity was
tested for using variance inflation factors and, where present, spectral
variables were removed to reduce the severity of multi-collinearity.
Model simplification was carried out using partial F-tests to identify the
minimum adequate model required to explain variation in the response.
To identify potential strengths or limitations of the different forest de-
finitions, the probability of class assignment or above-ground woody
biomass was estimated for a subset of the Mt. Hehuan study area using
the GRVI derived from Sentinel-2 imagery. All statistical analyses were
carried out in R (R Core Team, 2017) using packages boot (Canty and
Ripley, 2016) and nnet (Venables and Ripley, 2002), variance inflation
was tested for using the car package (Fox and Weisberg, 2011). Sta-
tistical significance was considered at p < 0.05 and the coefficient of
determination (R2) used to gauge the strength of the relationship (the
reported R2 of the binomial and multinomial logistic regression is
McFadden's pseudo R2 - henceforth R2

MF). The reported R2 for above-
ground biomass are from least-squares regression of biomass against
spectral properties in which zero values of biomass in grassland areas
were excluded due to heteroscedasticity in the residuals.

3. Results

3.1. Textural features

Of the textural features considered, the mean spectral response has
the strongest relationship with the four treeline ecotone definitions
investigated, particularly with the green and red spectral bands and the
GRVI (Table 4). The dispersion measures (standard deviation and
coefficient of variation) of the near-infrared band from the GeoEye
sensor show a significant relationship with each of the four definitions
of vegetation structure (Table 4). However, the strength of the re-
lationship between dispersion measures and forest-grassland definitions
is considerably lower when data from either SPOT-7 or Sentinel-2 are
considered (e.g. the strongest measure for forest/non-forest: GeoEye
NIR Coef. of Var. R2

MF 0.464, p < 0.01; SPOT NIR Coef. of Var. R2
MF

0.200, p < 0.01; Sentinel-2 NIR Coef. of Var. R2
MF 0.086, p < 0.01;

Supplementary 1). While the strength of the relationship between de-
finitions of vegetation structure and the dispersion and shape features
derived from the spectral bands are typically better than dispersion
measures derived from vegetation indices, the dispersion measures of
the GNDVI measured from GeoEye data have a comparable, significant
relationship with above-ground woody biomass (St. dev. R2= 0.452,
p < 0.01; Coef. of Var. R2 0.469, p < 0.01; Table 4).

3.2. Spectral bands

When considering the mean response of spectral bands from all the
sensors investigated, the blue, green, red and shortwave infrared bands
show the strongest relationship with the definitions of vegetation
structure at the treeline ecotone (Highest R2

(MF) for forest/non-forest:
Sentinel-2 Red 0.642, p < 0.01; Full structural Classes: SPOT-7 &
Sentinel-2 Blue 0.396, p < 0.01; Simplified structural Classes:
Sentinel-2 Blue 0.531, p < 0.01; Above-ground woody biomass:
GeoEye Green 0.704, p < 0.01; Table 5), while the near-infrared and
red edge bands show a weak relationship (Table 5). The spatial re-
solution of the sensor has little effect on the strength of the relationship
with either the forest/non-forest definition or full structural classes
(difference of R2

MF within 0.06 and 0.09 respectively). When the sim-
plified structural classes are considered the difference in R2

MF in the
visible wavelengths is< 0.08, however, in the near-infrared this dif-
ference increases to 0.19 due to a reduced strength of the relationship
between the mean response of the near-infrared band from Landsat-8
and the simplified structural classes. Similarly, the strength of the re-
lationship between above-ground woody biomass and the visible and
near-infrared bands from the Landsat-8 sensor are consistently
0.12–0.29 R2 lower than the strongest relationship with the alternative
sensors considered here. However, the difference in R2 among the re-
maining three sensors in the visible range is< 0.03 and in the near-
infrared there is a difference in R2 of 0.1 when above-ground woody
biomass is used to describe the treeline ecotone (Table 5).

