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Abstract 33 

Burullus Lagoon is the second largest lake in Egypt. However, there has never been a comprehensive 34 

survey which studied nineteen potentially toxic elements in sediments and plants and evaluated the 35 

associated potential risk. Thus, we aimed to study the total and potentially available content of As, Al, 36 

Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Sb, Se, Sn, Tl, V, and Zn in the sediments and common reed 37 

(Phragmites australis) at thirty two sites along the entire lagoon and connected drains. Contamination 38 

Factor (CF), Pollution Load Index (PLI), Geo-accumulation Index (Igeo), and Enrichment Factor (EF) 39 

were calculated to assess the grade of contamination. Element accumulation factor (AF) and bio-40 

concentration ratio (BCR) were also calculated. Aluminium showed the highest median (mg kg-1) total 41 

content (41,200), followed by Fe (30,300), Mn (704.7), V (82.0), Zn (75.5), Cr (51.2), Cu (47.8), Ni 42 

(44.3), As (31.9), Tl (24.6), Co (21.4), Se (20.3), Sb (17.6), Sn (15.6), Mo (11.3), and Hg (16.6 µg kg-1). 43 

Values of the EF, CF, and Igeo showed that the sediments were heavily contaminated with As, Sb, Se, Tl, 44 

Mo, Sn, Co, Ni, and Cu. The drained sediment had significantly higher values of total and potentially 45 

available element content than the lagoon sediments. Sediments of the middle and western area showed 46 

significantly higher contents of total and available elements than the eastern section. The BCR and AF 47 

values indicate that the studied plant is efficient in taking up high amounts of Zn, Fe, As, Sn, Tl, Ni, Mo, 48 

Mn; then Co, Cu, and V. The results exhibit a dramatic contamination at certain sites of the lagoon, and 49 

the studied PTEs have a predominant role in contamination-related ecological risk. Further investigations 50 

concerning redox-induced mobilization of PTEs in sediments, the risk of fish contamination and the 51 

potential health hazards are highly recommended. 52 

 53 

Keywords: Wetlands; Toxic metal(loid)s; Contamination indices; Accumulation factors. 54 

 55 

 56 

 57 

 58 
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1. Introduction 59 

Burullus lagoon is a UNESCO-protected Area in the north of Nile Delta, Egypt. This lake supplies a 60 

considerable percentage of the annual Egyptian fish yield. Thus, there is a considerable health risk when 61 

these lagoon sediments have high levels of potentially toxic elements (PTEs). The lagoon receives 62 

drainage water through several drains (El-Badry and Khalifa, 2018). The water sources for the lake are 63 

mainly derived from agricultural drainage, municipal sewage, and industrial wastewater (Gu et al., 2012). 64 

Therefore, the lake environment is vulnerable to environmental changes particularly related to enhanced 65 

anthropogenic pressure (Eid and Shaltout, 2004; Nassar and Gharib, 2014) such as agricultural, industrial 66 

and sewage discharge and fishing activates (Okbah and Hussein, 2006; Abukila, 2015).  67 

Wetland sediments are important sinks for PTEs and play a significant role in the remobilization of 68 

contaminants in aquatic ecosystems under certain conditions (Ali and Fishar, 2005; Ghosh et al. , 2018). 69 

Information on PTEs, in particular some emerging contaminates such as Se, Sb, Sn, Th, and V in coastal 70 

lagoon sediments and plants, is still limited. Although some authors (e.g., Chen et al., 2010; Gu et al., 71 

2012; El-Badry and Khalifa, 2018) studied partially a few elements at certain sites in the Burullus lagoon, 72 

there is no comprehensive study which would links nineteen PTEs  in sediments and plants in this lake 73 

with the associated potential risk. Therefore, we aim 1) to study the total and potentially available content 74 

of As, Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Sb, Se, Sn, Tl, V, and Zn in the sediments and common 75 

reed in the Burullus lagoon, 2) to assess the grade of contamination and the associated eco-toxicological 76 

risk using different contamination indices such as Contamination Factor (CF), Pollution Load Index 77 

(PLI), Geo-accumulation Index (Igeo), and Enrichment Factor (EF), and 3) to investigate the suitability of 78 

common reed as a hyperaccumulator of the studied PTEs using the accumulation factor (AF) and bio-79 

concentration ratio (BCR) indices. 80 

 81 

 82 

 83 

 84 
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2. Materials and methods  85 

2.1 Study area and sampling  86 

The Burullus Lake is located in the Kafr El-Sheikh governorate at the north of the Egyptian Nile Delta 87 

