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Abstract 

Landscape context can affect how individuals perceive patch quality during colonisation. 

However, although context-dependent colonisation has been observed in aquatic 

environments it has rarely been studied in terrestrial environments or at large spatial scales. 

Here, we assessed how landscape context influenced colonisation rates in a large-scale 

(c.7000 km2) terrestrial system where colonisers (Willow Warbler Phylloscopus trochilus) 

are capable of rapid, long-distance movements. Bioacoustic recorders were used to detect 

first song dates (an indicator of colonisation or re-colonisation) and settlement in 23 naturally 

replicated habitat patches. We compared support for three competing hypotheses describing 

colonisation patterns that depend on landscape context (‘redirection’, ‘landscape-selection’ 

and ‘relative patch size’) with two patch-level hypotheses (patch ‘quality’ and ‘heterospecific 

attraction’). First song was earlier when habitat availability in the landscape was low, 

supporting the ‘redirection’ hypothesis. Settlement probability was best predicted by patch 

‘quality’ and was lower in woodlands with a dense understorey. Results suggest that 

colonisation of habitat patches by male P. trochilus after spring migration is spatially 

hierarchical. First, initial colonisation depends on landscape context, and settlement is then 

determined by fine-scale vegetation characteristics. More broadly, we suggest that patterns 

observed in fragmented aquatic environments (e.g. ‘redirection’) can, in some circumstances, 

be extended to large-scale terrestrial environments.  
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Introduction 

Understanding how landscape-scale habitat patterns influence colonisation dynamics in 

fragmented landscapes is an important theme in ecology and conservation [1,2]. Theories of 

landscape connectivity broadly predict that during dispersal and colonisation the importance 

of habitat composition and configuration is related to a species’ mobility and degree of 

habitat specialism [3,4]. Colonisation can also be context-dependent, where colonisers select 

patches based on the relative availability or quality of alternative habitat in the landscape 

[2,5,6]. For many taxa, our understanding of how landscape context influences colonisation 

dynamics is limited to relatively coarse temporal scales, for example annual colonisation and 

extinction patterns [7,8] and this can mask fine-scale behavioural processes that are important 

during initial colonisation [4]. This knowledge gap is especially true for highly mobile, 

terrestrial species that are capable of rapid, kilometre-scale movements. 

Evidence from aquatic islands provides some of the strongest support for context-

dependent colonisation. In experimental coral landscapes, the number of colonisers is higher 

when focal patches have no adjacent patches, supporting the ‘propagule redirection’ 

hypothesis [6,9]. This hypothesis predicts that colonisation rates are lower when isolated 

patches have more habitat in the surrounding landscape because colonists are redirected away 

from the focal patch. In the opposite direction, the ‘field of dreams’ hypothesis predicts ‘if 

you build it, they will come’ and colonisation rates are expected to be proportional to habitat 

amount, which leads to higher colonisation rates in landscapes with more habitat [6,10]. 

Perceived patch quality can also be context-dependent. For example, predator presence in one 

patch can reduce the perceived quality of neighbouring patches in the local landscape 

[2,11,12].  
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In terrestrial environments, the effects of landscape composition and configuration on 

species turnover and community assembly are well-studied, but less is known about the 

influence of landscape context on colonisation behaviour [4]. The reasons for this knowledge 

gap are two-fold: (i) it is often difficult to precisely detect colonisation events and their 

timing (e.g. first arrival), despite technological advances such as global positioning system 

(GPS) tracking, and (ii) it is difficult to conduct studies over large spatial scales to ensure 

habitat patches are sufficiently replicated and spatially independent (i.e. colonisers should not 

move between focal patches). 

