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1. INTRODUCTION 

Release planning is the problem of determining the sets of requirements that should be in- 
cluded in a set of upcoming releases of a software system. In order to plan the software release 
cycle, a number of different conflicting objectives need to be taken into account. For example, 
the estimated cost of implementing a requirement has to be balanced against the perceived 
value to the customer of that requirement. There may be multiple stakeholders, and their 
different interpretations of cost and value may lead to complex solution spaces for project 
managers. 

In order to help decision-makers navigate these complex solution spaces, meta-heuristic 
search has been widely studied as a candidate solution technique [Bagnall et al. 2001; Ruhe 
and Greer 2003; Zhang et al. 2007]. This work has placed release planning within the general 
area of Search Based Software Engineering (SBSE) [Harman and Jones 2001]. Table I sum- 
marises the literature on search based release planning, listing the meta-heuristic algorithms 
proposed and the datasets on which they have been evaluated. 

The different cost and value objectives for each stakeholder are typically measured along 
incomparable dimensions. To avoid the familiar problem of ‘comparing apples with oranges’, 
much of the previous work on multi-objective release planning has used Pareto optimal search. 
The result of such a search is a Pareto front. Each element on this front is a candidate solu- 
tion to the release planning problem. All solutions on the Pareto front are non-denominated: 
no other solution on the front is better according to all objectives. The Pareto front thus repre- 
sents a set of ‘best compromises’ between the objectives that can be found by the search based 
algorithm. 

The overview in Table I reveals that previous work has evaluated meta-heuristic algorithms 
on very few real world datasets. Much of the previous work presents results for only a single 
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real world dataset. In the absence of real world datasets, many authors have relied upon syn- 
thetically generated data. While studies on synthetically generated data can answer experi- 
mental research questions [Harman et al. 2012a], they cannot address the essential empirical 
question that will be asked by any release planner: “how well can I expect these techniques to 
behave on real world data?” 

As a result, the state-of-the-art is currently poorly understood: though a variety of differ- 
ent algorithms has been proposed, there has been no empirical study across multiple differ- 
ent algorithms and multiple different datasets. We wish to address this issue by providing a 
thorough empirical study of optimised release planning. We believe that this may help to un- 
derstand the different strengths and weaknesses of algorithms for release planning and their 
performance on real world datasets. We hope that our study will also provide results against 
which future work can compare1. 

We report the results of an empirical study using 10 real world datasets. We investigate 
multi-objective release planning with respect to these datasets, which we optimise using Hill 
Climbing (HC), Genetic Algorithms (GA) and Simulated Annealing (SA). 

As a sanity check, recommended for SBSE work [Arcuri and Briand 2011; Harman et al. 
2012c], we also report results for purely random search. Random search provides a baseline 
against which to benchmark more ‘intelligent’ search techniques. Our study also includes 
hyper-heuristic versions of HC, GA and SA. Hyper-heuristics [Burke et al. 2013] are a more 
recent trend in search methodologies, not previously been used in any SBSE research. The 
findings we report here indicate that they are promising for release planning problems. 

Overall, our study thus involves 7 different algorithms. We assess solutions found using 
these algorithms according to 4 different measures of solution quality, over each of the 10 real 
world datasets. We include standard, widely used, measures of multi-objective solution qual- 
ity: convergence, hypervolume and two different assessments of each algorithm’s contribution 
to the Pareto front. We also measure diversity and speed. For algorithms that produce good 
quality solutions, these are important additional algorithmic properties for decision-makers, 
because they need quick answers that enable them to base their decisions on the full diversity 
of candidate solutions. 

The primary contributions of the paper are as follows: 
1. Comprehensive study: We provide a comprehensive study of the performance of global, 
local and hybrid meta-heuristic algorithms for release planning problems on 10 real-world 
datasets. The results facilitate detailed algorithm comparison and reveal that dataset specifics 
can lead to important differences in study findings. 
2. Introduce hyper-heuristic search: We introduce and evaluate hyper-heuristic algo- 
rithms for release planning. We present evidence that they provide good solution quality di- 
versity and speed. 
3. Scalability assessment: We investigate the scalability of meta- and hyper-heuristic al- 
gorithms on real world datasets for the first time. The results provide evidence that hyper- 
heuristics have attractive scalability and that random search is surprisingly unscalable for 
release planning. 

The rest of the paper is organised as follows: Section 2 sets our work in the context of 
related work. Section 3 introduces our three hyper-heuristic release planning algorithms. Sec- 
tion 4 explains our experimental methodology. Section 5 presents the results and discusses 
the findings. Section 6 analyses threats to validity. Section 7 concludes the paper and lists 
some directions for future research. 

 

 
 

1Note to referee: if the paper is accepted then we will make all our implementations and data publicly available   on 

the web to support replication and further study. 



  
 

 

 

Table I. Previous meta-heuristic algorithm studies 
 

Author(s) [Paper] Algorithm(s) 
M/S 
Objective 

Dataset(s) 

Bagnall et al. [Bagnall et al. 2001] Hill Climbing Algorithm (HC), 
Simulated Annealing (SA), 
Greedy Algorithm 

Single Synthetic 

Feather & Menzies 
[Feather and Menzies 2002], 
Feather et al. [Feather et al. 2004], 
Feather et al. [Feather et al. 2006] 

SA Single NASA 

Ruhe & Greer [Ruhe and Greer 2003], 
Ruhe & Ngo-The [Ruhe and Ngo-The 2004], 
Amandeep et al. [Amandeep et al. 2004], 
Ruhe [Ruhe 2010] 

Genetic Algorithm (GA) Single 
& 
Multiple 

Synthetic 

Zhang et al. [Zhang et al. 2007] Non-Dominated Sorting Genetic Algorithm- 
II (NSGA-II), Pareto GA 

Multiple Synthetic 

Durillo et al. [Durillo et al. 2009], 
Durillo et al. [Durillo et al. 2011] 

Multi-Objective  Cellular  genetic algorithm 
(MOCell), 
Pareto Archived Evolution Strategy (PAES), 
NSGA-II 

Multiple Synthetic, 
Motorola 

Colares et al. [Colares et al. 2009] NSGA-II Multiple Synthetic 
Finkelstein et al. [Finkelstein et al. 2008], 
Zhang et al. [Zhang et al. 2011] 

NSGA-II, 
Two-Archive Algorithm 

Multiple Motorola 

Zhang & Harman [Zhang and Harman 2010], 
Zhang et al. [Zhang et al. 2013] 

NSGA-II, 
Archive-based NSGA-II 

Multiple Synthetic, 
RALIC 

Sagrado & Á guila 

[Del Sagrado and Del Á guila 2009], 
Sagrado et al. [Del Sagrado et al. 2010] 

Ant Colony Optimization (ACO), 
SA, 
GA 

Single Synthetic 

Jiang et al. [Jiang et al. 2010a], 
Xuan et al. [Xuan et al. 2012] 

Backbone Multilevel Algorithm Single Eclipse, 
Mozilla, 
Gnome 

Zhang et al. [Zhang et al. 2010] NSGA-II Multiple Ericsson 
Jinag et al. [Jiang et al. 2010b] Hybrid ACO, ACO, SA Single Synthetic 
Kumari et al. [Kumari et al. 2012] Quantum-inspired   Elitist   Multi-objective 

Evolutionary Algorithm (QEMEA) 
Multiple Synthetic 

Souza et al. [de Souza et al. 2011], 
Ferreira & Souza 
[do Nascimento Ferreira and de Souza 2012] 

ACO Single Synthetic 

Brasil et al. [Brasil et al. 2012] NSGA-II, MOCell Multiple Synthetic 
Cai et al. [Cai et al. 2012], 
Cai & Wei [Cai and Wei 2013] 

Domination    and    Decomposition    based 
Multi-Objective Evolutionary Optimization 
(MOEA/DD), 
Strength Pareto Evolutionary Algorithm-II 
(SPEA2), NSGA-II 

Multiple Synthetic 

Tonella et al. [Tonella et al. 2013] Interactive GA (IGA), 
Incomplete Analytic Hierarchy Process 
(IAHP) 

Single ACube 

Paixã o & Souza [Paixã o and de Souza 2013a], 
Paixã o & Souza [Paixã o and de Souza 2013b], 
Paixã o & Souza [Paixã o and de Souza 2015] 

GA, 
SA 

Single Synthetic, 
Eclipse, 
Mozilla 

Li et al. [Li et al. 2014] NSGA-II Multiple Synthetic, 
Motorola 

Chaves-Gonzá lez & Pérez-Toledano [Chaves- 
Gonzá lez and Pérez-Toledano 2015] 

Multi-objective Differential Evolution 
(MODE) 

Multiple Synthetic 

Sagrado et al. [del Sagrado et al. 2015], 

Á guila  &  Sagrado  [del  Á guila  and  Sagrado 
2016] 

Greedy Randomized Adaptive Search Proce- 
dure (GRASP), 
NSGA-II, Multi-objective ACO 

Multiple Synthetic 

Li et al. [Li et al. 2017] Cellular Algorithm hybridised with  Differ- 
ential Evolution (CellDE), 
Multi-objective Particle Swarm Optimiza- 
tion (SMPSO), 
Alternating Variable Method (AVM), 
GA, (1+1) EA, NSGA-II, PAES, SPEA2 

Single 
& 
Multiple 

Synthetic, 
a CPS of en- 
ergy domain 

Karim & Ruhe et al. [Karim and Ruhe 2014] NSGA-II Multiple Ms Word, 
Theme-based 
RP datasets 

Pitangueira et al. [Pitangueira et al. 2017] NSGA-II Multiple 
Araú jo et al. [Araú jo et al. 2017] IGA Single 

 

 
 



  

 

 

 

 

2. THE CONTEXT OF OUR STUDY 

Bagnall et al. [Bagnall et al. 2001] first suggested the term Next Release Problem and described 
various meta-heuristic optimisation algorithms for solving it. Feather and Menzies [Feather 
and Menzies 2002] were the first to use a real world dataset, but this dataset is no longer 
publicly available. Ruhe et al. [Amandeep et al. 2004; Ruhe and Greer 2003; Ruhe and Ngo- 

The 2004; Saliu and Ruhe 2005] introduced the software release planning process together 
with exact optimisation algorithms [Al-Emran et al. 2010; AlBourae et al. 2006; Ruhe 2010; 
Ruhe and Saliu 2005] and meta-heuristics, such as genetic algorithms. Van den Akker et al. 
[Li et al. 2010; Van den Akker et al. 2005a,b, 2008] and Veerapen et al. [Veerapen et al. 2015] 
also studied exact approaches to single objective constrained requirements selection problems. 

Zhang et al. [Zhang et al. 2007] introduced the Multi-Objective Next Release Problem for- 
mulation as a Pareto optimal problem with a set of objectives. However, Feather et al. [Feather 
et al. 2006, 2004] had previously used Simulated Annealing to construct a form of Pareto front 
for visualisation of choices. Also, at the same time, Saliu and Ruhe [Saliu and Ruhe 2007] in- 
troduced a multi-objective search based optimisation to balance the tension between user-level 
and system-level requirements. Subsequently, Finkelstein et al. [Finkelstein et al. 2009] used 
multi-objective formulations to characterise different notions of fairness in the satisfaction of 
multiple stakeholders with different views on the priorities for requirement choices. 

Table I lists the previous meta-heuristic algorithm studies for selecting requirements for 
the next release problem. The multi-objective formulations are used in many studies, thereby 
adopting different multi-objective meta-heuristic algorithms to find good enough solutions. 
Svahnberg et al. [Svahnberg et al. 2010] conduct a systematic review on release planning 
models and find that there are a number of release planning models proposed by using simi- 
lar techniques. Several hard and soft constraints are also considered as requirement selection 
factors. Release planning can also be used for the planning of requirements (backlog items) 
based on the agile principles, such as Scrum sprints [Vlaanderen et al. 2011]. Recently, un- 
certainty analysis [Li et al. 2014] and risk handling [Pitangueira et al. 2017, 2016] in release 
planning are studied to identify the sensitive requirements and evaluate the robustness of the 
release plan in the presence of uncertainty. 

The multi-objective formulation subsumes previous single objective formulations: any single 
objective formulation that has a single objective and no constraints is clearly a special case of 
a multi-objective formulation for n objectives where n = 1. Furthermore, a constrained single 
objective formulation, in which there is a single optimisation objective and a set of constraints 
to be satisfied, can be transformed into a multi-objective formulation in which the constraints 
become additional objectives to be met. 

The technical details of the various approaches used for constrained single objective formu- 
lations and their multi-objective counterparts are, of course, different. However, in this paper 
we want to study the most general setting in which requirements optimisation choices might 
be cast. Therefore, we adopt the multi-objective paradigm. 

In each formulation of the Next Release Problem or the Release Planning problem in the 
literature, there is a slightly different formulation. The Next Release Problem (NRP) considers 
only a single release, while Release Planning (RP) considers a series of releases. NRP is thus 
a special case of the RP. Since RP is the more general case, this is the formulation we shall 
study in this paper. 