3.3. Vegetation indices

When vegetation indices are considered, the mean response of the
GRVI and NBRI show the strongest relationships with each of the four
forest-grassland transition definitions considered (Highest R2 for forest/
non-forest: Landsat-8 GRVI 0.623, p < 0.01; Full structural Classes:
GeoEye GRVI 0.329, p < 0.01; Simplified structural Classes: SPOT
GRVI 0.425, p < 0.01; Above-ground woody biomass: GeoEye GRVI
0.586, p < 0.01; Table 6). The strength of the relationship between the
mean response of the Green-Red vegetation index does not depend on
the spatial resolution of the sensors compared in this study when ca-
tegorical definitions are used to describe vegetation structure across the
mountain treeline (difference of R2

MF within 0.07 for forest/non-forest;
0.04 for full structural classes; 0.05 for simplified structural classes,
Table 6). However, when above-ground woody biomass is used the
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difference in R2 between sensors tested here increases to 0.12 (Table 6).

3.4. Multiple regression

When considering the GeoEye sensor, the use of multiple spectral
bands as predictor variables leads to a significant increase in variance
explained across all four of the definitions of vegetation structure
considered here (Table 7). However, when considering the alternative
sensors tested in this study the benefit of including multiple spectral
bands as predictors depends on the definition used to describe vegeta-
tion structure across the treeline ecotone. For example, for SPOT-7 and
Sentinel-2 the strength of the relationship between spectral bands and
both the full and simplified structural class definitions increases when
using multiple regression (Table 7). However, when a simple forest/
non-forest or above-ground woody biomass definition is used to de-
scribe the vegetation structure at the treeline ecotone, linear models
with R2 above 0.6 can be derived from a single spectral band such as the
green or red spectral bands (Table 7). When spectral bands from
Landsat-8 are used, the minimum adequate model uses only a single
spectral band due to multi-collinearity in the spectral data. However,
when vegetation indices are derived from Landsat-8 spectral bands, the
combination of GRVI and the NBRI in regression models significantly
improves the strength of the relationship with the full structural classes,
simplified structural classes and above-ground woody biomass
(Table 7).

3.5. Data visualisation

The probability of class assignment and above-ground woody bio-
mass were estimated to identify potential strengths or limitations of the
different definitions of forest structure at the mountain treeline. Tables
5 and 6 indicate that several spectral bands or vegetation indices would
be suitable for this purpose, with the green and red spectral bands and
GRVI among the highest performing spectral variables considered.
While the NBRI shows a similar strength of relationship to the GRVI, it
is only possible to calculate the NBRI from two of the four sensors
considered (Sentinel-2 and Landsat-8, Table 6). Therefore, the GRVI is
used to compare definitions of forest structure at the mountain treeline
because the GRVI is the best performing vegetation index that can be
derived from all four of the sensors investigated in this study.

The estimated probability of the forest/non-forest binomial logistic
regression shown using the GRVI derived from Sentinel-2 imagery
highlights significant areas of the grassland that would be estimated as
forest under a definition based on 10% canopy cover if a maximum
probability classifier were implemented (Fig. 2). The increased prob-
ability of forest occurrence in areas that can be visually identified as
grassland coincides with increased standard error compared to neigh-
bouring forested areas (Fig. 2). Based on a maximum probability clas-
sification, the mean response from the GRVI would be expected to
identify up to three of the six classes considered here: grassland, late-
diffuse advancing treeline and old growth forest (Fig. 3). This approach
does not determine differences in community composition between the
early- and late-successional stages in the diffuse advancing structure,
areas of late-abrupt advance or differences between the static treeline
and old growth forest (Fig. 3). Simplifying intermediate classes, by
amalgamating the late-static class with the old growth forest as well as
combining the three classes indicative of forest advance, results in a
better distinction between old growth forest and grassland areas as well
as a reduction in the area of grassland that would be incorrectly clas-
sified as forested under a forest/non-forest approach (Fig. 4). While the
simplified class structure leads to better discrimination of areas of forest
advance from areas of old-growth, this approach is unable to resolve
heterogeneity in forest structure at the mountain treeline due to overlap
in the spectral properties of forest structural classes (Fig. 3). The esti-
mation of above-ground biomass indicates an improved ability to esti-
mate differences in structural heterogeneity at the mountain treeline

showing good correspondence to the true colour image. However, the
characterisation of areas with biomass values above 25 t C ha−1 are
likely to be inaccurate due to a saturation effect that occurs in the re-
lationship between biomass and the spectral properties (Fig. 5). In ad-
dition, the spectral signature of some grassland areas still results in an
elevated above-ground woody biomass estimation in areas not under-
going forest expansion. However, estimated biomass values of these
grassland areas are reduced when compared against the neighbouring
forested areas (Fig. 5).