Birds are among the most well-studied taxa in landscape ecology but although 

landscape configuration plays an important role in shaping bird communities the link 

between pattern and process is poorly understood [4]. Homing experiments show that 

displaced Ovenbirds Seiurus aurocapilla return faster to established territories when forest 

cover in the landscape is high [13,14]. This could suggest that the amount of habitat in the 

landscape is likely to be important during colonisation because birds might view the 

landscape as more favourable [7], or because individuals can move more easily between 

potential territories. Gap-crossing experiments have also been used to quantify how 

individuals cross non-habitat and indicate that forest species prefer to move through forest 

and forest edge rather than cross non-forest areas [14-16]. Although this work has provided 

valuable insights into the movement behaviour of birds, such experiments have been 

criticised for being unrealistic [17] and any link between experimental movement behaviour 

(e.g. during translocations) and natural colonisation behaviour remains speculative. 

Furthermore, there is usually a significant trade-off between spatial and temporal resolutions, 

where studies at large spatial scales tend to have low temporal resolution (e.g. monthly or 

yearly assessments of patch occupancy), and studies with high temporal resolution (daily 

counts of birds or translocation experiments) are usually limited to relatively small spatial 
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scales. To meaningfully assess how landscape-scale habitat patterns influence colonisation 

behaviour in highly mobile taxa such as birds there is a need to achieve both high spatial and 

temporal resolutions [4]. 

Entire populations of migratory birds move biannually between their breeding and 

wintering grounds. In spring in the northern hemisphere, individuals arrive on the breeding 

grounds and compete to secure the ‘best’ territories [18]. Changes in timing of arrival at the 

breeding grounds can have significant reproductive consequences due to phenological match 

or mismatch with resource availability [19,20]. Many migrant birds also show strong natal 

and breeding philopatry [18,21]. Thus, the amount of available breeding habitat (i.e. territory 

availability) in a landscape should correlate with the number of individuals that return 

annually to breed in a given area. Migration and subsequent selection of breeding territories 

occurs over a varied range of landscapes, presenting an ideal natural experiment to test the 

effects of local and landscape context on colonisation behaviour. However, most previous 

work has focused on the effects of landscape context on habitat-use during migratory 

stopovers and it is unclear how landscape context influences initial selection of breeding 

territories. Bennet et al. [7] found that migrant bird communities responded to regional 

gradients of land-use, but were unable to disentangle which factors were most important 

because of high multicollinearity between measures of land-cover. Despite a lack of 

empirical evidence, it is predicted that migrant birds will select landscapes with high habitat 

availability during initial colonisation [7] but subsequent settlement of territories is likely to 

depend on local, patch-level characteristics such as resource availability or vegetation 

structure. Recent global declines of migratory birds are also poorly understood, and land-use 

change along migratory routes has been implicated in the population declines of some species 

[22]. Understanding how large-scale habitat patterns influence colonisation behaviour is 

therefore a conservation priority. 
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Here, we used a natural experiment and novel approach to test whether colonisation 

of terrestrial habitat ‘islands’ is context-dependent when individuals are capable of rapid, 

large scale movements that are independent of habitat availability (i.e. direct, nocturnal 

migratory flights). We used bioacoustic recorders to monitor migrant bird (Willow Warbler 

Phylloscopus trochilus L.) colonisation or re-colonisation (date of first male song) and 

settlement in discrete habitat patches (post-agricultural woodlands) across large spatial scales 

and with high temporal resolution. Habitat patches were of similar size but varied in the 

amount and configuration of habitat in the landscape (i.e. context). We explicitly tested three 

competing, a priori hypotheses that described how landscape context might affect 

colonisation rates and settlement probability (‘redirection’, ‘landscape-selection’ and ‘relative 

patch size’), and compared support for these with two patch-level hypotheses (patch ‘quality’ 

and ‘heterospecific attraction’ [23]). 