(31° 14' 60" N and 31° 14' 60" E) (Appleby et al., 2001). The lagoon extends between 31˚ 22̄ - 31˚ 26̄ N 88 

and 30˚ 33̄ – 31˚ 07̄ E (Fig. 1). The entire lake is 47 km long and about 5 km wide, and has a water 89 

surface area of about 440 km2 (Chen et al., 2010). The lagoon is connected to the Mediterranean Sea with 90 

a small waterway called Al-Bughaz (Fig. 1). In the southern part of the lagoon, many drains are connected 91 

the Burullus lagoon. Through these drains, untreated agricultural, domestic, and industrial drainage from 92 

the local towns and villages directly flow into the lagoon. We divided the studied area into six sections as 93 

follows: 1) all (include the lake and the drains), 2) drains (include the drains connected with the lake), 3) 94 

lake (include the lake without the drains), 4) eastern sector (include the lake and drains in the eastern part 95 

of the studied area), 5) middle sector lake (include the lake and drains in the middle part of the studied 96 

area), and 6) western sector (include the lake and drains in the western part of the studied area) (Fig.1).   97 

Thirty-two sampling sites were selected across the lagoon and its main drainage water supplies during the 98 

period from March 1 to June 1, 2014. Samples of sediments and common reed (Phragmites australis) 99 

plants were collected in triplicates of each site resulting in ninety six samples in total. The sediment 100 

samples were collected from the surface layer (0-10 cm) using polyvinylchlorid (PVC) cores. The 101 

sediments were morphologically described; thereafter the samples were placed into plastic bags. Whole 102 

plants of common reed were collected, washed using the lake water, and placed into plastic bags.  103 

[Insert Figure 1] 104 

2.2 Preparation and characterization of studied samples  105 

The sediment samples were homogenized, air-dried, crushed, and passed through a 2-mm sieve. Salinity, 106 

pH, and total organic carbon of the ninety six sediment samples were analysed. Sediment pH was 107 

measured in 1:1 (w/v) suspension using a calibrated pH-meter (JENWAY 3510). The salinity was 108 

measured using EC–meter (MI 170, Italy). Organic carbon was determined by loss on ignition using a 109 

muffle furnace at 500  ͦC for 5 hours (Cambardella et al., 2001). The sediment texture was identified by 110 
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finger test (Whiting et al. , 2016). The plant biomass of the common red was thoroughly washed with 1 M 111 

HCl; thereafter deionized water, and dried to constant weight at 70 oC with a force-drought oven. The 112 

samples of the dry biomass were grounded to fine powder in a stainless steel grinder. 113 

 114 

2.3 Extraction and analysis of PTEs in sediment and plant samples 115 

Sediment samples were digested in an advanced microwave digestion system (Milestone; ETHOS EASY, 116 

Germany) to determine the pseudo-total element concentrations (US EPA 3051a, 2007). Total content of 117 

Hg in sediment samples were measured using a direct mercury analyzer (DMA-80, Milestone Inc., 118 

Sorisole, Italy). The potentially available form of the elements (except for Hg) was extracted using a 119 

solution of ammonium bicarbonate (1M NH4HCO3) - diethylene tri amine penta acetic acid (0.005 M 120 

DTPA) (AB-DTPA) according to Soltanpour and Schwab (1977).  121 

One gram of the plant material was dry-ashed in a muffle furnace at 450oC for five hours, extracted with 122 

20% hydrochloric acid (Jones et al., 1991) to analyse the plant tissue concentrations of the studied 123 

elements. The element concentrations in the sediment and plant samples were measured by ICP-OES 124 

(Ultima 2, Horiba Jobin Yvon, Unterhaching, Germany). 125 

 126 

2.4 Quality control and statistical analyses 127 

Quality control of the extraction efficiency of the pseudo-total element concentrations was performed 128 

using certified soil reference materials (CRM051 and CRM042) obtained from the Labmix24 GmbH, 129 

Germany. The average recovery of the studied elements ranged between 86 and 101%. To ensure that the 130 

results were reliable, blank and triplicate measurements were employed during the analyses. Standard 131 

solutions (Merck) of the elements were used to guarantee high-quality results. The maximum allowable 132 

relative standard deviation (RSD) among replicates and was set to 15 % for sediments and plant analyses. 133 

The detection limits were 28 µg L-1 for Al, 10 µg L-1 for As, 2.7 µg L-1for Cd, 7.0 µg L-1 for Co, 7.1 µg L-134 

1 for Cr, 5.4 µg L-1  for Cu, 12 µg L-1 for Mo, 10 µg L-1 for Ni, 1.5 µg L-1 for Se, 6.25 µg L-1 for Sn and 135 

Sb, 12.5 µg L-1 for Ag and Tl, 7.5 µg L-1 for V, and 1.8 µg L-1 for Zn. Values below the detection limit 136 
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were as equal to 1/8 of the detection limit for statistical purposes. The statistical analyses were carried out 137 

using IBM SPSS Statistics 23 (NY, USA). The means for the variables were tested using a one-way 138 

ANOVA with Duncan's multiple range tests at a significance level of 0.05. OriginPro 9.1 b215 139 