In the RP process, software requirements prioritisaton activity is interrelated with require- 
ments selection. Achimugu et al. [Achimugu et al. 2014] and Pitangueira et al. [Pitangueira 
et al. 2015] describe existing prioritisation techniques and their limitations. Some of these 
strategies arrange the requirements in a hierarchy; some cluster the requirements into sev- 
eral groups by different priority levels using a verbal ranking; some rely on relative values by 
pairwise comparison using a numerical ranking; some use discrete values, the others use a 
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continuous scale. One of the advantages of a numerical ranking is that it can be sorted. These 
priority-based approaches usually assign a rank order or level to each requirement from the 
‘best’ to the ‘worst’. Such a greedy based approach sorts and provides a single prioritised re- 
quirements list. The top n requirements on the list are selected for a release plan according to 
resource availability. It only produces one single “best” solution. A single solution to a complex 
problem is less likely to reflect the actual scenarios when compared to the sets of structured 
diverse optimal (or near optimal) solutions. Furthermore, the solutions produced by a greedy 
algorithm are known to be suboptimal but not necessarily globally optimal. Therefore, greedy 
solutions are not preferred due to their sub-optimality. 

Compared with these priority-based methods, we can provide more than one (usually many) 
optimal alternative solutions within a certain criterion. As such, the requirements engineer 
has the opportunity to observe the impact of including or excluding certain requirements, and 
can use this to choose the best from the different alternatives, without affecting the quality 
of solutions. Furthermore, in the RP decision making process, by identifying requirements 
and stakeholders’ properties (Section 2.1) and clarifying specific objectives (Section 2.2), the 
decsions can be made in a proactive and rational manner, as opposed to just based on the 
intuition and experience. 

 
2.1. Representation of Release Planning 

Requirements management in RP is formulated as a combinatorial optimisation problem. 
Approaches to the NRP represent the solution as a bitset of requirements for the next release. 
The RP formulation, being more general, is typically represented as a sequence of integers 
that denote release sequence numbers. 

It is assumed that for an existing software system, there is a set of stakeholders, C = c1, . . 
. , cj , . . . , cm    whose requirements are to be considered in the development of the releases of the 
software. Each stakeholder may have a degree of importance for the project that can be 
reflected by a weight factor. A more important stakeholder has a higher level of influence on 
the project, thereby deserving greater weight. There are a number of techniques to prioritise 
lists of stakeholders [Lim 2010], which can be used to produce the weight set. The set of 

relative weights associated with each stakeholder cj  (1 ≤ j ≤了m) is denoted by a weight set: 
 

 

The set of requirements is denoted by: = r1, . . . , ri, . . . , rn . The study is based on the as- 
sumption that the requirements represented in the paper are at a similar level of abstraction. 
They are not stated in too much detail nor on too high a level of abstraction. If the level differs 
among the requirements, there might be difficulty in selecting the correct subset of require- 
ments for RP. The resources needed to implement a particular requirement can be denoted as 
cost terms and considered to be the associated cost to fulfil the requirement. The cost vector 
for the set of requirements ri (1 i n) is denoted by: Cost = cost1, . . . , costi, . . . , costn . 
These cost are estimates of the development effort and other resources required. Usually, not 
all requirements are equally satisfied to a given stakeholder. The level of satisfaction can be 
denoted as a value to the stakeholders’ organisations. Each stakeholder cj  (1    j     m) assigns 
a value to requirement ri  (1     i     n) denoted by: v(ri, cj ) where v(ri, cj ) > 0 if stakeholder cj 
desires implementation of the requirement ri  and 0 otherwise. The satisfaction v(ri, cj ) for the 
stakeholder could be represented as different terms in practice, such as revenue or the degree 
of importance. 

There are S (S > 1) possible releases considered in the model, which allow us to look further 
rather than just the next release. In each release s (1 s S), a release plan vector Plan = 
p1, . . . , pi, . . . , pn 0, . . . , S   determines the requirements that are to be implemented in 
release s. In this vector, pi  = s if requirement ri  is delivered in release s and 0 if requirement 
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ri is not selected in the first s releases. The smaller the number of release s is, the earlier  
 

the requirement ri is selected. That is, the RP representation we used is an integer sequence in 
which each index position denotes a requirement number. The value stored at this index 
denotes the assignment of a release number into which the corresponding requirement will be 
deployed. For example, a release plan has the three-release formulation (S = 3) with 4 
requirements (n = 4) Plan = 2, 0, 3, 1 . That is, requirement r1 is selected in the second release; 
requirement r2  is not selected in any release; and so on. 

The set of relative weights associated with each release s (1  s   S) is denoted by a   weight 
set: Weight Rel = wr1, . . . , wrs, . . . , wrS . The weight set Weight Rel represents the relative 
importance levels among consecutive (time periods) releases and denotes how much more 
important it is to include a requirement ri in (a former time period) release s than in (a latter 
time period) release S. In this paper we use the three-release formulation S = 3, with Weight 
Rel = 5, 3, 1 for the first, second and third releases respectively. When we consider the impact 
of release weight, the first release is the most important with the highest weight and the third 
release is the least important. 

The decision vector →−xi   =   x1, . . . , xn 0, . . . , S   considers both release plan vector P lan 
and the impact of release weight Weight Rel on a release plan. Such as, a release plan has the 
three-release formulation (S = 3) with 4 requirements (n = 4) Plan = 2, 0, 3, 1 and the weight 
of the releases is Weight Rel =  5, 3, 1 . In this case, the decision vector of the release 
plan is →−xi   =   3, 0, 1, 5  . The decision vector will be used in the fitness functions defined in 
Section 2.2. 

For this empirical study, the overriding concern was to use real world data sets, in an at- 
tempt to overcome the limitations of previous studies, which have largely been forced to rely on 
synthetic datasets due to the unavailability of real-world requirements data. The use of such 
real-world data sets means that we have to work with the data available, rather than 
synthesising data to fit the model. The advantage is that our results reflect those that could be 
attained from real world data, but the disadvantage is that some aspects of requirements 
models cannot be experimented with. In particular, because our datasets do not contain re- 
quirements dependencies, nor release capacity information, we are forced to abandon any 
attempt to study the impact of these aspects on the results obtained. What we sacrifice in 
richness of models used, we gain in applicability of results to real world settings. 

 
2.2. Fitness Functions 

In any approach to SBSE it is necessary to choose the objectives, which define the fitness 
function(s) used to guide the search [Harman et al. 2012b,c]. 

The RP problem seeks a weighted assignment that optimises for a set of objectives. Each pa- 
per has its own formulation of the objectives to be met in arriving at solutions to the NRP/RP 
problem considered. However, there are also some generalisations that can be undertaken for 
different objectives, because all approaches to NRP/RP involve a set of objectives to be 
maximised and a set of objectives to be minimised. 

The overall value of a given requirement ri  (1    i     n), such as Revenuei  can be calculated by: 
m 

Revenuei  = wsj  · v(ri, cj ) (1) 
j=1 

The fitness functions are defined as follows: 
 

n 

Maximize f1(→−x ) = Revenuei · xi (2) 
i=1 
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n 

Minimize f2(→−x ) = Costi     (if  xi  > 0) (3) 
i=1 

The objectives of Revenue and Cost in the fitness functions can also be replaced by other 
objectives. The specific choice of objectives to be maximised or minimised are parameters to 
the search based optimisation algorithm used to search for requirement sets. The algorithms 
use these objectives as fitness functions that guide the search. We can compare different al- 
gorithms across different datasets, because the algorithm itself does not change, merely the 
fitness functions used to guide the search. 

3. HYPER-HEURISTIC SEARCH 

Hyper-heuristics are “automated methodologies for selecting or generating heuristics to solve 
computational search problems” [Burke et al. 2010]. The main motivation is to reduce the 
need for a human expert in the process of designing optimisation algorithms, and thus raise 
the level of generality in which these methodologies operate. Hyper-heuristics [Burke et al. 
2013] are search methodologies, more recently introduced to the optimisation literature than 
the meta-heuristics that have been enthusiastically adopted by the SBSE community [Har- 
man et al. 2012b; Rä ihä 2010]. Hyper-heuristics are modern search methodologies successfully 
applied in Operational Research domains such as timetabling, scheduling and routing [Burke 
et al. 2013]. In the optimisation literature, hyper-heuristics have been widely applied to sin- 
gle objective problem formulations, but there have been very few attempts at tackling multi- 
objective problems . In the wider literature on engineering and design in general (rather than 
software engineering in particular), hyper-heuristics have been widely applied. However, even 
in this wider context, the design and engineering problems attacked using hyper-heuristics 
have tended to be single objective problems, with only a very few previous attempts to ap- 
ply hyper-heuristics to multi-objective problems [Burke et al. 2005; McClymont and Keedwell 
2011]. This paper is thus the first paper in the requirements engineering literature to explore 
the use of hyper-heuristics and one of the few papers in the optimisation literature to use 
multi-objective hyper-heuristics. 

Hyper-heuristics differ from meta-heuristics because they search the space of heuristics or 
meta-heuristics rather than the space of solutions. Some well-known meta-heuristics, such as 
Genetic Algorithms (GAs) [Holland 1975] and Genetic Programming (GP) [Poli et al. 2008], 
use a strategy or procedure to guide and explore the solution space, so that they are able     
to come to an acceptable and reasonable solution to a problem. Instead, hyper-heuristics en- 
capsulate problem specific information using a pool of low-level heuristics (known as search 
operators). The search space of hyper-heuristics is the permutation of the designed search 
operators. Using hyper-heuristics, we seek the sequence of operators and to find good-enough 
heuristics in a given situation rather than providing a solution to the problem directly. Search 
operators can be of different kinds (e.g. mutation, recombination, etc). For combinatorial opti- 
misation problems such as NRP/RP, several variation operators, involving swapping, inserting 
or deleting components according to different criteria are often used [Ochoa et al. 2012]. It is 
not easy to know before hand which of these operators will be the best suited for the problem 
at hand. 

3.1. Heuristic search operators 

We designed and implemented 10 search operators for hyper-heuristic release planning, rang- 
ing from simple randomised neighbourhoods to greedy and more informed and smarter proce- 
dures. These are explained in Figure II. The first two (Random and Swap) represent standard 
mutation operators (i.e. they perform a small change on the solution, by swapping or changing 



  

 

 

 

 

Table II. The description of 10 search operators 

Operator Description 
 

Random With uniform probability, select a requirement and change its re- 
lease number to another release version (uniformly selected) 

Swap Swap the release numbers of two requirements in the sequence 
Delete Add With uniform probability, exclude a requirement from the current 

release, and add it to another release (also selected with uniform 
probability) 

Delete Add Best With uniform probability, select a requirement, r, and an objective 
o, replacing r with the best performing requirement according to 
objective o 

Delete Worst Add With uniform probability, select a requirement, r, and an objective 
o, replacing r with the worst performing requirement according to 
objective o 

Delete Worst Add Best With uniform probability, select an objective o, and a release num- 
ber, n, replacing the worst performing requirement according to 
objective o at release n with the best performing requirement (ac- 
cording to o) 

Delay Ahead With uniform probability, select two requirements r1 (for a release 
other than the first) and r2 (for a release other than the last). Move 
the release date of r1 to a later release number (the number se- 
lected with uniform probability from those that follow its current 
release position). Move the release number of r2 forward to an 
earlier number (selected with uniform probability from those that 
precede it). That is, r1  is ‘delayed’ and r2  is ‘advanced’ 

Delay Ahead Best With uniform probability, select a requirement, r, and an objective 
o. Delay r and advance the best requirement according to objective 
o 

Delay Worst Ahead With uniform probability, select a requirement, r, and an   objec- 
tive o. Delay the release of the worst requirement (according to 
objective o) and advance the release of r 

Delay Worst Ahead Best With uniform probability, select an objective o. Delay the release of 
the worst requirement and advance the release of the best (‘worst’ 

  and ‘best’ according to objective o)  

 

solution components), while the remaining 8 follow the so-called ‘ruin-recreate’ (also known as 
the ‘destruction-construction’) principle, which has proved successful in real-world optimisa- 
tion problems [Pisinger and Ropke 2007]. Ruin-recreate operators partly decompose (ruin) the 
solution and subsequently recreate it, incorporating problem-specific reconstruction heuristics 
to rebuild the solutions from their decomposed fragments. 

The search space of hyperheuristics is the permutation of the designed search operators. 
When considering a pool of operators, a mechanism needs to be devised in order to select  
and apply them during the search process. Simple ways are to select operators uniformly    
at random, or to follow a fixed sequence. More interesting, adaptive selection mechanisms 
can be applied, which gather information and learn from the search process, in the form of re- 
ward statistics from previous steps, to inform the operator choice. Adaptive Operator Selection 
(AOS), is a recently coined term given to such approaches [Fialho et al. 2008, 2010], which is 
described below. 

 
3.2. Adaptive Operator Selection 

An adaptive operator selection scheme consists of two components, called the ‘credit assign- 
ment’ mechanism and the ‘selection’ mechanism [Fialho et al. 2010]. Credit assignment in- 
volves the attribution of credit (or reward) to the hyper-heuristic’s operators, determined by 
their performance during the search process. 



  

 

 

 

 

Our hyper-heuristic release planners use the scheme proposed by Fialho et al. [Fialho et al. 
2008], known as ‘extreme value credit assignment’, which is based on the principle that in- 
frequent, yet large, improvements in the objective score are likely to be more effective than 
frequent, small improvements. 

Therefore, it rewards operators that have had a recent large positive impact on the objective 
score, whilst consistent operators that only yield small improvements receive less credit, and 
therefore have lower chances of selection. 

