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Background Two markers of cerebral small vessel disease are
white matter hyperintensities and cerebral microbleeds, which
commonly occur in people with Alzheimer’s disease.
Aim and/or hypothesis To test for independent associations
between two Alzheimer’s disease-susceptibility gene loci –
APOE ε and the TOMM40 ‘523’ poly-T repeat – and white
matter hyperintensities/cerebral microbleed burden in
community-dwelling older adults.
Methods Participants in the Lothian Birth Cohort 1936 under-
went genotyping for APOE ε and TOMM40 523, and detailed
structural brain magnetic resonance imaging at a mean age of
72·70 years (standard deviation = 0·7; range = 71–74).
Results No significant effects of APOE ε or TOMM40 523 geno-
types on white matter hyperintensities or cerebral microbleed
burden were found amongst 624 participants.

Conclusions Lack of association between two Alzheimer’s
disease susceptibility gene loci and markers of cerebral small
vessel disease may reflect the relative health of this popula-
tion compared with those in other studies in the literature.
Key words: brain microbleeds, epidemiology, MRI, neurology, risk factors,
vascular events

Introduction

There is evidence that the presence of cardiovascular disease

pathology can increase the future risk of Alzheimer’s disease (AD)

and cognitive decline (1). White matter hyperintensities (WMH)

and cerebral microbleeds (CMB) are generally considered to

reflect cerebrovascular burden in ageing. They are manifestations

and markers of cerebral small-vessel disease and often co-occur

(2).

The mechanisms underlying significant association between

cardiovascular and neurodegenerative pathology are unclear;

however, there are three main hypotheses (1). Firstly, it is possible

that cardiovascular diseases and AD/cognitive decline share

common risk factors and are not mechanistically related (1).

Secondly, it is possible that cardiovascular burden may expedite

progression of AD/cognitive decline through promoting athero-

sclerosis and accumulations of amyloid-beta plaques, and/or

(thirdly) by increasing vulnerability to such pathology and low-

ering the threshold at which cognitive decline becomes apparent

behaviorally, even in the absence of a mechanistic link (1,3).

Two genetic risk factors for AD and age-related cognitive

decline are in the APOE and TOMM40 gene loci (4). Two recent

meta-analyses reported no overall significant association between

APOE ε4 and WMH in older adults (P > 0·05). Paternoster et al.

(5) did not stratify analyses by whether participants were gener-

ally healthy or not (total n = 8546), whereas Schilling et al. (6) did

(‘healthy’ n = 8405). However, these reports were not independent

because some common data were included in both. In contrast,

two meta-analyses reported a significant association between

APOE ε4 and CMB: Schilling et al. (6) (‘healthy’ n = 5387;

P = 0·002) and Maxwell et al. (7) (total n = 7351; P < 0·01). These

two reports also had a degree of overlapping datasets. A more

recent individual study (8) reported similar results (n = 1965,

P < 0·05).

In the above reports, the positive association between APOE ε4

and CMB burden was not completely consistent; other genetic

predictor variables may exert independent effects. The TOMM40

rs10524523 (‘523’) variable length poly-T repeat has been signifi-

cantly associated with brain phenotypes such as cognitive decline,
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independent of APOE genotype (9). The TOMM40 523 locus is

characterized by a variable number of T residues (poly-T repeats)

that can be grouped into ‘short’ (<20; ‘S’), ‘long’ (20–29; ‘L’), and

‘very long’ (≥30; ‘VL’) (10). Roses (11) plotted histograms

showing the distributions of poly-T repeat lengths in different

APOE genotypes: ε3/ε3, ε3/ε4, and ε4/ε4. The poly-T repeat was

strongly linked with the APOE ε haplotype; ε4 is linked to L, with

ε3 linked to either S or VL alleles (4); investigating the effects of

TOMM40 523 genotype on brain-related phenotypes may explain

some of the heterogeneity in the possible APOE ε4 and WMH/

CMB association. This study therefore aims to contribute a large

amount of relevant genetic APOE/TOMM40 and WMH/CMB

brain imaging data, from a sample of community-dwelling older

adults.