(OriginLab Corporation, Northampton, USA) was used to create the figures. 140 

 141 

2.5 Sediment contamination and risk assessment indices 142 

We calculated the following indices to assess the risk by the PTEs studied: 143 

2.5.1 Contamination Factor (CF):  144 

The CF is calculated according to the following equation as reported in Islam et al. (2015a,b) and 145 

Antoniadis et al. (2017a,b): 146 

CF=CS/CRefS 147 

where CS is total element concentration in the sediments; CRefS is the background reference element 148 

concentration in uncontaminated sediments. The background reference concentrations were obtained from 149 

Kabata-Pendias (2011, p. 41) as “crustal average“(Table 1). We have used these background reference 150 

concentrations due to the lack of local element background information and also to have a uniform scale 151 

for all elements studied, because some emerging contaminants such as Se, Sb, Sn, and Tl have no  152 

reported background value in sediments (Birch , 2017). The contamination level accroding to the CF 153 

value may be classified as follows: low degree (CF<1), moderate degree (1≤CF<3), considerable degree 154 

(3≤CF<6), and very high degree (CF≥ 6) (Luo et al., 2007; Shaheen et al. 2017a; Ghosh et al., 2018).  155 

 156 

2.5.2 Pollution Load Index (PLI) 157 

The PLI is defined as the nth root of the multiplications of the contamination factor of elements (Bhuiyan 158 

et al., 2010; Islam et al., 2015a,b; Shaheen et al., 2018): 159 

PLI=(Cfs,1 x Cfs,2 x … x Cfs,n)
1/n 160 

where Cfs,1, Cfs,2, Cfs,n are the element CF; 1, 2, …, n, and n is the number of measured elements. 161 

 162 
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2.5.3. Enrichment Factor (EF):  163 

The enrichment factor (EF) is calculated by normalizing the given elements concentration in sediments to 164 

concentration of Al (Islam et al., 2015a; Antoniadis et al., 2017a,c): 165 

EF = (CS/AlS)/(CRefS/AlRefS) 166 

where AlS is total Al concentration in the sediments, and AlRefS is the background reference value of Al 167 

(taken as equal to 20000 mg/kg). We have used 20,000 mg kg-1 as reference value of Al because 168 

Salminen et al. (2004) reported that the value 0.2% (20,000 mg kg-1) is the lowest median total content of 169 

Al in the stream and floodplain sediments. In addition the lowest value of total Al in the studied lake 170 

sediments (except for three sandy texture samples) is 21,100 mg kg-1; thus we considered 20,000 mg kg-1 171 

as background value of Al in the studied sediments. Generally, an EF value of 1.0 suggests that a given 172 

PTE may be entirely from crustal materials or natural processes of weathering (Rashed, 2010). The EF 173 

value ranges of 1.5–3, 3–5, 5–10 and > 10 is considered as evidence of minor, moderate, severe, and very 174 

severe contamination, respectively (Islam et al., 2015b). 175 

 176 

2.5.4. Geo-accumulation Index (Igeo): 177 

The Igeo is calculated according to the following equation: 178 

Igeo=log2 (CS/1.5CRefS) 179 

The level of contamination as recorded by Igeo is indicated by Latin numbering, as follows:  180 

Class I: Igeo<0, class II: Igeo=0-1, class III: Igeo=1-2, class IV: Igeo=2-3, class V: Igeo=3-4, class VI: Igeo=4-5,  181 

and class VII: Igeo>5 (as per Kasa et al., 2014; Li et al., 2014; Yakun et al., 2016; Ghosh et al., 2018). 182 

 183 

3. Results and discussion 184 

3.1. Characterization of studied sediments 185 

The studied sediments were alkaline with pH values ranging from 7.1 to 9.1, with a median value of 8.1. 186 

The median pH value of the sediments in the middle section of the studied lake and drains was lower than 187 

that of the other parts (Fig. 2). The sediment alkalinity might be explained by its high content of 188 
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carbonates originating from the carbonaceous broken shells and the high salinity, in particular water 189 

soluble and exchangeable sodium content (Shaheen et al., 2013). The sediment salinity showed high and 190 

significant variety and ranged between 0.8 dS m-1 and 14.5 dS m-1. The highest values of sediment salinity 191 

were recorded in the middle section, while the lowest were in the western section (Fig. 2). The sites close 192 

to the Mediterranean Sea (e.g., sites No. 8 and 15) showed higher salinity than the other sites, which 193 

might be due to the seepage of the highly saline sea water. The lake receives high amounts of saline 194 

drainage water from the agricultural drains, which might be also another reason for the high salinity of 195 

lake sediments. The sediments were poor in their organic matter content (0.2-2.7%; Fig. 2). The 196 

sediments of the middle section showed the highest percentages of organic matter, while the lowest ones 197 

were in the eastern part. The higher value of OM in the middle section of the lake might be explained by 198 

the higher growing biomass in this section than the other margins sections. The high content of organic 199 

matter in the middle part may be probably assisted by the expected biological activity in the upper 200 

sediment part caused by the establishment of grown plants. Plant residues especially contribute 201 

considerably high organic matter levels. The sediments had a silty / clayey texture in all sites except for 202 

sites number 5, 25, and 29, which had a sandy texture (data not shown). Our findings corroborate with 203 

those of Chen et al. (2010) and El-Badry and Khalifa (2017), who conducted work in the same area.  204 

