
© ACM, 2018. This is the author's version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in ACM

Transactions on Software Engineering and Methodology, Volume 27, 1 (2018)

http://doi.acm.org/10.1145/3196831

An Empirical Study of Meta- and Hyper-Heuristic Search for Multi-Objective
Release Planning

Yuanyuan Zhang, CREST, University College London, UK

Mark Harman, CREST, University College London, UK

Gabriela Ochoa, University of Stirling, UK

Guenther Ruhe, University of Calgary, Canada

Sjaak Brinkkemper, Utrecht University, The Netherlands

A variety of meta-heuristic search algorithms have been introduced for optimising software release planning. How-

ever, there has been no comprehensive empirical study of different search algorithms across multiple different real

world datasets. In this paper we present an empirical study of global, local and hybrid meta- and hyper-heuristic

search based algorithms on 10 real world datasets. We find that the hyper-heuristics are particularly effective. For

example, the hyper-heuristic genetic algorithm significantly outperformed the other six approaches (and with high

effect size) for solution quality 85% of the time, and was also faster than all others 70% of the time. Furthermore,

correlation analysis reveals that it scales well as the number of requirements increases.

Categories and Subject Descriptors: Software Engineering [Requirements/Specifications]

General Terms: Algorithms, Experimentation, Measurement

Additional Key Words and Phrases: Strategic Release Planning, Meta-Heuristics, Hyper-Heuristics

ACM Reference Format:

Yuanyuan Zhang, Mark Harman, Gabriela Ochoa, Guenther Ruhe and Sjaak Brinkkemper, 2017. An Empirical Study

of Meta- and Hyper-Heuristic Search for Multi-Objective Release Planning. ACM Trans. Softw. Eng. Methodol. V, N,

Article A (January YYYY), 32 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Release planning is the problem of determining the sets of requirements that should be in-
cluded in a set of upcoming releases of a software system. In order to plan the software release
cycle, a number of different conflicting objectives need to be taken into account. For example,
the estimated cost of implementing a requirement has to be balanced against the perceived
value to the customer of that requirement. There may be multiple stakeholders, and their
different interpretations of cost and value may lead to complex solution spaces for project
managers.

In order to help decision-makers navigate these complex solution spaces, meta-heuristic
search has been widely studied as a candidate solution technique [Bagnall et al. 2001; Ruhe
and Greer 2003; Zhang et al. 2007]. This work has placed release planning within the general
area of Search Based Software Engineering (SBSE) [Harman and Jones 2001]. Table I sum-
marises the literature on search based release planning, listing the meta-heuristic algorithms
proposed and the datasets on which they have been evaluated.

The different cost and value objectives for each stakeholder are typically measured along
incomparable dimensions. To avoid the familiar problem of ‘comparing apples with oranges’,
much of the previous work on multi-objective release planning has used Pareto optimal search.
The result of such a search is a Pareto front. Each element on this front is a candidate solu-
tion to the release planning problem. All solutions on the Pareto front are non-denominated:
no other solution on the front is better according to all objectives. The Pareto front thus repre-
sents a set of ‘best compromises’ between the objectives that can be found by the search based
algorithm.

The overview in Table I reveals that previous work has evaluated meta-heuristic algorithms
on very few real world datasets. Much of the previous work presents results for only a single

http://doi.acm.org/10.1145/3196831
http://dx.doi.org/10.1145/0000000.0000000

real world dataset. In the absence of real world datasets, many authors have relied upon syn-
thetically generated data. While studies on synthetically generated data can answer experi-
mental research questions [Harman et al. 2012a], they cannot address the essential empirical
question that will be asked by any release planner: “how well can I expect these techniques to
behave on real world data?”

As a result, the state-of-the-art is currently poorly understood: though a variety of differ-
ent algorithms has been proposed, there has been no empirical study across multiple differ-
ent algorithms and multiple different datasets. We wish to address this issue by providing a
thorough empirical study of optimised release planning. We believe that this may help to un-
derstand the different strengths and weaknesses of algorithms for release planning and their
performance on real world datasets. We hope that our study will also provide results against
which future work can compare1.

We report the results of an empirical study using 10 real world datasets. We investigate
multi-objective release planning with respect to these datasets, which we optimise using Hill
Climbing (HC), Genetic Algorithms (GA) and Simulated Annealing (SA).

As a sanity check, recommended for SBSE work [Arcuri and Briand 2011; Harman et al.
2012c], we also report results for purely random search. Random search provides a baseline
against which to benchmark more ‘intelligent’ search techniques. Our study also includes
hyper-heuristic versions of HC, GA and SA. Hyper-heuristics [Burke et al. 2013] are a more
recent trend in search methodologies, not previously been used in any SBSE research. The
findings we report here indicate that they are promising for release planning problems.

Overall, our study thus involves 7 different algorithms. We assess solutions found using
these algorithms according to 4 different measures of solution quality, over each of the 10 real
world datasets. We include standard, widely used, measures of multi-objective solution qual-
ity: convergence, hypervolume and two different assessments of each algorithm’s contribution
to the Pareto front. We also measure diversity and speed. For algorithms that produce good
quality solutions, these are important additional algorithmic properties for decision-makers,
because they need quick answers that enable them to base their decisions on the full diversity
of candidate solutions.

The primary contributions of the paper are as follows:
1. Comprehensive study: We provide a comprehensive study of the performance of global,
local and hybrid meta-heuristic algorithms for release planning problems on 10 real-world
datasets. The results facilitate detailed algorithm comparison and reveal that dataset specifics
can lead to important differences in study findings.
2. Introduce hyper-heuristic search: We introduce and evaluate hyper-heuristic algo-
rithms for release planning. We present evidence that they provide good solution quality di-
versity and speed.
3. Scalability assessment: We investigate the scalability of meta- and hyper-heuristic al-
gorithms on real world datasets for the first time. The results provide evidence that hyper-
heuristics have attractive scalability and that random search is surprisingly unscalable for
release planning.

The rest of the paper is organised as follows: Section 2 sets our work in the context of
related work. Section 3 introduces our three hyper-heuristic release planning algorithms. Sec-
tion 4 explains our experimental methodology. Section 5 presents the results and discusses
the findings. Section 6 analyses threats to validity. Section 7 concludes the paper and lists
some directions for future research.

1Note to referee: if the paper is accepted then we will make all our implementations and data publicly available on

the web to support replication and further study.

Table I. Previous meta-heuristic algorithm studies

Author(s) [Paper] Algorithm(s)
M/S
Objective

Dataset(s)

Bagnall et al. [Bagnall et al. 2001] Hill Climbing Algorithm (HC),
Simulated Annealing (SA),
Greedy Algorithm

Single Synthetic

Feather & Menzies
[Feather and Menzies 2002],
Feather et al. [Feather et al. 2004],
Feather et al. [Feather et al. 2006]

SA Single NASA

Ruhe & Greer [Ruhe and Greer 2003],
Ruhe & Ngo-The [Ruhe and Ngo-The 2004],
Amandeep et al. [Amandeep et al. 2004],
Ruhe [Ruhe 2010]

Genetic Algorithm (GA) Single
&
Multiple

Synthetic

Zhang et al. [Zhang et al. 2007] Non-Dominated Sorting Genetic Algorithm-
II (NSGA-II), Pareto GA

Multiple Synthetic

Durillo et al. [Durillo et al. 2009],
Durillo et al. [Durillo et al. 2011]

Multi-Objective Cellular genetic algorithm
(MOCell),
Pareto Archived Evolution Strategy (PAES),
NSGA-II

Multiple Synthetic,
Motorola

Colares et al. [Colares et al. 2009] NSGA-II Multiple Synthetic
Finkelstein et al. [Finkelstein et al. 2008],
Zhang et al. [Zhang et al. 2011]

NSGA-II,
Two-Archive Algorithm

Multiple Motorola

Zhang & Harman [Zhang and Harman 2010],
Zhang et al. [Zhang et al. 2013]

NSGA-II,
Archive-based NSGA-II

Multiple Synthetic,
RALIC

Sagrado & Á guila

[Del Sagrado and Del Á guila 2009],
Sagrado et al. [Del Sagrado et al. 2010]

Ant Colony Optimization (ACO),
SA,
GA

Single Synthetic

Jiang et al. [Jiang et al. 2010a],
Xuan et al. [Xuan et al. 2012]

Backbone Multilevel Algorithm Single Eclipse,
Mozilla,
Gnome

Zhang et al. [Zhang et al. 2010] NSGA-II Multiple Ericsson
Jinag et al. [Jiang et al. 2010b] Hybrid ACO, ACO, SA Single Synthetic
Kumari et al. [Kumari et al. 2012] Quantum-inspired Elitist Multi-objective

Evolutionary Algorithm (QEMEA)
Multiple Synthetic

Souza et al. [de Souza et al. 2011],
Ferreira & Souza
[do Nascimento Ferreira and de Souza 2012]

ACO Single Synthetic

Brasil et al. [Brasil et al. 2012] NSGA-II, MOCell Multiple Synthetic
Cai et al. [Cai et al. 2012],
Cai & Wei [Cai and Wei 2013]

Domination and Decomposition based
Multi-Objective Evolutionary Optimization
(MOEA/DD),
Strength Pareto Evolutionary Algorithm-II
(SPEA2), NSGA-II

Multiple Synthetic

Tonella et al. [Tonella et al. 2013] Interactive GA (IGA),
Incomplete Analytic Hierarchy Process
(IAHP)

Single ACube

Paixã o & Souza [Paixã o and de Souza 2013a],
Paixã o & Souza [Paixã o and de Souza 2013b],
Paixã o & Souza [Paixã o and de Souza 2015]

GA,
SA

Single Synthetic,
Eclipse,
Mozilla

Li et al. [Li et al. 2014] NSGA-II Multiple Synthetic,
Motorola

Chaves-Gonzá lez & Pérez-Toledano [Chaves-
Gonzá lez and Pérez-Toledano 2015]

Multi-objective Differential Evolution
(MODE)

Multiple Synthetic

Sagrado et al. [del Sagrado et al. 2015],

Á guila & Sagrado [del Á guila and Sagrado
2016]

Greedy Randomized Adaptive Search Proce-
dure (GRASP),
NSGA-II, Multi-objective ACO

Multiple Synthetic

Li et al. [Li et al. 2017] Cellular Algorithm hybridised with Differ-
ential Evolution (CellDE),
Multi-objective Particle Swarm Optimiza-
tion (SMPSO),
Alternating Variable Method (AVM),
GA, (1+1) EA, NSGA-II, PAES, SPEA2

Single
&
Multiple

Synthetic,
a CPS of en-
ergy domain

Karim & Ruhe et al. [Karim and Ruhe 2014] NSGA-II Multiple Ms Word,
Theme-based
RP datasets

Pitangueira et al. [Pitangueira et al. 2017] NSGA-II Multiple
Araú jo et al. [Araú jo et al. 2017] IGA Single

2. THE CONTEXT OF OUR STUDY

Bagnall et al. [Bagnall et al. 2001] first suggested the term Next Release Problem and described
various meta-heuristic optimisation algorithms for solving it. Feather and Menzies [Feather
and Menzies 2002] were the first to use a real world dataset, but this dataset is no longer
publicly available. Ruhe et al. [Amandeep et al. 2004; Ruhe and Greer 2003; Ruhe and Ngo-

The 2004; Saliu and Ruhe 2005] introduced the software release planning process together
with exact optimisation algorithms [Al-Emran et al. 2010; AlBourae et al. 2006; Ruhe 2010;
Ruhe and Saliu 2005] and meta-heuristics, such as genetic algorithms. Van den Akker et al.
[Li et al. 2010; Van den Akker et al. 2005a,b, 2008] and Veerapen et al. [Veerapen et al. 2015]
also studied exact approaches to single objective constrained requirements selection problems.

Zhang et al. [Zhang et al. 2007] introduced the Multi-Objective Next Release Problem for-
mulation as a Pareto optimal problem with a set of objectives. However, Feather et al. [Feather
et al. 2006, 2004] had previously used Simulated Annealing to construct a form of Pareto front
for visualisation of choices. Also, at the same time, Saliu and Ruhe [Saliu and Ruhe 2007] in-
troduced a multi-objective search based optimisation to balance the tension between user-level
and system-level requirements. Subsequently, Finkelstein et al. [Finkelstein et al. 2009] used
multi-objective formulations to characterise different notions of fairness in the satisfaction of
multiple stakeholders with different views on the priorities for requirement choices.

Table I lists the previous meta-heuristic algorithm studies for selecting requirements for
the next release problem. The multi-objective formulations are used in many studies, thereby
adopting different multi-objective meta-heuristic algorithms to find good enough solutions.
Svahnberg et al. [Svahnberg et al. 2010] conduct a systematic review on release planning
models and find that there are a number of release planning models proposed by using simi-
lar techniques. Several hard and soft constraints are also considered as requirement selection
factors. Release planning can also be used for the planning of requirements (backlog items)
based on the agile principles, such as Scrum sprints [Vlaanderen et al. 2011]. Recently, un-
certainty analysis [Li et al. 2014] and risk handling [Pitangueira et al. 2017, 2016] in release
planning are studied to identify the sensitive requirements and evaluate the robustness of the
release plan in the presence of uncertainty.

The multi-objective formulation subsumes previous single objective formulations: any single
objective formulation that has a single objective and no constraints is clearly a special case of
a multi-objective formulation for n objectives where n = 1. Furthermore, a constrained single
objective formulation, in which there is a single optimisation objective and a set of constraints
to be satisfied, can be transformed into a multi-objective formulation in which the constraints
become additional objectives to be met.

The technical details of the various approaches used for constrained single objective formu-
lations and their multi-objective counterparts are, of course, different. However, in this paper
we want to study the most general setting in which requirements optimisation choices might
be cast. Therefore, we adopt the multi-objective paradigm.

In each formulation of the Next Release Problem or the Release Planning problem in the
literature, there is a slightly different formulation. The Next Release Problem (NRP) considers
only a single release, while Release Planning (RP) considers a series of releases. NRP is thus
a special case of the RP. Since RP is the more general case, this is the formulation we shall
study in this paper.

In the RP process, software requirements prioritisaton activity is interrelated with require-
ments selection. Achimugu et al. [Achimugu et al. 2014] and Pitangueira et al. [Pitangueira
et al. 2015] describe existing prioritisation techniques and their limitations. Some of these
strategies arrange the requirements in a hierarchy; some cluster the requirements into sev-
eral groups by different priority levels using a verbal ranking; some rely on relative values by
pairwise comparison using a numerical ranking; some use discrete values, the others use a

{ }

W eight Sta = {ws1, . . . , wsj , . . . , wsm} where wsj ∈ [0, 1] and
m
j=1 wsj = 1.

≤ ≤
≤ ≤

≤ ≤ { }

{ } ∈ { }
≤ ≤

continuous scale. One of the advantages of a numerical ranking is that it can be sorted. These
priority-based approaches usually assign a rank order or level to each requirement from the
‘best’ to the ‘worst’. Such a greedy based approach sorts and provides a single prioritised re-
quirements list. The top n requirements on the list are selected for a release plan according to
resource availability. It only produces one single “best” solution. A single solution to a complex
problem is less likely to reflect the actual scenarios when compared to the sets of structured
diverse optimal (or near optimal) solutions. Furthermore, the solutions produced by a greedy
algorithm are known to be suboptimal but not necessarily globally optimal. Therefore, greedy
solutions are not preferred due to their sub-optimality.

Compared with these priority-based methods, we can provide more than one (usually many)
optimal alternative solutions within a certain criterion. As such, the requirements engineer
has the opportunity to observe the impact of including or excluding certain requirements, and
can use this to choose the best from the different alternatives, without affecting the quality
of solutions. Furthermore, in the RP decision making process, by identifying requirements
and stakeholders’ properties (Section 2.1) and clarifying specific objectives (Section 2.2), the
decsions can be made in a proactive and rational manner, as opposed to just based on the
intuition and experience.

2.1. Representation of Release Planning

Requirements management in RP is formulated as a combinatorial optimisation problem.
Approaches to the NRP represent the solution as a bitset of requirements for the next release.
The RP formulation, being more general, is typically represented as a sequence of integers
that denote release sequence numbers.

