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ABSTRACT 

Investigating the biosynthesis of long-chain (C20–24) polyunsaturated fatty acids (LC-

PUFA), physiologically important compounds including arachidonic acid (ARA), 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in fish is crucial to 

identify dietary requirements for essential fatty acids (EFA). Moreover, knowledge of 

the C20–24 LC-PUFA biosynthetic capability of farmed fish species enables us to 

understand their ability to utilise commonly used raw materials such as vegetable oils, 

which naturally lack LC-PUFA but include C18 PUFA that are metabolic precursors of 

LC-PUFA. Studies have shown that the potential of a species for LC-PUFA biosynthesis 

is associated with the complement and function of fatty acyl desaturase (fads) and 

elongase of very long chain fatty acid (elovl) genes existing in that species. The present 

study therefore aimed to investigate these genes in the African catfish (Clarias 

gariepinus), the most commercially important farmed fish in sub-Saharan Africa. A 

fads2, a fads6 and four elovl (elovl2, elovl4a, elovl4b, elovl8) cDNAs were cloned and 

functionally characterised by heterologous expression in yeast. The Fads2 was a 

bifunctional desaturase enzyme with ∆6∆5 and ∆8 activities, and thus catalysing all the 

desaturation reactions required for ARA and EPA biosynthesis from C18 precursor fatty 

acids. Moreover, the C. gariepinus Fads2 enzymes also desaturated 24:5n-3 to 24:6n-3, 

a ∆6 desaturation required for the biosynthesis of DHA through the so-called “Sprecher 

pathway”. Functional characterisation of Fads6 by heterologous expression in yeast did 

not reveal its function. With regards to elongases, the C. gariepinus Elovl2 demonstrated 

the ability to elongate C20 and C22 PUFA and thus complements the Elovl5 with elongase 

capability towards C18 and C20 PUFA. The Elovl8 was capable of only limited elongation 

of C18 and C20 PUFA. Elovl4a and Elovl4b, enable the biosynthesis of very long-chain 

(>C24) fatty acids, compounds with major roles in vision and fertility of vertebrates. The 

present study confirmed that C. gariepinus possess all the enzymatic capabilities required 

for the biosynthesis of ARA, EPA and DHA and, therefore, its physiological EFA 

requirements could be satisfied with dietary provision of C18 PUFA. 
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1.1 Current Status of Fish Production 

Fish is the most important source of long chain (C20-24) polyunsaturated fatty acids (LC-

PUFA), physiologically essential fatty acids (EFA) in human diet, in addition to being a 

rich source of other important nutrients including protein, vitamins and minerals (Bell and 

Koppe, 2010; Beveridge et al., 2013; Tocher, 2015). Whereas capture fisheries provided 

the bulk of fish supplied for human consumption in the past, aquaculture has increasingly 

contributed to global fish supply in the last few decades, rising from 26 % in 2000 to 

approximately 45 % of the global production of fish in 2015 (Beveridge et al., 2013; FAO, 

2017). Freshwater species are among the farmed fish species driving global production and 

are projected to make up about 60 % of total aquaculture production by 2025 (De Silva, 

2012; De Silva et al., 2010; FAO, 2016). Therefore, as the fastest growing food production 

sector in the world, aquaculture offers food security, chiefly through the significant 

production of low-value freshwater species (FAO, 2016; Tidwell and Allan, 2001). This is 

important for several reasons, one of which is that these species require little or no input 

of marine ingredients, namely fishmeal (FM) and fish oil (FO), finite and expensive raw 

materials (Rana et al., 2009). Thus, low-value freshwater fish species can be more tolerant 

of the current increasing use of vegetable products in fish feed, leading to lower production 

cost compared to the higher valued species.  

FM and FO have traditionally been used in fish feeds as prime sources of proteins, amino 

acids, essential lipids and micronutrients (Tacon et al., 2011). However, the combination 

of stagnant production, increasing cost and competition that aquaculture has with livestock 

production and nutraceutical industries (FO use as supplements) has made identification 

and use of alternative protein and lipid sources in fish feed essential for ensuring the 

sustainable development of the industry (FAO, 2016; Ng et al., 2003; Tidwell and Allan, 

2001). Thus, plant protein and oil sources that are readily available, more sustainable and 
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cheaper are increasingly used to replace the marine raw materials in aquafeeds. The 

disadvantage, however, is that substitution with plant ingredients may compromise levels 

of some essential nutrients in the feed. Therefore, replacement needs to take into account 

the nutritional profiles of marine versus plant ingredients. 

Furthermore, low-value fish are the major species produced in developing countries. An 

example is the African catfish Clarias gariepinus, which accounts for almost 50 % of fish 

produced (including capture fisheries) in countries like Nigeria (FAO, 2016). Despite the 

recent rise in aquaculture production in Africa, a huge portion of fish consumed is still 

imported, frozen fish, as the combined fisheries and aquaculture production do not meet 

demand (FAO, 2014). Aquaculture has long been regarded as the means to bridge the gap 

between demand and supply of fish, and a focus on freshwater species that can be 

sustainably farmed arises as a reasonable way to achieve this goal. 

1.1.1 Production of the African Catfish, Clarias gariepinus 

The African Catfish, also known as the North African catfish, Clarias gariepinus, is a 

freshwater species of catfish belonging to the family Clariidae and order Siluriformes 

(Figure 1.1). The species has a number of favourable characteristics that make it an 

excellent species for farming and was adopted as the most desirable African catfish for 

aquaculture in the mid-1970s (Pouomogne, 2010; Van Weerd, 1995). C. gariepinus is fast 

growing, reaching over 1 kg in a year. They are hardy and can tolerate conditions of low 

dissolved oxygen because they possess large, multibranched accessory air-breathing 

organs also known as arborescent organs, above their gill arches (Figure 1.1). C. gariepinus 

can be fed a wide variety of feed ingredients and have been classified as euryphagous, 

opportunistic, omnivorous predators (Atanda, 2007; Hecht, 2013; Pouomogne, 2010). All 

these may account for why C. gariepinus is the most important commercially farmed fish 
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species in sub-Saharan Africa (FAO, 2012), and cultured in many parts of the world 

including countries in Europe, Asia and South America (Figure 1.2) (Pouomogne, 2010).  
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Figure 1.1. Morphological characteristics of the African catfish Clarias gariepinus. 

 Source (De Graaf and Janssen, 1996). 
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Figure 1.2 Main producers of Clarias gariepinus. The map was constructed from FAO 

reported statistics for this species. (Source: Pouomogne, 2010) 

 

Aquacultural production in Nigeria comprises mostly of African catfish (90 %) (Brummett, 

2007). Even though tremendous progress has been made, and intensive fish farming 

increased markedly in recent years, Nigeria’s potential to increase its aquaculture 

production to meet demand has not been achieved as growth in the sector is hindered by 

problems such as inadequate supply of high-quality fingerlings and high cost of feed 

(Atanda, 2007). The early stages of development of catfish are the most critical of all 

production stages with great losses (up to 70-90%) recorded, mostly related to nutritional 

causes (Atanda, 2007; Brummett, 2007). Efforts needed to improve the quality and output 

performance of C. gariepinus to enable the full expansion of this species includes 

production of high quality, cost effective feed for all stages of production. 
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Fish feed constitutes the highest recurrent cost in aquaculture, ranging from 30 to 60 % of 

the total production cost (De Silva and Anderson, 1995) and affects the profitability and 

success of any commercial fish production business. In addition, fish feed determine, 

together with other factors, the growth performance and health of fish. Fish feed can also 

influence the final profile of nutritents including fatty acids (FA) in the fish, thus 

determining the nutritional value for human consumers (Bell et al., 2002; Hoffman and 

Prinsloo, 1995a; Ng and Chong, 2004; Ng et al., 2003; Sprague et al., 2017; Tocher et al., 

2002).  

1.1.2 Clarias gariepinus Nutrition 

The natural feed of C. gariepinus juveniles includes plankton, insects, molluscs, 

crustaceans and detritus, whereas adults feed preferentially on fish, although they are also 

capable of feeding on various other feed sources available (Van Weerd, 1995). Their 

natural feeding habits are indicative of their feed requirements and their ability to utilise a 

wide variety of feed ingredients. C. gariepinus is cultured in different systems ranging 

from extensive polyculture system in ponds to intensive culture in tanks under recirculatory 

conditions (De Graaf and Janssen, 1996; Hecht, 2013; Pouomogne, 2010). Consequently, 

feeding husbandry strategies range from provision of nutrients via pond fertilisation 

(extensive systems), supplemental diets in form of farm and industrial by-products (semi-

intensive systems) to nutritionally balanced, complete feeds (intensive systems) (Hecht, 

2013; Pouomogne, 2010). Farm and industrial by-products used include rice bran, wheat 

middling, brewery waste, cottonseed meal, corn meal and peanut (groundnut) meal. These 

may be fed directly or made into pelleted feeds, and typically consist of 28-35 % protein. 

Non-conventional feed ingredients also used include chicken entrails, abattoir waste, fish 

market waste, maggots, termites, earthworms and crickets (Hecht, 2013). Nutritionally 

balanced sinking or extruded fish pellets are used in intensive system. Nutrients required 
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for optimal growth and maintaining the health of fish typically include proteins (and their 

amino acids), lipids (and their fatty acids), vitamins and minerals. Nutritional studies have 

shown optimum growth rate for C. gariepinus is attained with feed containing 40-43 % 

crude protein, 10-12 % dietary lipid and 12-14 kJ/g digestible energy (Hecht, 2013; 

Pouomogne, 2010; Van Weerd, 1995).  

1.1.3 Lipid Sources and Essential Lipids for C. gariepinus Feed Production 

Lipids are important components in fish feed formulation. Lipids are high-energy organic 

molecules containing primarily carbon atoms in a variety of chain or ring conformations. 

They consists of five main classes: fatty acids (FA), triglycerides, phospholipids, 

sphingolipids and sterols (De Silva and Anderson, 1995). A variety of vegetable oils (VO) 

including groundnut oil, olive oil, palm oil, sunflower oil, soybean oil, as well as FO, have 

been investigated for use in feeds for the African catfish (Hoffman and Prinsloo, 1995a; 

Ng et al., 2003; Solomon et al., 2012). Interestingly, studies have shown that C. gariepinus 

fed FO as the only lipid source exhibited growth rates lower than those fed VO (Hoffman 

and Prinsloo, 1995a; Ng et al., 2003, 2004). This has also been reported in another catfish 

species, Heterobranchus longifilis (Legendre et al., 1995). A combination of FO and VO 

have been shown to give the best growth rates (Ng et al., 2003; Ochang et al., 2007; 

Solomon et al., 2012). These studies also show body FA composition of C. gariepinus is 

strongly influenced by dietary lipid source and thus, can be used to manipulate the FA 

composition of C. gariepinus (Hoffman and Prinsloo, 1995a, 1995b; Ng et al., 2003).  

Dietary lipids supply FA, some of which are the essential compounds that fish cannot 

synthesise themselves to meet physiological demands, and therefore must be provided in 

the diet. The requirements for EFA have been shown to vary greatly among fish species 

and this is dependent upon a species capacity for endogenous FA synthesis (Lovell, 1998; 

Sargent et al., 2002). Therefore studies determining fish EFA requirements and their 
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endogenous LC-PUFA biosynthesis capacity at all developmental stages (larvae, juvenile, 

adult, or broodstock) are vital in fish nutrition for the provision of EFA for optimal growth 

(NRC, 2011). However, EFA for C. gariepinus and its capacity for FA synthesis has not 

been determined. For clarity purposes, we will first provide a description of the fatty acid 

nomenclature system used in this dissertation. 

1.2 Fatty Acids: Classification and Nomenclature  

FA are organic molecules with a carboxylic acid group at the end of an aliphatic chain 

containing four or more carbons, usually an even number up to 24 (Bell and Koppe, 2010; 

Castro et al., 2016). On the basis of number of carbon-carbon double bonds present, FA 

are designated saturated (no double bonds), monounsaturated (one carbon-carbon double 

bond) or polyunsaturated fatty acids (PUFA) (two or more carbon-carbon double bonds) 

(Sargent et al., 2002; Tocher, 2003). Long-chain polyunsaturated fatty acids (LC-PUFA) 

are herein defined as PUFA with aliphatic chains of between C20 to C24 and three or more 

double bonds, whereas PUFA with aliphatic chains greater than C24  are defined as very 

long-chain polyunsaturated fatty acids (VLC-PUFA) (Bell and Koppe, 2010; Castro et al., 

2016). 

There are two systems of naming unsaturated FA: the omega ( or n-) nomenclature and 

the delta (∆) nomenclature. The n- nomenclature system is based on FA chain lengths, 

number of double bonds and the position of the first double bond from the methyl end of 

the FA. Thus the n- nomenclature of docosahexaenoic acid (DHA) is 22:6n-3, meaning 

that it is a FA with 22 carbons, six double bonds, with the first double bond situated three 

carbon atoms from the methyl end. The ∆ nomenclature on the other hand specifies the 

positions of all double bonds from the carboxyl group carbon, therefore DHA is 

22:6∆4,7,10,13,16,19. The geometric configuration of most unsaturated FA is the cis 
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configuration, containing double bonds at three carbon intervals separated by a methylene 

group (Bell and Koppe, 2010). Therefore, all the double bond positions can be inferred 

once the bond closest to the n-carbon is known (Cook and McMaster, 2002; Lee et al., 

2016; Sargent et al., 2002; Wallis et al., 2002). Despite the ∆ nomenclature is more precise 

(it specifies the double bond positions along the FA), the n- nomenclature is the most 

frequently used in fish nutrition, except in specifying the activities of fatty acyl desaturase 

(Fads) enzymes (Castro et al., 2016). Both systems of classification have been used in this 

thesis. 

FA are also known by their English names, which often reflect their origin such as “α-

linolenic acid” from linseed oil (Sargent et al., 2002), and Greek-Latin names that reflect 

their number of carbon atoms and double bonds; thus “docosahexaenoic acid” reflects the 

number of carbon atoms (22) and double bonds (6) (Tocher, 2003). Some common FA 

mentioned in this study and their different names are presented in Table 1.1. 
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Table 1.1. Fatty acid nomenclature. The different system of nomenclature used for some 

of the fatty acids discussed in this study. 

Common name 

n-

nomenclature  

∆ 

nomenclature  Systematic name 

Stearic acid 18:0  Octadecanoic acid 

Oleic acid 18:1n-9 18:1∆9 9-octadecenoic acid 

Linoleic acid (LA) 18:2n-6 18:2∆9,12 9,12-octadecadienoic acid 

α-linolenic acid (ALA) 18:3n-3 18:3∆9,12,15 9,12,15-octadecatrienoic acid 

Stearidonic acid (SDA) 18:4n-3 18:4∆6,9,12,15 6,9,12,15-octadecatetraenoic acid 

Eicosatrienoic acid (ETE) 20:3n-3 20:3∆11,14,17 11,14,17-eicosatrienoic acid 

Eicosatetraenoic acid 

(ETA) 20:4n-3 20:4∆8,11,14,17 8,11,14,17-eicosatetraenoic acid 

Arachidonic acid (ARA) 20:4n-6 20:4∆5,8,11,14 5,8,11,14-eicosatetraenoic acid 

Eicosapentaenoic acid 

(EPA) 20:5n-3 20:5∆5,8,11,14,17 

5,8,11,14,17-eicosapentaenoic 

acid 

Docosapentaenoic acid 

(DPA) 22:5n-3 22:5∆7,10,13,16,19 

7,10,13,16,19-docosapentaenoic 

acid 

Docosahexaenoic acid 

(DHA) 22:6n-3 22:6∆4,7,10,13,16,19 

4,7,10,13,16,19-docosahexaenoic 

acid 

Tetracosapentaenoic acid 

(TPA) 24:5n-3 24:5∆9,12,15,18,21 

9,12,15,18,21-tetracosapentaenoic 

acid 

Tetracosahexaenoic acid 

(THA) 24:6n-3 24:6∆6,9,12,15,18,21 

6,9,12,15,18,21-

tetracosahexaenoic acid 

 

1.3 Fish Essential Fatty Acid Requirements  

As stated above, PUFA that fish cannot endogenously synthesise and must obtain from 

their diet are regarded as EFA (Cook and McMaster, 2002). Basically, EFA have been 

described as any FA supplied in diets that significantly affects the growth of a species 

(Glencross, 2009). Various levels of EFA requirements for fish have been identified: 

maintenance, optimal, maximum growth, survival, body maintenance, least cost 

production or fish health levels (Hamre et al., 2013; Tocher, 2003). However, Tocher 

(2015) comprehensively classified EFA in fish into three levels with increasing 
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requirements. The physiological EFA requirement is the absolute dietary requirement of 

species of fish for PUFA that prevents the manifestation of EFA deficiency pathologies. 

The second level is that required for maintaining optimal health and growth performance 

of the fish. The third level, the highest of all three, is that required to guarantee the 

nutritional value of the fish for consumers in terms of deposition of health benefiting LC-

PUFA (i.e. EPA and DHA) in fish muscle (fillet). The physiological EFA requirement and 

the level required for maintaining optimal health and growth performance of fish are 

species specific and dependent on the capacity for endogenous FA synthesis. 

Lipogenesis is the term used to describe the endogenous synthesis of new lipids, the 

primary pathway being the biosynthesis of FA (Castro et al., 2016; NRC, 2011). The key 

pathway in lipogenesis is catalysed by a multi-enzyme complex known as fatty acid 

synthase (FAS) in the cytosol. This system of enzymes catalyses the synthesis of saturated 

long-chain fatty acids from acetyl CoA, malonyl CoA and nicotinamide adenine 

dinucleotide phosphate (NADPH) (Berg et al., 2012; Cook and McMaster, 2002; Leaver 

et al., 2008). The main product of FAS is palmitic acid (16:0) with minor amounts of stearic 

acid (18:0) also being attained. These saturated fatty acids can be biosynthesised de novo 

by all known organisms including fish (Castro et al., 2016). In eukaryotes, longer FA are 

formed by elongation reactions that add two-carbon units sequentially to the carboxyl ends 

of fatty acyl CoA substrates. These reactions are catalysed by enzymes known as 

elongases, located in the cytoplasmic face of the endoplasmic reticulum membrane (Berg 

et al., 2012; Cook and McMaster, 2002; Sargent et al., 2002; Tocher, 2003). These are 

important enzymes in this study and further details about them are given in Sections 1.5.4 

and 1.5.5.  

Fish are capable of desaturating stearic acid (18:0) and palmitic acid (16:0) with the 

microsomal stearoyl-CoA desaturases (Scd) to produce monounsaturated fatty acids such 
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as oleic acid (18:1n-9) and palmitoleic acid (16:1n-7), respectively. Both reactions imply 

the introduction of a double bond between carbons 9 and 10, and consequently Scd has 9 

desaturase capability (Leaver et al., 2008). Polyunsaturated fatty acids can be synthesised 

by modification of the monounsaturated fatty acids by desaturases known as “methyl-end 

desaturases” that create a double bond between the existing double bond and the methyl 

end of the fatty acyl chain (Sperling et al., 2003). Thus, oleic acid is converted by the 

methyl-end desaturase ∆12 desaturase to linoleic acid (LA), the latter being subsequently 

converted to α-linolenic acid (ALA) by ∆15 desaturase (Figure 1.3). ∆12 and ∆15 

desaturases can be found in a range of organisms such as plants, thus accounting for many 

VO being rich sources of these C18 PUFA (Lee et al., 2016; Wallis et al., 2002). 

All vertebrates including fish have absolute dietary requirements for the C18 PUFA, LA 

(18:2n-6) and ALA (18:3n-3) because they lack the ∆12 and ∆15 desaturases required for 

their synthesis from oleic acid (Sargent et al., 2002; Tocher et al., 2003; Wallis et al., 2002). 

In addition, the longer chain derivatives of LA, namely arachidonic acid (ARA, 20:4n-6), 

and ALA, namely eicosapentaenoic acid (EPA, 20:5n-3) and DHA (22:6n-3), are essential 

for some fish species. These LC-PUFA play physiologically important roles in fish and the 

dietary requirement for them is primarily determined by a species ability to endogenously 

synthesise them from their dietary derived precursors LA and ALA (NRC, 2011). In fish 

species with high conversion capacity, the C18 PUFA found, for instance, in VO can meet 

their EFA requirement. Moreover, species with limited or no ability to biosynthesise LC-

PUFA from their C18 PUFA precursors depend upon provision of LC-PUFA (ARA, EPA 

and DHA) in the diet, typically achieved by inclusion of marine ingredients, primarily FO. 
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Figure 1.3. The biosynthetic pathways of long-chain polyunsaturated fatty acids (LC-

PUFA) from dietary -linolenic (18:3n-3) and linoleic (18:2n-6) acids in teleosts. 

Enzymatic activities shown in the diagram are predicted from heterologous expression in 

yeast (Saccharomyces cerevisiae) of fish fatty acyl desaturase 2 (Fads2) and Elongase of 

very long-chain fatty acid (Elovl) proteins. The red lines indicate desaturation reactions 

not possible in vertebrates and the fatty acids highlighted in green indicate the starting 

point of LC-PUFA, the C18 PUFA obtained from diets. β-ox, partial β-oxidation. 

 

Generally, it has been suggested that LA and/or ALA can satisfy the EFA requirements of 

freshwater fish, whereas the EFA requirements are met in marine fish by dietary supply of 

ARA, EPA and DHA (Sargent et al., 2002; Tocher, 2010). However, several studies have 

established that in most fish species with the ability to convert ALA acid to EPA and DHA, 
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the C20-22 LC-PUFA are more effective nutritionally than the C18 PUFA (Buzzi et al., 1996; 

Sargent et al., 2002; Tocher, 2010; et al., 1997). Providing these species such as rainbow 

trout, Oncorhnychus mykiss (Buzzi et al., 1996; Wirth et al., 1997) and channel catfish 

Ictalurus punctatus (Satoh et al., 1989; Wilson and Moreau, 1996) with direct sources of 

EPA and DHA resulted in better growth. Hence for these species, as well, the LC-PUFA 

are at least ‘semi essential’ as the rate of conversion from C18 PUFA to C20-22 LC-PUFA 

may be insufficient to support optimal growth, particularly at certain life stages such as the 

larval stage, when fish are undergoing fast somatic growths and neural tissues 

accumulating LC-PUFA are rapidly developing (Brett and Müller-Navarra, 1997; 

Glencross, 2009). Consequently, at those life stages, there is a requirement for LC-PUFA 

regardless the ability of converting C18 PUFA into LC-PUFA that species has in later 

developmental stages (Brett and Müller-Navarra, 1997; Sargent et al., 2002; Tocher, 2010). 

It is interesting to note, however, that provision of dietary n-3 LC-PUFA to freshwater fish 

species such as Oreochromis sp. (Ng and Chong, 2004) and African catfishes (Hoffman 

and Prinsloo, 1995a; Legendre et al., 1995; Ng et al., 2003) did not increase their growth 

performance beyond those of fish fed the C18 PUFA diets. Therefore, a wide range of EFA 

requirements exists even in fish capable of endogenous LC-PUFA synthesis, underlining 

the need for species specific studies.  

Differences among fish also occur in their requirements for n-3/n-6 FA series. Reported 

estimates for juveniles and subadults of freshwater fish species indicate that their EFA 

requirements can generally be satisfied by LA and ALA of about 1 % of the diet dry weight, 

with warmwater species such as tilapia having a higher requirement for LA (Ng and Chong, 

2004; NRC, 2011; Sargent et al., 2002). Studies have, however, given conflicting results, 

pointing to a requirement for n-3 FA in some warmwater species but not for others (Chou 

and Shiau, 1999; Ng et al., 2003; Ng and Chong, 2004). For example, most tilapia species 
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studied suggest they require 0.5 – 1.0 % LA (Ng and Chong, 2004), but significant 

improvement in growth has been recorded in tilapia species fed cod liver oil compared to 

corn oil, indicating their requirement for n-3 FA or at least n-3 LC-PUFA for maximum 

growth (Chou and Shiau, 1999; Ng and Chong, 2004).  

The requirements for EFA and their optimal ratios also vary quantitatively during 

ontogenesis and therefore, accurate definition of EFA requirements for a given species 

must include the determination of absolute requirement of specific PUFA, the optimal 

balance between FA, and how these requirements vary at different life stages (Sargent et 

al., 2002; Tocher, 2010). Furthermore, EFA requirements studied individually may give a 

different picture from one considering all EFA due to the effect of their interaction, further 

increasing the challenge of establishing EFA requirements. This interaction stems from the 

ability of biosynthetic enzymes, namely desaturases and elongases (see below) to act on 

different FA substrate leading to competition among FA for use as substrate (Geiger et al., 

1993; Glencross, 2009; Sargent et al., 1999). Therefore, the presence or absence of certain 

FA in a species may affect the availability of another FA as substrate for longer chain FA 

synthesis. The optimum ratio of FA must therefore be taken into account in the 

determination of EFA requirements. This ratio changes with stage of development in 

different species making the study of the “singular and interactive requirements of each of 

the five key EFA” essential (Glencross, 2009; Sargent et al., 1999). 

1.4 Biological Functions of Fatty Acids in Fish 

FA can occur as free molecules in nature but they generally occur esterified into complex 

lipids including membrane phospholipids and triglycerides, which are basically two and 

three FA bonded to a glycerol molecule, respectively (De Silva and Anderson, 1995; NRC, 

2011). Features of FA such as length, degree of unsaturation, position of their double bonds 
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and, as seen with eicosanoids the position of the last bond of PUFA (n-3 or n-6), determine 

their properties and functions (Calder, 2005; Qiu, 2003). 

All FA can serve as important sources of cellular energy but some LC-PUFA also play 

essential roles in metabolism (NRC, 2011). FA catabolism is the major source of energy 

in fish species. FA catabolism takes place in mitochondria and peroxisomes, in a process 

known as β-oxidation, which involves the sequential cleavage of two-carbon units (NRC, 

2011). With the exception of DHA, oxidation of FA is determined by substrate FA 

concentrations and enzyme specificities, although there is an order of preference with 

saturated and monounsaturated FA preferentially oxidised before PUFA, and PUFA before 

LC-PUFA (NRC, 2011). DHA is a poor substrate for mitochondrial β-oxidation as removal 

of the ∆4 double bond requires peroxisomal oxidation and are thus retained in tissues in 

spite of dietary concentration (NRC, 2011; Sargent et al., 2002; Tocher, 2003). Whereas 

triglycerides are an efficient form of high-energy storage molecules, phospholipids are the 

major lipid component of cell and organelle membrane where they perform structural roles 

as fundamental components of lipid bilayers (Guillou et al., 2010; Leaver et al., 2008; Los 

and Murata, 1998; Tocher and Glencross, 2015). PUFA determine the physical properties 

(melting temperature) of phospholipids hence determining the fluidity of cell membranes 

that are made of a phospholipid bilayers. Through their impacts on cell membrane fluidity, 

PUFA act as active antifreeze for membrane lipid. This is important for poikilotherms, in 

particular fish, that remain active at low temperatures (Brett and Müller-Navarra, 1997; 

Das, 2008; Nakamura and Nara, 2004).  

LC-PUFA also have unique and important roles in controlling and regulating cellular 

metabolism and physiology. They regulate many membrane-associated processes such as 

permeability, cell division and inflammation (Guillou et al., 2010; Schmitz and Ecker, 

2008; Vagner and Santigosa, 2011). They control FA synthesis by activating transcription 
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factors and regulating the expression of certain genes including those coding for fatty acid 

synthase (FAS) (Qiu, 2003). LC-PUFA also play important roles in the induction of 

maturation in teleosts, sperm performance (milt quantity and sperm motility), embryonic 

and larval development (Butts et al., 2015; Sorbera et al., 2001; Tocher and Glencross, 

2015). Catabolism of lipids results in the release of free fatty acids utilised during 

embryogenesis and early larval development for energy and formation of developing larval 

tissues (Tocher, 2003). LC-PUFA has an effect on visual and neural development and 

therefore, survival of larvae (Glencross, 2009). ARA has been shown to induce oocyte 

maturation, whereas eggs with higher concentration of DHA have higher fertilisation, 

hatching and larval survival rates (Sorbera et al., 2001; Yanes-Roca et al., 2009).  

DHA has important structural and functional roles in neural membranes and is pivotal for 

the proper development of neural tissues. ARA plays a role in cell signalling, immune 

response and, in fish, in the regulation of the ionic balance (Glencross, 2009; Tocher and 

Glencross, 2015). Eicosanoids derived from ARA and EPA including prostaglandins, 

leukotrienes and thromboxanes regulate many important signaling pathways such as 

regulation of steroid biosynthesis (Guillou et al., 2010). Eicosanoids derived from n-6 fatty 

PUFA (e.g. ARA) are more potent mediators of inflammation compared to the ones derived 

from n-3 FA (e.g. EPA) (Calder, 2005; Qiu, 2003; Simopoulos, 2002). Docosanoids 

derived from DHA are also less pro-inflammatory than eicosanoids derived from ARA 

(Farooqui, 2011). 

1.5 Fatty Acid Synthesising Enzymes 

1.5.1 Fatty Acyl Desaturases  

Desaturases are non-heme, iron-containing enzymes that perform dehydrogenation 

reactions that result in the introduction of a double bond at specific positions in fatty acyl 

chains (Los and Murata, 1998; Shanklin et al., 2009). Desaturases can be divided into two 
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classes, membrane-bound and soluble desaturases, based on subcellular location (Castro et 

al., 2016). They are distinguished on the basis of their sequence similarity, homology and 

di-iron centres. Soluble desaturases are restricted to plant plastids and compose of the acyl-

acyl carrier protein (ACP) desaturases. Whereas, acyl-lipid desaturases (present in 

cyanobacteria, fungi and plant endoplasmic reticulum (ER) and plastid) and the acyl-

coenzyme A (CoA) desaturases make up the membrane-bound desaturases. The acyl-

coenzyme A (CoA) desaturases use fatty acyl-CoA as substrates (Los and Murata, 1998; 

Nakamura and Nara, 2004; Pereira et al., 2003). 

Membrane-bound desaturases, characterised by the possession of three histidine box 

motifs, can be further divided into two families: stearoyl-CoA desaturases (Scd) and fatty 

acyl desaturases (Fads) (Guillou et al., 2010). Scd are the ∆9 desaturases whereas the Fads 

include ∆6, ∆5 and ∆4 desaturases (Guillou et al., 2010; Li et al., 2010). Another 

classification, based on the end of the fatty acyl chain from which the desaturase counts in 

determining specificity, divides desaturases into methyl-end and front-end desaturases 

(Castro et al., 2016; Nakamura and Nara, 2004). The topology of Fads has been predicted 

(Figure 1.4). These predictions have been based on hydropathy analysis and on residues 

regarded as involved in binding the di-iron site, which are found in the same relative 

positions in both soluble and membrane-bound desaturases. Membrane-bound desaturases 

are thought to span the membrane four times in such a way that the histidine boxes lie on 

the cytoplasmic side where, together with the iron ions, they constitute the catalytic centre 

of the desaturase (Figure 1.4) (Los and Murata, 1998; Shanklin et al., 2009).  
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Figure 1.4. The predicted topology of membrane desaturase in relation to the membrane. 

The dark rectangular block represents the membrane and the four cylindrical shapes 

represent the transmembrane regions The histidine (H) boxes are outside the membrane, 

where they form the proposed catalytic centre with the iron (Fe) ions (Source: Los and 

Murata, 1998). 

1.5.2 The Desaturation of Fatty Acids 

Desaturation reactions are catalysed by three membrane-bound proteins: a desaturase, 

nicotinamide adenine dinucleotide (NADH)-cytochrome b5 reductase and cytochrome b5, 

and require molecular oxygen. At the start of this reaction (Figure 1.5), electrons are 

transferred from NADH to the flavin adenine dinucleotide (FAD) moiety of NADH-

cytochrome b5 reductase. The heme iron atom of cytochrome b5 is then reduced to the Fe2+ 

state, and subsequently, the nonheme iron atom of the desaturase is converted into the Fe2+ 

state enabling it to interact with oxygen and the fatty acyl CoA substrate, resulting in the 

creation of a double bond and the release of two molecules of water. Two of the four 

electrons come from the single bond of the FA substrate, whereas the other two are from 

NADH (Berg et al., 2012; Cook and McMaster, 2002; Nakamura and Nara, 2004).  
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A. 

 

 

 

B. 

Stearoyl CoA + NADH + H+ + O2                   oleoyl CoA + NAD+ + 2H2O 

Figure 1.5. The sequence of desaturation reaction. A. Electron-transport chain in the 

desaturation of fatty acids. B. The equation for the desaturation of stearoyl CoA to oleoyl 

CoA. 

 

1.5.3 Classification and Activities of Fads enzymes 

Fads enzymes constitute a family of genes in vertebrates with three members named 

FADS1, FADS2 and FADS3 in mammals. The gene and protein nomenclature used in this 

thesis is the standard gene/protein nomenclature as defined by Castro et al. (2016). 

Following this system of nomenclature, the human gene is referred to as ‘FADS’ and the 

predicted protein as ‘FADS’; for mouse and rat, gene is referred to as ‘Fads’, and protein 

as ‘FADS’; for birds, gene is referred to as ‘FADS’, whereas protein is as ‘FADS’; for 

amphibians and fishes, gene is referred to as ‘fads’, whereas protein as ‘Fads’.  

In mammals and cartilaginous fish species, FADS1 (fads1) and FADS2 (fads2) encode ∆5 

and ∆6 desaturases, respectively (Guillou et al., 2010; Lee et al., 2016). The function of 

FADS3 was not known until recently, when it was demonstrated to display ∆13 desaturase 

activity of vaccenic acid in rodents (Garcia et al., 2017; Rioux et al., 2013). However, all 

teleost Fads desaturases studied so far are Fads2 with very diverse activities that have been 

attributed to the functionalisation of the protein during the evolution of teleost (Castro et 

al., 2016; Fonseca-Madrigal et al., 2014). Other Fads, with as yet unknown functions are 
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present in some vertebrates. These include the so-called “Fads6” (Guillou et al., 2010), and 

“Fads4” found in mammalian genomes (Castro et al., 2012), which, unlike the other three 

Fads (Fads1, Fads2 and Fads3) that map together, are located on different chromosomes 

(Castro et al., 2012).  