The impact on the objective score is measured by the fitness improvement, concerning the 
quality (fitness value) of the offspring with those of its parents [Fialho et al. 2008]. In the case 
of multi-objective hyper-heuristic release planning, there are multiple fitness values evalu- 
ated due to the multi-objective fitness functions. In this work, the fitness improvement is 
calculated by the fitness hypervolume differences between the offspring and its parents. Fit- 
ness hypervolume is the volume covered by the solutions in the objective space [Zitzler and 
Thiele 1999]. 

Formally, an estimate of the current operator k credit is denoted as q̂k,t. The current fitness 
improvement is added to a window in a First In First Out (FIFO) manner. The size of window 
is W . The fitness improvement observed at each iteration t is denoted as ∆(t). ti denotes the 
time iteration where operator k was seleted. The best (maximal) fitness improvement observed 
in the sliding window is rewarded for operator k. That is, the credit assigned for operator k is 
calculated as: 

q̂k,t  = argmax {∆(ti), i = 1, . . . , W } (4) 

The credit assignment mechanism needs to be coupled with a selection mechanism that uses 
the accumulated credits to select the operator to apply in the current iteration. Most operator 
selection rules in the literature attach a probability to each operator and implement a ran- 
domised process to select the operator according to these probabilities. We used the simplest 
of these rules, called Probability Matching [Thierens 2005], which corresponds to the well- 
known roulette wheel selection used by meta-heuristic SBSE work [Harman et al. 2012b]. 

More formally, let K denote the number of search operators. The Probability Matching 
selection mechanism maintains a probability vector that is updated at each iteration t, 
(pk,t)k=1,...,K . The goal is to make pk,t  proportional to q̂k,t. 

An operator that performs poorly during a long period of the search will have its quality 
estimate decreased to a low value (possibly even zero). To avoid such operators becoming 
completely ignored (which may be undesirable since it would reduce diversity), we assign a 
minimal selection probability pmin > 0. Equation 5 describes the Probability Matching rule 
we used: 

p = p + (1 − K ∗ p 
q̂k,t+1 

了 (5) 

 
 

4. EXPERIMENTAL SET UP 

k,t+1 min min K 

k=1 q̂k,t+1 

This section explains our experimental methodology. We motivate the choice of algorithms 
studied (Section 4.1); the datasets to which we apply these algorithms (Section 4.2); the met- 
rics we used to assess quality, diversity and speed (Section 4.3); the inferential statistical tech- 
niques used to assess differences and correlations (Section 4.4); and the research questions we 
answer (Section 4.5). 

4.1. Algorithms 

More than 15 different meta-heuristic algorithms have been used in SBSE research [Harman 
et al. 2012b]. Many of these have also been used in research on the NRP/RP (as outlined in 
Table I). Indeed, all of these 15 (and many more meta-heuristics [Burke and Kendall   2005]) 
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Table III. Overview of meta- and hyper-heuristic algorithms applied 
 

Algorithm Mechanism Move Strategy in the search space Operator 

R Random search Random (Uniform distribution) - 
HC  

Local search 
Neighbourhood-based 

Random generating neighbourhood 
HHC 10 Search operators (Table II) generating neighbourhood 
SA Neighbourhood-based & 

Temperature controlling 
Random generating neighbourhood 

HSA 10 Search operators (Table II) generating neighbourhood 

GA 
Global search Population & Sorting-based 

Single-point Crossover & Uniform Mutation 
HGA Single-point Crossover & 10 Search operators (Table II) 

 
could be used, in principle, since the formulation of the problem is sufficiently generic that 
any search based technique could be applied. 

We chose to investigate the performance of six search techniques: three meta-heuristics, Hill 
Climbing, Simulated Annealing and the Nondominated Sorting Genetic algorithm (NSGA-II), 
which we denote HC, SA and GA respectively, together with hyper-heuristic versions of each 
of the three meta-heuristics, which we denote HHC, HSA and HGA. The motivation for this 
choice derives from the way in which computational search algorithms can be classified as 
either ‘local’ or ‘global’. Local search techniques, such as HC, tend to be fast, but they can 
become stuck in a local optimum, thereby producing sub-optimal solutions. By contrast, global 
search techniques, such as genetic algorithms, may be computationally more expensive, but 
they incorporate mechanisms to avoid local optima confinement. In this study, HC is selected 
as a representative for local search algorithms. 

Many techniques embody elements of both local and global search, with the local search 
facilitating ‘exploitation’ in the search landscape, while the global search facilitates ‘explo- 
ration’ of the landscape [Crepinsek et al. 2013]. One widely studied algorithm that does this is 
SA, which augments the basic HC approach with a ‘cooling’ coefficient that mimics cooling in 
annealing processes [van Laarhoven and Aarts 1987]. This process can enable the algorithm 
to escape local optima. The probability that the search will accept and less fit neighbouring 
solution is directly proportional to the temperature. This temperature decreases as the simu- 
lated annealing process progresses until, in the limit, the search becomes a pure hill climb. In 
the SBSE literature, SA is the most widely used compromise between global and local search 
[Harman et al. 2012b]. Therefore, SA is chosen to represent a local search with a “global strat- 
egy”. 

The NSGA-II algorithm (denoted as GA in the paper) is selected since it is the most widely 
used global algorithm for the multi-objective optimisation problems. We also use purely Ran- 
dom Search (R) to provide a baseline against which to benchmark more ‘intelligent’ search 
techniques. 

Our choice of the three meta-heuristic algorithms reflects our desire to sample from the set 
of possible algorithm choices, three that, in some sense, ‘cover’ the spectrum of algorithmic 
behaviours from local to global search. As Table I shows, all three of these meta-heuristic 
search techniques have been proposed and studied for release planning problems. We also 
wish to study the effect of hyper-heuristics as well as meta-heuristics, motivating our choice 
of the three hyper-heuristic variants of the three meta-heuristics we selected for study. Table 
III provides an overview of meta- and hyper-heuristic algorithms used in the study. 

In the hyper-heuristic algorithms (HGA, HSA and HHC), the mutation operator of the meta- 
heuristic version (GA, SA and HC respectively) is replaced by the adaptive operator selection 
mechanism outlined in Section 3.2. That is, HGA, HSA and HHC search the space of the 
permutation of 10 search operators described in Table II. In the meta-heuristic algorithms, the 
mutation operator mutates each gene of a chromosome with a certain mutation probability. 
The hyper-heuristic algorithms adaptively choose different search operators based on credit 
assignment feedback and the Probability Matching selection mechanism in the search process. 
The sequences of search operators generated are the heuristics to mutate the chromosomes in 



  

 

  

 

 

the solution space, thereby generating the new offsprings of solution chromosomes. The length 
of sequences of search operators can be fixed or adaptive. The length of operator sequences is 
fixed to 1 in the experiment. That is, one operator is applied to mutate a chromosome at each 
time with a certain probability. 

For SA, HC, HSA and HHC, a random seeding is used for generating the initial population. 
10% of genes in a chromosome are randomly selected and mutated to generate the neighbour- 
hood in SA and HC. For the GA and HGA, we set the population size to 100 and the number of 
generations to 50. Single-point crossover is used for GA and HGA. The crossover probability 
is set to Pc = 0.8 and mutation probability to Pm = 1/n (where n is the chromosome length of 
GA) is used. To ensure a fair comparison, SA, HSA, HC, HHC and R were all given the same 
number of fitness evaluations as GA and HGA. The non-dominated solutions in the popula- 
tion based on multiple objectives are selected as the best solutions for each algorithm. All the 
algorithms were implemented in Python by the authors. 

 
4.2. Datasets 

We used 10 datasets, of which 7 are drawn from real world requirements selection problems 
in a variety of different organisations. Of these, 5 have been used in separate previous studies 
in the literature and 2 (StoneGate and MS Word) are newly introduced for the first time 
here. The other 3 datasets contain bug fixes requested for Eclipse, Mozilla and Gnome. They 
might be regarded as ‘pseudo real world’; they are taken from real world applications but it is 
debatable whether they truly denote ‘requirements’. 

We include these three in the study since they have previously been used to act as a sur- 
rogates for real world datasets. Their use in previous work was motivated by the need to 
overcome the difficulty of finding sufficiently many real world datasets on which to evaluate 
[Xuan et al. 2012]. A summary of each dataset studied in this paper can be found in Figure 1. 
Previous studies have included at most two real world requirements datasets (or all three of 
the bug fixing pseudo-real world datasets), often augmenting these with synthetic data to 

compensate for the lack of real world data. Our study is therefore the most comprehensive 
study of meta-heuristics for release planning so far reported in the literature. Our use of these 
10 datasets is sufficient to allow us to ask an important research question that has, hitherto, 
eluded the research community: ‘how well do the algorithms scale with respect to the size  of 
the real world requirements problem to which they are applied?’. 

Baan dataset is extracted from the 5.2 release plan of an ERP product developed by about 
600 software engineers and staff located in the Netherlands, India, Germany and the USA. 
StoneGate is a dataset stemming an industrial software security release planning project with 
100 feature, including 91 resources and 5 different resource types considered for planning. Mo- 
torola dataset concerns a set of requirements for hand held communication devices and the 
stakeholders are mobile service providers in the UK. RalicP and RalicR datasets are extracted 
from RALIC (Replacement Access, Library and ID Card) project at University College London, 
which initiated to replace the existing access control system at UCL and consolidate the new 
system with library access and borrowing. According to two different requirements priority 
measurements, RalicP and RalicR datasets were collected. Ericsson dataset is extracted from 
questionnaire forms for test management tools from Ericsson, which were completed by the 
groups of Ericsson software engineers to measure how important each requirement is. RP 
Benchmark dataset is a (synthetic) benchmark problem and included 198 features, 8 stake- 
holders and 30 different resource types. MS Word data set is for planning 50 features consid- 
ered for release planning of a text editing system. Eclipse, Mozilla and Gnome datasets are 
the RP instances of the bug repositories for Eclipse (which is an integrated development envi- 
ronment (IDE)), Mozilla (which is an open source project including a set of web applications) 
and Gnome (which is a desktop environment and development platform). 



  

 

 

 

 
Name and Source 
of Dataset 

Number of Objectives Summary Description of Dataset 
and Software System R SH Max Min 

Baan [Van den Akker et al. 2008] 100 17 Revenue Cost ERP product developed by 600 engineers spread 
over four countries 

StoneGate 100 91 Sales Value Impact Industrial  software  security  release  planning 
project (confidential source) 

Motorola [Zhang et al. 2011] 35 4 Revenue Cost UK service provider requirements for range    of 
handheld communication devices 

RalicP [Zhang et al. 2013] 143 77 Revenue Cost Library and ID Card System in current use    at 
University College London (UCL) 

RalicR [Zhang et al. 2013] 143 79 Revenue Cost Library and ID Card System in current use    at 
UCL (a variant of RalicP) 

Ericsson [Zhang et al. 2010] 124 14 Importance 
(for today & 
the future) 

Cost Requirements for a software testing tool for now 
and into the future 

MS Word 50 4 Revenue Urgency Text editing system for use with Microsoft Word 

Eclipse [Xuan et al. 2012] 3502 536 Importance Cost The Eclipse environment with bug fix   requests 
treated as requirements 

Mozilla [Xuan et al. 2012] 4060 768 Importance Cost The Mozilla system with bug fix requests treated 
as requirements 

Gnome [Xuan et al. 2012] 2690 445 Importance Cost The Gnome desktop system with bug fix requests 
treated as requirements 

Fig. 1. The 10 datasets used and their numbers of Requirements (R), stakeholders (SH) and objectives to be Max- 
imised (Max) and Minimised (Min). Those datasets with accompanying citations are taken from previous studies; 
those without citations are used in this paper for the first time. 

 
When reviewing the datasets, we speculated that ‘revenue’ and ‘sales value’ were likely   

to be similar objectives. However, they come from different datasets which originated from 
different organisations, so it is likely that different terminology and possibly slightly different 
definitions would be pertinent to each. From an optimisation point of view, all that matters is 
to have a quantification of each objective, since this is the input to the search. 

The choice of the objectives to be considered in any multi-objective NRP/RP instance is 
governed by the specifics of the dataset and scenario for which the search based optimiser 
seeks requirement sets. In the 10 datasets used in this paper the objectives are to maximize 
our Revenue, Sales Value and Importance, while those to be minimised are Cost and effect   
on Urgency. All that we require of the dataset is the identification of the objective is to be 
minimised and maximised. The estimates of requirements are provided by the stakeholders 
of projects. Figure 1 provides descriptive statistics that characterise the datasets, their sources 
and the requirement optimisation objectives pertinent to each dataset. 

In all but one case, the problem is a bi-objective problem in which there is a single objective 
to be maximised (such as revenue) and a single objective to be minimised (such as cost). The 
exception is the Ericsson dataset. It has two ‘importance’ objectives to be maximised: one for 
the present and one for the future. The third objective is to minimise the cost. The Ericsson 
dataset includes questionnaire forms for test management tools, which were completed by  
14 stakeholders (each stakeholder was a software testing sub-organisation within Ericsson) 
[Zhang et al. 2010]. To complete the questionnaires, the 14 stakeholders measured how im- 
portant each requirement is to them in two ways. One is to evaluate the degree of importance 
for today, the other is the importance for the future. This approach was adopted by Ericsson 
and not suggested by the authors. Each measurement was graded using four levels: ignore, 
low, medium or high. However, the quality of these estimates might be inaccurate or uncer- 
tain, thereby leading to one possible threat to construct validity. The issue will be discussed 
in Section 6. 

