
Power Efficient Dataflow Design for a
Heterogeneous Smart Camera Architecture

Deepayan Bhowmik∗, Paulo Garcia†, Andrew Wallace†, Robert Stewart‡ and Greg Michaelson‡
∗Department of Computing, Sheffield Hallam University, Sheffield, United Kingdom, S1 1WB

†School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, United Kingdom, EH14 4AS
‡Mathematical and Computer Science, Heriot-Watt University, Edinburgh, United Kingdom, EH14 4AS

deepayan.bhowmik@shu.ac.uk, {p.garcia, a.m.wallace, r.stewart, g.michaelson}@hw.ac.uk

Abstract—Visual attention modelling characterises the scene to
segment regions of visual interest and is increasingly being used
as a pre-processing step in many computer vision applications in-
cluding surveillance and security. Smart camera architectures are
an emerging technology and a foundation of security and safety
frameworks in modern vision systems. In this paper, we present
a dataflow design of a visual saliency based camera architecture
targeting a heterogeneous CPU+FPGA platform to propose a
smart camera network infrastructure. The proposed design flow
encompasses image processing algorithm implementation, hard-
ware & software integration and network connectivity through
a unified model. By leveraging the properties of the dataflow
paradigm, we iteratively refine the algorithm specification into
a deployable solution, addressing distinct requirements at each
design stage: from algorithm accuracy to hardware-software
interactions, real-time execution and power consumption. Our
design achieved real-time run time performance and the power
consumption of the optimised asynchronous design is reported at
only 0.25 Watt. The resource usages on a Xilinx Zynq platform
remains significantly low.

I. INTRODUCTION

Camera networks deployed in time constrained, real life
scenarios are an important component of video surveillance,
disaster response, environmental monitoring and smart envi-
ronmental systems. The primary function of any smart camera
is to combine image sensing, local image or video processing
and communications in a single embedded platform. Often
smart cameras are the building blocks of a larger system
including a complex camera network. These are developed
for higher-performance, better energy efficiency and target
compact and low cost devices such as embedded CPUs or
FPGAs. Due to their decentralised local pre-processing smart
cameras help to address the issues with traditional centralised
camera networks, e.g., image communication over a resource
limited (bandwidth and power) wireless network. A smart
camera architecture (SCA) shifts pre-processing computations
upstream to the source of image capture on dedicated, low
powered embedded hardware [1]. Current available SCAs
encounter problems due to a range of system-level design
issues [2]. Hardware needs to be portable and energy effi-
cient, software needs to be easily programmable and compute
efficient (suitable for hardware acceleration), and the system
must be reliable, scalable and flexible enough to adapt to
existing infrastructure. The expectations for SCAs are pred-

icated on complex image processing under tight real-time
constraints [3].

However, the adoption of FPGAs in the SCA domain intro-
duces several programmability and design concerns especially
for non-hardware programmers in the computer vision com-
munity [4]. Supported by the large computer vision software
code base, this propelled the use of high level synthesis
(HLS) for FPGA embedded vision [5] which enables FPGA
design within traditional computer vision frameworks such as
OpenCV [4]. This enabled the incorporation of image pro-
cessing algorithms in the system design: e.g., Visual Saliency.
Visual Saliency (VS) or attention modelling characterises
the scene to segment regions of visual interest. Hence it is
a suitable concept for assessing the relevance of a region
in a frame for further processing in a vision system, e.g.,
saliency based person re-identification [6], resource allocation
for driver assistance [7] or prioritization of visual data in wire-
less surveillance networks [8]. This significantly reduces data
dimensionality resulting in accelerated processing, reduced
power consumption and bandwidth demand.

In this paper, we present the dataflow design of an visual
saliency based SCA as part of a Smart Camera Network
(SCN) infrastructure. Through a unified model, the proposed
design combines image processing algorithm implementation
using a high level dataflow process network, hardware &
software integration that includes camera as well as network
connectivity and an interface for the camera network over
the standard Ethernet infrastructure. We also demonstrate
the application of power reduction techniques at three hi-
erarchical levels: processing, algorithm implementation and
system architecture. At processing level, scene awareness,
implemented through a visual saliency model, is incorporated
to reduce data dimensionality. At implementation level, the
asynchronicity of dataflow HLS is leveraged to apply low-level
power optimizations. At system architecture level, the design
is partitioned into different clock islands in order to exploit
frequency scaling. The main contributions of this work are:

• A SCN infrastructure using hardware-software integra-
tion targeting a heterogeneous CPU+FPGA platform and
standard communication network.

