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Abstract

Exercise-induced muscle damage (EIMD) is associated with impaired muscle function and

reduced neuromuscular recruitment. However, motor unit firing behaviour throughout the

recovery period is unclear. EIMD impairment of maximal voluntary force (MVC) will, in part,

be caused by reduced high-threshold motor unit firing, which will subsequently increase to

recover MVC. Fourteen healthy active males completed a bout of eccentric exercise on the

knee extensors, with measurements of MVC, rate of torque development and surface elec-

tromyography performed pre-exercise and 2, 3, 7 and 14 days post-exercise, on both dam-

aged and control limb. EIMD was associated with decreased MVC (235.2 ± 49.3 Nm vs.

161.3 ± 52.5 Nm; p <0.001) and rate of torque development (495.7 ± 136.9 Nm.s-1 vs.

163.4 ± 163.7 Nm.s-1; p <0.001) 48h post-exercise. Mean motor unit firing rate was reduced

(16.4 ± 2.2 Hz vs. 12.6 ± 1.7 Hz; p <0.01) in high-threshold motor units only, 48h post-exer-

cise, and common drive was elevated (0.36 ± 0.027 vs. 0.56 ± 0.032; p< 0.001) 48h post-

exercise. The firing rate of high-threshold motor units was reduced in parallel with impaired

muscle function, whilst early recruited motor units remained unaltered. Common drive of

motor units increased in offset to the firing rate impairment. These alterations correlated

with the recovery of force decrement, but not of pain elevation. This study provides fresh

insight into the central mechanisms associated with EIMD recovery, relative to muscle func-

tion. These findings may in turn lead to development of novel management and preventative

procedures.

Introduction

Exercise-induced muscle damage (EIMD) impairs force, and is usually accompanied by

delayed onset muscle soreness [1] and inflammation [2,3]. Furthermore, these symptoms may,

in turn, feedback to the central nervous system, contributing towards further force impairment

[4,5]. Although interconnected, these symptoms have been shown to recover at varying rates,

with force deficits having been reported up to 4 [6] and 6 days [7] post-EIMD, while, in the

same studies, muscle soreness was seen to recover by 3 days. While mechanisms of EIMD have

been widely discussed [8], recovery remains comparatively poorly understood [9]. Much of
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the research into exercise recovery is focused around the impact of peripheral alterations,

while the influence of central factors demands further study [10,11]. Understanding the under-

lying mechanisms behind the recovery process can have particularly valuable implications

among groups known to suffer from impaired recovery, such as elderly and clinical popula-

tions [12,13].

Altered afferent signalling to the central nervous system may modify neuromuscular

recruitment strategy, although it has been demonstrated that both muscle spindle [14] and

Golgi tendon organ function [15] remain undamaged following eccentric exercise. Alterna-

tively, nociceptor sensitisation has been shown to elevate III/IV afferent signalling [16], which

can lead to impaired muscle performance [17]. Despite this, the recovery time course of these

alterations and how they link to functional symptoms of EIMD remains unclear. Following

EIMD, changes in motor unit recruitment threshold and discharge rate have been reported

[18], as well as motor unit conduction velocity [19] and synchronization [20], all occurring

within 24h post-EIMD; indeed, Piitulainen et al (2010) [19] reported increased motor unit fir-

ing 2h post-exercise only. However, motor unit synchronization has been reported to remain

elevated 7d post-exercise, despite recovery of MVC [20]. Given that EIMD impairs muscular

force production for up to ten days following damaging exercise [7,21–23], altered neural con-

trol strategy, during muscle contraction, is likely, until recovery is achieved.

Methodologies for measuring neural control strategy have included the use of indwelling

electrodes to record up to ~10 individual motor units, during low intensity contractions. In

order to decipher details of motor unit behaviour from larger motor unit pools, constituent

motor unit action potential trains (MUAP) can now be extracted from surface electromyogra-

phical (sEMG) signals, using either high density EMG [24,25] or precision decomposition

EMG (dEMG) [26–29]. dEMG has been designed to investigate the behaviour of a sample of

motor units, representative of the active motor unit pool [26,30]. Motor unit discharge onto

the sarcolemma is captured from a single multi-channel sEMG electrode array sensor,

recorded during voluntary contraction at any given load. The dEMG system allows assess-

ments of motor unit firing properties during contractions up to levels close to MVC [28] and

facilitates evaluation of different motor units within the recruited pool, based on their recruit-

ment threshold [31]. Given that motor unit recruitment in vastus lateralis occurs at up to 95%

of MVC [32], by facilitating measurement of motor unit properties at higher contraction

intensities, we are able to investigate motor unit behaviour within a wider sample of motor

units, with differing firing characteristics [33], than can be activated using indwelling EMG

techniques.

