
Infoveillance of infectious diseases in USA: 
STDs, tuberculosis, and hepatitis
Amaryllis Mavragani*   and Gabriela Ochoa 

Introduction
Over the past years, with Big Data Analytics being all the more integrated in Health 
Informatics research, the analysis of Internet data has become a valuable way for moni-
toring and analyzing the behavior towards health topics. Using data from online sources 
in order to inform public health and policy is called ‘Infodemiology’, derived from the 
words ‘Information’ and ‘Epidemiology’ [1]. Infodemiology and Infoveillance (informa-
tion and surveillance) studies using various online sources, such as Google, Twitter, and 
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other Social Media [2–6], show the importance of having access to real-time data in 
health assessment.

Google Trends [7], the most popular tool for retrieving online information, is highly used 
in health care research [8]. Google Trends data main advantages are that they are real-time 
data, and that they provide us with the revealed and not the stated preferences [9]. Google 
Trends has been a useful tool for the analysis, monitoring, forecasting, and nowcasting of 
many health topics; in seasonal [2, 10], chronic [11–14], and infectious diseases [15–17], 
as well as in outbreaks and epidemics, such as in AIDS [18], Measles [19], Ebola [20, 21], 
MERS [22], and the Zika Virus [23–25]. Online queries have been much employed up to this 
point for the analysis and forecasting of Influenza Like Illness, i.e., the flu [6, 26–28], while 
an emerging interest in analyzing Google queries for vaccination related topics has been 
increasing over the last couple of years [19, 29–31]. Other topics that Google Trends data 
have found significant applicability, include the monitoring of cancer types and screenings 
[32–35], the relation between online queries and suicide rates [36–39], as well as the analysis 
of the online interest and its association with both legal [40–42] and illegal drugs [43, 44].

Though Google Trends data have been much employed in forecasting, a gap exists in 
forecasting diseases’ cases using said data. This gap could be mainly attributed to low offi-
cial health data openness and availability, as well as regional limitations that are due to 
Internet penetration and restrictions. Τraditional methods, e.g., surveys and question-
naires, are time consuming for both collecting and analyzing data, therefore the results 
are available long after the period to which they refer. In addressing this drawback, online 
data have exhibited promising results up to this point in this line of research, i.e., showing 
that Internet data correlate with official health data and further examining the possibility 
of monitoring and forecasting diseases using data from online sources.

Towards the direction of examining novel, alternative methods of disease surveillance, 
this study provides an overview of the Infoveillance of five diseases, i.e., Chlamydia, 
Gonorrhea, Syphilis, Tuberculosis, and Hepatitis, using Google Trends data. Following, 
we explore the possibility of forecasting said diseases cases in the US at both national 
and state level. All examined diseases are in the 2018 list of National Notifiable Condi-
tions for Infectious Diseases, i.e., included in the CDC list for Surveillance Case Defini-
tions [45], defined as: “a set of uniform criteria used to define a disease for public health 
surveillance. Surveillance case definitions enable public health officials to classify and 
count cases consistently across reporting jurisdictions” [46].

For the diseases included in the National Notifiable Infectious Diseases list, the moni-
toring and analysis of the effects and trends of said diseases is achieved via public health 
surveillance. Despite provisional data being available in shorter time frames, the official 
data on the diseases are published annually. This is a long procedure involving a chain of 
several health officials; hence the data are far from being real time [45].

Out of the notifiable diseases, Chlamydia is the most common one, and is also the 
most common sexually transmitted disease (STD). It is most frequently met amongst 
young females, while most of infected people have no symptoms. Chlamydia can have 
serious effects in a woman’s health, even  causing infertility. There are increased risks 
with Chlamydia, such as getting HIV infection, or passing the disease to the baby dur-
ing delivery. There is a lack of awareness on the subject, while testing does not reach as 
many women as it should [47].
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Gonorrhea is a very common STD, transmitted through the reproductive male and 
female parts, but also through the mouth and anus. As in the case of Chlamydia, Gonor-
rhea is mostly asymptomatic, can be passed from mother to child during childbirth, and 
could even result in infertility. It is prevalent in young adults and African Americans. 
Gonorrhea also increases the risk of getting HIV [48].

Syphilis is an STD with very serious effects on human health, mainly transmitted 
through sexual contact or direct contact with infected genitals, anus, and mouth. Con-
genital Syphilis, i.e., passing the disease from mother to baby, mostly occurs in black and 
hispanic mothers, which is a very serious complication of the disease and can result in 
stillbirth or death of the baby. As in Chlamydia and Gonorrhea, the infection of Syphilis 
increases the risk of HIV transmission. As the symptoms can point to several other dis-
eases, diagnosis of Syphilis can take several months, or even years. The progression of 
the disease consists of three stages, i.e., Primary Stage. Secondary Stage, and the Latent 
Stage. Tertiary Syphilis can occur even 30 years after the initial infection and could result 
in death, while Neurosyphilis and Ocular Syphilis can occur at any stage of the infection, 
causing serious complications [49].

Tuberculosis (TB) is an infectious disease that mainly affects the lungs and could result 
in serious complications or death. The risk of TB is higher amongst those with weakened 
immune systems, as, for example, those with HIV. Tuberculosis is divided in the TB dis-
ease and the latent TB infection, i.e., the disease does not develop [50].

Hepatitis is an infectious disease resulting in the inflammation of the liver. It is mainly 
caused by one of the three most common viruses, i.e., Hepatitis A (HAV), Hepatitis B 
(HBV), or Hepatitis C (HCV). Hepatitis A is a vaccine preventable, highly contagious 
disease, and can be transmitted through food, drinks, stool, or through close contact 
with an infected person. It cannot result in a chronic disease, while it is usually not fatal. 
On the contrary, Hepatitis B and Hepatitis C can be either acute or chronic, while they 
can result in serious health issues, even death. Hepatitis B is also vaccine preventable, 
while for Hepatitis C there is no vaccine yet. Hepatitis B is most commonly transmit-
ted through blood, semen, sexual contact, and needles, while Hepatitis C is most com-
monly met amongst those who share needles or other drug related equipment [51].