• A power optimization methodology for energy efficient
design leveraging the properties of the dataflow process-
ing model.

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.



action

state

actors computations

FSM
ports

FIFOs

Fig. 1. The dataflow model of computation.

• A dataflow based design of an exemplar visual saliency
model for FPGA-based smart camera architectures.

II. POWER EFFICIENT IMAGE PROCESSING ON FPGAS

The design of the smart camera architure is driven by the
goals of ease of algorithm implementation and validation,
system architecture reuse, and power efficiency. To meet these
goals, the architecture development is driven by the following
three principles:

1) A high level parallel programming model for rapid
algorithm prototyping, and a compiler framework we
extend to support interactive real time image processing
simulations on CPUs.

2) A clean separation between hardware components,
namely frame capture, application logic and FPGA to co-
processor communication, to exploit multi-clock domains
with power islands to reduce power use.

3) A portable framework comprising an IP core and a C
library for FPGA to co-processor communication, to
increase the portability of the smart camera architecture.

A. High Level Algorithm Prototyping

The high level programming model for application prototyp-
ing to target the architecture is the dataflow language CAL [9].
The Dataflow Process Network (DPN) model, depicted in
Fig. 1, comprises actors for computation and connections to
compose these computations. The DPN model maps image
processing well onto FPGAs: a) it offers two forms of parallel
execution, for dataflow to FPGA compilers and synthesis tools,
b) it supports stateful image processing to support non-trivial
algorithms, c) it encourages low static memory allocation, and
d) it enables the processing of image streams from cameras.

a) Parallelism: Compiling image processing dataflow
programs to FPGAs provides two forms of parallelism. The
first is coarse grained through the parallel execution of actors
connected with dataflow wires. The second is fine grained
FPGA based combinatorial parallel execution of computations
within firing rules, where this form of parallelism is not
explicit at the CAL level.

b) Stateful image processing kernels: Computation ac-
tors contain finite state machines (FSM) that are sequentially
scheduled based on firing rules for transitioning between FSM
states. These firings can consume/produce data and modify
internal actor state. This model of multiple firing rules, com-
bined with internal actor state, provides the expressivity for

stateful image processing such as global reduction operations
or complex vision algorithms, e.g., person tracking [10].

c) Low memory resource use: FPGAs have limited on-
chip memory, so static memory allocation with any High Level
Synthesis approach should be kept to a minimum. This is es-
pecially true for the image processing domain, because image
buffering on-chip can quickly consume all available memory
resources [11]. The dataflow model encourages low mem-
ory allocation because programmers pipeline image streams
through point to point or region to region functions, rather
than multiple image to image functions, which would require
image buffers for each actor thus introducing unecesary FPGA
Block RAM resource demands.

d) Image stream processing: Dataflow connections are
programmed to have depth, i.e., the capacity for feeding
tokens in FIFOs between actors. Provided these FIFO depths
are sufficiently deep to avoid deadlock, this is a natural
programming abstraction for processing infinite streams of
image frames captured by camera sensors.

DPNs are not only inherently parallel but also inherently
functionally asynchronous, i.e., there is no strict enforcing
on data availability or action firing order within and across
actors. Timing is controlled by token availability, exchanged
between actors through FIFOs. Using a HDL backend [12],
these dataflow FIFOs are directly translated to hardware FI-
FOs; network input/output ports follow the same approach,
expecting FIFO-compliant interfaces. Thus it is possible to
leverage functional asynchronicity to implement electrical
asynchronicity, dividing the system into several clock domains.

The DPN architectural paradigm is highly amenable to
hardware design. Each actor is a self-contained entity contain-
ing private data; we leverage this for hardware components:
camera and network interfaces are encapsulated and re-used
in new dataflow designs. Recurring engineering costs are
prevented by the asynchronous interfaces; as long as each
component supports a FIFO interface, handshaking signals or
operating frequency are not of concern.