High force producing type II (fast oxidative/ glycolytic) muscle fibres are more susceptible

to EIMD than type I (slow oxidative) fibres [34,35]. It is therefore likely there will also be pref-

erential impairment of specific motor units. Therefore, when applying the order of size recruit-

ment principle [36] it seems plausible that later recruited motor units would become affected,

although to date this has not been established. Recently, it was shown that eccentric exercise

caused an alteration in the relationship between motor unit firing rate (MUFR) and recruit-

ment threshold [37], this suggests that EIMD might disrupt the later-recruited motor units,

which in all likelihood are associated with type II muscle fibres [36]. However, these later-

recruited motor units have not been investigated in isolation from the entire active motor unit

pool, either during EIMD, or during subsequent recovery. Understanding neural control strat-

egies associated with EIMD recovery is essential to allow optimal management of impaired

muscles.

While previous studies [19,20,38,39] have investigated EIMD in the highly susceptible

elbow flexors, knee extensor muscles are more functionally relevant for daily mobility. Fur-

thermore, to our knowledge, no study has established the neural code for controlling force
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production during complete EIMD recovery. Therefore, the aim of the present study was to

investigate the time course recovery of EIMD-associated alterations in MUFR and common

drive in vastus lateralis, using dEMG. Specifically, MUFR will be analysed by dividing the

motor unit pool into early-recruited, mid-recruited and later recruited units, as previously

reported [40]. This will enable us to establish the firing behaviour of high-threshold motor

units, in isolation from the entire motor unit pool. It was hypothesized that the firing rate

would be altered in high-threshold motor units only, and that common drive to the motor

unit pool would be similarly affected following EIMD, and that these alterations would follow

a similar time course recovery to impairments in MVC.

Materials and methods

Subjects

Fourteen healthy, recreationally active, male participants with no history of neuromuscular or

musculoskeletal disorders were recruited (age 25.4 ± 5.4y, height 1.8 ± 0.1m, body mass

79.0 ± 12.0Kg and knee extension strength (MVC) at baseline 233.2 ± 47.7Nm). Volunteers

provided written consent, having been informed of any potential risks involved in their partici-

pation, the study was approved by the local Research Ethics Committee (SSEC). All procedures

performed in studies involving human participants were in accordance with the ethical stan-

dards of the 1964 Helsinki declaration and its later amendments. All participants were deemed

to be unaccustomed to eccentric resistance exercise, for at least the six months prior to their

participation in the study. Participants refrained from: 1) any unaccustomed physical activity

for the duration of the trial and 2) any strenuous exertion for at least 24h prior to each testing

session.

Study design

Following full familiarisation of the testing procedures, participants reported to the laboratory

on five occasions, over a 14 day period. Food intake was recorded for 3 consecutive days,

prior to beginning the trial. Participants reported to the laboratory following an overnight

fast. Baseline measures were recorded for knee extensor muscle soreness, before isometric

maximal voluntary contraction (MVC) and neuromuscular assessments were performed using

an isokinetic dynamometer (Biodex System 3, Medical Systems, New York, USA). In all cases,

measurements were carried out for the non-dominant (control) leg prior to the dominant

(intervention) leg. The order of measurements was consistent across all trials.

Protocol

Participants were coupled to the isokinetic dynamometer for assessment of MVC, neuromus-

cular measures and muscle soreness as well as for performing eccentric contractions to induce

EIMD. The lateral femoral epicondyle of the testing leg was visually aligned with the axis of

rotation of the dynamometer, and seat positions were adjusted to suit each individual partici-

pant’s anthropometric characteristics. In accordance with the manufacturers’ instructions

straps (across the chest, pelvis and resting leg) were used to secure the participant in the

required position, and to reduce mechanical assistance from other body parts. During contrac-

tions participants were instructed to cross their arms in front of their chest. The final position-

ing of each participant was recorded on the initial visit and replicated throughout the

experimental period, to ensure constancy.

Participants rated perceived muscle soreness while positioned in the isokinetic dynamome-

ter. Soreness was measured while the knee was fully extended (joint angle of 0o). Pressure was
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applied (1kg/cm) to the midpoint on the lateral and transverse planes of the Quadriceps Femo-

ris, using a custom built, spring loaded algometer. Participants rated their level of soreness

using a 200mm visual analogue scale (VAS) which ranged from ‘no pain’ at the extreme left to

‘most pain imaginable’ at the extreme right [41]. The two ends of the VAS were anchored by

perpendicular lines, but there were no increments between the end markers. Participants were

instructed to mark a point along the line which represented the perceived soreness felt as pres-

sure was applied to the muscle. For each measurement a fresh scale was used, with no reference

to previous measurements. Muscle soreness was quantified by measuring the distance (to the

nearest 0.1cm) from the left anchor point to the point marked by the individual. During pre-

exercise testing muscle soreness of the dominant leg was rated twice, once before baseline mea-

sures and once immediately following the cycling warm-up, to ensure that not muscle soreness

occurred during the warm up.