[Insert Figure 2] 205 

The sediments (except for the sandy texture sites number 5, 25, and 29) were rich in the total content of 206 

Al and Fe. Iron showed higher total content (2.2 g kg-1 to 61.2 g kg-1) than Al (1.4-58.3 g kg-1) (Fig. 2). 207 

The middle section sediments contained the highest median value of total Al and Fe content, while the 208 

eastern section sediments contained the lowest median concentrations of both elements (Fig. 2). This 209 

likely indicates differences in sediments concerning (hydr)oxides contents. Mean values of total Al 210 

differed significantly only between the middle and the eastern part, while Fe content was without 211 

significant differences between the sections. The high contents of total Fe and Al in the lake clayey 212 

sediments could be explained by the dominance of phyllosilicate minerals and the hydrous oxides of iron 213 

and aluminum. High values of total contents of Al and Fe in the lake sediments are in agreement with 214 
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those reported by Chen et al. (2010) and Gu et al.  (2012) in works that have been conducted in the same 215 

area. Consequently, the large differences in the above mentioned properties are expected to affect the total 216 

and potentially available PTE concentrations among the lake sites. 217 

 218 

3.2. Total content of PTEs in the sediments 219 

Total content (mg kg-1) of the studied PTEs (As (2.4-59.7), Co (1.4-37.3), Cr (1.4-37.3), Cu (2.2-103.5), 220 

Mn (100.3-1897.8), Mo (0.51-19.8), Ni (2.4-82.2), Sb (0.82-32.9), Se (1.2-39.3), Sn (≤0.07-30.7), Tl (1.1-221 

50.1), V (8.4-154.5), and Zn (5.8-156.8)) ranged widely in the studied lake and drains sediments(Fig. 3). 222 

Mercury showed the lowest concentrations and varied from 1.6 µg kg -1 to 65.5 µg kg-1. The order of the 223 

elements based on their total median content (mg kg-1) was as follows: Manganese showed the highest 224 

median content value (704.7), followed by V (82.0 mg kg-1), Zn (75.5 mg kg-1), Cr (51.2 mg kg-1), Cu 225 

(47.8 mg kg-1), Ni (44.3), As (31.9), Tl (24.6), Co (21.4), Se (20.3), Sb (17.6), Sn (15.6), Mo (11.3), and 226 

Hg (16.6 µg kg-1) (Fig. 3). Total content of Cd was lower than the detection limits (2.7 µg L-1) in all sites 227 

except for drain 9 (site no. 16). 228 

The drains sediments contained higher median concentrations of all studied elements (except for Hg) than 229 

the lake sediments (Fig. 3). Among the studied drains, sediments of drain 9 (site 16) and drain 8 (site 19) 230 

contained the highest total concentrations of all studied elements (except for Hg). High concentrations of 231 

these elements in the drains, in particular drains 9 and 8, are closely related to domestic and industrial 232 

wastewater discharges in these drains, particularly in densely populated catchments (Chen et al., 2010; 233 

Ali, 2011; Abukila, 2015; El-Badry and Khalifa, 2017). Among the lake sections, the middle and western 234 

sections showed higher median concentrations of As, Cu, Mo, Sb, Se, Sn, Tl, V, and Zn than the eastern 235 

section (Fig. 3). Thus, the significant increases in PTEs pollution recorded in the western part of the lake 236 

can be attributed to the increase of the pollutant load to the lake from these drains (Abukila, 2015; 237 

Shaheen and Tsadilas, 2009). 238 

The sandy sites (sites No. 5, 25, and 29) contained lower concentrations of all elements than the clayey 239 

sites, which may indicate the significant contribution of geogenic sources in element enrichment in the 240 
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clayey sediments. The close elemental and clay mineralogical association in different sediments is well 241 

reported (e.g., Hooda, 2010; Kabata-Pendias, 2011; Vuba et al., 2015). Positive relations between clay 242 

content and total element concentrations in sediments and soils were reported in many studies (e.g., 243 

Shaheen et al., 2017b; Shaheen and Rinklebe, 2017). 244 

[Insert Figure 3] 245 

The total content of all elements (except for Hg) correlated positively with total Fe (with r values ranged 246 

between 0.79**and 0.96**) and all elements with total Al (r = 0.79**- 0.94**). Chromium, Co, Ni, V, and 247 