The rest of the paper is structured as follows: In “Data and methods”, the data col-
lection procedure and analysis are detailed, and in “Results”, the results are presented. 
“Discussion” consists of the discussion of the analysis, while “Conclusions” presents the 
overall conclusions and further research suggestions.

Data and methods
Data used in this study are retrieved online by Google Trends [7] and are normalized 
over the selected period as follows: “Search results are proportionate to the time and 
location of a query: Each data point is divided by the total searches of the geography and 
time range it represents, to compare relative popularity. Otherwise places with the most 
search volume would always be ranked highest. The resulting numbers are then scaled 
on a range of 0–100 based on a topic’s proportion to all searches on all topics. Different 
regions that show the same number of searches for a term will not always have the same 
total search volumes” [52].
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Data on diseases cases and rates are retrieved by CDC’s AtlasPlus [53]. This database 
contains data for 6 infectious diseases, i.e., HIV/AIDS, Chlamydia, Gonorrhea, Syphi-
lis, Tuberculosis, and Hepatitis. Following the well performing forecasting results for 
AIDS [18], in this study we use data on the rest of the diseases included in AtlasPlus. The 
data retrieved for Hepatitis are from January 1st, 2004 to December 31st, 2015, while for 
the rest of the examined diseases; the examined time frame is from January 1st, 2004 to 
December 31st, 2016. Note that the data may very slightly vary depending on the time of 
retrieval.

The steps towards examining the possibility of forecasting said diseases using Google 
Trends data are as follows: First, we provide an overview of the online interest variations 
on each of these diseases for the respective examined periods. Next, we visualize the 
geographical distribution of the online interest in each disease for all states for each indi-
vidual year from 2004 to 2017. Following, we calculate the Pearson correlations between 
Google Trends data and the respective CDC data on each disease’s cases. Finally, we 
estimate linear regressions for the examined diseases at both national and state level, in 
order to examine the possibility of forecasting said diseases using Google Trends data.

Results
This section consists of the analysis of the results for the five examined diseases, i.e., 
Chlamydia, Gonorrhea, Syphilis, Tuberculosis, and Hepatitis.

Chlamydia

Figure 1 consists of the heat map of the online interest for the term ‘Chlamydia’ by state 
from January 2004 to December 2016, while Fig. 2 depicts the online interest by state for 
each year from 2004 to 2017 (Additional file 1: Tables S1 and S2).

Fig. 1  Heat map of the online interest in the term ‘Chlamydia’ by state (2004–2016)
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It is evident that the online interest in the term ‘Chlamydia’ is significant throughout 
the examined period, i.e., from 2004 to 2017. In the US, the top related searches for the 
term ‘Chlamydia’ from 2004 to 2016 include: ‘chlamydia symptoms’ (100), ‘chlamydia 
gonorrhea’ (50), ‘symptoms of chlamydia’ (38), ‘chlamydia men’ (36), ‘std chlamydia’ (34), 
‘std’ (33), ‘chlamydia treatment’ (33), ‘treatment chlamydia’ (33), ‘chlamydia in men’ (28), 
‘chlamydia infection’ (26), ‘chlamydia in women’ (25), ‘what is chlamydia’ (24), ‘chlamydia 
test’ (22), ‘chlamydia symptoms women’ (19), ‘chlamydia symptoms men’ (18), ‘chlamydia 
symptoms in women’ (16), ‘chlamydia symptoms in men’ (16), ‘chlamydia discharge’ (15), 
‘chlamydia signs’ (14), ‘chlamydia cure’ (13).

Table 1 consists of the Pearson correlation coefficients between Google Trends data on 
the term ‘Chlamydia’ and official Chlamydia cases in each US State from 2004 to 2016. 

Fig. 2  Online interest heat maps for the term ‘Chlamydia’ by state by year (2004–2017)



Page 6 of 23Mavragani and Ochoa ﻿J Big Data  (2018) 5:30 

At national level, the correlation between the yearly averages of Google Trends  data 
and yearly cases of Chlamydia from 2004 to 2016 is statistically significant (r = 0.9096, 
p < 0.01). The correlations are also statistically significant for all states, apart from Arkan-
sas, Mississippi, Hawaii, North Dakota, and West Virginia.

The next step is to identify the relationship between Chlamydia cases and the online 
interest on the term. Table 2 consists of the coefficients α, β, and the respective R2 for 
each of the linear regressions of the form y = αx + β estimated for the relationships 