Fads2 are named by the fixed position of the double bond they create counting from the 

carboxyl (front) end of the FA, and are often termed as “front-end” desaturases (Nakamura 

and Nara, 2004). Therefore, ∆6, ∆8, ∆5 and ∆4 Fads2 create double bonds at positions 6, 

8, 5 and 4, respectively, of the fatty acyl chain. Multiple isoforms of Fads2 have been 

isolated from teleost species such as Salmo salar (Hastings et al., 2005; Monroig et al., 

2010b; Zheng et al., 2005), Oncorhynchus mykiss (Zheng et al., 2004; Hamid et al., 2016), 

Siganus canaliculatus (Li et al., 2010), Chirostoma estor (Fonseca-Madrigal et al., 2014), 

Channa striata (Kuah et al., 2015, 2016) and Oreochromis niloticus (Tanomman et al., 

2013; Oboh et al., 2017), whereas only a single Fads2 have been isolated from others 

(Kabeya et al., 2017, 2015; Lopes-Marques et al., 2017; Mohd-Yusof et al., 2010; Morais 

et al., 2011; Wang et al., 2014; Xie et al., 2014; Zheng et al., 2004). Interestingly, ∆6 Fads2 

catalyses the desaturation of 18 and 24-carbon PUFA in the biosynthesis pathways of both 

n-3 and n-6 LC-PUFA, but have been found to also desaturate 16:0 to 16:1n-10 in mice 

and humans (Miyazaki et al., 2006; Park et al., 2009). Many ∆6 Fads2 also exhibit ∆8 

activity, catalysing the desaturation of 20:3n-3 and 20:2n-6, and presenting an alternative 

pathway to the already described ∆6∆5 pathway of EPA and ARA synthesis (Figure 1.3) 

(Monroig et al., 2011a; Park et al., 2009). A number of characterised teleost Fads2 are 

bifunctional ∆6∆5 Fads2. The first bifunctional ∆6∆5 Fads2 cloned was from zebrafish 

Danio rerio (Hastings et al., 2001). Since then, more bifunctional ∆6∆5 Fads2 have been 

isolated from S. canaliculatus (Li et al., 2010), O. niloticus (Tanomman et al., 2013), C. 

estor (Fonseca-Madrigal et al., 2014) and C. striata (Kuah et al., 2016).  
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Fads2 with ∆4 activity have been characterised in teleost species including S. canaliculatus 

(Li et al., 2010), S. solea (Morais et al., 2012), C. estor (Fonseca-Madrigal et al., 2014), C. 

striata (Kuah et al., 2015), O. niloticus and Oryzias latipes (Oboh et al 2017). These teleost 

∆4 Fads2 also exhibit some ∆5 desaturase activity. Even the ∆5 Fads2 from S. salar 

exhibited a low level of ∆6 activity (Hastings et al., 2005). The existence of multiple Fads2 

with different specificities in a species is increasingly observed among teleosts. Thus, 

many of the species in which ∆4 Fads2 have been characterised also possess the 

bifunctional ∆6∆5 Fads2 (Fonseca-Madrigal et al., 2014; Kuah et al., 2016, 2015; Li et al., 

2010). 

1.5.4 Elongation of Very Long-chain Fatty Acid (Elovl) protein 

Elongation of very long-chain fatty acids (Elovl) proteins catalyse the addition of two-

carbon units to the carboxyl end of a fatty acyl CoA, with malonyl CoA as the two-carbon 

donor and NADPH as the reducing agent. Elongation primarily occurs on the cytoplasmic 

face of the endoplasmic reticulum (ER), although it also occurs in the mitochondria (Cook 

and McMaster, 2002). The FA substrate for elongation may have been endogenously 

synthesised or from dietary FA (Cook and McMaster, 2002; Guillou et al., 2010; Leonard 

et al., 2004). 

Each round of elongation consists of a series of steps, namely condensation, reduction, 

dehydration and reduction reactions, which are catalysed by four enzymes similarly to the 

de novo synthesis of palmitic acid by FAS. The steps of the 2-carbon chain elongation of 

long-chain FA is presented in Figure 1.6. The first step (condensation reaction), catalysed 

by Elovl enzymes with a particular substrate specificity and generally accepted to be the 

rate-limiting step of the overall FA elongation pathway, results in addition of the 2-carbon 

moiety (Bell and Tocher, 2009; Leonard et al., 2004). In this step, the fatty acyl-CoA and 

malonyl-CoA are condensed to β-ketoacyl-CoA. β-Ketoacyl-CoA is then reduced to β-
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hydroxy acyl-CoA by the β-ketoacyl reductase that utilises NADPH. The third step 

involves dehydration to enoyl-CoA by β-hydroxy acyl-CoA dehydratase and finally, a 

second reduction step catalysed by 2-trans-enoyl-CoA reductase generates the elongated 

fatty acyl(n+2)-CoA by reducing enoyl-CoA in the presence of NAD(P)H (Castro et al., 

2016; Cook and McMaster, 2002).  

 

Figure 1.6. The steps of fatty acid elongation of long-chain fatty acids. 

 

1.5.5 Classification and Activities of Elongation of Very Long-chain Fatty acid (Elovl) 

Enzymes 

Seven Elovl proteins (Elovl 1-7) with similar motifs in their protein sequence make up the 

elongase protein family (Guillou et al., 2010; Jakobsson et al., 2006). Elovl2 and Elovl5 

are involved in PUFA elongation, Elovl 1, 3, 6 and 7 elongate saturated and 
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monounsaturated fatty acid while Elovl4 is capable of elongating both VLC-SFA and 

VLC-PUFA (Agbaga et al., 2008; Guillou et al., 2010; Jakobsson et al., 2006). Elovl5 

genes have been cloned and characterised from teleost species including S. salar (Hastings 

et al., 2005; Morais et al., 2009), D. rerio (Agaba et al., 2004), C. gariepinus, O. niloticus, 

Gadus morhua, Sparus aurata, Psetta maxima (Agaba et al., 2005), Thunnus maccoyii 

(Gregory et al., 2010), C. estor (Fonseca-Madrigal et al., 2014), Nibea mitsukurii (Kabeya 

et al., 2015), Larimichthys crocea (Li et al., 2017) and Paralichthys olivaceus (Kabeya et 

al., 2017). Relevant to this study, cloning and functional characterisation of an Elovl5 from 

C. gariepinus  has been carried out (Agaba et al., 2005). Elovl2 has been found in fewer 

fish species compared to Elovl5 and have so far, only been characterised in S. salar (Morais 

et al., 2009), D. rerio (Monroig et al., 2009) and O. mykiss (Gregory and James, 2014). 

Functional characterisation of Elovl2, Elovl4 and Elovl5 shows they have to some extent 

overlapping functions, with Elovl5 mainly elongating PUFA of chain lengths C18 and C20 

whereas Elovl2 and Elovl4 act on PUFA substrates of chain lengths C20 and C22 (Castro et 

al., 2016; Monroig et al., 2016b). Most teleost Elovl5 exhibit low ability to elongate C22 

PUFA and although numerous researchers suggest only Elovl5 can provide all the required 

elongation activity for LC-PUFA synthesis, biosynthesis would be more efficient in teleost 

species with also Elovl4 and particularly, Elovl2. Fish Elovl2 mainly elongates C20 and C22 

PUFA but are also able to elongate 18-carbon PUFA, albeit with comparatively lower 

efficiency. Fish Elovl2 are unable to act on saturated and monounsaturated fatty acids 

substrates and synthesis of PUFA of C24 or longer are negligible (Jakobsson et al., 2006; 

Monroig et al., 2011b). In contrast mouse Elovl2 is capable of VLC-PUFA biosynthesis 

(Zadravec et al., 2011).  

Elovl4 have been shown to elongate VLC-PUFA, very long-chain (> C24) polyunsaturated 

fatty acid and very long-chain (> C24) saturated fatty acid (VLC-SFA) with chain lengths 
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of up to C36 (Agbaga et al., 2008; Carmona-Antoñanzas et al., 2011; Jin et al., 2017; Li et 

al., 2017; Monroig et al., 2010a). Two groups of the Elovl4 protein with different 

functional activities have been identified in fish, namely Elovl4a and Elovl4b. Elovl4b, 

which appear to be the most commonly studied (Carmona-Antoñanzas et al., 2011; Jin et 

al., 2017; Kabeya et al., 2015; Li et al., 2015, 2017; Monroig et al., 2010a, 2012, 2011c) 

efficiently synthesises both saturated VLC-SFA and VLC-PUFA up to C36. D. rerio 

Elovl4a was only able to synthesise VLC-SFA whereas the black seabream Acanthopagrus 

schlegelii Elovl4a was able to elongate both VLC-SFA and VLC-PUFA (Jin et al., 2017; 

Monroig et al., 2010a). In addition to Elovl4a and Elovl4b, two identical isoforms termed 

Elovl4c-1 and Elovl4c-2 were cloned, but not functionally characterised, in Gadus morhua. 

Search of teleost genome reveal the existence of similar elovl4-like genes, which have not 

been functionally characterised. 

1.5.6 Biosynthesis of Long-Chain Polyunsaturated Fatty Acids (LC-PUFA) in Fish 

As already surmised, the ability to convert ALA and LA to LC-PUFA has been established 

in some fish species. The extent to which fish can convert C18 PUFA into C20-24 LC-PUFA 

varies, depending on the species’ complement and function of desaturases and elongases, 

diet, trophic level and even environmental conditions (Fonseca-Madrigal et al., 2014; 

Leaver et al., 2008; Sargent et al., 2002; Tocher, 2010). Environmental factors that could 

determine LC-PUFA synthesis capacity include salinity (Fonseca-Madrigal et al., 2014; Li 

et al., 2008), temperature and photoperiod (Tocher et al., 2000; Zheng et al., 2005). In 

addition, the rate differs substantially during development and with change in diets 

(Sargent et al., 2002). Freshwater fishes have long been recognised to have a higher 

capacity to bioconvert dietary LA and ALA to ARA, EPA and DHA than marine fishes. 

This capacity has been attributed to evolutionary pressures based on their natural diets and 

the gain and loss of genes (Castro et al., 2012; Leaver et al., 2008; Sargent et al., 2002).  
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The bioconversion from ALA to EPA and LA to ARA may involve the ∆6/∆5 desaturation 

pathway (Sargent et al., 2002) or the proposed alternative ∆8/∆5 desaturation pathway 

(Monroig et al., 2011a). The ∆6/∆5 pathway involves a ∆6 desaturation of 18:3n-3 and 

18:2n-6 to 18:4n-3 and 18:3n-6, respectively, a two-carbon chain elongation step to 20:4n-

3 and 20:3n-6 and a ∆5 desaturation to 20:5n-3 and 20:4n-6, respectively (Vagner and 

Santigosa, 2011) (Figure 1.3). With the exception of O. mykiss Elovl2, the elongation step 

can be catalysed by Elovl5 and Elovl2, with Elovl5 being the most efficient (Gregory and 

James, 2014; Monroig et al., 2016b). Fish Elovl4 have also been shown to be capable of 

catalysing this elongation step. The alternative ∆8 desaturation pathway for the production 

of EPA and ARA was suggested following the cloning of a Fads2 gene with ∆8 desaturase 

activity from baboon neonate liver (Park et al., 2009), and from several fish species 

(Monroig et al., 2011a). In this pathway, the bioconversion from 18:3n-3 to EPA and from 

18:2n-6 to ARA involves an initial elongation step to 20:3n-3 and 20:2n-6, respectively, 

followed by a ∆8 desaturation step to give 20:4n-3 and 20:3n-6 and finally a ∆5 

desaturation step. All the known possible pathways for the biosynthesis of LC-PUFA from 

the C18 precursors (18:3n-3 and 18:2n-6) are presented in Figure 1.3. Irrespective of the 

pathway used, the steps and enzymes are the same for both n-3 and n-6 FA series (Figure 

1.3).  

DHA biosynthesis from EPA may occur through at least two routes; a direct route from a 

∆4 desaturation of 22:5n-3 following the elongation from EPA, or the longer route 

entailing two consecutive elongation steps from EPA up to 24:5n-3 (Tetracosapentaenoic 

acid), a ∆6 desaturation to 24:6n-3 (Tetracosahexaenoic acid) and a chain shortening step 

in the peroxisomes to produce DHA (Figure 1.3) (Sprecher et al., 1995). With the exception 

of this final step which occurs in peroxisomes, all elongation and desaturation steps occur 

in the ER (Bell and Koppe, 2010). The second pathway is known as the “Sprecher 
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pathway”. The Sprecher’s pathway appears to be the more common of the two pathways 

in fish, as ∆4 Fads2 are not present in all groups of fish. Fish Elovl2, 4 and 5 have been 

shown to catalyse the elongation steps required with Elovl2 being the most efficient (Castro 

et al 2016; Monroig et al 2016b). 

Studies in mammals established that the same ∆6 Fads2 is responsible for the two ∆6 

desaturation reactions in the Sprecher’s pathway, namely in the n-3 pathway for instance, 

18:3n-3 to 18:4n-3 and 24:5n-3 to 24:6n-3. In fish it remained unclear if the same ∆6 Fads2 

catalyses both desaturation steps or whether different ∆6 Fads2 (isoenzymes) are involved 

(Sargent et al., 2002; Vagner and Santigosa, 2011; Wallis et al., 2002). Competitive studies 

have shown ∆6 Fads2 displays a greater rate of desaturation of 18-carbon FA compared to 

24-carbon FA (Geiger et al., 1993). The dual function of ∆6 Fads2 in the conversion of 

both 18 and 24-carbon FA it limits the rate of conversion from ALA to DHA (Portolesi et 

al., 2007). This explains why it is regarded as the rate-limiting factor of LC-PUFA 

synthesis (Bell and Tocher, 2009; Leonard et al., 2004; Li et al., 2008).  

1.5.7 LC-PUFA Biosynthetic Capabilities of Clarias gariepinus  

Understanding the abilities of farmed fish species to convert C18 PUFA to C20-22 LC-PUFA 

has been the focus of many lipid nutrition studies as FM and FO rich in C20-22 LC-PUFA 

are increasingly been replaced with more sustainable and cheaper plant based substitutes 

lacking in C20-22 LC-PUFA. Therefore, understanding the LC-PUFA synthesis pathway in 

a species capable of utilising a variety of plant ingredients is crucial to understanding the 

extent to which a fish species can utilise alternative ingredients, particularly VO, and 

satisfy their EFA requirements. C. gariepinus, an important farmed species in which the 

LC-PUFA synthesis pathway has not been elucidated, although its Elovl5 has been cloned 

and functionally characterised by Agaba et al. (2005), is the model species used in the 

present study. 
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1.6 Objectives of This Study   

The overall objective of this PhD study is to elucidate the complete LC-PUFA biosynthetic 

pathway in C. gariepinus by cloning and functional characterisation of all Fads- and Elovl-

encoding genes with putative roles in these pathways. We hypothesise that characterisation 

of the full set of Fads and Elovl enzymes will allow us to identify the dietary EFA 

requirements of C. gariepinus that ultimately allow us to formulate diets with increased 

inclusion levels of plant ingredients.  

The specific aims of this project include: 

1. Molecular cloning of genes encoding Fads and Elovl involved in the LC-PUFA 

biosynthetic pathways of C. gariepinus 

2. Functional characterisation of Fads and Elovl by heterologous expression in 

yeast 

3. To establish the tissue expression pattern of the desaturases and elongases in C. 

gariepinus 

4.  To determine the Δ6 activity towards C24 substrates (24:5n-3 and 24:4n-6) of 

C. gariepinus Fads2 and Fads with diverse substrate specificities from fish 

species with different evolutionary and ecological backgrounds.  

This thesis consists of a general introduction (Chapter 1), General Materials and Methods 

(Chapter 2), four result chapters (Chapters 3 - 6) that have been prepared as stand-alone 

manuscripts, and the final chapter (Chapter 7), is the General Discussion, which provides 

a concise synthesis of all the outcomes and conclusions of the data chapters. 

The data chapters include: 
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Chapter 3. Biosynthesis of long-chain polyunsaturated fatty acids in the African catfish 

Clarias gariepinus: Molecular cloning and functional characterisation of fatty acyl 

desaturase (fads2) and elongase (elovl2) cDNAs 

This chapter covers the molecular cloning and functional characterisation of fads2 and 

elovl2 genes from C. gariepinus. The tissue expression of these genes and the previously 

cloned elovl5 were also investigated. Results from this chapter have been published in 

Aquaculture (2016, Vol. 462, p. 70–79). 

Chapter 4. Elongation of very long-chain (> C24) fatty acids in Clarias gariepinus: 

cloning, functional characterisation and tissue expression of elovl4 elongases 

This chapter covers the molecular cloning and functional characterisation, two elovl4 genes 

from C. gariepinus and investigated their tissue expression patterns. Results from this 

chapter has been published in Lipids (2017, Vol. 52, p. 837–848).  

Chapter 5. Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) 

biosynthesis are widespread among teleost fish 

This chapter covers investigation of the pathways for DHA biosynthesis (Sprecher and Δ4 

pathway) pathway existing in species representing major lineages along the tree of life of 

teleost fish. This chapter has been published in Scientific Reports (2017, Vol. 7, p. 3889) 

Chapter 6. Determining the function of novel Fads and Elovl enzymes in the African 

catfish Clarias gariepinus 

This chapter reports on the cloning and functional characterisation of a fads and an elovl-

like genes from C. gariepinus. 
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GENERAL MATERIALS AND METHODS 

  



Chapter 2 

48 

 

2.1 Materials 

RNA stabilisation buffer (3.6 M ammonium sulphate (NH₄)₂SO₄), 18 mM sodium citrate 

(Na₃C₆H₅O₇), 15 mM Ethylenediaminetetraacetic acid (EDTA), pH 5.2), RNA 

precipitation solution (1.2 M sodium chloride (NaCl) and sodium citrate sesquihydrate 

(C6H6Na2O7-1.5H2O)) were prepared in the laboratory. TRI Reagent® was obtained from 

Sigma-Aldrich (St. Louis, USA). All FA substrates (> 98 - 99 % pure) used for the 

functional characterisation assays (listed in the materials and methods of the appropriate 

chapters), except for stearidonic acid (18:4n-3) and eicosatetraenoic acid (20:4n-3), were 

obtained from Nu-Chek Prep, Inc. (Elysian, MN, USA). Eicosatetraenoic acid was 

purchased from Cayman Chemical Co. (Ann Arbor, USA). Stearidonic acid (> 99 % 

pure) and yeast culture reagents including galactose, yeast nitrogen base (without amino 

acids), raffinose, tergitol NP-40 and yeast synthetic dropout medium supplement 

(without uracil) were obtained from Sigma-Aldrich (USA). Escherichia coli JM 109 cells 

used for the preparation of competent cells was obtained from Promega (Madison, USA). 

Thin-layer chromatography TLC silica gel plates (20 cm x 20 cm x 0.25 mm) and organic 

solvents were obtained from Merck (Darmstadt, Germany).  

2.2 Preparation of Media, Buffers and Gels 

2.2.1 Preparation of 50x TRIS/acetate/EDTA (TAE) Buffer (500 ml) 

To prepare 500 ml 50x TAE buffer, the reagents required included 121 g Tris base (2-

amino-2-hydroxymethyl-propane-1,3-diol), 50 ml 0.5M Na2EDTA (pH 8.0) and 28.5 ml 

glacial acetic acid (100 %). First, 50 ml 0.5M Na2EDTA was prepared by dissolving 9.3 

g of EDTA in 50 ml of double distilled water (ddH2O). This was stirred vigorously using 

a magnetic stirrer and the pH adjusted to 8.0 with NaOH. Subsequently, 121 g Tris base 

was then measured into a 500 ml beaker containing about 350 ml of ddH2O, stirred and 

the prepared Na2EDTA and 28.5 ml glacial acetic acid added to the mixture, stirred 
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properly and ddH2O added to bring volume up to 500 ml. 

2.2.2 Preparation of Luria-Bertini (LB) Medium and Agar (400 ml) 

LB Medium: 8 g of LB medium (USB, Ohio, USA) was measured into a 500 ml bottle 

and 400 ml ddH2O added and mixed. It was then autoclaved and stored at room 

temperature. 

LB Agar: 12.8 g of LB agar (USB, Ohio, USA) was measured into a 500 ml bottle and 

400 ml ddH2O added and mixed. This was autoclaved, allowed to cool to about 55 oC 

and 400 µl of 100 mg/ml ampicillin solution added to it. Ampicillin solution (100 mg/ml) 

was prepared by dissolving 1 g of ampicillin in 10 ml ddH2O and stored at -20 oC. About 

20 ml of the prepared agar was poured into separate petri dishes, allowed to cool and 

stored at 4 oC. 

2.2.3 Preparation of Competent Escherichia coli Cells 

Day 1: Competent cells were prepared using Escherichia coli (JM 109, Promega). E. coli 

was inoculated into 1 ml LB medium. A volume of 20 µl of this broth was then plated in 

an ampicillin free agar plate and incubated overnight at 37 oC. 

Day 2: Two separate colonies were inoculated into 5 ml LB medium in two 50 ml tubes. 

These were incubated overnight at 37 oC with shaking. 

Day 3: Aliquots (0.5 ml) from day 2 were transferred to 250 ml autoclaved conical flasks 

containing 50 ml LB medium and incubated with shaking at 37 oC until bacteria attained 

log phase (about 2-3 h) with absorbance at 550 nm between 0.4-0.5. The culture was 

transferred to 50 ml tubes and centrifuged at 1200 g for 5 min at 4 oC and the supernatant 

discarded. The cell pellet was resuspended in 25 ml sterilised, ice cold 0.1 M MgCl2, 

centrifuged at 1200 g for 5 min at 4 oC and the supernatant discarded. The cell pellet 

obtained was resuspended in 25 ml sterilised, ice cold 0.1 M CaCl2, kept on ice for 30 
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min, centrifuged at 1200 g for 5 min at 4 oC and the supernatant discarded. Cells were 

finally resuspended in 5 ml of 0.1 M CaCl2 containing 15 % glycerol. Aliquots of 100 µl 

were dispensed into 1.5 ml Eppendorf tubes and stored at -70 oC until further use. 

2.2.4 Preparation of Yeast Extract Peptone Dextrose (YPD) Medium and Agar 

(100 ml) 

YPD Medium: First, yeast extract (1 g) and peptone (2 g) were dissolved in 90 ml ddH2O 

and autoclaved. Then, 10 ml of filtered 20 % Dextrose (D-glucose) was added to the 

mixture and stored at 4 oC. 

YPD Agar: Yeast extract (1 g), peptone (2 g) and agar (2 g) were dissolved in 90 ml 

ddH2O and autoclaved. After this, 10 ml of filtered 20 % Dextrose (D-glucose) was added 

to the mixture, the plates allowed to cool and stored at 4 oC. 

2.2.5 Preparation of Competent Saccharomyces cerevisiae Cells 

Competent Saccharomyces cerevisiae cells were prepared using the S. c. EasyCompTM 

Transformation Kit (InvitrogenTM Life Technologies, Carlsbad, USA), following the 

manufacturer’s instructions. A single colony of yeast was inoculated into 10 ml YPD 

medium and grown overnight at 30 oC in a shaking incubator (250 - 300 rpm) till the 

optical density measured at a wavelength of 600 nm (OD600) was between 3 and 5. The 

cells from the overnight culture were diluted to OD600 of between 0.2 to 0.4 in 10 ml YPD 

medium. The cells were then grown in a shaking incubator at 28-30 oC for 3 to 6 h until 

the OD600 reached between 0.6 and 1.0. After this, the cells were pelleted by centrifuging 

at 500 g for 5 min at room temperature. The supernatant was discarded and the pelleted 

cells resuspended and washed in 10 ml of Solution I. The mixture was centrifuged at 500 

g for 5 min at room temperature and the supernatant was discarded. The pelleted cells 

were resuspended in 1 ml of Solution II and the resultant competent cells aliquoted into 

sterile tubes and stored at -70 oC. Aliquots of 50 µl of the competent cells were dispensed 
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into 1.5 ml Eppendorf tubes and freezed slowly by wrapping in several layers of paper 

towels and placing in a styrofoam box before placing in freezers. 

2.2.6 Preparation of Na Salts of Fatty Acids 

FA was measured into a tube and the appropriate volume of 1M NaOH added, mixed as 

well as possible to dissolve the FA. The correct volume of 5.6 % Tergitol was then added, 

mixed thoroughly and stored at -20 oC. The quantity of the reagents used differed with 

the FA and these are presented in Table 2.1. 

Table 2.1. The quantity of fatty acid, 1M NaOH and 5.6 % Tergitol used in preparation 

of sodium (Na) salts of fatty acids. 

 

Reagents C18 C20 C22 C24 

Fatty Acid (µl)  30 45 60 60 

1M NaOH (µl) 200 250 300 500 

5.6% Tergitol (µl) 800 750 700 1150 

Final Concentration (mM) 100 150 200 200 

 

2.2.7 Preparation of S. cerevisiae Minimal Medium (SCMM-ura) (400 ml) 

S. cerevisiae minimal medium minus uracil (SCMM-ura) was prepared by mixing 2.68 g 

yeast nitrogen base (without amino acids), 0.768 g yeast synthetic dropout medium 

supplement (without uracil), into 320 ml ddH2O, mixed, autoclaved and allowed to cool. 

A solution of 10 % (w/v) D-raffinose was prepared by measuring 11.8 g of 86 % D-

raffinose in 80 ml ddH2O, completely dissolved with the aid of a magnetic stirrer and a 

hotplate and filtering to sterilise through a 0.22 µm filter. This was added to the cool 

medium (approximately 55 oC), together with 4 ml 70 % Tergitol and stored at 4 oC. 
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2.2.8 Preparation of S. cerevisiae Minimal Medium Plates (200 ml) 

SC minimal medium plates were prepared by dissolving 1.34 g yeast nitrogen base 

(without amino acids), 0.384 g yeast drop-out (without uracil) and 4 g agar in 180 ml 

ddH2O, autoclaved and allowed to cool. A solution of 20 % (w/v) glucose was prepared 

by dissolving 4 g of glucose in 20 ml ddH2O. It was filtered through a 0.22 µm filter to 

sterilise and then added to the mixture. This was poured into plates and allowed to cool. 

The SC minimal medium plates were kept at 4 oC until further use. 

2.3 Gene Molecular Cloning 

2.3.1 Experimental Samples  

All experiments were subjected to ethical review and approved by the University of 

Stirling through the Animal and Welfare Ethical Review Body. The project was 

conducted under the UK Home Office in accordance with the amended Animals 

Scientific Procedures Act implementing EU Directive 2010/63. Adult specimens of the 

African catfish, Clarias gariepinus were used for this study. The fish were obtained from 

the tropical aquarium of the Institute of Aquaculture, University of Stirling. C. gariepinus 

(all greater than 1 kg in weight) were raised in the aquarium on standard salmonid diets. 

Fish were sacrificed with an overdose of tricaine methanesulfonate (MS222) and a sharp 

blow to the head. Approximately 50-100 mg of different tissue samples including brain, 

eye, intestine, gonad, heart, liver, kidney, adipose tissue, pituitary gland, stomach, spleen, 

skin, white muscle, head kidney, gill and the accessory breathing organ (ABO) were 

collected. The samples were immediately preserved overnight in RNA stabilisation 

buffer at 4 oC and subsequently stored in -70 oC freezers till required. 

2.3.2 RNA Extraction 

Total RNA was extracted following the RNA TRI Reagent (Sigma-Aldrich, USA) 

extraction protocol. About 25 mg tissue samples fixed in RNA later were homogenised 
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in 1 ml TRI Reagent in 1.5 ml Eppendorf tubes using a Mini-Beadbeater (Bio Spec 

Products Inc., Bartlesville, USA). Homogenised samples were incubated at room 

temperature for 5 min before they were centrifuged at 12,000 g for 10 min at 4 °C. The 

supernatants were then transferred into fresh Eppendorf tubes and 100 µl 1-bromo-3-

chloropropane (BCP) added. The tubes were then vigorously shaken by hand for 15 s, 

incubated at room temperature for 15 min and centrifuged at 20,000 × g for 15 min at 4 

ºC. The aqueous (upper) phase was transferred to fresh tubes and half the volume (per 

aqueous phase volume) of isopropanol and of RNA precipitation solution were added to 

precipitate the RNA. The mixtures were subsequently gently inverted six times, 

incubated for 10 min at room temperature and centrifuged at 20,000 × g for 10 min at 4 

°C. The RNA precipitate formed gel-like pellets on the bottom of the tubes. The 

supernatant was removed (by pipetting) and pellet washed with 1 ml of 75 % ethanol in 

ddH2O (v/v). The pellets were lifted from the bottom of the tube by flicking and inverting 

the tubes a few times so that the entire surface of the pellets was properly washed. The 

tubes were then centrifuged at 20,000 g for 5 min at room temperature and the ethanol 

carefully removed and discarded. The RNA pellets were air dried at room temperature 

until all visible traces of ethanol were gone. Subsequently, RNA pellets were resuspended 

in an appropriate amount of ddH2O of 40-400 µl depending on the size of the RNA pellet. 

RNA solutions were incubated at room temperature for 30-60 min with gentle flicking 

of the tubes every 15 min to aid resuspension. The concentration and quality of RNA 

were assessed spectrophotometrically using the NanoDrop® (Labtech International ND- 

1000 spectrophotometer). The quality and integrity of RNA samples were further 

assessed by electrophoresis on 1 % agarose gel as described below. The RNA solutions 

were then stored at -70 oC for further analysis.  
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2.3.3 First Strand cDNA Synthesis  

First strand complementary DNA (cDNA) were synthesised using the High Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems™, Foster city, USA) following 

the manufacturer's instructions. The reverse transcription kits and the RNA were allowed 

to thaw on ice. A total of 10 µl of RNA solution containing 1 µg RNA in ddH2O were 

prepared in 0.2 ml PCR tubes. These were heated in a Biometra thermocycler for 5 min 

at 75 oC to denature RNA and held after that at 4 oC. The cDNA reverse transcriptase 

master mix were prepared according to manufacturer’s instruction multiplied by the 

number of samples available. A volume of 10 µl of the cDNA reverse transcriptase mix 

containing 2 µl of reverse transcriptase buffer, 0.8 µl dNTP mix, 2 µl reverse 

transcriptase random primers, 1 µl reverse transcriptase and 4.2 µl nuclease-free water 

was added to the 10 µl solution of denatured RNA, mixed gently and centrifuged briefly. 

These were then put in a thermocycler set at 25 oC for 10 min, 37 oC for 2 h, 85 oC for 5 

min and 4 oC for 4 min, after which the resultant cDNA were stored at -20 oC until further 

use. 

2.3.4 Amplification of cDNA Fragments 

Polymerase Chain Reaction (PCR) was performed to amplify first cDNA fragment using 

GoTaq® G2 Colorless Master mix (Promega). The total volume of reaction mixture used 

for PCR was 10 µl containing 5 µl GoTaq DNA polymerase, 1.0 µl cDNA, 3.0 µl 

nuclease free water and 0.5 µl of each primer (10 µM). PCR conditions consisted of an 

initial denaturation step at 95 °C for 2 min, followed by 33-37 cycles of denaturation at 

95 °C for 30 s, annealing at 57-60 °C for 30 s, extension at 72 °C for 1-4 min, followed 

by a final extension at 72 °C for 7 min. PCR were typically run on agarose gels and the 

appropriate band cut and purified using the Illustra GFX PCR DNA/gel band purification 
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kit (GE Healthcare, Little Chalfont, UK). The PCR fragments were sent to GATC for 

sequencing (GATC Biotech Ltd., Konstanz, Germany).  

2.3.4.1 Design of Primers and Primer Resuspension 

Primers used for amplification of the first fragments of target genes were designed on 

conserved regions of those genes sequences after alignment (BioEdit v7.0.9, Tom Hall, 

Department of Microbiology, North Carolina State University, USA). Subsequently, 

primers were designed on previously obtained fragments such as primers used for RACE 

PCR and qPCR. The primers used in this study and their sequences are presented in the 

relevant chapters. 

Primers were purchased from MWG as freeze-dried form. Upon reception, tubes 

containing primers were shortly centrifuged to collect primers at the bottom of the tube 

and the volume of ddH2O required to give a final concentration of 100 pmol/µl in primer 

stock solutions. They were then vortexed to fully resuspend the primer. Working 

solutions of 10 pmol/µl were systematically prepared by transferring 20 µl of each primer 

solution into 180 µl of ddH2O and stored at -20 oC. 

2.3.4.2 Agarose Gel Electrophoresis 

Agarose gels (1 %, w/v) were prepared by dissolving 0.25 g of agarose in 25 ml 0.5x 

TAE buffer in a 250 ml conical flask. Using an inverted 25 ml conical flask as a lid, it 

was heated in a microwave for about 1 min with gentle swirling of the flask at intervals, 

till agarose was completely dissolved. After allowing about 5-10 min for solution to cool 

sufficiently, 0.40 µl ethidium bromide (5 g/ml) was added and swirled gently to mix. The 

gel was then gently poured into an already prepared casting tray and an appropriate comb 

inserted to produce wells for loading samples. The gel was then allowed to set for at least 

30 min. 
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Agarose gel was submerged in a tank containing 0.5x TAE buffer. The PCR products 

with loading dye added at 6x concentration were loaded into the wells. An appropriate 

DNA marker for estimating the band size, was also run alongside. The power supply was 

connected to the electrophoresis tank at 80 V to move the molecules through the agarose 

gel. After approximately 40 min, power supply was switch off and the gel viewed with 

the Syngene Transilluminator and the image of the gel taken. An example of a typical 

gel image is presented in Figure 2.1. PCR with potentially positive products were 

repeated in larger quantity (50 – 100 µl) and the appropriate band was cut out of the gel 

using a scalpel with the aid of the UV transilluminator in a dark room, purified and 

sequenced. 

 

 

Figure 2.1 A typical agarose gel image. Gel image for the screening of Clarias 

gariepinus fads2 first fragment ligated into PCR 2.0 vector.  