It is assumed that for an existing software system, there is a set of stakeholders, C = c1, . .
. , cj , . . . , cm whose requirements are to be considered in the development of the releases of the
software. Each stakeholder may have a degree of importance for the project that can be
reflected by a weight factor. A more important stakeholder has a higher level of influence on
the project, thereby deserving greater weight. There are a number of techniques to prioritise
lists of stakeholders [Lim 2010], which can be used to produce the weight set. The set of

relative weights associated with each stakeholder cj (1 ≤ j ≤了m) is denoted by a weight set:

The set of requirements is denoted by: = r1, . . . , ri, . . . , rn . The study is based on the as-
sumption that the requirements represented in the paper are at a similar level of abstraction.
They are not stated in too much detail nor on too high a level of abstraction. If the level differs
among the requirements, there might be difficulty in selecting the correct subset of require-
ments for RP. The resources needed to implement a particular requirement can be denoted as
cost terms and considered to be the associated cost to fulfil the requirement. The cost vector
for the set of requirements ri (1 i n) is denoted by: Cost = cost1, . . . , costi, . . . , costn .
These cost are estimates of the development effort and other resources required. Usually, not
all requirements are equally satisfied to a given stakeholder. The level of satisfaction can be
denoted as a value to the stakeholders’ organisations. Each stakeholder cj (1 j m) assigns
a value to requirement ri (1 i n) denoted by: v(ri, cj) where v(ri, cj) > 0 if stakeholder cj
desires implementation of the requirement ri and 0 otherwise. The satisfaction v(ri, cj) for the
stakeholder could be represented as different terms in practice, such as revenue or the degree
of importance.

There are S (S > 1) possible releases considered in the model, which allow us to look further
rather than just the next release. In each release s (1 s S), a release plan vector Plan =
p1, . . . , pi, . . . , pn 0, . . . , S determines the requirements that are to be implemented in
release s. In this vector, pi = s if requirement ri is delivered in release s and 0 if requirement

呢 { }

{ }

{ }
≤ ≤

{ }

{ }
{ }

{ }

{ } ∈ { }

≤ ≤

「

「

ri is not selected in the first s releases. The smaller the number of release s is, the earlier

the requirement ri is selected. That is, the RP representation we used is an integer sequence in
which each index position denotes a requirement number. The value stored at this index
denotes the assignment of a release number into which the corresponding requirement will be
deployed. For example, a release plan has the three-release formulation (S = 3) with 4
requirements (n = 4) Plan = 2, 0, 3, 1 . That is, requirement r1 is selected in the second release;
requirement r2 is not selected in any release; and so on.

The set of relative weights associated with each release s (1 s S) is denoted by a weight
set: Weight Rel = wr1, . . . , wrs, . . . , wrS . The weight set Weight Rel represents the relative
importance levels among consecutive (time periods) releases and denotes how much more
important it is to include a requirement ri in (a former time period) release s than in (a latter
time period) release S. In this paper we use the three-release formulation S = 3, with Weight
Rel = 5, 3, 1 for the first, second and third releases respectively. When we consider the impact
of release weight, the first release is the most important with the highest weight and the third
release is the least important.

The decision vector →−xi = x1, . . . , xn 0, . . . , S considers both release plan vector P lan
and the impact of release weight Weight Rel on a release plan. Such as, a release plan has the
three-release formulation (S = 3) with 4 requirements (n = 4) Plan = 2, 0, 3, 1 and the weight
of the releases is Weight Rel = 5, 3, 1 . In this case, the decision vector of the release
plan is →−xi = 3, 0, 1, 5 . The decision vector will be used in the fitness functions defined in
Section 2.2.

For this empirical study, the overriding concern was to use real world data sets, in an at-
tempt to overcome the limitations of previous studies, which have largely been forced to rely on
synthetic datasets due to the unavailability of real-world requirements data. The use of such
real-world data sets means that we have to work with the data available, rather than
synthesising data to fit the model. The advantage is that our results reflect those that could be
attained from real world data, but the disadvantage is that some aspects of requirements
models cannot be experimented with. In particular, because our datasets do not contain re-
quirements dependencies, nor release capacity information, we are forced to abandon any
attempt to study the impact of these aspects on the results obtained. What we sacrifice in
richness of models used, we gain in applicability of results to real world settings.

2.2. Fitness Functions

In any approach to SBSE it is necessary to choose the objectives, which define the fitness
function(s) used to guide the search [Harman et al. 2012b,c].

The RP problem seeks a weighted assignment that optimises for a set of objectives. Each pa-
per has its own formulation of the objectives to be met in arriving at solutions to the NRP/RP
problem considered. However, there are also some generalisations that can be undertaken for
different objectives, because all approaches to NRP/RP involve a set of objectives to be
maximised and a set of objectives to be minimised.

The overall value of a given requirement ri (1 i n), such as Revenuei can be calculated by:
m

Revenuei = wsj · v(ri, cj) (1)
j=1

The fitness functions are defined as follows:

n

Maximize f1(→−x) = Revenuei · xi (2)
i=1

「

n

Minimize f2(→−x) = Costi (if xi > 0) (3)
i=1

The objectives of Revenue and Cost in the fitness functions can also be replaced by other
objectives. The specific choice of objectives to be maximised or minimised are parameters to
the search based optimisation algorithm used to search for requirement sets. The algorithms
use these objectives as fitness functions that guide the search. We can compare different al-
gorithms across different datasets, because the algorithm itself does not change, merely the
fitness functions used to guide the search.

3. HYPER-HEURISTIC SEARCH

Hyper-heuristics are “automated methodologies for selecting or generating heuristics to solve
computational search problems” [Burke et al. 2010]. The main motivation is to reduce the
need for a human expert in the process of designing optimisation algorithms, and thus raise
the level of generality in which these methodologies operate. Hyper-heuristics [Burke et al.
2013] are search methodologies, more recently introduced to the optimisation literature than
the meta-heuristics that have been enthusiastically adopted by the SBSE community [Har-
man et al. 2012b; Rä ihä 2010]. Hyper-heuristics are modern search methodologies successfully
applied in Operational Research domains such as timetabling, scheduling and routing [Burke
et al. 2013]. In the optimisation literature, hyper-heuristics have been widely applied to sin-
gle objective problem formulations, but there have been very few attempts at tackling multi-
objective problems . In the wider literature on engineering and design in general (rather than
software engineering in particular), hyper-heuristics have been widely applied. However, even
in this wider context, the design and engineering problems attacked using hyper-heuristics
have tended to be single objective problems, with only a very few previous attempts to ap-
ply hyper-heuristics to multi-objective problems [Burke et al. 2005; McClymont and Keedwell
2011]. This paper is thus the first paper in the requirements engineering literature to explore
the use of hyper-heuristics and one of the few papers in the optimisation literature to use
multi-objective hyper-heuristics.

Hyper-heuristics differ from meta-heuristics because they search the space of heuristics or
meta-heuristics rather than the space of solutions. Some well-known meta-heuristics, such as
Genetic Algorithms (GAs) [Holland 1975] and Genetic Programming (GP) [Poli et al. 2008],
use a strategy or procedure to guide and explore the solution space, so that they are able
to come to an acceptable and reasonable solution to a problem. Instead, hyper-heuristics en-
capsulate problem specific information using a pool of low-level heuristics (known as search
operators). The search space of hyper-heuristics is the permutation of the designed search
operators. Using hyper-heuristics, we seek the sequence of operators and to find good-enough
heuristics in a given situation rather than providing a solution to the problem directly. Search
operators can be of different kinds (e.g. mutation, recombination, etc). For combinatorial opti-
misation problems such as NRP/RP, several variation operators, involving swapping, inserting
or deleting components according to different criteria are often used [Ochoa et al. 2012]. It is
not easy to know before hand which of these operators will be the best suited for the problem
at hand.

3.1. Heuristic search operators

We designed and implemented 10 search operators for hyper-heuristic release planning, rang-
ing from simple randomised neighbourhoods to greedy and more informed and smarter proce-
dures. These are explained in Figure II. The first two (Random and Swap) represent standard
mutation operators (i.e. they perform a small change on the solution, by swapping or changing

Table II. The description of 10 search operators

Operator Description

Random With uniform probability, select a requirement and change its re-
lease number to another release version (uniformly selected)

Swap Swap the release numbers of two requirements in the sequence
Delete Add With uniform probability, exclude a requirement from the current

release, and add it to another release (also selected with uniform
probability)

Delete Add Best With uniform probability, select a requirement, r, and an objective
o, replacing r with the best performing requirement according to
objective o

Delete Worst Add With uniform probability, select a requirement, r, and an objective
o, replacing r with the worst performing requirement according to
objective o

Delete Worst Add Best With uniform probability, select an objective o, and a release num-
ber, n, replacing the worst performing requirement according to
objective o at release n with the best performing requirement (ac-
cording to o)

Delay Ahead With uniform probability, select two requirements r1 (for a release
other than the first) and r2 (for a release other than the last). Move
the release date of r1 to a later release number (the number se-
lected with uniform probability from those that follow its current
release position). Move the release number of r2 forward to an
earlier number (selected with uniform probability from those that
precede it). That is, r1 is ‘delayed’ and r2 is ‘advanced’

Delay Ahead Best With uniform probability, select a requirement, r, and an objective
o. Delay r and advance the best requirement according to objective
o

Delay Worst Ahead With uniform probability, select a requirement, r, and an objec-
tive o. Delay the release of the worst requirement (according to
objective o) and advance the release of r

Delay Worst Ahead Best With uniform probability, select an objective o. Delay the release of
the worst requirement and advance the release of the best (‘worst’

 and ‘best’ according to objective o)

solution components), while the remaining 8 follow the so-called ‘ruin-recreate’ (also known as
the ‘destruction-construction’) principle, which has proved successful in real-world optimisa-
tion problems [Pisinger and Ropke 2007]. Ruin-recreate operators partly decompose (ruin) the
solution and subsequently recreate it, incorporating problem-specific reconstruction heuristics
to rebuild the solutions from their decomposed fragments.

The search space of hyperheuristics is the permutation of the designed search operators.
When considering a pool of operators, a mechanism needs to be devised in order to select
and apply them during the search process. Simple ways are to select operators uniformly
at random, or to follow a fixed sequence. More interesting, adaptive selection mechanisms
can be applied, which gather information and learn from the search process, in the form of re-
ward statistics from previous steps, to inform the operator choice. Adaptive Operator Selection
(AOS), is a recently coined term given to such approaches [Fialho et al. 2008, 2010], which is
described below.

3.2. Adaptive Operator Selection

An adaptive operator selection scheme consists of two components, called the ‘credit assign-
ment’ mechanism and the ‘selection’ mechanism [Fialho et al. 2010]. Credit assignment in-
volves the attribution of credit (or reward) to the hyper-heuristic’s operators, determined by
their performance during the search process.

Our hyper-heuristic release planners use the scheme proposed by Fialho et al. [Fialho et al.
2008], known as ‘extreme value credit assignment’, which is based on the principle that in-
frequent, yet large, improvements in the objective score are likely to be more effective than
frequent, small improvements.

Therefore, it rewards operators that have had a recent large positive impact on the objective
score, whilst consistent operators that only yield small improvements receive less credit, and
therefore have lower chances of selection.

The impact on the objective score is measured by the fitness improvement, concerning the
quality (fitness value) of the offspring with those of its parents [Fialho et al. 2008]. In the case
of multi-objective hyper-heuristic release planning, there are multiple fitness values evalu-
ated due to the multi-objective fitness functions. In this work, the fitness improvement is
calculated by the fitness hypervolume differences between the offspring and its parents. Fit-
ness hypervolume is the volume covered by the solutions in the objective space [Zitzler and
Thiele 1999].

Formally, an estimate of the current operator k credit is denoted as q̂k,t. The current fitness
improvement is added to a window in a First In First Out (FIFO) manner. The size of window
is W . The fitness improvement observed at each iteration t is denoted as ∆(t). ti denotes the
time iteration where operator k was seleted. The best (maximal) fitness improvement observed
in the sliding window is rewarded for operator k. That is, the credit assigned for operator k is
calculated as:

q̂k,t = argmax {∆(ti), i = 1, . . . , W } (4)

The credit assignment mechanism needs to be coupled with a selection mechanism that uses
the accumulated credits to select the operator to apply in the current iteration. Most operator
selection rules in the literature attach a probability to each operator and implement a ran-
domised process to select the operator according to these probabilities. We used the simplest
of these rules, called Probability Matching [Thierens 2005], which corresponds to the well-
known roulette wheel selection used by meta-heuristic SBSE work [Harman et al. 2012b].

More formally, let K denote the number of search operators. The Probability Matching
selection mechanism maintains a probability vector that is updated at each iteration t,
(pk,t)k=1,...,K . The goal is to make pk,t proportional to q̂k,t.

An operator that performs poorly during a long period of the search will have its quality
estimate decreased to a low value (possibly even zero). To avoid such operators becoming
completely ignored (which may be undesirable since it would reduce diversity), we assign a
minimal selection probability pmin > 0. Equation 5 describes the Probability Matching rule
we used:

p = p + (1 − K ∗ p
q̂k,t+1

了 (5)

4. EXPERIMENTAL SET UP

k,t+1 min min K

k=1 q̂k,t+1

This section explains our experimental methodology. We motivate the choice of algorithms
studied (Section 4.1); the datasets to which we apply these algorithms (Section 4.2); the met-
rics we used to assess quality, diversity and speed (Section 4.3); the inferential statistical tech-
niques used to assess differences and correlations (Section 4.4); and the research questions we
answer (Section 4.5).

4.1. Algorithms

More than 15 different meta-heuristic algorithms have been used in SBSE research [Harman
et al. 2012b]. Many of these have also been used in research on the NRP/RP (as outlined in
Table I). Indeed, all of these 15 (and many more meta-heuristics [Burke and Kendall 2005])

)

Table III. Overview of meta- and hyper-heuristic algorithms applied

Algorithm Mechanism Move Strategy in the search space Operator

R Random search Random (Uniform distribution) -
HC

Local search
Neighbourhood-based

Random generating neighbourhood
HHC 10 Search operators (Table II) generating neighbourhood
SA Neighbourhood-based &

Temperature controlling
Random generating neighbourhood

HSA 10 Search operators (Table II) generating neighbourhood

GA
Global search Population & Sorting-based

Single-point Crossover & Uniform Mutation
HGA Single-point Crossover & 10 Search operators (Table II)

could be used, in principle, since the formulation of the problem is sufficiently generic that
any search based technique could be applied.

We chose to investigate the performance of six search techniques: three meta-heuristics, Hill
Climbing, Simulated Annealing and the Nondominated Sorting Genetic algorithm (NSGA-II),
which we denote HC, SA and GA respectively, together with hyper-heuristic versions of each
of the three meta-heuristics, which we denote HHC, HSA and HGA. The motivation for this
choice derives from the way in which computational search algorithms can be classified as
either ‘local’ or ‘global’. Local search techniques, such as HC, tend to be fast, but they can
become stuck in a local optimum, thereby producing sub-optimal solutions. By contrast, global
search techniques, such as genetic algorithms, may be computationally more expensive, but
they incorporate mechanisms to avoid local optima confinement. In this study, HC is selected
as a representative for local search algorithms.

Many techniques embody elements of both local and global search, with the local search
facilitating ‘exploitation’ in the search landscape, while the global search facilitates ‘explo-
ration’ of the landscape [Crepinsek et al. 2013]. One widely studied algorithm that does this is
SA, which augments the basic HC approach with a ‘cooling’ coefficient that mimics cooling in
annealing processes [van Laarhoven and Aarts 1987]. This process can enable the algorithm
to escape local optima. The probability that the search will accept and less fit neighbouring
solution is directly proportional to the temperature. This temperature decreases as the simu-
lated annealing process progresses until, in the limit, the search becomes a pure hill climb. In
the SBSE literature, SA is the most widely used compromise between global and local search
[Harman et al. 2012b]. Therefore, SA is chosen to represent a local search with a “global strat-
egy”.