B. Software Validation of Image Processing Programs
One drawback of using FPGA acceleration in image pro-

cessing architectures is the time consuming process of syn-
thesising hardware descriptions, and running simulations with
test benches to validate the expected outputs. This makes fast
algorithm prototyping infeasible, and often domain experts
instead prototype in a software language like MATLAB, then
reimplement in an FPGA-synthesisable language once the
algorithm meets its requirements. To overcome this duplication
of implementation effort, we have extended the open source
Orcc [9] CAL compiler and IDE with tooling for rapid image
processing algorithm prototyping, so that an algorithm need
only be implemented once. This simulation harness enables
quick validation of image processing dataflow programs on
CPUs. The functionality is implemented in the runtime system
of Orcc’s C backend, and is exposed as actors in the System
project in the orc-apps library1.

1https://github.com/orcc/orc-apps

https://github.com/orcc/orc-apps


Fig. 2. Smart camera system architecture.

C. FPGA based System Architecture

1) Architecture Overview: The clean separation of sub-
systems allows power efficient application deployment across
power islands: regions where different power modes (e.g.,
frequency scaling, power gating) can be applied indepen-
dently. Figure 2 depicts the architecture with corresponding
interfaces and clock islands separation. The capture sub-
system interfaces with external camera(s), performing low-
level initializations and image capture. The saliency sub-
system reduces image data dimensionality by identifying
salient information, bringing scene awareness to subsequent
processing (Section III). The processing sub-system performs
all required operations on images, depending on the desired
applications, and the link sub-system performs system I/O.

This design philosophy ensures recurring engineering, e.g.,
adapting the design of an existing camera, modifying and inte-
grating image processing algorithms, has very little cost as the
design asynchronicity ensures seamless integration, and power
consumption levels can be kept low by reducing idle logic
operating at high frequencies. The asynchronous dataflow
model is uniquely suited for this kind of implementation as
no control signals are passed between clock domains, hence
no need for local clock synchronizers. All communication is
implemented through passing tokens in FIFOs, which is the
preferred method for crossing clock domains.

2) Smart Camera Architecture: The SCA implementation
is based on a Xilinx Zedboard2. The Zedboard’s heterogeneous
Zynq chip combines the Xilinx FPGA fabric (PL) with a
dual-core ARM Cortex A9 processor (PS). The PL fabric
is used to implement the capture and saliency sub-systems.
The capture sub-system is implemented through an OV76703

camera module, connected directly to the Zedboard FPGA
using the available Pmod interface. The OV7670 camera
module requires an input clock of typically 24MHz frequency
(maximum 48MHz) and provides pixels to the DPN at 30
frames per second (approximately 6.9MHz on 320x240 im-

2http://zedboard.org/support/documentation/1521
3http://www.voti.nl/docs/OV7670.pdf

ages, 24 bits per pixel). The saliency sub-system encapsulates
the previously described algorithm implementation.

The link sub-system is an heterogeneous implementation
across PL and PS layers based on Xillybus4 to maximise
the portability of the system architecture — the Xillybus
framework supports the Xilinx Zynz-7000 family, Altera Cy-
clone V SoC and the Microblaze soft processor over the
AXI4 bus. On the PL side, a Xillybus IP core, operating
at 100MHz, converts FIFO interfaces on the hardware side
into file I/O operations on the software side running on
the ARM processor. This simplifies hardware-software co-
design when using the dataflow-based FPGA design approach.
Software can read FPGA data seamlessly and asynchronously,
and standard file operations can be used to control hardware
execution. Abstracting hardware operation into files enables
standard software frameworks to control FPGA custom logic
transparently; a key factor for the integration of established
middleware and other software stacks with SCNs. On the PS
side, a client software transports processed data through an
ethernet port.

3) Power Methodology: For a completely synchronous de-
sign, the global clock frequency is dictated by the highest
requirement (Xillybus at 100MHz). All other logic, for the
camera interface and application logic derived from dataflow
programs, is subjected to the same timing constraints, which
hinders design re-use if using circuits designed for lower
frequencies; meeting timing requirements is one of the most
challenging aspects of hardware design, often requiring logic
replication, aggressive pipelining and iterative synthesis with
different strategies. Using asynchronous dataflow design, mul-
tiple clock domains are implemented in this work to produce
power-efficient solutions. Inter-clock domain interfaces are
implemented through dual-clock FIFOs. As a consequence of
dataflow design, only data, rather than data and control signals,
traverse sub-systems; thus, only a few inter-clock domain
interfaces are required.