With the participant secured in the dynamometer gravitational corrections were per-

formed, in accordance with existing recommendations [42], in order to account for the effect

of limb weight on torque measurements. A knee joint angle of 60o was set and the limb was

secured by a Velcro strap proximal to the medial malleolus. The angle of 60o was chosen, as it

lies within the well-established range of reported optimal knee joint angles, for peak isometric

torque production [43]. Participants performed a standard submaximal warm-up, consisting

of two sets of 3 x 5s isometric contractions; with 30s rest between repetitions and 60s recovery

between sets. For the first set participants contracted at an intensity perceived to be 50% of

maximum effort; for the second set the intensity of contraction was 75% of perceived maxi-

mum [7,44] visual feedback was available on a monitor positioned in front of the dynamome-

ter seat, as an output guide.

Immediately following isometric warm up, participants performed 3 x 5s isometric maxi-

mal voluntary contractions (MVC). Participants were required to react to an audio prompt

and were instructed to exert as much force as possible, as quickly as possible, in response to

the prompt. The gap between prompts was randomized, such that participants could not antic-

ipate their next contraction; in this way, an accurate contraction onset could be determined

[45], allowing rate of torque development (RTD) to be calculated. The contraction containing

the highest peak torque was designated MVC. From this contraction RTD was calculated over

0-300ms from the onset of contraction (± 2SD from baseline) using MATLAB version

7.11.0.584 (R2010b) software (The MathWorks, Inc.). Participants were instructed not to hold

back any effort for subsequent contractions. The same investigator provided standardized ver-

bal commands and encouragement, to assist the participants in achieving maximal effort for

every contraction; coefficient of variation was ensured to be lower than 5% across sets of 3 con-

tractions. Impaired muscle force, in combination with impaired velocity (RTD), is considered

the most appropriate indirect measure of EIMD [46].

Following determination of baseline MVC, for each leg, subjects performed a submaximal

isometric muscle action following a trapezoidal template (Fig 1E and 1F). Participants linearly

increased the magnitude of isometric contraction, tracing the shape of the template, from

0–60% (of baseline MVC) for 6s, at a rate of ~10%.s-1; the contraction level was held steady at

60% for 10s, then linearly decreased from 60% - 0 at the same rate as above. Participants were

instructed to completely relax the knee extensors at the start and end of each action; visual

inspection of the quiescent portions before and after the signal confirmed that vastus lateralis

was relaxed during these periods, and that no torque was generated. The template and output

feedback trace were visible on a monitor positioned directly in front of the dynamometer. Par-

ticipants were required to follow the template as closely as possible with their output trace.

This contraction provided a stationary signal, sufficiently long to allow reliable decomposition

of sEMG. The value of 60% of MVC was chosen, as studies have previously demonstrated
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force decrements of�40% following EIMD in knee extensors. However cross-correlation

analysis of single motor units has typically been conducted using target forces<30% of MVC

[47], limiting findings to motor units recruited at these lower forces. As EIMD predominantly

affects higher force producing (type II) muscle fibres, it was critical to investigate MUFR

responses at as high an isometric target force as possible, to permit study of a larger range of

motor units.

A surface array dEMG sensor (Delsys, Inc., Boston, Massachusetts) was used to detect bipo-

lar surface EMG signals, on four separate channels (Fig 1A–1D), from the vastus lateralis of

each leg in turn, during isometric MVCs and submaximal trapezoid contractions. The sensor

consisted of five cylindrical pin electrodes, each 0.5mm in diameter, protruding from the hous-

ing (2x3cm). The pins are blunted, such that they make an indentation when pressed against

the skin, but do not puncture the surface. Four of the five pins are arranged at the corners of a

5x5mm square; the fifth (reference) pin is in the centre of the square, equidistant from each of

the other four, such that the inter-electrode distance is 3.6mm [28]. Before placement, the skin

over the distal region of the muscle was prepared by carefully shaving and then cleansing with

rubbing alcohol, the skin was then abraded in accordance with SENIAM recommendations

[48]. The sensor was first cleaned with rubbing alcohol, before fixing to the prepared skin with

adhesive tape. The sensor was located over the belly of the vastus lateralis—25% of the distance

from the Gerdy prominence to the AIS [49]. A reference electrode (HE-R, Dermatrode, Amer-

ican Imex, Irvine) was affixed to the patella; if it was deemed necessary, the investigator also

shaved the skin over the patella before attaching the reference electrode.

Visual inspection of the signal, on all four channels, was carried out, prior to recording, to

ensure that excessive background noise and artifact were not present; in accordance with the

manufacturers guidelines, baseline noise should not exceed 10μV. Signal to noise ratio is calcu-

lated within the acquisition software, according to the formula: 20log(SRMS/NRMS) [where

S = EMG signal and N = baseline noise]. All analog EMG signals were low-pass (fourth-order

Butterworth, 24 dB/octave slope, 1750-HZ cut-off) and high-pass (second-order Butterworth,

12 dB/octave slope, 20-HZ cut-off) filtered prior to sampling at a rate of 20,000 Hz [31,50].