Table 1  Correlations between Google Trends data and Chlamydia cases by state

* p < 0.1, ** p < 0.05, *** p < 0.01

State r State r State r

Alabama 0.8373*** Kentucky 0.8864*** North Dakota 0.2555

Alaska 0.7691*** Louisiana 0.8771*** Ohio 0.8742***

Arizona 0.8784*** Maine 0.6600** Oklahoma 0.9208***

Arkansas 0.2461 Maryland 0.7906*** Oregon 0.7691***

California 0.8779*** Massachusetts 0.8744*** Pennsylvania 0.9131***

Colorado 0.8469*** Michigan 0.6276** Rhode Island 0.8776***

Connecticut 0.7919*** Minnesota 0.7699*** South Carolina 0.6456**

Delaware 0.8278*** Mississippi − 0.1721 South Dakota 0.7496***

DC 0.6606** Missouri 0.8484*** Tennessee 0.8973***

Florida 0.8845*** Montana 0.7411*** Texas 0.9033***

Georgia 0.9223*** Nebraska 0.9001*** Utah 0.9111***

Hawaii 0.3736 Nevada 0.8578*** Vermont 0.6280**

Idaho 0.8663*** New Hampshire 0.6281** Virginia 0.7852***

Illinois 0.8585*** New Jersey 0.8305*** Washington 0.8578***

Indiana 0.9119*** New Mexico 0.7714*** West Virginia 0.3165

Iowa 0.6445** New York 0.8423*** Wisconsin 0.8183***

Kansas 0.8172*** North Carolina 0.9306*** Wyoming 0.5874**

Table 2  Coefficients α, β, and R2 of the linear regressions for Chlamydia cases

State α β R2 State α β R2 State α β R2

AL 253 12,263 0.7012 KY 241 2096 0.7856 ND 30 2023 0.0653

AK 88 3805 0.5915 LA 473 13351 0.7694 OH 310 31,751 0.7642

AZ 227 14,831 0.7715 ME 37 1431 0.4356 OK 183 7631 0.8479

AR 78 10,713 0.0606 MD 173 15,209 0.6250 OR 285 2630 0.5915

CA 886 103,581 0.7706 MA 215 7437 0.7646 PA 456 22,216 0.8338

CO 132 11,942 0.7172 MI 171 36,168 0.3939 RI 122 1587 0.7701

CT 148 6320 0.6272 MN 232 4976 0.5927 SC 169 17,417 0.4168

DE 47 2943 0.6852 MS − 17 21,242 0.0296 SD 87 1853 0.5619

DC 4 3887 0.4364 MO 122 19,103 0.7198 TN 151 20,748 0.8052

FL 784 22,622 0.7824 MT 62 1800 0.5493 TX 1040 46,987 0.8159

GA 351 27,004 0.8507 NE 78 3079 0.8103 UT 101 2519 0.8301

HI 34 5146 0.1396 NV 114 5152 0.7358 VT 27 745 0.3944

ID 88 1509 0.7505 NH 38 1343 0.3945 VA 259 17,559 0.6166

IL 293 45,209 0.7370 NJ 374 7834 0.6897 WA 20 11,299 0.7359

IN 309 10,914 0.8315 NM 135 5801 0.5951 WV 50 2774 0.1002

IA 132 4686 0.4154 NY 704 44,661 0.7094 WI 145 15,033 0.6696

KS 140 4467 0.6678 NC 525 11,489 0.8660 WY 43 934 0.3451
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between Chlamydia cases (dependent variable) and Google Trends data (independent 
variable). For the US, the equation describing the relationship is y = 9012x + 681655 
with an R2 of 0.8277. Most of the respective models at state level are also performing 
well, indicating that the forecasting of Chlamydia cases is possible using online search 
traffic data.

Gonorrhea

Figure 3 depicts the heat map of the online interest in the term ‘Gonorrhea’ in the US 
from 2004 to 2016. Figure 4 consists of the heat maps for the online interest of said term 
for each year from 2004 to 2017 by State (full datasets available in Additional file  1: 
Tables S3 and S4). As shown in Fig. 4, the online interest by state by year is increasing 
from 2004 to 2017, with no states in the ‘0–20’ interest group from 2008 on, and with the 
most states in the interest groups ‘81–100’ and ‘61–80’ being observed after 2014.

The top related searches for the term ‘Gonorrhea’ in the US from 2004 to 2016 include: 
‘gonorrhea symptoms’ (100), ‘symptoms’ (98), ‘chlamydia’ (97), ‘chlamydia gonorrhea’ 
(97), ‘std’ (41), ‘gonorrhea std’ (40), ‘treatment gonorrhea’ (35), ‘syphilis’ (30), ‘gonorrhea 
men’ (28), ‘herpes’ (25), ‘what is gonorrhea’ (24), ‘gonorrhea in women’ (23), ‘chlamydia 
and gonorrhea’ (22), ‘gonorrhea in men’ (22), ‘gonorrhea symptoms women’ (19), ‘gonor-
rhea discharge’ (19), ‘gonorrhea symptoms men’ (18), ‘gonorrhea test’ (15), ‘throat gonor-
rhea’ (15), ‘stds’ (15).

Table 3 consists of the Pearson correlation coefficients between Google Trends data 
on the term ‘Gonorrhea’ from 2004 to 2016 and data on Gonorrhea cases from the 
CDC for the same period. Contrary to Chlamydia, no statistically significant correla-
tion is observed for USA (r = 0.0974, p > 0.1), while significant correlations are only 
observed in the states of Michigan, South Carolina, Alabama, California, Kentucky, 

Fig. 3  Heat map of the online interest in the term ‘Gonorrhea’ by State (2004–2016)
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Mississippi, South Dakota, Texas, Wisconsin, Arizona, Arkansas, Illinois, Louisiana, 
New York, and Pennsylvania.

Table  4 consists of the coefficients α, β, and the respective R2 for each of the lin-
ear regressions. For the US, the estimated model is y = 325.28x + 334069 with an 
R2 of 0.0095. In the three States for which significant correlations with p < 0.01 are 
observed, i.e., in Illinois, Michigan, and South Carolina, the respective R2 for the lin-
ear regressions for Gonorrhea cases are 0.6867, 0.5966, and 0.6556.

The R2 of the estimated equations are not very high even in the states with signifi-
cant correlations between online and official data on Gonorrhea, while for the US, 
the results are significantly low. Thus the forecasting of Gonorrhea cases using this 
method cannot be performed at this point.

Fig. 4  Online interest heat maps for the term ‘Gonorrhea’ by state by year (2004–2017)
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Syphilis

Figure 5 depicts the heat map of the online interest in the term ‘Syphilis’ by state from 
January 2004 to December 2016, while Fig.  6 consists of the heat maps of the online 
interest in the term ‘Syphilis’ by state by year from 2004 to 2017 (Additional file 1: Tables 
S5 and S6).