Methods

Sample and genotyping
The Lothian Birth Cohort 1936 (LBC1936) is a longitudinal

sample of generally healthy community-dwelling older adults

(12). All participants were born in 1936, and most resided in the

Edinburgh area of Scotland in older age. The sample received

detailed cognitive, medical, and demographic assessments at the

Wellcome Trust Clinical Research Facility (Edinburgh; http://

www.wtcrf.ed.ac.uk) at age ∼73 years. Participants underwent

detailed brain MRI around the same time (13) (mean inter-

val = 65·0 days, SD = 39·5). Of the 866 LBC1936 participants that

attended clinic assessment, 700 completed neuroimaging (mean

age = 72·70, SD = 0·7). Details of LBC1936 recruitment and

assessment, including aspects of possible selection bias and attri-

tion, can be found in two cohort protocol papers by Deary et al.

(12,14).

Participants were genotyped by TaqMan assay for APOE ε
(Applied Biosystems, Carlsbad, CA, USA) using DNA isolated

from whole blood (12). TOMM40 523 was genotyped by the

laboratory of Dr. Ornit Chiba-Falek (Duke University) as

described previously (15).

Brain MRI
Participants underwent whole brain structural MRI, acquired

using a GE Signa Horizon 1·5 T HDxt clinical scanner (General

Electric, Milwaukee, WI, USA) equipped with a self-shielding

gradient set (33 mT/m maximum gradient strength) and

manufacturer-supplied eight-channel phased-array head coil,

lasting around 70 min. In addition to standard structural T2-,

T2*-, and FLAIR-weighted MRI, the imaging protocol included a

high-resolution T1-weighted volume sequence acquired in the

coronal plane with field-of-view of 256 × 256 mm, imaging

matrix 192 × 192 (zero-filled to 256 × 256), 160 1·3-mm thick

slices giving 1 × 1 × 1·3-mm voxel dimensions (13). The repeti-

tion, echo, and inversion times were 10, 4, and 500 ms respec-

tively. The detailed protocol for WMH/CMB image processing,

and intracranial/total brain volume measurement, is published by

Wardlaw et al. (13). WMH volumes were calculated from binary

masks generated by an in-house-developed and validated soft-

ware tool written in MATLAB that applies a technique named

Multispectral Colouring Modulation and Variance Identification:

1936 [MCMxxxVI (16)]. Visual scoring of WMH was also per-

formed using the Fazekas scale by experienced neuroradiologists.

Microhemorrhages (i.e. CMBs) were coded for number and

distribution using a simplified version of the Brain Observer

MicroBleed Scale [BOMBS (17)], which considers microbleeds as

small homogenous round foci of low signal intensity on T2*-

weighted images, of less than 10 mm in diameter. This rating scale

is used to record the number of observed definite or possible

microbleeds in the right/left hemispheres, delineated into bleeds

<5 mm and 5–10 mm. Because of the relatively low frequency of

CMB’s in the LBC1936 sample, we examined the presence of ≥1

definite/possible microbleeds, strictly lobar microbleeds, strictly

deep or infratentorial microbleeds. Any significant findings were

reanalyzed as definite microbleeds only.

Inter- and intra-rater reliability standards have been reported

in previous work (13). Genotyping was performed blind to

imaging (and vice versa). Imaging lesions were defined according

to STRIVE recommendations (2). Of the 700 participants that

completed brain MRI, 25 had one or more lacunar infarcts, and

given this low frequency, we did not consider this variable further.

Statistical analysis
Age in days and gender were included as covariates. An online

calculator was used to perform tests of Hardy–Weinberg

equilibrium and determine minor allele frequencies (http://

www.had2know.com/academics/hardy-weinberg-equilibrium-

calculator-3-alleles.html). Volumetric WMH data were

transformed with a natural logarithmic function to provide a

more normal distribution. Data were analyzed with the IBM SPSS

statistics program (version 17; IBM, Armonk, NY, USA).

Univariate general linear models tested the effects of separate

APOE and TOMM40 genotypes upon imaging variables. Specifi-

cally, the effects of APOE ε4 ‘risk’ allele presence vs. absence (i.e.