III. EVALUATION

Human vision behavioural studies and feature integration
theory have prioritised the combination of intensity, colour and
orientation, three visually stimulating low level features, which
comprise the concrete foundations for numerous image domain
saliency models [13]. Salient objects are not size specific
therefore Multi-Resolution Analysis (MRA) is adopted within
many models (e.g., [14]). Multiple orientation and MRA in the
discrete wavelet transform (DWT) closely resembles human
vision and maximise simultaneous localisation in both the
spatial and frequency domains. As a result it is used in
saliency computation and shows good promise in reducing
complexity while achieving superior performance [14]. This
algorithm uses a multi-resolution DWT as its core decom-
position and therefore is a more suitable choice than other
FPGA saliency implementations [15], [16] that naively follow
algorithm implementations not amenable to FPGAs, e.g., by

4http://xillybus.com/

http://zedboard.org/support/documentation/1521
http://www.voti.nl/docs/OV7670.pdf
http://xillybus.com/


Fig. 3. Overall visual saliency model as described in the original algorithm.

relying on external memory access [15] or by utilizing more
computationally complex hardware implementations of calcu-
lations [16], such as the Gabor oriented-filter or convolution
with smoothing filter. Hence, we adopted and implemented
this model.

A. Original algorithm

As the starting point in generating a saliency map from a
colour image, the RGB colour space is converted to YUV
colour spectral space as the latter exhibits prominent intensity
variations through its luminance channel Y. Firstly, the 2D
forward DWT (FDWT) is applied on each Y, U and V channel
to decompose them in multiple levels. The 2D FDWT decom-
poses an image in the frequency domain expressing a coarse
grain approximation of the original signal along with three
fine grain orientated edge maps at multiple resolutions. The
DWT captures horizontal, vertical and diagonal contrasts in
an image, portraying prominent edges in various orientations.
The absolute values of the wavelet coefficients are normalised
so that the overall saliency contributions prevent biassing
towards the finer scale subbands. An average filter is also
applied to remove unnecessary finer details. To provide full
resolution output maps, each of the high frequency subbands
is consequently interpolated to full frame resolution. The inter-
polated subband feature maps, lhi (horizontal), hli (vertical)
and hhi (diagonal), i ∈ N1, for all decomposition levels L
are combined by a weighted linear summation as illustrated
in Eq. (1):

lh1···LX
=

L∑
i=1

lhi ∗ τi, hl1···LX
=

L∑
i=1

hli ∗ τi,

hh1···LX
=

L∑
i=1

hhi ∗ τi, (1)

where τi is the subband weighting parameter and lh1···LX
,

hl1···LX
and hh1···LX

are the subband feature maps for a
given spectral channel X , where X ∈ {Y, U, V }. This is
followed by feature map promotion and suppression steps
where normalisation is achieved by accounting local and
global maxima. The final overall saliency map (as shown in
Fig. 3) is generated by combining weighted spectral channels.

Fig. 4. The dataflow process network of one level wavelet decomposition.

B. Algorithmic implementation using dataflow design

We implemented the above model using the CAL dataflow
language. A 5/3 wavelet kernel is used with a lower complexity
lifting-based approach. The filters are realised by decomposing
the signal into lifting steps by factoring its polyphase matrix
using the Euclidean factoring algorithm [17]. Considering
notations for the input signal, lowpass subband signal, and
highpass subband signal, denoted as a[n], s[n] and d[n] respec-
tively, the DWT is expressed in Eq. (2), where s0[n] , a[2n]
and d0[n] , a[2n+ 1]:

5/3

{
d[n] = d0[n]− 1

2 (s0[n+ 1] + s0[n]),

s[n] = s0[n] +
1
4 (d[n] + d[n− 1]).

(2)

A 2D DWT is computed by separately filtering rows and
columns leading to one approximation (LL) subband & three
detailed subbands in the horizontal (HL), vertical (LH) and
diagonal (HH) direction.