4.3. Performance Metrics 

We use 4 quality metrics to compare the performance of each of the 6 search based opti- 
misation algorithms (and random search). In most multi-objective optimisation problems the 
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globally optimal Pareto front is unobtainable. Release planning is no exception to this. In such 
situations it is customary to construct a ‘reference’ front. The reference front is defined to be 
the largest nondominated subset of the union of solutions from all algorithms for all the runs 
studied. As such, the reference front represents the best current approximation available to 
the true location of the globally optimal Pareto front. Three of the quality metrics we use (Con- 
tribution, Unique Contribution and Convergence) are computed in terms of each algorithm’s 
distance from or contribution to this reference front: 
Contribution (denoted ‘Contrib’ in our results tables) for algorithm A is the number of solu- 
tions produced by A that lie on the reference front. This is the simplest (and most intuitive) 
quality metric. It assesses how many of the best solutions found overall are found by algorithm 
A. 
Unique Contribution (denoted ‘UContrib’ in our results tables) for algorithm A is the num- 
ber of solutions produced by A that lie on the reference front and are not produced by any 
algorithm under study except A. This is a variant of the ‘Contribution’ metric that takes ac- 
count of the fact that an algorithm may contribute relatively few of the best solutions found, 
but may still be valuable if it contributes a set of unique best solutions that no other algorithm 
finds. 
Convergence (denoted ‘Conv’ in our results tables) for algorithm A is the Euclidean distance 

between the Pareto front produced by A and the reference front. More formally, C  = 

 

N 

i=1 
N di 

,
 

where N is the number of solutions obtained by an algorithm and di  is the smallest Euclidean 
distance of each solution i to the reference Pareto front. The smaller the calculated value of 
C, the better the convergence. This metric C = 0 if the obtained solutions are exactly on the 
reference Pareto front. In this paper, the reported value of Conv is normalised and maximised 
Conv = 1  normalised(C), so the higher numbers of Conv mean better convergence. 
Hypervolume (denoted ‘HVol’ in our results tables) is the volume covered by the solutions in 
the objective space. HVol is the union of hypercubes of solutions on the Pareto front [Zitzler 
and  Thiele  1999].  For  each  solution  i,  a  hypercube  vi  is  formed  with  the  solution  i and  a 
reference point R. The reference point is usually a vector of the worst fitness values. More 
formally, HV ol = volume(

JN     
vi). The larger the value of HVol, the better the hypervolume. 

The normalised fitness values are used for calculating HVol. By using a volume rather than a 
count (as used by the ‘contribution’ metrics), this measure is less susceptible to bias when the 
numbers of points on the two compared fronts are very different. 

Quality of solutions is clearly important, but diversity is also an important secondary crite- 
rion for algorithms that exhibit acceptable solution quality. We measured the diversity using 
a standard metric introduced by Deb [Deb 2001]: 
Diversity measures the extent of distribution in the obtained solutions and spread achieved 
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where k(1 k M ) is the number of objectives for a multi-objective algorithm. dk is the 
Euclidean distance to the extreme solutions of the reference Pareto front in the objective space. 
N denotes the number of solutions obtained by an algorithm. dj (1    j     N   1) is the Euclidean 
distance between consecutive solutions, d is the average of all the distance dj . The smaller the 
value of ∆, the better the diversity. 

Finally, in order to assess the compensation or effort required to produce the quality and 
diversity of solutions observed, we measure the computational effort: 
Speed is measured in terms of the wall clock time required to produce the solutions reported, 
averaged over 30 executions. All experiments were carried out on a desktop computer with a 
6 core 3.2GHz Intel CPU and 8GB memory. 

d  +(N−1)dk 

between approximated solutions and the reference front [Deb 2001]. ∆ = , 
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In order to facilitate a more easy comparison of the six overall metrics used in our study, we 
normalise all of them to lie between 0.0 and 1.0 and convert all of them to ‘maximising metrics’ 
(such that higher values denote superior performance). For example, ‘speed’ (to give it a name 
that captures it ‘maximising form’) is computed as 1 T , where T is the normalised wall clock 
time. Thus, in all tables of data presented in this paper (including the correlation analyses) 
the reader can safely assume ‘higher means better’. We normalise a value x, drawn from a 
set of observed values, ranging from xmin  to xmax, using the standard normalising equation: 
    x  xmin       

x x 

Our algorithms are executed 30 times each to cater for their stochastic natures, so the 
normalised metric values reported are averaged (using mean and median) over these 30 runs. 
Averaging means that there is often no value reported in our results that happens to be exactly 
1.0 or exactly 0.0, despite normalisation using maxima and minima. 

 
4.4. Statistical Testing 

The selection of appropriate statistical techniques that provide robust answers to the research 
questions we seek to address is vital to the construct validity of our investigation. Therefore, 
we explain and motivate the statistical testing techniques used to investigate the research 
questions in our study. We need to take account of the stochastic nature of each algorithm 
due to their partial reliance on randomisation. This is a well-known phenomenon for which it 
is widely advised [Arcuri and Briand 2011; Harman et al. 2012c] that inferential statistical 
testing should be used as an appropriate way to compare algorithm performance. The pseudo 
random number sequence used by the algorithms is the cause of uncertainty. We are therefore 
sampling over the population of pseudo random number sequences [Harman et al. 2012c]. 

We use inferential statistical testing techniques to draw inferences about the population of 
all possible executions of the algorithm on a particular instance, based on a sample of these 
executions. In our experiments we set our sample size to 30. That is, each of the 7 algorithms is 
executed 30 times on each of the 10 datasets. The null hypothesis is that all 7 algorithms have 
the same performance. Rejection of the null hypothesis can tell us whether the algorithms 
performance are significantly different to one another. 

We use nonparametric statistical techniques, because we had no knowledge of the distribu- 
tion of the population from which we sample executions, thereby increasing the robustness  
of our statistical inferences [Arcuri and Briand 2011; Ferguson 1965; Harman et al. 2012c]. 
Many widely used nonparametric statistical techniques, such as, Mann-Whitney [Mann and 
Whitney 1947] (and closely-related Wilcoxon [Wilcoxon 1945]) test and the Kruskal-Wallis test 
[Kruskal and Wallis 1952], make fewer assumptions than parametric tests do, nevertheless 
assume that variance is consistent across all populations [Zimmerman 2000]. In our exper- 
iments, we can make no such assumption about our data. Therefore, we use Cliff’s method 
[Cliff 1996] for assessing statistical significance. Cliff’s method is not only nonparametric, 
but it is also specifically designed for ordinal data. Our research questions are ordinal and 
our measurement scales are ordinal [Shepperd 1995]. Furthermore, Cliff’s method makes no 
assumptions about the variance of the data, thereby making it more robust. 

We use the Vargha-Delaney Â12 metric for effect size (as recommended by Arcuri and Briand 

[Arcuri and Briand 2011]). Vargha-Delaney Â12  also makes few assumptions and is highly 

intuitive: Â12(A, B) is simply the probability that algorithm A will outperform algorithm B in 
a head-to-head comparison. 

Most statistical tests produce a test statistic, the value of which must exceed a certain 
threshold in order for the observed mean to lie outside the confidence interval defined by the 
experimenters’ chosen α level. The α level is the experimenters’ tolerance for Type I errors 
(the error of incorrectly rejecting the Null Hypothesis). Often, the test statistic computation 
is expressed as a so-called ‘p value’; the value of which must be less than the chosen α   level 



 

  
 

 

 

in order for the experimenter to claim ‘statistical significance’. We have set our α level to the 
widely used ‘standard’ value of 0.05. Each comparison of a p value with the chosen α level is 
essentially a claim about probability; the probability of committing Type I error (the error of 
incorrectly rejecting the Null Hypothesis). However, if the experimenter conducts a series of 
tests, then the chances of committing a Type I error increase, potentially quite dramatically, 
unless some adjustment (or ‘correction’) is made. 

One popular (but not necessarily ideal) adjustment is the Bonferroni correction, which was 
first used to control for multiple statistical inferences by Dunn [Dunn 1961]. More recent 
techniques have been developed that retain the property of the Bonferroni correction (avoiding 
Type I errors), while simultaneously reducing its tendency to increase Type II errors. In our 
work we use just such a technique, the Hochberg’s method [Hochberg 1988] for controlling 
multiple hypothesis testing. This method ranks the statistical tests applied, adjusting the α 
level for each successive test. It is a less conservative adjustment in the Bonferroni correction, 
while retaining its ability to avoid Type I errors [Bejamini and Hochberg 1995]. 

Overall, given that we know little about the distribution of the populations of executions  
of the algorithms studied in this paper, we believe that the use of Cliff’s method with the 
Hochberg correction provides the most robust and appropriate statistical testing available. 

As well as investigating the quality of solutions produced by each algorithm, we also want 
to investigate the correlation between the size of the problem instance and the behaviour of 
each algorithm. Though we believe there may be correlations of interest, we have no reason to 
believe that they will be linear. Furthermore, since our data is measured on an ordinal scale, 
the use of the Pearson correlation [Galton 1889; Pearson 1895; Salkind 2007] is inappropri- 
ate; we need to choose an ordinal correlation method. In order to ensure robustness of our 
conclusions we chose to use both Kendall’s τ [Kendall 1948] and Spearman rank correlation 
[Salkind 2007; Spearman 1904], both of which are nonparametric, rank-based assessments of 
correlation. 

 
4.5. Research questions 

This section explains and motivates the five research questions we ask in our study. When 
comparing different algorithms for release planning problems, a natural question to ask is 
the quality of the solutions produced, according to the standard measures of multi-objective 
solution quality. Our first research question therefore investigates solution quality: 

RQ1: Quality: According to each of the 4 quality measures, and on each of the 10 datasets, 
which algorithm performs best? 

To answer this question we use the Cliff’s inferential statistical comparison, as explained 

in  Section  4.4  to  determine  which  algorithms  significantly  outperform  others  and  the  Â12 

measure of effect size in each case. 
Quality of solutions is important, but from the release planner’s point of view a wide di- 

versity of candidate solutions may also be important. In the most extreme case, a degenerate 
Pareto front (containing only a single solution) may have maximum quality but will have no 
diversity and will thus offer the release planner no choice at all. We therefore also investigate 
the diversity of solutions produced by each algorithm: 

RQ2: Diversity: What is the diversity of the solutions produced by each algorithm? 

We used Cliff ’s method to report on statistically significant differences in Diversity and Â12 

to assess the effect size of any such differences observed. 
Naturally, the computational effort required to produce these solutions is also important. 

An algorithm that produces slightly lower quality solutions, but which does so almost instan- 
taneously will have different applications to one that produces better quality solutions, but 
takes several minutes to produce them. The former can be used in a situation where the   re- 



 

  
 

 

 

lease planner wants to repeatedly investigate ‘what if ’ questions, rebalancing estimates of 
cost and value in real time. In this scenario, speed trumps quality, provided quality is suffi- 
cient to be acceptable for ‘what if ’ analysis. The latter will be more useful in scenarios where 
requirements optimisation provides decision support for an important overall choice about re- 
lease planning. In this situation, quality trumps speed, provided a solution can be found in 
reasonable time (which might be hours or even days). 

RQ3: Speed: How fast can the algorithms produce the solutions? 
An algorithm that produces good solutions with acceptable diversity in reasonable time for 

small problems may scale less well to larger problems. In release planning problems, scal- 
ability is not merely a question of the increased computational effort required for a larger 
problem; it is to be expected that computational effort will be directly proportional to problem 
size. 

However, perhaps more importantly, there may also be some degradation solution quality 
and/or diversity as the size of the problem scales up. We therefore investigate scalability from 
the point of view of all of the metrics we collected in our answers to the foregoing three re- 
search questions. 

RQ4: Scalability: What is the scalability of each of the algorithms with regard to solution 
quality, solution diversity and speed? 

In order to answer this question we report the rank of correlation between the size of the 
problem (measured in terms of the number of requirements in the dataset) and each of the 
metrics for quality, diversity and speed. 

Since each algorithm is executed 30 times to facilitate statistical comparisons, we report 
correlations between the number of requirements and each of the mean, median and best case 
for quality, diversity and speed. As explained in Section 4.4, we use Kendall’s τ and Spearman 
rank correlation to assess the degree of correlation between the quality, diversity and speed 
metrics and the size of the problem (measured as the number of requirements). 

RQ5: Inclusion: Is there any correlation between requirements inclusion in solutions on the 
Pareto front and requirement characteristics? 

In order to aid decision making support and understand the characteristic of large solution 
sets, we investigate which attributes of a requirement are correlated with inclusion in Pareto 
optimal solutions. This research question could help a decision maker to identify trends and 
patterns in the solutions on the Pareto front. For example, if some particular requirements 
have the same inclusion hehaviours, they could be clustered together to reduce information 
overload. Requirements inclusion information can also be used to identify similarity and vari- 
ability among sets of solutions and help decision makers in understanding how similar or 
different solutions are, based on the same (or similar) objective attainment levels. 

We calculate the number of inclusions on the Pareto front for each requirement over 30 
executions of algorithms. We rank the requirements according to their inclusion and we use 
Kendall’s τ to statistically describe the correlation between the inclusion ranking of a require- 
ment and its attributes. 