Zn were more closely correlated with total Fe than Al, while As, Cu, Sb, Se, Sn, Tl, and Hg had better 248 

correlation with total Al. The substantial impact of total Fe and Al and their oxides on the studied 249 

elements indicates that these elements are strongly associated (bounded and/or occluded) with Fe-Al 250 

oxides and tends to replace Fe and Al in crystal structures. For example, elements such as V, Cr, and Fe 251 

are reported to be closely associated and usually co-exist in sediments/soils (Edwards et al. 1995; Aide 252 

2005; Rinklebe et al., 2016; Shaheen and Rinklebe 2017).  253 

Also, the positive corelations between the elements (except for Hg) and sediment organic matter (r = 0.64 254 

– 0.82; P ≤ 0.05) point to the association of those elements with sediment organic carbon and their 255 

possible distribution in the organic fraction assuggested by Shaheen and Rinklebe (2014) for Cu and Zn, 256 

and by Shaheen et al. (2017b) for As. Also, Shaheen et al. (2017a) found that the total concentrations of 257 

Al, Cd, Cr, Cu, Fe, Mn, Ni, and Zn were higher in a soil rich in organic carbon than in an adjacent soil 258 

poor in organic carbon. Moreover, Zhou et al. (2018) supported the crucial role of OM in the distribution 259 

of Cd and Zn. The maximum total content of all PTEs (except for Hg) in the studied sediments was 260 

higher than the average crustal content (Table 1). Maximum values of total As, Cu, Hg, Ni, V, and Zn 261 

were higher than the upper continental crust composition. Also, maximum values of total Cu, Mn, Ni, V, 262 

and Zn in the studied sediments were higher than their content in the shales (Table 1).  263 

[Insert Table 1] 264 

The level of PTEs in sediments at the studied sites was evaluated by the ERL (effects range low) and 265 

ERM (effects range medium) analysis (Table 1) as described by Long et al. (1995) and reported in Coynel 266 
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et al. (2016) and DeLaune et al. (2016) . Long et al. (1995) identified nine PTEs (Ag, As, Cd, Cr, Cu, Hg, 267 

Ni, Pb, Zn) that were observed to have ecological or biological effects on organisms (in sediments). The 268 

ERL values are defined as the lowest concentration of an element that produced adverse effects in 10% of 269 

the data reviewed whereas the ERM data designates the level at which half of the studies reported harmful 270 

effects. Element concentrations below the ERL value are not expected to elicit adverse effects, while 271 

levels above the ERM value are like to be very toxic. Based on the ERL and ERM values, total Hg and Cr 272 

contents were lower than the ERL values resulting in no eco-toxicological effects. Arsenic, Cu, and Zn 273 

was below the ERM values, but greater than the ERL values, which would perhaps suggest that there 274 

could be some toxicity under certain conditions. Nickel total content was higher than the ERM, which 275 

indicates high toxicity of Ni under certain conditions (US EPA, 2002). Evaluation of the level of PTEs 276 

based on the ERL and ERM indicates that the studied sediments are more contaminated by Ni, As, Cu, 277 

and Zn than other march sediments in the Wax Lake Delta (DeLaune et al., 2016) and the Loire Estuary, 278 

France (Coynel et al., 2016).  279 

A large area of the studied lake was drained and used as a cultivated soil. Therefore, to assess the 280 

contamination of the studied sediments as a soil, we compared the total content of the studied PTEs with 281 

the world-soil average as reported in Kabata-Pendias (2011), and found that the total content of all PTEs 282 

(except for Cr and Hg) in the studied sediments was clearly higher than the world-soil average content. 283 

Also, the total content of all PTEs (except for Hg) in the studied sediments was clearly higher than the 284 

maximum allowable concentrations of these elements in soils as reported in Kabata-Pendias (2011). This 285 

is an indication of enrichment of these PTEs in the studied sediments. 286 

 287 

3.3 Contamination indices 288 

Sediment contamination indices may help in identifying the level of enrichment of a sediment/soil with 289 

PTEs (Birch, 2017). We calculated the Contamination Factor (CF), Pollution Load Index (PLI), 290 

Enrichment Factor (EF), and geo-accumulation index (Igeo). The sediments were enriched and 291 

contaminated by the studied PTEs as indicated by the values of EF (Appendix A in Table S1), CF 292 
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(Appendix A in Table S2), Igeo (Appendix A in Table S3), and PLI (Fig. 4). A conclusion of the sediments 293 

contamination degree based on the EF, CF, and the Igeo is included in Table 2.   294 

 [Insert Table 2] 295 

[Insert Figure 4] 296 

An EF value of 1.0 suggests that a given PTE may be entirely to sediments/soils from geogenic sources 297 

(Rashed, 2010), while samples having EF > 1.5 are considered under human influence (Islam et al., 298 