Fig 1. Example of raw sEMG captured concurrently on 4 channels (A—D), force output (Nm) and target (% of MVC) are also shown (in E and F, respectively). G

Example of firing rate bar plot from one participant (40 motor units), vertical bars represent the firings of each motor unit. The force output trace is superimposed.

Action potential shapes associated with each identified motor unit, and the results of Decompose-Synthesize-Decompose-Compare accuracy tests (%) are presented

along the left vertical axis (motor units number 5, 24, 37 and 42 are absent, as they did not achieve the required accuracy %).

https://doi.org/10.1371/journal.pone.0195051.g001

Motor unit firing during muscle damage recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0195051 April 9, 2018 5 / 17

https://doi.org/10.1371/journal.pone.0195051.g001
https://doi.org/10.1371/journal.pone.0195051


The four separate filtered EMG signals from the array were entered into the Precision Decomposi-

tion III (PD III) algorithm and decomposed into constituent motor unit action potential trains

(EMGworks1 4.0 Analysis software, Delsys, Boston, USA). Precision Decomposition techniques

were originally described by Adam & De Luca (2005) [26], having been in development since the

1970s. The technique has subsequently been refined by Nawab et al (2010) [28]. PD III uses artifi-

cial intelligence to identify action potentials and assign them to individual motor units; reliability

and validity have been described previously in a variety of contraction conditions, including high-

intensity contractions up to 80% and 100% MVC [31,50–53]. This technique was specifically

developed for decomposing surface EMG signals into their constituent MUAPs, and has previ-

ously been utilised to examine altered neural strategies in patients affected by stroke [54–56] and

poliomyelitis [57]. The resulting output from the decomposition algorithm contains the firing

instances, in pulses per second (pps), for each motor unit (Fig 1G).

To assess the accuracy of the decomposed signal a Decompose-Synthesize-Decompose-

Compare test, as described by De Luca & Hostage (2010) [51] was performed. This test is cur-

rently considered the most suitable way of validating the decomposition of the surface EMG

signal [29,58,59]. On average, PD III decomposition, according to the Decompose-Synthesize-

Decompose-Compare test, showed accuracy�94.1 ± 1.8%. Full accuracy data are provided in

Table 1. The mean firing rate, for each active motor unit, can then be calculated and plotted as

a function of time. Mean firing rate curves were smoothed using a Hanning window; in this

case all curves were filtered using a 600ms Hanning window, as recommended by the Software

manufacturer. For analysis a long enough portion of the mean firing rate curves was needed to

allow fluctuations in firing rate to be analyzed, however excessively long portions are not desir-

able, as the period should include minimal fluctuations in force or EMG RMS. A 3s portion

has previously been deemed, by our group, to be appropriate [40]. The 3s period at the distal

end of the contractions steady-phase was found to be the region of greatest reliability.

Recruitment threshold for each motor unit was calculated as the relative force (% of MVC)

compared with the mean firing rate, as previously described [60]. MUAPs were next separated

into three groups, containing equal numbers of motor units, (where MUAPs could not be

equally divided by three, the third group contained any additional motor units), such that

MUAPs could be isolated into tertiles containing either early recruited, mid-recruited or later

recruited motor units [40]. This concept is a similar to that described elsewhere [33,61], defin-

ing low and high-threshold motor units by comparing motor units recruited above vs. below a

predetermined threshold (% of MVC). However, allocating motor units into tertiles provides

greater separation between early- and later-recruited motor units. The mean relative recruit-

ment thresholds (% of MVC) of motor units allocated to each tertile are shown in Table 2. The

level of common drive was quantified by performing cross-correlation analysis of all of the

mean firing rate curves during the constant firing rate portions of the curves, using the for-

mula:

ðf � gÞ½n� ≝
Xþ1

m¼� 1

f �½m�g½nþm�

Table 1. Results of Decompose-Synthesize-Decompose-Compare accuracy test. Values are mean ± SD, n = 14.

Day 0 2 3 7 14

Control Mean (%) 95.1 95.7 95.7 95.1 94.1

± SD 2.6 2.5 2.3 2.7 1.8

Damage Mean (%) 96.1 96.3 96.3 94.3 95.2

± SD 2.3 2.1 2.1 4.8 2.3

https://doi.org/10.1371/journal.pone.0195051.t001
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Common drive is calculated from mean motor unit firing rate data and represents simulta-

neous fluctuations in firing rate between pairs of motor units [62].The same 3s portion of the

isometric contraction was analyzed for common drive as for mean firing rate. All possible

combinations of motor units were cross-correlated with one another [39]. The peak cross-cor-

relation coefficient and time lag were calculated from each cross-correlation to determine

common drive.

Eccentric exercise

Following baseline measurements on Day 0, subjects used their dominant leg to perform an

eccentric exercise protocol, as outlined below, designed to induce temporary muscle damage.

Repeat measures of all baseline characteristics were then taken on Days +2, +3, +7 and +14.

The eccentric exercise was performed on one day only. During familiarization a maximum of

one full set of twelve eccentric contractions was practiced.