Lifting based 2D DWT decompositions exhibit intrinsic
parallelism in their algorithmic description. Unlike impera-
tive languages, dataflow descriptions allow explicit parallel
implementations that exploit the concurrency of FPGAs. In
this paper a one-level DWT was implemented where individual
wavelet prediction and update steps are depicted with a combi-
nation of task and pipeline parallelism honouring the algorith-
mic description. Further optimisations are achieved through
stream-based filtering applied on rows and columns using
a circular buffer keeping the localised data access patterns.
Transpositions of the filtered coefficients are realised using on
chip memory. A general discussion of dataflow optimisations
for FPGAs using transformation rules is available in [10].

Due to limited availability of the resources on a Zynq
FPGA, we have down scaled the algorithm, e.g., one level
DWT, and avoided finer details such as feature map supression
/ promotion in order to reduce hardware usage. Our imple-
mentation considers the map generation only from Y channel
as this has significant structural information of the scene and
carries maximum weight in the original algorithm. Finally a
binary thresholding is added for visibly of the saliency maps.
The partial dataflow actor network of our implementation is
shown in Fig. 4 and represents a one level DWT implemented
with pipeline and data parallelism.



Fig. 5. Example of saliency maps computed by the original model and
our scaled down dataflow-based implemention: row1: original image, row2:
ground truth, row3: saliency map generated using the original algorithm and
row4: the thresholded saliency map generated by our dataflow implementation.

TABLE I. Zedboard FPGA resource usage: Asynchronous Visual Saliency

Resource Usage Occupation

DSP48E1s 3 1%
FIFO36E1s 2 1%
External IOB33s 80 40%
RAMB18E1s 135 48%
RAMB36E1s 26 18%
Slices 2812 21%
Slice Registers 4989 4%
Slice LUTS 7357 13%
Slice LUT-Flip Flop pairs 8457 15%

TABLE II. Processing time per frame and maximum achievable frame-rate
for visual saliency implementation in hardware and software.

Processing time (ms) Maximum frame rate

FPGA 19.06 52
CPU 189 5

Using the ORCC-CAL compiler framework, we produce
two types of output from the DPN: a) C code targeting multi-
core CPUs and b) Verilog code targeting FPGAs with the
CAL-Xronos toolchain [18]. The former is used to verify
the functional correctness of implementation and generate
results, while the latter is used as a part of our smart camera
architecture development on FPGA.

IV. RESULTS AND DISCUSSION

Our visual saliency DPN was integrated with a camera
controller and a Xillybus IP core on a ZedBoard where we
configured the FPGA fabric for acceleration of the image pro-
cessing and the ARM for interaction with a standard Ethernet
communication network. The saliency maps generated by the
current downscaled implementation are shown in the last row
of Fig. 5 for visual inspection (images are from the MSRA
saliency dataset [19]). Unsurprisingly, due to scaled down
implementation and insufficient finer details the results are not
as good as the original algorithm. However it is also evident
that our adapted implementation works reasonably well.

Throughput: With reference to Fig. 2, depicting clock domain
separations, the OV7670 camera controller provides a 24MHz

clock to the external camera and provides pixels to the DPN at
30 frames per second (approximately 6.9MHz on 320x240 im-
ages, 24 bits per pixel). The Visual Saliency Dataflow Process
Network is operating at 50MHz, which suffices for the frame
rate; the Xillybus interface operates at 100MHz. Each clock
domain is separated by dual-clock FIFOs; hence, each domain
can input/output data asynchronously. The FIFO connecting
the camera capture module with the Dataflow Process Network
can behave as a circular buffer if pixels are captured faster than
the network can process them. Table I shows FPGA resource
usage for our asynchronous visual saliency implementation
and Table II shows execution time and maximum achievable
frame rate for CPU/FPGA versions. CPU implementation was
generated from the same dataflow design through a C backend
and executed on the ARM CPU of the Zynq board. In terms of
performance, hardware implementation is approximately 10x
faster than the software implementation, which is a typical
measure when both implementations are generated from the
same specification.