 

2.3.4.3 Purification of DNA from TAE Agarose Gel 

The PCR products or the gel cut-out bands were purified with the Illustra GFX PCR DNA 

and Gel band purification kit following the manufacturer’s instruction. The 

recommended volume of capture buffer from the purification kit was added to the tube 

containing the product. If a gel, then it was dissolved completely by incubating in a hot 

block at 60 oC, for 15 min, mixing every 3 min and filtered through the column provided 

 100bp 

marker 
        PCR products 
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with centrifugation at 16,000 g for 30 s. A volume of 500 µl of wash buffer was added 

to the column and centrifuged again for 30 s. The column was air dried completely in 

fume hood and 15-35 µl of ddH2O was added to the middle, incubated at room 

temperature for 1 min and spun at 16,000 g for 1 min. The Nanodrop was used to quantify 

the concentration. It was then preserved at -20 oC for further use.  

2.3.5 RNA Ligase Mediated Rapid Amplification of cDNA Ends (RLM-RACE) PCR 

In order to obtain full-length cDNA sequences, RNA ligase mediated rapid amplification 

of cDNA ends (RLM-RACE) was used to synthesise both the 5'- and 3'-RACE cDNA 

using the FirstChoice® RLM-RACE kit (Ambion®, Life TechnologiesTM, California, 

USA). For the 5'-RACE, approximately 10 µg in 16 µl of total RNA from one or several 

tissues (typically liver, intestine, eye and brain) were treated with Calf Intestine Alkaline 

Phosphatase (CIP) at 37 oC for 1 h. The CIP-treated RNA was then treated with Tobacco 

Acid Pyrophosphatase (TAP) to remove the cap structure from full-length mRNA, 

leaving a 5'-monophosphate. A 45 base RNA Adapter oligonucleotide was then ligated 

to the mRNA using T4 RNA ligase as described by the manufacturer. During the ligation 

reaction, the full length, decapped mRNA acquired the adapter sequence as its 5' end. A 

random-primed reverse transcription reaction allowed the synthesis of 5' RACE cDNA. 

Similarly, the manufacturer’s protocol was followed to obtain the 3' RLM-RACE cDNA. 

A reverse transcription reaction consisting of 1 µg of total RNA from one or several C. 

gariepinus tissues, 4 µl dNTP mix, 2 µl 3' RACE adapter, 2 µl 10X RT buffer, 1 µl RNase 

inhibitor, 1 µl M-MLV reverse transcriptase and nuclease-free water to make the reaction 

up to 20 µl was assembled. This was mixed gently, centrifuged and incubated at 42 oC 

for 1 h. It was then preserved at -20 oC for further use. 

Nested PCR was then carried out to amplify both the 5' and 3' end of the gene. The 5' (or 

3') RACE outer primer and gene-specific primer were used in a PCR with the 5' (or 3') 
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RACE cDNA as template (first round PCR). The resulting PCR product was then used 

as template for the second round PCR with the 5' (or 3') RACE inner primer and a gene 

specific primer. The total volume of reaction mixture used for RACE PCR was 10 µl 

containing 5 µl GoTaq DNA polymerase, 1.0 µl template, 3.0 µl nuclease free water and 

0.5 µl of each primer (10 µM). PCR conditions consisted of an initial denaturation step 

at 95 °C for 2 min, followed by 32 cycles of denaturation at 95 °C for 30 s, annealing at 

57-60 °C for 30 s, extension at 72 °C for 1-3 min, followed by a final extension at 72 °C 

for 7 min. Gene-specific primers designed on the partial cDNA sequence obtained earlier 

with the set of primers supplied (5'-GCTGATGGCGATGAATGAACACTG-3' and 5'-

CGCGGATCCGAACACTGCGTTTGCTGGCTTTGATG-3', outer and inner primer, 

respectively) corresponding to the 5' RACE Adapter sequence were used to perform 

nested PCR for 5' RLM-RACE. The 3' RACE primers provided in kit was used for 3' 

RLM-RACE (outer primer- 5'-GCGAGCACAGAATTAATACGACT-3' and inner 

primer- 5'-CGCGGATCCGAATTAATACGACTCACTATAGG-3'). 

2.3.6 Cloning of PCR Products into PCR 2.0 Vector 

The first fragments, 5' and 3' RACE PCR fragments were (where necessary) cloned into 

PCR 2.1 vector (TA cloning® kit, Invitrogen, Life Technologies™, USA) and 

sequenced. Specifically, PCR products were ligated into the PCR 2.1 vector by 

combining 0.5 μl of the PCR product, 5.5 μl nuclease free water, 1 μl ligation buffer, 1 

μl T4 DNA ligase and 1.5 μl PCR 2.1 vector in a tube at 14 oC for at least 4 h, preferably 

overnight. A volume of 5 μl of the ligation reaction was subsequently transformed into 

E. coli competent chemocompetent cells.  

Transformation was done by the heat shock method using competent E. coli JM 109 cells 

(Promega) prepared as described in Section 2.2.3. Competent cells stored at -70 oC were 

thawed on ice and 5 μl of the DNA ligation reaction were added. This was incubated on 
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ice for 1 h, and then a heat shock was performed by placing the tube in a water bath at 

42 oC for 1 min before the tube was placed on ice for 5 min. Subsequently, 900 μl of 

ampicillin free LB medium was added to each tube and incubated at 37 oC for 1 h with 

gentle shaking. They were then centrifuged at 1500 g for 2 min 30 s and 700 μl of the 

supernatant discarded. The cells were resuspended and 150 μl spread on an agar plate 

containing ampicillin (100 mg/ml) prepared as described in Section 2.2.2 and 32 μl of 50 

mg/μl X-gal, sealed and incubated overnight at 37 oC. X-gal was used for blue-white 

screening of positive (white) and negative (blue) transformant colonies. 

Positive colonies (number varying upon availability) were picked with a p10 tip, dipped 

in 60 μl of ddH2O to deposit some genetic material and then rinsed in 15 μl of LB medium 

contained in a separate 0.2 ml tube for overnight cultures as explained below. The DNA 

contained in the E. coli cells deposited in the 60 μl of ddH2O were subjected to 95 oC for 

10 min and 4 oC for 1 min to partly extract DNA for further PCR screening using M13 

forward and reverse primers. All PCR screenings were run on an agarose gel to idenfity 

the positive clones containing adequate band sizes as inserts. 

A volume of 7.5 μl of LB medium containing positive colonies were incubated overnight 

at 37 oC with shaking in a 15 ml Falcon tube containing 3 ml of LB medium and 3 μl of 

100 mg/µl ampicillin solution to give a final concentration of 100 mg/ml of ampicillin in 

the solution. 

Plasmids were purified using GenEluteTM plasmid miniprep kit from Sigma-Aldrich 

(USA). The overnight recombinant E. coli culture were pelleted by centrifugation at 

12,000 g for 1 min. The pellets were then resuspended with 200 µl of resuspension 

solution by vortexing to thoroughly resuspend the cells. The resuspended cells were lysed 

by the addition of 200 µl of lysis solution and mixed by gentle inversion 6-8 times. The 
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cells were then precipitated by the addition of 350 µl of the neutralisation and binding 

solution, and gently inverted 4-6 times and centrifuged at 12,000 g for 10 min. The lysates 

were then transferred to a binding column prepared with the column preparation solution 

and centrifuged at 12,000 g for 1 min. Then 750 µl of the wash solution were added to 

the column and centrifuged at 12,000 g for 1 min. After the flow-through was removed, 

the column was air dried before 40 µl of ddH2O were added in order to elute the plasmids 

from column. After centrifuged at 12,000 g for 1 min, the concentrations were measured 

with the Nanodrop.  

Finally, the plasmid prep samples were sequenced with the M13 primers (forward primer 

- GTAAAACGACGGCCAGTG, reverse primer - CAGGAAACAGCTATGACCAT) 

enabling to obtain the full sequence of insert. The full nucleotide sequences of the cDNA 

were obtained by aligning sequences of the first fragments, together with those of the 5' 

and 3' RACE PCR positive products using BioEdit. 

2.4 Sequence and Phylogenetic Analysis  

The deduced amino acid (aa) sequences of the C. gariepinus cDNAs were compared to 

related protein sequences from other vertebrate species and sequence identity scores were 

calculated using the EMBOSS Needle Pairwise Sequence Alignment tool 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Phylogenetic analysis of the deduced 

aa sequences of cDNAs from C. gariepinus and those from a variety of species across 

vertebrate lineages were carried out by constructing trees using the neighbour-joining 

method (Saitou and Nei, 1987) with the MEGA 4.0 or 6.0 software 

(www.megasoftware.net). Confidence in the resulting tree branch topology was 

measured by bootstrapping through 1,000 iterations. 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
http://www.megasoftware.net/
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2.5 Functional Characterisation of Genes by Heterologous Expression 

in Saccharomyces cerevisiae 

2.5.1 Cloning of the PCR Product into pYES2 Vector 

PCR fragments corresponding to the open reading frame (ORF) of C. gariepinus gene 

were amplified from a mixture of cDNA synthesised from liver, intestine, eye and brain 

total RNA, using the high fidelity Pfu DNA polymerase (Promega, USA) with primers 

containing restriction sites. PCR conditions consisted of an initial denaturation step at 95 

°C for 2 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 57-60 

°C for 30 s, extension at 72 °C for 3-4 min followed by a final extension at 72 °C for 7 

min. The DNA fragments obtained were purified as above, digested with the appropriate 

restriction enzymes (New England Biolabs, UK), and ligated into similarly digested 

pYES2 yeast expression vector (Invitrogen, UK). The PCR products were ligated into 

pYES2 vector by combining 7 μl of the PCR product, 1 μl ligation buffer, 1 μl ligase and 

1 μl pYES2 vector in a tube and incubating at room temperature for 5 h. 

Transformation was then performed by the heat shock method using competent E. coli 

JM 109 cells as described in Section 2.3.6. Screening for the presence of recombinant 

plasmids was done via PCR using the pYES2 primers (AACCCCGGATCGGACTACTA 

- forward and GGGAGGGCGTGAATGTAAG -reverse). 

2.5.2 Transformation of Yeast Competent Cells with Plasmid Constructs 

Yeast competent cells InvSc1 (Invitrogen) were transformed with the plasmid constructs 

or with empty vector (control) using the S.c. EasyComp™ Transformation Kit 

(Invitrogen). The yeast competent cells (50 µl) (Section 2.25) were thawed at room 

temperature, and 2 µl of the recombinant plasmid DNA and 500 µl of Solution III were 

added and vortexed to mix the reaction. The transformation reaction mixture was then 

incubated for 1 h at 30 oC with vortexing every 15 min. Subsequently 50 µl of the reaction 
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were spread on S. cerevisiae minimal medium minus uracil (SCMM-ura) plates and 

incubated at 30 oC for three days for selection of yeast containing the pYES2 constructs.  

2.5.3 Yeast Culture 

One single yeast colony was selected in each functional characterisation assay run 

(Chapters 3-6) and grown in 5 ml of SCMM-ura medium for 2 days at 30 °C. Subsequently 

subcultures starting at an optical density measured at a wavelength of 600 nm (OD600) of 

0.4 were run in individual Erlenmeyer flasks containing 5 ml of SCMM-ura medium. The 

subcultures were grown for 4-5 h before galactose (2 %, w/v) (for the induction of gene 

expression) and a certain amount of PUFA substrate were added. For all genes, final 

concentration of PUFA substrates were 0.6 mM (C18), 1.0 mM (C20) and 1.2 mM (C22) 

to compensate for differential uptake related to fatty acyl chain (Zheng et al., 2009). The 

PUFA substrate used for a particular gene are listed in the appropriate chapters. After 2 

days, yeast cultures were harvested into 15 ml plastic tubes, centrifuged at 500 g for 3 

min and supernatant discarded. 2 ml of methanol containing 0.01 % butylated 

hydroxytoluene (BHT) (w/v) was added and the yeast resuspended by vortexing and 

transfered to glass tubes. 4 ml chloroform containing 0.01 % BHT was added to the 

samples and they were homogenised using the UltraturraxTM. The samples were flushed 

with oxygen-free nitrogen (OFN) and stored in chloroform:methanol (2:1, v/v) at -20 °C 

for at least one day until further use. 

2.6 Fatty Acid Analysis of Yeast 

2.6.1 Total Lipid Extraction  

Total lipids of yeast were extracted according to the method of Folch et al. (1957). The 

yeast samples were homogenised in chloroform:methanol (2:1, v/v) containing 0.01 BHT 

as antioxidant and 0.25 volumes (1.5 ml) of 0.88 % (w/v) KCl was added, thoroughly 

mixed and left to stand on ice for 5 min then centrifuged at 500 g for 3 min for phase 
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separation. The bottom phase was carefully removed and the infranatant filtered through 

a chloroform: methanol (2:1) pre-washed 9 cm Whatman no.1 filter paper into clean test 

tubes. Solvent was evaporated under a stream of OFN on an N-Evap evaporator 

(Organomation Associates, Inc. USA). 

2.6.2 Preparation and Purification of Fatty Acid Methyl Esters 

Lipids extracted from yeast samples were used to prepare fatty acid methyl esters 

(FAME). FAME extraction, purification and analysis were performed as described by Li 

et al. (2010). Briefly, 1 ml of toluene and 2 ml of 2 % (v/v) sulphuric acid in methanol 

were added and mixed thoroughly, and subsequently the tubes were flushed with OFN, 

stoppered and incubated overnight (approximately 16 h) at 50 oC in the hot-block. For 

FAME extraction, 2 ml 2 % (w/v) potassium hydrogen (KHCO3) and 5 ml isohexane: 

diethyl ether (1:1, v/v) + 0.01 % (w/v) BHT were added to the tubes, vortexed and 

centrifuged at 500 g for 2 min. The upper organic layer was transferred to new tubes and 

the solvent evapourated off under a stream of OFN. The methyl esters were redissolved 

in 100 l of isohexane and purified by thin-layer chromatography (TLC) plates. TLC 

plates were then chromatographed in isohexane/diethyl ether/acetic acid (90:10:1, v/v/v) 

up to 1-1.5 cm from the top of the plate. The plates were then removed from the tank and 

the solvent allowed to evaporate in the fume cupboard. 

The FAME bands were visualised by spraying the sides of the plates with 1 % (w/v) 

iodine in chloroform and then scraped from the TLC plate into test tubes using a straight 

edged scalpel. FAME were eluted from the silica with 10 ml isohexane: diethyl ether 

(1:1, v/v) containing 0.01 BHT, vortexed and centrifuged to precipitate the silica. The 

solvent was transferred to new tubes, evaporated under OFN and redissolved in 100-150 

l of isohexane. FAME were stored -20o C until GLC analysis. FA were identified by 
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comparison to known reference standards Restek (Thames Restek, Saunderton, UK). Gas 

chromatography-mass spectrometry (GC-MS) was used to confirm double bond 

positions of peaks that were too small or not distinct. In Chapter 6, 4,4-dimethyloxazoline 

(DMOX) derivatives, analysed by GC-MS were also used to confirm FA products. 

Further details on the preparation of DMOX derivatives are presented in Chapter 6. 

The proportion of substrate FA converted was calculated as the proportion of 

exogenously added FA substrate desaturated or elongated [all product peak areas / (all 

product peak areas + substrate peak area)] × 100. GC-MS was used to confirm double 

bond positions when necessary. 

2.7 Tissue Expression Analysis of C. gariepinus Genes 

Gene expression was measured by quantitative real-time PCR (qPCR) using Biometra 

Thermocycler (Analytik Jena Company, Thuringia, Germany) and Luminaris Colour 

Higreen qPCR master mix (Thermo Scientific, Carlsbad, CA, USA) following the 

manufacturer's instructions. Extraction of RNA from tissues and cDNA synthesis were 

carried out as described above. PCR amplicons of each gene cloned into PCR 2.1 vector 

(TA cloning® kit, Invitrogen, Life Technologies™, USA) (Section 2.6.1) were 

linearised, DNA concentration quantified and serial-diluted to generate a standard curve 

of known copy numbers for quantification. A restriction enzyme (New England Biolabs) 

that cut the plasmid construct in only one position was used for linearization by 

incubating for 2 h at 37 oC the following mixture: plasmid product (1 µg in 39 µl of 

ddH20), 10x buffer (5 µl), 10x BSA (5 µl) and enzyme (1 µl).  

The DNA concentration (Nanodrop) and size (bp) of plasmid + gene were determined in 

order to establish the quantity of linearised plasmid construct used for the preparation of 

the 1E8 copies qPCR standard. In order to prepare solutions of known copy numbers, 
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DNA concentration of linearised PCR 2.1 vectors containing a fragment of either 

candidate or reference genes was determined, and their molecular weights estimated as 

660 g × length in base pair (bp) of the plasmid constructs. Further serial dilutions (1E7 

to 1E0 copies) were prepared from 1E8 copies standard solution by adding 10 µl of it to 

90 µl of ddH2O and allowing to construct standard curves for each gene to evaluate the 

transcript copy numbers in each sample. Primer efficiency was also tested with normal 

PCR using GoTaq. The recipe for the primer efficiency test included standards (1/5, 1/10, 

1/20, 1/50, 1/100, 1/200 and 1/500) prepared from a mix of cDNA (5 µl each) from all 

the tissues. PCR amplifications were run in an agarose gel and a single band and the 

absence of primer dimers was used to determine the reaction efficiency.  

QPCR amplifications including standards were run in duplicates. QPCR were performed 

in a final volume of 20 μl containing 5 μl diluted (1/20) cDNA, 1 μl (10 μM) of each 

primer, 3 μl nuclease free water and 10 μl Luminaris Color Higreen qPCR master mix. 

For the reference gene, 2 μl diluted (1/20) cDNA and 6 μl nuclease free water were used. 

The qPCR conditions were 50 °C for 2 min, 95 °C for 10 min followed by 35 cycles of 

denaturation step at 95 °C for 15 s, annealing at 59 °C for 30 s and extension at 72 °C for 

30 s. After amplification, a dissociation curve of 0.5 °C increments from 60 to 90 °C was 

performed, enabling confirmation of a single product in each reaction. Identity of the 

qPCR products was further confirmed by DNA sequencing of selected samples (GATC 

Biotech Ltd.). Negative controls (no template control, NTC) containing no cDNA were 

systematically run. Absolute copy number of the target and reference gene in each sample 

was calculated from the linear standard curve constructed. Normalisation of each target 

gene was carried out by dividing the absolute copy number of the candidate gene by the 

absolute copy number of the reference gene, 28S rRNA (gb|AF323692.1|). Primers used 
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for qPCR analysis were designed on the 3' end of the cDNA of the gene of interest and 

are presented in the appropriate Chapters.  

2.8 Statistical Analysis 

Tissue expression (qPCR) results were expressed as mean normalised ratios (±SE) 

corresponding to the ratio between the copy numbers of the target genes and the copy 

numbers of the reference gene. Differences in gene expression among tissues were 

analysed by one-way analysis of variance (ANOVA) followed by Tukey's HSD test at a 

significance level of P ≤ 0.05 (IBM SPSS Statistics 21). 
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CHAPTER 3. 

BIOSYNTHESIS OF LONG-CHAIN POLYUNSATURATED FATTY 

ACIDS IN THE AFRICAN CATFISH CLARIAS GARIEPINUS: 

MOLECULAR CLONING AND FUNCTIONAL 

CHARACTERISATION OF FATTY ACYL DESATURASE (FADS2) 

AND ELONGASE (ELOVL2) cDNAS 
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3.1 Introduction 

Fish, like all vertebrates, are dependent on dietary sources of polyunsaturated fatty acids 

(PUFA) such as α-linolenic (ALA, 18:3n-3) and linoleic (LA, 18:2n-6) acids as they lack 

the ∆12 and ∆15 desaturases required for the synthesis of LA and ALA from oleic acid 

(18:1n-9) (Tocher, 2010; Tocher and Glencross, 2015). However, whereas the C18 PUFA, 

ALA and LA, can satisfy essential fatty acid (EFA) requirements of some fish species, 

long-chain (C20-24) polyunsaturated fatty acids (LC-PUFA) including eicosapentaenoic 

acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 

20:4n-6), which play physiologically important roles, are required in the diet to meet the 

EFA requirements of other species. This reflects the differing ability of fish species to 

endogenously synthesise LC-PUFA from C18 precursors, associated with the complement 

of fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) 

enzymes they possess (Bell and Tocher, 2009; Castro et al., 2016; Tocher, 2010). This 

has important implications with regards to feed formulation for fish farming. Species 

with active and complete biosynthetic pathways can convert C18 PUFA contained in 

vegetable oils (VO) that are now common ingredients in aquafeeds, to LC-PUFA, and 

thus are less dependent on the inclusion of fish oil (FO) to supply LC-PUFA in their 

diets. 

The LC-PUFA biosynthesis pathways involves successive desaturation and elongation 

of the C18 precursors catalysed by Fads and Elovl elongases (Castro et al., 2016; Monroig 

et al., 2011a; Tocher, 2003; Vagner and Santigosa, 2011). Fads enzymes introduce 

double bonds (unsaturations) at specific positions of the fatty acyl chain (Nakamura and 

Nara, 2004). It has been shown that all fads so far studied in teleost genomes are 

paralogues of fads2, a gene encoding an enzyme that typically acts as ∆6 Fads in 

vertebrates, while fads1, another vertebrate fads encoding an enzyme with ∆5 activity, 
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appears to be absent in teleosts (Castro et al., 2016, 2012). While most fish Fads2 

enzymes functionally characterised are typically ∆6, others have been characterised as 

bifunctional ∆6∆5 Fads2 (Fonseca-Madrigal et al., 2014; Hastings et al., 2001; Li et al., 

2010; Tanomman et al., 2013) or monofunctional ∆5 Fads (Hamid et al., 2016). In recent 

years, Fads2 with ∆4 activities have been found in a variety of teleost species (Fonseca-

Madrigal et al., 2014; Kuah et al., 2015; Li et al., 2010; Morais et al., 2012). Furthermore, 

fish Fads2, as described in mammals (Park et al., 2009), also display ∆8 activity, an 

activity that appeared to be relatively higher in marine fish compared to freshwater fish 

species (Monroig et al., 2011a). 

Elovl enzymes catalyse the condensation step in the elongation pathway resulting in the 

addition of a two-carbon unit to the pre-existing FA (Guillou et al., 2010). Functional 

characterisation of fish Elovl2, Elovl4 and Elovl5, elongase enzymes that function in the 

LC-PUFA biosynthesis pathway, show that they display somewhat overlapping activities 

(Castro et al., 2016). Thus Elovl5 generally elongate C18 and C20 PUFA, whereas Elovl2 

and Elovl4 are more efficient towards C20 and C22 PUFA (Gregory and James, 2014; 

Monroig et al., 2011c, 2009; Morais et al., 2009). While both elovl5 and elovl4 genes are 

present in teleost genomes (Monroig et al., 2016b), elovl2 appears to be lost in 

Acanthopterygii, a phylogenic group that, with the exception of salmonids, includes the 

vast majority of the most important farmed fish species (Castro et al., 2016). To the best 

of our knowledge, Elovl2 cDNAs have been characterised only in Atlantic salmon 

(Salmo salar) (Morais et al., 2009), D. rerio (Monroig et al., 2009) and rainbow trout 

(Oncorhynchus mykiss) (Gregory and James, 2014). 

Evidence indicates that the complement and functionalities of fads and elovl genes 

existing in any teleost species has been shaped by evolutionary drivers leading to the 

retention, subfunctionalisation or loss of these genes (Castro et al., 2016). Moreover, the 
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habitat (marine vs freshwater), and specifically the availability of LC-PUFA in food 

webs, has also been implicated as influencing the LC-PUFA biosynthetic capability of 

fish (Bell and Tocher, 2009; Castro et al., 2016; Monroig et al., 2011b). Freshwater fish, 

having evolved on diets low in LC-PUFA, are believed to have all the genes and/or 

enzymatic functionalities required for endogenous LC-PUFA production (NRC, 2011; 

Tocher, 2015). Whereas, many marine species have not retained all the genes and/or 

enzymatic functionalities required for endogenous LC-PUFA production as a 

consequence of LC-PUFA being readily available in their natural diets (NRC, 2011; 

Tocher, 2015). However, such dichotomy has been recently seen as too simplistic and 

other factors including trophic level (Li et al., 2010) and trophic ecology (Morais et al., 

2015, 2012) also appear to influence LC-PUFA biosynthesis capacity of fish species. 

Within an aquaculture nutrition context, investigations of the fads and elovl gene 

repertoire involved in LC-PUFA biosynthesis, as well as the functions of the enzyme 

they encode, are necessary to ascertain whether the EFA requirements of a species can 

be satisfied by C18 PUFA or whether dietary LC-PUFA are required. 

The African catfish Clarias gariepinus, a freshwater species belonging to the family 

Clariidae and order Siluriformes, is the most important aquaculture species in Sub-

Saharan Africa (FAO, 2012). Yet, neither its LC-PUFA biosynthetic pathway nor EFA 

requirement is fully understood. Studies on C. gariepinus and other African catfishes 

suggest they can effectively utilise C18 PUFA contained in VO to cover their 

physiologically important LC-PUFA requirements (Baker and Davies, 1996; Sotolu, 

2010; Szabó et al., 2009). Intriguingly, lower growth performance has been reported for 

C. gariepinus fed diets with FO compared to those fed diets containing VO (Hoffman 

and Prinsloo, 1995a; Ng et al., 2003) in contrast to most fish species including those with 
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full LC-PUFA biosynthetic capability like salmonids (Sargent et al., 2002; Tocher and 

Glencross, 2015).  

The aim of this study was to investigate the functions of the genes encoding putative Fads 

and Elovl enzymes that account for the LC-PUFA biosynthetic capability of C. 

gariepinus and thus understand the potential of this species to utilise diets containing VO 

and low contents of LC-PUFA. Here, we report the cloning and functional 

characterisation of fads2 and elovl2 genes from C. gariepinus. We further investigated 

the mRNA tissue distribution of the newly cloned genes, as well as that of the previously 

cloned elovl5 (Agaba et al., 2005). 

3.2 Materials and Methods 

3.2.1 Sample Collection and RNA Preparation 

Tissue samples were obtained from adult C. gariepinus (~1.8 kg) raised in the tropical 

aquarium of the Institute of Aquaculture, University of Stirling, UK, on standard 

salmonid diets. Eight C. gariepinus individuals were sacrificed with an overdose of 

tricaine methanesulfonate (MS222) and a sharp blow to the head. Tissue samples 

including liver, intestine, pituitary, testis, ovary, skin, muscle, gills, kidney and brain 

were collected. The samples were immediately preserved in an RNA stabilisation buffer 

(3.6 M ammonium sulphate, 18 mM sodium citrate, 15 mM EDTA, pH 5.2) and stored 

at -70 °C prior to extraction of total RNA following homogenisation in TRI Reagent® 

(Sigma-Aldrich, St. Louis, USA). Purity and concentration of total RNA was assessed 

using the NanoDrop® (Labtech International ND-1000 spectrophotometer) and integrity 

was assessed on an agarose gel. First strand complementary DNA (cDNA) was 

synthesised using High Capacity cDNA Reverse Transcription Kit (Applied 

BiosystemsTM, USA) following the manufacturer’s instructions.  
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3.2.2 Molecular Cloning of Fads2 and Elovl2 cDNAs 

Amplification of partial fragments of the genes was achieved by polymerase chain 

reaction (PCR) using a mixture of cDNA from eye, liver, intestine and brain as template 

and primers FadCGF2F1 and FadCGF2R1 for fads2, and EloCGE2F1 and EloCGE2R1 

for elovl2 (Table 3.1). For clarity, it should be noted that the standard gene/protein 

nomenclature has been used in this study (Castro et al., 2016). Following conventions 

accepted for zebrafish, proteins are termed with regular fonts (e.g. Fads2) whereas genes 

are italicised (e.g. fads2). Primers used for amplification of the first fragment of target 

genes were designed on conserved regions of fish orthologues of fads2 and elovl2 

according to the following strategy. For fads2, sequences from the broadhead catfish 

(Clarias microcephalus) (gb|KF006248.1|), spot pangasius (Pangasius larnaudii) 

(gb|KC994461.1|), striped catfish (Pangasianodon hypophthalamus) (gb|JX035811.1|) 

and Clarias hybrid (C. macrocephalus and C. gariepinus) (gb|KC994463.1|) were 

aligned with the ClustalW tool (BioEdit v7.0.9, Tom Hall, Department of Microbiology, 

North Carolina State University, USA) for degenerate primer design. For elovl2, 

homologous sequences from D. rerio (gb|NM_001040362.1|), S. salar 

(gb|NM_001136553.1|) and Mexican tetra (Astyanax mexicanus) 

(gb|XM_007260074.2|) were retrieved from National Center for Biotechnology 

Information (NCBI) (http://ncbi.nlm.nih.gov), aligned (BioEdit) and conserved regions 

used to retrieve expressed sequence tags (ESTs) from catfish species. Six Channel catfish 

(I. punctatus) ESTs (GenBank accession numbers GH651976.1, GH651977.1, 

FD328544.1, FD284236.1, FD284235.1 and BM438219.1) were obtained and aligned 

with BioEdit. Subsequently, the consensus elovl2-like sequences from I. punctatus, and 

those from D. rerio, S. salar and A. mexicanus, were aligned for degenerate primer 

design. PCR conditions consisted of an initial denaturation step at 95 °C for 2 min, 
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followed by 33 cycles of denaturation at 95 °C for 30 s, annealing at 57 °C for 30 s, 

extension at 72 °C for 1 min 30 s, followed by a final extension at 72 °C for 7 min. The 

PCR fragments were purified using the Illustra GFX PCR DNA/gel band purification kit 

(GE Healthcare, Little Chalfont, UK), and sequenced (GATC Biotech Ltd., Konstanz, 

Germany). The primers used in this study and their sequences are presented in Table 3.1. 

In order to obtain full-length cDNA sequences, Rapid Amplification of cDNA Ends 

(RACE) was performed with the FirstChoice® RLM-RACE RNA ligase mediated RACE 

kit (Ambion®, Life TechnologiesTM, USA). The 5' RACE outer primer and gene-specific 

primer FadCGRF2R3 were used in a PCR using the 5' RACE cDNA as template (first 

round PCR) for fads2. The resulting PCR product was then used as template for the 

second round PCR with the 5' RACE inner primer and the gene-specific primer 

FadCGRF2R2. A similar approach was followed to perform 3' RACE PCR, with primers 

FadCGRF2F1 and FadCGRF2F2 used for first and second round PCR, respectively. For 

elovl2, the primers CGRE2R3 and CGRE2R2 were designed and used for first and 

second round PCR, respectively, for the 5' RACE PCR, while CGRE2F1 and CGRE2F2 

were used for first and second round PCR, respectively, for the 3' RACE PCR. The first 

fragments, 5' and 3' RACE PCR fragments were then cloned into PCR 2.1 vector (TA 

cloning® kit, Invitrogen, Life TechnologiesTM, USA) and sequenced as above. The full 

nucleotide sequences of the fads2 and elovl2 cDNAs were obtained by aligning 

sequences of the first fragments, together with those of the 5' and 3' RACE PCR positive 

products (BioEdit).  
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Table 3.1. Sequences of primers used for cDNA cloning and tissue expression analysis 

(qPCR) of Clarias gariepinus fads2 and elovl2. Restriction sites BamHI and XhoI are 

underlined.  

Name Direction Sequence 

Initial cDNA cloning 

FadCGF2F1 Forward 5'-ATGGGCGGCGGAGGACAC-3' 

FadCGF2R1 Reverse 5'-GCATCTAGCCACAGCTCACC-3' 

EloCGE2F1 Forward 5'-TACTTGGGACCAAAGTACATGA-3' 

EloCGE2R1 Reverse 5'-AGATAGCGTTTCCACCACAG-3' 
   

5' RACE PCR 
 

FadCGRF2R2 Reverse 5'-CGATCACAACCCACTGATCA-3' 

FadCGRF2R3 Reverse 5'-CGTCCTCCAGGATGTCTTTT-3' 

EloCGRE2R3 Reverse 5'-AGCTTGCTGAAATAAGCTCCACT-3' 

EloCGRE2R2 Reverse 5'-TGTAGAAGGACAGCATGGTGAC-3' 
   

3' RACE PCR 
 

FadCGRF2F1 Forward 5'-CAGTCGCCATTCAACGATT-3' 

FadCGRF2F2 Forward 5'-GAACACCATCTCTTTCCCATG-3' 

EloCGRE2F1 Forward 5'-TTGTCCACCATTCCTTCAATG-3' 

EloCGRE2F2 Forward 5'-ACTGAACAGCTTCATCCATGTG-3' 
   
ORF cloning 

FadCGF5UF1 Forward 5'-AGAGGAGCGCAGTGATGAG-3' 

FadCGF3UR1 Reverse 5'-GTGGGAATTACAGAATTGTTATGG-3' 

FadCGFVF Forward 5'-CCCGGATCCAAGATGGGCGGCGGAGGAC-3' 

FadCGFVR2 Reverse 5'-CCGCTCGAGTTATTTGTGGAGGTATGCATC-3' 

EloCGE2VF Forward 5'-CCCGGATCCAACATGGATTTTATTGTGAAGAA-3' 

EloCGE2VR Reverse 5'-CCGCTCGAGTCACTGCAGCTTATGTTTGGC-3' 

EloCGE25UF Forward 5'-CCAGTTACATTAAGAGGCACCG-3' 

EloCGE23UR Reverse 5'-AGATTAGTCAACATGAAAGGTGAA-3' 
   
Quantitative PCR 

FadCGqF2F1 Forward 5'-TCCTATATGCTGGAACTAATGTGG-3' 

FadCGqF2R1 Reverse 5'-AGGATGTAACCAACAGCATGG-3' 

EloCGqE2F1 Forward 5'-GCAGTACTCTGGGCATTTGTC-3' 

EloCGqE2R1 Reverse 5'-GGGACATTGGCGAAAAAGTA-3' 

EloCGqE5F1 Forward 5'-ACTCACAGTGGAGGAGAGC-3' 

EloCGqE5R1 Reverse 5'-GGAATGGTGGTAAACGTGCA-3' 

28SrRNAF1 Forward 5'-GTCCTTCTGATGGAGGCTCA-3' 

28SrRNAR1 Reverse 5'-CGTGCCGGTATTTAGCCTTA-3' 



  Chapter 3 

75 

 

3.2.3 Sequence and Phylogenetic Analysis 

The deduced amino acid (aa) sequences of the C. gariepinus fads2 and elovl2 cDNAs 

were compared to corresponding orthologues from other vertebrate species and sequence 

identity scores were calculated using the EMBOSS Needle Pairwise Sequence Alignment 

tool (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Phylogenetic analysis of the 

deduced aa sequences of fads2 and elovl2 cDNAs from C. gariepinus and those from a 

variety of species across vertebrate lineages were carried out by constructing trees using 

the neighbour-joining method (Saitou and Nei, 1987), with the MEGA 4.0 software 

(www.megasoftware.net/mega4/mega.html). Confidence in the resulting tree branch 

topology was measured by bootstrapping through 1,000 iterations.  