4. Discussion

Here we show that the ability to identify variation in forest structure
at the mountain treeline using multispectral satellite remote sensing
data is best achieved when above-ground woody biomass is used to
describe variation in vegetation structure (Tables 4–7). Furthermore,
we show that a simplified class structure that considers areas of forest
advance separately to old growth forest improves the discrimination of
areas indicative of forest advance or stasis. The relationships defined
here between four definitions of vegetation structure at the mountain
treeline and spectral features highlight little quantitative difference
between the remote sensing sensors tested here (difference of R2

(MF)

within 0.03 for forest/non-forest; 0.11 for full structural classes; 0.05
for simplified structural classes; 0.16 for above-ground woody biomass;
Table 7). Consequently, effective use of multispectral satellite remote
sensing data presents a major opportunity to improve the ecological
understanding of range shifts in mountain forests and estimate their
subsequent impacts to biodiversity and ecosystem function.

The relationship between treeline definition and spectral variables
is strongest when using above-ground woody biomass or the forest/
non-forest definition to describe the forest-grassland transition (stron-
gest R2 for above-ground woody biomass: GeoEye Green mean & NIR
Coef. of Var. 0.723, p < 0.01; strongest R2

MF for forest/non-forest:
SPOT-7 Green mean 0.645, p < 0.01; Table 7). However, both defi-
nitions show limitations in the ability to characterise areas indicative of
forest advance or stasis across forest-grassland transitions in mountain
ecosystems. When using a forest/non-forest definition, thresholds of
canopy cover used to delineate a forest boundary in an ecotone are
difficult to define because areas of grassland and areas with a low forest
canopy cover can have similar spectral responses which in turn influ-
ences estimates of forest extent (Fig. 2; Arnot et al., 2004; Hill et al.,
2007). Song et al. (2014) found that varying the threshold of canopy
cover from 20 to 30% resulted in considerable disagreement in forest
cover estimates, resulting in a significant under-representation of dif-
fuse forest expansion when a threshold of 30% canopy cover was used.
Treeline ecotones are often characterised by areas with sparse and
discontinuous tree cover and, consequently, assessments of change
must be able to identify areas of diffuse forest expansion accurately.
The sensitivity of the canopy cover threshold used to define the forest/
non-forest boundary highlighted above not only leads to high un-
certainty in estimates of forest expansion but also understates the
variety of responses of the mountain treeline, restricting the ecological
interpretation of forest change in mountain treeline ecotones
(Holtmeier and Broll, 2017, 2007).

The representation of the mountain treeline ecotone is improved
when using above-ground woody biomass to characterise vegetation
structure. However, using above-ground woody biomass to represent
the treeline ecotone is likely to under-estimate biomass in areas of old
growth forest because spectral reflectance has an asymptotic relation-
ship with plant biomass, which leads to a saturation effect in dense
vegetation (Fig. 5; Asner et al., 2003; Huete et al., 1997). In upland
plantations, Puhr and Donoghue (2000) highlighted that the spectral
signature of conifer trees converges with increasing size and as the
canopy approaches closure. Consequently, once coniferous forest stands
approach 13m in height and the basal area exceeds 40m2 ha−1 iden-
tifying differences in forest structure is problematic, and predictions are
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likely to become unreliable (Puhr and Donoghue, 2000). The saturation
of GRVI indicated in Fig. 5 coincides with the class average biomass
values of the abrupt advancing treeline where trees establish in high
density and reach canopy closure quickly (Fig. 1). Consequently, it may
be possible to identify changes in above-ground woody biomass in areas
undergoing forest expansion and so improve the characterisation of
vegetation structure. However, characterisation of areas with biomass
values above 25 t C ha−1 are likely to be inaccurate and thus limits the
use of above-ground biomass as a single predictor of forest structure at
mountain treeline ecotones.