Table 3  Correlations between Google Trends data and Gonorrhea cases by state

* p < 0.1, ** p < 0.05, *** p < 0.01

State r State r State r

Alabama − 0.5996** Kentucky 0.5928** North Dakota − 0.1005

Alaska 0.2957 Louisiana − 0.5142* Ohio − 0.7490

Arizona 0.4903* Maine 0.4675 Oklahoma 0.2069

Arkansas 0.5430* Maryland − 0.2098 Oregon 0.2629

California 0.5540** Massachusetts 0.2573 Pennsylvania 0.5140*

Colorado − 0.1122 Michigan − 0.7357*** Rhode Island − 0.4736

Connecticut − 0.0825 Minnesota − 0.0228 South Carolina − 0.8040***

Delaware 0.0856 Mississippi − 0.5825** South Dakota 0.5805**

DC 0.3097 Missouri − 0.3413 Tennessee − 0.4391

Florida − 0.1847 Montana 0.0953 Texas 0.5624**

Georgia − 0.3326 Nebraska − 0.0830 Utah 0.3331

Hawaii − 0.0990 Nevada 0.1814 Vermont 0.1045

Idaho 0.1987 New Hampshire − 0.0086 Virginia − 0.0348

Illinois − 0.7933* New Jersey 0.2843 Washington 0.3453

Indiana − 0.4479 New Mexico − 0.0052 West Virginia − 0.4462

Iowa 0.3235 New York 0.5312* Wisconsin − 0.6704**

Kansas − 0.0925 North Carolina − 0.0271 Wyoming 0.2684

Table 4  Coefficients α, β, and R2 of the linear regressions for Gonorrhea cases

State α β R2 State α β R2 State α β R2

AL − 68.71 11,175 0.3595 KY 50.69 2881 0.3515 ND − 5.10 422 0.0101

AK 26.94 637 0.0874 LA − 36.98 11,268 0.2645 OH − 164.46 23,450 0.5609

AZ 59.98 2852 0.2404 ME 13.77 − 42 0.2186 OK 15.80 4761 0.0428

AR 32.26 3944 0.2948 MD − 24.73 7773 0.0440 OR 30.32 853 0.0691

CA 344.22 15,916 0.3069 MA 17.81 2196 0.0662 PA 96.82 9535 0.2642

CO − 9.02 3688 0.0126 MI − 193.86 19,933 0.5413 RI − 10.07 715 0.2243

CT − 2.23 2620 0.0068 MN − 2.07 3402 0.0005 SC − 99.84 11,208 0.6464

DE 3.17 1107 0.0073 MS − 148.05 8439 0.3394 SD 17.29 226 0.3370

DC 5.91 2176 0.0959 MO − 54.90 10,334 0.1165 TN − 28.08 9489 0.1928

FL − 43.93 23,410 0.0341 MT 3.95 208 0.0091 TX 188.73 25,163 0.3163

GA − 47.51 18,229 0.1106 NE − 3.52 1518 0.0069 UT 22.724 321 0.1109

HI − 3.97 965 0.0098 NV 19.12 2326 0.0329 VT 0.528 71 0.0109

ID 6.50 141 0.0395 NH − 0.10 181 0.0001 VA − 3.43 8073 0.0012

IL − 124.49 23,886 0.6293 NJ 44.35 5337 0.0808 WA 46.32 1716 0.1192

IN − 49.10 9292 0.2006 NM − 0.64 1857 0.0000 WV − 13.93 1098 0.1991

IA 11.08 1499 0.1046 NY 151.28 13,546 0.2821 WI − 80.09 7863 0.4494

KS − 3.07 2513 0.0086 NC − 5.83 16,119 0.0007 WY 4.29 72 0.0720
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The top related queries for the term ‘Syphilis’ from 2004 to 2016 in the US include: 
‘symptoms syphilis’ (97), ‘herpes’ (37), ‘gonorrhea’ (36), ‘symptoms of syphilis’ (34), ‘chla-
mydia’ (33), ‘std syphilis’ (33), ‘std’ (32), ‘what is syphilis’ (31), ‘syphilis pictures’ (28), 
‘syphilis treatment’ (27), ‘tuskegee’ (25), ‘tuskegee syphilis’ (25), ‘syphilis rash’ (24), ‘syph-
ilis test’ (21), ‘hiv’ (17), ‘tuskegee syphilis study’ (16), ‘syphilis penis’ (15), ‘syphilis disease’ 
(15), ‘syphilis in men’ (14), ‘stds’ (14), ‘gonorrhea symptoms’ (13), ‘chlamydia symptoms’ 
(12), ‘herpes symptoms’ (12).

Table 5 consists of the Pearson correlation coefficients between Google Trends data 
and numbers of Syphilis cases for each examined state. Data on Syphilis cases for cal-
culating the Pearson correlations are retrieved from CDC AtlasPlus [30] by adding the 
‘Primary and Secondary Syphilis’ cases to ‘Early Latent Syphilis’ cases. Congenital Syphi-
lis’ cases are not included, as data are not available for most of the states for most of the 
years. However, by adding the Congenital Syphilis cases to the analysis, the correlations 
and the respective results remain significant in the same states. For the years where data 
for Early Latent Syphilis are not available, only data from ‘Primary and Secondary Syphi-
lis’ cases are used.

For the US, the correlation between online data and Syphilis cases is statistically sig-
nificant (r = 0.6478, p < 0.05). At state level, significant correlations are only observed 
in California, Illinois, Massachusetts, Utah, in Arkansas, Colorado, DC, Minnesota, 
Nevada, New Hampshire, North Carolina, Iowa, Michigan, New York, Ohio, and Wash-
ington. The states of North Dakota, South Dakota, and Wyoming are excluded from fur-
ther analysis due to lack of complete datasets in all Syphilis subcategories.

Fig. 5  Heat map of the online interest in the term ‘Syphilis’ by state (2004–2016)
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Table  6 consists of the coefficients α, β, and the respective R2 for each of the linear 
regressions for Syphilis cases. For the US, the equation describing the linear relationship 
between online data and official Syphilis cases is y = 748.65x − 26929 with an R2 of 
0.4196, which is indicating that, though at this point the model is not performing well, 
we could see promising results in the future when more data are available.

The states where the estimated models perform relatively well are Illinois and Mas-
sachusetts, for both of which the estimated correlations between online and official data 
were high (p < 0.01). It is thus evident that, as in the case of Gonorrhea, Syphilis cases 
cannot be forecasted using this method at this point.