 

Methods 

Model species 

To test whether colonisation rates of habitat islands depend on landscape context, the study 

system must satisfy five key criteria: (i) the focal species must use habitats that can easily be 

characterised at coarse spatial scales (e.g. any wooded habitat in the landscape); (ii) territory 

densities must be proportional to habitat amount (this assumption is tested in electronic 

supplementary material; Table S1; Fig. S1); (iii) individuals must initially be absent from a 

patch; (iv) focal patches must provide suitable habitat for potential colonisers; (v) the timing 

of colonisation events must be detected with high precision and accuracy. To meet these 

criteria, we selected P. trochilus, a generalist woodland passerine that breeds in northern 

Eurasia (above approximately 41o N) and overwinters in sub-Saharan Africa [24] as a model 

species. 
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In Great Britain, P. trochilus breeds in coniferous and broadleaf woodland and scrub, 

with an estimated 2.2 million territories across the island [25]. Birds prefer woodland patches 

larger than 0.5 ha with intermediate canopy cover and vegetation ranging in height from 

roughly 3 to 6 m [26,27]. Historical reporting rates show that P. trochilus begins to arrive in 

Great Britain in the last week of March and the population is fully installed by the end of 

April [28]. Migration occurs mainly at night and birds travel at average speeds ranging from 

40 to 85 km per day, but speeds of up to 218 km per day have been recorded [29,30]. Males 

arrive before females and are highly vocal when establishing territories, producing a loud, 

easily detected song that can be repeated up to six times or more per minute [31]. Males of 

breeding age are highly philopatric, but adult interannual survival is relatively low at around 

40% and thus individual turnover is high [21,32]. Once on the breeding grounds, males 

compete for the best territories, with higher quality territories occupied earlier in the season. 

Territory sizes range from approximately 0.2 - 0.3 ha [33,34]. 

 

Habitat islands 

To obtain a set of habitat islands for the study, a subset of post-agricultural broadleaf 

woodlands was selected from 101 patches used by the Woodland Creation and Ecological 

Networks (WrEN) research project (Fig. S2). The WrEN project (http://www.wren-

project.com) comprises a large-scale natural experiment that aims to evaluate how landscape 

structure and patch characteristics influence biodiversity responses to habitat creation [35]. 

Patch size is often a stronger predictor of bird species occurrence than other factors such as 

landscape context [36,37]. Since our primary interest was the influence of landscape context 

on the timing of colonisation, we controlled for patch area by selecting small woodlands of 

similar size (0.5 - 2.6 ha), but which varied in the amount and configuration of suitable 

habitat in the surrounding landscape (see Fig. 7a in [38]). Using these criteria and 
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information from previous bird surveys in the 101 WrEN study sites [37], we selected a 

sample of 23 woodlands previously occupied by P. trochilus for inclusion in the study. 

Territory mapping (i.e. mapping of singing males) over three visits in April, May and June 

2015 [37] indicated that each woodland held on average one territory. A further 12 previously 

unoccupied woods that satisfied the size criteria and which appeared to offer suitable habitat 

(based on a visual assessment) were also selected in an attempt to increase the sample size, 

but none of these was subsequently occupied by P. trochilus and they were excluded from 

further analysis (Fig. S2). 

Patches were typically ≥3 km apart and were considered spatially independent 

because male P. trochilus dispersal distances (i.e. distance between breeding and natal site) 

are typically < 1 km [33]. Patch age (years since woodland establishment) ranged from 10 to 

160 years (median 90 years), and age was correlated significantly with mean tree diameter at 

breast height (DBH) (r = 0.78, P < 0.001, n = 23 patches).  

 

Detecting colonisation 

We used Solo audio recorders [39] to record male P. trochilus song in each patch. Pilot tests 

were used to calibrate microphones so that songs could be detected at distances of 

approximately 50 m (Fig. S3), which is equivalent to a sampling area of 0.3 ha (i.e. one P. 

trochilus territory).  

A single recorder was deployed in the centre of each woodland patch during the last 

week of March 2016 in advance of birds arriving, and set to record audio continuously (24 hr, 

7 days) until 1st May 2016. On the day of deployment, we used song playback to ensure that 

no territorial males were present in the study sites. P. trochilus song was broadcast using an 

.mp3 player and handheld speaker in 10 second bursts at 1 minute intervals for 3 minutes. No 
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birds responded to song playback, indicating that patches were vacant when data collection 

commenced. 