The NSGA-II algorithm (denoted as GA in the paper) is selected since it is the most widely
used global algorithm for the multi-objective optimisation problems. We also use purely Ran-
dom Search (R) to provide a baseline against which to benchmark more ‘intelligent’ search
techniques.

Our choice of the three meta-heuristic algorithms reflects our desire to sample from the set
of possible algorithm choices, three that, in some sense, ‘cover’ the spectrum of algorithmic
behaviours from local to global search. As Table I shows, all three of these meta-heuristic
search techniques have been proposed and studied for release planning problems. We also
wish to study the effect of hyper-heuristics as well as meta-heuristics, motivating our choice
of the three hyper-heuristic variants of the three meta-heuristics we selected for study. Table
III provides an overview of meta- and hyper-heuristic algorithms used in the study.

In the hyper-heuristic algorithms (HGA, HSA and HHC), the mutation operator of the meta-
heuristic version (GA, SA and HC respectively) is replaced by the adaptive operator selection
mechanism outlined in Section 3.2. That is, HGA, HSA and HHC search the space of the
permutation of 10 search operators described in Table II. In the meta-heuristic algorithms, the
mutation operator mutates each gene of a chromosome with a certain mutation probability.
The hyper-heuristic algorithms adaptively choose different search operators based on credit
assignment feedback and the Probability Matching selection mechanism in the search process.
The sequences of search operators generated are the heuristics to mutate the chromosomes in

the solution space, thereby generating the new offsprings of solution chromosomes. The length
of sequences of search operators can be fixed or adaptive. The length of operator sequences is
fixed to 1 in the experiment. That is, one operator is applied to mutate a chromosome at each
time with a certain probability.

For SA, HC, HSA and HHC, a random seeding is used for generating the initial population.
10% of genes in a chromosome are randomly selected and mutated to generate the neighbour-
hood in SA and HC. For the GA and HGA, we set the population size to 100 and the number of
generations to 50. Single-point crossover is used for GA and HGA. The crossover probability
is set to Pc = 0.8 and mutation probability to Pm = 1/n (where n is the chromosome length of
GA) is used. To ensure a fair comparison, SA, HSA, HC, HHC and R were all given the same
number of fitness evaluations as GA and HGA. The non-dominated solutions in the popula-
tion based on multiple objectives are selected as the best solutions for each algorithm. All the
algorithms were implemented in Python by the authors.

4.2. Datasets

We used 10 datasets, of which 7 are drawn from real world requirements selection problems
in a variety of different organisations. Of these, 5 have been used in separate previous studies
in the literature and 2 (StoneGate and MS Word) are newly introduced for the first time
here. The other 3 datasets contain bug fixes requested for Eclipse, Mozilla and Gnome. They
might be regarded as ‘pseudo real world’; they are taken from real world applications but it is
debatable whether they truly denote ‘requirements’.

We include these three in the study since they have previously been used to act as a sur-
rogates for real world datasets. Their use in previous work was motivated by the need to
overcome the difficulty of finding sufficiently many real world datasets on which to evaluate
[Xuan et al. 2012]. A summary of each dataset studied in this paper can be found in Figure 1.
Previous studies have included at most two real world requirements datasets (or all three of
the bug fixing pseudo-real world datasets), often augmenting these with synthetic data to

compensate for the lack of real world data. Our study is therefore the most comprehensive
study of meta-heuristics for release planning so far reported in the literature. Our use of these
10 datasets is sufficient to allow us to ask an important research question that has, hitherto,
eluded the research community: ‘how well do the algorithms scale with respect to the size of
the real world requirements problem to which they are applied?’.

Baan dataset is extracted from the 5.2 release plan of an ERP product developed by about
600 software engineers and staff located in the Netherlands, India, Germany and the USA.
StoneGate is a dataset stemming an industrial software security release planning project with
100 feature, including 91 resources and 5 different resource types considered for planning. Mo-
torola dataset concerns a set of requirements for hand held communication devices and the
stakeholders are mobile service providers in the UK. RalicP and RalicR datasets are extracted
from RALIC (Replacement Access, Library and ID Card) project at University College London,
which initiated to replace the existing access control system at UCL and consolidate the new
system with library access and borrowing. According to two different requirements priority
measurements, RalicP and RalicR datasets were collected. Ericsson dataset is extracted from
questionnaire forms for test management tools from Ericsson, which were completed by the
groups of Ericsson software engineers to measure how important each requirement is. RP
Benchmark dataset is a (synthetic) benchmark problem and included 198 features, 8 stake-
holders and 30 different resource types. MS Word data set is for planning 50 features consid-
ered for release planning of a text editing system. Eclipse, Mozilla and Gnome datasets are
the RP instances of the bug repositories for Eclipse (which is an integrated development envi-
ronment (IDE)), Mozilla (which is an open source project including a set of web applications)
and Gnome (which is a desktop environment and development platform).

Name and Source
of Dataset

Number of Objectives Summary Description of Dataset
and Software System R SH Max Min

Baan [Van den Akker et al. 2008] 100 17 Revenue Cost ERP product developed by 600 engineers spread
over four countries

StoneGate 100 91 Sales Value Impact Industrial software security release planning
project (confidential source)

Motorola [Zhang et al. 2011] 35 4 Revenue Cost UK service provider requirements for range of
handheld communication devices

RalicP [Zhang et al. 2013] 143 77 Revenue Cost Library and ID Card System in current use at
University College London (UCL)

RalicR [Zhang et al. 2013] 143 79 Revenue Cost Library and ID Card System in current use at
UCL (a variant of RalicP)

Ericsson [Zhang et al. 2010] 124 14 Importance
(for today &
the future)

Cost Requirements for a software testing tool for now
and into the future

MS Word 50 4 Revenue Urgency Text editing system for use with Microsoft Word

Eclipse [Xuan et al. 2012] 3502 536 Importance Cost The Eclipse environment with bug fix requests
treated as requirements

Mozilla [Xuan et al. 2012] 4060 768 Importance Cost The Mozilla system with bug fix requests treated
as requirements

Gnome [Xuan et al. 2012] 2690 445 Importance Cost The Gnome desktop system with bug fix requests
treated as requirements

Fig. 1. The 10 datasets used and their numbers of Requirements (R), stakeholders (SH) and objectives to be Max-
imised (Max) and Minimised (Min). Those datasets with accompanying citations are taken from previous studies;
those without citations are used in this paper for the first time.

When reviewing the datasets, we speculated that ‘revenue’ and ‘sales value’ were likely

to be similar objectives. However, they come from different datasets which originated from
different organisations, so it is likely that different terminology and possibly slightly different
definitions would be pertinent to each. From an optimisation point of view, all that matters is
to have a quantification of each objective, since this is the input to the search.

The choice of the objectives to be considered in any multi-objective NRP/RP instance is
governed by the specifics of the dataset and scenario for which the search based optimiser
seeks requirement sets. In the 10 datasets used in this paper the objectives are to maximize
our Revenue, Sales Value and Importance, while those to be minimised are Cost and effect
on Urgency. All that we require of the dataset is the identification of the objective is to be
minimised and maximised. The estimates of requirements are provided by the stakeholders
of projects. Figure 1 provides descriptive statistics that characterise the datasets, their sources
and the requirement optimisation objectives pertinent to each dataset.

In all but one case, the problem is a bi-objective problem in which there is a single objective
to be maximised (such as revenue) and a single objective to be minimised (such as cost). The
exception is the Ericsson dataset. It has two ‘importance’ objectives to be maximised: one for
the present and one for the future. The third objective is to minimise the cost. The Ericsson
dataset includes questionnaire forms for test management tools, which were completed by
14 stakeholders (each stakeholder was a software testing sub-organisation within Ericsson)
[Zhang et al. 2010]. To complete the questionnaires, the 14 stakeholders measured how im-
portant each requirement is to them in two ways. One is to evaluate the degree of importance
for today, the other is the importance for the future. This approach was adopted by Ericsson
and not suggested by the authors. Each measurement was graded using four levels: ignore,
low, medium or high. However, the quality of these estimates might be inaccurate or uncer-
tain, thereby leading to one possible threat to construct validity. The issue will be discussed
in Section 6.

4.3. Performance Metrics

We use 4 quality metrics to compare the performance of each of the 6 search based opti-
misation algorithms (and random search). In most multi-objective optimisation problems the

了

−

i=1

k=1
k

j=1
j

了M

k=1

≤ ≤

≤ ≤ −

globally optimal Pareto front is unobtainable. Release planning is no exception to this. In such
situations it is customary to construct a ‘reference’ front. The reference front is defined to be
the largest nondominated subset of the union of solutions from all algorithms for all the runs
studied. As such, the reference front represents the best current approximation available to
the true location of the globally optimal Pareto front. Three of the quality metrics we use (Con-
tribution, Unique Contribution and Convergence) are computed in terms of each algorithm’s
distance from or contribution to this reference front:
Contribution (denoted ‘Contrib’ in our results tables) for algorithm A is the number of solu-
tions produced by A that lie on the reference front. This is the simplest (and most intuitive)
quality metric. It assesses how many of the best solutions found overall are found by algorithm
A.
Unique Contribution (denoted ‘UContrib’ in our results tables) for algorithm A is the num-
ber of solutions produced by A that lie on the reference front and are not produced by any
algorithm under study except A. This is a variant of the ‘Contribution’ metric that takes ac-
count of the fact that an algorithm may contribute relatively few of the best solutions found,
but may still be valuable if it contributes a set of unique best solutions that no other algorithm
finds.
Convergence (denoted ‘Conv’ in our results tables) for algorithm A is the Euclidean distance

between the Pareto front produced by A and the reference front. More formally, C =

N

i=1
N di

,

where N is the number of solutions obtained by an algorithm and di is the smallest Euclidean
distance of each solution i to the reference Pareto front. The smaller the calculated value of
C, the better the convergence. This metric C = 0 if the obtained solutions are exactly on the
reference Pareto front. In this paper, the reported value of Conv is normalised and maximised
Conv = 1 normalised(C), so the higher numbers of Conv mean better convergence.
Hypervolume (denoted ‘HVol’ in our results tables) is the volume covered by the solutions in
the objective space. HVol is the union of hypercubes of solutions on the Pareto front [Zitzler
and Thiele 1999]. For each solution i, a hypercube vi is formed with the solution i and a
reference point R. The reference point is usually a vector of the worst fitness values. More
formally, HV ol = volume(

JN
vi). The larger the value of HVol, the better the hypervolume.

The normalised fitness values are used for calculating HVol. By using a volume rather than a
count (as used by the ‘contribution’ metrics), this measure is less susceptible to bias when the
numbers of points on the two compared fronts are very different.

Quality of solutions is clearly important, but diversity is also an important secondary crite-
rion for algorithms that exhibit acceptable solution quality. We measured the diversity using
a standard metric introduced by Deb [Deb 2001]:
Diversity measures the extent of distribution in the obtained solutions and spread achieved

了M
d +
了N−1

|d −d|

where k(1 k M) is the number of objectives for a multi-objective algorithm. dk is the
Euclidean distance to the extreme solutions of the reference Pareto front in the objective space.
N denotes the number of solutions obtained by an algorithm. dj (1 j N 1) is the Euclidean
distance between consecutive solutions, d is the average of all the distance dj . The smaller the
value of ∆, the better the diversity.

Finally, in order to assess the compensation or effort required to produce the quality and
diversity of solutions observed, we measure the computational effort:
Speed is measured in terms of the wall clock time required to produce the solutions reported,
averaged over 30 executions. All experiments were carried out on a desktop computer with a
6 core 3.2GHz Intel CPU and 8GB memory.

d +(N−1)dk

between approximated solutions and the reference front [Deb 2001]. ∆ = ,

−

max− min
− .

In order to facilitate a more easy comparison of the six overall metrics used in our study, we
normalise all of them to lie between 0.0 and 1.0 and convert all of them to ‘maximising metrics’
(such that higher values denote superior performance). For example, ‘speed’ (to give it a name
that captures it ‘maximising form’) is computed as 1 T , where T is the normalised wall clock
time. Thus, in all tables of data presented in this paper (including the correlation analyses)
the reader can safely assume ‘higher means better’. We normalise a value x, drawn from a
set of observed values, ranging from xmin to xmax, using the standard normalising equation:
 x xmin

x x

Our algorithms are executed 30 times each to cater for their stochastic natures, so the
normalised metric values reported are averaged (using mean and median) over these 30 runs.
Averaging means that there is often no value reported in our results that happens to be exactly
1.0 or exactly 0.0, despite normalisation using maxima and minima.

4.4. Statistical Testing

The selection of appropriate statistical techniques that provide robust answers to the research
questions we seek to address is vital to the construct validity of our investigation. Therefore,
we explain and motivate the statistical testing techniques used to investigate the research
questions in our study. We need to take account of the stochastic nature of each algorithm
due to their partial reliance on randomisation. This is a well-known phenomenon for which it
is widely advised [Arcuri and Briand 2011; Harman et al. 2012c] that inferential statistical
testing should be used as an appropriate way to compare algorithm performance. The pseudo
random number sequence used by the algorithms is the cause of uncertainty. We are therefore
sampling over the population of pseudo random number sequences [Harman et al. 2012c].

We use inferential statistical testing techniques to draw inferences about the population of
all possible executions of the algorithm on a particular instance, based on a sample of these
executions. In our experiments we set our sample size to 30. That is, each of the 7 algorithms is
executed 30 times on each of the 10 datasets. The null hypothesis is that all 7 algorithms have
the same performance. Rejection of the null hypothesis can tell us whether the algorithms
performance are significantly different to one another.

We use nonparametric statistical techniques, because we had no knowledge of the distribu-
tion of the population from which we sample executions, thereby increasing the robustness
of our statistical inferences [Arcuri and Briand 2011; Ferguson 1965; Harman et al. 2012c].
Many widely used nonparametric statistical techniques, such as, Mann-Whitney [Mann and
Whitney 1947] (and closely-related Wilcoxon [Wilcoxon 1945]) test and the Kruskal-Wallis test
[Kruskal and Wallis 1952], make fewer assumptions than parametric tests do, nevertheless
assume that variance is consistent across all populations [Zimmerman 2000]. In our exper-
iments, we can make no such assumption about our data. Therefore, we use Cliff’s method
[Cliff 1996] for assessing statistical significance. Cliff’s method is not only nonparametric,
but it is also specifically designed for ordinal data. Our research questions are ordinal and
our measurement scales are ordinal [Shepperd 1995]. Furthermore, Cliff’s method makes no
assumptions about the variance of the data, thereby making it more robust.

We use the Vargha-Delaney Â12 metric for effect size (as recommended by Arcuri and Briand

[Arcuri and Briand 2011]). Vargha-Delaney Â12 also makes few assumptions and is highly

intuitive: Â12(A, B) is simply the probability that algorithm A will outperform algorithm B in
a head-to-head comparison.

Most statistical tests produce a test statistic, the value of which must exceed a certain
threshold in order for the observed mean to lie outside the confidence interval defined by the
experimenters’ chosen α level. The α level is the experimenters’ tolerance for Type I errors
(the error of incorrectly rejecting the Null Hypothesis). Often, the test statistic computation
is expressed as a so-called ‘p value’; the value of which must be less than the chosen α level

in order for the experimenter to claim ‘statistical significance’. We have set our α level to the
widely used ‘standard’ value of 0.05. Each comparison of a p value with the chosen α level is
essentially a claim about probability; the probability of committing Type I error (the error of
incorrectly rejecting the Null Hypothesis). However, if the experimenter conducts a series of
tests, then the chances of committing a Type I error increase, potentially quite dramatically,
unless some adjustment (or ‘correction’) is made.

One popular (but not necessarily ideal) adjustment is the Bonferroni correction, which was
first used to control for multiple statistical inferences by Dunn [Dunn 1961]. More recent
techniques have been developed that retain the property of the Bonferroni correction (avoiding
Type I errors), while simultaneously reducing its tendency to increase Type II errors. In our
work we use just such a technique, the Hochberg’s method [Hochberg 1988] for controlling
multiple hypothesis testing. This method ranks the statistical tests applied, adjusting the α
level for each successive test. It is a less conservative adjustment in the Bonferroni correction,
while retaining its ability to avoid Type I errors [Bejamini and Hochberg 1995].