 
5. RESULTS AND ANALYSIS 

This section presents the results of the empirical study of meta- and hyper-heuristic search 
techniques for multi-objective release planning. 

RQ1: Quality: Table V presents the mean and median values of the metrics for quality, di- 
versity and speed for each of the 7 algorithms on each of the 10 datasets. The results in the 
table are highlighted in dim grey, dark grey and light grey colours, which represent the best, 
the second and the third order in terms of the performance of the algorithms. 
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Table VI presents the results of the inferential statistical tests. Since we need to compare 7 
different algorithms with each other, this yields 21 pairwise comparisons (and thus 21 columns 

of data). Each of these columns contains the Vargha-Delaney Â12  effect size measure where 

the result is significant (at the 0.05 α level), and is left blank where the result is not significant. 
The column heading indicates which algorithm is being compared with which others, in groups 
of 6, 5, 4, 3, 2, and 1 pairwise comparisons (6+5+4+3+2+1 = 21 pairwise comparisons in total). 

For  example, in the pair of columns headed by the title     HHC               , the HHC algorithm is 

compared against each of the HC and R algorithms.    The 
HC R 

value 1.00 is highlighted in  dark 

grey and the values between 0.51 and 0.99 are highlighted in light grey. The value 1.00 in the 
first row under the first of these two columns indicates the following: HHC outperforms HC 
significantly for its contribution to the Baan dataset’s reference front (because the entry is 
not blank) and the probability of this observation being made is 1.00. That is, HHC always 
beats HC for its contribution to the Baan dataset reference front in our sample of 30 runs. 
The fifth row of data in this same column contains the effect size measure 0.06, which being 
nonblank, indicates a significant result. However, this time the probability of HHC beating 
HC is 0.06, so the HC algorithm significantly outperforms the HHC algorithm on the metric 
assessed (Diversity for the Baan dataset). 

From these two entries in the table of results we can see that, for the Baan dataset, HHC 
contributes far more strongly to the reference front than HC, but HC is far more diverse. As 
can be seen, the other three quality metrics for the comparison of HHC and HC on the Baan 
dataset also strongly favour HHC. Based on these observations we would prefer HHC to HC, 
since diversity is only interesting if the algorithm’s quality is strong; a highly diverse set of 
sub-optimal solutions is easy to achieve and is of little value to the release planner. 

The forgoing discussion indicates the density of information contained in Table VI. Some 
general observations do emerge: From Table V, we can see that three hyper-heuristic algo- 
rithms (HGA, HSA and HHC) outperform their meta-heuristic counterparts (GA, SA and HC) 
according to all 4 quality measures. That is, HSA and HHC each significantly outperform 
both SA and HC on all 10 datasets with high effect size in every case, while HGA signifi- 
cantly outperforms GA on 9 out of the 10 datasets with high effect size. HGA is beaten by its 
meta-heuristic counterpart only on the Ericsson dataset. 

Both HGA and HSA show good performance on the three larger datasets. HGA clearly offers 
the best performance over all datasets, algorithms and quality metrics: It significantly outper- 
forms the other algorithms in 85% (205/240) of the pairwise algorithm quality comparisons. 
However, though HGA performs strongest in terms of solution quality, it would be a mistake 
to conclude that is the only algorithm that should be used. HSA outperforms the HGA for ‘con- 
tribution’ in 4 of the 10 datasets and, perhaps more importantly, for ‘unique contribution’ in 
three cases. Even HHC significantly outperforms HGA in terms of ‘contribution’ in one case. 

Looking at the results for the three meta-heuristic algorithms (GA, SA and HC), we see 
that GA performs best overall for quality on smaller datasets, while SA performs noticeably 
better on the three larger datasets (Eclipse, Mozilla and Gnome). This highlights the risk of 
drawing conclusions based on too narrow a selection of real world datasets. SA, HC and R 
make few contributions to the reference front: R contributes in two cases, while the other two 
algorithms only manage a contribution in a single case: the Ericsson dataset. Even when these 
three search strategies do make a contribution to the reference front they contribute only a 
tiny proportion of solutions (no more than 2%). 

We also observe further evidence that suggests that results from one dataset may not gen- 
eralise to others. The most extreme example of this is the Ericsson dataset, for which all of the 
algorithms behaved very differently (when compared to each other) than they did for the other 
datasets. HSA and HHC have closely equivalent behaviours and outperform other algorithms 
in terms of quality metric. Several factors may influence the performance of the  algorithms. 



 

  
 

 

 

One aspect is the Ericsson dataset is the only dataset with three objectives as Importance  
for Today, Importance for the Future and Cost. When the number of objectives increases, the 
performance of the algorithms might behaviour differently. For example, NSGA-II (denoted by 
GA here) has much worse performance when the number of objectives is greater than two. The 
other factor is the character of the Ericsson dataset itself. Based on a previous study [Zhang 
et al. 2010] on the dataset, the requirements’ importance for today and for the future graded 
by the stakeholders have a strong positive correlation. That is, solutions have the property 
that Importance for Today does not differ greatly from Importance for the Future. Therefore, 
the narrowed search space might make local search algorithms (HSA and HHC) more effective 
than GA and HGA. 

RQ2: Diversity: As might be expected, random search performs very well in terms of diver- 
sity. From Table VI we can see that it outperforms almost every other algorithm for almost 
every dataset and often does so significantly and with a large effect size. 

However, we know from the answer to RQ1 that random search only contributes to the 
reference front for 2 of the 10 datasets, and even then it only contributes at most 1% of the 
unique solutions. We therefore conclude that the diversity exhibited by the random search is 
largely suboptimal; any solutions it offers (diverse or otherwise) are likely to be dominated by 
solutions found by one of the other algorithms (if not all of them). 

Of the three hyper-heuristic algorithms (which were competitive for the quality metrics), 
HGA exhibits the best diversity. It significantly outperforms HSA in 9 of the 10 datasets and 
HHC in 8 of the 10. As with the quality metrics studied in answer to RQ1, we observe that the 
Ericsson dataset also produces very different behaviour in terms of Diversity. The NSGA-II 
algorithm (on which both GA and HGA algorithms are based) was designed to promote diver- 
sity and so we might expect that it should perform best, both its meta- and hyper-heuristic 
versions. 

Even the meta-heuristic version (GA) outperforms the hyper-heuristic versions of simulated 
annealing (HSA) and hill climbing (HHC) with respsect to Diversity for 9 of the 10 datasets. 
However, there is no evidence that it outperforms its own hyper-heuristic version (HGA) with 
respect to Diversity. That is, GA significantly outperforms HGA for one dataset (Ericsson), 
while HGA significantly outperforms GA on 2 datasets (Mozilla and Gnome). In all other 
cases neither significantly outperforms the other. 

RQ3: Speed: The values of “Speed” of 10 datasets reported in Table V are normalised inde- 
pendently within each dataset. Therefore, the numbers are comparable within one dataset but 
not across all datasets. For example, the wall clock time spent of Speed 0.99 in Baan dataset 
is different from the wall clock time of Speed 0.99 in Mozilla dataset. Nevertheless, the two al- 
gorithms with Speed 0.99 in both datasets have better performance (higher rank) than others 
with lower speed. We could interpret these values as the rank of performance, namely higher 
numbers mean higher ranks. 

One might expect that a random search would be fast, since it is such a simple algorithm. 
However, we find (quite surprisingly) that the speed of random search is worse than all other 
algorithms studied for the larger datasets. We studied these results further and found that the 
explanation lies in the cost of invalid solutions: As the problem scale increases, a randomly 
constructed solution to the release planning problem is increasingly likely to be invalid. For 
example, it is increasingly likely to contain gaps in the release plan. The computational effort 
of random search becomes dominated by repairing such invalid release plans as the problem 
scale increases. 

By contrast, meta-heuristic and hyper-heuristic algorithms spend most of their time adapt- 
ing existing release plans. This makes them more scalable than random search, even though 
they are more sophisticated. Interestingly, HGA is fastest overall: it significantly outperforms 
its rival in 70% (42/60) of the pairwise comparisons. 



 

  
 

 

 

On the largest dataset, Mozilla, which has more than 4,000 requirements, each of the exe- 
cutions of random search took more than 13 minutes to complete, while each HGA execution 
took just over 3 minutes. Neither of these durations makes a big difference to the kind of 
release planning applications that could be undertaken. 

For the smaller datasets (with fewer than 200 requirements), each HGA executions com- 
pleted in fewer than 10 seconds (sometimes merely 1 or 2 seconds). This puts HGA tantalis- 
ingly close to the threshold at which it could be used to investigate ‘what if ’ scenarios; the 
release planner could modify the available requirements and/or their attributes and explore 
the impact of such changes in real time. 

RQ4: Scalability: Figure 2 highlights a scalability problem for meta-heuristic NSGA-II (de- 
noted GA in the tables): as the number of requirements increase, GA’s contributions to the 
reference front decrease. This observation remains consistent whether we measure the mean, 
median or the best performance of each algorithm and also holds whether we use Kendall’s or 
Spearman’s correlation. 

Figure 2 also reveals a negative correlation between the number of requirements and con- 
vergence of meta-heuristic NSGA-II and the best performance of meta-heuristic NSGA-II for 
hypervolume. Taken together, these negative correlation results for meta-heuristic NSGA-II 
quality metrics suggest that the quality of solutions it produces tend to decrease as the prob- 
lem size increases. 

We also observe a slightly less strong, but positive, correlation between the number of re- 
quirements and diversity of solutions produced by meta-heuristic NSGA-II. This suggests 
meta-heuristic NSGA-II increases its diversity with scale. However, since its contribution and 
quality tend to decrease as the scale of the problem increases its diversity is of considerably 
lesser value; it is simply producing a wider range of increasing sub-optimal solutions as the 
problem scales. 

Fortunately, the other algorithms found to perform well in answer to RQ1 do not exhibit 
any such evidence for negative correlation between problem size and solution quality. In par- 
ticular, hyper-heuristic NSGA-II exhibits no such correlation. Even more encouraging for this 
algorithm, we find consistent evidence, across all six correlation values, that it increases its 
diversity as the scale of the problem increases. 

We find that there is a positive correlation between Speed and the number of requirements 
for a few algorithms, such as HSA and HHC. 

“Speed” in Figure 2 is the Median, Best and Mean of the normalised values (in Table V)  
of all datasets, not the absolute wall clock time. Therefore, a positive correlation between the 
Median, Best and Mean normalised “Speed” and the number of requirements indicates that 
when the number of requirements increase, the rank of (speed) performance of one specific al- 
gorithm also increase. It means that such an algorithm (such as HHC) has worse performance 
(lower speed rank) than others for the smaller datasets and better performance for the larger 
ones. 

RQ5: Inclusion: Table IV shows the correlation between the attributes of requirements and 
their inclusion rankings. As illustrated in the table, the name given to these attributes in 
the 10 datasets are different. They are the names provided by the stakeholders, including 
Revenue, Sales Value, Cost, importance etc. that correspond to costs and values for the specific 
data set considered. Attribute A/B represents a requirement’s A-to-B ratio. 

The results of Kendall’s tau (τ ) correlation analysis reveal that, in general, the require- 
ment’s A-to-B ratios, such as R/C, S/I, IT/C, IF/C and R/U have strong correlation with its 
likelihood of inclusion for the smaller datasets. For Baan and Motorola datasets, requirement 
inclusion is also correlated with the Cost of requirements. For the large datasets, there is no 
correlation between the attributes of a requirement and its inclusion. 