3.2.4 Functional Characterisation of C. gariepinus Fads2 and Elovl2 by 

Heterologous Expression in Saccharomyces cerevisiae  

PCR fragments corresponding to the open reading frame (ORF) of C. gariepinus fads2 

and elovl2 were amplified from a mixture of cDNA synthesised from liver, intestine, eye 

and brain total RNA, using the high fidelity Pfu DNA polymerase (Promega, USA) with 

primers containing BamHI (forward) and XhoI (reverse) restriction sites (Table 3.1). PCR 

conditions consisted of an initial denaturation step at 95 °C for 2 min, followed by 35 

cycles of denaturation at 95 °C for 30 s, annealing at 57 °C for 30 s, extension at 72 °C 

for 3 min 30 s followed by a final extension at 72 °C for 7 min. The DNA fragments 

obtained were purified, digested with the appropriate restriction enzymes, and ligated 

into similarly digested pYES2 yeast expression vector (Invitrogen) as described in 

Section 2.6.1 of the General Materials and Methods chapter.  

Yeast competent cells InvSc1 (Invitrogen) were transformed with the plasmid constructs 

pYES2-fads2 (desaturase) or pYES-elovl2 (elongase) or with empty vector (control) 

using the S.c. EasyCompTM Transformation Kit (Invitrogen). Selection of yeast 
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containing the pYES2 constructs was performed on S. cerevisiae minimal medium minus 

uracil (SCMM-ura) plates. One single yeast colony was grown in SCMM-ura broth for 2 

days at 30 oC, and subsequently subcultured in individual Erlenmeyer flasks until an 

optical density measured at a wavelength of 600 nm (OD600) reached 1, after which 

galactose (2 %, w/v) and a PUFA substrate were added. Further details have been given 

in Section 2.6.3. For the fads2, Δ6 (18:3n-3 and 18:2n-6), Δ8 (20:3n-3 and 20:2n-6), Δ5 

(20:4n-3 and 20:3n-6), and Δ4 (22:5n-3 and 22:4n-6) Fads substrates were used. For 

elovl2, substrates included C18, (18:3n-3, 18:2n-6, 18:4n-3 and 18:3n-6), C20 (20:5n-3 

and 20:4n-6) and C22 (22:5n-3 and 22:4n-6) PUFA. After 2 days, the yeasts were 

harvested, washed and homogenised in chloroform/methanol (2:1, v/v) containing 0.01 

% butylated hydroxytoluene (BHT) and stored at -20 °C until further use.  

3.2.5 Fatty Acid Analysis of Yeast 

Total lipids extracted according to Folch et al. (1957) from yeast samples were used to 

prepare fatty acid methyl esters (FAME). FAME extraction, purification and analysis 

were performed as described by Li et al. (2010). Substrate FA conversion was calculated 

as the proportion of exogenously added FA substrate desaturated or elongated [all 

product peak areas / (all product peak areas + substrate peak area)] x 100 (Monroig et al., 

2016b). GC-MS was used to confirm double bond positions when necessary (Li et al., 

2010). 

3.2.6 Gene Expression Analysis 

Expression of the newly cloned fads2 and elovl2 genes, as well as that of the previously 

characterised elongase elovl5 (Agaba et al., 2005), were determined by quantitative real-

time PCR (qPCR). Extraction of RNA from tissues and cDNA synthesis were carried out 

as described above (Section 3.2.1). QPCR amplifications were carried out in duplicate 

using Biometra Thermocycler (Analytik Jena company, Germany) and Luminaris Color 
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Higreen qPCR master mix (Thermo Scientific, Carlsbad, CA, USA) following the 

manufacturer’s instruction. The qPCR was performed in a final volume of 20 μl 

containing 5 μl diluted (1/20) cDNA, 1 μl (10 μM) of each primer, 3 μl nuclease free 

water and 10 μl Luminaris Color Higreen qPCR master mix. The qPCR conditions were 

50 °C for 2 min, 95 oC for 10 min followed by 35 cycles of denaturation at 95 °C for 15 

s, annealing at 59 °C for 30 s and extension at 72 oC for 30 s. After the amplifications, a 

dissociation curve of 0.5 °C increments from 60 to 90 °C was performed, enabling 

confirmation of a single product in each reaction. Negative controls (no template control, 

NTC) containing no cDNA were systematically run. Absolute copy number of the target 

and reference gene in each sample was calculated from the linear standard curve 

constructed. Normalisation of each target gene was carried out by dividing the absolute 

copy number of the candidate gene by the absolute copy number of the reference gene 

28S rRNA (gb|AF323692.1|). In order to prepare solutions of known copy numbers, 

DNA concentration linearised PCR 2.1 vectors containing a fragment of either candidate 

or reference genes was determined, and their molecular weights were estimated as 660 g 

bp x length (bp) of the plasmid constructs. Primers used for qPCR analysis are also 

presented in Table 3.1.  

3.2.7 Statistical Analysis 

Tissue expression (qPCR) results were expressed as mean normalised ratios (±SE) 

corresponding to the ratio between the copy numbers of the target genes (fads2, elovl2 

and elovl5) and the copy numbers of the reference gene, 28S rRNA. Differences in gene 

expression among tissues were analysed by one-way analysis of variance (ANOVA) 

followed by Tukey's HSD test at a significance level of P≤0.05 (IBM SPSS Statistics 21).  
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3.3 Results 

3.3.1 Sequence and Phylogenetic Analysis  

C. gariepinus Fads2 sequence was deposited in the GenBank database with the accession 

number KU925904. The full length of the C. gariepinus Fads2 was 1,812 bp, comprising 

of a 5′ untranslated region (UTR) of 162 bp, an ORF of 1,338 bp encoding a putative 

protein of 445 aa, and a 3′ UTR of 312 bp. The deduced C. gariepinus Fads2 enzyme 

showed distinctive structural features of fatty acyl desaturases including the three 

histidine boxes HDFGH, HFQHH, and QIEHH (aa 181-185, 218-222 and 383-387, 

respectively) and cytochrome b5-domain (aa 26-77) containing the heme binding motif 

HPGG (aa 54-57). Pairwise aa sequence comparisons of C. gariepinus Fads2 with other 

Fads2-like proteins showed highest identities with Fads from members of the catfish 

family such as C. macrocephalus (97 %) and P. hypophthalamus (91.5 %). Comparisons 

with bifunctional ∆6∆5 Fads2 of D. rerio (gb|AF309556.1|) and C. estor 

(gb|AHX39207.1|), bifunctional ∆5∆4 Fads2 of C. striata (gb|ACD70298.1|) and S. 

canaliculatus (gb|ADJ29913.1|) and ∆4 Fads2 of S. senegalensis (gb|AEQ92868.1|) and 

C. estor (gb|AHX39206.1|) showed identities ranging from 65.2-70.2 %. Lowest 

identities were observed when C. gariepinus Fads was compared to Fads1-like sequences 

from different vertebrate lineages. Phylogenesis of C. gariepinus Fads with Fads from a 

variety of vertebrate species showed it clustered with all other Fads2 in one group that 

was separate from the Fads1 group confirming that the newly cloned fads was a fads2 

(Figure 3.1).  
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Figure 3.1. Phylogenetic tree comparing the deduced amino acid sequence of Clarias 

gariepinus Fads2 with Fads from a range of vertebrates. The tree was constructed using 

the neighbour-joining method (Saitou and Nei, 1987) with the MEGA 4.0 software. The 

numbers represent the frequency (%) with which the tree topology presented was 

replicated after 1,000 iterations. 

 

The C. gariepinus Fads2 clustered most closely with Fads2 from bony fish species (with 

the exception of the sarcopterygian, Latimeria chalumnae which formed a separate 
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cluster with Fads2 from chondrichthyes (C. milli and S. canicula), mammalian (H. 

sapiens, M. musculus and B. taurus) and avian species (G. gallus) (Figure 3.1).  

C. gariepinus Elovl2 sequence was deposited in the GenBank database with the accession 

number KU902414. The full-length cDNA sequence of C. gariepinus elovl2 was 1,432 

bp (5′ UTR 91 bp, ORF 864 bp, 3′ UTR 477 bp) encoding a protein of 287 aa. Analysis 

of the deduced aa sequence of C. gariepinus Elovl2 revealed characteristic features of 

fatty acyl elongases such as the highly conserved histidine box (HVYHH, aa 151-155) 

and the carboxyl-terminal region, but the aa residues at the carboxyl terminus were 

KHKLQ, more similar to the KXRXX found in Elovl5 than to the KKXX in H. sapiens 

and S. salar Elovl2 (Morais et al., 2009). Comparisons of C. gariepinus Elovl2 with 

homologues from A. mexicanus (gb|XP_007260136.1|), S. salar (gb|ACI62500.1|), D. 

rerio (gb|XP_005162628.1|), Clupea harengus (gb|XP_012671565.1|), and H. sapiens 

(gb|NP_060240.3|) showed identities of 81.7, 72.9, 72.7, 69.1 and 64.8 %, respectively. 

C. gariepinus Elovl2 shared 52 % identity with C. gariepinus Elovl5. Phylogenetic 

analysis of the Elovl2 with members of the Elovl family confirmed that the newly cloned 

elongase was indeed an Elovl2 elongase. Thus, the C. gariepinus Elovl2 clustered 

together with all the Elovl2 and more distantly from Elovl5 sequences including that 

from C. gariepinus (Agaba et al., 2005) and even more distantly to Elovl4 enzymes 

(Figure 3.2).  

.  
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Figure 3.2. Phylogenetic tree comparing the deduced amino acid (aa) sequence of 

Clarias gariepinus Elovl2 with Elovl2, Elovl4 and Elovl5 from a range of vertebrates. 

The tree was constructed using the neighbour-joining method (Saitou and Nei, 1987) 

with the MEGA 4.0 software. The numbers represent the frequencies (%) with which the 

tree topology presented was replicated after 1,000 iterations.  

 

3.3.2 Functional Characterisation of C. gariepinus Fads2 and Elovl2 in S. 

cerevisiae 

Consistent with previous studies (Hastings et al., 2001), control yeast transformed with 

the empty pYES2 vector did not show any activity towards any of the PUFA substrates 



Chapter 3 

82 

 

assayed (data not shown). Functional characterisation by heterologous expression in 

yeast revealed that the C. gariepinus Fads2 had the ability to introduce double bonds at 

∆5, ∆6 and ∆8 positions in the appropriate PUFA substrates (Figure 3.3; Table 3.2). The 

FA composition of the yeast transformed with pYES2-fads2 showed peaks 

corresponding to the four main yeast endogenous FA, namely 16:0, 16:1n-7, 18:0 and 

18:1n-9, the exogenously added PUFA and the corresponding PUFA product(s) (Figure 

3.3; Table 3.2). Thus, the C18 PUFA substrates 18:3n-3 and 18:2n-6 were desaturated to 

18:4n-3 (42 % conversion) and 18:3n-6 (23 %), respectively, indicating the encoded 

protein had ∆6 Fads activity (Figure 3.3A; Table 3.2). Moreover, the transgenic yeast 

was able to desaturate 20:4n-3 and 20:3n-6 to 20:5n-3 (19 %) and 20:4n-6 (14 %), 

respectively, indicating the C. gariepinus Fads2 also had ∆5 activity (Figure 3.3C; Table 

3.2), and thus these results confirm that this Fads2 from C. gariepinus is a bifunctional 

∆6∆5 Fads. Additionally, the C. gariepinus Fads2 showed ∆8 Fads activity as the yeast 

transformed with pYES2-fads2 were able to desaturate 20:3n-3 and 20:2n-6 to 20:4n-3 

and 20:3n-6, respectively (Figure 3.3B and Table 3.2). No additional peaks were 

observed when yeast expressing the C. gariepinus fads2 were grown in the presence of 

22:5n-3 and 22:4n-6 (Figure 3.3D; Table 3.2). 

 

 

 

 

 

 

 

 



  Chapter 3 

83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Functional characterisation of the newly cloned Clarias gariepinus Fads2 in 

yeast (Saccharomyces cerevisiae). The fatty acid (FA) profiles of yeast transformed with 

pYES2 containing the coding sequence of fads2 were determined after the yeast were 

grown in the presence of one of the exogenously added substrates 18:3n-3 (A), 20:3n-3 

(B), 20:4n-3 (C) and 22:5n-3 (D). Peaks 1-4 represent the S. cerevisiae endogenous FA, 

namely 16:0 (1), 16:1 isomers (2), 18:0 (3) and 18:1n-9 (4). Additionally, peaks derived 

from exogenously added substrates (*) or desaturation products are indicated 

accordingly. The peak indicated as “20:4*” is a non-methylene interrupted FA (∆6,11,14,17 

20:4 or ∆5,11,14,17 20:4) (panel B). 
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Table 3.2. Substrate conversions of Saccharomyces cerevisiae transformed with Clarias 

gariepinus fads2 coding region and grown in the presence of exogenously added 

substrate (18:3n-3, 18:2n-6, 20:3n-3, 20:2n-6, 20:4n-3, 20:3n-6, 22:5n-3 or 22:4n-6). 

Conversions were calculated according to the formula [individual product peak area / (all 

products peak areas + substrate peak area)] × 100.  

 

FA substrate  FA Product  Conversion (%) Activity 

18:3n-3  18:4n-3  42.0 ∆6 

18:2n-6 18:3n-6 22.5 ∆6 

20:3n-3 20:4n-3 12.9 a ∆8 

20:2n-6 20:3n-6  2.5 a ∆8 

20:4n-3 20:5n-3 18.7 ∆5 

20:3n-6 20:4n-6 13.8 ∆5 

22:5n-3 22:6n-3 Nd ∆4 

22:4n-6 22:5n-6 Nd ∆4 

a Conversions of Δ8 substrates (20:3n-3 and 20:2n-6) by Fads2 include stepwise reactions 

due to multifunctional desaturation abilities. Thus, the conversion rates of 20:3n-3 and 

20:2n-6 include the Δ8 desaturation toward 20:4n-3 and 20:3n-6, respectively, and their 

subsequent Δ5 desaturations to 20:5n-3 and 20:4n-6, respectively.  

FA, Fatty acid; Nd, not detected. 

 

The C. gariepinus Elovl2 showed the ability to elongate C18-22 PUFA substrates (Figure 

3.4; Table 3.3), with highest conversions towards the C20 substrates 20:5n-3 (73.4 %) 

(Figure 3.4B) and 20:4n-6 (56 %). Conversion of the C22 substrate was 36.7 % for 22:5n-

3 (Figure 3.4C) and 9.7 % for 22:4n-6 (Table 3.3). Elongations of C18 PUFA were 

generally lower compared to those for C20 and C22 substrates. Stepwise elongations 

derived from further activity of the C. gariepinus Elovl2 towards products of initial 

substrate elongation resulted in the production of several polyenes up to 24 carbons 

(Figure 3.4; Table 3.3).  
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Figure 3.4. Functional characterisation of the newly cloned Clarias gariepinus Elovl2 in 

yeast (Saccharomyces cerevisiae). The fatty acid (FA) profiles of yeast transformed with 

pYES2 containing the coding sequence of elovl2 were determined after the yeast were 

grown in the presence of one of the exogenously added substrates 18:3n-3 (A), 18:4n-3 

(B), 20:5n-3 (C) and 22:5n-3 (D). Peaks 1-4 represent S. cerevisiae endogenous FA 

namely 16:0 (1), 16:1 (2), 18:0 (3) and 18:1n-9 (4). Additionally, peaks derived from 

exogenously added substrates (*) or elongation products are indicated accordingly. 
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Table 3.3. Substrate conversions of Saccharomyces cerevisiae transformed with Clarias 

gariepinus elovl2 coding region and grown in the presence of exogenously added 

substrates (18:3n-3, 18:2n-6, 18:4n-3, 18:3n-6, 20:5n-3, 20:4n-6, 22:5n-3 or 22:4n-6).  

Conversions were calculated for each stepwise elongation according to the formula [peak 

areas of first products and longer chain products / (peak areas of all products with longer 

chain than substrate + substrate peak area)] x 100. 

Fatty Acid 

Substrate 

Fatty Acid 

Product 
Conversion (%) 

18:3n-3 20:3n-3 7.5 

18:2n-6 20:2n-6 3.0 

18:4n-3 20:4n-3 15.2 

18:3n-6 20:3n-6 20.5 

20:5n-3 22:5n-3 73.4 

20:4n-6 22:4n-6 56.0 

22:5n-3 24:5n-3 36.7 

22:4n-6 24:4n-6 9.7 

 

3.3.3 Tissue Expression Analysis of C. gariepinus fads2, elovl2 and elovl5 

Tissue distribution analysis of C. gariepinus fads2, elovl2 and elovl5 transcripts 

confirmed that these genes were expressed in all tissues analysed (Figure 3.5). Liver and 

brain were found to contain the highest transcript levels of the C. gariepinus fads2, 

followed by pituitary, intestine and kidney. Liver, brain and pituitary were also found to 

contain the highest transcript levels of the C. gariepinus elovl2. Generally, gonads 

including testis and ovary showed the lowest transcript levels for both fads2 and elovl2 

(Figure 3.5). Intestine and liver exhibited the highest level of elovl5, while the lowest 

expression levels were found in muscle.  
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Figure 3.5. Tissue distribution of fads2, elovl2 and elovl5 transcripts in Clarias 

gariepinus. Expression levels quantified for each transcript were normalised expression 

levels of the reference gene (28s rRNA) of the same tissue. The data are reported as mean 

values with their standard errors (n = 4). Within each target gene, different letters indicate 

statistically significant differences between expression levels (ANOVA and Tukey’s 

HSD post hoc tests). 

 

3.4 Discussion 

Elucidating the LC-PUFA biosynthesis pathway in farmed fish is crucial for formulating 

diets that satisfy physiological requirements and thus ensure normal growth and 

development. These studies are particularly relevant in the current scenario whereby FO 

are being replaced by VO in aquafeed, the latter naturally devoid of essential LC-PUFA 

and thus potentially compromising both health of the fish and nutritional value for human 

consumers (Monroig et al., 2011b; Tocher and Glencross, 2015). Relevant to the present 

study, identification and production of fish that can efficiently utilise VO-based diets due 

to their high capacity for LC-PUFA biosynthesis is a valid strategy to expand aquaculture 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

fads2

elovl2

elovl5

a
Ex

p
re

ss
io

n
 o

f 
ta

rg
et

 g
en

e 
re

la
ti

ve
 t

o
 2

8
s 

rR
N

A

ab 

bc 

c 

c c 

c c 
c 

a 

b 
b 

ab ab 

ab ab 
ab a a 

b ab bc bc bc bc bc bc c d b 



Chapter 3 

88 

 

considering that marine ingredients (FO and FM) will be increasingly limited in the 

future (Tocher, 2015). C. gariepinus feed and grow well on a variety of feed ingredients 

and are, therefore, a good model for studying the endogenous capacity for LC-PUFA 

synthesis of freshwater fish. 

Phylogenetic analysis of the fads-like desaturase cDNA isolated from C. gariepinus, 

together with the possession of all the main structural features common to the Fads2 

protein family confirmed it to be a Fads2. Sequence and phylogenetic analysis also 

showed that the C. gariepinus Fads2 shared highest aa sequence similarities with other 

catfish species, with relatively low scores when compared with Fads from more distantly 

related fish lineages (Betancur-R et al., 2013). Nevertheless, recent advances in 

functional analysis of fish Fads have concluded that some Fads2 have acquired novel 

functions (subfunctionalisation) during evolution and thus phylogeny of fish Fads2 does 

not necessarily correlate with their functionalities (Castro et al., 2016). The herein 

reported functions of the C. gariepinus Fads2 further confirm such a conclusion.  

Functional characterisation demonstrated that the C. gariepinus Fads2 is a bifunctional 

Δ6Δ5 desaturase able to operate towards a range of substrates including n-3 (18:3n-3 and 

20:4n-3) and n-6 (18:2n-6 and 20:3n-6) PUFA. Similar substrate specificities were 

previously described in D. rerio, which represented the first ever report of dual Δ6Δ5 

functionality in a vertebrate Fads (Hastings et al., 2001). More recent studies have now 

shown that bifunctionality appear to be a more common feature of fish Fads2 than 

originally thought. Thus dual Δ6Δ5 Fads have been described in S. canaliculatus (Li et 

al., 2010), Nile tilapia (Oreochromis niloticus) (Tanomman et al., 2013) and C. estor 

(Fonseca-Madrigal et al., 2014). Interestingly, fish Fads2 with Δ4 capability reported in 

S. canaliculatus (Li et al., 2010), S. senegalensis (Morais et al., 2012) and C. striata 

(Kuah et al., 2015) showed as well some minor Δ5 activity and can thus be regarded as 
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dual Δ5Δ4 Fads (Castro et al., 2016). In contrast, other teleost Fads2 are single function 

Δ6 desaturases (González-Rovira et al., 2009; Mohd-Yusof et al., 2010; Monroig et al., 

2013a; Zheng et al., 2009), in agreement with Fads activities reported in mammalian 

FADS2 (Castro et al., 2016). Such substrate plasticity exhibited amongst fish Fads2 is 

believed to be the result of a combination of multiple evolutionary drivers including 

habitat, trophic level and ecology underlying the specific phylogenetic position of each 

fish species (Castro et al., 2016, 2012; Li et al., 2010; Monroig et al., 2011b). In contrast, 

Fads1, another “front-end” Fads encoding a Δ5 Fads in mammals (Castro et al., 2016, 

2012), appears to have been lost during evolution of teleost and is absent in the vast 

majority of farmed fish species (Castro et al., 2016).  

The C. gariepinus Fads2 also exhibited Δ8 desaturation capability, an intrinsic feature of 

vertebrate Fads2 (Monroig et al., 2011a; Park et al., 2009). Although conversions in yeast 

might quantitatively vary from those occurring in vivo, it appeared that the C. gariepinus 

Fads2 had lower efficiency as Δ8 Fads than as Δ6 Fads, in agreement with the “Δ8 

pathway” being regarded as a minor pathway compared to the more prominent Δ6 

desaturation pathway (Monroig et al., 2011a; Park et al., 2009). Interestingly, the Δ8 

desaturation capabilities of C. gariepinus Fads2 towards 20:3n-3 (12.9 %) was relatively 

high leading to lower Δ6Δ8 ratio (3.26), a parameter used to compare Δ8 desaturation 

capability among fish Fads2 enzymes (Monroig et al., 2011a). Thus, the Δ6/Δ8 ratio of 

C. gariepinus Fads2 is more similar to that of marine species like gilthead seabream 

(Sparus aurata) (2.7) and turbot (Psetta maxima) (4.2). Whereas it is notably lower than 

those of freshwater or salmonid Fads2 including D. rerio (22.4) and S. salar (12 and 14.7 

for Fad_b and Fad_c, respectively) (Monroig et al., 2011a). These results suggest that the 

Δ8 pathway, while possibly not to such an extent as the Δ6 pathway, can still contribute 

to the initial steps of LC-PUFA biosynthesis in C. gariepinus. Note that Δ8 activity 
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introduces the same double bond as Δ6 activity, after elongation rather than before, and 

so a Fads having Δ6Δ8 activity is not regarded as “bifunctional”. 

The ability of the C. gariepinus Fads2 to desaturate a range of Δ5, Δ6 and Δ8 Fads 

substrates from both n-3 and n-6 series clearly shows it is a multifunctional enzyme. This 

is emphasised by the stepwise desaturation reactions that occurred when transgenic yeast 

expressing the C. gariepinus Fads2 were grown in the presence of certain FA substrates 

such as 20:3n-3 and 20:2n-6. C. gariepinus Fads2 enzyme activity toward 20:3n-3 led to 

the production of either 20:4n-3 (Δ8 desaturation) that was subsequently desaturated to 

20:5n-3 (Δ5 desaturation), or the non-methylene interrupted (NMI) FA products 

Δ5,11,14,1720:4 or Δ6,11,14,1720:4 resulting from direct Δ5 or Δ6 desaturation, respectively. 

While the biological significance of these pathways is difficult to determine, particularly 

for NMI FA biosynthesis, the results further confirm that all the Fads capabilities (Δ5, 

Δ6 and Δ8) are present in the characterised Fads2. NMI fatty acids are principal 

constituents of plasmalogens and may play structural and protective roles in cell 

membrane (Monroig et al., 2013b; Kraffe et al., 2004; Barnathan, 2009). In marine 

invertebrates, NMI fatty acids are thought to confer resistance in tissues exposed most 

often to environmental physicochemical variations or to attack by microbial lipases 

(Kraffe et al., 2004). 

Moreover, we can further confirm that all the elongase activities required in the LC-

PUFA biosynthesis pathways also exist in C. gariepinus. Agaba et al. (2005) 

characterised an Elovl5 from C. gariepinus that, like the vast majority of fish Elovl5 

investigated to date, showed C18 and C20 PUFA as preferred substrates, with markedly 

lower affinity towards C22 substrates (Castro et al., 2016). In contrast, the C. gariepinus 

Elovl2 showed higher elongation efficiencies towards C20 and C22 PUFA compared to C18 

substrates. Generally, these results are consistent with the activities shown by the only 
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three fish Elovl2 enzymes characterised to date, i.e. S. salar, D. rerio and O. mykiss 

(Gregory and James, 2014; Monroig et al., 2009; Morais et al., 2009). Although, similar 

to the human orthologue, the latter did not show any activity on C18 FA substrates 

(Leonard et al., 2002). The presence of Elovl2 and particularly its ability to elongate C22 

PUFA to a greater extent compared to Elovl5 elongases has been acknowledged as 

evidence supporting LC-PUFA biosynthetic capability in freshwater species and 

salmonids (Morais et al., 2009). The plethora of genomic and transcriptomic sequences 

currently available from a varied range of fish species and lineages strongly suggests that, 

rather than the habitat (freshwater versus marine) of fish, it is the phylogeny of each 

species that actually correlates with the presence or absence of Elovl2 within their 

genomes. Here we show that marine species such as the Atlantic herring Clupea harengus 

(Figure 3.2) possess a putative Elovl2, whereas freshwater species including O. niloticus 

or medaka (O. latipes) appear to have lost Elovl2 from their genomes. 

The functions of the herein reported Fads2 and Elovl2, together with the previously 

characterised Elovl5 (Agaba et al., 2005), allow us to predict the biosynthetic pathways 

of LC-PUFA in C. gariepinus. Thus, the dual Δ6Δ5 Fads2 catalyses the initial 

desaturation of 18:3n-3 and 18:2n-6 (Δ6 desaturation), as well as the desaturation of 

20:4n-3 and 20:3n-6 (Δ5 desaturation) as shown in Figure 1.3. Although we cannot 

confirm whether the C. gariepinus Fads2 can desaturate 24:5n-3 and 24:4n-6 (Δ6 

desaturation) required to synthesise 22:6n-3 and 22:5n-6, respectively, through the so-

called “Sprecher pathway” (Sprecher, 2000). Such ability of vertebrate Fads2 has been 

demonstrated in O. mykiss, S. salar and D. rerio (Bell and Tocher, 2009; Buzzi et al., 

1996; Tocher et al., 2003). Further studies will aim to elucidate whether the newly cloned 

Fads2 or other Fads potentially co-existing in the C. gariepinus genome, have the ability 

to desaturate C24 PUFA in position Δ6. The Elovl2 was able to catalyse the elongation of 



Chapter 3 

92 

 

C18 (18:3n-3, 18:2n-6, 18:4n-3 and 18:3n-6), C20 (20:5n-3 and 20:4n-6) and C22 (22:5n-3 

and 22:4n-6) PUFA. Its activity towards C18 PUFA was however very low compared to 

activity towards C20 and C22 PUFA. This, together with the activity of Elovl5, which is 

high towards C18 and C20 PUFA (Agaba et al., 2005), confirm that the activities required 

to catalyse all the elongation steps required for LC-PUFA synthesis are present in C. 

gariepinus. 

Expression analysis showed fads2, elovl2 and elovl5 were expressed in all tissues 

analysed. Consistent with the vast majority of freshwater species studied, the tissue 

distribution patterns of C. gariepinus fads2 and elovl2 mRNAs showed liver as a major 

metabolic site for LC-PUFA biosynthesis. In contrast, marine fish species typically have 

brain as the tissue with highest expression levels of LC-PUFA biosynthesis genes, with 

production of DHA from EPA in brain being hypothesised as driving the retention of at 

least part of the LC-PUFA biosynthetic pathway in species with high inputs of dietary 

LC-PUFA (Monroig et al., 2011b). An exception to this pattern is represented by the Nile 

tilapia fads2, with highest expression in the brain (Tanomman et al., 2013). C. gariepinus 

fads2 expression in liver was approximately four-fold greater than in intestine, in contrast 

to salmonid fads2 that have been reported to be most highly expressed in intestine (Zheng 

et al., 2005). The expression of elovl5 was also high in liver but was highest in the 

intestine. 

In conclusion, we have successfully cloned and characterised fads2 and elovl2 genes that 

encode enzymes with a broad range of substrate specificities from C. gariepinus. These 

two enzymes, and the previously reported Elovl5, enable the African catfish C. 

gariepinus to carry out all the desaturation and elongation reactions required for 

endogenous LC-PUFA synthesis from C18 precursors, namely ALA and LA. These 
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results strongly suggest that C. gariepinus has the ability to effectively utilise VO rich in 

C18 PUFA to satisfy essential LC-PUFA requirements 
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CHAPTER 4.  

ELONGATION OF VERY LONG-CHAIN (> C24) FATTY ACIDS IN 

CLARIAS GARIEPINUS: CLONING, FUNCTIONAL 

CHARACTERISATION AND TISSUE EXPRESSION OF ELOVL4 

ELONGASES 
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4.1 Introduction  

Elongation of very long-chain fatty acid (Elovl) proteins catalyse the condensation 

reaction, regarded as the first and rate-limiting step of four sequential reactions required 

for the elongation of fatty acids (FA) (Guillou et al., 2010; Jakobsson et al., 2006). Seven 

members (Elovl 1-7) with similar motifs make up the Elovl protein family in vertebrates, 

although only Elovl2, Elovl4 and Elovl5 have been proven to have polyunsaturated fatty 

acids (PUFA) as substrates for elongation (Guillou et al., 2010; Jakobsson et al., 2006). 

Importantly, the complement of Elovl, along with that of fatty acyl desaturases (Fads), 

determines the ability of species to biosynthesise physiologically essential fatty acids 

(EFA) such as eicosapentaenoic acid (EPA, 20:5n-3), arachidonic acid (ARA, 20:4n-6) 

and docosahexaenoic acid (DHA, 22:6n-3) (Bell and Tocher, 2009). Fish have arguably 

been the group of organisms in which the most comprehensive characterisation of Elovl 

gene repertoire and function has been conducted, particularly farmed species (Castro et 

al., 2016). These studies have shown that Elovl5 elongates predominantly C18 and C20 

PUFA, whilst Elovl2 preferentially elongates C20 and C22 PUFA (Castro et al., 2016), 

thus denoting somewhat overlapping functionalities that are likely to derive from a 

common evolutionary origin (Monroig et al., 2016b). However, the substrate specificities 

of Elovl4 proteins from vertebrates including fish have remained more elusive (Castro et 

al., 2016). 

Cloning and functional characterisation of a teleost Elovl4 was first carried out in 

zebrafish D. rerio (Monroig et al., 2010a). It was shown that two Elovl4 genes, termed 

Elovl4a and Elovl4b, were present, in contrast to mammals in which only a single Elovl4 

had been reported (Agbaga et al., 2008). Interestingly, both D. rerio Elovl4s showed the 

ability to elongate saturated FA, but only Elovl4b appeared to have a role in the 

biosynthesis of very long-chain (> C24) polyunsaturated fatty acids (VLC-PUFA) 
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(Monroig et al., 2010a). Since this pioneer study in fish, further elovl4 cDNA sequences 

have been studied in a variety of species including Atlantic salmon, Nibe croaker, orange-

spotted grouper and rabbitfish (Carmona-Antoñanzas et al., 2011; Kabeya et al., 2015; 

Li et al., 2015; Monroig et al., 2012). Interestingly, with the exception of the zebrafish 

elovl4a (Monroig et al., 2010a), all elovl4 cDNA cloned from other teleost fish species 

have been confirmed to be orthologues of the zebrafish elovl4b, although in silico 

searches indicated that virtually all teleosts possess at least one copy of both elovl4a and 

elovl4b (Castro et al., 2016). Recently, two further elongases termed elovl4c-1 and 

elovl4c-2 were identified from the Atlantic cod, Gadus morhua, although their 

functionalities remain to be elucidated (Xue et al., 2014). In addition to the differences 

in substrate specificities, further evidence suggesting that Elovl4a and Elovl4b participate 

in different biological processes was provided by tissue expression patterns suggesting 

elovl4a was highly expressed in brain, whereas elovl4b was highly expressed in eye 

(retina) and gonads (Monroig et al., 2010a; Xue et al., 2014). These results were 

consistent with studies on mammals indicating that these tissues are important sites for 

very long-chain FA biosynthesis. Thus, very long-chain (> C24) saturated fatty acids 

(VLC-SFA) have been shown to play key roles in skin permeability barrier formation 

and thus essential for neonatal survival (Cameron et al., 2007; Uchida and Holleran, 

2008; Vasireddy et al., 2007), whereas VLC-PUFA are essential in phototransduction 

and male fertility (Agbaga et al., 2010; Guillou et al., 2010; McMahon and Kedzierski, 

2010; Zadravec et al., 2011). 