 To identify initial colonisation (or re-colonisation of patches occupied in the previous 

year) and subsequent settlement we used a sub-sampling approach. Three continuous 10-

minute blocks of audio were randomly sampled from the three-hour period after sunrise per 

day of audio recording (i.e. 30 minutes of audio per day). We then manually examined audio 

spectrograms for P. trochilus song and, after the first detection, we counted the number of 

calls in the sub-sampled audio for 14 consecutive days to determine if the patch had been 

settled. Patches with no songs on two consecutive days of the 14 were considered not settled. 

We also evaluated how song rates in a patch changed over time after the first song date, 

expecting the pattern to be consistent with Fig. 4 in [19] if there was minimal turnover (i.e. an 

initial steep rise in song rates followed by a gradual decline). We also compared first arrival 

dates with countrywide data from the British Trust for Ornithology [28] to ensure that results 

were representative of those across Great Britain in 2016. 

 

Hypotheses 

The ‘propagule redirection’ hypothesis [6,9] predicts that when habitat availability in the 

landscape is low, focal patches will receive more individuals over time. This is based on the 

expectation that individuals randomly sample from the available habitat in a landscape.  In 

the system used here, this would be indicated by earlier first song dates in more isolated 

patches because the probability of receiving an individual is higher per unit time (Fig. 1a). In 

this case the individual birds are not ‘propagules’ per se but an adult male of breeding age, 

and we refer to this hypothesis as ‘redirection’. 

 Alternatively, if the ‘initial cue to settlement’ [7] is based on landscape units (i.e. not 

individual patches) that appear more favourable in general, then focal patches might be 



 

10 

colonised earlier when the amount of woodland in the landscape is higher. We call this the 

‘landscape-selection’ hypothesis, which would be consistent with the predictions made by 

Bennet et al. [7]. The expectation is that individuals select landscapes with high habitat 

availability, with subsequent sorting into territories based on local, territory-level factors (e.g. 

food availability, vegetation characteristics, etc.). Thus, when habitat availability in the 

landscape is high, focal patches will be colonised earlier (Fig. 1b). The direction of this 

predicted relationship could also be caused by the effects of philopatry. Landscapes with 

more habitat (and therefore a higher number of potential territories) will receive more 

individuals returning to their previous breeding territories or close to their natal sites, which 

should lead to earlier colonisation of patches with more habitat in the surrounding landscape. 

The two mechanisms (i.e. ‘landscape selection’ vs philopatry effects) are not mutually 

exclusive, however. It is therefore important to acknowledge that our study design cannot 

disentangle these if first song date is earlier in focal patches with more habitat in the 

landscape. 

 Larger patches have higher woodland bird abundance and occupancy [36,37]. 

Individuals might therefore select patches based on their relative size compared to other 

patches in the surrounding landscape, with relatively large patches occupied earlier than 

relatively small patches. The same pattern might also occur due to random sampling (e.g. a 

target area effect [40,41]), where relatively large patches are more likely to ‘capture’ 

individuals than relatively small patches in the same landscape due to probability alone. 

Focal patches might therefore be colonised earlier if they are large relative to nearby patches 

in the landscape, which we call the ‘relative patch size’ hypothesis (Fig. 1c).  

Measures of patch ‘quality’ or vegetation characteristics such as canopy cover, 

understorey cover, tree DBH and tree diversity can be used to describe habitat suitability for 

breeding P. trochilus [26,27]. Since the 23 patches used here were occupied by P. trochilus in 
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the previous year and were generally similar in structure (i.e. broadleaf post-agricultural 

woodlands), and because we assumed that initial colonisation occurred rapidly at dawn after 

nocturnal flights, we predicted that patch-level factors would have no effect on the timing of 

initial colonisation (Fig. 1d).  

 Manipulative experiments have demonstrated that migrant birds are attracted to the 

vocalisations of other woodland birds (heterospecific attraction) when establishing territories 

[23], perhaps because social information from heterospecifics is indicative of patch quality, 

such as predation risk [42]. To test for the existence of heterospecific attraction we calculated 

an index of acoustic complexity in the patch on the day of first P. trochilus song, expecting 

that patches would be colonised earlier as soundscape complexity (i.e. bird song richness) 

increased (Fig. 1e). 