 

  
 

 

 

Table IV. The Kendall Correlation between the Attributes of Requirement and its Ranking of Inclusion 
 

Sets 
Data 

Attributes 
HGA GA HSA SA HHC HC R 

τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value 

Baan 
Revenue 0.43 

0.66 

0.89 

<0.00 
<0.00 

<0.00 

0.47 
0.62 

0.90 

<0.00 
<0.00 

<0.00 

0.50 
0.59 

0.80 

<0.00 
<0.00 

<0.00 

0.45 
0.61 

0.77 

<0.00 
<0.00 

<0.00 

0.49 
0.60 

0.79 

<0.00 
<0.00 

<0.00 

0.45 
0.62 

0.79 

<0.00 
<0.00 

<0.00 

0.47 
0.60 

0.74 

<0.00 
<0.00 

<0.00 

Cost 
R/C 

Stone- 
Sales Value 0.26 

0.34 
<0.00 
<0.00 

0.29 
0.32 

<0.00 
<0.00 

0.24 
0.36 

<0.00 
<0.00 

0.23 
0.32 

<0.00 
<0.00 

0.18 
0.40 

0.01 
<0.00 

0.24 
0.28 

<0.00 
<0.00 

0.25 
0.31 

<0.00 
<0.00 Impact 

Gate S/I 0.80 <0.00 0.85 <0.00 0.76 <0.00 0.68 <0.00 0.70 <0.00 0.63 <0.00 0.71 <0.00 

Motorola 
Revenue 0.05 

0.85 

0.95 

0.66 
<0.00 

<0.00 

0.00 
0.81 

0.97 

1.00 
<0.00 

<0.00 

0.06 
0.71 

0.83 

0.63 
<0.00 

<0.00 

0.05 
0.77 

0.90 

0.65 
<0.00 

<0.00 

0.07 
0.71 

0.85 

0.57 
<0.00 

<0.00 

0.07 
0.75 

0.90 

0.54 
<0.00 

<0.00 

0.11 
0.70 

0.84 

0.37 
<0.00 

<0.00 

Cost 
R/C 

RalicP 
Revenue 0.57 

0.19 

0.65 

<0.00 
<0.00 

<0.00 

0.45 
0.34 

0.62 

<0.00 
<0.00 

<0.00 

0.37 
0.40 

0.50 

<0.00 
<0.00 

<0.00 

0.35 
0.37 

0.48 

<0.00 
<0.00 

<0.00 

0.37 
0.36 

0.49 

<0.00 
<0.00 

<0.00 

0.37 
0.36 

0.50 

<0.00 
<0.00 

<0.00 

031 
0.40 

0.43 

<0.00 
<0.00 

<0.00 

Cost 
R/C 

RalicR 
Revenue 0.51 

0.46 

0.83 

<0.00 
<0.00 

<0.00 

0.47 
0.51 

0.85 

<0.00 
<0.00 

<0.00 

0.51 
0.42 

0.75 

<0.00 
<0.00 

<0.00 

0.38 
0.48 

0.64 

<0.00 
<0.00 

<0.00 

0.49 
0.42 

0.70 

<0.00 
<0.00 

<0.00 

0.41 
0.50 

0.68 

<0.00 
<0.00 

<0.00 

0.40 
0.48 

0.63 

<0.00 
<0.00 

<0.00 

Cost 
R/C 

 
Ericsson 

Importance for 
Today (IT) 

0.31 

0.33 

<0.00 

<0.00 

0.46 

0.48 

<0.00 

<0.00 

0.59 

0.61 

<0.00 

<0.00 

0.49 

0.49 

<0.00 

<0.00 

0.64 

0.65 

<0.00 

<0.00 

0.49 

0.50 

<0.00 

<0.00 

0.47 

0.47 

<0.00 

<0.00 Importance for 
the Future (IF) 

 0.30 <0.00 0.45 <0.00 0.40 <0.00 0.51 <0.00 0.34 <0.00 0.50 <0.00 0.53 <0.00 Cost 

 
IT/C 0.43 <0.00 0.75 <0.00 0.78 <0.00 0.83 <0.00 0.74 <0.00 0.84 <0.00 0.87 <0.00 

 
IF/C 0.44 <0.00 0.75 <0.00 0.78 <0.00 0.84 <0.00 0.73 <0.00 0.83 <0.00 0.86 <0.00 

MS 
Revenue 0.34 

0.47 
<0.00 
<0.00 

0.28 
0.42 

<0.00 
<0.00 

0.27 
0.41 

<0.00 
<0.00 

0.43 
0.56 

<0.00 
<0.00 

0.27 
0.41 

<0.00 
<0.00 

0.39 
0.51 

<0.00 
<0.00 

0.42 
0.55 

<0.00 
<0.00 Urgency 

Word R/U 0.80 <0.00 0.82 <0.00 0.79 <0.00 0.67 <0.00 0.79 <0.00 0.70 <0.00 0.71 <0.00 

Eclipse 
Importance 0.13 

0.12 

0.17 

<0.00 
<0.00 

<0.00 

0.14 
0.13 

0.19 

<0.00 
<0.00 

<0.00 

0.14 
0.13 

0.17 

<0.00 
<0.00 

<0.00 

0.09 
0.14 

0.15 

<0.00 
<0.00 

<0.00 

0.09 
0.11 

0.13 

<0.00 
<0.00 

<0.00 

0.08 
0.14 

0.14 

<0.00 
<0.00 

<0.00 

0.07 
0.07 

0.09 

<0.00 
<0.00 

<0.00 

Cost 
I/C 

Mozilla 
Importance 0.14 

0.15 

0.21 

<0.00 
<0.00 

<0.00 

0.13 
0.13 

0.18 

<0.00 
<0.00 

<0.00 

0.11 
0.10 

0.15 

<0.00 
<0.00 

<0.00 

0.08 
0.11 

0.13 

<0.00 
<0.00 

<0.00 

0.07 
0.06 

0.09 

<0.00 
<0.00 

<0.00 

0.07 
0.08 

0.10 

<0.00 
<0.00 

<0.00 

0.07 
0.06 

0.10 

<0.00 
<0.00 

<0.00 

Cost 
I/C 

Gnome 
Importance 0.15 

0.19 

0.21 

<0.00 
<0.00 

<0.00 

0.18 
0.23 

0.25 

<0.00 
<0.00 

<0.00 

0.14 
0.18 

0.20 

<0.00 
<0.00 

<0.00 

0.10 
0.14 

0.14 

<0.00 
<0.00 

<0.00 

0.08 
0.15 

0.13 

<0.00 
<0.00 

<0.00 

0.07 
0.14 

0.12 

<0.00 
<0.00 

<0.00 

0.09 
0.11 

0.11 

<0.00 
<0.00 

<0.00 

Cost 
I/C 

 
 

RQ5 attempts to help decision makers understand the large solution space and possible ten- 
sion between the multiple objectives and attributes. Such analysis allows us to identify useful 
information about solution sets, how the solutions’ composition and which requirements tend 
to be selected. In general, the requirements with higher A-to-B ratios have higher probability 
to be present on the Pareto front according to the correlation analysis. That is, the search pro- 
cess tends to balance multiple conflicting objectives, so such requirements are more favourable 
in the solution sets. What we can conclude from the results of large datasets is that the space 
search is considerably large to explore for finding the optimal solutions. 

Actionable Findings: Our results are based on only 10 datasets. This is considerably larger 
than any previous empirical study of release planning. These datasets are obtained from open 
source as well as closed source, system tools as well as enterprise applications, and have sizes 
varying from 35 to 4,000 requirements. Nevertheless, it remains insufficient to generalise to 
every type of project in every scenario. Indeed, we have seen evidence in our results that 
algorithms can behave very differently with respect to different datasets. 

Therefore, as with other experimental/empirical SBSE work [Harman et al. 2012a], this 
finding suggests that the use of synthetic datasets in experimental work on release planning 
should be augmented with the study of real world datasets most likely to share the character- 
istics of the problem domain to which the proposed algorithms are to be applied. 



 

  
 

 

 

6. THREATS TO VALIDITY 

We set out threats to potential validity, indicating how they might affect the degree to which 
it is possible to generalise the results. We also provide some mitigation strategies to eliminate 
these threats. 

Construct Validity 
In this work, the objects studied are sets of requirements, stakeholders and their attributes. 

Their attributes are the measurements associated with each requirement, which come from 
estimates from the stakeholders. Before the proposed techniques can be applied, the informa- 
tion of these estimates associated with requirements and stakholders must be at hand. 

Our assumption is that an initial set of requirements has been collected and the stake- 
holders have been identified using a requirements elicitation process. The task of quantifying 
requirements is usually regarded to be a challenging and hard problem in itself. The quan- 
tifying process may be time-consuming and the information collected may not be accurate. 
Nevertheless, there are still several feasible approaches in previous work that address this 
problem [Gilb 2005; Karlsson and Ryan 1997; Lim 2010]. The benefits of using quantified 
requirements include better support for budget estimates and feedback, and improved com- 
munication of the requirements. 

The results of optimisation and analysis rely on the quality of these estimates. However, 
this might lead to one possible construct validity issue when the estimates are inaccurate or 
uncertain. To mitigate the impact of uncertainty, sensitivity analysis and uncertainty han- 
dling could be carried out during or after optimisation search process, which is one direction 
of our future work. 

In addition, the release planing model used in this study does not take account of all the 
factors that reflect every real-world scenario. Some simplifications have been introduced to 
match the available data. For example, 8 of the 10 datasets we collected did not have infor- 
mation of dependencies between requirements. Therefore, requirement dependencies are not 
considered in the model. We also do not handle other hard and soft constraints in this study 
as well as the situation where the estimated costs change over time. However, providing such 
fine-grain RP model should be entirely achievable as the future work. Therefore, we argue 
that this study models the RP problem at a reasonable level of granularity and the model can 
be extended and flexible to more fine-grained real-world scenarios. 

Furthermore, as the global optimal Pareto front is unobtainable, we construct a reference 
front as a close and reasonable approximation of global optimal Pareto front. However, in 
theory, a global Pareto front could contain a large number points. This might lead to one 
possible construct validity issue when an approximate solution only contain a limited number 
of them in practice. 

Besides, we have attempted to control another potential threats to construct validity by the 
use of ordinal inferential statistical techniques which make no assumptions about distribution 
(including variance). For correlation analysis we use two different nonparametric correlations 
in order to increase confidence in our findings. 

Internal Validity 
The primary comparison tests for statistically significant results concerned the relative per- 

formance of the algorithm. The dependent variables measured are standard, widely used con- 
vergence, hypervolume, diversity and speed, and two assessments of each algorithm’s contri- 
bution to the Pareto front. The findings suggest that hyper-heuristics are an attractive new 
direction for release planning optimisation and that, in particular, hyper-heuristic NSGA-II 
(the algorithm labelled ‘HGA’) is highly attractive: it typically outperforms the other algo- 
rithms studied in terms of quality, diversity and speed. Furthermore, it appears that it scales 
well compared to its meta-heuristic counterpart and other algorithms studied. Another poten- 



 

  
 

 

 

tial threat to internal validity concerns the algorithmic parameter tuning. In this work, the 
results presented are based on the same parameter setting for all the algorithms. Performance 
of the algorithms could have been improved by individual fine tuning empirically or through 
systematic experimentation. 

External Validity 
The results presented are based on the study of 10 real-world datasets to support the claim, 

but it is initial evidence that hyperheuristics are able to dynamically select search opera- 
tors for different instances and provide good-quality solutions to support decision making. It 
would be too strong to claim that it will generalise the results with other problem instances 
or datasets with different characteristics or structures. 

7. CONCLUSION AND FUTURE WORK 

We have presented a comprehensive study of meta-heuristic and hyper-heuristic release plan- 
ning on 10 real world datasets. Overall, we found that hyper-heuristic NSGA-II performs the 
best in terms of quality, diversity, speed and scalability. However, our results also indicate that 
the hyper-heuristic versions of Simulated Annealing and Hill Climbing make some contribu- 
tion to the best solutions found and are relatively scalable. 

This finding suggests that if only a single algorithm is to be used then it should be hyper- 
heuristic NSGA-II, but if resources allow, it may be advantageous to combine its results with 
those from other hyper-heuristic algorithms. 

Furthermore, we found that algorithm behaviour can differ greatly from one dataset to 
another, indicating that research on synthetic datasets needs to be augmented with analysis 
of appropriate real world datasets. 

As future work we will provide a fine-grained RP model to consider dependencies between 
requirements, the different hard and soft constraints, and also try to handle the situation 
where the estimated costs of requirements change over time. To mitigate the impact of uncer- 
tainty of requirements’ estimates, sensitivity analysis, uncertainty handling and risk aware- 
ness could be carried out during or after optimisation search process, which is one direction of 
our future work. 

Regarding the algorithms, we will observe each operator’s efficiency and effectiveness at 
different search stages. New search operators will be incorporated and we will investigate for 
the learning ability at the hyper-heuristic approach. We will also look at different parameter 
settings for the algorithm to scale to large problem instances. 

In terms of release planning and search based requirements selection in general, overcom- 
ing the scalability challenges of the techniques in non-trivial software projects is critically 
important. Furthermore, the future work should also aim to manage different kinds of uncer- 
tainties, such as, requirements uncertainty, algorithmic uncertainty, uncertainty in resource 
constraints, uncertainty and dynamics in development time. Finally, more empirical investiga- 
tions need to be carried out to assess the applicability of the proposed solutions in a real-world 
context. 