Fig. 6  Online interest heat maps for the term ‘Syphilis’ by state by year (2004–2017)
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Table 5  Correlations between Google Trends data and Syphilis cases by state

* p < 0.1, ** p < 0.05, *** p < 0.01

State r State r State r

Alabama − 0.2414 Kansas 0.2949 New York 0.5173*

Alaska 0.4024 Kentucky 0.1182 North Carolina 0.6114**

Arizona 0.4722 Louisiana 0.0551 Ohio 0.5523*

Arkansas 0.5739** Maine − 0.065 Oklahoma 0.4253

California 0.7465*** Maryland 0.2001 Oregon 0.2134

Colorado 0.5662** Massachusetts 0.8250*** Pennsylvania 0.1238

Connecticut − 0.0757 Michigan 0.4983* Rhode Island − 0.1962

Delaware 0.1988 Minnesota 0.5806** South Carolina 0.5695**

DC 0.5640** Mississippi − 0.0481 Tennessee 0.0385

Florida 0.4942* Missouri 0.3284 Texas 0.5704**

Georgia 0.5154* Montana 0.3894 Utah 0.7218***

Hawaii 0.0962 Nebraska 0.1133 Vermont 0.2731

Idaho 0.0983 Nevada 0.6802** Virginia 0.4594

Illinois 0.7757*** New Hampshire 0.5888** Washington 0.5350*

Indiana 0.1794 New Jersey 0.1485 West Virginia 0.2697

Iowa 0.5081* New Mexico − 0.0188 Wisconsin 0.0476

Table 6  Coefficients α, β, and R2 of the linear regressions for Syphilis cases

State α β R2 State α β R2 State α β R2

AL − 6.43 759.73 0.0583 KY 2.70 142.52 0.0140 ND − 0.11 10.44 0.0003

AK 0.57 5.89 0.1619 LA 2.63 920.28 0.0030 OH 15.85 − 102.13 0.3050

AZ 12.71 5.18 0.2230 ME − 0.26 25.71 0.0042 OK 8.617 30.39 0.1809

AR 14.56 − 94.78 0.3294 MD 5.16 488.30 0.0400 OR 8.14 6.60 0.0455

CA 178.81 − 5271.90 0.5572 MA 19.09 − 259.86 0.6807 PA 16.51 363.47 0.0153

CO 11.33 − 156.14 0.3206 MI 14.48 − 251.17 0.2484 RI − 1.58 95.88 0.0385

CT − 1.10 145.91 0.0057 MN 12.77 − 353.58 0.3371 SC 21.97 − 103.92 0.3244

DE 0.81 39.98 0.0395 MS − 2.01 488.04 0.0023 SD 1 8.25 0.0381

DC 5.97 77.35 0.3181 MO 12.77 − 7.54 0.1079 TN 1.12 542.05 0.0015

FL 72.64 − 908.29 0.2443 MT 0.33 3.42 0.1516 TX 45.87 680.43 0.3253

GA 47.28 − 226.06 0.2656 NE 0.60 8.66 0.0128 UT 2.80 − 44.59 0.5210

HI 0.94 38.57 0.0093 NV 25.81 − 138.21 0.4627 VT 0.04 8.58 0.0003

ID 0.49 22.62 0.0097 NH 1.93 − 14.70 0.3467 VA 7.33 139.54 0.2110

IL 51.56 − 1385.40 0.6016 NJ 7.25 449.55 0.0221 WA 17.93 − 289.54 0.2862

IN 6.47 74.26 0.0322 NM − 0.17 155.34 0.0004 WV 2.06 4.12 0.0728

IA 6.54 − 108.68 0.2582 NY 104.91 − 2924.50 0.2676 WI 0.54 125.34 0.0023

KS 2.74 27.68 0.0870 NC 39.93 − 1288.80 0.3738 WY − 0.0029 2.73 0.00001
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Tuberculosis

Figure 7 consists of the heat map of the online interest by state from January 2004 to 
December 2016 for the term ‘Tuberculosis’, while Fig. 8 consists of the respective heat 
maps by state for each year from 2004 to 2017 (Additional file 1: Tables S7 and S8).

The top related searches for the term ‘Tuberculosis’ from 2004 to 2016 include 
‘symptoms tuberculosis’ (77), ‘tb’ (72), ‘tuberculosis test’ (65), ‘mycobacterium tuber-
culosis’ (38), ‘tuberculosis treatment’ (32), ‘symptoms of tuberculosis’ (29), ‘tubercu-
losis disease’ (29), ‘tb test’ (19), ‘tuberculosis vaccine’ (18), ‘tuberculosis causes’ (14), 
‘who tuberculosis’ (13), ‘tuberculosis skin test’ (13).

Table 7 consists of the Pearson correlation coefficients (r) between Google Trends data 
and Tuberculosis cases for each of the states, while Table 8 consists of the coefficients α, 
β, and the respective R2 for each of the linear regressions for Tuberculosis cases.

For the US, statistically significant correlations are observed (r = 0.5672, p < 0.05) 
between the online interest on the term ‘Tuberculosis’ and official Tuberculosis cases. 
Statistically significant correlations with p < 0.01 are observed for the states of DC, Loui-
siana, and Wisconsin, with p < 0.05 for Illinois, Kentucky, Maryland, New Hampshire, 
Rhode Island, and Virginia, and with p < 0.1 for Alabama and California. Based on the 
calculated correlations, the respective estimated models are not expected to perform 
well in most of the states.

Fig. 7  Heat map of the online interest in the term ‘Tuberculosis’ by state (2004–2016)
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For the US, the relationship between Google Trends data and Tuberculosis cases is 
described by y = 147.51x + 3787 with an R2 of 0.3217. The only state that shows prom-
ising results that forecasting could be possible at this point is Michigan, with an R2 of 
0.6840. Therefore, as in the case of Gonorrhea and Syphilis, Tuberculosis forecasting is 
not possible at this point using this method in all states.

Fig. 8  Online interest heat maps for the term ‘Tuberculosis’ by state by year (2004–2017)
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Hepatitis

Figure 9 consists of the heat map of the online interest by state from January 2004 to 
December 2015 for the term ‘Hepatitis’, while Fig. 10 consists of the respective heat maps 
by state for each year from 2004 to 2017 (Additional file 1: Tables S9 and S10).