Prior to the eccentric exercise participants performed a brief warm-up, consisting of cycling

for 5min at a cadence of 70rpm with power output of 50w (Lode Excalibur Sport V2 electri-

cally-braked cycle ergometer, Lode BV, Groningen, Netherlands), to our knowledge no evi-

dence has been reported for this type of warm-up to cause muscle damage in healthy males.

Immediately following the warm-up, participants were secured in the isokinetic dynamometer,

(as described above) and measurements of muscle soreness were repeated, exactly as before, to

ensure that no significant muscle soreness had resulted from the baseline measures and warm-

up cycling.

Participants then performed sets of twelve maximal eccentric contractions, until exhaustion

(i.e. failure to complete all twelve repetitions within a set); a minimum of 120 seconds recovery

was permitted between each set. The range of movement of these contractions was 90o, partici-

pants were instructed to provide maximum resistance from knee extension angle 20o to 110o

(full extension being 0o). The velocity of contraction was 60o.sec-1. Each eccentric contraction

was followed by a passive return to start angle, at a velocity of 180o.sec-1, such that each set

lasted for 24 seconds, with participants actively contracting for 75% of that time. This protocol,

adapted from a number of previously published studies [63,64] is designed to maximize eccen-

tric workload whilst concomitantly minimizing concentric work and metabolic demand. Sub-

jects were verbally encouraged to generate maximum force during each eccentric contraction,

throughout the whole range of movement. Participants were instructed to drink sufficient

water following the eccentric exercise protocol to avoid a possible risk of acute renal failure

due to rhabdomyolysis [46], but they were instructed to abstain from any therapeutic treat-

ments, designed to ameliorate the symptoms of EIMD, prior to and throughout the trial

period. Therapies to avoid included, but were not restricted to: whole-body vibration, massage,

cryotherapy, non-steroidal anti-inflammatory drugs and branch-chained amino acids

[8,65,66].

Table 2. Mean ± SD force (% of MVC) at which early (T1), mid (T2) and late (T3) motor units were recruited during the submaximal isometric trapezoidal

contraction.

Day 0 2 3 7 14

Control Recruitment threshold (%) Mean ± SD T1 11.9 ± 0.7 15.1 ± 2.8 8.0 ± 1.4 6.8 ± 1.1 12.2 ± 2.3

T2 14.8 ± 0.6 22.4 ± 1.8 12.8 ± 1.8 10.3 ± 0.9 19.3 ± 1.5

T3 19.9 ± 4.4 32.7 ± 5.7 24.3 ± 8.2 19.9 ± 6.9 26.4 ± 5.2

Damage Recruitment threshold (%) Mean ± SD T1 13.1 ± 2.6 24.9 ± 3.2 17.3 ± 1.1 10.9 ± 3.3 16.4 ± 3.9

T2 19.6 ± 2.7 28.9 ± 0.9 21.5 ± 1.7 18.2 ± 1.9 23.5 ± 1.7

T3 28.7 ± 5.5 35.6 ± 4.6 28.5 ± 5.0 32.3 ± 8.8 32.5 ± 6.9

https://doi.org/10.1371/journal.pone.0195051.t002
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Statistical analysis

MVC, RTD muscle soreness, mean motor unit firing rate of each tertile and common drive

were tested for normality using Ryan-Joiner test, then analyzed using two-way (group, 2 x

time, 5) repeated measures analysis of variance (ANOVA) with Tukey post hoc analysis per-

formed where appropriate (Minitab 16 statistical software, Minitab Ltd., Coventry, UK). Data

are presented throughout as mean ± standard deviation (SD), with statistical significance set at

P< 0.05. Where significant effects were observed, Cohen’s d effect sizes (ES) were calculated

by: Cohen’s d = Mean1—Mean2 / SDpooled, where SDpooled =
p

[(SD 1
2+ SD 2

2) / 2], and 95%

lower and upper confidence intervals (CI) were established relative to ES. ES were interpreted

as< 0.2 = trivial, 0.2–0.5 = small, 0.5–0.8 = moderate, > 0.8 = large [67].

Results

EIMD was associated with significantly reduced MVC (F(4,13) = 11.77, p<0.001) (Fig 2A) and

showed significant interaction effects (F(4,13) = 18.49, p<0.001) with the control leg; post hoc

testing revealed significantly reduced MVC by 31.4% in the exercised leg at 48h compared to

baseline (CI [0.58 to 2.24] ES = 1.45, p<0.01) which had fully recovered by day 7. RTD

responded similarly by showing a significant (F(4,13) = 9. 96, p<0.001) reduction of 67.04% in

the exercised leg post-EIMD, with significant interaction effects (F(4,13) = 9.49, p<0.001); post

hoc testing revealed significantly reduced RTD compared to baseline in the exercised leg at 48

and 72h with peak reduction at 48h (CI [1.21 to 3.07] ES = 2.20, p< 0.01) which had recovered

by day 7 (Fig 2B). Muscle soreness was significantly greater (F(4,13) = 5.35, p<0.01) in the exer-

cised leg following EIMD, post hoc testing revealed a main effect of time at 48 and 72h with

peak elevation at 72h (CI [0.05 to 1.60] ES = 0.85 p<0.01) (Fig 2C).