An interesting trait that apparently differentiates fish Elovl4 from non-fish vertebrate 

Elovl4 orthologues is the ability of the former to catalyse the elongation of C22 PUFA 

substrates to C24 products. In particular, all fish Elovl4b characterised to date have shown 

the ability to efficiently elongate 22:5n-3 to 24:5n-3, a critical enzymatic step in the 



Chapter 4 

98 

 

biosynthesis of DHA through the Sprecher pathway (Sprecher, 2000). The acquisition or 

retention of such an ability by some fish Elovl4 has been hypothesised to compensate the 

loss of elovl2 during the evolution history of some teleost lineages encompassing the vast 

majority of farmed marine fish species (Li et al., 2015; Monroig et al., 2012, 2011c, 

2010a; Wang et al., 2015). Indeed, the apparent absence of elovl2, along with that of key 

desaturation activities, has been regarded as molecular evidence accounting for the low 

capacity of marine fish species to biosynthesise EPA, ARA and DHA (Morais et al., 

2009).  

Our overall aim is to elucidate the repertoire and function of genes encoding elovl and 

fads enzymes involved in the biosynthesis of LC-PUFA in the African catfish, Clarias 

gariepinus, a commercially important species in Sub-Saharan African aquaculture (FAO, 

2016). C. gariepinus are freshwater fish with a variety of characteristics that makes them 

ideal for fish farming. African catfish C. gariepinus is a fast-growing species, can be 

cultured at high densities and tolerates poor water quality due to the possession of 

accessory air-breathing organs (De Graaf and Janssen, 1996; Pouomogne, 2010). C. 

gariepinus is an omnivorous fish and, while in the wild they feed on insects, crustaceans, 

worms, gastropods, fishes and plants, they accept a wide range of feed ingredients in 

captivity (Pouomogne, 2010). With regards to PUFA biosynthesising enzymes, Agaba et 

al. (2005) characterised an Elovl5 from C. gariepinus that was primarily active towards 

C18-20 PUFA substrates. More recently, we successfully isolated and functionally 

characterised an Elovl2 elongase with preference towards C20-22 PUFA substrates, as well 

as a Fads2 desaturase with dual Δ6Δ5 activity (Chapter 3). In the present study, we 

characterised, both molecularly and functionally, two elovl4 cDNA from C. gariepinus 

and investigated their tissue expression patterns. 
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4.2 Materials and Methods  

4.2.1 Sample Collection and RNA Preparation 

Tissue samples used in this study were obtained from eight adult C. gariepinus specimens 

(~1.8 kg) and preserved as described in Section 3.2.1. The C. gariepinus were raised in 

the tropical aquarium of the Institute of Aquaculture, University of Stirling, UK, on 

standard salmonid diets. Total RNA extraction and first strand complementary DNA 

(cDNA) synthesis is also as described in Section 3.2.1.   

4.2.2 Molecular Cloning of Elovl4 cDNA 

Amplification of partial fragments of the genes was achieved by polymerase chain 

reaction (PCR) using a mixture of cDNA from eye and brain as template. For 

amplification of the first fragment of the C. gariepinus elovl4a, the primers UniE4aF (5'-

CTCTTCCTCTGGCTGGGG-3') and UniE4aR (5'-

TATGTCTGGTAGTAGAAGTTCC-3') were designed on conserved regions after 

alignment (BioEdit v7.0.9, Tom Hall, Department of Microbiology, North Carolina State 

University, USA) of elovl4a-like sequences from D. rerio (gb|NM_200796.1|), G. 

morhua (KF964008.1), Takifugu rubripes (gb|XM_003965960.1|) and I. punctatus 

(gb|JT417431.1|). Similarly, elovl4b homologous sequences from Siganus canaliculatus 

(gb|JF320823.1|), Rachycentron canadum (gb|HM026361.1|), Salmo salar 

(gb|NM_001195552.1|) and I. punctatus (gb|JT405661.1|) were aligned to design primers 

UniE4bF  (5'-TAGCAGACAAGCGGGTGG-3') and UniE4bR  (5'-

CAAAGAGGATGATGAAGGTGA-3') used for the amplification of the first fragment 

of C. gariepinus elovl4b. PCR conditions consisted of an initial denaturation step at 95 

°C for 2 min, followed by 35 cycles of denaturation at 95 °C for 30 s, annealing at 55 °C 

for 30 s, extension at 72 °C for 55 s, followed by a final extension at 72 °C for 7 min. 
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PCR fragments were purified using the Illustra GFX PCR DNA/gel band purification kit 

(GE Healthcare, UK), and sequenced at GATC Biotech Ltd (Germany).  

Gene-specific primers were designed to obtain full-length cDNA by 5' and 3' Rapid 

Amplification of cDNA Ends (RACE) PCR (FirstChoice® RLM-RACE RNA ligase 

mediated RACE kit, Ambion®, Life TechnologiesTM, USA). Positive RACE PCR 

products were identified by sequencing (GATC Biotech Ltd). The full nucleotide 

sequences of both elovl4 cDNA sequences were obtained by aligning sequences of the 

first fragments, together with those of the 5' and 3' RACE PCR positive products 

(BioEdit). All primers used in RACE PCR are listed in Table 4.1. 

4.2.3 Sequence and Phylogenetic Analysis 

The deduced amino acid (aa) sequences of both C. gariepinus elovl4 cDNA sequences 

were compared to corresponding orthologues from other vertebrate species by 

calculating the identity scores using the EMBOSS Needle Pairwise Sequence Alignment 

tool (http://www.ebi.ac.uk/Tools/psa/emboss_needle/). Phylogenetic analysis of the 

deduced aa sequences of the Elovl4 proteins from C. gariepinus and Elovl from a variety 

of vertebrate species was performed by constructing a tree using the neighbor-joining 

method (Saitou and Nei, 1987) with MEGA 6.0 software (www.megasoftware.net). 

Confidence in the resulting tree branch topology was measured by bootstrapping through 

1,000 iterations.  

4.2.4 Functional Characterisation of C. gariepinus Elovl4a and Elovl4b by 

Heterologous Expression in Saccharomyces cerevisiae 

PCR fragments corresponding to the open reading frame (ORF) of C. gariepinus newly 

cloned elovl4 cDNA were amplified from a mixture of cDNA synthesised from eye and 

brain RNA, using the high fidelity Pfu DNA polymerase (Promega, USA) with primers 

containing BamHI (forward) and XhoI (reverse) restriction sites (Table 4.1). PCR 

http://www.megasoftware.net/
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conditions consisted of an initial denaturation at 95 °C for 2 min, followed by 32 cycles 

of denaturation at 95 °C for 30 s, annealing at 55 °C for 30 s, extension at 72 °C for 2 

min followed by a final extension at 72 °C for 7 min. The DNA fragments obtained were 

purified, digested with the appropriate restriction enzymes (New England Biolabs, UK), 

and ligated into the similarly digested pYES2 expression vector (Invitrogen, UK) to 

produce the plasmid constructs pYES2-elovl4a and pYES2-elovl4b.  

Yeast competent cells InvSc1 (Invitrogen) were transformed with pYES2-elovl4a and 

pYES2-elovl4b using the S.c. EasyCompTM Transformation Kit (Invitrogen). Selection 

of yeast containing the pYES2 constructs was done on S. cerevisiae minimal medium 

minus uracil (SCMM-ura) plates. One single yeast colony was grown in SCMM-ura broth 

for 2 days at 30 °C, and subsequently subcultured in individual Erlenmeyer flasks until 

optical density measured at a wavelength of 600 nm (OD600) reached 1, after which 

galactose (2 %, w/v) and a PUFA substrate at a final concentration of 0.6 mM (C18), 1.0 

mM (C20) and 1.2 mM (C22) were added. The FA substrates included stearidonic acid 

(18:4n-3), gamma-linolenic acid (18:3n-6), EPA (20:5n-3), ARA (20:4n-6), 

docosapentaenoic acid (22:5n-3), docosatetraenoic acid (22:4n-6) and DHA (22:6n-3). 

In addition to exogenously added PUFA substrates, some Elovl4 have been shown to 

elongate saturated FA (Monroig et al., 2010a). Consequently, the ability of C. gariepinus 

Elovl4 enzymes to elongate yeast endogenous saturated FA was investigated. For that 

purpose, the saturated FA profiles of yeast transformed with empty pYES2 vector and 

those of yeast transformed with either pYES2-elovl4a or pYES2-elovl4b were compared 

after growing the yeast without addition of any substrate. After 2 days, yeast were 

harvested, washed twice with doubled distilled water and freeze-dried until further 

analysis.  
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Table 4.1. Sequences of primers used for molecular cloning of full-length cDNA and 

tissue expression analysis (qPCR) of Clarias gariepinus elovl4a and elovl4b. Restriction 

sites for BamHI (forward) and XhoI (reverse) are underlined. 

Name Direction Sequence 

Initial cDNA cloning  
UniE4aF Forward 5'-CTCTTCCTCTGGCTGGGG -3' 

UniE4aR Reverse 5'-TATGTCTGGTAGTAGAAGTTCC-3' 

UniE4bF Forward 5'-TAGCAGACAAGCGGGTGG-3' 

UniE4bR Reverse 5'-CAAAGAGGATGATGAAGGTGA-3'    

5' RACE  

CGRE4aR3 Reverse 5'-GCAAGGAAGAGCTCTTTGAAG-3' 

CGRE4aR2 Reverse 5'-ACAATTAGGGTCTTCCTGAGCT-3' 

CGRE4bR3   Reverse 5'-GCAGCACCATGCTGAAGT-3' 

CGRE4bR2 Reverse 5'-TGAAAGCGTCTCGGTGCT-3'    

3' RACE  

CGRE4aF1 Forward 5'-TCATTGTCCTCTTTGGGAACT-3' 

CGRE4aF2 Forward 5'-GCACTGGTGTCTGATTGGTTAT-3' 

CGRE4bF2 Forward 5'-CTCACTCGCTGTACTCCGG-3' 

CGRE4bF3 Forward 5'-CCAGTTCCATGTCACAATCG-3'    

ORF cloning 

CGE4aVF Forward 5'-CCCGGATCCAAGATGGATATTGTAACAC-3' 

CGE4aVR Reverse 5'-CCGCTCGAGCTAGTCCCGCTTTGCCCTGCC-3' 

CGE4bVF Forward 5'-CCCGGATCCAACATGGAAACGGTGCTTC-3' 

CGE4bVR Reverse 5'-CCGCTCGAGTCACTCCCTCTTTGTTCGTTCC-3'    

qPCR 

CGqE4aF1 Forward 5'-GAGATGCAGAAGCAGGCATA-3' 

CGqE4aR1 Reverse 5'-TTGAGCCTCCTCCAAACAGT-3' 

CGqE4bF1 Forward 5'-GAGGAACGCACTGGGAACT-3' 

CGqE4bR1 Reverse 5'-AAACGCCATCTATCCCATTG-3' 

28SrRNAF1 Forward 5'-GTCCTTCTGATGGAGGCTCA-3' 

28SrRNAR1 Reverse 5'-CGTGCCGGTATTTAGCCTTA-3' 

 

4.2.5 Fatty Acid Analysis of Yeast 

Total lipids extracted from freeze-dried samples of yeast (Folch et al., 1957) were used 

to prepare fatty acid methyl esters (FAME) as described in detail previously (Section 

3.2.5). Identification of the peaks was carried out as described by Li et al. (2015). Briefly, 

FAME were identified and quantified after splitless injection and run in temperature 
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programming, in an Agilent 6850 gas chromatograph system, equipped with a Sapiens-

5MS (30 m x 0.25 µm x 0.25 µm) capillary column (Teknokroma, Spain) coupled to a 

5975 series mass spectrometer detector (Agilent Technologies, USA). The elongation of 

endogenous saturated FA was assessed by comparison of the areas of the FA of control 

yeast with those of yeast transformed with either pYES2-elovl4a or pYES2-elovl4b. As 

described in detail by Li et al. (2015), the elongation conversions of exogenously added 

PUFA substrates (18:4n-3, 18:3n-6, 18:4n-3, 20:5n-3, 20:4n-6, 22:5n-3 and 22:6n-3) 

were calculated by the step-wise proportion of substrate FA converted to elongated 

product as [areas of first product and longer chain products/(areas of all products with 

longer chain than substrate + substrate area)] x 100.  

4.2.6 Gene Expression Analysis 

Expression of the newly cloned C. gariepinus elovl4 cDNAs was measured by 

quantitative real-time PCR (qPCR). RNA extraction from C. gariepinus tissues (four 

male and four females) and cDNA synthesis were carried out as described above (Section 

4.2.1). PCR amplicons of each gene cloned into PCR 2.1 vector (TA cloning® kit, 

Invitrogen, Life Technologies™, USA) were linearised, quantified and serial-diluted to 

generate a standard curve of known copy numbers for quantification. All qPCR 

amplifications were carried out in duplicate using Biometra Thermocycler (Analytik Jena 

Company, Germany) and Luminaris Color Higreen qPCR master mix (Thermo 

Scientific, Carlsbad, CA, USA) following the manufacturer’s instructions. The qPCR 

conditions, confirmation of qPCR products and calculation of absolute copy number of 

target and reference gene in each sample were performed as described in Section 3.2.6. 

Primers used for qPCR analysis are presented in Table 4.1.  
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4.2.7 Statistical Analysis 

Tissue expression (qPCR) results were expressed as mean normalised ratios (n = 4) (± 

SE) corresponding to the ratio between the copy numbers of the target genes (elovl4a and 

elovl4b) and the copy numbers of the reference gene, 28S rRNA. Differences in gene 

expression among tissues were analysed by one-way analysis of variance (ANOVA) 

followed by Tukey's HSD test at a significance level of P ≤ 0.05 (IBM SPSS Statistics 

21, USA).  

4.3 Results 

4.3.1 Elovl4 Sequence and Phylogenetic Analysis 

The sequence and phylogenetic analysis revealed that C. gariepinus possesses two elovl4 

cDNAs with homology to the D. rerio Elovl4 proteins (Monroig et al., 2010a) and, for 

consistency, were termed as elovl4a and elovl4b. The full-length of the C. gariepinus 

elovl4a cDNA consisted of 1,403 bp that contained an ORF of 945 bp encoding a putative 

protein of 314 aa. Whereas the full-length of the C. gariepinus elovl4b was 1,181 bp, 

with a 915 bp ORF encoding a putative protein of 304 aa. Both cDNA sequences have 

been deposited with the GenBank database under the accession number KY801284 

(elovl4a) and KY801285 (elovl4b).  

Phylogenetic analysis showed that C. gariepinus Elovl4 proteins grouped together with 

orthologues from a variety of vertebrates, with Elovl2 and Elovl5 sequences clustering 

separately (Figure 4.1). Within the teleost Elovl4, two distinct clusters containing each 

of the two Elovl4 from C. gariepinus could be identified. In one cluster, the C. gariepinus 

Elovl4a grouped closely with Elovl4a-like sequences from D. rerio (gb|NP_957090.1|), 

G. morhua (gb|AIG21330.1|), C. harengus (gb|XP_012692914.1|), Oreochromis 

niloticus (gb|XP_003443720.1|) and T. rubripes (gb|XP_003966009.1|). In the other, the 

C. gariepinus Elovl4b grouped with Elovl4b-like sequences from D. rerio 
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(gb|NP_956266.1|), N. mitsukuri (gb|AJD80650.1|), R. canadum (ADG59898.1) and G. 

morhua (gb|AIG213329.1|). These results confirmed that the newly cloned elovl cDNA 

from C. gariepinus encoded Elovl4a and Elovl4b proteins. Interestingly, the two so-

called “Elovl4c” previously reported in G. morhua (Xue et al., 2014), grouped separately 

from all vertebrate Elovl4 (Figure 4.1). 

Sequence analysis of the C. gariepinus putative Elovl4a and Elovl4b proteins showed 

that both possessed all the characteristic features of Elovl family members including a 

single histidine dideoxy binding motif HXXHH, the putative endoplasmic reticulum 

(ER) retrieval signal with an arginine (R) and lysine (K) residue at the carboxyl terminus, 

RXKXX) and multiple regions containing similar motifs such as (i) KXXEXXDT, (ii) 

QXXFLHXXHH, (iii) NXXXHXXMYXYY, (iv) TXXQXXQ (Figure 4.2) (Agaba et 

al., 2005; Jakobsson et al., 2006). The deduced aa sequences from the C. gariepinus 

Elovl4a and Elovl4b were 70.7 % similar to each other. Comparing the aa sequences of 

C. gariepinus Elovl4 deduced proteins with other fish Elovl4 sequences revealed that 

Elovl4a shared highest identities with Clupea harengus (gb|XP_012692914.1|) (87.0 %) 

and D. rerio Elovl4a (85.7 %), whereas C. gariepinus Elovl4b shared highest identities 

with D. rerio Elovl4b (83.6 %) and Nibea mitsukuri Elovl4 (gb|AJD80650.1|) (81.0 %). 

The aa sequence of C. gariepinus Elovl4a shared 41.5 % and 38.0 %, respectively, with 

previously described C. gariepinus Elovl5 and Elovl2 elongases, while identity scores of 

43 % and 40.8 %, respectively, were obtained for Elovl4b 
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Figure 4.1. Phylogenetic tree comparing the deduced amino acid sequences of Clarias 

gariepinus elovl4a and elovl4b (highlighted in bold) with Elovl4, Elovl2 and Elovl5 

sequences from a range of vertebrates. The tree was constructed using the neighbor-

joining method (Saitou and Nei, 1987) with the MEGA 6.0 software. The numbers 

represent the frequencies (%) with which the tree topology presented was replicated after 

1,000 iterations. The Mortierella alpina PUFA elongase was included in the analysis as 

outgroup sequence to construct the rooted tree. 

 



  Chapter 4 

107 

 

 

Figure 4.2. ClustalW amino acid alignment of the deduced Clarias gariepinus Elovl4 

proteins with orthologues from Danio rerio (Elovl4a, gb|NP_957090.1|; Elovl4b, gb 

|NP_956266.1|), Nibea mitsukurii (gb|AJD80650.1|) and Clupea harengus 

(gb|XP_012692914.1|). Identical residues are shaded black and similar residues (based 

on the Blosum62 matrix, using ClustalW default parameters) are shaded grey. Indicated 

are four (i-iv) conserved motif of elongases: (i) KXXEXXDT, (ii) QXXFLHXXHH, (iii) 

NXXXHXXMYXYY and (iv) TXXQXXQ. The putative endoplasmic reticulum (ER) 

retrieval signal RXKXX at C-terminus is also indicated (Agaba et al., 2005). 

 

4.3.2 Functional Characterisation of C. gariepinus Elovl4 in Yeast 

The role of the C. gariepinus Elovl4 enzymes in the elongation of very long-chain 

saturated FA was assessed by comparison of the saturated (≥ C24) FA profiles of control 

yeast transformed with empty pYES2 with those of yeast transformed with either pYES2-

elovl4a or pYES2-elovl4b and grown in all cases in the absence of exogenously added 

fig 

C. gariepinus Elovl4a   MDIVTHLVNDTIEFYKWSLTIADKRVEKWPLMGSPLPTLAISSSYLLFLWLGPKFMRNREAFQLRKTLIV 70   

C. gariepinus Elovl4b   METVLHLINDTAEFYTWSLTIADKRVEQWPMMSSPLPTLGFSMLYLLFLWVGPRYMQHRDAFKLRKTLIV 70   

D. rerio Elovl4a        MEIIQHIINDTVHFYKWSLTIADKRVEKWPLMDSPLPTLAISSSYLLFLWLGPKYMQGREPFQLRKTLII 70   

D. rerio Elovl4b        METVVHLMNDSVEFYKWSLTIADKRVEKWPMMSSPLPTLGISVLYLLFLWAGPLYMQNREPFQLRKTLIV 70   

N. mitsukurii Elovl4    MEAVTHFVNDTVEFYKWGLTIADKRVENWPMMSSPLPTLAISCLYLLFLWAGPRYMQDRQPFTLRKTLIV 70   

C. harengus Elovl4      METITHVINDTVEFYKWSLTISDKRVEKWPLMDSPLPTLAISSTYLLFLWLGPKYMKNREPFQLRKTLIV 70   

                                                     

                                                                       
 

C. gariepinus Elovl4a   YNFSMVILNFFIFKELFLAARAANYSYLCQPVDYSDDPNEVRVAAALWWYFVSKGVEYLDTVFFILRKKF 140  

C. gariepinus Elovl4b   YNFSMVLLNFYICKELLLGSRAAGYSYLCQPVNYSDNVNEVRIASALWWYYISKGVEFLDTVFFIMRKKF 140  

D. rerio Elovl4a        YNFSMVILNFFIFKELFLAARAANYSYICQPVDYSDDPNEVRVAAALWWYFISKGVEYLDTVFFILRKKF 140  

D. rerio Elovl4b        YNFSMVLLNFYICKELLLGSRAAGYSYLCQPVNYSNDVNEVRIASALWWYYISKGVEFLDTVFFIMRKKF 140  

N. mitsukurii Elovl4    YNFSMVVLNFYIAKELLLGSRAAGYSYLCQPVNYSNDVNEVRIASALWWYYISKGVEFLDTVFFIMRKKF 140  

C. harengus Elovl4      YNFSMVILNFFIFKELFLAARAAKYSYICQPVDYSDDPNEVRVAAALWWYFVSKGVEYLDTVFFILRKKF 140  

                                                                             KXXEXXDT 

                                                                                I 

                               

C. gariepinus Elovl4a   NHVSFLHVYHHCTMFTLWWIGIKWVAGGQSFFGAHMNAAIHVLMYLYYGLAACGPKIQKYLWWKKYLTII 210  

C. gariepinus Elovl4b   NQISFLHVYHHCTMFILWWIGVKWVPGGQSFFGASINSGIHVLMYSYYGLAAVGPHMHKYLWWKKYLTII 210  

D. rerio Elovl4a        NQISFLHVYHHCTMFTLWWIGIKWVAGGQSFFGAHMNAAIHVLMYLYYGLAAFGPKIQKFLWWKKYLTII 210  

D. rerio Elovl4b        NQVSFLHVYHHCTMFILWWIGIKWVPGGQSFFGATINSGIHVLMYGYYGLAAFGPKIQKYLWWKKYLTII 210  

N. mitsukurii Elovl4    NQVSFLHVYHHCTMFILWWIGIKWVPGGQSFFGATINSSIHVLMYGYYGLAALGPQMQKYLWWKKYLTII 210  

C. harengus Elovl4      NQVSFLHVYHHCTMFTLWWIGIKWVAGGQSFFGAHMNASIHVLMYLYYGLAACGPKLQKYLWWKKYLTII 210  

                         QXXFLHXXHH                         NXXXHXXMYXYY                   TXX     

                             II                                 III    
 

C. gariepinus Elovl4a   QMIQFHVTIGHTALSLYTDCPFPKWMHWCLIGYALTFIVLFGNFYYQTYRRQPRREGLSKAGKALSNGAS 280  

C. gariepinus Elovl4b   QMIQFHVTIGHAAHSLYSGCPFPAWMQWALIAYAITFIILFANFYYQTYRLRPR--------SKSLKSAS 272  

D. rerio Elovl4a        QMVQFHVTIGHTALSLYSDCPFPKWMHWCLIGYALTFIILFGNFYYQTYRRQPRRDKP----RALHNGAS 276  

D. rerio Elovl4b        QMIQFHVTIGHAAHSLYTGCPFPAWMQWALIGYAVTFIILFANFYYQTYRRQPR--------LKTAKSAV 272  

N. mitsukurii Elovl4    QMIQFHVTIGHAGHSLYTGCPFPAWMQWALIGYAVTFIILFANFYYHAYRRKPSS------AQKGGKPAV 274  

C. harengus Elovl4      QMVQFHVTIGHTALSLYIDCQFPHWMHWALMGYAITFIILFGNFYYQTYRRQPRRDAPSKAGKSVSNGVP 280  

                        QXXQ                                       

                         IV                                                       
 

C. gariepinus Elovl4a   NG-MAISNGVSGKMVEKPVVVENGRRKRKGRAKRD 314  

C. gariepinus Elovl4b   NGASAMTNGSAGSVEQVE---ENGRKQTKERTKRE 304  

D. rerio Elovl4a        NGALTSSNGNTAKLEEKP--AESGRRRRKGRAKRD 309  

D. rerio Elovl4b        NGVSMSTNGTS-KTAEVT---ENGKKQKKGKGKHD 303  

N. mitsukurii Elovl4    NGTSMVTNGHS-KAEEVE---DNGKRQKKGRAKRE 305  

C. harengus Elovl4      NGAILASNGVAGKLEEKP--VENGRRKRKGRAKRD 313  

                                                      RXKXX 

 

 

Fig 
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FA. The results confirmed that the C. gariepinus Elovl4 enzymes were involved in the 

biosynthesis of very long-chain saturated FA since yeast expressing both elovl4a and 

elovl4b generally contained higher levels of saturated FA ≥ C28. More specifically, yeast 

expressing the C. gariepinus elovl4a had significantly higher levels of 28:0, 30:0 and 

32:0 compared to control yeast, whereas yeast expressing the C. gariepinus elovl4b 

contained higher levels of 28:0 and 32:0 compared to controls (Table 4.2). 

Table 4.2. Functional characterisation of Clarias gariepinus Elovl4 elongases: role in 

biosynthesis of very long-chain saturated fatty acids (FA). Results are expressed as an 

area percentage of total saturated FA ≥ C24 found in yeast transformed with either C. 

gariepinus elovl4 coding regions or empty pYES2 vector (Control). 

FA Control Elovl4a Elovl4b 

24:0 1.19±0.10a 1.60±0.25b 1.51±0.08b 

26:0 23.46±1.15a 22.49±0.76a 26.82±4.81a 

28:0 0.95±0.19a 4.42±0.62b 2.23±0.33b 

30:0 0.23±0.06a 2.51±0.44b 0.48±0.05a 

32:0 0.04±0.01a 0.40±0.02b 0.11±0.04b 

  

The role of the C. gariepinus Elovl4 enzymes in VLC-PUFA biosynthesis was 

investigated by growing transgenic yeast expressing the C. gariepinus elovl4a and 

elovl4b cDNA in the presence of potential PUFA substrates. While transgenic yeast were 

able to elongate exogenously added PUFA substrates with chain lengths ranging from 

C18 to C22, the conversions were markedly higher for longer chain substrates (Figure 4.3; 

Table 4.3). For Elovl4a, step-wise elongation products derived from exogenously 

supplemented PUFA and with C28-34 were very efficiently elongated as denoted by high 

conversions that were often above 80 % (Table 4.3). In contrast, the C. gariepinus 

Elovl4b was generally less active in the yeast expression system, leading to elongation 
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products with a maximum length of C34 and with generally lower conversions compared 

to Elovl4a (Table 4.3). As an exception, the Elovl4b was very efficient in utilising 22:6n-

3 to produce intermediate elongation products up to 32:6n-3. It is important to note that 

both Elovl4 enzymes were able to produce 24:5n-3 from 22:5n-3 supplied directly or 

converted from exogenously supplied 20:5n-3 (Table 4.3). 

 

 

 

 

 

 

 

 

 

Figure 4.3. Functional characterisation of the newly cloned Clarias gariepinus Elovl4a 

(a and b) and Elovl4b (c and d) in yeast (Saccharomyces cerevisiae). The fatty acid 

profiles of yeast transformed with pYES2 containing the coding sequence of elovl4a and 

elovl4b were determined after the yeast were grown in the presence of one of the 

exogenously added substrates 22:5n-3 (A and C), and 22:4n-6 (B and D). The first peak 

(with asterisk) is derived from the exogenously added substrates. The elongation 

products are indicated accordingly in each panel. 
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Table 4.3. Functional characterisation of Clarias gariepinus Elovl4 elongases: role in 

biosynthesis of very long-chain polyunsaturated fatty acids (VLC-PUFA). 

Saccharomyces cerevisiae transformed with empty pYES2 vector (control) or pYES2 

vector containing C. gariepinus elovl4 coding region were grown in the presence of one 

exogenously added polyunsaturated fatty acid (PUFA) substrate C18 (18:4n-3 and 18:3n-

6), C20 (20:5n-3 and 20:4n-6) and C22 (22:5n-3, 22:4n-6 and 22:6n-3). Conversions were 

calculated for each stepwise elongation according to the formula [areas of first products 

and longer chain products / (areas of all products with longer chain than substrate + 

substrate area)] x 100. The substrate FA varies as indicated in each step-wise elongation. 

    % Conversion   

FA substrate Product Elovl4a Elovl4b Elongation 

18:4n-3 20:4n-3 3.7 2.0 C18→36 

 22:4n-3 26.8 6.4 C20→36 

 24:4n-3 53.1 7.9 C22→36 

 
26:4n-3 62.9 6.8 C24→36 

 
28:4n-3 100.0 3.7 C26→36 

 
30:4n-3 100.0 48.9 C28→36 

 
32:4n-3 91.2 48.4 C30→36 

 
34:4n-3 83.6 1.4 C32→36 

 
36:4n-3 7.7 N.D. C34→36 

    
 

18:3n-6 20:3n-6 6.0 3.0 C18→36 

 22:3n-6 49.5 9.9 C20→36 

 
24:3n-6 73.2 12.2 C22→36 

 
26:3n-6 80.2 29.4 C24→36 

 28:3n-6 100.0 100.0 C26→36 

 30:3n-6 100.0 100.0 C28→36 

 32:3n-6 100.0 51.7 C30→36 

 
34:3n-6 69.5 N.D. C32→36 

 36:3n-6 8.1 N.D. C34→36 

    
 

20:5n-3 22:5n-3 20.4 6.3 C20→36 

 24:5n-3 41.4 13.2 C22→36 

 26:5n-3 55.8 4.7 C24→36 

 
28:5n-3 100.0 100.0 C26→36 

 30:5n-3 100.0 19.3 C28→36 
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 32:5n-3 83.3 69.9 C30→36 

 34:5n-3 93.4 12.0 C32→36 

 36:5n-3 48.1 N.D. C34→36 

    
 

20:4n-6 22:4n-6 26.0 7.5 C20→36 

 24:4n-6 54.6 15.9 C22→36 

 
26:4n-6 70.4 10.9 C24→36 

 
28:4n-6 85.4 9.9 C26→36 

 30:4n-6 99.2 63.1 C28→36 

 
32:4n-6 96.5 28.4 C30→36 

 
34:4n-6 87.1 N.D. C32→36 

 
36:4n-6 27.4 N.D. C34→36 

    
 

22:5n-3 24:5n-3 14.2 5.2 C22→36 

 26:5n-3 51.1 3.9 C24→36 

 
28:5n-3 83.4 2.4 C26→36 

 
30:5n-3 98.3 31.0 C28→36 

 32:5n-3 96.5 64.4 C30→36 

 
34:5n-3 89.8 5.6 C32→36 

 36:5n-3 34.3 N.D. C34→36 

    
 

22:4n-6 24:4n-6 19.1 7.6 C22→36 

 
26:4n-6 69.9 9.9 C24→36 

 
28:4n-6 87.0 9.3 C26→36 

 30:4n-6 99.2 67.7 C28→36 

 32:4n-6 96.1 24.0 C30→36 

 34:4n-6 83.8 N.D. C32→36 

 36:4n-6 24.3 N.D. C34→36 

    
 

22:6n-3 24:6n-3 0.8 0.9 C22→32 

 26:6n-3 N.D. 100.0 C24→32 

 
28:6n-3 N.D. 100.0 C26→32 

 
30:6n-3 N.D. 100.0 C28→32 

  32:6n-3 N.D. 43.7 C30→32 

* N.D., not detected 
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4.3.3 Tissue Expression Analysis of C. gariepinus elovl4a and elovl4b 

Tissue distribution analysis of elovl4 mRNAs measured by qPCR indicated both genes 

were expressed in all tissues analysed, with high expression of elovl4a detected in 

pituitary and brain, whereas elovl4b expression was highest in female gonad and pituitary 

(Figure 4.4). Lowest expression signals for both elovl4 were recorded in liver. 

 

 

          
         

         
         
         
          

        
         
         
         
         
         
         
         

         
         
         

         
         
         

Figure 4.4. Tissue distribution of Clarias gariepinus elovl4a and elovl4b transcripts. 

Expression levels quantified for each target gene were normalised with the expression of 

the reference gene 28s rRNA. Data are reported as mean values with their standard errors 

(n = 4). Within each target gene, different letters indicate statistically significant 

differences in expression level among tissues (ANOVA and Tukey’s HSD post hoc tests). 

ABO - accessory breathing organ, Adipose T. - adipose tissue, F. Gonad – female gonad, 

M. Gonad – male gonad 
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4.4 Discussion 

Elovl enzymes with a role in long-chain (C20-24) PUFA (LC-PUFA) biosynthesis have 

been investigated extensively in fish (Castro et al., 2016), particularly in farmed species 

in which current diet formulations including vegetable oils might compromise the 

provision of EFA (Tocher, 2015). While Elovl5 and Elovl2 have been regarded as key 

elongases within LC-PUFA biosynthetic pathways, Elovl4 has received less attention 

despite the key role that these elongases has in crucial physiological processes including 

vision, reproduction and neuronal functions of vertebrates (Agbaga et al., 2008; Agbaga, 

2016; Mandal et al., 2004). The present study confirmed that the C. gariepinus Elovl4 

enzymes play critical roles in the biosynthesis of very long-chain saturated fatty acids 

(VLC-SFA) and PUFA (VLC-PUFA), and may also participate in the biosynthesis of 

DHA from EPA. 

Phylogenetic analysis confirmed two isoforms of Elovl4 (Elovl4a and Elovl4b) were 

isolated. The Elovl4 proteins, although similar, were separated into different branches of 

the phylogenetic tree. The Elovl4a protein formed a group with D. rerio Elovl4a and 

other Elovl4s separate from the group consisting of C. gariepinus Elovl4b and Elovl4b 

from fish species including D. rerio. This is in agreement with in silico studies that 

suggested all teleosts possess both types of Elovl4 (Castro et al., 2016). The functionally 

uncharacterised putative Elovl4c reported in G. morhua formed a group separate from all 

other Elovl4 sequences and therefore it is uncertain if these are true Elovl4 proteins. 