ε2/ε4; ε3/ε4; ε4/ε4 vs. ε2/ε2; ε2/ε3; ε3/ε3) were tested. To assess

the independent effects of TOMM40 523 genotype, we tested for

effects of S allele frequency vs. pooled L/VL alleles (simply L*; S/S

vs. S/L* vs. L*/L*) in participants with the ‘neutral’ APOE

ε3/ε3 genotype (9) and then in the ε3/ε4 genotype subgroup,

because TOMM40 523 genotype may interact with the ε4 allele

(18).

Results

Of the 866 LBC1936 participants that attended clinic assessment,

700 completed neuroimaging. Participants were excluded from

analysis if they had Mini-Mental State Exam scores below 24 or

had not completed the test (19). [A cutoff of 24 was used because

this is considered the lowest possible score within the range of ‘no

cognitive impairment’, and is a common approach (20).]. This left

694 participants, of whom 624 and 636 had successful genotyping

for APOE ε and TOMM40 523, respectively. Allele frequencies

were in Hardy–Weinberg equilibrium for APOE (ε2 = 7·4%,

ε3 = 77·0%; ε4 = 15·6%) and TOMM40 (S = 40·9%, L = 15·3%,

and VL = 43·9%; both P > 0·05). Allele frequencies are shown in

Table S1.
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There were no significant associations between APOE ε4 pres-

ence (vs. absence), or TOMM40 523 genotype (in any analyses),

and WMH/CMB variables (all P > 0·05; Tables S2–S3).

Discussion

Our findings align with previous meta-analyses in observing no

significant APOE/WMH association (5,6). In terms of CMB, this

report does not align with recent meta-analyses that concluded

significant deleterious effects of APOE ε4 (6,7). Of those meta-

analyses, Schilling et al. (6) observed a significant effect of APOE

ε4 in general populations only – and not in pooled samples with

neurological or vascular disorders; the lack of association in

LBC1936 may be because of the relatively good health of the

sample. Our findings do align with two individual studies of

generally healthy older adults (included in the meta-analyses)

which reported no significant APOE ε4 present (vs. absent) effects

[by Sveinbjornsdottir et al. (21) (n = 1725) and Jeerakathil et al.

(22) (n = 368)]. There was no evidence of an independent effect

of TOMM40 523 genotype here.

Previous significant associations in individual CMB reports

may perhaps reflect a degree of type 1 error, particularly in

smaller samples. Several studies report broader age ranges than

examined here (71–74 years; SD = 0·7) (7). Any effect of age on

CMB may be via processes associated with age; controlling for age

statistically is unlikely to completely eradicate these effects (23),

so wide age ranges could possibly contribute to spurious genetic

associations.

The BOMBS instrument allows raters to note CMBs as either

definite or possible [a cautious category to avoid misclassifica-

tions of mimics (17)]. It would be interesting to examine if pre-

viously reported significant APOE-CMB associations are affected

when analyzed to incorporate possible microbleeds/mimics.

It is possible that the sample size examined here is not suffi-

ciently powered to detect any possibly modest effects of APOE or

TOMM40 genotypes on WMH/CMB (5). It is possible that the

LBC1936 sample is generally healthier when compared with other

samples, exacerbated by a selection bias where healthier partici-

pants were more likely to attend brain MRI assessment (24).

Generally, the LBC1936 sample is slightly restricted in range

towards the upper end of general mental ability and socioeco-

nomic status (14). In addition, APOE ε4 genotype has previously

been associated with earlier mortality and cardiovascular disease

(25): it is possible that a selection bias exists whereby healthier

participants are more likely to attend cognitive or brain imaging

assessment, and this may contribute to our finding no effect of

APOE/TOMM40 genotypes on WMH/CMB phenotypes with

MRI.

Maxwell et al. (7) estimated with a ‘fail-safe N calculation’ that

null studies including at least 7700 participants would be required

to attenuate their meta-analysis APOE ε4/CMB association

(reported P = 0·01) to non-significance (i.e. P > 0·05). Further

independent studies will help to define the more exact nature and

strength of any APOE/CMB association in generally healthy

populations.
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Table S2. APOE/TOMM40 genotypes and white matter

hyperintensities/cerebral microbleeds: association statistics.

Table S3. TOMM40 genotypes and white matter

hyperintensities/cerebral microbleeds in APOE subgroups:
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