 We attempted to control for patch size during site selection as far as possible (i.e. 

patches were all of similar size), but since there was some small variation between patches 

we tested for an effect, expecting no relationship between patch size and colonisation rates 

(not illustrated). Finally, our null model for initial colonisation predicted that woodlands 

further north and east would be colonised later (not illustrated) based on knowledge of large-

scale P. trochilus migration patterns in the UK [29]. 

 Although the primary focus of the study was on the timing of initial colonisation, we 

also repeated the analyses for settlement probability, since not all sites were considered 

settled (see Results). Settlement was expected to depend on patch-level factors at the territory 

scale, and we therefore predicted that settlement probability would not depend on landscape 

context (Figs 1f and 1g). However, individuals might decide to move to neighbouring patches 

if their initial patch appears poor relative to others in the landscape, and we predicted that 

settlement probability would therefore be lower when patches were small relative to their 

neighbours (Fig 1h). Settlement probability was expected to be higher in better ‘quality’ 
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patches (e.g. with an open understorey) (Fig. 1i) and in patches with higher bird song 

complexity (Fig. 1j). 

 

Predictor variables 

Two variables were used to test our three primary hypotheses of interest. The amount of 

habitat (any woodland) in the landscape was used to test the ‘redirection’ and ‘landscape-

selection’ hypotheses, and the ratio between the focal patch size and the median patch size of 

any woodland in the landscape was used to test the ‘relative patch size’ hypothesis. Habitat 

amount, patch size and relative patch size were calculated from Forestry Commission spatial 

data [43] at seven scales (nested Geographic Information System buffers surrounding the 

focal patch with radiuses of 250 m, 500 m, 1000 m, 1500 m, 2000 m, 2500 m and 3000 m). 

To test the effects of vegetation structure we used four variables, which were percent canopy 

cover, tree mean DBH, tree species richness and percent understorey cover (obtained during 

field surveys: Tables S2 & S3). Acoustic complexity was used to test the ‘heterospecific 

attraction’ hypothesis and was calculated as the mean acoustic complexity index [44] (Table 

S2) for the 3 x 10-minute sub-sampled audio files from the date of first P. trochilus song in a 

patch. To validate the index we regressed the averaged acoustic complexity value against raw 

bird species richness per site (n = 23) in 2015, confirming that there was a positive (although 

noisy) relationship (Fig. S4).  

 

Modelling approach 

We used generalised linear models (GLMs) to quantify the relative effects of each predictor 

on first P. trochilus song date and settlement probability. Geographical position (i.e. northing 

and easting) was expected to have the strongest effect on first song date, and our null model 

included northing and easting only as continuous predictors. GLMs were fitted by maximum 
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likelihood, and residual diagnostics suggested a Poisson error structure was more appropriate 

than a Gaussian error structure for first arrival dates. For settlement probability, we used 

GLMs with a binomial error structure, and an intercept only model was used as the null. To 

avoid overfitting the data (i.e. modeling the residual variation because the ratio between n 

and the number of parameters is too low) and because we were primarily interested in the 

relative magnitude of effects, separate models were constructed for each predictor of interest 

(but note that northing and easting were included as covariates in all models of first song 

date). We selected a single ‘scale of effect’ [38] for each landscape variable using univariate 

generalised linear models and corrected Akaike Information Criterion (AICc), selecting the 

most appropriate scale by evaluating those models (after validation [45]) with the lowest 

AICc and largest effect size for the predictor of interest. Predictors were mean centered and 

scaled by one standard deviation to compare relative effect sizes (β). AICc was used to 

compare goodness of fit between each model and the null, and 95% confidence intervals for 

effect sizes were bootstrapped from 500 resamples of the data. Likelihood-ratio based 

pseudo-R-squared values were calculated using the r.squaredLR function in the MuMIn R 

package [46]. Multicollinearity between predictors in models of first song date (i.e. northing, 

easting and the predictor of interest) was assessed using variance inflation factors (threshold 

< 5) and model validation followed [45]. A correlation matrix for all predictors is in Table S4 

and results for the null models are given in Tables S5 and S6. R statistical software was used 

for all analyses [47]. 