Functional characterisation of these genes is required to confirm this.  

Different functions were determined for the C. gariepinus Elovl4 isoforms. It was 

confirmed that the C. gariepinus Elovl4a and Elovl4b participate in the biosynthesis of 

VLC-SFA. Thus, yeast expressing both elovl4a and elovl4b had increased levels of VLC-



Chapter 4 

114 

 

SFA with C28-32 compared to control yeast. These results were consistent with elongation 

abilities of some teleost Elovl4 reported previously although, in some species like S. salar 

and R. canadum, Elovl4 were able to elongate up to 36:0 (Carmona-Antoñanzas et al., 

2011; Monroig et al., 2011c, 2010a). VLC-SFA play important roles in skin permeability 

of mammals (Cameron et al., 2007; Vasireddy et al., 2007) and are incorporated into 

sphingolipids in the brain, although their role in the brain is yet to be ascertained 

(Agbaga, 2016). In fish, the physiological functions of VLC-SFA have been barely 

investigated, although it is reasonable to believe that these compounds also have 

important roles in brain function of teleosts. This is supported by the high expression 

signal of both elovl4 isoforms in the head region of zebrafish embryos (Monroig et al., 

2010a), and the high expression levels in brain of certain elovl4 with the ability to 

biosynthesise VLC-SFA like Elovl4a from zebrafish (Monroig et al., 2010a) and the 

herein characterised C. gariepinus. The existence of neurons within the hypophysis, 

specifically in the posterior part (neurohypophysis), may likely explain the high 

expression of elovl4a and elovl4b observed in the present study. Other C. gariepinus 

tissues analysed also contained transcripts of elovl4a, indicating a widespread 

distribution as previously reported for the zebrafish D. rerio elovl4a, the only elovl4a-

like sequence so far characterised in teleosts (Monroig et al., 2010a). With regards to 

elovl4b, transcripts were also detected in all tissues analysed, thus confirming a 

widespread distribution as described in cobia (Monroig et al., 2011c) and Atlantic salmon 

(Carmona-Antoñanzas et al., 2011). In contrast, relatively restricted tissue distributions 

of elovl4b were described in zebrafish (Monroig et al., 2010a) and rabbitfish (Monroig 

et al., 2012), species in which photoreception tissues such as eye (retina) and pineal gland 

appear to be the major sites of Elovl4b activity (Monroig et al., 2012, 2010a). 

Unfortunately, we could not analyse the expression of the target genes in eye or pineal, 
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although preliminary experiments indicated that both C. gariepinus elovl4 were 

expressed in eye. Furthermore, the C. gariepinus elovl4b was highly expressed in female 

gonad suggesting that, in addition to the role it may play in male reproduction of 

mammals, as VLC-PUFA determines male fertility (Agbaga, 2016; Zadravec et al., 

2011), fish Elovl4b might also have important functions in female reproduction. The 

above described expression patterns of the C. gariepinus elovl4 genes, together with 

those tissues containing marked amounts of VLC-PUFA (Agbaga, 2016; Poulos, 1995), 

are in agreement with the roles that both Elovl4 play in the biosynthesis of VLC-PUFA 

in C. gariepinus. 

Both Elovl4 showed the ability to biosynthesise VLC-PUFA of up to 34 - 36 carbons 

through consecutive elongations from all PUFA assayed including compounds with 

different chain lengths (C18-22) and series (n-3 and n-6). While this is a common trait 

among Elovl4b-like enzymes (Carmona-Antoñanzas et al., 2011; Li et al., 2015; Monroig 

et al., 2012, 2011c, 2010a), the ability of the C. gariepinus Elovl4a to produce VLC-

PUFA up to 36 carbons was somewhat unexpected since the only Elovl4a characterised 

so far from D. rerio showed little ability to biosynthesise VLC-PUFA (Monroig et al., 

2010a). Whereas current evidence does not allow us to clarify which of the two Elovl4a 

phenotypes (D. rerio or C. gariepinus) is more prevalent among teleosts, the apparent 

differences might be in response to ecological and evolutionary factors as previously 

hypothesised for both elongases (Monroig et al., 2016b; Morais et al., 2009) and 

desaturases (Fonseca-Madrigal et al., 2014; Li et al., 2010). Irrespective of the 

mechanism driving the distinct phenotype among Elovl4a enzymes, it is clear that the C. 

gariepinus orthologue was very efficient in the production of VLC-PUFA from 

exogenously supplemented PUFA substrates. Such elongation capabilities largely apply 

to the C. gariepinus Elovl4b, although a distinctive trait of Elovl4b is its ability to 
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efficiently elongate exogenously added 22:6n-3 to 32:6n-3, a VLC-PUFA that has been 

detected in retinal phosphatidylcholine of gilthead seabream Sparus aurata (Monroig et 

al., 2016a). Despite the ability of the C. gariepinus Elovl4b to produce 32:6n-3 from 

DHA (22:6n-3), the latter does not appear to be a preferred substrate for biosynthesis of 

n-3 VLC-PUFA in bovine and rat retina (Rotstein et al., 1996; Suh and Clandinin, 2005). 

It was demonstrated that, while exogenously supplemented EPA and 22:5n-3 acted as 

precursors for VLC-PUFA biosynthesis, DHA was incorporated directly into retinal 

phospholipids without further metabolism.  

Irrespective of whether teleost Elovl4 can utilise DHA or not, their ability to elongate 

22:5n-3 to 24:5n-3 suggested that Elovl4 can play a role in DHA biosynthesis through 

the Sprecher pathway (Sprecher, 2000). This pathway requires the production of 24:5n-

3 for further Δ6 desaturation and partial β-oxidation to DHA, and Elovl2 has been 

identified as a major candidate elongase accounting for the provision of 24:5n-3 from 

22:5n-3 (Castro et al., 2016). C. gariepinus possess an Elovl2 with the abovementioned 

ability to elongate 22:5n-3 to 24:5n-3 (Chapter 3), indicating that Elovl2 and Elovl4 have 

partly overlapping functions as previously described between Elovl2 and Elovl5 

(Monroig et al., 2016b). In contrast, teleosts within the Acanthopterygii clade have 

apparently lost Elovl2 (Leaver et al., 2008), and consequently the presence of Elovl4 with 

the ability to elongate 22:5n-3 is clearly advantageous to compensate for this loss (Castro 

et al., 2016). Studies in mammals have not fully clarified whether ELOVL4 participates 

in DHA biosynthesis. High expression of ELOVL4 in tissues where DHA accounted for 

a large proportion of the PUFA content including retina, brain and testis, along with the 

crucial role DHA plays in the development and function of these tissues suggested a role 

of mammalian ELOVL4 in DHA biosynthesis (Agbaga et al., 2008; Mandal et al., 2004; 

Zhang et al., 2001, 2003). Moreover, Vasireddy et al. (2007) reported a reduction in DHA 
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and 22:5n-3 in non-polar lipids and free FA of whole skin of mouse without a functional 

ELOVL4 compared to skin from wild type controls. On the contrary, Agbaga et al. (2010, 

2008) concluded ELOVL4 did not participate in DHA biosynthesis in mammals or may 

play a redundant role, the latter hypothesis aligning well with the overlapping roles 

between Elovl2 and Elovl4 described above. 

In conclusion, the present study demonstrated that C. gariepinus possess two distinct 

elovl4-like elongases with high homology to the previously described zebrafish Elovl4a 

and Elovl4b. Both C. gariepinus Elovl4 participate in the biosynthesis of both VLC-SFA 

and VLC-PUFA. While previous studies on teleosts had reported on the ability of 

Elovl4b-like elongases to operate efficiently towards both saturated and polyunsaturated 

FA, the herein described ability of the C. gariepinus Elovl4a to elongate PUFA was in 

contrast to that of D. rerio Elovl4a, the only Elovl4a-like elongase functionally 

characterised to date. The tissue distribution of C. gariepinus elovl4 mRNA largely 

followed previous observations in other teleosts, with neuronal and reproductive tissues 

exhibiting the highest expression levels. 
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CHAPTER 5. 

TWO ALTERNATIVE PATHWAYS FOR DOCOSAHEXAENOIC 

ACID (DHA, 22:6n-3) BIOSYNTHESIS ARE WIDESPREAD AMONG 

TELEOST FISH 
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5.1 Introduction 

Long chain (C20-24) polyunsaturated fatty acids (LC-PUFA) including arachidonic acid 

(ARA, 20:4n-6), eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 

22:6n-3) play numerous physiologically important roles essential to health in humans 

(Brenna, 2002; Cardoso et al., 2016). Although humans have some ability to synthesise 

LC-PUFA from the C18 precursors linoleic acid (LA, 18:2n-6) and α-linolenic acid (ALA, 

18:3n-3), dietary supply of these LC-PUFA is still required to meet physiological 

demands (Brenna, 2002). Fish are the primary source of n-3 LC-PUFA for humans 

(Shepherd et al., 2017) and this has prompted increasing interest in LC-PUFA 

metabolism in fish (Tocher, 2003), with biosynthesis being one of the most targeted 

pathways under investigation (Castro et al., 2016; Tocher, 2015). The biosynthesis of 

C20-22 LC-PUFA in vertebrates including fish involves alternating steps of desaturation 

and elongation of the dietary essential C18 fatty acids (FA), LA and ALA. Fatty acyl 

desaturases (Fads) catalyse the introduction of a double bond at a specific position of the 

acyl chain and have been named accordingly as ∆6, ∆5, ∆4 and ∆8 desaturases 

(Meesapyodsuk and Qiu, 2012). Elongation of very long-chain fatty acid (Elovl) proteins 

catalyse the condensation and rate-limiting reaction of the FA elongation pathway 

(Guillou et al., 2010; Jakobsson et al., 2006). Biosynthesis of ARA and EPA from the 

C18 precursors LA and ALA, respectively, follows the same pathways and involves the 

same enzymes (Figure 1.3). The pathways revealed from studies in vertebrates are the 

so-called “∆6 pathway” (∆6 desaturation – elongation – ∆5 desaturation) and the “∆8 

pathway” (elongation – ∆8 desaturation – ∆5 desaturation) (Figure 1.3) (Castro et al., 

2016; Monroig et al., 2011a; Park et al., 2009; Tocher, 2010; Vagner and Santigosa, 

2011). 
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Since the studies of Sprecher and co-workers in rats (Sprecher, 2000, 1992; Sprecher et 

al., 1995),, it had been generally accepted that the biosynthesis of DHA in vertebrates 

was achieved by two consecutive elongations from EPA to produce tetracosapentaenoic 

acid (TPA, 24:5n-3), which then undergoes a ∆6 desaturation to tetracosahexaenoic acid 

(THA, 24:6n-3), the latter being β-oxidised to DHA in peroxisomes (Ferdinandusse et 

al., 2001). This pathway, known as the “Sprecher pathway”, was subsequently confirmed 

to be operative in rainbow trout Oncorhynchus mykiss (Buzzi et al., 1997, 1996). The 

first question that arose after the demonstration of this pathway was whether the same or 

different ∆6 Fads catalysed the reactions with C18 and C24 substrates (Sprecher et al., 

1995). It was demonstrated that the same ∆6 Fads carried out the conversions of 18:3n-3 

to 18:4n-3 and 24:5n-3 to 24:6n-3 in humans (De Antueno et al., 2001) and rat (D’andrea 

et al., 2002; Geiger et al., 1993). In fish species, it is still unclear whether the same Fads 

catalyses the two ∆6 desaturation reactions or if two ∆6 Fads (isoenzymes) are involved 

(Sargent et al., 2002; Tocher et al., 2003; Vagner and Santigosa, 2011). Studies using 

yeast as a heterologous expression system confirmed that the bifunctional ∆6∆5 Fads 

from zebrafish (Danio rerio) had ability to desaturate both C18 and C24 substrates at the 

∆6 position (Tocher et al., 2003). However, the Nibe croaker (Nibea mitsukurii) ∆6 Fads 

catalysed the desaturation of C18 but not C24 substrates (Kabeya et al., 2015). These 

findings suggested that the DHA biosynthetic capability varied among teleost fish and, 

interestingly, recent findings have demonstrated that, unlike other vertebrates, teleost fish 

have acquired alternative pathways for DHA biosynthesis during evolution (Castro et al., 

2016). 

The “∆4 pathway”, first described in the marine protist Thraustochytrium sp. (Qiu et al., 

2001), is a more direct pathway involving one single elongation of EPA to 

docosapentaenoic acid (DPA, 22:5n-3), which is subsequently desaturated at the ∆4 
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position to produce DHA. Although for many years Δ4 desaturases had not been found 

in any vertebrate species, a Fads2 with Δ4 desaturase activity was first discovered in 

rabbitfish (Siganus canaliculatus) (Li et al., 2010). Since then, Fads with ∆4 desaturases 

have been found in several teleost species such as Senegalese sole (Solea senegalensis) 

(Morais et al., 2012), pike silverside (Chirostoma estor) (Fonseca-Madrigal et al., 2014) 

and striped snakehead (Channa striata) (Kuah et al., 2015). Recently, human cells 

expressing the baboon FADS2 had the ability for direct ∆4 desaturation of 22:5n-3 to 

22:6n-3 (Park et al., 2015). Thus, the existence of the ∆4 pathway among teleosts 

appeared to be more widespread than initially believed.  

It is interesting to note that, unlike other vertebrates, current evidence suggests that all 

fads-like genes found in teleost fish are Fads2 orthologues (Castro et al., 2012). Thus the 

functional diversity among fish Fads2 described above has been hypothesised to be 

dependent upon various factors including the phylogenetic position of species, in 

combination with environmental and ecological factors (Castro et al., 2016). In the 

present study, we aimed to elucidate the pathways for DHA biosynthesis existing in 

species representing major lineages along the tree of life of teleost fish (Betancur-R et 

al., 2013). In particular, we have investigated the prevalence of the Sprecher pathway 

among teleost fish by determining the Δ6 activity towards C24 substrates (24:5n-3 and 

24:4n-6) of desaturases with different substrate specificities (Δ6, Δ5 and Δ4), and derived 

from fish species with different evolutionary and ecological backgrounds. Furthermore, 

we have taken advantage of the now known key amino acid (aa) residues determining Δ4 

desaturase ability of Fads (Lim et al., 2014) to identify teleost taxa, with publically 

available genomic or transcriptomic databases, in which their desaturase repertoire 

enables them to biosynthesise DHA through the more direct Δ4 pathway. 
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5.2 Materials and Methods 

5.2.1 Fish Lineages  

A comprehensive set of Fads2-like sequences was collected by screening genomic and 

transcriptomic databases from fish species representing a sample group of lineages such 

as the basal gnathostome S. canicula; early diverging post-3R teleosts Osteoglossiformes 

(A. gigas) and Anguilliformes (A. japonica); and various other teleostei such as 

Cypriniformes (D. rerio), Siluriformes (C. gariepinus) and Salmoniformes (S. salar and 

O. mykiss), to relatively modern groups like Anabantiformes (C. striata), Atheriniformes 

(C. estor), Cichliformes (O. niloticus, M. zebra and H. burtoni), Blenniiformes 

(Tomicodon sp., Acyrtus sp. and Enneanectes sp.), Beloniformes (O. latipes), 

Cyprinodontiformes (P. reticulata, F. heteroclitus and A. limnaeus), Pleuronectiformes 

(S. senegalensis), Spariformes (S. aurata), Centrarchiformes (M. salmoides) and 

Eupercaria (S. canaliculatus and N. mitsukurii). The desaturase sequences from fish 

species listed above were used for phylogenetic analysis and selected sequences were 

subjected to functional characterisation as described. 

5.2.2 Determination of Δ6 Desaturase Activity of Fish Fads2 towards C24 PUFA in 

Co-Transformant Saccharomyces cerevisiae  

We first investigated the ability for Δ6 desaturase activity towards C24 PUFA substrates, 

i.e. 24:4n-6 and 24:5n-3, the latter being an intermediate in the Sprecher pathway for 

DHA biosynthesis. Such activities were tested in a total of 15 Fads sequences belonging 

to 12 species of fish (Table 5.1), through a newly developed yeast-based assayed as 

follows. Yeast competent cells InvSc1 (Invitrogen) were co-transformed with two 

different plasmid constructs prepared as described below. First, the D. rerio elovl2 open 

reading frame (ORF) (Monroig et al., 2009) was ligated into the yeast expression vector 

p415TEF (a centromeric plasmid with a LEU2 selectable marker) to produce the 

construct p415TEF-elovl2, in which the expression of the D. rerio elovl2 was controlled 
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under the yeast TEF1 promoter (constitutive expression). Second, the ORF of the 

corresponding fish Fads (Table 5.1) was cloned into the episomal yeast vector pYES2, 

in which the Fads expression was under the control of the GAL1 promoter (inducible 

expression). Selection of transformant yeast containing both constructs was performed 

by growing the co-transformed yeast on S. cerevisiae minimal medium minus uracil 

minus leucine (SCMM-ura-leu) plates. One single colony was grown in SCMM-ura-leu broth 

for 24 h at 30 ºC, and subsequently subcultured in individual Erlenmeyer flasks at 0.1 

OD600 (t0) and supplemented with either 0.75 mM Na salts of 22:4n-6 (docosatetraenoic 

acid, DTA) or 22:5n-3 (DPA) (0.75 mM). Co-transformed yeast were then grown for 24 

h (t0 + 24 h) allowing the D. rerio Elovl2 to convert the exogenously added C22 substrates 

(DTA or DPA) into their corresponding C24 elongation products 24:4n-6 and 24:5n-3, 

respectively. In order to test the ability of the fish desaturases to introduce Δ6 double 

bonds into the newly synthesised 24:4n-6 and 24:5n-3 in yeast, the fads expression was 

then induced (t0 + 24 h) by addition of 2 % galactose, after which the recombinant yeast 

were further grown for 48 h (t0 + 72 h) before collection. As positive controls, a 

subculture aliquot of the same colony used for the above described assay was 

supplemented with an n-3 PUFA substrate for which the corresponding assayed Fads had 

previously shown activity (Table 5.1) and galactose (2 %) at t0. More specifically, co-

transformant yeasts were grown in the presence of 18:3n-3 as controls for Δ6 (e.g. 

AgΔ6Fads2) or Δ6Δ5 (e.g. DrΔ6Δ5Fads2) desaturases, 20:4n-3 for Δ5 desaturases (e.g. 

SsΔ5Fads2) and 22:5n-3 for Δ4 desaturases (e.g. CeΔ4Fads2). The yeast co-transformed 

with empty p415TEF and pYES2 vectors were also prepared as negative controls. 
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Table 5.1. Fish fatty acyl desaturases (Fads) investigated for the ability to desaturate 

tetracosapentaenoic acid (24:5n-3) to tetracosahexaenoic acid (24:6n-3). Their known 

desaturation activities and the studies in which they were published are indicated 

accordingly. 

Species 

Desaturase 

namea 

Reported 

activityb 

GenBank 

Accession 

no. Reference 
 
Scyliorhinus canicula ScyΔ6Fads2 Δ6 JN657544 Castro et al., 2012 

Arapaima gigas AgΔ6Fads2 Δ6 AOO1978 Lopes-Marques et al., 2017 

Anguilla japonica AjΔ6Fads2 Δ6 AHY22375 Wang et al., 2014 

Danio rerio  DrΔ6Δ5Fads2 Δ6, Δ5 AAG25710 Hastings et al., 2001 

Clarias gariepinus CgΔ6Δ5Fads2 Δ6, Δ5 AMR43366 Chapter 3 

Salmo salar SsΔ6Fads2 Δ6c AAR21624 Zheng et al., 2005 

 S. salar SsΔ5Fads2 Δ5 AAL82631 Hastings et al., 2001 

Oncorhynchus mykiss OmΔ6Fads2 Δ6 AAK26745 Zheng et al., 2005 

Chirostoma estor CeΔ6Δ5Fads2 Δ6, Δ5 AHX39207 Fonseca-Madrigal et al., 2014 

C. estor CeΔ4Fads2 Δ4 AHX39206 Fonseca-Madrigal et al., 2014 

Siganus canaliculatus ScΔ6Δ5Fads2 Δ6, Δ5 ABR12315 Li et al., 2010 

S. canaliculatus ScΔ4Fads2 Δ4 ADJ29913 Li et al., 2010 

Sparus aurata SaΔ6Fads2 Δ6 AAL17639 Zheng et al., 2004 

Nibea mitsukurii  NmΔ6Fads2 Δ6 AJD80650 Kabeya et al., 2015 

     
 

a Scy, Scyliorhinus canicula; Ag, Arapaima gigas; Aj, Anguilla japonica; Dr, Danio 

rerio; Cg, Clarias gariepinus; Ss, Salmo salar; Om, Oncorhychus mykiss; Ce, 

Chirostoma estor; Sc, Siganus canaliculatus; Sa, Sparus aurata; Nm, Nibea mitsukurii; 

On, Oreochromis niloticus 

b Δ8 desaturase activities of some of these desaturases and reported in the 

corresponding publication are not indicated in the interests of clarity 

c Refers to “Fads2_a” as termed by Monroig et al. (2010b) 
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5.2.3 In silico Retrieval of Putative Δ4 Desaturases 

For retrieval of putative Δ4 desaturase sequences from databases, an alignment of the 

four functionally characterised Δ4 desaturases from rabbitfish (ADJ29913), Senegalese 

sole (AEQ92868), pike silverside (AHX39206) and striped snakehead (ACD70298) was 

performed using the Clustal Omega Multiple Sequence Alignment tool 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). The conserved aa sequence 

PPLLIPVFYNFNIMXTMISR, which included the four key aa residues (underlined) 

accounting for Δ4 regioselectivity (Lim et al., 2014), was used as a query for blast 

searches. The majority of the putative Δ4 desaturase sequences were obtained from the 

NCBI Non-redundant protein sequences (nr) database using the blastp algorithm. We 

further explored the Expressed Sequence Tags (EST) and Transcriptome Shotgun 

Assembly (TSA) databases using the tblastn algorithm. In addition, the Fish-T1K website 

(http://www.fisht1k.org) was also used for the tblastn search. Among the retrieved 

sequences, we selected only those that contained “Y” and “N” in positions 1 and +4, 

respectively, within the four aa domain YXXN, as these have been reported previously 

to be crucial for Δ4 function (Lim et al., 2014). 

5.2.4 Phylogenetic Analysis of Fads Desaturases 

A phylogenetic tree was built to compare the deduced aa sequences of the fish Fads 

considered in the present study. The neighbour-joining method (Saitou and Nei, 1987), 

with the CLC Main Workbench 7 (CLC bio, Aarhus, Denmark), was used to construct 

the phylogenetic tree, with confidence in the resulting tree branch topology measured by 

bootstrapping through 1,000 iterations. The alignment of Fads aa sequences used for 

constructing the phylogenetic tree was performed with MAFFT using the L-INS-i 

method (Katoh and Toh, 2008). Non-teleost fish sequences from S. canicula and 

mammalian (human and mouse) Fads2 sequences were also included in the analysis. 

http://www.fisht1k.org/


  Chapter 5 

127 

 

5.2.5 Fatty Acid Analysis of Yeast 

Total lipids extracted from yeast samples (Folch et al., 1957) were used to prepare fatty 

acid methyl esters (FAME). FAME extraction, purification and analysis were performed 

as described by Li et al. (2010). Substrate FA conversions for the Δ6 desaturase activity 

towards C24 substrates were calculated using the same formula as above (Section 4.2.5) 

considering the areas of 24:5n-3 and 24:4n-6 produced endogenously by the D. rerio 

Elovl2 as substrates for calculations. When necessary, GC-MS was used to confirm the 

identity of the products (Li et al., 2010). 

5.3 Results  

5.3.1 Determination of Δ6 Desaturase Activity of Fish Fads towards C24 PUFA 

The capabilities of fish Fads to desaturate C24 PUFA (24:4n-6 and 24:5n-3) at Δ6 position 

were determined by co-transforming yeast with D. rerio elovl2 and the individual fish 

fads to be assayed. Control yeast co-transformed with empty p415TEF and pYES2 

vectors did not show any activity towards any of the PUFA substrates assayed (data not 

shown) and the yeast showed typical FA profiles consisting primarily of 16:0, 16:1 

isomers, 18:0 and 18:1n-9 (Figure 5.2). Independent of the desaturase cloned into the 

inducible expression vector pYES2, all the co-transformant yeast were able to elongate 

the exogenously added 22:4n-6 and 22:5n-3 to 24:4n-6 and 24:5n-3, respectively, 

confirming the activity of the D. rerio Elovl2 cloned into the constitutive expression 

vector p415TEF. Importantly, the incubation of all the co-transformant yeast in the 

presence of the corresponding FA substrate as controls (i.e. 18:3n-3 for Δ6 and Δ6Δ5 

desaturases, 20:4n-3 for Δ5 desaturases, and 22:5n-3 for Δ4 desaturases) confirmed that 

the desaturases were functional, with activities as previously reported (Table 5.2). 

The ability for Δ6 desaturation of C24 PUFA such as 24:4n-6 and 24:5n-3 varied among 

fish Fads (Figure 5.2; Table 5.2). Interestingly, none of the three Δ4 Fads2 assayed (C. 
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estor, S. canaliculatus and Oreochromis niloticus) showed any ability to desaturate either 

24:4n-6 or 24:5n-3 (Table 5.2). However, most of the fish Fads2 with Δ6 and/or Δ5 

specificities were capable of desaturating both 24:4n-6 and 24:5n-3 to their 

corresponding Δ6 desaturated products, namely 24:5n-6 and 24:6n-3, respectively 

(Figure 5.2; Table 5.2). Due to the intrinsic variability of desaturation activities in the 

yeast system, we normalised the Δ6 desaturase activities measured on C24 substrates with 

those obtained on the corresponding control FA substrate. For that purpose, we calculated 

the ratio “Δ24:5n-3/Δcontrol” (Table 5.2) that allowed comparisons among the fish Fads 

investigated herein. Generally, desaturases from species within relatively ancient fish 

lineages including Scyliorhinus canicula, Arapaima gigas, Anguilla japonica, Clarias 

gariepinus, Salmo salar and O. mykiss showed high capacity for Δ6 desaturation towards 

24:5n-3, with Δ24:5n-3/Δcontrol ratios ≥ 0.82 (Table 5.2). On the other hand, more modern 

species such as S. canaliculatus, Sparus aurata and N. mitsukurii had Fads2 with Δ24:5n-

3/Δcontrol ratios ≤ 0.43 (Table 5.2). It is interesting to note that the S. salar Δ5 (SsΔ5Fads2) 

showed the ability to desaturate 24:5n-3 to 24:6n-3 (Figure 5.2E; Table 5.2), denoting 

Δ6 desaturase activity. In order to confirm these results, we incubated the SsΔ5Fads2 co-

transformant yeast in the presence of 18:3n-3 and confirmed the presence of Δ6 

desaturated product 18:4n-3 (3.5 % conversion). Among all the non-Δ4 Fads2, the N. 

mitsukurii NmΔ6Fads2 was the only tested desaturase with no activity on either 24:4n-6 

nor 24:5n-3 (Figure 5.2C). 

 

 

 

 



  Chapter 5 

129 

 

Table 5.2. Capability of fish Fads2 for Δ6 desaturation of C24 substrates 24:4n-6 and 

24:5n-3 using a yeast Saccharomyces cerevisiae heterologous system as described in 

Materials and Methods. Fatty acid (FA) conversions were calculated as the percentage of 

24:4n-6 and 24:5n-3 desaturated to 24:5n-6 and 24:6n-3, respectively, as [product area / 

(product area + substrate area)] x 100. Conversions towards the control FA substrate 

(18:3n-3 as controls for Δ6 and Δ6Δ5 desaturases, 20:4n-3 for Δ5 desaturases and 22:5n-

3 for Δ4 desaturases) are also indicated. In order to normalise the % conversions obtained 

throughout the Fads2 dataset, ratios between the activities on 24:5n-3 and those on the 

control FA (“Δ24:5n-3/Δcontrol”) are also presented. 

  % Conversion   

Desaturasea 24:4n-6→24:5n-6 24:5n-3→24:6n-3 Control→Product Δ24:5n-3/Δcontrol 

ScyΔ6Fads2 29.3 34.3 41.9 0.82 

AgΔ6Fads2 25.4 19.0 15.3 1.24 

AjΔ6Fads2 14.0 15.8 17.8 0.89 

DrΔ6Δ5Fads2 10.4 15.8 11.9 1.33 

CgΔ6Δ5Fads2 29.9 28.1 31.5 0.89 

SsΔ6Fads2 18.5 26.0 23.9 1.09 

SsΔ5Fads2 1.4 6.4 3.4 1.88 

OmΔ6Fads2 7.5 19.7 20.4 0.97 

CeΔ6Δ5Fads2 4.2 9.0 22.9 0.39 

CeΔ4Fads2 ND ND 9.9 0.00 

ScΔ6Δ5Fads2 6.0 7.4 36.4 0.20 

ScΔ4Fads2 ND ND 6.9 0.00 

SaΔ6Fads2 4.8 6.5 15.0 0.43 

NmΔ6Fads2 ND ND 10.5 0.00 

OnΔ4Fads2 ND ND 4.5 0.00 

 

ND, Not detected 

a Scy, Scyliorhinus canicula; Ag, Arapaima gigas; Aj, Anguilla japonica; Dr, Danio 

rerio; Cg, Clarias gariepinus; Ss, Salmo salar; Om, Oncorhychus mykiss; Ce, 

Chirostoma estor; Sc, Siganus canaliculatus; Sa, Sparus aurata; Nm, Nibea mitsukurii; 

On, Oreochromis niloticus  
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Figure 5.1. Characterisation of fish fatty acyl desaturases 2 (Fads2) ability to desaturate 

24:5n-3. Fatty acid (FA) profiles of yeast (Saccharomyces cerevisiae) co-transformed 

with the Danio rerio elovl2, and the Arapaima gigas ∆6 fads2 (A), Sparus aurata ∆6 

fads2 (B), Nibea mitsukurii ∆6 fads2 (C), Clarias gariepinus ∆6∆5 fads2 (D), Salmo 

salar ∆5 fads2 (E) and Chirostoma estor ∆4 fads2 (F) and grown in the presence of an 

exogenously added FA substrates (indicated as “*” in all panels). Peaks 1-4 represent the 

S. cerevisiae endogenous FA, namely 16:0 (1), 16:1 isomers (2), 18:0 (3) and 18:1n-9 

(4). Elongation (**) and desaturation (†) products from exogenously added or 

endogenously produced FA are indicated accordingly.  

 

5.3.2 Putative Δ4 desaturase Collection and Phylogenetics  

The phylogenetic tree comparing the deduced aa sequence of the fish Fads with those of 

human and rat is shown in Figure 5.3. All Fads1 clustered together and were separate 

from all Fads2 in the tree. All teleost Fads2 studied in the present study strongly clustered 

within the teleost group (99 % bootstraps), with desaturases from early divergent teleost 

species (e.g. A. gigas, A. japonica, C. gariepinus, S. salar and O. mykiss) clustering 
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separately from desaturases from species belonging to more recent lineages (95 % 

bootstraps) (Figure 5.3). Among the latter, one can find all the sequences with YXXN 

residues determining Δ4 activity (Lim et al., 2014) including desaturases from S. 

canaliculatus, S. senegalensis, C. estor, O. latipes and O. niloticus. Clearly, all Fads2-

like proteins from Nile tilapia and other cichlids formed a monophyletic clade (99 % 

bootstraps), itself comprising a subgroup with Fads2 sequences possessing the 

abovementioned distinctive YXXN motif for Δ4 desaturases and another group that 

includes the Δ6Δ5 Fads2 from Nile tilapia (Figure 5.3). 
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Figure 5.2. Phylogenetic tree comparing the amino acid sequences of teleost Fads2 with 

non-teleost vertebrate Fads-like from the cartilaginous fish and mammals (human and 

mouse). The numbers represent the frequencies (%) with which the tree topology 

presented was replicated after 1,000 iterations. The functionally characterised Fads were 

shown with their corresponding regioselectivity (Δ6, Δ5, Δ6Δ5 and Δ4). Asterisks (“*”) 

indicate Fads2 that have been subjected to further functional analysis in the present study. 

Crosses (“†”) indicate Fads2 that possess the YXXN amino acid residues determining 

Δ4 desaturase activity (Castro et al., 2012). Branches including Teleostei and 

Acanthopterygii Fads2 sequences are indicated. 
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5.4 Discussion 

It has been largely accepted that DHA biosynthesis in vertebrates proceeds through the 

Sprecher pathway (Castro et al., 2016; Guillou et al., 2010). While most earlier 

investigations focussed on mammals, studies in O. mykiss confirmed that the Sprecher 

pathway also operated in fish (Buzzi et al., 1997, 1996). It was subsequently 

demonstrated that the same ∆6 Fads-like enzyme that acts on C18 PUFA precursors at the 

initiation of the LC-PUFA biosynthesis (Figure 1.3) was also responsible for the 

desaturation of 24:5n-3 required in the Sprecher pathway (D’andrea et al., 2002; De 

Antueno et al., 2001). Despite the plethora of studies reporting on the functions of fish 

Fads6, the capability of fish Fads to operate towards 24:5n-3, and therefore to contribute 

to DHA biosynthesis through the Sprecher pathway, had not been fully established. For 

that purpose, we herein conducted a retrospective study investigating the ability to 

operate as ∆6 desaturases towards 24:5n-3 and 24:4n-6 of a range of previously 

characterised Fads2 from fish belonging to lineages distributed along the phylogenetic 

tree of teleosts (Betancur-R et al., 2013). 