Power: The camera interface control can run at the frequency
dictated by the camera module (24MHz). On the first synthesis
run without any optimizations, our visual saliency dataflow
process network generated from CAL, which connects cam-
era capture with the Xillybus module, yielded a maximum
operating frequency of 85MHz. Rather than go through re-
design iterations, the network can be implemented as is in
its own clock domain, as long as expected performance is
achieved. Expected performance (in this case, 30fps) depends
on both clock frequency and cycles per pixel computation: e.g.,
if the network could process one pixel per cycle, pixel clock
frequency would suffice (6.9MHz); if it were to take ten cycles
per pixel, a ten times higher frequency would be required.
On our visual saliency DPN, 50MHz suffices to ensure the
frame rate: our prototype’s clock domains (power islands) are
depicted on Fig. 2, which also displays the SCA. We compare
power consumption between different clocking strategies in
order to demonstrate the power gains which can be obtained
through asynchronous dataflow HLS. Table III shows power
consumption for the full FPGA system and per sub-module; all
configurations deliver the same performance (30fps). Results
were obtained through the Xilinx XPower Analyzer tool, with
high confidence level after implementation and post Place and
Route simulation.

Discussion: our results indicates interesting power results, for
example at 100MHz, both the camera control module and
the visual saliency module consume approximately 0.1W. The
camera control module’s power consumption is substantially
influenced by I/O for camera access (hence a mere 50%
power reduction when moving from 100 to 24MHz, a quarter
of the frequency). For the visual saliency module, however,
all power is consumed by internal logic switching; hence,
halving the operating frequency approximately halves power
consumption [20]. (Some static power is always consumed,
depending on circuit size and not on operating frequency).
Reducing operating frequencies to the bare minimum required



TABLE III. Power results for different modules/configurations

Sub-module Power (W)

Camera 24MHz (C24) 0.043
Camera 100MHz (C100) 0.106
Visual Saliency 50MHz (VS50) 0.045
Visual Saliency 85MHz (VS85) 0.078
Visual Saliency 100MHz (VS100) 0.091

Synchronous Full system Power (W)

C100 + VS100 0.361

Asynchronous Full system Power (W)

C24 + VS100 0.298
C24 + VS85 0.284
C24 + VS50 0.252

to ensure our target throughput of 30fps achieves a total system
power reduction of approximately 30%.

Our results corroborate the typical arguments for using FP-
GAs in power critical applications: maximizing on-chip com-
putations can reduce the number of I/O operations, avoiding
(power) costly communication. Further power reduction can
be achieved by asynchronous design, reducing on-chip power
consumption. We have shown how the dataflow model enables
straightforward, seamless low-power design by embedding
electrical asynchronicity in the algorithmic model. However,
there is a drawback, observable from the FPGA resource
utilization, i.e., high usage of embedded memories (BRAMS).
This is due to the FIFO interconnect model. FIFOs are used not
only for sub-system connection, but also for actor connections
within the dataflow process network. This limitation may
inhibit the deployment of highly complex networks on small
scale FPGAs with limited BRAM, forcing designers to move
towards bigger (and power hungry) families where low-power
design strategies become even more relevant.

V. CONCLUSIONS

In this paper, we demonstrated how asynchronous dataflow
HLS can be leveraged for power-efficient smart camera net-
work design. The semantics of the dataflow model are not
only highly applicable to the computer vision domain; they
are also a suitable match for hardware implementation. The
dataflow model embeds the required hardware mechanisms
for asynchronicity in the design concept, allowing fine-grained
separation of clock domains for power efficiency directly from
the algorithm representation. The absence of explicit control
signals removes the need for local clock synchronizers at
hardware level; token passing lends itself well to FIFO-based
asynchronous hardware design. Additionally, this approach
removes recurring engineering costs by simplifying intercon-
nections between sub-modules; the standard interfaces allow
design modules to be re-used and easily encapsulated as library
components within the HLS framework. In our prototype
system, we showed how a visual saliency algorithm could be
easily described in the dataflow model and integrated on a
complete system, based on a commercial-off-the-shelf FPGA
platform. We demonstrated how functional asynchronicity

could be leveraged for low-power design achieving 30% power
reduction from a (electrically) completely synchronous to
asynchronous design.

ACKNOWLEDGEMENTS
We acknowledge the support of the Engineering and Physical Sciences

Research Council, GR EP K/009931/1 and a HEIF Impact fellowship at
Sheffield Hallam University.

REFERENCES

[1] M. Birem and F. Berry, “DreamCam: A modular FPGA-based smart
camera architecture,” Journal of Systems Architecture, vol. 60, no. 6,
pp. 519 – 527, 2014.

[2] M. Reisslein, B. Rinner, and A. Roy-Chowdhury, “Smart camera net-
works,” Computer, vol. 47, no. 5, pp. 23–25, May 2014.