2015a; Antoniadis et al., 2017a,c). The studied PTEs (except for Cr, Cu, Hg, and V) showed EF values 299 

higher than 1.5. Values of the EF, CF, and Igeo (Table 2) showed that the sediments were severe/heavily 300 

contaminated by As, Sb, Se, Tl, Mo, Sn; then these were followed by Co and Ni. Such results of high EF, 301 

CF, and Igeo values exhibit a clear indication of dramatic contamination at certain sites as also agreed by 302 

others (e.g., El-Badry and Khalifa, 2017; Ghosh et al., 2018). 303 

To assess the pollution load in the sediments by all studied PTEs, the PLI was calculated and presented in 304 

Figure 4. The high PLI is generated as a result of a multi-contamination by the studied elements 305 

(Antoniadis et al., 2017a.b; Birch, 2017). The PLI values ranged between 0.27 and 8.4 with a median 306 

value of 4.85 in the studied sediments. The PLI indicated that the studied sediments especially the drain 307 

sediments were contaminated by the studied elements as shown by its values which were higher than 308 

unity. However, As, Sb, Se, Tl, Mo, Sn contributed the highest CF values, followed by Co and Ni, and 309 

Zn. Therefore, the contribution of As, Sb, Se, Tl, Mo, Sn to the sediment pollution was higher than that of 310 

the other studied elements. This shows that sediment contamination of the studied areas constituted a 311 

multi-element contamination case. Higher PLI values were observed in the drain sediments than the lake 312 

sediments, in particular in the eastern area. Comparing the lake sections, the PLI values in the western and 313 

middle parts were higher than in the eastern part (Fig. 4). The lower pollution load in the eastern section 314 

might be due to the dilution of the contaminated water in the lake by the sea water, where the eastern part 315 

of the lagoon is connected to the Mediterranean Sea with a small waterway called Al-Bughaz (Fig. 1).  316 

The higher pollution load in the middle and western sections of the lake might be linked to down-stream 317 

industrial activity discharged and deposited when the drains water/sediments (in particular drains No. 8 318 
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and 9) enter into the western and middle parts of the lake. The wastewater sources is encompassing all 319 

discharge in the entire catchment area and it covers also industrial and domestic activities, agricultural 320 

sources, discharge of wastes, and discharge of communal wastes. The connected drains with the lake 321 

collect different types of agricultural, sewage, and industrial wastewaters through the industrial cities 322 

north of Nile delta and also from the rural domestic activities along these drains. 323 

The high EF, CF, Igeo, and PLI values indicate the significant contribution of the anthropogenic sources in 324 

increasing these elements, in particular As, Sb, Se, Tl, Mo, Sn, Co, Ni, Cu, and Zn (Table 2), in the lake 325 

and drain sediments. On other hand, the low EF, CF, and Igeo values of Cr, Hg, and V indicate that the 326 

geogenic source might be the main source of these elements in the studied sediments (Rashed, 2010). As 327 

for anthropogenic inputs, the industrial, municipal, and farm wastewater are the main sources of PTEs-328 

contaminated waters/sediments (Sorme and Lagerkvist, 2002; Houhou et al., 2009; Barakat, 2011). For 329 

instance, widespread use of PTEs in electroplating, metal finishing, pigments, textile and dyeing, and leather 330 

tanning industries, wood treatment using mixture of copper-chromium-arsenate, and electrical and electronic 331 

equipment may increase the level of these elements in the industrial wastewaters. In this respect, Shaheen et 332 

al. (2013) also found that the textile and dyeing factories wastewater contains high Cu and Zn contents. 333 

Contamination of the wastewater and sediments by trace elements such as Sn might be due to using this 334 

element in many industrial activities such as alloys and steels, coating layer for major industrial materials 335 

made of iron and steel, polymer stabilizer, various medical uses, and in soap or food additive (Clifford et 336 

al., 2010; Jennings 2013). The main sources of PTEs in municipality wastewater are institutions, 337 

households and commercial buildings which could discharge large amounts of PTEs (Bolan et al., 2009; 338 

Abe et al., 2012). The farm wastewater or effluents (for example, those coming from poultry, piggeries 339 

and dairy farms) is contaminated with PTEs and used as irrigation water and discharged from the drainage 340 

to the lake as mentioned above, which increase the levels of PTEs (Fig. 3) and organic matter (Fig. 2) in 341 

the lake sediments (Bolan et al., 2009; Abe et al., 2012).  342 

 343 

 344 
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3.4 Potential availability of the studied elements 345 

The potential availability of the studied elements was assessed using AB-DTPA according to Soltanpour 346 

and Schwab (1977). The elements potential availability differed significantly among the elements and 347 

studied sites (Table 3). The AB-DTPA- extractable concentrations of Cd, Cr, Sb, and Se were lower than 348 

the detection limits in all sites. (Table 3). Iron showed the highest median potential availability, followed 349 

by Mn, Cu, V, Ni, Co, and Mo (Table 3). The potential availability of all elements (except for As, Mo, 350 