Using a newly developed method involving yeast, we were able to establish that, with 

the exception of the Nibe croaker Fads2, all teleost non-∆4 desaturases tested in this study 

had the ability to efficiently convert 24:5n-3 and 24:4n-6 into 24:6n-3 and 24:5n-6, 

respectively, confirming their ability for ∆6 desaturation of C24 PUFA substrates. Such 

ability was observed in Fads2 from species spread across the evolutionary history of 

teleosts from basal (e.g. A. gigas and A. japonica) and recent (e.g. S. canaliculatus and 

S. aurata) lineages, and with different regioselectivities including ∆6 desaturases (e.g. O. 

mykiss and S. aurata) and bifunctional ∆6∆5 desaturases (e.g. C. estor and S. 

canaliculatus). Since all these Fads2 also showed ∆6 desaturase activity towards C18 

PUFA (18:3n-3 and 18:2n-6), the present results confirmed that the same Fads2 can 
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function as ∆6 desaturases at both steps of the LC-PUFA biosynthetic pathway as 

described above for mammals (D’andrea et al., 2002; De Antueno et al., 2001). This is 

in agreement with studies on zebrafish ∆6∆5 Fads2, which showed the ability to operate 

as ∆6 desaturase on C18 (Hastings et al., 2001) and C24 PUFA substrates, using for the 

latter a yeast supplemented with 24:5n-3 (Tocher et al., 2003). Interestingly, we could 

also confirm that the previously characterised ∆5 Fads2 from Atlantic salmon S. salar 

(Hastings et al., 2005), also showed ∆6 activity on C24 PUFA (24:4n-6 and 24:5n-3) and 

18:3n-3, suggesting that this enzyme is indeed a bifunctional ∆6∆5 desaturase. 

Bifunctionality appears a relatively widespread feature among fish Fads2 as a 

consequence of sub- (acquisition of additional substrate specificities) and neo-

functionalisation (substitution and/or acquisition of new substrate specificities) events 

that have occurred in teleost Fads2 (Castro et al., 2016; Fonseca-Madrigal et al., 2014). 

More specifically, bifunctional ∆6∆5 Fads2 have been found in D. rerio (Hastings et al., 

2001), S. canaliculatus (Li et al., 2010), O. niloticus (Tanomman et al., 2013), C. estor 

(Fonseca-Madrigal et al., 2014) and C. striata (Kuah et al., 2016). Moreover, all the ∆4 

Fads2 found so far in fish also exhibited some ∆5 desaturase activity (Fonseca-Madrigal 

et al., 2014; Kuah et al., 2015; Li et al., 2010; Morais et al., 2012), although none of them 

had ∆6 activity, which is consistent with the lack of ∆6 desaturase activity towards C24 

PUFA substrates observed in all the ∆4 Fads2 assayed in the present study. Interestingly, 

our results show that the two pathways of DHA biosynthesis, namely the Sprecher and 

∆4 pathways, co-exist within some species such as S. canaliculatus and C. estor since, 

in addition to the role of their ∆6∆5 Fads2 in the Sprecher pathway uncovered in the 

present study, the existence of ∆4 desaturases in their genomes potentially enables them 

to further operate via the ∆4 pathway (Fonseca-Madrigal et al., 2014; Li et al., 2010). 
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The Δ4 pathway was first reported in the rabbitfish S. canaliculatus (Li et al., 2010), with 

further Δ4 desaturases subsequently described in S. senegalensis, C. estor and C. striata 

(Fonseca-Madrigal et al., 2014; Kuah et al., 2015; Morais et al., 2012). In the present 

study, we have expanded the number of fish lineages and species in which putative Δ4 

desaturases exist. In particular, putative Δ4 desaturases were identified in 11 species 

belonging to Cichliformes (O. niloticus, Maylandia zebra and Haplochromis burtoni), 

Beloniformes (O. latipes), Blenniiformes (Tomicodon sp., Acyrtus sp. and Enneanectes 

sp.), Cyprinodontiformes (Poecilia reticulata, Fundulus heteroclitus and Austrofundulus 

limnaeus) and Centrarchiformes (Micropterus salmoides). It is very likely that the 

number of species with Δ4 Fads2 will expand when further genomic and/or 

transcriptomic data become available. This is particularly true for species within groups 

such as Cichliformes and Beloniformes, in which we found putative Δ4 Fads2 in all 

species studied in each group. Overall, these results clearly showed that the presence of 

Δ4 Fads2 among teleosts was far more common than initially believed when the first 

vertebrate Δ4 desaturase was discovered in S. canaliculatus (Li et al., 2010). However, 

the presence of Fads2 appears to be restricted to teleost species within groups regarded 

herein as “recent lineages”, indicating that the acquisition of the Δ4 pathway occurred 

later during the evolution of teleosts (Castro et al., 2016; Fonseca-Madrigal et al., 2014).  

In more basal teleost lineages, namely Osteoglossiformes (e.g. A. gigas), Anguilliformes 

(e.g. A. japonica), Cypriniformes (e.g. D. rerio), Siluriformes (e.g. C. gariepinus) and 

Salmoniformes (e.g. S. salar and O. mykiss), the Sprecher pathway appears to be the only 

possible route available for DHA biosynthesis. This is supported by, not only the 

apparent absence of Δ4 Fads2 in their genomes, but also the relatively higher capacity 

for Δ6 desaturase towards 24:5n-3 of their Fads2, as denoted by normalising the Δ6 

conversions of 24:5n-3 (Δ24:5n-3) with that towards a control substrate (Δcontrol). Thus, 
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Fads2 from early divergent teleosts, along with the cartilaginous fish S. canicula, had 

relatively high capacity for ∆6 desaturation towards 24:5n-3, with Δ24:5n-3/Δcontrol ≥ 0.82. 

In contrast, Fads2 from other species (S. aurata, C. estor and S. canaliculatus) had lower 

Δ24:5n-3/Δcontrol ≤ 0.43, indicating lower activity of the Sprecher pathway. While 

exceptions to this pattern are likely to exist given the functional diversity among teleost 

Fads2 (Castro et al., 2016; Fonseca-Madrigal et al., 2014), the apparent lower 

contribution of the Sprecher pathway to DHA biosynthesis in late-diverging teleosts 

coincided with the occurrence of Δ4 Fads2 enabling certain species an alternative route 

for DHA biosynthesis. The limited activity of the Sprecher pathway among these teleost 

species might be not only restricted to their lower desaturation capability on 24:5n-3 

stated above, but also to the absence of key elongase enzymes such as Elovl2, responsible 

for the production of the Δ6 desaturase substrate 24:5n-3 (Bell and Tocher, 2009; Leaver 

et al., 2008; Monroig et al., 2010a). Although Elovl4 can partly compensate such an 

absence in certain tissues (Carmona-Antoñanzas et al., 2011; Li et al., 2015; Monroig et 

al., 2011c, 2010a), loss of Elovl2 in the genomes of Acanthopterygii, a group that 

includes all the late-diverging species considered in this study (Morais et al., 2009), can 

notably compromise the efficient production of 24:5n-3 as precursor for DHA 

biosynthesis via the Sprecher pathway. Lack of key enzymatic capabilities in LC-PUFA 

biosynthetic pathways has been speculated to be a consequence of species having readily 

available essential LC-PUFA in their diets (Bell and Tocher, 2009; Tocher et al., 2003). 

This is the case of marine teleosts, particularly higher trophic species, in which no 

selection pressure to retain complete and active LC-PUFA biosynthetic pathways has 

been exerted. For example, extreme cases of marine teleosts with loss of enzymatic 

activities include the pufferfish (e.g. Tetraodon nigroviridis and Takifugu rubripes), 

which lack Fads2 in their genomes (Morais et al., 2009). In the present study, we 
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observed that the marine carnivore Nibe croaker N. mitsukurii possess a Fads2 that was 

the only non-Δ4 Fads2 studied that showed no detectable activity towards 24:5n-3. These 

results were consistent with the inability of N. mitsukurii Fads2 to desaturate 24:5n-3 to 

24:6n-3 in yeast (Kabeya et al., 2015) and the accumulation of 24:5n-3, but not DHA, in 

transgenic N. mitsukurii carrying an elovl2 (Kabeya et al., 2014).  

The present study demonstrated that, with the notable exception of Δ4 desaturases, fish 

Fads2 have the ability to operate as Δ6 desaturases towards C24 PUFA enabling them to 

synthesise DHA through the Sprecher pathway. However, the so-called “Δ4 pathway” 

represents an alternative route in some species. Through in silico searches, the present 

study revealed that the presence of Δ4 Fads was more common than initially believed, 

and reported three new orders and 11 species in which putative Δ4 desaturases were 

identified. Interestingly, functional characterisation of the S. salar Fads2 previously 

characterised as a Δ5 desaturase confirmed this enzyme has also Δ6 desaturase activity 

and should be therefore regarded as a bifunctional Δ6Δ5 desaturase. Overall our results 

demonstrate that two alternative routes for DHA biosynthesis can exist in teleost fish. 

Whereas the Sprecher pathway appeared to be widely spread across the entire clade, a 

more scattered distribution was observed for the Δ4 pathway. 
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CHAPTER 6. 

DETERMINING THE FUNCTION OF NOVEL FADS AND ELOVL 

ENZYMES IN THE AFRICAN CATFISH CLARIAS GARIEPINUS 
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6.1 Introduction 

Fatty acyl desaturases (Fads) and elongation of very long-chain fatty acid (Elovl) proteins 

play key roles in the biosynthesis of long-chain (C20-24) polyunsaturated fatty acids (LC-

PUFA). Teleost species synthesise, to varying extents, LC-PUFA from 18:2n-6 and 

18:3n-3 via a range of fatty acid desaturases (typically with ∆8, ∆6, ∆5, ∆4 desaturase 

activities) and elongases (Elovl2, 4 and 5) (Chapter 1). With regards to desaturases, such 

membrane-bound enzymes are Fads2 orthologues (Castro et al., 2012) and have the 

ability to introduce double bonds at either one (monofunctional) or more positions 

(multifunctional) (Monroig et al., 2011b). They perform carboxyl-directed desaturations 

and are known as “front-end” desaturases. Cytochrome b5, the ultimate electron donor in 

desaturation reactions in animals (Napier et al., 1997; Sperling and Heinz, 2001), is fused 

to the N-terminal region of Fads-like desaturases. The possession of a cytochrome b5-

like domain appears to be restricted to enzymes that modify the proximal portion of lipid 

substrates facing the membrane surface such as the front-end desaturases, ∆6, ∆5 and ∆4 

Fads2 (Napier et al., 1999). The fusion of the electron donor to the desaturase protein is 

thought to have conferred some evolutionary advantages resulting in a more efficient 

functioning of these enzymes (Guillou et al., 2004; Napier et al., 1999; Sperling et al., 

2003). In contrast, some members of the other family of membrane-bound desaturases, 

stearoyl-CoA desaturases (Scd), do not possess a cytochrome b5-like domain (Mitchell 

and Martin, 1995). Sequence analysis reveals this is also the case of teleosts Scd, an 

enzyme reported to have ∆9 desaturase activity catalysing the desaturation of saturated 

fatty acids to produce monounsaturated fatty acids such as 18:1n-9 (oleic acid). 

Importantly, vertebrates including teleosts lack methyl-directed desaturases, namely ∆12 

and ∆15 desaturases mainly found in lower eukaryotes and plants (Lee et al., 2016; Wallis 

et al., 2002), and therefore cannot convert oleic acid (18:1n-9) into linoleic acid (LA, 
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18:2n-6) and linolenic acid (ALA, 18:3n-3), the latter becoming dietary essential 

nutritients for vertebrates. 

The sequential desaturations and elongations of LA and ALA to give longer chain PUFA 

have been described in various teleost species (Chapter 1). Thus, the desaturation 

reactions are performed by Fads2 exhibiting a range of activities (∆6/∆5/∆4/∆8). In 

addition to Scd and Fads, there might be further uncharacterised desaturases with 

potential roles in LC-PUFA. Searches in D. rerio and several teleost species genome 

allowed idenfication of a gene annotated as Fads6. 

Elovl2, Elovl4 and Elovl5 elongases participate in LC-PUFA synthesis (Guillou et al., 

2010; Jakobsson et al., 2006; Monroig et al., 2016b). Whereas teleost Elovl5 exhibits a 

substrate preference for C18 and C20 PUFA, Elovl2 are much more capable of elongating 

C20 and C22 PUFA. Teleost Elovl4a and Elovl4b enzymes have the unique ability to 

synthesise very long chain saturated and unsaturated fatty acids with chain lengths 

reaching up to C36 (Chapter 4). In addition to the Elovl4 enzymes characterised in a range 

of fish species including Clarias gariepinus (Chapter 4), two elovl4-like genes (termed 

elovl4c-1 and elovl4c-2) were cloned from G. morhua (Xue et al., 2014). Interestingly, 

phylogenetic analysis of these elovl4-like genes showed they group separately from other 

elovl4 genes (Xue et al., 2014). Preliminary studies indicated there might be similar elovl 

genes that have been annotated as “elovl4” (or “elovl4-like”) in many fish species 

genomes such as S. salar (XP_014071374), I. punctatus (XP_017324302) and O. 

niloticus (XP_005479178.1). Interestingly, two isoforms of this gene can be found in D. 

rerio (NP_001191453 and NP_001070061) but they are annotated as “Elovl8”. 

Irrespective of the annotation, the phylogeny of this novel elovl gene and whether its 

potential sequence similarity to characterised elovl4 can be related to roles of this enzyme 

in the LC-PUFA biosynthetic pathways, remains to be studied. Consequently, the present 
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chapter describes the cloning and functional characterisation the novel elongase elovl8 

from C. gariepinus, as well as the abovementioned fads6 desaturase.  

6.2 Materials and Methods 

6.2.1 Molecular Cloning of Novel fads and elovl cDNAs 

Amplification of partial fragments of the genes was achieved by PCR using a mixture of 

cDNA from eye, liver, intestine and brain as template. Primers Fads6F and Fads6R for 

fads6 were designed on conserved regions of fads6 sequences from D. rerio 

(gb|XM_003199660.4|), I. punctatus (gb|XM_017482704.1|), O. niloticus 

(gb|XM_019362343.1), T. rubripes (gb|XM_003961066.2|) and Labrus bergylta 

(gb|XM_020659396.1|) (Table 6.1) retrieved from NCBI (http://ncbi.nlm.nih.gov). 

Degenerate primer design was approached as described in previous chapters (e.g. Section 

3.2.2). 

For elovl8 genes, primers Elovl8F2 and Elovl8R1 (Table 6.1) that were designed on 

conserved regions of sequences from elovl8-like genes from D. rerio (elovl8b) 

(gb|NM_001024438.2|), I. punctatus (gb|XM_017468816.1|), O. niloticus 

(gb|XM_005479121.3|) and T. rubripes (gb|XM_003974099.2|). PCR conditions 

consisted of an initial denaturation step at 95 °C for 2 min, 33 cycles of denaturation (95 

°C for 30 s), annealing (57 °C for 30 s) and extension (72 °C for 1 min 30 s) and a final 

extension (72 °C for 5 min). The PCR fragments were purified using the Illustra GFX 

PCR DNA/gel band purification kit (GE Healthcare, Little Chalfont, UK), and sequenced 

(GATC Biotech Ltd., Konstanz, Germany).  

Sequences of the partial gene fragments were then used to generate full-length cDNA 

sequence with a blast search of the high-throughput DNA Sequence Read Archive (SRA) 

database on NCBI. C. gariepinus SRA data with accession number ERX538457 
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generated by transcriptomic profiling with Illumina HiSeq 2000 paired end sequencing 

was used. 

Table 6.1. Sequences of primers used for cDNA cloning of Clarias gariepinus fads6 and 

elovl8. Restriction sites HindIII (forward) and XbaI (reverse) are underlined. 

Name Direction Sequence 

Initial cDNA cloning 
 

Elovl8F2  Forward 5'-GTCAGCCTGTVGAYTACAGC-3' 

Elovl8R1  Reverse 5'-TAGCTCTGRTARTARAAGTT-3' 

Fads6F  Forward 5'-AGCAGCTGGTGGGASAGGA-3' 

Fads6R  Reverse 5'-TGCTCCACRTGRCAGTTGAT-3' 

ORF cloning 
  

CGE85UF1 Forward 5'-AAACAGGTTGAGGCTGTGGA-3' 

CGE83UR1 Reverse 5'-ATTCTGCATGGTGTGTGTGG-3' 

CGE85VF Forward 5'-CCCAAGCTTAGAATGGCTTCGGCGTGGCA-3' 

CGE83VR Reverse 5'-CCGTCTAGATCAGGAGCGCTTGCTCTTGC-3' 

CGF65UF1 Forward 5'-CTAAGAACTAGCAGAATCAGC-3' 

CGF63UR1 Reverse 5'-CGTCTTGGCTTTGAGGATCT-3' 

CGF65VF 
Forward 

5'-CCCAAGCTTAGCATGCAGAACATCCCAGA-3' 

CGF63VR Reverse 5'-CCGTCTAGATCACTGCACCCCGACCAGCT-3' 

 

All significant alignments were downloaded and submitted for alignment to the CAP3 

assembly program (http://biosrv.cab.unina.it/webcap3/). This process was repeated as 

many times as necessary to extend the cDNA sequence up to the start and stop codon. 

The sequence derived from SRA sequences were aligned with sequence of the known 

partial fragment to obtain the complete cDNA sequence. Using this method, the fads6 

full-length cDNA was generated. However, for the elovl8 this method only extended the 

sequence, but was not able to generate the full sequence. So Elovl8 amino acid (aa) 

http://biosrv.cab.unina.it/webcap3/
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sequences from I. punctatus were used as query sequence to blast (tblastn) C. gariepinus 

SRA sequence. In addition, very short nucleotide sequences (< 40 bp) were used as 

queries for a blast search. In order to ensure the nucleotide sequences generated using the 

SRA database were correct, new sets of primers were designed and PCR used to isolate 

the full sequences of both genes. 

6.2.2 Sequence and Phylogenetic Analysis 

The deduced aa sequences of the cDNAs were compared to corresponding orthologues 

from other species with a Pairwise Sequence Alignment tool 

(http://www.ebi.ac.uk/Tools/psa/emboss_needle/) and Omega multiple alignment tool 

(http://www.ebi.ac.uk/Tools/msa/clustalo/). Phylogenetic analysis of the deduced aa 

sequences of both cDNAs from C. gariepinus and those from a variety of species across 

vertebrate lineages were carried out by constructing trees using the neighbour-joining 

method (Saitou and Nei, 1987), with the MEGA 7.0 software. Confidence in the resulting 

tree branch topology was measured by bootstrapping through 1,000 iterations. 

Morteriella alpina desaturase and elongase was used as the outgroup sequence for 

rooting the fads6 and elovl8 phylogenetic trees, respectively. 

6.2.3 Synteny Analysis  

Synteny analysis was perfomed to predict and establish the presence and location of the 

fads6 and elovl8 genes. The gene database on NCBI was searched for the genes and the 

chromosome number and names of flanking genes recorded. For elovl8, flanking genes, 

common to all the species such as Selenoprotein pb (Sepp1b), Zinc Finger SWIM-Type 

Containing 5 (Zswim5) and Muty DNA glycosylase (Mutyh), were used to search the 

NCBI gene database. This search produced a number of results for different teleost 

species. As the complete genome for C. gariepinus is not yet available, I. punctatus, its 

closest relative with its full genome sequenced, was used to predict the presence of these 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/
http://www.ebi.ac.uk/Tools/msa/clustalo/
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genes in C. gariepinus. Synteny analysis of other teleost species was also conducted for 

further comparison.  

6.2.4 Functional Characterisation of C. gariepinus Novel fads and elovl by 

Heterologous Expression in Saccharomyces cerevisiae 

Similarly to assasys performed to characterise the funcions of desaturases and elongases 

from C. gariepinus (Chapters 3 and 4), PCR fragments corresponding to the open reading 

frame (ORF) of C. gariepinus fads6 and the elovl8 were amplified from a mixture of 

cDNA synthesised from liver, intestine, eye and brain total RNA, using the high fidelity 

Pfu DNA polymerase (Promega, USA). Primers CGF65VF and CGF63VR were used for 

fads6, whereas CGE85VF and CGE83VR were used for elovl8 (Table 6.1). Both sets of 

primers contained HindIII (forward) and XbaI (reverse) restriction sites. PCR conditions 

were exactly as mentioned above (Section 6.2.1) except for the extension time, which 

was 3 min 30 s. The DNA fragments obtained were purified, digested with the 

appropriate restriction enzymes, and ligated into similarly digested pYES2 yeast 

expression vector (Invitrogen), as described in Section 2.6.1. 

Yeast competent cells InvSc1 (Invitrogen) were transformed with the plasmid constructs 

pYES2-fads6 or pYES-elovl8 or with empty vector (control) using the S.c. EasyComp™ 

Transformation Kit (Invitrogen). Selection of yeast containing the pYES2 constructs and 

culture of a single yeast colony was performed as described in detail in Chapter 2. For 

the fads6, the PUFA substrates tested included 18:3n-3, 18:2n-6, 20:3n-3, 20:2n-6, 

20:4n-3, 20:3n-6, 22:5n-3 and 22:4n-6. For elovl8, substrates included 18:2n-6, 18:3n-3, 

18:3n-6, 18:4n-3, 20:5n-3, 20:4n-6, 22:5n-3 and 22:6n-3. These sets of fatty acid (FA) 

substrates are confirmed substrates for LC-PUFA biosynthetic fads and elovl genes. The 

ability of the C. gariepinus Fads6 and Elovl8 enzymes to desaturate or elongate yeast 

endogenous saturated FA was determined by comparing the saturated FA profiles of 
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yeast transformed with empty pYES2 vector and those of yeast transformed with either 

pYES2-fads6 or pYES2-elovl8, after growing the yeast without addition of any 

exogenous FA substrate. The yeast were harvested after 2 days. Further analysis of the 

yeast samples was as described in detail in Section 2.6.3.  

  

6.2.5 Fatty Acid Analysis of Yeast  

Total lipids were extracted from yeast samples according to Folch et al. (1957). 

Subsequently, preparation of fatty acid methyl esters (FAME), extraction, purification 

and analysis were performed as described in the preceding chapters. Substrate FA 

conversion were calculated as the proportion of exogenously added FA substrate [product 

peak areas / (product peak areas + substrate peak area)] × 100. GC-MS was used to 

confirm double bond positions. 

6.2.6 4,4-dimethyloxazoline (DMOX) Derivative Analysis with Gas 

Chromatography-Mass Spectrometry (GC-MS) 

GC analysis of FAME offer limited structural information, so in order to confirm FA 

products (position of the double bonds) of the C. gariepinus elovl8 gene in S. cerevisiae, 

the FAME were converted to 4,4-dimethyloxazoline (DMOX) derivatives and analysed 

by GC-MS. Briefly, 0.5 g of 2-amino-2-methyl-1-propanol was added to the FAME 

samples in test tubes. The tubes were flushed with nitrogen, stoppered and sealed with 

tape, and placed in a heating block at 180 °C overnight. The next day, samples were 

allowed to cool to room temperature and 5 ml diethyl ether/isohexane (1:1, v/v) and 5 ml 

water added were added to the tubes, thoroughly mixed and centrifuged for 3 min at 478 

g. The organic layer was transferred to new tubes, dried down under nitrogen, dissolved 

in 100 µl isohexane and GC-MS analysis performed to confirm identity of FA products.  
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6.3 Results 

6.3.1 Sequence and Phylogenetic Analysis of Fads6 

C. gariepinus Fads6 consisted of an ORF of 1,068 bp encoding a putative protein of 355 

aa. Sequence analysis showed it possessed three histidine boxes (HLASH, HVEMHH 

and HVEHH) containing eight histidine residues, a characteristic feature of membrane-

bound desaturases. Comparison with other vertebrate Fads6 show the aa within the first 

and last histidine boxes are conserved. Interestingly, the third histidine box begins with 

H and not Q unlike teleost front-end desaturases. Furthermore, C. gariepinus Fads6 

lacked a consensus sequence for cytochrome b5, domain present in all Fads2, predictable 

by the absence of a haem-binding motif His-Pro-Gly-Gly (HPGG), a highly conserved 

and invariant characteristic of cytochrome b5 domains found in fused cytochrome b5 

desaturases (Dahmen et al., 2013; Napier et al., 1999, 1997). Searches in genome 

assemblies from several vertebrate species confirmed this absence in other vertebrate 

Fads6. However, two Avian species, Anna’s hummingbird Calypte anna (Figure 6.1) and 

the common cuckoo Cuculus canorus, have HPGG in the N-terminal end, but it is not 

certain if this indicates presence of a cytochrome b5-like domain. Although, it is unlikely, 

as the region (< 40 aa) is shorter than the cytochrome b5 domains present in other 

cytochrome b5 fusion desaturases. In addition, this region does not contain the other 

conserved aa that make up the haem-binding pocket (Mitchell and Martin, 1995). 

Moreover, a blast search performed with approximately 100 bp of the sequence including 

the HPGG motif revealed desaturases and not cytochrome b5 sequences. 
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Figure 6.1. Amino acid alignment of the deduced Clarias gariepinus Fads6 proteins with 

Fads6 proteins from three teleost (D. rerio, Fundulus heteroclitus, Labrus bergylta), a 

mammalian (Homo sapiens), a reptilian (Alligator sinensis) and an avian (Calypte anna) 

species using Clustal Omega. Identical residues are shaded black and similar residues are 

shaded grey using BoxShade from the ExPASy Bioinformatics Resource Portal 

(http://www.ch.embnet.org/software/BOX_form.html). The three conserved histidine 

motif are seen in boxes. A HPGG motif is underlined in blue.  

http://www.ch.embnet.org/software/BOX_form.html
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Pairwise comparison of the deduced Fads6 aa sequence to those of the C. gariepinus 

Fads2 that encodes a bifunctional ∆5/∆6 desaturase (Chapter 3) revealed a low level of 

sequence homology (15.6 % identical). However, relatively higher sequence identities 

ranging from 53.7 % (H. sapiens), 68.4 % (S. salar), 72.6 % (D. rerio), to up to 91 % (I. 

punctatus) were found between C. gariepinus Fads6 and other vertebrate Fads6-like 

sequences (Figure 6.1). Phylogenetic analysis was conducted with the Fads6 from C. 

gariepinus and Fads2, Fads6 and Scd from a range of vertebrates. Fads6 and Scd formed 

a clade separate from Fads2 (Figure 6.2). 

 

Figure 6.2. Phylogenetic tree comparing the deduced amino acid sequences of Clarias 

gariepinus Fads6 with desaturase sequences from a range of teleost species. The tree was 

constructed using the neighbour-joining method with the MEGA 7.0 software. The 

numbers represent the frequencies (%) with which the tree topology presented was 

replicated after 1,000 iterations. The Mortierella alpina PUFA desaturase was included 

in the analysis as an outgroup sequence to construct the rooted tree. 
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6.3.2 Synteny Analysis of fads6 

Synteny analysis revealed Fads6 was present in species from all vertebrate classes and 

mapped on chromosomes different from Fads2. As the complete genome of C. gariepinus 

is not available, I. punctatus, a siluriforme and the closest relative of C. gariepinus with 

complete genome sequence, was used. The synteny map is schematically presented in 

Figure 6.3. Although the genes preceding fads6 on the chromosomes were relatively 

similar across vertebrate species, the genes succeeding it were different between classes 

of vertebrates. The genes succeeding fads6 in fish species were similar but differed from 

those in mammalian and avian species, except in the sarcopterygian, L. chalumnae, which 

had a gene composition more similar to tetrapods than to fish species. The arrangement 

of genes in L. chalumnae was exactly as occurs in H. sapiens and Gallus gallus (Figure 

6.3). The order and orientation of the genes in fish species are relatively conserved except 

in I. punctatus where, although similar genes as in other species are present, the 

orientation is different (Figure 6.3). 
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Figure 6.3. Schematic presentation of synteny blocks showing the mapping of fads6 and 

other conserved genes across a range of vertebrate species. Abbreviations: Otop3, 

otopetrin 3; Otop2, otopetrin 2; Ush1g, usher syndrome type-1G; Fdxr, ferrodoxin 

reductase; Grin2c, glutamate ionotropic receptor NMDA type subunit 2C; Tmem104, 

transmembrane protein 104; Trim16, tripartite motif containing 16; Tvp23b, trans-golgi 

network vesicle protein 23; Tekt3, tektin-3; Exoc7, exocyst complex component 7; Hid1, 

high temperature induced dauer formation; Spaca, sperm acrosome membrane associated 

protein; G2/m, G2/m phase-specific E3 Ubiquitin-protein ligase like. 

 

6.3.3 Functional Characterisation of Fads6 by Heterologous Expression in 

Saccharomyces cerevisiae 

Heterologous expression of fads6 in S. cerevisiae did not result in any detectable 

desaturation towards any of the exogenously added PUFA substrates. None of the known 

Fads2 desaturation activities, ∆6, ∆5, ∆4 or ∆8 were observed. In addition, the FA profile 
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of the yeast transformed with pYES2-fads6 was not different from the control, indicating 

there was no activity towards yeast endogenous FA, predominantly saturated and 

monounsaturated FA. Therefore, no capability for C. gariepinus Fads6 to desaturate 

saturated or unsaturated FA could be detected by heterologous expression in S. 

cerevisiae. 

6.3.4 Sequence and Phylogenetic Analysis of Elovl8 

The C. gariepinus elovl8 gene consists of an ORF of 795 bp encoding a putative protein 

of 264 aa. Sequence analysis showed it possessed all the characteristic motifs of Elovl 

family members including a single histidine motif HXXHH and the putative endoplasmic 

reticulum (ER) retrieval signal at the carboxyl terminus (Figure 6.4) (Agaba et al., 2005; 

Jakobsson et al., 2006; Leonard et al., 2004). Only two elovl8 gene records (D. rerio 

elovl8a; 268 aa and elovl8b; 264 aa) are available on NCBI. Pairwise comparison of the 

deduced amino acid sequence of C. gariepinus Elovl8 to D. rerio Elovl8b aa sequence 

revealed that they share a high identity of 86.4 % and similarity of 95.1 %. C. gariepinus 

Elovl8 also shares high identity to C. harengus (XP_012677096: 82 %; XP_012683259; 

73.5 %) and S. salar (XP_014071374: 78.7 %; XP_013995966; 67.9) Elovl4-like aa 

sequences and to both G. morhua Elovl4c-1 (75 % identity) and Elovl4c-2 (83 % 

identity). However, comparison of the C. gariepinus Elovl8 to C. gariepinus Elovl4a and 

Elovl4b revealed remarkably lower scores of about 40 % identity. Comparison of the C. 

gariepinus Elovl8 to other teleost Elovl4 gave similar values such as D. rerio (Elovl4a: 

41.3 %, Elovl4a: 41 %), A. schlegelli (Elovl4a: 39.2 %, Elovl4b: 40.3 %), C. harengus 

(XP_012692914.1; 41 %) and S. salar (40.3 %) Elovl4. 

Sequence analysis revealed the deduced Elovl8 aa sequence was remarkably shorter than 

both C. gariepinus Elovl4 proteins studied in Chapter 4 (40 and 50 aa compared to 
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Elovl4b and Elovl4a, respectively) (Figure 6.4). The missing base pairs are from the 

carboxyl terminus of the Elovl8 aa sequence.  

Phylogenetic analysis of the C. gariepinus Elovl8 was performed by constructing tree 

comparing Elovl known to be involved in elongation of LC-PUFA, namely Elovl2, 

Elovl4 and Elovl5 sequences, collected from teleosts and other vertebrates (Figure 6.5). 

The topology of the tree showed two clades: one consisting of Elovl2 and Elovl5, and 

the other consisting of Elovl4 and Elovl8 (many annotated as “Elovl4-like”, the 

designations as recorded on NCBI) (Figure 6.5). The Elovl8 proteins themselves were 

separated into two clusters, one group consisting of fishes of the class Chondricthyes and 

a sarcopterygian (L. chalumnae) whereas the other consisted mostly of teleost species. 

Most of the Elovl8-like elongases including C. gariepinus Elovl8 and both G. morhua 

Elovl4c-1 and Elovl4c-2 grouped with D. rerio Elovl8b sequence. In contrast, other 

Elovl8 from species such as O. niloticus, C. harengus and Scleropages formosus grouped 

with the D. rerio Elovl8a. 
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Figure 6.4. Amino acid alignment of the deduced Clarias gariepinus Elovl8, Elovl4a 

and Elovl4b proteins using Clustal Omega. Identical residues are shaded black and 

similar residues are shaded grey. The four conserved motif of elongases, with the second 

containing the single histidine motif and the putative endoplasmic reticulum (ER) 

retrieval signal at the C-terminus are placed in boxes.  
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Figure 6.5. Phylogenetic tree comparing the deduced amino acid sequences of Clarias 

gariepinus Elovl8 with Elovl4, Elovl2 and Elovl5 sequences from a range of teleost 

species. The tree was constructed using the neighbour-joining method with the MEGA 

7.0 software. The numbers represent the frequencies (%) with which the tree topology 

presented was replicated after 1,000 iterations. The Mortierella alpina PUFA elongase 

was included in the analysis as an outgroup sequence to construct the rooted tree. 
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6.3.5 Synteny Analysis of elovl8 

Synteny analysis revealed the novel elovl8 gene cloned from C. gariepinus and found as 

well in I. punctatus, is present in fish, mapping on different chromosomes from elovl4a 

or elovl4b gene and are flanked by genes including muty DNA glycosylase (mutyh), DNA 

methyltransferase 1-associated protein 1 (dmap1), zinc finger protein GLIS1 (glis1) and 

iodothyronine deiodinase 1 (dio1) (Figure 6.6). The elovl8 was not found to locate in the 

chromosome containing any of these genes in H. sapiens (mammals), G. gallus (Aves) 

or L. chalumna (Pisces).  