Structural classes that define intermediate classes between areas of
old-growth forest and treeless habitats have not been widely used in
studies using remote sensing data to identify shifts in mountain forests.
Consequently, there was uncertainty surrounding the degree of struc-
tural information that multispectral satellite remote sensing is able to
resolve (Morley et al., 2018). The high spectral similarity between the
late successional - old growth forest, late-static treeline and late-abrupt
advancing treeline classes indicates a saturation in the spectral prop-
erties during the transition between the closed canopy, abrupt advan-
cing treeline and old growth forest structures (Fig. 3). Amalgamating
the static treeline and old growth forest classes leads to an improvement
in the ability to identify areas of old-growth forest (Fig. 4). Similarly,
amalgamating the early-diffuse, late-diffuse and late-abrupt advancing
forest classes leads to an improved ability to separate areas at the
leading edge of forest advance from areas of old-growth forest (Fig. 4).
Consequently, we find that the use of simplified structural classes im-
proves the characterisation of areas indicative of treeline advance or

stasis. However, overlap in the spectral properties means that it is not
possible to identify variation in forest structure within areas of forest
advance using discrete classes.

The spectral similarity highlighted by the probability estimates of
the forest/non-forest regression persists between areas of diffuse forest
advance and some areas of the grassland (Fig. 3). At the leading edge of
forest advance, the diffuse advancing treeline class is characterised by a
few trees< 5m in height. Consequently, the size and density of es-
tablishing trees are not sufficient to provide a significant difference in
spectral reflectance in some grassland areas when using a single date
image, leading to an over-estimation in the extent of diffuse treeline
advance (Figs. 3 & 4). The spectral similarity between some grassland
areas and the diffuse advancing treeline exists in areas where changes
in forest extent and structure are occurring most rapidly. Consequently,
the identification of areas of forest advance can be improved by com-
paring images over time (e.g. Dinca et al., 2017; Mihai et al., 2017;
Bharti et al., 2012). The Landsat archive offers the most consistent
source of multispectral satellite data with images dating back to the
1980s at 30m pixel size. Concerns had been raised over the potential
suitability of data from the Landsat archive to characterise vegetation
heterogeneity due to the spatial resolution of the spectral data (Bharti
et al., 2012; Buchanan et al., 2015; Chen et al., 2015). It is often per-
ceived that imagery with a high spatial resolution will improve the
characterisation of habitat heterogeneity because of the ability to
identify small objects, e.g. individual trees. However, we show that
spectral features derived from Landsat-8 data have a comparable
strength of relationship to higher resolution imagery when simple
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Fig. 2. The relationship (Binomial logistic regression) between GRVI derived from Sentinel-2 (Oct 2016) and forest/non-forest response and 95% confidence intervals
(top-left, R2

MF=0.59, p < 0.01), true colour composite of the Mt. Hehuan North Peak (top-right) and corresponding estimated probability of forest occurrence
(bottom-left) and uncertainty in the estimated probability shown as standard error (bottom-right). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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structural classes are used, despite the ability to include multiple
measures of spectral texture at the plot scale from imagery with a high
spatial resolution (difference of R2

MF between sensors tested within 0.03
for forest/non-forest and 0.05 for the simplified structural classes,
Tables 7; Donoghue and Watt, 2006). Consequently, exploiting the
long-term, open-access Landsat archives to identify changes in forest
extent over time will improve estimates of forest distribution change at
the leading edge of forest-grassland transitions (e.g. Dinca et al., 2017;
Mihai et al., 2017).

While exploiting the Landsat archive is beneficial for identifying
areas of treeline change, there are still difficulties in characterising
variation in forest structure within areas of change using structural
classes. Identifying change between simplified class assignment over
time using archived Landsat data would allow estimation of the extent
of forest change and stand age of advancing forest, however, this ap-
proach would not directly characterise forest structure. An alternative
solution is to estimate above-ground woody biomass directly using
imagery of higher resolution within areas identified as advancing
forest. While data from the GeoEye sensor returns the highest

correlation coefficient with above-ground woody biomass (R2= 0.723,
p < 0.01), the difference in correlation coefficient using data from
Sentinel-2 or SPOT-7 are within 0.04 (R2= 0.681, p < 0.01;
R2= 0.682, p < 0.01 respectively). Consequently, there is an oppor-
tunity to make use of freely available Sentinel-2 data to estimate above-
ground woody biomass at the stand scale, thereby allowing variation in
forest structure to be characterised within areas undergoing forest ad-
vance at the mountain treeline. This two-stage approach would allow
variation in vegetation structure at the mountain treeline to be esti-
mated with higher confidence than using either a forest/non-forest
classification, which over-estimates forest cover, or the direct estima-
tion of above-ground woody biomass, which would give an unreliable
estimate of biomass past a saturation threshold.