The top related queries include ‘symptoms hepatitis’ (100), ‘hepatitis vaccine’ (91), 
‘what is hepatitis’ (66), ‘hepatitis b vaccine’ (56), ‘hepatitis treatment’ (44), ‘symptoms 

Table 7  Correlations between google trends data and Tuberculosis cases by state

* p < 0.1, ** p < 0.05, *** p < 0.01

State r State r State r

Alabama 0.5290* Kentucky 0.5891** North Dakota 0.4649

Alaska 0.0859 Louisiana 0.7141*** Ohio 0.4079

Arizona 0.3347 Maine 0.0915 Oklahoma 0.3842

Arkansas 0.3801 Maryland 0.6761** Oregon 0.3230

California 0.5454* Massachusetts 0.0513 Pennsylvania 0.6732**

Colorado 0.3382 Michigan 0.8271*** Rhode Island 0.5800**

Connecticut 0.5413* Minnesota 0.1527 South Carolina 0.3933

Delaware − 0.2075 Mississippi 0.1090 South Dakota 0.2435

DC 0.7382*** Missouri 0.3436 Tennessee 0.2710

Florida 0.1885 Montana 0.2888 Texas 0.3996

Georgia 0.4886* Nebraska − 0.3154 Utah 0.0570

Hawaii − 0.4057 Nevada − 0.0080 Vermont 0.3065

Idaho − 0.1846 New Hampshire 0.6565** Virginia 0.5887**

Illinois 0.6608** New Jersey 0.2505 Washington 0.1680

Indiana 0.2221 New Mexico 0.0315 West Virginia − 0.0706

Iowa 0.2460 New York 0.5450* Wisconsin 0.7275***

Kansas − 0.0543 North Carolina 0.3604 Wyoming 0.4667

Table 8  Coefficients α, β, and R2 of the linear regressions for Tuberculosis cases

State α β R2 State α β R2 State α β R2

AL 4.40 77.90 0.2799 KY 2.74 41.20 0.3470 ND 1.06 − 0.64 0.2161

AK 0.21 53.38 0.0074 LA 5.38 66.08 0.5100 OH 2.78 105.32 0.1664

AZ 2.31 173.65 0.1120 ME 0.10 13.17 0.0084 OK 2.54 36.46 0.1476

AR 0.99 65.08 0.1445 MD 4.49 91.71 0.4571 OR 0.79 60.60 0.1043

CA 25.45 905.03 0.2975 MA 0.30 214.18 0.0026 PA 5.21 50.41 0.4531

CO 1.388 50.28 0.1144 MI 5.23 − 30.65 0.6840 RI 0.99 10.47 0.3364

CT 2.38 31.79 0.2931 MN 1.36 137.97 0.0233 SC 3.412 52.04 0.1547

DE − 0.14 25.61 0.0431 MS 0.38 89.77 0.0119 SD 0.21 10.01 0.0593

DC 1.64 − 15.24 0.5449 MO 1.41 65.58 0.1180 TN 3.17 123.19 0.0735

FL 4.09 617.84 0.0355 MT 0.23 5.92 0.0834 TX 7.78 1022.40 0.1597

GA 6.80 158.32 0.2387 NE − 0.71 42.07 0.0995 UT 0.04 30.23 0.0033

HI − 0.67 132.59 0.1646 NV − 0.02 94.25 0.0001 VT 0.07 4.17 0.0940

ID − 0.20 18.59 0.0341 NH 0.58 0.25 0.4310 VA 5.12 85.23 0.3466

IL 7.90 48.48 0.4366 NJ 3 283.90 0.0628 WA 0.93 194.91 0.0282

IN 0.40 97.48 0.0493 NM 0.04 45.84 0.0010 WV − 0.08 19.07 0.0050

IA 0.22 40.66 0.0605 NY 17.78 198.30 0.2970 WI 1.69 15.99 0.5293

KS − 0.21 55.58 0.0030 NC 4.28 126.48 0.1299 WY 0.19 0.78 0.2178
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hepatitis c’ (43), ‘symptoms of hepatitis’ (41), ‘hep’ (38), ‘hepatitis a vaccine’ (35), 
‘hepatitis test’ (30), ‘hepatitis virus’ (27), ‘hepatitis c treatment’ (26), ‘what is hepatitis 
c’ (26), ‘what is hepatitis a’ (23), ‘hepatitis b symptoms (22), ‘viral hepatitis’ (21), ‘what 
is hepatitis b’ (20), ‘hepatitis a symptoms’ (20), and ‘hepatitis transmission’ (17).

Table 9 consists of the Pearson correlation coefficients (r) between Google Trends 
data and Hepatitis cases for each of the states. For calculating the correlations, the 
sum of the cases for Hepatitis A, Hepatitis B, and Hepatitis C are used. Where data 
are not available for a category, the sum of the remaining ones is used.

For the US, statistically significant correlation was observed between Hepatitis cases 
and Google Trends data (r = 0.9583, p < 0.01). For Hepatitis A, statistically significant 
correlations were observed between Google data in the US (r = 0.9045, p < 0.01); the 
same for Hepatitis B (r = 0.8922, p < 0.01). On the other hand, for Hepatitis C cases, 
no correlation was observed with Google Trends data (r = − 0.3089, p > 0.1), indicat-
ing that the latter does not contribute significantly to the high correlation between all 
Hepatitis cases and Google data.

Table 10 consists of the coefficients α, β, and the respective R2 for each of the linear 
regressions for Hepatitis cases for all US States, apart from DC where full datasets are 
not available.

For the US, the equation describing the linear relationship between Hepatitis cases 
and Google Trends data is y = 261.44x − 8197.4 with an R2 of 0.9184. The states of 
Arizona, Florida, Hawaii, New York, Pennsylvania, and Wisconsin exhibit good per-
forming forecasting results. Several other states have R2 that are relatively high, indicat-
ing that they will exhibit better results once more years’ data are available.