No differences existed in the relationship between average MUFR and the recruitment

threshold (Table 3). However, higher-threshold motor units, in the third tertile fired signifi-

cantly (F(4,13) = 4.81, p<0.01) slower following EIMD demonstrating a significant interaction

(F(4,13) = 4.81, p<0.01) with the control leg and post hoc testing showing a significant decline

at 48h (from 16.4 ± 2.1pps to 12.6 ± 1.7pps) (CI [1.01 to 2.79] ES = 1.96, p<0.05) which had

returned to baseline levels after 72h (13.1 ± 2.37pps) (Fig 3C). The mid recruited motor units

as shown by the second tertile demonstrated a tendency (F(4,13) = 2.16, p = 0.093) towards

lower mean firing rates in the exercised leg post-EIMD (Fig 3B). The mean firing rate of early

recruited motor units, within the first tertile, was not significantly different (F(4,13) = 1.19,

p>0.05) between days or groups (Fig 3A). An example of regression analysis of recruitment

threshold (% of MVC) against mean firing rate is presented in Fig 4.

The mean number of motor units identified by PD III did not differ significantly (F(4,13) =

0.62, p>0.05) across time or group, ranging from 19.8 ± 8.4–26.4 ± 9.1. Common drive, as

shown by the cross correlation coefficient of active motor units, was significantly (F(4,13) =

8.52, p<0.05) elevated from 0.36 ± 0.027 to 0.56 ± 0.032, with time lag of 0.05 ± 0.018ms and

1.78 ± 0.013ms respectively, and displayed significant interaction (F(4,13) = 22.34, p<0.001)

with the control leg, post hoc analysis revealed a significant increase 48h post-EIMD (CI [4.41

to 7.98] ES = 6.39, p<0.001) which returned to baseline after 72h (Fig 5).

Discussion

This study aimed to determine how motor unit behaviour controlled force production during

EIMD, and over the complete recovery period. Specifically, it was hypothesized that firing

rates of high-threshold motor units would be most affected by EIMD, in line with impaired

muscle function. Additionally, the collective control (common drive) of the motor unit pool

was examined, before and after damaging exercise. EIMD was successfully induced as shown
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by the 31.4% MVC decline 48h post-exercise. This force decrease was accompanied by dimin-

ished rate of torque development and elevated muscle soreness up to 72h post-exercise. Taken

together these findings are symptomatic of EIMD [7,64,68]. Coinciding with these functional

impairments, the mean firing rate of high-threshold/ later recruited motor units declined by

Fig 2. A) Maximal isometric voluntary contraction (MVC) of the exercised and control knee extensors. B) Rate of

torque development (RTD) of the exercised and control knee extensors. C) Muscle soreness measured using visual

analogue scale (VAS). Values are mean + SD, n = 14. � Significantly higher than baseline in the exercised leg, p<0.01.

https://doi.org/10.1371/journal.pone.0195051.g002
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22.3% 48h post-exercise. Recovery from the firing rate decline of these units occurred by 7

days post-EIMD, alongside MVC. The cross correlation coefficient or synchronization of the

motor unit pool increased from 0.36 at baseline to 0.56 after 48h, indicating increased com-

mon drive.

As hypothesized we showed that later recruited motor units (i.e. higher-threshold) were

specifically impaired following EIMD, as we know that later recruited motor units associate

with type II muscle fibres [48] and that it is these fibres that are most susceptible to EIMD

[35]. It seems likely that the observed impairment stems from a feedback mechanism resulting

from elevated III/IV afferent signalling following EIMD [16,17]. Group III/IV afferents medi-

ate inhibitory influence on motoneurones via several routes [69]; indeed, afferent feedback has

been shown to impact upon planning of aimed movements, supraspinal cortical, subcortical

and propriospinal motor outputs, as well as on the α-motoneurone at the spinal level, whilst

also directly affecting motoneurone firing rates during muscle fatigue via reflex inhibition

[69]. Mediation by III/IV afferents also appears a plausible explanation given the lack of any

impairment in the contralateral limb [16]. Group III / IV afferents have previously been associ-

ated with reduced central motor drive, thereby inhibiting voluntary muscle activation, acutely

during fatiguing exercise [70]. It is therefore possible that impaired MUFR may result from

feedback from damaged muscle, designed to restrict function and thereby limit the risk of fur-

ther harm.