Overall, given that we know little about the distribution of the populations of executions
of the algorithms studied in this paper, we believe that the use of Cliff’s method with the
Hochberg correction provides the most robust and appropriate statistical testing available.

As well as investigating the quality of solutions produced by each algorithm, we also want
to investigate the correlation between the size of the problem instance and the behaviour of
each algorithm. Though we believe there may be correlations of interest, we have no reason to
believe that they will be linear. Furthermore, since our data is measured on an ordinal scale,
the use of the Pearson correlation [Galton 1889; Pearson 1895; Salkind 2007] is inappropri-
ate; we need to choose an ordinal correlation method. In order to ensure robustness of our
conclusions we chose to use both Kendall’s τ [Kendall 1948] and Spearman rank correlation
[Salkind 2007; Spearman 1904], both of which are nonparametric, rank-based assessments of
correlation.

4.5. Research questions

This section explains and motivates the five research questions we ask in our study. When
comparing different algorithms for release planning problems, a natural question to ask is
the quality of the solutions produced, according to the standard measures of multi-objective
solution quality. Our first research question therefore investigates solution quality:

RQ1: Quality: According to each of the 4 quality measures, and on each of the 10 datasets,
which algorithm performs best?

To answer this question we use the Cliff’s inferential statistical comparison, as explained

in Section 4.4 to determine which algorithms significantly outperform others and the Â12

measure of effect size in each case.
Quality of solutions is important, but from the release planner’s point of view a wide di-

versity of candidate solutions may also be important. In the most extreme case, a degenerate
Pareto front (containing only a single solution) may have maximum quality but will have no
diversity and will thus offer the release planner no choice at all. We therefore also investigate
the diversity of solutions produced by each algorithm:

RQ2: Diversity: What is the diversity of the solutions produced by each algorithm?

We used Cliff ’s method to report on statistically significant differences in Diversity and Â12

to assess the effect size of any such differences observed.
Naturally, the computational effort required to produce these solutions is also important.

An algorithm that produces slightly lower quality solutions, but which does so almost instan-
taneously will have different applications to one that produces better quality solutions, but
takes several minutes to produce them. The former can be used in a situation where the re-

lease planner wants to repeatedly investigate ‘what if ’ questions, rebalancing estimates of
cost and value in real time. In this scenario, speed trumps quality, provided quality is suffi-
cient to be acceptable for ‘what if ’ analysis. The latter will be more useful in scenarios where
requirements optimisation provides decision support for an important overall choice about re-
lease planning. In this situation, quality trumps speed, provided a solution can be found in
reasonable time (which might be hours or even days).

RQ3: Speed: How fast can the algorithms produce the solutions?
An algorithm that produces good solutions with acceptable diversity in reasonable time for

small problems may scale less well to larger problems. In release planning problems, scal-
ability is not merely a question of the increased computational effort required for a larger
problem; it is to be expected that computational effort will be directly proportional to problem
size.

However, perhaps more importantly, there may also be some degradation solution quality
and/or diversity as the size of the problem scales up. We therefore investigate scalability from
the point of view of all of the metrics we collected in our answers to the foregoing three re-
search questions.

RQ4: Scalability: What is the scalability of each of the algorithms with regard to solution
quality, solution diversity and speed?

In order to answer this question we report the rank of correlation between the size of the
problem (measured in terms of the number of requirements in the dataset) and each of the
metrics for quality, diversity and speed.

Since each algorithm is executed 30 times to facilitate statistical comparisons, we report
correlations between the number of requirements and each of the mean, median and best case
for quality, diversity and speed. As explained in Section 4.4, we use Kendall’s τ and Spearman
rank correlation to assess the degree of correlation between the quality, diversity and speed
metrics and the size of the problem (measured as the number of requirements).

RQ5: Inclusion: Is there any correlation between requirements inclusion in solutions on the
Pareto front and requirement characteristics?

In order to aid decision making support and understand the characteristic of large solution
sets, we investigate which attributes of a requirement are correlated with inclusion in Pareto
optimal solutions. This research question could help a decision maker to identify trends and
patterns in the solutions on the Pareto front. For example, if some particular requirements
have the same inclusion hehaviours, they could be clustered together to reduce information
overload. Requirements inclusion information can also be used to identify similarity and vari-
ability among sets of solutions and help decision makers in understanding how similar or
different solutions are, based on the same (or similar) objective attainment levels.

We calculate the number of inclusions on the Pareto front for each requirement over 30
executions of algorithms. We rank the requirements according to their inclusion and we use
Kendall’s τ to statistically describe the correlation between the inclusion ranking of a require-
ment and its attributes.

5. RESULTS AND ANALYSIS

This section presents the results of the empirical study of meta- and hyper-heuristic search
techniques for multi-objective release planning.

RQ1: Quality: Table V presents the mean and median values of the metrics for quality, di-
versity and speed for each of the 7 algorithms on each of the 10 datasets. The results in the
table are highlighted in dim grey, dark grey and light grey colours, which represent the best,
the second and the third order in terms of the performance of the algorithms.

|

Table VI presents the results of the inferential statistical tests. Since we need to compare 7
different algorithms with each other, this yields 21 pairwise comparisons (and thus 21 columns

of data). Each of these columns contains the Vargha-Delaney Â12 effect size measure where

the result is significant (at the 0.05 α level), and is left blank where the result is not significant.
The column heading indicates which algorithm is being compared with which others, in groups
of 6, 5, 4, 3, 2, and 1 pairwise comparisons (6+5+4+3+2+1 = 21 pairwise comparisons in total).

For example, in the pair of columns headed by the title HHC , the HHC algorithm is

compared against each of the HC and R algorithms. The
HC R

value 1.00 is highlighted in dark

grey and the values between 0.51 and 0.99 are highlighted in light grey. The value 1.00 in the
first row under the first of these two columns indicates the following: HHC outperforms HC
significantly for its contribution to the Baan dataset’s reference front (because the entry is
not blank) and the probability of this observation being made is 1.00. That is, HHC always
beats HC for its contribution to the Baan dataset reference front in our sample of 30 runs.
The fifth row of data in this same column contains the effect size measure 0.06, which being
nonblank, indicates a significant result. However, this time the probability of HHC beating
HC is 0.06, so the HC algorithm significantly outperforms the HHC algorithm on the metric
assessed (Diversity for the Baan dataset).

From these two entries in the table of results we can see that, for the Baan dataset, HHC
contributes far more strongly to the reference front than HC, but HC is far more diverse. As
can be seen, the other three quality metrics for the comparison of HHC and HC on the Baan
dataset also strongly favour HHC. Based on these observations we would prefer HHC to HC,
since diversity is only interesting if the algorithm’s quality is strong; a highly diverse set of
sub-optimal solutions is easy to achieve and is of little value to the release planner.

The forgoing discussion indicates the density of information contained in Table VI. Some
general observations do emerge: From Table V, we can see that three hyper-heuristic algo-
rithms (HGA, HSA and HHC) outperform their meta-heuristic counterparts (GA, SA and HC)
according to all 4 quality measures. That is, HSA and HHC each significantly outperform
both SA and HC on all 10 datasets with high effect size in every case, while HGA signifi-
cantly outperforms GA on 9 out of the 10 datasets with high effect size. HGA is beaten by its
meta-heuristic counterpart only on the Ericsson dataset.

Both HGA and HSA show good performance on the three larger datasets. HGA clearly offers
the best performance over all datasets, algorithms and quality metrics: It significantly outper-
forms the other algorithms in 85% (205/240) of the pairwise algorithm quality comparisons.
However, though HGA performs strongest in terms of solution quality, it would be a mistake
to conclude that is the only algorithm that should be used. HSA outperforms the HGA for ‘con-
tribution’ in 4 of the 10 datasets and, perhaps more importantly, for ‘unique contribution’ in
three cases. Even HHC significantly outperforms HGA in terms of ‘contribution’ in one case.

Looking at the results for the three meta-heuristic algorithms (GA, SA and HC), we see
that GA performs best overall for quality on smaller datasets, while SA performs noticeably
better on the three larger datasets (Eclipse, Mozilla and Gnome). This highlights the risk of
drawing conclusions based on too narrow a selection of real world datasets. SA, HC and R
make few contributions to the reference front: R contributes in two cases, while the other two
algorithms only manage a contribution in a single case: the Ericsson dataset. Even when these
three search strategies do make a contribution to the reference front they contribute only a
tiny proportion of solutions (no more than 2%).

We also observe further evidence that suggests that results from one dataset may not gen-
eralise to others. The most extreme example of this is the Ericsson dataset, for which all of the
algorithms behaved very differently (when compared to each other) than they did for the other
datasets. HSA and HHC have closely equivalent behaviours and outperform other algorithms
in terms of quality metric. Several factors may influence the performance of the algorithms.

One aspect is the Ericsson dataset is the only dataset with three objectives as Importance
for Today, Importance for the Future and Cost. When the number of objectives increases, the
performance of the algorithms might behaviour differently. For example, NSGA-II (denoted by
GA here) has much worse performance when the number of objectives is greater than two. The
other factor is the character of the Ericsson dataset itself. Based on a previous study [Zhang
et al. 2010] on the dataset, the requirements’ importance for today and for the future graded
by the stakeholders have a strong positive correlation. That is, solutions have the property
that Importance for Today does not differ greatly from Importance for the Future. Therefore,
the narrowed search space might make local search algorithms (HSA and HHC) more effective
than GA and HGA.

RQ2: Diversity: As might be expected, random search performs very well in terms of diver-
sity. From Table VI we can see that it outperforms almost every other algorithm for almost
every dataset and often does so significantly and with a large effect size.

However, we know from the answer to RQ1 that random search only contributes to the
reference front for 2 of the 10 datasets, and even then it only contributes at most 1% of the
unique solutions. We therefore conclude that the diversity exhibited by the random search is
largely suboptimal; any solutions it offers (diverse or otherwise) are likely to be dominated by
solutions found by one of the other algorithms (if not all of them).

Of the three hyper-heuristic algorithms (which were competitive for the quality metrics),
HGA exhibits the best diversity. It significantly outperforms HSA in 9 of the 10 datasets and
HHC in 8 of the 10. As with the quality metrics studied in answer to RQ1, we observe that the
Ericsson dataset also produces very different behaviour in terms of Diversity. The NSGA-II
algorithm (on which both GA and HGA algorithms are based) was designed to promote diver-
sity and so we might expect that it should perform best, both its meta- and hyper-heuristic
versions.

Even the meta-heuristic version (GA) outperforms the hyper-heuristic versions of simulated
annealing (HSA) and hill climbing (HHC) with respsect to Diversity for 9 of the 10 datasets.
However, there is no evidence that it outperforms its own hyper-heuristic version (HGA) with
respect to Diversity. That is, GA significantly outperforms HGA for one dataset (Ericsson),
while HGA significantly outperforms GA on 2 datasets (Mozilla and Gnome). In all other
cases neither significantly outperforms the other.

RQ3: Speed: The values of “Speed” of 10 datasets reported in Table V are normalised inde-
pendently within each dataset. Therefore, the numbers are comparable within one dataset but
not across all datasets. For example, the wall clock time spent of Speed 0.99 in Baan dataset
is different from the wall clock time of Speed 0.99 in Mozilla dataset. Nevertheless, the two al-
gorithms with Speed 0.99 in both datasets have better performance (higher rank) than others
with lower speed. We could interpret these values as the rank of performance, namely higher
numbers mean higher ranks.

One might expect that a random search would be fast, since it is such a simple algorithm.
However, we find (quite surprisingly) that the speed of random search is worse than all other
algorithms studied for the larger datasets. We studied these results further and found that the
explanation lies in the cost of invalid solutions: As the problem scale increases, a randomly
constructed solution to the release planning problem is increasingly likely to be invalid. For
example, it is increasingly likely to contain gaps in the release plan. The computational effort
of random search becomes dominated by repairing such invalid release plans as the problem
scale increases.

By contrast, meta-heuristic and hyper-heuristic algorithms spend most of their time adapt-
ing existing release plans. This makes them more scalable than random search, even though
they are more sophisticated. Interestingly, HGA is fastest overall: it significantly outperforms
its rival in 70% (42/60) of the pairwise comparisons.

On the largest dataset, Mozilla, which has more than 4,000 requirements, each of the exe-
cutions of random search took more than 13 minutes to complete, while each HGA execution
took just over 3 minutes. Neither of these durations makes a big difference to the kind of
release planning applications that could be undertaken.

For the smaller datasets (with fewer than 200 requirements), each HGA executions com-
pleted in fewer than 10 seconds (sometimes merely 1 or 2 seconds). This puts HGA tantalis-
ingly close to the threshold at which it could be used to investigate ‘what if ’ scenarios; the
release planner could modify the available requirements and/or their attributes and explore
the impact of such changes in real time.

RQ4: Scalability: Figure 2 highlights a scalability problem for meta-heuristic NSGA-II (de-
noted GA in the tables): as the number of requirements increase, GA’s contributions to the
reference front decrease. This observation remains consistent whether we measure the mean,
median or the best performance of each algorithm and also holds whether we use Kendall’s or
Spearman’s correlation.

Figure 2 also reveals a negative correlation between the number of requirements and con-
vergence of meta-heuristic NSGA-II and the best performance of meta-heuristic NSGA-II for
hypervolume. Taken together, these negative correlation results for meta-heuristic NSGA-II
quality metrics suggest that the quality of solutions it produces tend to decrease as the prob-
lem size increases.

We also observe a slightly less strong, but positive, correlation between the number of re-
quirements and diversity of solutions produced by meta-heuristic NSGA-II. This suggests
meta-heuristic NSGA-II increases its diversity with scale. However, since its contribution and
quality tend to decrease as the scale of the problem increases its diversity is of considerably
lesser value; it is simply producing a wider range of increasing sub-optimal solutions as the
problem scales.

Fortunately, the other algorithms found to perform well in answer to RQ1 do not exhibit
any such evidence for negative correlation between problem size and solution quality. In par-
ticular, hyper-heuristic NSGA-II exhibits no such correlation. Even more encouraging for this
algorithm, we find consistent evidence, across all six correlation values, that it increases its
diversity as the scale of the problem increases.

We find that there is a positive correlation between Speed and the number of requirements
for a few algorithms, such as HSA and HHC.

“Speed” in Figure 2 is the Median, Best and Mean of the normalised values (in Table V)
of all datasets, not the absolute wall clock time. Therefore, a positive correlation between the
Median, Best and Mean normalised “Speed” and the number of requirements indicates that
when the number of requirements increase, the rank of (speed) performance of one specific al-
gorithm also increase. It means that such an algorithm (such as HHC) has worse performance
(lower speed rank) than others for the smaller datasets and better performance for the larger
ones.

RQ5: Inclusion: Table IV shows the correlation between the attributes of requirements and
their inclusion rankings. As illustrated in the table, the name given to these attributes in
the 10 datasets are different. They are the names provided by the stakeholders, including
Revenue, Sales Value, Cost, importance etc. that correspond to costs and values for the specific
data set considered. Attribute A/B represents a requirement’s A-to-B ratio.

The results of Kendall’s tau (τ) correlation analysis reveal that, in general, the require-
ment’s A-to-B ratios, such as R/C, S/I, IT/C, IF/C and R/U have strong correlation with its
likelihood of inclusion for the smaller datasets. For Baan and Motorola datasets, requirement
inclusion is also correlated with the Cost of requirements. For the large datasets, there is no
correlation between the attributes of a requirement and its inclusion.