 

Results 

The median arrival date was the 16th of April (range 5th - 22nd April; Table S3; Fig S5). 

Arrival dates were consistent with British Trust for Ornithology countrywide data in the same 

year (Fig. S5), indicating that results were representative. Although P. trochilus was detected 
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in 23 woodlands, birds did not settle in five of them. In settled patches, song rates increased 

over time after the first detection before gradually declining, and the shape of the relationship 

was generally consistent with those observed in [19] (Fig. S6). Data were often noisy, 

however, and in some instances males may have been replaced during the study period (e.g. 

Fig. S6f and Fig. S6g).  

After accounting for geographic location, first song dates were significantly earlier in 

patches with low amounts of woodland in the surrounding landscape within 2 km (Table 1; 

Figs. 2a and 3). The effect size was relatively large (although with high uncertainty, Table 1) 

and first song was delayed by approximately 5 days as woodland cover in a 2 km radius 

increased from 5% to 30%. The positive direction of this effect was consistent with the 

‘redirection’ hypothesis (Fig. 1a), and the variance explained (36%) was 11 – 12% higher 

than alternative models (Table 1). Based on AICc alone, however, the ‘redirection’ hypothesis 

had only marginally more support than the null, but it was more strongly supported than 

alternative hypotheses (Table 1). 

Contradicting expectations, there was no evidence to suggest that the relative size of 

the focal patch in the landscape or bird song complexity in a patch affected first song dates. 

Patch ‘quality’ had no detectable effects on first song date, as expected. 

Probability of settlement depended on patch-level vegetation characteristics and 

declined as understorey vegetation cover increased (Fig 1b; Table 2). Probability of 

settlement was also lower when there was more woodland in the surrounding landscape, but 

the model was only weakly supported based on AICc. Alternative hypotheses for settlement 

probability had minimal support and effect sizes were small (Table 2). 
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Discussion 

The importance of landscape context for community assembly and dispersal behaviour is 

well known, but the relationship between landscape context and colonisation behaviour is 

less clear, particularly in terrestrial systems and for organisms that undertake very large-

scale, rapid movements. In agreement with experimental work in aquatic environments [6], 

our results support the ‘redirection’ hypothesis (i.e. colonists are redirected away from the 

focal patch if habitat amount in the landscape is high) and we found little support for the 

‘landscape selection’ [7] or ‘relative patch size’ hypotheses. Previous work in our study area 

also supports the ‘redirection’ hypothesis: we found that, after controlling for patch size and 

other factors, the relative abundance of woodland birds was lower in focal patches (n = 101) 

when the amount of broadleaf woodland within 1 km was higher (Fig. 3b in [37]). As 

predicted, settlement probability depended on vegetation characteristics (understorey cover) 

at the local, patch-scale. This is consistent with P. trochilus preference for woodlands and 

woodland edges with a relatively open, grassy understorey, which facilitates ground nesting. 

This result provides some of the first empirical support for the hypothesis that landscape 

context acts as an initial cue for colonisation, and that more local, patch-level factors then 

dictate whether the territory is eventually settled or abandoned. 

Whether earlier first song dates in sparse landscapes are caused by a random sampling 

process (i.e. higher probability of ‘capturing’ a colonist in a focal patch when there is less 

habitat in the landscape), or whether individuals are actively selecting patches with low 

amounts of habitat in the surrounding landscape cannot be determined using these results. 