Sn, and Tl) was obviously higher in the drains than the lake sediments, and was also higher in the western 351 

part than in the eastern part of the studied area. 352 

[Insert Table 3] 353 

The main reason for the high potential availability of Fe and Mn in the sediments might be due to their 354 

high total content (Fig. 2). In addition, the continually flooded conditions in the lake and thus low redox 355 

potential of the lake sediments (-1.2 to -52.5 mV) may case reductive dissolution of Fe-Mn oxides and 356 

consequently release of Fe and Mn in dissolved form, which increase their mobilization and potential 357 

availability (Shaheen et al., 2014a). Also, increasing the mobilization of some other elements such as V, 358 

Co, Ni, and Mo might be due to their high total content and their association to Fe and Mn oxides; 359 

therefore, their release after the assumed reductive dissolution of the oxides (Rinklebe and Shaheen, 360 

2017a,b). The AB-DTPA-extractable amounts of Mo, Ni, and V were positively correlated with the total 361 

amounts of Fe (r = 0.28* for Ni; r= 0.23* for Mo; r = 0.35** for V) and Mn (r = 0.29* for Ni; r= 0.57** for 362 

Mo; r = 0.49** for V). Also, the AB-DTPA-extractable amounts of Co, Mo, Ni, and V were positively 363 

correlated with the AB-DTPA-extractable amounts of Fe (r = 0.30* for Co; r = 0.41** for Ni) and Mn (r = 364 

0.65** for Co; r = 0.68** for Ni; r = 0.41** for V). In this respect, Shaheen et al. (2014a) found that release 365 

and mobilization of Fe, Mn, Co, Ni, and V were increased in lacustrine soil originated from similar 366 

sediments around the studied lake. Also, Shaheen et al. (2014b) indicated the close association between 367 

dissolved Fe, Mn, and Mo in fluvial sediments. During flooding of wetland sediments, formation of iron 368 

oxyhydroxides is important in retaining PTEs in surface sediments/soils. When sediments become 369 
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reducing, the PTEs bound to Fe and Mn oxides are transformed into readily available forms due to 370 

dissolution of Fe and Mn oxides (Rinklebe, 2017a,b). 371 

The lower portion of available form of the studied PTEs in comparison to the total content may indicate 372 

that the AB-DTPA was not able to extract a significant part from the mobile fraction of some elements 373 

such as Cr and Se, which in agreement with what wasreported before in similar sediments of the Nile 374 

Delta by Shaheen et al. (2017b). Also, the lower portion of available form of the studied PTEs in 375 

comparison to the total content may be explained by the high alkalinity (Fig. 2) of the studied sediments. 376 

Negative relations between solubility of PTEs (except for Mo and V) are well-documented (Hooda, 2010; 377 

Kabata-Pendias, 2011). On the other hand, increasing the potential availability of some elements such as 378 

Mo and V might be explained by the higher pH, where these two elements have positive relations with 379 

sediment pH as reported in other studies (e.g., Evans and Barabash, 2010; Shaheen et al., 2017b; Shaheen 380 

and Rinklebe, 2017). For example Shaheen et al. (2017b) explained the higher relative mobilization of 381 

Mo in sediments of the Nile River by the alkaline pH of these sediments. Sediment pH affects solubility 382 

of PTEs, since H+ is a reactant in redox reactions. In addition, pH affects surface charge characteristics 383 

and speciation of metal ions; thus, it influenced adsorption-desorption process of the involved ions of 384 

those elements. Also, sediment pH may regulate other processes such as sulfide formation, which 385 

indirectly influence the solubility of PTEs (Rinklebe, 2017a,b). 386 

 387 

3.5 Concentrations of the studied PTEs in common reed 388 

Plant tissue concentrations of the studied elements differed significantly based on each element and 389 

between the studied sites (Fig. 5). The median plant tissue concentrations (mg kg-1) of the elements were 390 

1242.2 for Fe, 194.2 for Mn, 9.24 for Zn, 6.8 for Ni, 5.5 for Cu, 5.3 for V, 3.5 for As, 3.1 for Cr, 1.1 for 391 

Sb, 0.85 for Mo, 0.67 for Co, and 0.61 for Tl (Fig. 5). The plant tissue concentrations of Al, As, Co, Cu, 392 

Mn, Mo, S, Se, Tl, V, and Zn did not show significant variation among plants grown in the studied 393 

sections. However, the concentrations of Cr, Fe, Ni, and Sb differed significantly among the plants grown 394 

in the different lake sections (Fig. 5). The plants grown in the middle lake sections showed significantly 395 
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higher concentrations of Fe, and Sb than those in the other lake sections. The plants grown in the eastern 396 

lake sections showed significant higher concentrations of Cr than the other lake sections. The plant 397 

concentrations of all elements did not show significant correlations with the total element content. 398 