Table IV. The Kendall Correlation between the Attributes of Requirement and its Ranking of Inclusion

Sets
Data

Attributes
HGA GA HSA SA HHC HC R

τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value τ p-Value

Baan
Revenue 0.43

0.66

0.89

<0.00
<0.00

<0.00

0.47
0.62

0.90

<0.00
<0.00

<0.00

0.50
0.59

0.80

<0.00
<0.00

<0.00

0.45
0.61

0.77

<0.00
<0.00

<0.00

0.49
0.60

0.79

<0.00
<0.00

<0.00

0.45
0.62

0.79

<0.00
<0.00

<0.00

0.47
0.60

0.74

<0.00
<0.00

<0.00

Cost
R/C

Stone-
Sales Value 0.26

0.34
<0.00
<0.00

0.29
0.32

<0.00
<0.00

0.24
0.36

<0.00
<0.00

0.23
0.32

<0.00
<0.00

0.18
0.40

0.01
<0.00

0.24
0.28

<0.00
<0.00

0.25
0.31

<0.00
<0.00 Impact

Gate S/I 0.80 <0.00 0.85 <0.00 0.76 <0.00 0.68 <0.00 0.70 <0.00 0.63 <0.00 0.71 <0.00

Motorola
Revenue 0.05

0.85

0.95

0.66
<0.00

<0.00

0.00
0.81

0.97

1.00
<0.00

<0.00

0.06
0.71

0.83

0.63
<0.00

<0.00

0.05
0.77

0.90

0.65
<0.00

<0.00

0.07
0.71

0.85

0.57
<0.00

<0.00

0.07
0.75

0.90

0.54
<0.00

<0.00

0.11
0.70

0.84

0.37
<0.00

<0.00

Cost
R/C

RalicP
Revenue 0.57

0.19

0.65

<0.00
<0.00

<0.00

0.45
0.34

0.62

<0.00
<0.00

<0.00

0.37
0.40

0.50

<0.00
<0.00

<0.00

0.35
0.37

0.48

<0.00
<0.00

<0.00

0.37
0.36

0.49

<0.00
<0.00

<0.00

0.37
0.36

0.50

<0.00
<0.00

<0.00

031
0.40

0.43

<0.00
<0.00

<0.00

Cost
R/C

RalicR
Revenue 0.51

0.46

0.83

<0.00
<0.00

<0.00

0.47
0.51

0.85

<0.00
<0.00

<0.00

0.51
0.42

0.75

<0.00
<0.00

<0.00

0.38
0.48

0.64

<0.00
<0.00

<0.00

0.49
0.42

0.70

<0.00
<0.00

<0.00

0.41
0.50

0.68

<0.00
<0.00

<0.00

0.40
0.48

0.63

<0.00
<0.00

<0.00

Cost
R/C

Ericsson

Importance for
Today (IT)

0.31

0.33

<0.00

<0.00

0.46

0.48

<0.00

<0.00

0.59

0.61

<0.00

<0.00

0.49

0.49

<0.00

<0.00

0.64

0.65

<0.00

<0.00

0.49

0.50

<0.00

<0.00

0.47

0.47

<0.00

<0.00 Importance for
the Future (IF)

 0.30 <0.00 0.45 <0.00 0.40 <0.00 0.51 <0.00 0.34 <0.00 0.50 <0.00 0.53 <0.00 Cost

IT/C 0.43 <0.00 0.75 <0.00 0.78 <0.00 0.83 <0.00 0.74 <0.00 0.84 <0.00 0.87 <0.00

IF/C 0.44 <0.00 0.75 <0.00 0.78 <0.00 0.84 <0.00 0.73 <0.00 0.83 <0.00 0.86 <0.00

MS
Revenue 0.34

0.47
<0.00
<0.00

0.28
0.42

<0.00
<0.00

0.27
0.41

<0.00
<0.00

0.43
0.56

<0.00
<0.00

0.27
0.41

<0.00
<0.00

0.39
0.51

<0.00
<0.00

0.42
0.55

<0.00
<0.00 Urgency

Word R/U 0.80 <0.00 0.82 <0.00 0.79 <0.00 0.67 <0.00 0.79 <0.00 0.70 <0.00 0.71 <0.00

Eclipse
Importance 0.13

0.12

0.17

<0.00
<0.00

<0.00

0.14
0.13

0.19

<0.00
<0.00

<0.00

0.14
0.13

0.17

<0.00
<0.00

<0.00

0.09
0.14

0.15

<0.00
<0.00

<0.00

0.09
0.11

0.13

<0.00
<0.00

<0.00

0.08
0.14

0.14

<0.00
<0.00

<0.00

0.07
0.07

0.09

<0.00
<0.00

<0.00

Cost
I/C

Mozilla
Importance 0.14

0.15

0.21

<0.00
<0.00

<0.00

0.13
0.13

0.18

<0.00
<0.00

<0.00

0.11
0.10

0.15

<0.00
<0.00

<0.00

0.08
0.11

0.13

<0.00
<0.00

<0.00

0.07
0.06

0.09

<0.00
<0.00

<0.00

0.07
0.08

0.10

<0.00
<0.00

<0.00

0.07
0.06

0.10

<0.00
<0.00

<0.00

Cost
I/C

Gnome
Importance 0.15

0.19

0.21

<0.00
<0.00

<0.00

0.18
0.23

0.25

<0.00
<0.00

<0.00

0.14
0.18

0.20

<0.00
<0.00

<0.00

0.10
0.14

0.14

<0.00
<0.00

<0.00

0.08
0.15

0.13

<0.00
<0.00

<0.00

0.07
0.14

0.12

<0.00
<0.00

<0.00

0.09
0.11

0.11

<0.00
<0.00

<0.00

Cost
I/C

RQ5 attempts to help decision makers understand the large solution space and possible ten-
sion between the multiple objectives and attributes. Such analysis allows us to identify useful
information about solution sets, how the solutions’ composition and which requirements tend
to be selected. In general, the requirements with higher A-to-B ratios have higher probability
to be present on the Pareto front according to the correlation analysis. That is, the search pro-
cess tends to balance multiple conflicting objectives, so such requirements are more favourable
in the solution sets. What we can conclude from the results of large datasets is that the space
search is considerably large to explore for finding the optimal solutions.

Actionable Findings: Our results are based on only 10 datasets. This is considerably larger
than any previous empirical study of release planning. These datasets are obtained from open
source as well as closed source, system tools as well as enterprise applications, and have sizes
varying from 35 to 4,000 requirements. Nevertheless, it remains insufficient to generalise to
every type of project in every scenario. Indeed, we have seen evidence in our results that
algorithms can behave very differently with respect to different datasets.

Therefore, as with other experimental/empirical SBSE work [Harman et al. 2012a], this
finding suggests that the use of synthetic datasets in experimental work on release planning
should be augmented with the study of real world datasets most likely to share the character-
istics of the problem domain to which the proposed algorithms are to be applied.

6. THREATS TO VALIDITY

We set out threats to potential validity, indicating how they might affect the degree to which
it is possible to generalise the results. We also provide some mitigation strategies to eliminate
these threats.

Construct Validity
In this work, the objects studied are sets of requirements, stakeholders and their attributes.

Their attributes are the measurements associated with each requirement, which come from
estimates from the stakeholders. Before the proposed techniques can be applied, the informa-
tion of these estimates associated with requirements and stakholders must be at hand.

Our assumption is that an initial set of requirements has been collected and the stake-
holders have been identified using a requirements elicitation process. The task of quantifying
requirements is usually regarded to be a challenging and hard problem in itself. The quan-
tifying process may be time-consuming and the information collected may not be accurate.
Nevertheless, there are still several feasible approaches in previous work that address this
problem [Gilb 2005; Karlsson and Ryan 1997; Lim 2010]. The benefits of using quantified
requirements include better support for budget estimates and feedback, and improved com-
munication of the requirements.

The results of optimisation and analysis rely on the quality of these estimates. However,
this might lead to one possible construct validity issue when the estimates are inaccurate or
uncertain. To mitigate the impact of uncertainty, sensitivity analysis and uncertainty han-
dling could be carried out during or after optimisation search process, which is one direction
of our future work.

In addition, the release planing model used in this study does not take account of all the
factors that reflect every real-world scenario. Some simplifications have been introduced to
match the available data. For example, 8 of the 10 datasets we collected did not have infor-
mation of dependencies between requirements. Therefore, requirement dependencies are not
considered in the model. We also do not handle other hard and soft constraints in this study
as well as the situation where the estimated costs change over time. However, providing such
fine-grain RP model should be entirely achievable as the future work. Therefore, we argue
that this study models the RP problem at a reasonable level of granularity and the model can
be extended and flexible to more fine-grained real-world scenarios.

Furthermore, as the global optimal Pareto front is unobtainable, we construct a reference
front as a close and reasonable approximation of global optimal Pareto front. However, in
theory, a global Pareto front could contain a large number points. This might lead to one
possible construct validity issue when an approximate solution only contain a limited number
of them in practice.

Besides, we have attempted to control another potential threats to construct validity by the
use of ordinal inferential statistical techniques which make no assumptions about distribution
(including variance). For correlation analysis we use two different nonparametric correlations
in order to increase confidence in our findings.

Internal Validity
The primary comparison tests for statistically significant results concerned the relative per-

formance of the algorithm. The dependent variables measured are standard, widely used con-
vergence, hypervolume, diversity and speed, and two assessments of each algorithm’s contri-
bution to the Pareto front. The findings suggest that hyper-heuristics are an attractive new
direction for release planning optimisation and that, in particular, hyper-heuristic NSGA-II
(the algorithm labelled ‘HGA’) is highly attractive: it typically outperforms the other algo-
rithms studied in terms of quality, diversity and speed. Furthermore, it appears that it scales
well compared to its meta-heuristic counterpart and other algorithms studied. Another poten-

tial threat to internal validity concerns the algorithmic parameter tuning. In this work, the
results presented are based on the same parameter setting for all the algorithms. Performance
of the algorithms could have been improved by individual fine tuning empirically or through
systematic experimentation.

External Validity
The results presented are based on the study of 10 real-world datasets to support the claim,

but it is initial evidence that hyperheuristics are able to dynamically select search opera-
tors for different instances and provide good-quality solutions to support decision making. It
would be too strong to claim that it will generalise the results with other problem instances
or datasets with different characteristics or structures.

7. CONCLUSION AND FUTURE WORK

We have presented a comprehensive study of meta-heuristic and hyper-heuristic release plan-
ning on 10 real world datasets. Overall, we found that hyper-heuristic NSGA-II performs the
best in terms of quality, diversity, speed and scalability. However, our results also indicate that
the hyper-heuristic versions of Simulated Annealing and Hill Climbing make some contribu-
tion to the best solutions found and are relatively scalable.

This finding suggests that if only a single algorithm is to be used then it should be hyper-
heuristic NSGA-II, but if resources allow, it may be advantageous to combine its results with
those from other hyper-heuristic algorithms.

Furthermore, we found that algorithm behaviour can differ greatly from one dataset to
another, indicating that research on synthetic datasets needs to be augmented with analysis
of appropriate real world datasets.

As future work we will provide a fine-grained RP model to consider dependencies between
requirements, the different hard and soft constraints, and also try to handle the situation
where the estimated costs of requirements change over time. To mitigate the impact of uncer-
tainty of requirements’ estimates, sensitivity analysis, uncertainty handling and risk aware-
ness could be carried out during or after optimisation search process, which is one direction of
our future work.

Regarding the algorithms, we will observe each operator’s efficiency and effectiveness at
different search stages. New search operators will be incorporated and we will investigate for
the learning ability at the hyper-heuristic approach. We will also look at different parameter
settings for the algorithm to scale to large problem instances.

In terms of release planning and search based requirements selection in general, overcom-
ing the scalability challenges of the techniques in non-trivial software projects is critically
important. Furthermore, the future work should also aim to manage different kinds of uncer-
tainties, such as, requirements uncertainty, algorithmic uncertainty, uncertainty in resource
constraints, uncertainty and dynamics in development time. Finally, more empirical investiga-
tions need to be carried out to assess the applicability of the proposed solutions in a real-world
context.

Table V. The performance (Mean and Median) of the 7 algorithms for the 10 datasets. All metrics reported in this table are normalised
and maximising so the reader can assume that ‘higher numbers mean better performance’ in a dataset. Unsurprisingly, the results
show that Random search tends to produce low quality solutions. A little more surprisingly, the meta-heuristic algorithms (HC and SA)
also contribute little to the best solutions found (as assessed by the metrics ‘Contrib’ and ‘UContrib’ in the table). The results also show
that the Ericsson dataset occasions very different behaviour from the algorithms compared to the other datasets, indicating that the
dataset studied really does matter in empirical studies of release planning.

Data

Sets

Metrics

HGA GA HSA SA HHC HC R

 M
e
a

n

 M
e
d

ia
n

 M
e
a

n

 M
e
d

ia
n

 M
e
a

n

 M
e
d

ia
n

 M
e
a

n

 M
e
d

ia
n

 M
e
a

n

 M
e
d

ia
n

 M
e
a

n

 M
e
d

ia
n

 M
e
a

n

 M
e
d

ia
n

Baan Q
u

a
li

ty

Contrib 0.83 0.86
0.88 0.90
0.98 0.98

0.98 0.98

0.02 0.00
0.03 0.00

0.20 0.20
0.20 0.18

0.00 0.00
0.00 0.00
0.26 0.26

0.26 0.27

0.14 0.13
0.13 0.12

0.00 0.00
0.00 0.00
0.19 0.19

0.20 0.21

0.00 0.00
0.00 0.00
0.19 0.20

0.15 0.15

UContrib
Conv 0.79 0.79

0.75 0.75
0.78 0.79
0.69 0.69

0.71 0.71
0.62 0.62 HVol

Diversity 0.54 0.54 0.49 0.48 0.17 0.18 0.73 0.75 0.14 0.13 0.57 0.61 0.88 0.88
Speed 0.94 0.95 0.96 0.96 0.37 0.36 0.78 0.78 0.15 0.16 0.67 0.70 0.98 0.98

Stone-
Gate

Q
u

a
li

ty

Contrib 0.83 0.86
0.86 0.85
0.96 0.96

0.96 0.97

0.18 0.15
0.19 0.15
0.67 0.68

0.60 0.58

0.47 0.46
0.45 0.44

0.71 0.70

0.00 0.00
0.00 0.00
0.16 0.19

0.23 0.24

0.37 0.35
0.36 0.32

0.68 0.68

0.00 0.00
0.00 0.00
0.14 0.14

0.20 0.21

0.00 0.00
0.00 0.00
0.21 0.21

0.29 0.28

UContrib
Conv
HVol 0.70 0.71 0.71 0.72

Diversity 0.55 0.53 0.48 0.48 0.15 0.15 0.65 0.66 0.14 0.13 0.55 0.59 0.87 0.88
Speed 0.99 0.99 0.99 0.99 0.39 0.39 0.86 0.89 0.16 0.16 0.85 0.85 0.99 0.99

Motorola

Q
u

a
li

ty

Contrib 0.81 0.80
0.85 0.86
0.98 0.98

0.97 0.97

0.46 0.47
0.49 0.48
0.94 0.94

0.91 0.92

0.39 0.39
0.32 0.31
0.80 0.81

0.75 0.74

0.00 0.00
0.00 0.00
0.37 0.37

0.29 0.29

0.38 0.39
0.31 0.30
0.79 0.80

0.74 0.74

0.00 0.00
0.00 0.00
0.39 0.40

0.34 0.33

0.00 0.00
0.00 0.00
0.20 0.21

0.08 0.07

UContrib
Conv
HVol

Diversity 0.26 0.23 0.29 0.29 0.28 0.29 0.53 0.53 0.31 0.30 0.45 0.48 0.70 0.69
Speed 0.90 0.90 0.88 0.88 0.25 0.28 0.75 0.78 0.16 0.16 0.71 0.70 0.97 0.97

RalicP Q
u

a
li

ty

Contrib 0.75 0.76
0.81 0.78
0.96 0.96

0.96 0.96

0.22 0.21
0.26 0.25
0.85 0.84

0.75 0.76

0.16 0.15
0.16 0.15
0.60 0.61

0.53 0.52

0.00 0.00
0.00 0.00
0.24 0.23

0.27 0.27

0.13 0.12
0.12 0.11
0.55 0.55

0.51 0.50

0.00 0.00
0.00 0.00
0.19 0.18

0.20 0.19

0.00 0.00
0.00 0.00
0.19 0.18

0.13 0.13

UContrib
Conv
HVol

Diversity 0.56 0.57 0.55 0.55 0.50 0.48 0.70 0.77 0.48 0.47 0.66 0.65 0.88 0.89
Speed 0.95 0.96 0.98 0.98 0.25 0.27 0.79 0.82 0.17 0.17 0.76 0.79 0.96 0.96