Despite the decline in high-threshold motor unit firing rate, the 60% MVC target was suc-

cessfully achieved during EIMD suggesting that some sort of compensation had occurred. We

propose this came from the increased common drive we showed, which typically increases

when higher forces are required [71] and during muscle fatigue [72]. However, Beck et al

(2012) [39] surprisingly reported no alteration in common drive following EIMD in the biceps

brachii, despite a 19.5% drop in peak force; it should be noted that the isometric contractions

during which common drive was assessed were based on feedback provided by EMG (RMS)

and not on a predetermined target force output, with this in mind, objective comparison

cannot be made between pre- and post-exercise conditions. Nevertheless, the most likely

mechanism causing the increased common drive in our study emanates from impaired propri-

oception which can occur following EIMD [73]. Indeed, Ye et al (2014) [37] reported increased

common drive following eccentric, but not concentric, fatiguing exercise. It has been previ-

ously demonstrated [7,74] that EIMD transiently alters skeletal muscle architecture which is

likely to alter proprioception from muscle spindles which has been suggested to influence

common drive [75]. Furthermore, Contessa et al (2009) [72] observed a relationship between

the number of newly recruited motor units and the common drive with contraction endurance

time, leading them to propose a decreased muscle spindle influence would result in increased

Table 3. Mean linear slope coefficients (pps(�)/%MVC) and y-intercept (pps) relationships between average firing rate and recruitment threshold of motor units.

Values are mean ± SD, n = 14.

Day 0 2 3 7 14

Control Slope coefficient Mean 0.51 0.67 0.55 0.58 0.63

± SD 0.25 0.23 0.27 0.17 0.25

Y-intercept Mean 31.7 25.3 26.9 23.4 23.9

± SD 29.7 8.2 9.3 8.4 6.7

Damage Slope coefficient Mean 0.60 0.66 0.54 0.77 0.62

± SD 0.37 0.25 0.25 0.15 0.29

Y-intercept Mean 25.3 40.0 30.1 27.8 28.8

± SD 6.5 19.1 14.4 8.2 7.3

https://doi.org/10.1371/journal.pone.0195051.t003
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common drive. It seems that disruptions within the muscle could conceivably lead to a motor

unit firing pattern which lends itself more towards greater force production, and less towards

fine motor control.

Later recruited muscle fibres are preferentially damaged during EIMD [34,35], and in

accordance with our hypothesis, we demonstrated that later recruited motor units (i.e. higher-

Fig 3. Mean motor unit firing rates of the exercised and control knee extensors. A) Early recruited motor units, B)

mid recruited motor units and C) late recruited motor units. Values are % change + SD, n = 14. � Significantly lower

than baseline in the exercised leg, p<0.05.

https://doi.org/10.1371/journal.pone.0195051.g003
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threshold) were impaired following EIMD. This is the first study to demonstrate impairment

and recovery of high-threshold motor unit firing rate, in association with recovery of MVC.

Previous studies have demonstrated divergent time courses of neural and functional alter-

ations, however ours is the first study to assess neural behaviour at an intensity of contraction

Fig 4. Example linear regression line for the relationship between motor unit mean firing rate and recruitment

threshold for a single subject.

https://doi.org/10.1371/journal.pone.0195051.g004

Fig 5. Cross correlation coefficient of active motor units in the exercised and control knee extensors. Values are mean + SD, n = 14. Cross correlation coefficients of

active motor units for each individual participant between baseline (Day 0) and peak EIMD (Day 2) are presented inset. � Significantly higher than baseline in the

exercised leg, p<0.05.

https://doi.org/10.1371/journal.pone.0195051.g005
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(60% MVC) sufficiently high to recruit a broad representation of the motor unit pool, which

we suggest provides fresh insight, using a functionally relevant stimulus. These findings sug-

gest that altered neural firing occurs at relatively high, submaximal force levels, during periods

of reduced muscle function, which we propose, may serve to protect damaged muscle through-

out the acute recovery phase. This observation has important implications within populations

at heightened risk of injury or impaired mobility.

This study provides new evidence that the acute insult, inflicted upon muscle through exer-

cise-induced muscle damage, is associated with transient decreases in firing rate among later

recruited motor units with higher recruitment thresholds. These decreases, and subsequent

recovery, coincide with alterations in force production. Low-threshold units, recruited early

after the onset of contraction, remain unaffected throughout. These findings suggest that

changes in motor unit activity following exercise-induced muscle damage may mediate recov-

ery of force following exercise-induced muscle damage.

Supporting information

S1 Table. Peak torque recorded during maximal voluntary contraction.

(CSV)

S2 Table. Rate of torque development recorded during maximal voluntary contraction.

(CSV)

S3 Table. Subjective rating of pain according to visual analogue scale.

(CSV)

S4 Table. Mean firing rate of early (T1), mid (T2), and later (T3) recruited motor units.

(CSV)

S5 Table. Cross correlation coefficient of active motor units.

(CSV)

Acknowledgments

The authors wish to thank Dr Paola Contessa for technical support concerning dEMG, and

Mr. Chris Grigson and Miss Katerina Kay for technical assistance during experimental trials

and laboratory analysis.

Author Contributions

Conceptualization: Angus M. Hunter.

Data curation: Lewis J. Macgregor.

Formal analysis: Lewis J. Macgregor, Angus M. Hunter.