  

 

 

 

 

Table V. The performance (Mean and Median) of the 7 algorithms for the 10 datasets. All metrics reported in this table are normalised 
and maximising so the reader can assume that ‘higher numbers mean better performance’ in a dataset. Unsurprisingly, the results 
show that Random search tends to produce low quality solutions. A little more surprisingly, the meta-heuristic algorithms (HC and SA) 
also contribute little to the best solutions found (as assessed by the metrics ‘Contrib’ and ‘UContrib’ in the table). The results also show 
that the Ericsson dataset occasions very different behaviour from the algorithms compared to the other datasets, indicating that the 
dataset studied really does matter in empirical studies of release planning. 
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Baan Q
u

a
li

ty
 

Contrib 0.83 0.86 
0.88 0.90 
0.98 0.98 

0.98 0.98 

0.02 0.00 
0.03 0.00 

0.20 0.20 
0.20 0.18 

0.00 0.00 
0.00 0.00 
0.26 0.26 

0.26 0.27 

0.14 0.13 
0.13 0.12 

0.00 0.00 
0.00 0.00 
0.19 0.19 

0.20 0.21 

0.00 0.00 
0.00 0.00 
0.19 0.20 

0.15 0.15 

UContrib 
Conv 0.79 0.79 

0.75 0.75 
0.78 0.79 
0.69 0.69 

0.71 0.71 
0.62 0.62 HVol 

Diversity 0.54 0.54 0.49 0.48 0.17 0.18 0.73 0.75 0.14 0.13 0.57 0.61 0.88 0.88 
Speed 0.94 0.95 0.96 0.96 0.37 0.36 0.78 0.78 0.15 0.16 0.67 0.70 0.98 0.98 

 
Stone- 
Gate 

Q
u

a
li

ty
 

Contrib 0.83 0.86 
0.86 0.85 
0.96 0.96 

0.96 0.97 

0.18 0.15 
0.19 0.15 
0.67 0.68 

0.60 0.58 

0.47 0.46 
0.45 0.44 

0.71 0.70 

0.00 0.00 
0.00 0.00 
0.16 0.19 

0.23 0.24 

0.37 0.35 
0.36 0.32 

0.68 0.68 

0.00 0.00 
0.00 0.00 
0.14 0.14 

0.20 0.21 

0.00 0.00 
0.00 0.00 
0.21 0.21 

0.29 0.28 

UContrib 
Conv 
HVol 0.70 0.71 0.71 0.72 

Diversity 0.55 0.53 0.48 0.48 0.15 0.15 0.65 0.66 0.14 0.13 0.55 0.59 0.87 0.88 
Speed 0.99 0.99 0.99 0.99 0.39 0.39 0.86 0.89 0.16 0.16 0.85 0.85 0.99 0.99 

 
Motorola 

Q
u

a
li

ty
 

Contrib 0.81 0.80 
0.85 0.86 
0.98 0.98 

0.97 0.97 

0.46 0.47 
0.49 0.48 
0.94 0.94 

0.91 0.92 

0.39 0.39 
0.32 0.31 
0.80 0.81 

0.75 0.74 

0.00 0.00 
0.00 0.00 
0.37 0.37 

0.29 0.29 

0.38 0.39 
0.31 0.30 
0.79 0.80 

0.74 0.74 

0.00 0.00 
0.00 0.00 
0.39 0.40 

0.34 0.33 

0.00 0.00 
0.00 0.00 
0.20 0.21 

0.08 0.07 

UContrib 
Conv 
HVol 

Diversity 0.26 0.23 0.29 0.29 0.28 0.29 0.53 0.53 0.31 0.30 0.45 0.48 0.70 0.69 
Speed 0.90 0.90 0.88 0.88 0.25 0.28 0.75 0.78 0.16 0.16 0.71 0.70 0.97 0.97 

 
 

RalicP Q
u

a
li

ty
 

Contrib 0.75 0.76 
0.81 0.78 
0.96 0.96 

0.96 0.96 

0.22 0.21 
0.26 0.25 
0.85 0.84 

0.75 0.76 

0.16 0.15 
0.16 0.15 
0.60 0.61 

0.53 0.52 

0.00 0.00 
0.00 0.00 
0.24 0.23 

0.27 0.27 

0.13 0.12 
0.12 0.11 
0.55 0.55 

0.51 0.50 

0.00 0.00 
0.00 0.00 
0.19 0.18 

0.20 0.19 

0.00 0.00 
0.00 0.00 
0.19 0.18 

0.13 0.13 

UContrib 
Conv 
HVol 

Diversity 0.56 0.57 0.55 0.55 0.50 0.48 0.70 0.77 0.48 0.47 0.66 0.65 0.88 0.89 
Speed 0.95 0.96 0.98 0.98 0.25 0.27 0.79 0.82 0.17 0.17 0.76 0.79 0.96 0.96 

 
 

RalicR Q
u

a
li

ty
 

Contrib 0.84 0.88 
0.78 0.75 
0.97 0.97 

0.97 0.97 

0.10 0.07 0.12 0.12 0.00 0.00 
0.00 0.00 
0.21 0.20 

0.24 0.25 

0.08 0.08 0.00 0.00 
0.00 0.00 
0.13 0.13 

0.17 0.18 

0.00 0.00 
0.00 0.00 
0.17 0.17 

0.11 0.11 

UContrib 0.10 0.07 0.10 0.10 0.07 0.07 
Conv 0.80 0.81 

0.71 0.73 
0.74 0.74 
0.68 0.68 

0.67 0.67 
0.61 0.62 HVol 

Diversity 0.39 0.42 0.39 0.40 0.18 0.18 0.50 0.54 0.17 0.18 0.47 0.49 0.78 0.76 
Speed 0.96 0.96 0.98 0.98 0.38 0.37 0.84 0.84 0.18 0.17 0.71 0.71 0.97 0.97 

 
 

Ericsson Q
u

a
li

ty
 

Contrib 0.00 0.00 
0.00 0.00 

0.01 0.01 
0.01 0.01 

0.96 0.96 
0.94 0.94 

0.02 0.02 
0.02 0.02 

0.97 0.97 
0.95 0.97 

0.99 0.99 

0.02 0.02 
0.02 0.02 

0.01 0.01 
0.01 0.01 

0.15 0.15 

UContrib 
Conv 0.51 0.50 0.56 0.42 0.99 0.99 

0.96 0.96 
0.16 0.15 
0.75 0.74 

0.19 0.18 
0.76 0.76 HVol 0.30 0.41 0.33 0.40 0.95 0.93 0.79 0.80 

Diversity 0.44 0.45 0.87 0.88 0.77 0.75 0.64 0.84 0.75 0.77 0.64 0.74 0.85 0.81 
Speed 0.98 0.98 0.99 0.99 0.10 0.10 0.72 0.74 0.11 0.10 0.72 0.74 0.88 0.88 

 
MS 

Word 

Q
u

a
li

ty
 

Contrib 0.62 0.61 0.42 0.41 0.83 0.83 
0.81 0.80 

0.00 0.00 
0.00 0.00 
0.22 0.20 

0.26 0.25 

0.76 0.76 
0.73 0.73 

0.00 0.00 
0.00 0.00 
0.27 0.28 

0.32 0.30 

0.00 0.00 
0.00 0.00 
0.20 0.21 

0.23 0.24 

UContrib 0.73 0.73 0.49 0.49 
Conv 0.96 0.97 

0.93 0.92 
0.88 0.89 0.82 0.82 

0.83 0.84 
0.82 0.82 

HVol 0.81 0.80 0.84 0.85 
Diversity 0.30 0.32 0.31 0.29 0.14 0.14 0.55 0.62 0.21 0.20 0.51 0.56 0.79 0.79 
Speed 0.98 0.98 0.97 0.97 0.27 0.26 0.86 0.90 0.12 0.13 0.84 0.85 0.99 0.99 

 
 

Eclipse Q
u

a
li

ty
 

Contrib 0.60 0.58 
0.53 0.53 

0.00 0.00 
0.00 0.00 
0.59 0.61 

0.62 0.62 

0.81 0.82 
0.73 0.77 

0.00 0.00 
0.00 0.00 
0.68 0.68 

0.75 0.75 

0.58 0.58 
0.52 0.52 

0.00 0.00 
0.00 0.00 
0.63 0.68 

0.59 0.66 

0.00 0.00 
0.00 0.00 UContrib 

Conv 0.98 0.99 
0.98 0.98 

0.92 0.92 
0.92 0.92 

0.92 0.92 0.75 0.75 
HVol 0.90 0.90 0.80 0.80 

Diversity 0.69 0.69 0.65 0.65 0.20 0.19 0.45 0.48 0.14 0.14 0.27 0.30 0.93 0.94 
Speed 0.95 0.95 0.99 0.98 0.79 0.80 0.96 0.96 0.79 0.80 0.93 0.94 0.05 0.05 

 
 

Mozilla Q
u

a
li

ty
 

Contrib 0.73 0.73 
0.63 0.65 

0.00 0.00 
0.00 0.00 
0.70 0.72 

0.66 0.68 

0.85 0.84 
0.75 0.75 

0.00 0.00 
0.00 0.00 
0.72 0.72 

0.75 0.75 

0.61 0.62 
0.54 0.53 

0.00 0.00 
0.00 0.00 
0.64 0.69 

0.57 0.66 

0.00 0.00 
0.00 0.00 UContrib 

Conv 0.97 0.97 
0.98 0.98 

0.92 0.93 
0.92 0.92 

0.92 0.92 0.77 0.77 
HVol 0.90 0.90 0.80 0.80 

Diversity 0.72 0.72 0.64 0.65 0.20 0.20 0.41 0.43 0.14 0.14 0.34 0.36 0.91 0.91 
Speed 0.96 0.96 0.99 0.99 0.83 0.83 0.97 0.97 0.83 0.83 0.95 0.96 0.06 0.06 

 
 

Gnome Q
u

a
li

ty
 

Contrib 0.61 0.64 
0.48 0.49 

0.00 0.00 
0.00 0.00 
0.59 0.58 

0.61 0.61 

0.84 0.84 
0.68 0.67 

0.00 0.00 
0.00 0.00 
0.67 0.67 

0.74 0.74 

0.56 0.55 
0.46 0.45 
0.91 0.91 

0.89 0.90 

0.00 0.00 
0.00 0.00 
0.62 0.64 

0.65 0.70 

0.01 0.01 
0.01 0.01 
0.74 0.74 

0.80 0.80 

UContrib 
Conv 0.98 0.98 

0.97 0.97 
0.92 0.92 
0.92 0.92 HVol 

Diversity 0.72 0.70 0.68 0.68 0.21 0.22 0.42 0.47 0.15 0.15 0.42 0.45 0.95 0.94 
Speed 0.94 0.94 0.98 0.98 0.71 0.72 0.95 0.95 0.71 0.71 0.92 0.93 0.06 0.07 



 

 

 
 
 
 
 

Table VI. Results of the statistical analysis. The numbers reported in this table are the Vargha-Delaney Â12  metric for effect size, where the result is significant at the 

0.05 α level according to Cliff’s test. Where the entry is blank, the corresponding algorithmic comparison result is not significant. The value of Â12  is the probability that 

the algorithm labelled at the head of the column outperforms the algorithms labelled immediately below. For example, in the pair of columns headed   HHC   , the HHC 
HC  |  R 

algorithm is compared to each of the HC and R algorithms. Consider the first of this pair of columns, which compares HHC to HC. Where the Â12  is greater than 0.5, this 

means that HHC (significantly) outperforms HC and where it is below 0.5, HC outperforms HHC. The closer Â12  is to 1.0, the greater the probability that HHC would be 
expected to outperform HC; the closer to 0.0, the greater the probability that HC would be expected to outperform HHC. 

 

Data 
Set 
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HGA 

 
GA 

 
HSA 

 
SA 

 
HHC 

 
HC 

GA HSA SA HHC HC R HSA SA HHC HC R SA HHC HC R HHC HC R HC R R 
 

 

 
Baan 

 
Quality 

Contrib 

 
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
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1.00 
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1.00 
1.00 

1.00 

1.00 

1.00 
1.00 
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0.03 
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0.06 
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0.43 
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1.00 
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0.90 

0.94 
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1.00 
1.00 

1.00 

1.00 
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0.00 

0.00 

0.00 

   
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

  UContrib 

Conv 1.00 
1.00 

0.93 
0.98 

1.00 
1.00 

1.00 
1.00 

0.75 0.81 
HVol 0.85 0.84 1.00 0.83 

Diversity 

 
1.00 0.16 1.00 

 
0.00 1.00 0.10 1.00 0.28 0.00 0.00 

 
0.07 0.00 1.00 0.72 0.20 0.06 0.00 0.04 

Speed 0.12 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.02 0.00 0.99 0.06 0.00 1.00 0.77 0.00 0.00 0.00 0.00 
 

  
Contrib 

 
1.00 1.00 1.00 1.00 1.00 1.00 

 
0.01 0.97 0.10 0.96 0.97 

 
1.00 0.80 1.00 1.00 

 
0.00 

   
1.00 1.00 

   

Stone- 

Gate 

Quality 
UContrib 1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

0.06 
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0.96 0.16 

0.11 

0.96 0.97 1.00 
1.00 

1.00 

0.75 
0.77 
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1.00 

1.00 

1.00 
1.00 

1.00 

0.00 
0.00 

0.00 

 
0.25 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

0.20 

0.12 

Conv 1.00 

1.00 

1.00 

1.00 

1.00 

1.00 HVol 

 
 

Diversity 

 
1.00 0.27 1.00 

 
0.02 1.00 0.11 1.00 

 
0.00 0.01 

 
0.03 0.00 0.99 

 
0.05 0.02 0.00 0.02 

 
Speed 

 
1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00 

 
0.00 1.00 0.00 0.00 1.00 

 
0.00 0.00 0.00 0.00 

 

 

 
Motorola 

 
Quality 

Contrib 

 
0.98 
0.97 

0.98 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
1.00 

1.00 
 

0.71 
0.85 

1.00 
1.00 

1.00 

1.00 

0.73 
0.88 

1.00 
1.00 

1.00 
1.00  

1.00 
1.00 

1.00 

1.00 

 
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.00 
0.00 

0.00 

0.00 

 

 
0.28 

  
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

  UContrib 

Conv 1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

0.93 
0.99 

0.95 
HVol 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Diversity 

  
0.07 

 
0.14 0.02 

 
0.05 

 
0.15 0.01 0.05 

 
0.13 0.00 0.92 

 
0.21 0.19 0.01 0.10 

Speed 0.91 1.00 0.98 1.00 0.96 0.00 1.00 0.95 1.00 0.94 0.00 0.00 0.78 0.00 0.00 1.00 

 
0.00 0.00 0.00 0.00 

 

 