The order and orientation of flanking genes were similar among fish species and differed 

to some degree from the other vertebrate classes. L. chalumnae was the only exception, 

exhibiting a greater similarity to avian and mammalian species than to fish species. The 

composition of genes flanking the elovl8 genes of S. formosus and Lepisosteus oculatus 

were similar and differed from both tetrapod and the other fish species. These species 

were included in the analysis because they are ancient, evolutionary important species.  
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Figure 6.6. Schematic presentation of synteny blocks showing the mapping of the elovl8 

gene cloned in this study that formed a group with Danio rerio elovl8b and other 

conserved genes across a range of vertebrate species. The composition and orientation of 

the genes are relatively conserved especially amongst teleost species. Abbreviations: 

DMAP1, DNA methyltransferase 1-associated protein 1 (Dmap1); ERI3, 

exoribonuclease family member 3; RNU6-369P, RNA, U6 small nuclear 369, 

pseudogene; RNF220, ring finger protein 220; TMEM53, transmembrane protein 53; 

RNU5D-1, RNA, U5D small nuclear 1; KIF2C, kinensin family member 2c; RPS8, 

ribosomal protein S8; Mir1595, MicroRNA mir-1595; Mutyh, muty DNA glycosylase; 

Glis1, zinc finger protein GLIS1; Dio1, iodothyronine deiodinase 1; Tesk2, testis-

specific kinase 2; Toe1, target of EGRI, member 1; Thap, THAP domain-containing 

protein 1; Seppb, selenoprotein pb; Rnf220, E3 ubiquitin-protein ligase Rnf220; Guk, 

guanylate kinase; Znf850, zinc finger protein 850. 
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Phylogenetic analysis revealed another elovl8-like gene different from elovl4a, elovl4b 

or the presently cloned elovl8 gene. All efforts to clone this gene from C. gariepinus 

failed. Therefore, synteny analysis was conducted to determine its presence in catfish. 

The D. rerio elovl8a gene that formed a group with the second elovl8-like genes was 

used to begin the analysis and genes flanking these genes were then used to find species 

with these elovl8 genes. 

Synteny analysis revealed the second D. rerio elovl8 gene (elovl8a) is located on 

chromosome 2 and flanked by toe1, tesk2, seppb, and zinc finger swim-type containing 

5 (zswim5) (Figure 6.7). The analysis also indicated some teleost species, including I. 

punctatus, do not possess this gene, although similar genes flanking the elovl8 gene on 

chromosome 2 of D. rerio can be found on chromosome 20 of I. punctatus (Figures 6.7 

and 6.8). Synteny analysis of some other fish genomes demonstrated that species such as 

A. mexicanus, Esox lucius, Lates calcarifer, L. bergylta and T. rubripes do not contain 

orthologues of the D. rerio elovl8a. Interestingly, synteny analysis revealed the presence 

of orthologues in some fish species such as C.harengus (|XP_012683259|) and O. 

niloticus (|XP_013120125|). 



    Chapter 6 

 

159 

 

                                                                                                                                                                                                                                                                                                                                                                                                          

Figure 6.7. Schematic presentation of synteny blocks showing the mapping of Elovl8a 

and flanking genes across a range of vertebrate species. The orientation of the genes are 

relatively conserved especially amongst teleost species. Abbreviations: Tesk2, testis-

specific kinase 2; Toe1, target of EGRI, member 1; Mutyh, muty DNA glycosylase; 

Hpdl, 4-hydroxyphenylpyruvate dioxygenase; LINCO1144, long intergenic non-protein 

coding RNA 1144; Zswim5, zinc finger swim-type containing 5; Seppb, selenoprotein 

pb; Thap, THAP domain-containing protein 1; 52kDa, 52kDa repressor of the inhibitor 

of the protein kinase. 

 

A.mexicanus 

Chr17 
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Figure 6.8. Schematic presentation of the synteny block of Danio rerio showing elovl8a 

versus Ictalurus punctatus. The block at the top represents D. rerio chromosome while 

the block below represents I. punctatus chromosome. Genes flanking elovl8a on 

chromosome 2 (NC_007113.7) in D. rerio are located on chromosome 20 of I. punctatus 

(NC_030435.1). Genes have been presented relatively in proportion to their sizes and 

have been allocated different colours. The order and orientation of the genes are relatively 

conserved. Corresponding genes appearing on both blocks have been linked by similarly 

coloured lines. Elovl8a is red in colour, in a red box, in the middle of D. rerio 

chromosome block. No corresponding gene is present in I. punctatus chromosome block 

below. 

6.3.6 Functional Characterisation of Elovl8 by Heterologous Expression in 

Saccharomyces cerevisiae 

Elongated products of 18:3n-3, 18:2n-6, 18:4n-3, 18:3n-6 and 20:4n-6, namely 20:3n-3, 

20:2n-6, 20:4n-3, 20:3n-6 and 22:4n-6, respectively, were obtained from the 
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heterologous expression of the C. gariepinus elovl8 in S. cerevisiae grown in the presence 

of these FA substrates (Table 6.2, Figure 6.9). However, it is worth noting that the relative 

conversions (Table 6.2) were remarkably lower than those obtained by elongation of 

these FA by C. gariepinus Elovl2 and Elovl4 (Chapters 3 and 4).  

Table 6.2. Functional characterisation of the novel Clarias gariepinus Elovl8 elongase. 

Saccharomyces cerevisiae transformed with empty pYES2 vector (control) or pYES2 

vector containing the C. gariepinus elovl8 coding region were grown in the presence of 

one exogenously added fatty acid (FA) substrates (18:3n-3, 18:2n-6, 18:4n-3, 18:3n-6, 

20:5n-3, 20:4n-6, 22:5n-3, 22:4n-6 and 22:6n-3). Conversions were calculated for each 

FA as the proportion of exogenously added FA substrate elongated [product peak area / 

(product peak areas + substrate peak area)] × 100. FA substrates not included in the table 

were not elongated. 

Fatty Acid Substrate Fatty Acid Product Conversion (%) 

18:2n-6 18:3n-6 1.37 

18:3n-3 20:3n-3 2.24 

18:4n-3 20:4n-3 1.44 

18:3n-6 20:3n-6 1.50 

20:4n-6 22:4n-6 2.58 

 

The identity of the products was confirmed by preparing DMOX derivatives from yeast 

FAME samples (Figures 6.10 – 6.13). Two prominent peaks were used to confirm fatty 

acid DMOX derivatives: the base peak of the McLafferty ion (m/z = 113) and the peak 

at m/z = 126 (Christie, 2003). In addition to this, the general series of ions 14 amu apart 

except in regions with double bonds, where they were 12 amu apart, or the first gap from 

the molecular ion, which was 15 amu was also used for confirmation (Christie, 2003). 

Elongated products from substrates such as 20:5n-3, 22:5n-3, 22:6n-3 and 22:4n-6 were 

not detected.  
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Figure 6.9. Functional characterisation of Clarias gariepinus Elovl8 elongase in yeast 

(Saccharomyces cerevisiae). The fatty acid profiles of yeast transformed with pYES2 

containing the coding sequence of the C. gariepinus elovl8 were determined after the 

yeast were grown in the presence of one of the exogenously added substrates 18:3n-6 

(A), 18:3n-3 (B), 20:3n-3 (C) and 20:4n-6 (D). The first peak four peaks are derived from 

the exogenously added substrates. The elongation products are indicated accordingly in 

each panel. 
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Figure 6.10. Mass spectrum of 4,4-dimethyloxazoline DMOX derivatives of 20:3n-3 

elongated from 18:3n-3 by the Clarias gariepinus Elovl8. 

 

 

 

 

 

 

 

 

 

Figure 6.11. Mass spectrum of 4,4-dimethyloxazoline DMOX derivatives of 20:3n-6 

elongated from 18:3n-6 by the Clarias gariepinus Elovl8. 
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Figure 6.12. Mass spectrum of 4,4-dimethyloxazoline DMOX derivatives of 20:4n-3 

elongated from 18:4n-3 by the Clarias gariepinus Elovl8. 

 

 

 

 

 

 

 

 

 

 

Figure 6.13. Mass spectrum of 4,4-dimethyloxazoline DMOX derivatives of 22:4n-6 

elongated from 20:4n-6 by the Clarias gariepinus Elovl8. 
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6.4 Discussion 

Heterologous expression of eukaryote LC-PUFA synthesis enzymes in S. cerevisiae has 

been instrumental in elucidating fatty acid synthesis pathways. The absence of LC-PUFA 

in S. cerevisiae due to their lack of the synthesising enzymes is beneficial in allowing the 

uncomplicated identification of genes with LC-PUFA biosynthesis activities (Leonard et 

al., 2004). In addition, S. cerevisiae has served as an appropriate eukaryote for the 

functional characterisation of FA enzymes because it presents a suitable membrane 

environment; the endoplasmic reticulum (ER) and provides the necessary system such as 

electron donor (cytochrome b5), NADH, NADH: cytochrome b5 oxidoreductase required 

for FA desaturation and elongation reactions to occur (Covello and Reed, 1996; Martin 

et al., 2007). Studies that involve the complementation of yeast mutants incapable of 

carrying out certain FA biosynthesising enzyme functions have also played an important 

role (Mitchell and Martin, 1995; Shanklin et al., 1994; Stukey et al., 1990; Tocher et al., 

1998). Additionally, the development of mouse models lacking either a desaturase or an 

elongase, as well as cell culture studies has substantially advanced knowledge of these 

genes (Guillou et al., 2010; Leonard et al., 2004). In the present study, heterologous 

expression in S. cerevisiae was used to determine the functions of two uncharacterised 

genes, namely fads6 and an elovl8.  

The two genes studied herein, namely fads6 and elovl8, were confirmed by sequence and 

phylogenetic analysis to be fatty acyl desaturase and elongase genes, respectively. 

However, heterologous expression in S. cerevisiae of the elovl8 gene resulted in only low 

levels of elongated products, and heterologous expression of the fads6 produced no 

desaturated products. Although functional characterisation of the fads6 by heterologous 

expression in S. cerevisiae has not been successful, sequence and phylogenetic analysis 
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was used to infer its desaturase type and putative function. Possible reasons why 

functional characterisation in yeast did not exhibit any activity will also be discussed.  

6.4.1 Fads6 

Phylogenetic and sequence analysis of the Fads6 desaturase isolated from C. gariepinus 

revealed this was different from the previously characterised Fads2 (Chapter 3). Protein 

sequence analysis of the Fads6 desaturase showed it possessed some features 

characteristic of membrane bound desaturases such as the three histidine boxes (Diaz et 

al., 2002; Shanklin et al., 1994), but differed in the absence of an an N-terminal 

cytochrome b5 domain and the aa that begins the third histidine box. The very low identity 

(15.6 %) between C. gariepinus Fads6 and Fads2 may be accounted for in part, by the 

difference in aa sequence length (355 bp for C. gariepinus and 445 bp for Fads2), which 

is basically the result of the absence of the cytochrome b5 domain in Fads6. The high 

similarity amongst vertebrate Fads6 indicates they are highly conserved, suggesting they 

have functional role(s) in vertebrates.  

In lacking a cytochrome b5-like domain, the C. gariepinus Fads6 are similar to animal 

Scd (Chang et al., 2001; Hsieh et al., 2004, 2003, 2001; Mitchell and Martin, 1995). 

Whereas the absence of a cytochrome b5-like domain does not preclude function as seen 

in Scd (which function efficiently inspite of their lack of a cytochrome b5-like domain), 

the inability to elucidate the function of Fads6 by heterologous expression in S. cerevisiae 

may be related to electron transfer facilitated by cytochrome b5. In desaturases that utilise 

cytochrome b5 as their electron donor, the cytochrome b5 can either be fused (cytochrome 

b5 fusion desaturases) or free (Napier et al., 1997; Sperling and Heinz, 2001). Studies 

show fused desaturases cannot function if the cytochrome b5-like domain is removed 

even in the presence of free microsomal cytochrome b5 (Guillou et al., 2004; Mitchell 

and Martin, 1995; Napier et al., 1997; Sayanova et al., 1999). Aside from free microsomal 
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cytochrome b5, Petrini et al. (2004) speculated that an alternative electron donor, possibly 

the cytochrome b5 domain of stearoyl-CoA Δ9 desaturase (OLE1) was present in yeast 

during yeast assays. Using cytochrome b5 mutant yeast, these authors showed that 

Trypanosoma brucei Δ12 desaturase could use the fused cytochrome b5 of yeast as an 

alternate electron donor in the cytochrome b5 mutant yeast. In another study, Dahmen et 

al. (2013) increased Tetrahymena thermophila Δ6 Fads activity in S. cerevisiae ten-fold 

by coexpression with T. thermophila cytochrome b5 showing the importance of the 

interaction between cytochrome b5 and desaturase. In the same study, increased 

desaturase activity by coexpression with S. cerevisiae cytochrome b5 was only two-fold. 

These studies indicate cytochrome b5 fusion domains have evolved to optimise 

interactions with their respective desaturase domains. This ability to utilise or interact 

with certain cytochrome b5 could also be true for non-fused desaturases. Thus, failure of 

the heterologous expression of Fads6 in S. cerevisiae may be an indication of the inability 

of the free microsomal cytochrome b5 to transfer electrons for the desaturation reaction 

and the inability of C. gariepinus Fads6 to make use of the alternate cytochrome b5 

source. All the above raises the question of whether coexpression of C. gariepinus Fads6 

with C. gariepinus cytochrome b5 would allow the desaturation reaction take place in 

yeast. 

Furthermore, desaturases exhibit strong preference with regard to FA substrate chain 

length, location of double bonds in the chain, and their carrier molecule (Dahmen et al., 

2013; Lou et al., 2014; Wang et al., 2013). According to Man et al. (2006), understanding 

the structure and orientation of membrane-bound desaturases will help to reveal 

interactions between the enzymes and their FA substrates. Indeed, some of these 

interactions and determinants of substrate chain length specificity have been elucidated 

with the provision of the three-dimensional structure information of mammalian SCD 
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(Bai et al., 2015; Wang et al., 2015), and by domain swapping and site-directed 

mutagenesis (Meesapyodsuk and Qiu, 2014). Failure of the heterologous expression of 

C. gariepinus Fads6 in yeast to yield any desaturated product maybe related to the form 

of FA substrate provided. 

6.4.2 Elovl8 

Synteny analysis showed that at least one of the elovl8 genes was present in teleost 

species. Many teleost species including I. punctatus have just one of these elovl8 genes 

and it is most likely that C. gariepinus, similarly, has just one too. Both I. punctatus and 

the C. gariepinus Elovl8 group with D. rerio Elovl8b (Figure 6.5). On the other hand, 

species like D. rerio, C. harengus and O. niloticus possess both types. Similar searches 

of both human and G. gallus genomes did not reveal any of these elovl8 genes. However, 

in these species and in teleosts such as C. milii, S. formosus and L. oculatus, genes 

flanking both elovl8 genes can all be found on one chromosome whether they possess 

one of the elovl8 genes or not. The species that have both genes have them on different 

chromosomes. Synteny analysis and the inability to isolate the second Elovl8-like protein 

(Elovl8a) strongly suggest this protein does not exist in C. gariepinus. Similarly, search 

of other fish species genome showed this gene is absent in many species such as A. 

mexicanus, E. lucius, L. calcarifer, L. bergylta and T. rubripes.  

Moreover, although the L. oculatus and S. formosus synteny showed many similarities, 

the phylogenetic analysis indicated the genes are different. Teleost species with both 

elovl8 genes were mostly from the order Percomorpharia (including Carangaria, 

Ovalentaria and Eupercaria species) but also Salmoniformes and Cyprinodontiformes. 

The earliest species in which both elovl8 genes were found was in M. albus. However, in 

this species, only one elovl8 gene sequence, possibly an elovl8a-like was available. The 

genes were also present in species like T. rubripes (elovl8b-like) and O. latipes (both), 
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which do not possess elovl2 genes (Leaver et al., 2008), and thus may play an important 

role in FA elongation in these species. Although elovl8 genes were not found amongst 

genes flanking both elovl8 genes in other vertebrate classes, we cannot conclude they do 

not exist in these classes since they may occur on other chromosomes, flanked by 

different genes.  

C. gariepinus Elovl8 possessed characteristic features of Elovl enzymes such as a single 

histidine box and the carboxyl-terminal region that acts as an endoplasmic reticulum 

retention signal (Jakobsson et al., 2006; Leonard et al., 2004; Meyer et al., 2004). The 

low sequence identity score between the newly cloned Elovl and C. gariepinus Elovl4s 

(40 %) may be partly due to the missing aa sequences from the C-terminus (Figure 6.4). 

The C. gariepinus Elovl8 protein belonged to a group including both functionally 

uncharacterised putative Elovl4c reported in G. morhua (Xue et al., 2014) and the 

putative Elovl8b of D. rerio. This group was separate from other Elovl8-like proteins, 

which grouped with the putative Elovl8a of D. rerio. Pairwise analysis of aa sequences 

from both types (Elovl8a and Elovl8b) resulted in 66 - 73 % identities, showing a greater 

sequence identity between them than with either Elovl4a or Elovl4b. This suggests the 

Elovl8 protein (Elovl8a and Elovl8b) are different from Elovl4a and Elovl4b and have 

been wrongly annotated. 

The C. gariepinus Elovl8 protein performed similar reactions as Elovl5, albeit at a much 

lower conversion than those of many of the previously reported Elovl-like elongases 

expressed in yeast. The C. gariepinus Elovl8 was capable of elongating 18:3n-3, 18:2n-

6, 18:4n-3, 18:3n-6 and 20:4n-6, but there was no evidence of elongation of 20:5n-3, 

22:5n-3, 22:6n-3, 22:4n-6 or saturated FA. Although the efficiency of these elongations 

was low in the case of the Elovl8 protein of C. gariepinus, this may not necessarily be 

the case in other species (Table 6.2; Figure 6.9). The lack of elongation capacity on 
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20:5n-3 (a preferred substrate for Elovl5 elongases), along with the remarkably low 

conversions, can indicate that Elovl8 might have only residual funcions within LC-PUFA 

biosynthesis.  

The functional characterisation of this protein increases the number of Elovl enzymes 

already known to participate in LC-PUFA synthesis in fish. With the presence of a variety 

of Elovl proteins carrying out similar, overlapping functions, and the suggestion that 

Elovl4a and Elovl4b may be able to perform elongation reactions carried out by Elovl2, 

it is unlikely that PUFA elongation is the limiting factor in LC-PUFA synthesis in fish. 

However, in the presence of numerous elovl genes performing similar activities, there is 

the possibility that some of them may have become redundant leading to the low activity 

observed within Elovl8. This redundancy could also, potentially, lead to reduced or total 

loss of functionality, which could explain why the activity of this gene is low in this 

species, whereas Elovl2, Elovl4a, Elovl4b and Elovl5 display high efficiencies (Agaba 

et al., 2005; Chapters 3 and 4).  

6.4.3 Conclusions 

Molecular cloning and functional characterisation of C. gariepinus Fads6 and Elovl8 by 

heterologous expression in S. cerevisiae have been performed. The yeast assay 

successfully used for functionally characterise other enzymes (Chapters 3-5) did not 

reveal the function of C. gariepinus Fads6. The results showed C. gariepinus Elovl8 was 

capable of elongating some of the FA substrates assayed (18:3n-3, 18:2n-6, 18:4n-3, 

18:3n-6 and 20:4n-6), but not efficiently. Synteny analysis showed the enzymes are 

ubiquitous and conserved in many groups of animals. Further study of these genes in 

other fish, particularly those lacking other desaturase and elongase enzymes may lead to 

better understanding of these enzymes.
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7.1 Introduction 

Studies elucidating long-chain (C20-24) polyunsaturated fatty acid (LC-PUFA) synthesis 

pathways have been driven by the revelation of the relationship between n-3 LC-PUFA 

in diets and human health (Ayeloja et al., 2013; Bell et al., 2003; Cardoso et al., 2016; 

Monroig et al., 2011b). Moreover, in aquaculture, increasing substitution of fish oil (FO) 

rich in LC-PUFA with vegetable oil (VO) lacking LC-PUFA in fish diet that affect LC-

PUFA profile of farmed fish (Bell et al., 2002; Tocher et al., 2002), have made these 

studies essential. These substitutions have no significant effect on the growth or feed 

conversion ratio of many freshwater and salmonid species (Al-Souti et al., 2012; Bell et 

al., 2002; Turchini et al., 2009), but result in decreased levels of n-3 LC-PUFA and the 

n-3/n-6 ratio, thereby compromising their benefits for the consumers (Ng et al., 2003, 

2001; Simopoulos, 2016; Sprague et al., 2017; Turchini et al., 2009, 2006). Moreover, 

experimental studies have indicated that the rate at which dietary C18 PUFA is converted 

is not sufficient to increase LC-PUFA up to levels obtained in fish fed diets containing 

FO (Bell et al., 2002; Bell and Dick, 2004; Böhm et al., 2014; Tocher et al., 2002).  

Many farmed freshwater fishes including carps, tilapia and catfish are lean fishes with 

generally lower than 5 % fat by weight in their muscle tissue (Ayeloja et al., 2013; 

Memon et al., 2011) and are not regarded as very rich sources of LC-PUFA, such as 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, these species 

are still valuable sources of LC-PUFA and account for a large portion of the global fish 

supply (Al-souti and Claereboudt, 2014; Bahurmiz and Ng, 2007; Steffens, 1997; 

Turchini et al., 2009). Studies show greater use of VO in their diet further decreases the 

already low FA content and skews n-3/n-6 FA ratios, which are also health important 

indices (Al-Souti et al., 2012; Böhm et al., 2014; Tocher et al., 2002). With no cheaper 

or more sustainable alternatives to FO available yet, VO will continue to be used as a 



    Chapter 7 

 

173 

 

substitute in aquafeed for the foreseeable future and therefore, practical culture strategies 

for improving and optimising the LC-PUFA content of VO-fed fish are still required. 

These include designing feed that optimise the conversion of C18 precursors to LC-

PUFA, identification and selection of genetic strains with enhanced LC-PUFA body 

content and/or biosynthesis and even genetic manipulations (Bell et al., 2003; Betancor 

et al., 2016; Gjedrem, 2000; Kabeya et al., 2016, 2014; Klempova et al., 2013; Monroig 

et al., 2011b; Nguyen et al., 2010; Watters et al., 2012). Understanding the biochemistry 

of the enzymes involved in FA synthesis and elucidating the biosynthetic pathways is 

key to undertake, successfully, any of these proffered solutions.  

It is against this background that the present study was developed. The overall objective 

of this research work was to investigate the repertoire of genes and enzymatic 

functionalities involved in the production of LC-PUFA from the C18 precursors in C. 

gariepinus and thus, elucidate its LC-PUFA synthesis pathway. This will enable the 

determination of their specific dietary EFA and thus allow the design of appropriate diets 

for their optimal growth and development. This is important considering the commercial 

and socio-economic value of this species and its role in food security in African countries. 

Six genes, namely fads2, fads6, elovl2, elovl4a, elovl4b and an elovl8b, were cloned and 

functionally characterised from C. gariepinus. Two of these (fads2 and elovl2), together 

with the previously cloned elovl5 (Agaba et al., 2005) are known to participate in LC-

PUFA biosynthesis. The elovl4s, elovl4a and elovl4b catalysed the production of very 

long-chain (> C24) polyunsaturated fatty acid (VLC-PUFA), whereas fads6 and elovl8, 

are novel genes that, to the best of our knowledge, have not yet been functionally 

characterised in any vertebrate. Results on desaturase and elongase activities within the 

LC-PUFA biosynthetic pathways of C. gariepinus and findings on the novel Fads6 and 

Elovl8 enzymes investigated are discussed in the sections below.  
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7.2 Desaturases in LC-PUFA biosynthesis pathways 

The C. gariepinus fads2 encoded an enzyme with Δ6 and Δ5 activities and thus is a 

bifunctional Δ6Δ5 Fads2. It is capable of converting 18:3n-3 and 18:2n-6 to 18:4n-3 and 

18:3n-6, respectively (∆6 desaturase activity), and 20:4n-3 and 20:3n-6 to 20:5n-3 and 

20:4n-6, respectively (∆5 desaturase activity), with a preference for n-3 over n-6 

substrates. This expands the list of bifunctional Fads2 described in teleost species which 

include Danio rerio (Hastings et al., 2001), Siganus canaliculatus (Li et al., 2010), 

Oreochromis niloticus (Tanomman et al., 2013), Chirostoma estor (Fonseca-Madrigal et 

al., 2014) and Channa striata (Kuah et al., 2016).  

C. gariepinus Fads2 also exhibited Δ8 desaturation capability, converting 20:3n-3 and 

20:2n-6 to 20:4n-3 and 20:3n-6, respectively. This is consistent with the majority of 

teleost Δ6 Fads2 characterised till date (Fonseca-Madrigal et al., 2014; Kabeya et al., 

2017, 2015; Monroig et al., 2011a; Wang et al., 2014). C. gariepinus Fads2 displayed 

higher efficiency towards the C18 PUFA (Δ6 activity) compared to 20:3n-3 and 20:2n-6 

(Δ8 activity), in agreement with the “Δ8 pathway” being regarded as a minor pathway in 

comparison to the Δ6 desaturation pathway (Monroig et al., 2011a; Park et al., 2009).  

Investigation of the Δ6 activity towards C24 substrates (24:5n-3 and 24:4n-6) of C. 

gariepinus Fads2 and Fads2 from a cross section of fish species revealed C. gariepinus 

Fads2 and all the other fish ∆6 Fads2 tested, except N. mitsukurii ∆6 Fads2, were capable 

of converting 24:5n-3 and 24:4n-6 to 24:6n-3 and 24:5n-6, respectively. C. gariepinus 

Fads2 was not capable of catalysing the ∆4 desaturation of 22:5n-4. Moreover, genome 

searches using the conserved, distinctive YXXN motif of ∆4 desaturase revealed ∆4 

Fads2 only amongst recently evolved fish species along the entire tree of life of teleosts 

(Betancur-R et al., 2013). Indicating that more basal species including C. gariepinus are 

capable of DHA biosynthesis only through the Sprecher pathway. In contrast, both the 
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Sprecher and ∆4 pathways seem to co-exist in species such as S. canaliculatus and C. 

estor, that possess a complement of Fads2 enabling key desaturation reactions (∆4 

desaturation of 22:5n-4 and ∆6 desaturation of 24:5n-3) within both routes (Fonseca-

Madrigal et al., 2014; Li et al., 2010). Perhaps to compensate for their lack of Fads2 with 

∆4 desaturase activity, the more ancient teleosts species displayed relatively higher 

capacity for ∆6 desaturation towards 24:5n-3 than recently evolved teleost (Table 5.2).  

Overall, C. gariepinus Fads2 displays the multi-functionality and plasticity associated 

with teleost Fads2 (Castro et al., 2016; Fonseca-Madrigal et al., 2014), and is capable of 

performing all the desaturation steps required for endogenous biosynthesis of LC-PUFA 

via the Sprecher pathway (Figure 7.1).  

7.3 Elongases in LC-PUFA pathways 

The molecular cloning of elovl2 and elovl4 genes, in addition to the previously cloned 

elovl5 (Agaba et al., 2005), showed C. gariepinus has the complete set of Elovl enzymes 

required for LC-PUFA biosynthesis (Figure 7.1). Compared to Elovl5, Elovl2 have been 

characterised in few fish species, namely S. salar, D. rerio and O. mykiss (Gregory and 

James, 2014; Monroig et al., 2009 and Morais et al., 2009). Consistent with the activities 

shown by these teleost Elovl2, C. gariepinus Elovl2 predominantly elongates C20 and C22 

PUFA, with a preference for n-3 over n-6 substrates. The presence of Elovl2 and its 

increased ability, compared to Elovl5 elongases, to elongate 22:5n-3 to 24:5n-3, a critical 

enzymatic step in the biosynthesis of DHA through the Sprecher pathway has been 

suggested to be evidence supporting LC-PUFA biosynthetic capability in freshwater 

species (Morais et al., 2009). 
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Figure 7.1. The biosynthesis pathway of long-chain (C20-24) polyunsaturated fatty acids 

from -linolenic (18:3n-3) and linoleic (18:2n-6) acids in Clarias gariepinus. Enzymatic 

activities shown in the scheme are predicted from heterologous expression in yeast of the 

herein investigated Δ6Δ5 fatty acyl desaturase 2 (Δ6Δ5 Fads2) and Elovl2 elongase, and 

the previously reported Elovl5 (Agaba et al., 2005). The Elovl4s have not been included 

in the figure, though they participate in the pathway. β-ox, partial β-oxidation; Elovl, 

fatty acyl elongase; Fads, fatty acyl desaturase. *Gene not cloned and functionally 

characterised in this study. 

 

The cloning of two isoforms of Elovl4 (Elovl4a and Elovl4b) was consistent with in silico 

studies that suggest all teleosts possess both types of Elovl4 (Castro et al 2016). Both C. 

gariepinus Elovl4 enzymes were active towards saturated and unsaturated long-chain FA, 

producing elongated products of up to C32 (VLC-SFA) and C36 (VLC-PUFA). These 

results were consistent with elongation abilities of most teleost Elovl4 characterised so 

far (Jin et al., 2017; Li et al., 2015, 2017, Monroig et al., 2012, 2011c; Monroig et al., 
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2010a), the majority of which are Elovl4b. Similarly to Elovl4a from A. schlegelii, but in 

contrast to the D. rerio orthologue, the latter having limited capability to biosynthesise 

VLC-PUFA (Monroig et al., 2010a), the C. gariepinus Elovl4a exhibited elongation 

abilities similar to Elovl4b, and thus was able to produce VLC-PUFA of up to C36. In 

addition, in contrast to Elovl4a, C. gariepinus Elovl4b efficiently elongated exogenously 

added 22:6n-3 to 32:6n-3, a VLC-PUFA that has been detected in retinal 

phosphatidylcholine of gilthead seabream Sparus aurata (Monroig et al., 2016a).  

7.4 Tissues expression patterns of genes encoding LC- and VLC-PUFA 

biosynthesising enzymes 

Tissue expression analysis showed C. gariepinus fads2 and elovl genes were ubiquitously 

expressed, although expression was greater in certain tissues. Liver, brain and pituitary 

were found to contain the highest transcript levels of C. gariepinus fads2 and elovl2. This 

is consistent with the pattern observed in freshwater and salmonid fish species (Hamid et 

al., 2016; Monroig et al., 2009). The expression of elovl5 was also high in liver but was 

highest in the intestine while the lowest expression level was found in muscle. Gonads 

(testis and ovary) showed the lowest transcript levels for both fads2 and elovl2. These 

results indicated, in agreement with previous studies, that LC-PUFA biosynthesis was 

highest in liver, brain and intestine (Monroig et al., 2009; Morais et al., 2009; Zheng et 

al., 2005). 

Tissue distribution analysis of elovl4 mRNAs in C. gariepinus showed high expression 

of elovl4a in pituitary and brain, whereas female gonad and pituitary had the highest 

expression levels of elovl4b. These expression patterns were consistent with the reported 

high expression of these genes in neuronal and reproductive tissues of teleosts (Carmona-

Antoñanzas et al., 2011; Monroig et al., 2010a), tissues containing great amounts of 

VLC-PUFA (Agbaga, 2016; Poulos, 1995).  
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7.5 Novel enzymes Fads6 and Elovl8 

Phylogenetic and synteny analysis of the novel Elovl8 enzymes revealed two forms 

(Elovl8a and Elovl8b) exist in teleosts. The herein cloned C. gariepinus elovl8 gene was 

an orthologue of the D. rerio Elovl8b, but the Elovl8a is absent in C. gariepinus. The C. 

gariepinus Elovl8b elongated only C18 PUFAs and 20:4n-6, and at a much lower rate 

than the other C. gariepinus Elovl proteins. This reduced substrate specificity and 

functional activity, in comparison to the other characterised C. gariepinus Elovl proteins 

implies the Elovl8 may not contribute to the LC-PUFA synthesis in this species.   

Sequence, phylogenetic and synteny analysis of the Fads6 indicate they are well 

conserved across vertebrate species and differ from Fads2. Heterologous expression of 

the C. gariepinus fads6 in yeast produced no desaturated products. A number of reasons, 

some of which were discussed in Section 6.4.1, may have been responsible for this 

failure. This implies that a different method of functionally characterising genes, other 

than the yeast heterologous expression system may be required to elucidate the functions 

of Fads6. 

7.6 Conclusion 

In conclusion, C. gariepinus possesses all the desaturase and elongase enzymes required 

for the conversion of 18:3n-3 to EPA via the prominent ‘∆6∆5 pathway’ or the alternative 

‘∆8∆5 pathway’, whereas conversion of EPA to DHA occurs via the Sprecher pathway 

but not the ‘∆4 pathway’ (Figure 7.1). This also applies to the n-6 FA series beginning 

with 18:2n-6. These findings demonstrated that C. gariepinus has an active LC-PUFA 

biosynthesis pathway that potentially enables them to endogenously synthesise the 

physiologically important LC-PUFA ARA, EPA and DHA from the C18 PUFA 

precursors. Consequently, dietary C18 PUFA, linoleic acid (18:2n-6) and α-linolenic acid 

(18:3n-3), abundant in VO can satisfy their essential fatty acid requirements. This may 
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explain the reported ability of C. gariepinus to perform better when fed VO than FO 

(Hoffman and Prinsloo, 1995a; Ng et al., 2003, 2004). Although, feeding a combination 

of FO and VO diet has been shown to give the best growth rates (Ng et al., 2003; Ochang 

et al., 2007; Solomon et al., 2012). The differences in these studies may be attributable 

to the stage of development of the experimental fish. The rate of LC-PUFA biosynthesis 

may be insufficient to meet physiological demand at specific stages of development, with 

the consequence that dietary provision of LC-PUFA result in better growths at such 

stages. Although, quantitative EFA requirement could not be established in this study, it 

is required for the complete understanding of C. gariepinus ability to utilise VO and thus, 

to enable the formulation VO based diets that give optimal growth.  

Future Perspectives  

Considering the importance of C. gariepinus in the human diet, and the potential benefits 

complete understanding of its LC-PUFA biosynthetic pathways will have on its 

production, it is important that further studies that utilise the results from this study be 

carried out. These should include 

1. Feed trials to demonstrate LC-PUFA biosynthetic capacities of C. gariepinus at 

different developmental stages. 

2. Feed trials to determine quantitative EFA requirements C. gariepinus at different 

developmental stages. 

3. Feed trials determining the best ratios of C18 PUFAs that can improve the n-3 LC-

PUFA profile of farmed C. gariepinus. 

4. Long term nutritional programmes aimed at the development of C. gariepinus 

strains with increased LC-PUFA biosynthetic capacities and optimization of these 

gains over several generations. 
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5. Further, long-term trials involving the identification and selection of genetic 

strains with enhanced LC-PUFA body content and/or LC-PUFA biosynthetic 

capacities. 
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