Fig. 9  Heat map of the online interest in the term ‘Hepatitis’ by state (2004–2015)
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As depicted in Fig. 10, in 2016 the online interest in all states but Hawaii is very low. 
This can be attributed to the Hepatitis A outbreak in Hawaii in August 2016, possibly 
linked to raw scallops that were served at a Hawaiian restaurant [54]. This is why the 
interest is so low in the rest of the states, constituting a good example of how an unex-
pected event can (negatively) affect this method of forecasting, but also how real life 
events are immediately and accurately depicted in online searches. The latter is very sig-
nificant for the real-time examining of epidemics and outbreaks.

Fig. 10  Online interest heat maps for the term ‘Hepatitis’ by state by year (2004–2017)
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Discussion
The surveillance of diseases using information available online, i.e., Infoveillance, has 
become an integral part of Health Informatics over the past years. Internet data can 
provide a large amount of information that could not be accessed through traditional 
surveillance methods, such as questionnaires, surveys, and registries. New methods and 
approaches are constantly discovered and used in order to take advantage of what the 
Internet has to offer.

Table 9  Correlations between Google Trends data and Hepatitis cases by state

* p < 0.1, ** p < 0.05, *** p < 0.01

State r State r State r

Alabama 0.0012 Louisiana 0.4745 Ohio 0.4040

Alaska 0.1039 Maine 0.3873 Oklahoma − 0.4900

Arizona 0.9207*** Maryland 0.5980** Oregon 0.7944***

Arkansas 0.7377*** Massachusetts 0.8010*** Pennsylvania 0.8759***

California 0.8333*** Michigan 0.5740* Rhode Island 0.3977

Colorado 0.7206*** Minnesota 0.5583* South Carolina 0.2419

Connecticut 0.7561*** Mississippi 0.6715** South Dakota − 0.3825

Delaware − 0.3014 Missouri 0.6581** Tennessee 0.3609

Florida 0.9151*** Montana 0.1725 Texas 0.8163***

Georgia 0.7010** Nebraska 0.5650* Utah 0.3074

Hawaii 0.8513*** Nevada 0.5200* Vermont 0.2253

Idaho 0.3770 New Hampshire 0.5045* Virginia 0.8309***

Illinois 0.5267* New Jersey 0.7993*** Washington 0.6129**

Indiana − 0.2965 New Mexico − 0.4728 West Virginia 0.2579

Iowa 0.3598 New York 0.8631*** Wisconsin 0.8844***

Kansas 0.5213* North Carolina 0.7576*** Wyoming 0.6561**

Kentucky − 0.0950 North Dakota 0.4797

Table 10  Coefficients α, β, and R2 of the linear regressions for Hepatitis cases

State α β R2 State α β R2 State α β R2

AL 0.01 134.60 0.000002 LA 1.50 56.25 0.2252 OH 10.63 − 351.75 0.1632

AK 0.06 7.01 0.0108 ME 0.50 12.88 0.1500 OK − 5.16 321.44 0.2401

AZ 25.80 − 674.83 0.8477 MD 6.45 − 141.22 0.3576 OR 5.13 − 113.01 0.6311

AR 4.11 − 29.01 0.5442 MA 24.98 − 694.28 0.6416 PA 19.06 − 740.71 0.7673

CA 58.75 − 1762.5 0.6944 MI 7.47 − 102.27 0.3295 RI 1.18 − 20.87 0.1582

CO 2 9.47 0.5192 MN 1.98 15.78 0.3117 SC 1.79 23.98 0.0585

CT 3.75 − 53.98 0.5716 MS 4.37 − 78.62 0.4509 SD − 0.30 15.12 0.1463

DE − 1.42 78.13 0.0909 MO 3.55 − 86.62 0.4331 TN 6.21 81.14 0.1303

FL 19.75 − 373.34 0.8374 MT 0.31 9.82 0.0298 TX 44.73 − 1423.4 0.6663

GA 8.28 − 155.43 0.4914 NE 1.01 − 5.35 0.3192 UT 1.29 − 3.21 0.0945

HI 1.41 − 6.58 0.7248 NV 3.08 15.25 0.2704 VT 0.42 0.13 0.0508

ID 0.38 15.24 0.1421 NH 2.59 − 46.34 0.2545 VA 10.11 − 283.41 0.6905

IL 4.10 19.74 0.2775 NJ 10.99 − 237.27 0.6389 WA 1.73 60.33 0.3757

IN − 3.87 360.46 0.0879 NM − 0.85 70.28 0.2235 WV 6.34 − 19.29 0.0665

IA 2.19 − 35.28 0.1295 NY 19.72 − 859.60 0.7450 WI 4.80 − 121.40 0.7821

KS 0.75 6.01 0.2718 NC 6.62 − 56.20 0.5739 WY 0.41 − 0.86 0.4305

KY − 1.81 322.09 0.0090 ND 0.22 0.28 0.2302
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Table 11  CDC reported cases for the infectious diseases included in AtlasPlus in 2016

Disease Reported cases

Chlamydia 1,598,354

Gonorrhea 468,514

Primary and Secondary Syphilis 27,814

Tuberculosis 9272

Hepatitis (A, B, and C) 7170

In this study, we assessed the online interest in the US at both national and state level 
in five infectious diseases, in order to show how Internet data can be used in the Info-
veillance of said diseases, and explore the possibility of forecasting cases using online 
search traffic data.

Yearly Data from the Atlas CDC website [53] were used, which are available for up 
to 2015 or 2016 (depending on the disease) for Chlamydia, Gonorrhea, Syphilis, Tuber-
culosis, and Hepatitis. In the case of AIDS, the estimated forecasting models of AIDS 
Prevalence in the US exhibited very good performance [18], supporting previous work 
on the subject suggesting that empirical relationships between online data and official 
health data exist, and highlighting the usefulness of this tool in health assessment.

As is evident from the geographical distribution of the online interest towards the 
examined diseases in each state per year since 2004, Google Trends data are an accu-
rate and valuable way to measure public interest and awareness on the subject. This is 
essential especially for STDs, since new innovative public surveillance methods, preven-
tive measures, and increased public information via traditional and new channels can 
increase awareness, particularly in the regions where said diseases’ rates are higher.