Philopatry also plays an important mechanistic role in dictating where birds return to breed 

each year. Adult males will typically return to their previous territory if they bred 

successfully in the previous year, and first year male P. trochilus will return to within 1 km 

(on average) of their natal territory. Despite strong philopatry in P. trochilus, however, it 
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cannot explain the observed relationship between first song date and the amount of woodland 

in the landscape based on our a priori expectations.  Therefore, given the remarkable 

navigational skills of migrant birds and because many species are known to actively select 

vacant territories based on their relative quality (e.g. prospecting behaviour in Collared 

Flycatchers Ficedula albicollis [47,48]) we suggest that the relationship between first song 

date and amount of habitat in the landscape is unlikely to be due to a random sampling 

process, and propose that isolated patches become disproportionally attractive to early male 

P. trochilus in landscapes with less alternative habitat. 

The relatively isolated agricultural woodlands studied here probably represent poor 

quality habitat patches for P. trochilus. Yet, when they are situated in landscapes with little 

alternative habitat they appear to become relatively more attractive, resulting in males 

arriving earlier. Paradoxically, this is despite P. trochilus’ ability to travel more than 100 km 

per night during migration, which implies that individuals could avoid sparsely wooded 

landscapes with relative ease. This relationship would have been overlooked by studies of 

patch occupancy or abundance [8,37,50] because most patches were eventually occupied and 

thus would appear equally ‘attractive’ if surveys were made at coarse temporal resolutions or 

later in the season. 

During migration and stopover, body mass gain in P. trochilus is higher when 

landscapes have more forest cover [51]. Assuming that the same is true on breeding 

territories, it therefore appears counter-intuitive that first song date is earlier in the most 

isolated woodlands, since these individuals are likely to experience fitness costs. Perhaps 

isolated woodland patches are acting as ecological traps [52,53], leading individuals to trade 

off current vs future fitness potential by avoiding further, potentially risky long-distance 

migratory flights when the landscape appears to have limited habitat availability. Other 

migratory birds are also attracted to ‘ecological traps’ that arise from novel habitat patterns in 
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the landscape, such as selectively harvested forest [53]. Considering recorded declines of P. 

trochilus across much of its range [22] there is a need to understand whether the patterns 

observed here are causing relatively high-quality individuals (as measured by earlier arrival 

date) to select sub-optimal breeding territories. 

Translocation experiments have shown that forest birds (including long-distance 

migrants such as Ovenbird) return faster to established territories when landscapes are more 

favourable and have more habitat [13,14]. This suggests that the same could be true during 

initial selection of breeding territories, and it might be expected that patches located in 

landscapes with more habitat would be occupied earlier than patches in sparse landscapes. 

However, our results are consistent with initial colonisation occurring after nocturnal flights 

that are not constrained by habitat availability in the landscape, and colonisation was earlier 

when habitat availability was low. In the case of translocation experiments, individuals 

probably take advantage of favourable habitat to travel by day and return rapidly to their 

existing territory. We should therefore be cautious when extrapolating findings from 

experimental work on movement ecology to natural behaviour. 

Contradicting expectations, we detected no relationship between acoustic complexity 

in a patch and first song date or settlement of P. trochilus, providing no support for 

‘heterospecific attraction’. Heterospecific attraction is well supported by evidence from other 

studies that have tested for its existence experimentally [23,54]. These have shown that 

migrant bird abundance tracks the abundance of other woodland bird species. However, we 

did not quantify P. trochilus abundance in this study (indeed most patches could support only 

one territory), and this could explain why we detected no effect, since we did not quantify 

post-colonisation dynamics beyond settlement probability.  

The lack of support for the relative patch size hypothesis during initial colonisation 

was surprising given the apparent importance of patch size for P. trochilus and other 
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woodland birds [7,36,37]. There is ongoing debate surrounding the importance of habitat 

amount vs habitat configuration (i.e. relative patch size in this study) for community 

assembly in fragmented landscapes [38,55]. This result suggests that habitat amount is more 

important than habitat configuration for P. trochilus during selection of territories after spring 

migration. 

It is important to acknowledge that these results are from a single year and differences 

in weather conditions or population densities between years, for example, might also interact 

with landscape context to influence first song dates and settlement probabilities. Other factors 

not measured here could also affect first song dates and settlement, such as fine-scale 

measures of prey availability or the age of individual birds. Nonetheless, our arrival times 

were consistent with the historical average in Great Britain and those recorded in 2016, and 

results supported well-defined, a priori hypotheses. 