RalicR Q
u

a
li

ty

Contrib 0.84 0.88
0.78 0.75
0.97 0.97

0.97 0.97

0.10 0.07 0.12 0.12 0.00 0.00
0.00 0.00
0.21 0.20

0.24 0.25

0.08 0.08 0.00 0.00
0.00 0.00
0.13 0.13

0.17 0.18

0.00 0.00
0.00 0.00
0.17 0.17

0.11 0.11

UContrib 0.10 0.07 0.10 0.10 0.07 0.07
Conv 0.80 0.81

0.71 0.73
0.74 0.74
0.68 0.68

0.67 0.67
0.61 0.62 HVol

Diversity 0.39 0.42 0.39 0.40 0.18 0.18 0.50 0.54 0.17 0.18 0.47 0.49 0.78 0.76
Speed 0.96 0.96 0.98 0.98 0.38 0.37 0.84 0.84 0.18 0.17 0.71 0.71 0.97 0.97

Ericsson Q
u

a
li

ty

Contrib 0.00 0.00
0.00 0.00

0.01 0.01
0.01 0.01

0.96 0.96
0.94 0.94

0.02 0.02
0.02 0.02

0.97 0.97
0.95 0.97

0.99 0.99

0.02 0.02
0.02 0.02

0.01 0.01
0.01 0.01

0.15 0.15

UContrib
Conv 0.51 0.50 0.56 0.42 0.99 0.99

0.96 0.96
0.16 0.15
0.75 0.74

0.19 0.18
0.76 0.76 HVol 0.30 0.41 0.33 0.40 0.95 0.93 0.79 0.80

Diversity 0.44 0.45 0.87 0.88 0.77 0.75 0.64 0.84 0.75 0.77 0.64 0.74 0.85 0.81
Speed 0.98 0.98 0.99 0.99 0.10 0.10 0.72 0.74 0.11 0.10 0.72 0.74 0.88 0.88

MS

Word

Q
u

a
li

ty

Contrib 0.62 0.61 0.42 0.41 0.83 0.83
0.81 0.80

0.00 0.00
0.00 0.00
0.22 0.20

0.26 0.25

0.76 0.76
0.73 0.73

0.00 0.00
0.00 0.00
0.27 0.28

0.32 0.30

0.00 0.00
0.00 0.00
0.20 0.21

0.23 0.24

UContrib 0.73 0.73 0.49 0.49
Conv 0.96 0.97

0.93 0.92
0.88 0.89 0.82 0.82

0.83 0.84
0.82 0.82

HVol 0.81 0.80 0.84 0.85
Diversity 0.30 0.32 0.31 0.29 0.14 0.14 0.55 0.62 0.21 0.20 0.51 0.56 0.79 0.79
Speed 0.98 0.98 0.97 0.97 0.27 0.26 0.86 0.90 0.12 0.13 0.84 0.85 0.99 0.99

Eclipse Q
u

a
li

ty

Contrib 0.60 0.58
0.53 0.53

0.00 0.00
0.00 0.00
0.59 0.61

0.62 0.62

0.81 0.82
0.73 0.77

0.00 0.00
0.00 0.00
0.68 0.68

0.75 0.75

0.58 0.58
0.52 0.52

0.00 0.00
0.00 0.00
0.63 0.68

0.59 0.66

0.00 0.00
0.00 0.00 UContrib

Conv 0.98 0.99
0.98 0.98

0.92 0.92
0.92 0.92

0.92 0.92 0.75 0.75
HVol 0.90 0.90 0.80 0.80

Diversity 0.69 0.69 0.65 0.65 0.20 0.19 0.45 0.48 0.14 0.14 0.27 0.30 0.93 0.94
Speed 0.95 0.95 0.99 0.98 0.79 0.80 0.96 0.96 0.79 0.80 0.93 0.94 0.05 0.05

Mozilla Q
u

a
li

ty

Contrib 0.73 0.73
0.63 0.65

0.00 0.00
0.00 0.00
0.70 0.72

0.66 0.68

0.85 0.84
0.75 0.75

0.00 0.00
0.00 0.00
0.72 0.72

0.75 0.75

0.61 0.62
0.54 0.53

0.00 0.00
0.00 0.00
0.64 0.69

0.57 0.66

0.00 0.00
0.00 0.00 UContrib

Conv 0.97 0.97
0.98 0.98

0.92 0.93
0.92 0.92

0.92 0.92 0.77 0.77
HVol 0.90 0.90 0.80 0.80

Diversity 0.72 0.72 0.64 0.65 0.20 0.20 0.41 0.43 0.14 0.14 0.34 0.36 0.91 0.91
Speed 0.96 0.96 0.99 0.99 0.83 0.83 0.97 0.97 0.83 0.83 0.95 0.96 0.06 0.06

Gnome Q
u

a
li

ty

Contrib 0.61 0.64
0.48 0.49

0.00 0.00
0.00 0.00
0.59 0.58

0.61 0.61

0.84 0.84
0.68 0.67

0.00 0.00
0.00 0.00
0.67 0.67

0.74 0.74

0.56 0.55
0.46 0.45
0.91 0.91

0.89 0.90

0.00 0.00
0.00 0.00
0.62 0.64

0.65 0.70

0.01 0.01
0.01 0.01
0.74 0.74

0.80 0.80

UContrib
Conv 0.98 0.98

0.97 0.97
0.92 0.92
0.92 0.92 HVol

Diversity 0.72 0.70 0.68 0.68 0.21 0.22 0.42 0.47 0.15 0.15 0.42 0.45 0.95 0.94
Speed 0.94 0.94 0.98 0.98 0.71 0.72 0.95 0.95 0.71 0.71 0.92 0.93 0.06 0.07

Table VI. Results of the statistical analysis. The numbers reported in this table are the Vargha-Delaney Â12 metric for effect size, where the result is significant at the

0.05 α level according to Cliff’s test. Where the entry is blank, the corresponding algorithmic comparison result is not significant. The value of Â12 is the probability that

the algorithm labelled at the head of the column outperforms the algorithms labelled immediately below. For example, in the pair of columns headed HHC , the HHC
HC | R

algorithm is compared to each of the HC and R algorithms. Consider the first of this pair of columns, which compares HHC to HC. Where the Â12 is greater than 0.5, this

means that HHC (significantly) outperforms HC and where it is below 0.5, HC outperforms HHC. The closer Â12 is to 1.0, the greater the probability that HHC would be
expected to outperform HC; the closer to 0.0, the greater the probability that HC would be expected to outperform HHC.

Data
Set

Metric
HGA

GA

HSA

SA

HHC

HC

GA HSA SA HHC HC R HSA SA HHC HC R SA HHC HC R HHC HC R HC R R

Baan

Quality

Contrib

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.03
0.03

0.43
0.43

0.05
0.06

0.43
0.43

0.43
0.43

1.00
1.00

1.00

1.00

0.81
0.80

0.90

0.94

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

 UContrib

Conv 1.00
1.00

0.93
0.98

1.00
1.00

1.00
1.00

0.75 0.81
HVol 0.85 0.84 1.00 0.83

Diversity

1.00 0.16 1.00

0.00 1.00 0.10 1.00 0.28 0.00 0.00

0.07 0.00 1.00 0.72 0.20 0.06 0.00 0.04

Speed 0.12 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 0.02 0.00 0.99 0.06 0.00 1.00 0.77 0.00 0.00 0.00 0.00

Contrib

1.00 1.00 1.00 1.00 1.00 1.00

0.01 0.97 0.10 0.96 0.97

1.00 0.80 1.00 1.00

0.00

1.00 1.00

Stone-

Gate

Quality
UContrib 1.00

1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

0.06

0.12

0.96 0.16

0.11

0.96 0.97 1.00
1.00

1.00

0.75
0.77

1.00
1.00

1.00

1.00
1.00

1.00

0.00
0.00

0.00

0.25

1.00
1.00

1.00

1.00
1.00

1.00

0.20

0.12

Conv 1.00

1.00

1.00

1.00

1.00

1.00 HVol

Diversity

1.00 0.27 1.00

0.02 1.00 0.11 1.00

0.00 0.01

0.03 0.00 0.99

0.05 0.02 0.00 0.02

Speed

1.00 1.00 1.00 1.00 0.75 1.00 1.00 1.00 1.00

0.00 1.00 0.00 0.00 1.00

0.00 0.00 0.00 0.00

Motorola

Quality

Contrib

0.98
0.97

0.98

1.00
1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

1.00
1.00

1.00

0.71
0.85

1.00
1.00

1.00

1.00

0.73
0.88

1.00
1.00

1.00
1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

0.28

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

 UContrib

Conv 1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

0.93
0.99

0.95
HVol 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Diversity

0.07

0.14 0.02

0.05

0.15 0.01 0.05

0.13 0.00 0.92

0.21 0.19 0.01 0.10

Speed 0.91 1.00 0.98 1.00 0.96 0.00 1.00 0.95 1.00 0.94 0.00 0.00 0.78 0.00 0.00 1.00

0.00 0.00 0.00 0.00

RalicP

Quality

Contrib

0.99
0.99

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

 UContrib

Conv 1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

0.78
0.71 HVol 0.79 0.99 0.79

Diversity

0.74 0.15 0.77 0.22 0.00 0.74 0.12 0.79 0.19 0.00 0.12

0.13 0.00 0.89

0.12 0.12 0.00 0.02

Speed 0.07 1.00 1.00 1.00 1.00 0.31 1.00 1.00 1.00 1.00 0.81 0.00 0.78 0.00 0.00 1.00

0.00 0.00 0.00 0.00

RalicR

Quality

Contrib

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.83
0.83

0.83
0.83

0.83
0.83

1.00
1.00

1.00

1.00

0.78
0.74

0.91

0.97

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

 UContrib

Conv 0.88
0.71

1.00
1.00

0.99
0.93

1.00
1.00

1.00
1.00

0.78
0.81

0.71
0.97 HVol 0.80

Diversity

0.92

0.93

0.00 0.96

0.98

0.00 0.11

0.12 0.00 0.89

0.09 0.12 0.00 0.07

Speed 0.09 1.00 1.00 1.00 0.97 0.18 1.00 1.00 1.00 0.97 0.77 0.00 0.99 0.04 0.00 1.00 0.81 0.00 0.00 0.00 0.03

Ericsson

Quality

Contrib

0.12
0.08

0.00
0.00

0.00

0.00

0.00
0.00

0.00
0.00

0.00

0.00

0.04
0.04

0.00
0.00

0.00

0.00

0.00
0.00

0.00
0.00

0.00

0.00

0.12
0.12

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

1.00
1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.88
0.88 UContrib

Conv 1.00 0.92 1.00 1.00 0.88 1.00
0.04 HVol 0.00 0.00 0.00 0.00 0.00 0.00

Diversity 0.00 0.00 0.20 0.00 0.24 0.00 0.92 0.84 0.96 0.76

0.20

0.28

0.20 0.28

Speed 0.15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

0.00 0.00 1.00

0.00 0.00 0.00 0.00

MS

Word

Quality

Contrib

0.96
0.96

0.97

0.99

0.04 1.00
1.00

1.00

1.00

0.13 1.00
1.00

1.00
1.00

0.00
0.01

1.00
1.00

1.00

1.00

0.01
0.07

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.70 1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

 UContrib

 Conv 1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

0.84 0.86 0.75
0.83 HVol

 Diversity

0.78 0.20

0.26 0.01 0.81 0.22

0.27 0.01 0.12 0.23 0.13 0.00 0.83

0.16 0.18 0.00 0.17

Speed 1.00 1.00 1.00 1.00 1.00 0.12 1.00 1.00 1.00 1.00 0.00 0.00 0.99 0.00 0.00 1.00

0.00 0.00 0.00 0.00

Eclipse

Quality

Contrib

1.00
1.00

1.00

1.00

0.04
0.05

1.00
1.00

1.00

1.00

1.00
1.00

1.00
1.00

0.00
0.00

0.00

0.00

0.19

0.03

0.00
0.00

0.00

0.00

0.30

0.03
0.03

0.02

0.00

1.00
1.00

1.00

1.00

0.97
0.89

0.84

0.95

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

0.08

0.03

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.06
0.05

0.02

0.00

UContrib

Conv 1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00 HVol 0.94

Diversity

1.00 0.98 1.00 1.00 0.00 1.00 0.98 1.00 1.00 0.00 0.02 0.94

0.00 1.00 0.83 0.00

0.00 0.00

Speed 0.00 1.00 0.19 1.00 0.76 1.00 1.00 0.99 1.00 1.00 1.00 0.00

0.02 1.00 1.00 0.92 1.00 0.02 1.00 1.00

Mozilla

Quality

Contrib

1.00
1.00

1.00

1.00

0.18
0.21

1.00
1.00

1.00

1.00

0.79
0.78

1.00
1.00

1.00
1.00

0.00
0.00

0.00

0.00

0.10

0.00
0.00

0.00

0.00

0.00
0.00

0.14

0.00

1.00
1.00

1.00

1.00

0.98
0.87

0.76

1.00
1.00

1.00

1.00
1.00

1.00

0.00
0.00

0.00

0.00

0.04

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.06
0.04

0.00

0.00

UContrib

Conv 1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00

0.82
0.93 HVol 1.00 1.00 1.00

Diversity 0.81 1.00 0.99 1.00 0.99 0.00 1.00 0.96 1.00 0.98 0.00 0.08 0.94 0.22 0.00 0.94

0.00 0.13 0.00 0.00

Speed 0.00 1.00 0.06 1.00

1.00 1.00 0.99 1.00 1.00 1.00 0.00

0.00 1.00 1.00 0.91 1.00 0.00 1.00 1.00

Gnome

Quality

Contrib

1.00
1.00

1.00

1.00

0.08
0.09

1.00
1.00

1.00

1.00

1.00
1.00

1.00
1.00

0.00
0.00

0.00

0.00

0.25

0.07

0.00
0.00

0.00

0.00

0.32

0.04
0.03

0.04

0.00

1.00
1.00

1.00

1.00

0.97
0.86

0.82

0.97

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.00
0.00

0.00

0.00

0.08
0.07

0.08

0.00

1.00
1.00

1.00

1.00

1.00
1.00

1.00

1.00

0.03
0.02

0.00

0.00

UContrib

Conv 1.00
1.00

1.00
1.00

1.00
1.00

1.00
1.00 HVol 0.94

Diversity 0.69 1.00 0.99 1.00 0.99 0.00 1.00 0.98 1.00 0.99 0.00 0.12 0.93 0.10 0.00 0.90

0.00 0.07 0.00 0.00

Speed 0.00 1.00 0.20 1.00 0.77 1.00 1.00 0.99 1.00 1.00 1.00 0.00

0.00 1.00 1.00 0.92 1.00 0.00 1.00 1.00

.

Contrib

Quality

Conv HVol

Contrib

Quality

Conv HVol

Contrib

Quality

Conv HVol

Kendall correlation values

Contrib

Quality

Conv HVol

Contrib

Quality

Conv HVol

Contrib

Quality

Conv HVol

Spearman correlation values

Fig. 2. Correlations of metrics for quality, diversity and speed with size of problem. Perhaps surprisingly, the speed
of Random search (labelled ‘R’ in the table), widely believed to be ‘fast but low quality’ does not scale well (indicated
by a negative correlation). Also we observe that while the quality of meta-heuristic NSGA-II (labelled ‘GA’) tends to
degrade with size, the quality of hyper-heuristic NSGA-II (labelled ‘HGA’) does not.