Structural classes are broad enough to be used at a global scale, and
while not necessarily present in every mountain forest, are suitably
flexible to be adapted to the local community and structural composi-
tion. Here the spectral similarity of conifer species meant it was not
possible to distinguish between the early successional – diffuse advan-
cing treeline and the late successional – diffuse advancing treeline.

ytilibaborP
ytilibaborP

Fig. 3. The relationship (multinomial logistic regression) between GRVI derived from Sentinel-2 (Oct 2016) and structural classes showing estimated class prob-
ability (top, R2

MF=0.287, p < 0.01) and the estimated probability of membership to each of the six structural classes in the Mt. Hehuan North Peak (bottom). Based
on a maximum probability approach, three of the six vegetation classes would be estimated while the early-diffuse advance, late-abrupt advance and Late-static forest
structural classes are unlikely to be identified.
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However, Bharti et al. (2012) have shown the ability of multispectral
Landsat imagery to separate coniferous and broadleaf species at other
elevational treelines. Therefore, in other mountain areas, broader spe-
cies differences could be incorporated to account for species-specific
responses to environmental change providing suitable training data are
available. When adapting structural classes, the spectral similarity be-
tween classes highlighted above emphasises the importance of in-
dependent accuracy assessments, the process by which image classifi-
cation algorithms are trained and validated using subsets of the ground-
truthing data set (see Castilla, 2016; Olofsson et al., 2014, 2013). While
accuracy assessments are required of any study using remotely sensed
data to estimate land-surface properties; they remain an element absent
from many previous studies of mountain treelines (Morley et al., 2018).
At the leading edge of mountain forest distribution, some areas respond
to environmental change very quickly while other areas slowly or not at
all (e.g. Greenwood et al., 2014; Harsch et al., 2009; Lloyd, 2005).
Consequently, as the uptake of remote sensing technology in assess-
ments of changing mountain forest distribution increases, there is a
need to ensure that conclusions drawn about changes in forest extent
and structure at forest margins are reliable when scaled up to assess
entire mountain ranges.

5. Conclusion

Obtaining estimates of changes in forest distribution over large
areas is challenging in mountain areas where steep terrain often re-
stricts the geographical scope of field campaigns. Change assessments
must account for variation in forest structure to make reliable estima-
tions of the impacts of distribution shifts on biodiversity and ecosystem
function. By comparing different satellite sensors against four defini-
tions of vegetation structure at the mountain treeline that are widely
used in the ecology, biogeography and remote sensing literature, we

demonstrate that the identification of areas indicative of forest advance
or stasis is best achieved using a simplified class structure while var-
iation in structure within areas of forest advance is best characterised in
multispectral satellite remote sensing using above-ground woody bio-
mass to describe forest structure. There is very little difference in the
ability of the sensors tested here to discriminate between categorical
descriptors of vegetation structure, and while Landsat 8 is less well
suited to defining above-ground woody biomass there is little difference
between the relationships defined for GeoEye, SPOT-7 and Sentinel-2
data. The results presented here enable structural variation in mountain
forest margins to be identified in multispectral satellite remote sensing,
facilitating research in mountain areas where significant fieldwork is
not possible. Consequently, the methods described in this paper will
advance our understanding of the ecological mechanisms driving forest
distribution shifts across mountain ranges and improve estimates of the
impacts that changes in forest distribution will have on biodiversity and
ecosystem function.
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Fig. 4. The relationship (multinomial logistic regression) between GRVI derived from Sentinel-2 (Oct 2016) and simplified structural classes showing estimated class
probability (top, R2
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Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version at https://doi.org/10.1016/j.rse.2019.01.027. These
data include the Google map of the most important areas described in
this article.
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