Table 11 consists of the US CDC reported cases for the diseases included in Atlas 
for the year 2016, apart from Hepatitis for which data refer to the year 2015. As is 
evident, Chlamydia cases are by far the most. The latter could explain why statistically 
significant correlations are observed between Google Trends data and reported Chla-
mydia cases in most US States, and the forecasting models are performing well. All 
diseases apart from Tuberculosis are experiencing an increase since the previous year, 
indicating that probably better- and for more diseases- forecasting will be possible in 
the future using this method.

Table  12 consists of the USA yearly rates (per 100,000) for Chlamydia, Gonorrhea, 
Syphilis, Tuberculosis from 2004 to 2016, and Hepatitis from 2004 to 2015. For Hepati-
tis, the reported rate is the sum of rates from Hepatitis A, Hepatitis B, and Hepatitis C, 
while for Syphilis, the rate is the sum of Primary and Secondary Syphilis, Early Latent 
Syphilis, and Congenital Syphilis.

As shown in Table 12, Chlamydia rates in the US are significantly higher than the rates 
for the rest of the examined diseases. This partly explains why Chlamydia cases exhibit 
so high correlations with online search traffic data and why the forecasting of Chlamydia 
is possible in many states using Google Trends data. For Syphilis and Tuberculosis, the 
rates included in Table 12 show that said diseases have very decreased rates, with Tuber-
culosis showing a downward trend since 2004. The low rates can partly explain why this 
method does not apply to these diseases. This is contrary to the case of Hepatitis, which 
may have the lowest numbers of reported cases (Table 11) and a downward rate trend 
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(Table  12), but it shows more promising results in forecasting. Based on the observa-
tions for Tuberculosis and Syphilis, however, and as in 29 out of 50 states significant 
correlations are observed for Hepatitis cases and online queries, there is a slight pos-
sibility that what is observed is a decrease in significance of the reported results instead 
of a projected increase in the future. For Gonorrhea, the online behavioral assessment 
is not trivial, as it is a word that is often misspelled, mostly for ‘Gonorrea’, contrary to 
e.g., AIDS, which is a word that is not misspelled, and for which the forecasting results 
exhibit good performance.

Many factors should be taken into account when using online search traffic data in 
health assessment, and the results should be interpreted carefully. This study is an 
overview of how infoveillance methods can be applied in monitoring and forecasting 
diseases cases using online search traffic data. In this analysis, we highlight not only 
what studies in this field normally highlight, i.e., the usefulness of Internet data in 
the monitoring and forecasting of diseases’ prevalence, but also provide examples of 
cases where this method does not work. In fact, we emphasize on how the suitability 
of this method along with the respective forecasting results can be affected by low 
rates or other factors.

However, despite previous concerns on the reliability using Google data as a means 
for disease monitoring [55], including the case of Google Flu Trends [56] which is now 
not available [57], the use of Google Trends data in health and medicine has exhib-
ited very promising results so far. Nevertheless, it is essential to understand that this 
method cannot be applied in every case, and, more importantly, that the methodol-
ogy should be designed cautiously and that the results must always be interpreted 
accordingly. Taking into account these limitations, future research should focus 
on employing more detailed and complicated mathematical modeling in order to 
improve diseases’ and epidemics’ forecasting, as, in order for all available information 
to be integrated in health research, both online data and data from traditional sources 
should be combined [56].

The overall assessment of the diseases examined in this study indicate the usefulness 
of Google Trends as a tool for disease surveillance, providing real-time data and thus 

Table 12  CDC reported yearly rates in USA for the examined diseases from 2004 to 2016

Chlamydia Gonorrhea Syphilis Tuberculosis Hepatitis

2004 317.3 112.7 14.5 5 4.3

2005 330.3 114.9 14 4.8 3.5

2006 345.4 120.1 15.1 4.6 3.1

2007 367.7 118.1 17.5 4.4 2.8

2008 398 110.7 19 4.2 2.4

2009 405.7 98.2 19.3 3.8 2

2010 422.8 100 18.6 3.6 1.9

2011 453.2 103.2 17.8 3.4 1.7

2012 453 106.6 18 3.2 2

2013 443 105.2 20.1 3 2.1

2014 452.1 109.8 24 3 2

2015 475 123 27.2 3 2.2

2016 497.3 145.8 33.4 2.9 –
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tackling the disadvantage of time consuming traditional data collection and analysis 
methods.

Conclusions
Over the past decade, the analysis of online search traffic data has been shown valuable 
and useful in the assessment of public health issues. In this study, by examining the geo-
graphical distribution of the online behavioral variations towards Chlamydia, Gonor-
rhea, Syphilis, Tuberculosis, and Hepatitis in the US by year since 2004, we showed how 
Infoveillance can explore public awareness and accurately measure the behavior towards 
said diseases. Next, we examined the correlations between Google Trends data and CDC 
data for the reported diseases. For Chlamydia, statistically significant correlations were 
observed for the US as a whole and most of the states, while their relationship was well 
described by the linear regressions estimated for many states. For Hepatitis, significant 
correlations were observed in 29 states, while forecasting seems to be exhibiting promis-
ing results at this point. On the contrary, for Syphilis and Tuberculosis the correlations 
were statistically significant in less states, which can be partly explained by the very low 
rates of said diseases in the US. For Gonorrhea, however, though rates are high in the 
US, the results were not significant as well. The latter could be due to the high volumes 
of Internet users that search for the disease with incorrect spelling, highlighting one of 
the main limitations of the tool, and being a good example of why the selection of key-
words and the interpretation of the results when using online search traffic data are cru-
cial for the robustness of the analysis. Overall, this study indicates that the analysis of 
real time data of diseases is important for obtaining information that cannot be acces-
sible through traditional survey methods. Future research on the subject could focus on 
developing new methods of monitoring and analysis of health issues, as well as overcom-
ing the limitations highlighted in this study.
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