Alg.
Median value correlated with number of requirements

 Diversity Speed
UContrib

HGA -0.21 -0.52 0.21 0.30 0.66 -0.21

GA -0.61 -0.56 -0.52 -0.48 0.61 0.25

HSA 0.11 0.02 0.11 0.21 0.25 0.43

SA -0.05 -0.05 0.30 0.43 -0.25 0.36

HHC 0.07 -0.02 0.07 0.11 -0.16 0.57

HC -0.05 -0.05 0.11 0.16 -0.25 0.39

R 0.26 0.26 0.07 0.52 0.71 -0.61

 Alg.
Best value correlated with number of requirements

 Diversity Speed
UContrib

HGA -0.17 -0.44 0.05 0.05 0.52 -0.25

GA -0.57 -0.57 -0.61 -0.57 0.43 0.75

HSA 0.32 0.27 0.11 0.21 -0.07 0.43

SA 0.17 0.12 0.30 0.25 -0.61 0.25

HHC 0.02 -0.02 0.07 0.16 -0.39 0.57

HC -0.07 -0.07 0.21 0.11 -0.30 0.21

R 0.71 0.66 0.34 0.57 0.00 -0.85

 Alg.
Mean value correlated with number of requirements

 Diversity Speed
UContrib

HGA -0.25 -0.48 0.21 0.25 0.71 -0.25

GA -0.61 -0.57 -0.52 -0.48 0.66 0.25

HSA 0.11 0.05 0.11 0.21 0.25 0.43

SA 0.02 -0.12 0.25 0.34 -0.39 0.43

HHC -0.07 -0.02 0.07 0.11 -0.23 0.57

HC -0.12 -0.02 0.07 0.16 -0.21 0.39

R 0.61 0.61 0.25 0.52 0.66 -0.66

Alg.
Median value correlated with number of requirements

 Diversity Speed
UContrib

HGA -0.28 -0.63 0.21 0.41 0.83 -0.18

GA -0.73 -0.71 -0.61 -0.50 0.73 0.41

HSA 0.23 0.06 0.31 0.32 0.27 0.63

SA -0.06 -0.06 0.52 0.62 -0.46 0.59

HHC 0.18 0.05 0.27 0.29 -0.17 0.78

HC -0.06 -0.06 0.36 0.31 -0.46 0.62

R 0.31 0.31 0.32 0.67 0.81 -0.78

 Alg.
Best value correlated with number of requirements

 Diversity Speed
UContrib

HGA -0.22 -0.53 0.05 0.06 0.65 -0.18

GA -0.70 -0.70 -0.78 -0.69 0.54 0.87

HSA 0.47 0.36 0.31 0.32 -0.17 0.63

SA 0.19 0.07 0.46 0.40 -0.70 0.40

HHC 0.05 0.05 0.30 0.31 -0.51 0.79

HC -0.19 -0.19 0.43 0.34 -0.36 0.38

R 0.82 0.79 0.54 0.66 0.00 -0.94

 Alg.
Mean value correlated with number of requirements

 Diversity Speed
UContrib

HGA -0.38 -0.60 0.21 0.35 0.85 -0.20

GA -0.80 -0.79 -0.61 -0.50 0.74 0.38

HSA 0.23 -0.02 0.31 0.32 0.27 0.59

SA 0.04 -0.22 0.47 0.51 -0.59 0.62

HHC 0.02 0.05 0.27 0.29 -0.26 0.78

HC -0.21 -0.17 0.34 0.31 -0.45 0.57

R 0.74 0.74 0.42 0.67 0.77 -0.81

Acknowledgements: We wish to express their gratitude to Barbara Kitchenham for her 2-
day tutorial on ‘Statistical Techniques’ at UCL CREST in February 2014. Her tutorial and
subsequent discussions with us on ordinal inferential statistical techniques greatly influenced
our approach to the analysis of results in this paper. We also would like to thank University
of Calgary, Utrecht University, University College London, Dalian University of Technology,
Motorola and Ericsson who provided the datasets for our research work.

REFERENCES

Philip Achimugu, Ali Selamat, Roliana Ibrahim, and Mohd Naz’ri Mahrin. 2014. A systematic literature
review of software requirements prioritization research. Information and Software Technology 56,
6 (June 2014), 568–585. DOI:http://dx.doi.org/10.1016/j.infsof.2014.02.001

Ahmed Al-Emran, Dietmar Pfahl, and Gü nther Ruhe. 2010. A Hybrid Method for Advanced Decision
Support in Strategic Product Release Planning. Technical Report 088/2010. University of Calgary.

Thamer AlBourae, Gü nther Ruhe, and Mahmood Moussavi. 2006. Lightweight Replan-
ning of Software Product Releases. In Proceedings of the 1st International Workshop
on Software Product Management (IWSPM ’06). IEEE, Minneapolis, MN, USA, 27–34.
DOI:http://dx.doi.org/10.1109/IWSPM.2006.5

A. Amandeep, Gü nther Ruhe, and Mark Stanford. 2004. Intelligent Support for Software Release
Planning. In Proceedings of the 5th International Conference on Product Focused Software Pro-
cess Improvement (PROFES ’04) (LNCS), Vol. 3009. Springer, Kansai Science City, Japan, 248–262.
DOI:http://dx.doi.org/10.1007/978-3-540-24659-6 18

Allysson Allex Araú jo, Matheus Paixao, Italo Yeltsin, Altino Dantas, and Jerffeson Souza. 2017.
An Architecture based on interactive optimization and machine learning applied to the
next release problem. Automated Software Engineering 24, 3 (September 2017), 623–671.
DOI:http://dx.doi.org/10.1007/s10515-016-0200-3

Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical Tests to Assess Random-
ized Algorithms in Software Engineering. In 33rd International Conference on Software Engineering
(ICSE’11). ACM, New York, NY, USA, 1–10.

A. J. Bagnall, V. J. Rayward-Smith, and I. M. Whittley. 2001. The Next Release Prob-
lem. Information and Software Technology 43, 14 (December 2001), 883–890.
DOI:http://dx.doi.org/10.1016/S0950-5849(01)00194-X

Yoav Bejamini and Yosef Hochberg. 1995. Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal statistical Society (Series B) 57, 1 (1995), 289–
300.

Marcia Maria Albuquerque Brasil, Thiago Gomes Nepomuceno da Silva, Fabricio Gomes de Fre-
itas, Jerffeson Teixeira de Souza, and Mariela Ines Cortes. 2012. A Multiobjective Optimiza-
tion Approach to the Software Release Planning with Undefined Number of Releases and In-
terdependent Requirements. In Enterprise Information Systems. Vol. 102. Springer, 300–314.
DOI:http://dx.doi.org/10.1007/978-3-642-29958-2 20

Edmund Burke and Graham Kendall. 2005. Search Methodologies. Introductory tutorials in optimization
and decision support techniques. Springer.

Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Ender Ö zcan Gabriela Ochoa,
and Rong Qu. 2013. Hyper-heuristics: A Survey of the State of the Art. Journal of the Operational
Research Society (2013), 1695–1724. DOI:http://dx.doi.org/10.1057/jors.2013.71

Edmund K. Burke, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Ö zcan, and John R. Wood-
ward. 2010. Handbook of Metaheuristics. International Series in Operations Research & Manage-
ment Science, Vol. 146. Springer, Chapter A Classification of Hyper-heuristic Approaches, 449–468.
Chapter 15.

Edmund K. Burke, J. Dario Landa Silva, and Eric Soubeiga. 2005. Multi-Objective Hyper-
Heuristic Approaches for Space Allocation and Timetabling. In Metaheuristics: Progress
as Real Problem Solvers, Toshihide Ibaraki, Koji Nonobe, and Mutsunori Yagiura (Eds.).
Operations Research/Computer Science Interfaces Series, Vol. 32. Springer US, 129–158.
DOI:http://dx.doi.org/10.1007/0-387-25383-1 6

Xinye Cai and Ou Wei. 2013. A Hybrid of Decomposition and Domination Based Evolutionary Algorithm
for Multi-Objective Software Next Release Problem. In Proceedings of the 10th IEEE International
Conference on Control and Automation (ICCA ’13).

Xinye Cai, Ou Wei, and Zhiqiu Huang. 2012. Evolutionary Approaches for Multi-Objective Next Release
Problem. Computing and Informatics 31 (2012), 847–875.

José M. Chaves-Gonzá lez and Miguel A. Pérez-Toledano. 2015. Differential Evolution with Pareto Tour-
nament for the Multi-objective Next Release Problem. Appl. Math. Comput. 252 (February 2015),
1–13. DOI:http://dx.doi.org/10.1016/j.amc.2014.11.093

http://dx.doi.org/10.1016/j.infsof.2014.02.001
http://dx.doi.org/10.1109/IWSPM.2006.5
http://dx.doi.org/10.1007/978-3-540-24659-6
http://dx.doi.org/10.1007/s10515-016-0200-3
http://dx.doi.org/10.1016/S0950-5849(01)00194-X
http://dx.doi.org/10.1007/978-3-642-29958-2
http://dx.doi.org/10.1057/jors.2013.71
http://dx.doi.org/10.1007/0-387-25383-1
http://dx.doi.org/10.1016/j.amc.2014.11.093

Norman Cliff. 1996. Ordinal Methods for Behavioral Data Analysis. Lawrence Erlbaum Associates, Inc.,
New Jersey, USA.

Felipe Colares, Jerffeson Teixeira de Souza, Rafael Augusto Ferreira do Carmo, Clarindo Pá dua, and
Geraldo Robson Mateus. 2009. A New Approach to the Software Release Planning. In Proceedings
of the 23rd Brazilian Symposium on Software Engineering (SBES ’09). IEEE, Fortaleza, Ceará ,
Brazil, 207–215. DOI:http://dx.doi.org/10.1109/SBES.2009.23

Matej Crepinsek, Shih-Hsi Liu, and Marjan Mernik. 2013. Exploration and exploitation in evolutionary
algorithms: a survey. Comput. Surveys 45, 3 (June 2013), 35:1–35:33.

Jerffeson Teixeira de Souza, Camila Loiola Brito Maia, Thiago Ferreira, Rafael Augusto Ferreira do
Carmo, and Marcia Brasil. 2011. An Ant Colony Optimization Approach to the Software Release
Planning with Dependent Requirements. In Proceedings of the 3rd International Symposium on
Search Based Software Engineering (SSBSE ’11) (LNCS), Vol. 6956. Springer, Szeged, Hungary,
142–157. DOI:http://dx.doi.org/10.1007/978-3-642-23716-4 15

Kalyanmony Deb. 2001. Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &
Sons.

Isabel Marı́a del Á guila and José Del Sagrado. 2016. Three Steps Multiobjective Decision Pro-
cess for Software Release Planning. Complexity 21, S1 (September/October 2016), 250–262.
DOI:http://dx.doi.org/10.1002/cplx.21739

José Del Sagrado and Isabel Marı́a Del Á guila. 2009. Ant Colony Optimization for Requirement Selection
in Incremental Software Development. In Proceedings of the 1st International Symposium on Search
Based Software Engineering (SSBSE ’09). IEEE, Cumberland Lodge, Windsor, UK.

José Del Sagrado, Isabel Marı́a Del Á guila, and Francisco Javier Orellana. 2010. Ant Colony Optimiza-
tion for the Next Release Problem – A Comparative Study.. In Proceedings of the 2nd International
Symposium on Search Based Software Engineering (SSBSE ’10). IEEE, Benevento, Italy, 67–76.
DOI:http://dx.doi.org/10.1109/SSBSE.2010.18

José del Sagrado, Isabel Marı́a del Á guila, and Francisco Javier Orellana. 2015. Multi-objective Ant
Colony Optimization for Requirements Selection. Empirical Software Engineering 20, 3 (June
2015), 577–610. DOI:http://dx.doi.org/10.1007/s10664-013-9287-3

Thiago do Nascimento Ferreira and Jerffeson Teixeira de Souza. 2012. An ACO approach for the Next
Release Problem with Dependency among Requirements. In Proceedings of the 3rd Brazilian Work-
shop on Search-Based Software Engineering (WESB ’12). Natal, RN, Brazil.

Olive Jean Dunn. 1961. Multiple Comparisons Among Means. J. Amer. Statist. Assoc. 56, 293 (1961).

Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, Mark Harman, and Antonio J. Nebro. 2011. A Study
of the Bi-Objective Next Release Problem. Empirical Software Engineering 16, 1 (February 2011),
29–60. DOI:http://dx.doi.org/10.1007/s10664-010-9147-3

Juan J. Durillo, Yuanyuan Zhang, Enrique Alba, and Antonio J. Nebro. 2009. A Study of the Multi-
Objective Next Release Problem. In Proceedings of the 1st International Symposium on Search
Based Software Engineering (SSBSE ’09). IEEE, Cumberland Lodge, Windsor, UK, 49–58.
DOI:http://dx.doi.org/10.1109/SSBSE.2009.21

Martin S. Feather, Steven L. Cornford, James D. Kiper, and Tim Menzies. 2006. Experiences using
Visualization Techniques to Present Requirements, Risks to Them, and Options for Risk Mitigation.
In Proceedings of the International Workshop on Requirements Engineering Visualization (REV ’06).
IEEE, Minnesota, USA, 10–10. DOI:http://dx.doi.org/10.1109/REV.2006.2

Martin S. Feather, James D. Kiper, and Selcuk Kalafat. 2004. Combining Heuristic Search, Visualization
and Data Mining for Exploration of System Design Space. In The International Council on Systems
Engineering (INCOSE ’04) - Proceedings of the 14th Annual International Symposium. Toulouse,
France.

Martin S. Feather and Tim Menzies. 2002. Converging on the Optimal Attainment of Requirements.
In Proceedings of the 10th IEEE International Conference on Requirements Engineering (RE ’02).
IEEE, Essen, Germany, 263–270. DOI:http://dx.doi.org/10.1109/ICRE.2002.1048537

George Andrew Ferguson. 1965. Nonparametric Trend Analysis: A practical guide for research workers.
McGill Uniervsoty Press, Montréal, Canada.

A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. 2008. Extreme Value Based Adaptive Operator
Selection. In Parallel Problem Solving from Nature PPSN X (LNCS), Vol. 5199. Springer, 175–184.

http://dx.doi.org/10.1109/SBES.2009.23
http://dx.doi.org/10.1007/978-3-642-23716-4
http://dx.doi.org/10.1002/cplx.21739
http://dx.doi.org/10.1109/SSBSE.2010.18
http://dx.doi.org/10.1007/s10664-013-9287-3
http://dx.doi.org/10.1007/s10664-010-9147-3
http://dx.doi.org/10.1109/SSBSE.2009.21
http://dx.doi.org/10.1109/REV.2006.2
http://dx.doi.org/10.1109/ICRE.2002.1048537

Alvaro Fialho, Luis Da Costa, Marc Schoenauer, and Michèle Sebag. 2010. Analyzing bandit-based
adaptive operator selection mechanisms. Ann. Math. Artif. Intell. 60, 1-2 (2010), 25–64.

Anthony Finkelstein, Mark Harman, S. Afshin Mansouri, Jian Ren, and Yuanyuan Zhang. 2008. “Fair-
ness Analysis” in Requirements Assignments. In Proceedings of the 16th IEEE International
Requirements Engineering Conference (RE ’08). IEEE, Barcelona, Catalunya, Spain, 115–124.
DOI:http://dx.doi.org/10.1109/RE.2008.61

Anthony Finkelstein, Mark Harman, S. Afshin Mansouri, Jian Ren, and Yuanyuan Zhang. 2009. A
Search based Approach to Fairness Analysis in Requirement Assignments to Aid Negotiation, Me-
diation and Decision Making. Requirements Engineering Journal (RE ’08 Special Issue) 14, 4 (De-
cember 2009), 231–245. DOI:http://dx.doi.org/10.1007/s00766-009-0075-y

Francis Galton. 1889. Natural Inheritance. Macmillan and Co., London, UK.

Tom Gilb. 2005. Competitive Engineering: A Handbook for Systems Engineering, Requirements Engi-
neering, and Software Engineering using Planguage. Butterworth-Heinemann.

Mark Harman, Edmund Burke, John A. Clark, and Xin Yao. 2012a. Dynamic Adaptive Search Based
Software Engineering. In 6th IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2012). Lund, Sweden, 1–8.