 
RalicP 

 
Quality 

Contrib 

 
0.99 
0.99 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00   

1.00 
1.00 

1.00 

1.00 

 
1.00 
1.00 

1.00 
1.00  

1.00 
1.00 

1.00 

1.00 

 
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.00 
0.00 

0.00 

0.00 

   
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

  UContrib 

Conv 1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

0.78 
0.71 HVol 0.79 0.99 0.79 

Diversity 

 
0.74 0.15 0.77 0.22 0.00 0.74 0.12 0.79 0.19 0.00 0.12 

 
0.13 0.00 0.89 

 
0.12 0.12 0.00 0.02 

Speed 0.07 1.00 1.00 1.00 1.00 0.31 1.00 1.00 1.00 1.00 0.81 0.00 0.78 0.00 0.00 1.00 

 
0.00 0.00 0.00 0.00 

 

 

 
RalicR 

 
Quality 

Contrib 

 
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 
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0.83  

0.83 
0.83 

0.83 
0.83  

1.00 
1.00 

1.00 

1.00 

0.78 
0.74 

0.91 

0.97 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.00 
0.00 

0.00 

0.00 

   
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

  UContrib 

Conv 0.88 
0.71 

1.00 
1.00 

0.99 
0.93 

1.00 
1.00 

1.00 
1.00 

0.78 
0.81 

0.71 
0.97 HVol 0.80 

Diversity 

 
0.92 

 
0.93 

 
0.00 0.96 

 
0.98 

 
0.00 0.11 

 
0.12 0.00 0.89 

 
0.09 0.12 0.00 0.07 

Speed 0.09 1.00 1.00 1.00 0.97 0.18 1.00 1.00 1.00 0.97 0.77 0.00 0.99 0.04 0.00 1.00 0.81 0.00 0.00 0.00 0.03 
 

 

 
Ericsson 

 
Quality 

Contrib 

 
0.12 
0.08 

0.00 
0.00 

0.00 

0.00 

0.00 
0.00 

0.00 
0.00 

0.00 

0.00 

0.04 
0.04   

0.00 
0.00 

0.00 

0.00 

0.00 
0.00 

0.00 
0.00 
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1.00 

1.00 
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1.00 

1.00 
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1.00  

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.88 
0.88 UContrib 

Conv 1.00 0.92 1.00 1.00 0.88 1.00 
0.04  HVol 0.00 0.00 0.00 0.00 0.00 0.00 

Diversity 0.00 0.00 0.20 0.00 0.24 0.00 0.92 0.84 0.96 0.76 

    
0.20 

  
0.28 

 
0.20 0.28 

Speed 0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 

 
0.00 0.00 1.00 

 
0.00 0.00 0.00 0.00 

 

 

MS 

Word 

 
Quality 

Contrib 

 
0.96 
0.96 

0.97 

0.99 

0.04 1.00 
1.00 

1.00 

1.00 

0.13 1.00 
1.00 

1.00 
1.00  

0.00 
0.01 

1.00 
1.00 

1.00 

1.00 

0.01 
0.07 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
1.00 
1.00 

1.00 

1.00 

0.70 1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.00 
0.00 

0.00 

0.00 

   
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

  UContrib 

 Conv 1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

0.84 0.86 0.75 
0.83 HVol 

  Diversity 

 
0.78 0.20 

 
0.26 0.01 0.81 0.22 

 
0.27 0.01 0.12 0.23 0.13 0.00 0.83 

 
0.16 0.18 0.00 0.17 

Speed 1.00 1.00 1.00 1.00 1.00 0.12 1.00 1.00 1.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00 

 
0.00 0.00 0.00 0.00 

 

 

 
Eclipse 

 
Quality 

Contrib 

 
1.00 
1.00 

1.00 

1.00 

0.04 
0.05 

1.00 
1.00 

1.00 

1.00 

 
1.00 
1.00 

1.00 
1.00  

0.00 
0.00 

0.00 

0.00 

 
0.19 

0.03 

0.00 
0.00 

0.00 

0.00 

 
0.30 

0.03 
0.03 

0.02 

0.00 

 
1.00 
1.00 

1.00 

1.00 

0.97 
0.89 

0.84 

0.95 

1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.00 
0.00 

0.00 

0.00 

 
0.08 

0.03 

0.00 

 
1.00 
1.00 

1.00 

1.00 

1.00 
1.00 

1.00 

1.00 

 
0.06 
0.05 

0.02 

0.00 

UContrib 

Conv 1.00 
1.00 

1.00 
1.00 

1.00 
1.00 

1.00 
1.00 HVol 0.94 

Diversity 

 
1.00 0.98 1.00 1.00 0.00 1.00 0.98 1.00 1.00 0.00 0.02 0.94 

 
0.00 1.00 0.83 0.00 

 
0.00 0.00 

Speed 0.00 1.00 0.19 1.00 0.76 1.00 1.00 0.99 1.00 1.00 1.00 0.00 

 
0.02 1.00 1.00 0.92 1.00 0.02 1.00 1.00 

 

 

 
Mozilla 

 
Quality 

Contrib 

 
1.00 
1.00 

1.00 

1.00 

0.18 
0.21 

1.00 
1.00 

1.00 

1.00 

0.79 
0.78 

1.00 
1.00 

1.00 
1.00  

0.00 
0.00 

0.00 

0.00 
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0.00 
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0.00 
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0.82 
0.93 HVol 1.00 1.00 1.00 

Diversity 0.81 1.00 0.99 1.00 0.99 0.00 1.00 0.96 1.00 0.98 0.00 0.08 0.94 0.22 0.00 0.94 

 
0.00 0.13 0.00 0.00 

Speed 0.00 1.00 0.06 1.00 

 
1.00 1.00 0.99 1.00 1.00 1.00 0.00 

 
0.00 1.00 1.00 0.91 1.00 0.00 1.00 1.00 

 

 

 
Gnome 

 
Quality 

Contrib 

 
1.00 
1.00 

1.00 

1.00 
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Conv 1.00 
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1.00 
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1.00 
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1.00 
1.00 HVol 0.94 

Diversity 0.69 1.00 0.99 1.00 0.99 0.00 1.00 0.98 1.00 0.99 0.00 0.12 0.93 0.10 0.00 0.90 

 
0.00 0.07 0.00 0.00 

Speed 0.00 1.00 0.20 1.00 0.77 1.00 1.00 0.99 1.00 1.00 1.00 0.00 

 
0.00 1.00 1.00 0.92 1.00 0.00 1.00 1.00 
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Fig. 2. Correlations of metrics for quality, diversity and speed with size of problem. Perhaps surprisingly, the speed 
of Random search (labelled ‘R’ in the table), widely believed to be ‘fast but low quality’ does not scale well (indicated 
by a negative correlation). Also we observe that while the quality of meta-heuristic NSGA-II (labelled ‘GA’) tends to 
degrade with size, the quality of hyper-heuristic NSGA-II (labelled ‘HGA’) does not. 

Alg. 
Median value correlated with number of requirements 

 Diversity Speed 
UContrib 

HGA -0.21 -0.52 0.21 0.30 0.66 -0.21 

GA -0.61 -0.56 -0.52 -0.48 0.61 0.25 

HSA 0.11 0.02 0.11 0.21 0.25 0.43 

SA -0.05 -0.05 0.30 0.43 -0.25 0.36 

HHC 0.07 -0.02 0.07 0.11 -0.16 0.57 

HC -0.05 -0.05 0.11 0.16 -0.25 0.39 

R 0.26 0.26 0.07 0.52 0.71 -0.61 

 Alg. 
Best value correlated with number of requirements 

 Diversity Speed 
UContrib 

HGA -0.17 -0.44 0.05 0.05 0.52 -0.25 

GA -0.57 -0.57 -0.61 -0.57 0.43 0.75 

HSA 0.32 0.27 0.11 0.21 -0.07 0.43 

SA 0.17 0.12 0.30 0.25 -0.61 0.25 

HHC 0.02 -0.02 0.07 0.16 -0.39 0.57 

HC -0.07 -0.07 0.21 0.11 -0.30 0.21 

R 0.71 0.66 0.34 0.57 0.00 -0.85 

 Alg. 
Mean value correlated with number of requirements 

 Diversity Speed 
UContrib 

HGA -0.25 -0.48 0.21 0.25 0.71 -0.25 

GA -0.61 -0.57 -0.52 -0.48 0.66 0.25 

HSA 0.11 0.05 0.11 0.21 0.25 0.43 

SA 0.02 -0.12 0.25 0.34 -0.39 0.43 

HHC -0.07 -0.02 0.07 0.11 -0.23 0.57 

HC -0.12 -0.02 0.07 0.16 -0.21 0.39 

R 0.61 0.61 0.25 0.52 0.66 -0.66 

 

Alg. 
Median value correlated with number of requirements 

 Diversity Speed 
UContrib 

HGA -0.28 -0.63 0.21 0.41 0.83 -0.18 

GA -0.73 -0.71 -0.61 -0.50 0.73 0.41 

HSA 0.23 0.06 0.31 0.32 0.27 0.63 

SA -0.06 -0.06 0.52 0.62 -0.46 0.59 

HHC 0.18 0.05 0.27 0.29 -0.17 0.78 

HC -0.06 -0.06 0.36 0.31 -0.46 0.62 

R 0.31 0.31 0.32 0.67 0.81 -0.78 

 Alg. 
Best value correlated with number of requirements 

 Diversity Speed 
UContrib 

HGA -0.22 -0.53 0.05 0.06 0.65 -0.18 

GA -0.70 -0.70 -0.78 -0.69 0.54 0.87 

HSA 0.47 0.36 0.31 0.32 -0.17 0.63 

SA 0.19 0.07 0.46 0.40 -0.70 0.40 

HHC 0.05 0.05 0.30 0.31 -0.51 0.79 

HC -0.19 -0.19 0.43 0.34 -0.36 0.38 

R 0.82 0.79 0.54 0.66 0.00 -0.94 

 Alg. 
Mean value correlated with number of requirements 

 Diversity Speed 
UContrib 

HGA -0.38 -0.60 0.21 0.35 0.85 -0.20 

GA -0.80 -0.79 -0.61 -0.50 0.74 0.38 

HSA 0.23 -0.02 0.31 0.32 0.27 0.59 

SA 0.04 -0.22 0.47 0.51 -0.59 0.62 

HHC 0.02 0.05 0.27 0.29 -0.26 0.78 

HC -0.21 -0.17 0.34 0.31 -0.45 0.57 

R 0.74 0.74 0.42 0.67 0.77 -0.81 
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A.  Amandeep,  Gü nther  Ruhe,  and  Mark  Stanford.  2004.    Intelligent  Support  for  Software  Release 
Planning. In Proceedings of the 5th International Conference on Product Focused Software Pro- 
cess Improvement (PROFES ’04) (LNCS), Vol. 3009. Springer, Kansai Science City, Japan, 248–262. 
DOI:http://dx.doi.org/10.1007/978-3-540-24659-6  18 
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José  del Sagrado, Isabel Marı́a del Á guila, and Francisco Javier Orellana. 2015.   Multi-objective Ant 
Colony Optimization for Requirements Selection. Empirical Software Engineering 20, 3 (June 
2015), 577–610.  DOI:http://dx.doi.org/10.1007/s10664-013-9287-3 

Thiago do Nascimento Ferreira and Jerffeson Teixeira de Souza. 2012. An ACO approach for the Next 
Release Problem with Dependency among Requirements. In Proceedings of the 3rd Brazilian Work- 
shop on Search-Based Software Engineering (WESB ’12). Natal, RN, Brazil. 

Olive Jean Dunn. 1961. Multiple Comparisons Among Means. J. Amer. Statist. Assoc. 56, 293 (1961). 

Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and Antonio J. Nebro. 2011. A Study  
of the Bi-Objective Next Release Problem. Empirical Software Engineering 16, 1 (February 2011), 
29–60.  DOI:http://dx.doi.org/10.1007/s10664-010-9147-3 

Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, and Antonio J. Nebro. 2009. A Study of the Multi-
Objective Next Release Problem. In Proceedings of the 1st International Symposium on Search 
Based Software Engineering (SSBSE ’09). IEEE, Cumberland Lodge, Windsor, UK, 49–58. 
DOI:http://dx.doi.org/10.1109/SSBSE.2009.21 

Martin S. Feather, Steven L. Cornford, James D. Kiper, and Tim Menzies. 2006. Experiences using 
Visualization Techniques to Present Requirements, Risks to Them, and Options for Risk Mitigation. 
In Proceedings of the International Workshop on Requirements Engineering Visualization (REV ’06). 
IEEE, Minnesota, USA, 10–10. DOI:http://dx.doi.org/10.1109/REV.2006.2 

Martin S. Feather, James D. Kiper, and Selcuk Kalafat. 2004. Combining Heuristic Search, Visualization 
and Data Mining for Exploration of System Design Space. In The International Council on Systems 
Engineering (INCOSE ’04) - Proceedings of the 14th Annual International Symposium. Toulouse, 
France. 

Martin S. Feather and Tim Menzies. 2002. Converging on the Optimal Attainment of Requirements.  
In Proceedings of the 10th IEEE International Conference on Requirements Engineering (RE ’02). 
IEEE, Essen, Germany, 263–270. DOI:http://dx.doi.org/10.1109/ICRE.2002.1048537 

George Andrew Ferguson. 1965. Nonparametric Trend Analysis: A practical guide for research workers. 
McGill Uniervsoty Press, Montréal, Canada. 
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