 

Conclusions 

We suggest that landscape context plays an important role during initial colonisation (or re-

colonisation) of discrete habitat patches by a long-distance migrant bird after spring 

migration, which is surprising given that movement through the landscape is not constrained 

by landscape context (because the species travels long distances at night). These results 

represent an important step forward in understanding how landscape context influences the 

spatial and temporal dynamics of colonisation by extending results from smaller aquatic 

systems to considerably larger scales and to a terrestrial environment under natural 

conditions. The non-invasive method used to detect first song dates also offers considerable 

promise for studying how landscape context influences the colonisation behaviour of other 

highly mobile, acoustically active taxa that might be too small to track in time and space 

using existing tracking technology.  
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Tables 

Table 1. Results from the generalised linear models for first song date (initial colonisation) 

showing the standardised coefficient estimates (β) for each predictor of interest. Northing 

and easting were included as covariates in each model but their estimates are not shown. The 

null model (H0) included northing and easting only and results are in Table S5. ‘Hypothesis’ 

indicates which hypothesis in Fig. 1 applies to the model.  

Hypothesis 

(see Fig. 1) 
Focal predictor β -95% +95% P 

ΔAICc  

from H0 
R2 

a & b Proportion any woodland (2 km radius) 0.12 0.01 0.23 0.04 -1.35 0.36 

c Relative patch size (2 km radius) 
0.01 -0.12 0.13 0.92 2.95 0.23 

d 
Canopy cover percent 0.04 -0.09 0.16 0.58 2.65 0.24 

d 
Tree species richness 0.02 -0.09 0.13 0.68 2.79 0.24 

d Understorey cover percent 
0.00 -0.12 0.10 0.93 2.95 0.23 

d Tree DBH mean 
-0.01 -0.12 0.10 0.91 2.95 0.23 

e Acoustic complexity index 
-0.01 -0.12 0.10 0.91 2.94 0.23 

- Patch size ha (ln transformed) 
0.04 -0.10 0.17 0.59 2.67 0.24 
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Table 2. Results from the generalised linear models for settlement probability showing the 

standardised coefficient estimates (β) for each predictor of interest. An intercept only model 

was used as the null (H0) and results are given in Table S6. ‘Hypothesis’ indicates which 

hypothesis in Fig.1 applies to the model. 

Hypothesis 

(see Fig. 1) 
Focal predictor β -95% +95% P 

ΔAICc  

from H0 
R2 

f & g Proportion any woodland (2.5 km radius) -1.14 -2.8 -0.03 0.09 -1.68 0.25 

h Relative patch size (250 m radius) 
-0.37 -1.36 0.63 0.63 1.74 0.04 

i 
Canopy cover percent -0.87 -2.62 0.3 0.22 0.44 0.13 

i 
Tree species richness -0.27 -1.27 0.77 0.59 2.12 0.02 

i Understorey cover percent 
-1.32 -2.83 -0.25 0.04 -3.66 0.36 

i 
Tree DBH mean 

-0.59 -1.71 0.41 0.25 1.05 0.09 

j 
Acoustic complexity index 

-0.34 -1.48 0.68 0.52 1.98 0.03 

- 
Patch size ha (ln transformed) 

0.40 -0.63 1.72 0.49 1.89 0.04 
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Figures 

 

Figure 1. Hypothesised relationships (see Methods) between landscape context, patch 

characteristics and first song date (a – e), and settlement probability (f – j). 
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Figure 2. (a) Relationship between P. trochilus first song date and habitat amount 

within a 2 km radius of a woodland patch (holding northing and easting at their 

mean values), and (b) relationship between settlement probability and understorey 

cover percent (Domin scale: Table S2). Circles are observed values and semi-

transparent lines are bootstrapped 95% confidence intervals from the GLMs. 
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Figure 3. Illustration showing the relationship between the amount of woodland 

in the landscape (green; within 2 km radius) and first P. trochilus song date (day 

in April 2016) in four example focal woodlands (coloured red) at similar latitudes 

(near 56o N). P. trochilus artwork by Andreas Trepte, www.photo-natur.net 

(modified under CC BY-SA 2.5). 