Mark Harman and Bryan F. Jones. 2001. Search-based Software Engineering. Information and Software
Technology 43, 14 (December 2001), 833–839. DOI:http://dx.doi.org/10.1016/S0950-5849(01)00189-6

Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012b. Search-based Software Engineering:
Trends, Techniques and Applications. ACM Computing Surveys (CSUR) 45, 1 (November 2012).
DOI:http://dx.doi.org/10.1145/2379776.2379787

Mark Harman, Phil McMinn, Jerffeson Teixeira de Souza, and Shin Yoo. 2012c. Search Based Software
Engineering: Techniques, Taxonomy, Tutorial. In Empirical software engineering and verification:
LASER 2009-2010, Bertrand Meyer and Martin Nordio (Eds.). Springer, 1–59. LNCS 7007.

Yosef Hochberg. 1988. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75,
4 (1988), 800–802.

John H. Holland. 1975. Adaption in Natural and Artificial Systems. MIT Press, Ann Arbor.

He Jiang, Jifeng Xuan, and Zhilei Ren. 2010a. Approximate Backbone based Multilevel Al-
gorithm for Next Release Problem. In Proceedings of the 12th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO ’10). ACM, Portland, Oregon, USA, 1333–1340.
DOI:http://dx.doi.org/10.1145/1830483.1830730

He Jiang, Jingyuan Zhang, Jifeng Xuan, Zhilei Re, and Yan Hu. 2010b. A Hybrid ACO Algorithm for the
Next Release Problem. In Proceedings of the 2nd International Conference on Software Engineering
and Data Mining (SEDM ’10). IEEE, Chengdu, China, 166–171.

Muhammad Rezaul Karim and Guenther Ruhe. 2014. Bi-Objective Genetic Search for Release Planning
in Support of Themes. In Proceedings of the 6th International Symposium on Search-Based Soft-
ware Engineering (SSBSE ’14) (Lecture Notes in Computer Science), Vol. 8636. Springer, Fortaleza,
Brazil, 123–137. DOI:http://dx.doi.org/10.1007/978-3-319-09940-8 9

J. Karlsson and K. Ryan. 1997. A Cost-Value Approach for Prioritizing Requirements. IEEE Software
14, 5 (1997).

Maurice Kendall. 1948. Rank correlation methods. Charles Griffin and Company Limited, London, UK.

William Henry Kruskal and Wilson Allen Wallis. 1952. Use of Ranks in One-Criterion Variance Analysis.
J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.

A.Charan Kumari, K. Srinivas, and M.P. Gupta. 2012. Software Requirements Selection using Quantum-
inspired Elitist Multi-objective Evolutionary Algorithm. In Proceedings of International Conference
on Advances in Engineering, Science and Management (ICAESM ’12). IEEE, Nagapattinam, Tamil
Nadu, India, 782–787.

Chen Li, Marjan Van den Akker, Sjaak Brinkkemper, and Guido Diepen. 2010. An Integrated Approach
for Requirement Selection and Scheduling in Software Release Planning. Requirements Engineer-
ing 15, 4 (November 2010), 375–396. DOI:http://dx.doi.org/10.1007/s00766-010-0104-x

Lingbo Li, Mark Harman, Emmanuel Letier, and Yuanyuan Zhang. 2014. Robust Next Release
Problem: Handling Uncertainty during Optimization. In Proceedings of the 2014 Conference
on Genetic and Evolutionary Computation (GECCO ’14). ACM, Vancouver, Canada, 1247–1254.
DOI:http://dx.doi.org/10.1145/2576768.2598334

http://dx.doi.org/10.1109/RE.2008.61
http://dx.doi.org/10.1007/s00766-009-0075-y
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://dx.doi.org/10.1145/2379776.2379787
http://dx.doi.org/10.1145/1830483.1830730
http://dx.doi.org/10.1007/978-3-319-09940-8
http://dx.doi.org/10.1007/s00766-010-0104-x
http://dx.doi.org/10.1145/2576768.2598334

Yan Li, Tao Yue, Shaukat Ali, and Li Zhang. 2017. Zen-ReqOptimizer: a search-based approach for
requirements assignment optimization. Empirical Software Engineering 22, 1 (February 2017),
175–234. DOI:http://dx.doi.org/10.1007/s10664-015-9418-0

Soo Ling Lim. 2010. Social Networks and Collaborative Filtering for Large-Scale Requirements Elicita-
tion. PhD Thesis. School of Computer Science and Engineering, University of New South Wales.

Henry Berthold Mann and Donald Ransom Whitney. 1947. On a Test of Whether one of Two Random
Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics 18, 1 (1947),
50–60.

Kent McClymont and Edward C. Keedwell. 2011. Markov chain hyper-heuristic (MCHH): an online
selective hyper-heuristic for multi-objective continuous problems. In Proceedings of the 13th annual
conference on Genetic and evolutionary computation (GECCO ’11). ACM, New York, NY, USA, 2003–
2010.

Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A. Vazquez-Rodriguez, James Walker, Michel Gen-
dreau, Graham Kendall, Barry McCollum, Andrew J. Parkes, Sanja Petrovic, and Edmund K.
Burke. 2012. HyFlex: a benchmark framework for cross-domain heuristic search. In Proceedings
of the 12th European conference on Evolutionary Computation in Combinatorial Optimization, Evo-
COP’12 (Lecture Notes in Computer Science), Vol. 7245. Springer-Verlag, 136–147.

Matheus Henrique Esteves Paixã o and Jerffeson Teixeira de Souza. 2013a. A Recoverable Robust Ap-
proach for the Next Release Problem. In Proceedings of the 5th International Symposium on Search
Based Software Engineering (SSBSE ’13) (LNCS), Vol. 8084. Springer, St. Petersburg, Russia, 172–
187. DOI:http://dx.doi.org/10.1007/978-3-642-39742-4 14

Matheus Henrique Esteves Paixã o and Jerffeson Teixeira de Souza. 2013b. A Scenario-based Robust
Model for The Next Release Problem. In Proceeding of The 15th Annual Conference on Genetic
and Evolutionary Computation (GECCO ’13). ACM, Amsterdam, The Netherlands, 1469–1476.
DOI:http://dx.doi.org/10.1145/2463372.2463547

Matheus Henrique Esteves Paixã o and Jerffeson Teixeira de Souza. 2015. A Robust Optimization Ap-
proach to the Next Release Problem in the Presence of Uncertainties. Journal of Systems and
Software 103 (May 2015), 281–295. DOI:http://dx.doi.org/10.1016/j.jss.2014.09.039

Karl Pearson. 1895. Notes on regression and inheritance in the case of two parents. Proceedings of the
Royal Society of London 58 (June 1895), 240–242.

D. Pisinger and S. Ropke. 2007. A general heuristic for vehicle routing problems. Computers and Oper-
ations Research 34 (2007), 2403–2435.

A.M. Pitangueira, P Tonella, A. Susi, R.S.P. Maciel, and M. Barros. 2017. Minimizing the Stakeholder
Dissatisfaction Risk in Requirement Selection for Next Release Problem. Information and Software
Technology 87 (July 2017), 104–118. DOI:http://dx.doi.org/10.1016/j.infsof.2017.03.001

Antônio Mauricio Pitangueira, Rita Suzana P. Maciel, and Má rcio de Oliveira Barros. 2015. Soft-
ware Requirements Selection and Prioritization using SBSE Approaches: A Systematic Review
and Mapping of the Literature. Journal of Systems and Software 103 (May 2015), 267–280.
DOI:http://dx.doi.org/10.1016/j.jss.2014.09.038

Antonio Mauricio Pitangueira, Paolo Tonella, Angelo Susi, Rita Suzana Maciel, and Marcio Bar-
ros. 2016. Risk-Aware Multi-stakeholder Next Release Planning using Multi-objective Op-
timization. In Proceedings of International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ ’16). Springer, Gothenburg, Sweden, 3–18.
DOI:http://dx.doi.org/10.1007/978-3-319-30282-9 1

Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. 2008. A field guide to genetic program-
ming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk.
(With contributions by J. R. Koza).

Outi Rä ihä . 2010. A survey on Search–Based Software Design. Computer Science Review 4, 4 (2010),
203–249.

Gü nther Ruhe. 2010. Product Release Planning: Methods, Tools and Applications. CRC Press. 339
pages.

Gü nther Ruhe and Des Greer. 2003. Quantitative Studies in Software Release Plan-
ning under Risk and Resource Constraints. In Proceedings of the International Sym-
posium on Empirical Software Engineering (ISESE ’03). IEEE, Rome, Italy, 262–270.
DOI:http://dx.doi.org/10.1109/ISESE.2003.1237987

http://dx.doi.org/10.1007/s10664-015-9418-0
http://dx.doi.org/10.1007/978-3-642-39742-4
http://dx.doi.org/10.1145/2463372.2463547
http://dx.doi.org/10.1016/j.jss.2014.09.039
http://dx.doi.org/10.1016/j.infsof.2017.03.001
http://dx.doi.org/10.1016/j.jss.2014.09.038
http://dx.doi.org/10.1007/978-3-319-30282-9
http://lulu.com/
http://www.gp-field-guide.org.uk/
http://dx.doi.org/10.1109/ISESE.2003.1237987

Gü nther Ruhe and An Ngo-The. 2004. Hybrid Intelligence in Software Release Planning. International
Journal of Hybrid Intelligent Systems 1, 1-2 (April 2004), 99–110.

Gü nther Ruhe and Moshood Omolade Saliu. 2005. The Art and Science of Software Release Planning.

IEEE Software 22, 6 (November 2005), 47–53. DOI:http://dx.doi.org/10.1109/MS.2005.164 Moshood
Omolade Saliu and Gü nther Ruhe. 2007. Bi-Objective Release Planning for Evolving Software

Systems. In Proceedings of the 6th joint meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on the Foundations of Software Engineering. ACM, Dubrovnik,
Croatia, 105–114. DOI:http://dx.doi.org/10.1145/1287624.1287641

Omolade Saliu and Gü nther Ruhe. 2005. Supporting Software Release Planning Decisions for Evolving
Systems. In Proceedings of the 29th Annual IEEE/NASA on Software Engineering Workshop (SEW
’05). IEEE, Greenbelt, Maryland, USA, 14–26. DOI:http://dx.doi.org/10.1109/SEW.2005.42

Neil J. Salkind. 2007. Encyclopaedia of measurement and statistics. Sage publications, Inc., California,
USA.

Martin J. Shepperd. 1995. Foundations of software measurement. Prentice Hall.

Charles Edward Spearman. 1904. The proof and measurement of association between two things. The
American Journal of Psychology 15, 1 (January 1904), 72–101.

Mikael Svahnberg, Tony Gorschek, Robert Feldt, Richard Torkar, Saad Bin Saleem, and Muhammad Us-
man Shafique. 2010. A Systematic Review on Strategic Release Planning Models. Information and
Software Technology 52, 3 (March 2010), 237–248. DOI:http://dx.doi.org/10.1016/j.infsof.2009.11.006

Dirk Thierens. 2005. An adaptive pursuit strategy for allocating operator probabilities. In Proceedings
of the 2005 conference on Genetic and evolutionary computation (GECCO ’05). ACM, New York, NY,
USA, 1539–1546.

Paolo Tonella, Angelo Susi, and Francis Palma. 2013. Interactive Requirements Prioritization us-
ing a Genetic Algorithm. Information and Software Technology 55, 1 (January 2013), 173–187.
DOI:http://dx.doi.org/10.1016/j.infsof.2012.07.003

J.M. Van den Akker, S. Brinkkemper, G. Diepen, and J. Versendaal. 2005a. Determination of the Next
Release of a Software Product: an Approach using Integer Linear Programming. In Proceedings of
the CAiSE’05 FORUM. Porto, Portugal, 119–124.

Marjan Van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan Versendaal. 2005b. Flexible Re-
lease Planning using Integer Linear Programming. In Proceeding of the 11th International Work-
shop on Requirements Engineering: Foundation for Software Quality (REFSQ ’05). Essener Infor-
matik Beitrage, Porto, Portugal, 247–262.

Marjan Van den Akker, Sjaak Brinkkemper, Guido Diepen, and Johan Versendaal. 2008. Software
Product Release Planning Through Optimization and What-if Analysis. Information and Software
Technology 50, 1-2 (January 2008), 101–111. DOI:http://dx.doi.org/10.1016/j.infsof.2007.10.017

P. J. M. van Laarhoven and E. H. L. Aarts. 1987. Simulated Annealing: Theory and Practice. Kluwer
Academic Publishers, Dordrecht, the Netherlands.

Nadarajen Veerapen, Gabriela Ochoa, Mark Harman, and Edmund K. Burke. 2015. An Integer Lin-
ear Programming approach to the single and bi-objective Next Release Problem. Information and
Software Technology 65 (September 2015), 1–13.

Kevin Vlaanderen, Slinger Jansen, Sjaak Brinkkemper, and Erik Jaspers. 2011. The agile requirements
refinery: Applying SCRUM principles to software product management. Information and Software
Technology 53, 1 (2011), 58–70.

Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics Bulletin 1, 6 (1945),
80–83.

Jifeng Xuan, He Jiang, Zhilei Ren, and Zhongxuan Luo. 2012. Solving the Large Scale Next Release
Problem with a Backbone Based Multilevel Algorithm. IEEE Transactions on Software Engineering
38, 5 (Sept.-Oct. 2012), 1195–1212. DOI:http://dx.doi.org/10.1109/TSE.2011.92

Yuanyuan Zhang, Enrique Alba, Juan J. Durillo, Sigrid Eldh, and Mark Harman. 2010. To-
day/Future Importance Analysis. In Proceedings of the 12th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO ’10). ACM, Portland, USA, 1357–1364.
DOI:http://dx.doi.org/10.1145/1830483.1830733

Yuanyuan Zhang and Mark Harman. 2010. Search Based Optimization of Requirements Interaction
Management. In Proceedings of the 2nd International Symposium on Search Based Software Engi-
neering (SSBSE ’10). IEEE, Benevento, Italy, 47–56. DOI:http://dx.doi.org/10.1109/SSBSE.2010.16

http://dx.doi.org/10.1109/MS.2005.164
http://dx.doi.org/10.1145/1287624.1287641
http://dx.doi.org/10.1109/SEW.2005.42
http://dx.doi.org/10.1016/j.infsof.2009.11.006
http://dx.doi.org/10.1016/j.infsof.2012.07.003
http://dx.doi.org/10.1016/j.infsof.2007.10.017
http://dx.doi.org/10.1109/TSE.2011.92
http://dx.doi.org/10.1145/1830483.1830733
http://dx.doi.org/10.1109/SSBSE.2010.16

Yuanyuan Zhang, Mark Harman, Anthony Finkelstein, and S. Afshin Mansouri. 2011. Compar-
ing the Performance of Metaheuristics for the Analysis of Multi-stakeholder Tradeoffs in Re-
quirements Optimisation. Information and Software Technology 53, 7 (July 2011), 761–773.
DOI:http://dx.doi.org/10.1016/j.infsof.2011.02.001

Yuanyuan Zhang, Mark Harman, and Soo Ling Lim. 2013. Empirical Evaluation of Search Based Re-
quirements Interaction Management. Information and Software Technology 55, 1 (January 2013),
126–152. DOI:http://dx.doi.org/10.1016/j.infsof.2012.03.007

Yuanyuan Zhang, Mark Harman, and S. Afshin Mansouri. 2007. The Multi-Objective Next
Release Problem. In Proceedings of the 9th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO ’07). ACM, London, UK, 1129–1137 (Best Paper Award).
DOI:http://dx.doi.org/10.1145/1276958.1277179

Donald W. Zimmerman. 2000. Statistical significance levels of nonparametric tests biased by heteroge-
neous variances of treatment groups. Journal of General Psychology 127, 4 (October 2000), 354–
364.

E. Zitzler and L. Thiele. 1999. Multiobjective Evolutionary Algorithms: A Comparative Case Study and
the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3, 4 (Nov. 1999),
257–271.

http://dx.doi.org/10.1016/j.infsof.2011.02.001
http://dx.doi.org/10.1016/j.infsof.2012.03.007
http://dx.doi.org/10.1145/1276958.1277179