[3] M. Wolf, “Platforms and architectures for distributed smart cameras,” in
Distributed Embedded Smart Cameras. Springer, 2014, pp. 3–23.

[4] C. Bobda, M. Mefenza, F. Yonga, and A. A. Zarezadeh, “Reconfigurable
architectures for distributed smart cameras,” in Distributed Embedded
Smart Cameras. Springer, 2014, pp. 43–68.

[5] D. G. Bailey, “The advantages and limitations of high level synthesis
for FPGA based image processing,” in Proc. Int’l Conf. on Distributed
Smart Cameras, 2015, pp. 134–139.

[6] N. Martinel, C. Micheloni, and G. L. Foresti, “Kernelized saliency-based
person re-identification through multiple metric learning,” IEEE Trans.
on Image Processing, vol. 24, no. 12, pp. 5645–5658, Dec 2015.

[7] Y. P. S. Matzka, A.M. Wallace, “Efficient resource allocation for
automotive attentive vision systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 13, no. 2, pp. 859–872, Feb 2012.

[8] I. Mehmood, M. Sajjad, W. Ejaz, and S. W. Baik, “Saliency-directed pri-
oritization of visual data in wireless surveillance networks,” Information
Fusion, vol. 24, pp. 16 – 30, 2015.

[9] H. Yviquel, A. Lorence, K. Jerbi, G. Cocherel, A. Sanchez, and
M. Raulet, “Orcc: Multimedia development made easy,” in Proceedings
of the 21st ACM International Conference on Multimedia, ser. MM ’13.
ACM, 2013, pp. 863–866.

[10] R. J. Stewart, D. Bhowmik, A. M. Wallace, and G. Michaelson,
“Profile Guided Dataflow Transformation for FPGAs and CPUs,” Signal
Processing Systems, vol. 87, no. 1, pp. 3–20, 2017.

[11] R. Stewart, G. Michaelson, D. Bhowmik, P. Garcia, and A. Wallace,
“A dataflow IR for memory efficient ripl compilation to FPGAs,” in
International Conference on Algorithms and Architectures for Parallel
Processing. Springer, 2016, pp. 174–188.

[12] E. Bezati, “High-Level Synthesis of Dataflow Programs for Heteroge-
neous Platforms: Design Flow Tools and Design Space Exploration,”
Ph.D. dissertation, School of Engineering, Ecole Polytechnique Federale
de Lausanne, Switzerland, April 2015.

[13] A. Borji and L. Itti, “State-of-the-art in visual attention modeling,” IEEE
Transactions on Pattern Analalysis Machine Intelligence, vol. 35, no. 1,
pp. 185–207, Jan. 2013.

[14] D. Bhowmik, M. Oakes, and C. Abhayaratne, “Visual attention-based
image watermarking,” IEEE Access, vol. 4, pp. 8002–8018, 2016.

[15] S. Bae, Y. C. P. Cho, S. Park, K. M. Irick, Y. Jin, and V. Narayanan,
“An FPGA implementation of information theoretic visual-saliency
system and its optimization,” in Intl. Symposium on Field-Programmable
Custom Computing Machines (FCCM), May 2011, pp. 41–48.

[16] F. Barranco, J. Diaz, B. Pino, and E. Ros, “Real-time visual saliency
architecture for FPGA with top-down attention modulation,” IEEE
Trans. on Industrial Informatics, vol. 10, no. 3, pp. 1726–1735, Aug
2014.

[17] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” Journal of Fourier Anal. Appl., vol. 4, no. 3, pp. 245–
267, 1998.

[18] E. Bezati, M. Mattavelli, and J. W. Janneck, “High-level synthesis of
dataflow programs for signal processing systems,” in 8th International
Symposium on Image and Signal Processing and Analysis (ISPA), Sept
2013, pp. 750–754.

[19] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Y. Shum,
“Learning to detect a salient object,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 33, no. 2, pp. 353–367, 2011.

[20] Altera. (2012) Reducing power consumption and increasing bandwidth
on 28-nm FPGAs. [Online]. Available: https://www.altera.com/en US/
pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf
https://www.altera.com/en_US/pdfs/literature/wp/wp-01148-stxv-power-consumption.pdf