[Insert Figure 5] 399 

Plants showed higher As and Cu concentrations than the critical levels (1-10 for As and 15-20 for Cu) as 400 

reported by Kabata-Pendias (2011). These results may indicate that common reed can grow on sediments 401 

contaminated with As and Cu; therefore this plant seem to tolerate these elements to the given levels. 402 

However, the common reed  revealed element concentrations less than 1,000 mg kg-1 of all studied 403 

elements; thus, it is not considered as a hyperaccumulator of these elements (Baker and Brooks 1989).  404 

The sediment-to-plant transfer factors, termed accumulation factor (AF) or bio-concentration ratio (BCR), 405 

are indices for evaluating the transfer PTEs from sediment to plants (Cui et al. 2004; Twining et al., 2004; 406 

Kabata-Pendias, 2004). Sediments-to-plant transfer factor can be used to estimate a plant's potential for 407 

phytoremediation purpose (Yoon et al. 2006; Tomovic et al. 2013; Shaheen and Rinklebe, 2015). The bio-408 

concentration ratio was calculated according to Wang et al. (2006) as follows: BCR = mg element kg-409 

1plant / mg AB-DTPA-element kg-1sediment. Plants exhibiting BCR values less than 1 are considered to 410 

be unsuitable for phytoextraction (Baker and Brooks 1989). The studied plant BCR values were higher 411 

than 1 with all detected elements and the median values were 1.15 for Cu, 1.03 for V, 1.85 for Co, 5.03 412 

for Mn, 5.31 for Mo, 9.31 for Ni, 1936 for Fe, 20.2 for Tl, 33.2 for Sn, 1092.5 for As, and 2283.6 for Zn, 413 

which means a high ability of these elements to be accumulated by the common reed.  414 

We also calculated the accumulation factor (AF) as follows: AF = mg element kg-1plant / mg Total-415 

element kg-1 sediment (Wang et al., 2006; Shaheen and Tsadilas, 2009). The AF values ranged between 416 

0.03-18.7 for Mn, 0.1-17.2 for S, 0.04-2.33 for Ni, 0.0-2.2 for Cu, 0.02-1.59 for Zn, 0.0-1.22 for Tl, 417 

0.010.99 for Mo, 0.01-0.84 for As, 0.0-0.71 for Sb, 0.01-0.51 for V, 0.0-0.51 for Co, 0.01-0.44 for Al, 418 

and 0.01-0.27 for Fe, which means a high ability of the common reed to accumulate these elements . 419 

Thus, based on the BCR and AF values, the studied plant was efficient in taking up many of the studied 420 

elements as mentioned by Eid and Shaltout (2004). 421 
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4. Conclusions 422 

We conclude that the sediments were severely contaminated by As, Sb, Se, Tl, Mo, and Sn, followed by 423 

Co and Ni. The PLI indicated that the studied sediments, especially the drain sediments , were 424 

contaminated by the studied elements, as exhibited by its values which were higher than unity. Evaluation 425 

of the eco-toxicological effects of the studied PTEs based on the ERL (effects range low) and ERM 426 

(effects range medium) indicated potential eco-toxicological effects of As, Cu, and Zn; also high toxicity 427 

of Ni and no eco-toxicological effects of Cr and Hg under certain conditions in theses sediments. The 428 

portion of the potential availability of the elements of the total content was low, which might be due to the 429 

alkalinity of the studied sediments. Based on the high values of BCR and AF, the common reed is 430 

considered efficient in taking up many of the studied elements. Future studies elucidating the temporal 431 

kinetics and release of PTEs from the sediments to solution under flooding conditions will offer a range 432 

of scientific opportunities for a comprehensive understanding of the processes determining the dynamics 433 

of these pollutants in wetland ecosystems. Also, further investigations concerning the risk of fish 434 

contamination of this lake and the potential health hazards are highly recommended. Additionally, 435 

mitigation strategies and routine monitoring programs should be developed so that necessary remediation 436 

approaches may be employed to ameliorate these PTE-contaminated sediments. 437 
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Figure captions 626 

 627 

Figure 1. Map of the studied area. 628 

 629 

Figure 2. Sediments pH, redox potential, salinity, organic matter content and total content of Fe 630 

and Al in the studied lake and drains. Significance between values of the sediment properties and 631 

element concentrations in the studied sections is indicated with the Duncan letters. 632 

 633 

Figure 3. Total concentrations of the studied PTEs in the studied lake and drain sediments. 634 

Significance between element concentrations in the studied sections is indicated with the Duncan 635 

letters. 636 

 637 

Figure 4. Pollution load index (PLI) of the sediments of 32 sites of the studied lake and drain 638 

sediments. Significance between PLI values in the studied sections is indicated with the Duncan 639 

letters. 640 

 641 

Figure 5. Concentrations of the studied PTEs in the common reed grown in the studied lake and 642 

drain sediments. Significance between element concentrations in the studied sections is indicated 643 

with the Duncan letters. 644 
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