Funding acquisition: Angus M. Hunter.

Investigation: Lewis J. Macgregor, Angus M. Hunter.

Methodology: Lewis J. Macgregor, Angus M. Hunter.

Project administration: Lewis J. Macgregor.

Resources: Angus M. Hunter.

Software: Angus M. Hunter.

Supervision: Angus M. Hunter.

Motor unit firing during muscle damage recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0195051 April 9, 2018 13 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195051.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195051.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195051.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195051.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0195051.s005
https://doi.org/10.1371/journal.pone.0195051


Visualization: Lewis J. Macgregor.

Writing – original draft: Lewis J. Macgregor.

Writing – review & editing: Angus M. Hunter.

References

1. Clarkson PM, Byrnes WC, McCormick KM, Turcotte LP, White JS.(1986) Muscle soreness and serum

creatine kinase activity following isometric, eccentric, and concentric exercise. Int J Sports Med. 7

(3):152–155. https://doi.org/10.1055/s-2008-1025753 PMID: 3733311

2. MacIntyre DL, Sorichter S, Mair J, Berg A, McKenzie DC. (2001) Markers of in inflammation and myofi-

brillar proteins following eccentric exercise in humans. Eur J Appl Physiol. 84(3):180–186. https://doi.

org/10.1007/s004210170002 PMID: 11320633

3. Evans RK, Knight KL, Draper DO, Parcell AC. (2002) Effects of warm-up before eccentric exercise on

indirect markers of muscle damage. Med Sci Sports Exerc. 34(12):1892–1899. https://doi.org/10.1249/

01.MSS.0000038895.14935.C8 PMID: 12471293

4. Racinais S, Bringard A, Puchaux K, Noakes TD, Perrey S. (2008) Modulation in voluntary neural drive

in relation to muscle soreness. Eur J Appl Physiol. 102(4):439–446. https://doi.org/10.1007/s00421-

007-0604-7 PMID: 17978834

5. Gauche E, Couturier A, Lepers R, Michaut A, Rabita G, Hausswirth C. (2009) Neuromuscular fatigue

following high versus low-intensity eccentric exercise of biceps brachii muscle. J Electromyogr Kinesiol.

19(6):481–486.

6. Martin V, Millet GY, Lattier G, Perrod L. (2004) Effects of recovery modes after knee extensor muscles

eccentric contractions. Med Sci Sports Exerc. 36.11:1907–1915. PMID: 15514506

7. Hunter AM, Galloway SD, Smith IJ, Tallent J, Ditroilo M, Fairweather MM, et al. (2012) Assessment of

eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. J Electromyogr

Kinesiol. 22(3):334–341. https://doi.org/10.1016/j.jelekin.2012.01.009 PMID: 22336641

8. Howatson G, van Someren KA. (2008) The prevention and treatment of exercise-induced muscle dam-

age. Sports Med. 38(6):483–503. PMID: 18489195

9. Peake JM, Gandevia SC. (2017) Replace, restore, revive: the keys to recovery after exercise. J Appl

Physiol (1985). 122(3):531–532.

10. Minett GM, Duffield R. (2014) Is recovery driven by central or peripheral factors? A role for the brain in

recovery following intermittent-sprint exercise. Front Physiol. 5:24. https://doi.org/10.3389/fphys.2014.

00024 PMID: 24550837

11. Rattray B, Argus C, Martin K, Northey J, Driller M. (2015) Is it time to turn our attention toward central

mechanisms for post-exertional recovery strategies and performance? Front Physiol. 6:79. https://doi.

org/10.3389/fphys.2015.00079 PMID: 25852568

12. Toft AD, Jensen LB, Bruunsgaard H, Ibfelt T, Halkjaer-Kristensen J, Febbraio M, et al. (2002) Cytokine

response to eccentric exercise in young and elderly humans. Am J Physiol Cell Physiol. 283(1):C289–

295. https://doi.org/10.1152/ajpcell.00583.2001 PMID: 12055098

13. Fell J, Williams D. (2008) The effect of aging on skeletal-muscle recovery from exercise: possible impli-

cations for aging athletes. J Aging Phys Act. 16(1):97–115. DOI: http://dx.doi.org/10.1123/japa.16.1.97

PMID: 18268815

14. Gregory JE, Morgan DL, Proske U. (2004) Responses of muscle spindles following a series of eccentric

contractions. Exp Brain Res. 157(2):234–240. https://doi.org/10.1007/s00221-004-1838-9 PMID:

14991214

15. Gregory JE, Brockett CL, Morgan DL, Whitehead NP, Proske U. (2002) Effect of eccentric muscle con-

tractions on Golgi tendon organ responses to passive and active tension in the cat. J Physiol. 538

(1):209–218.

16. Kennedy DS, Fitzpatrick SC, Gandevia SC, Taylor JL. (2015) Fatigue-related firing of muscle nocicep-

tors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles. J Appl Physiol

(1985). 118(4):408–418.

17. Komi PV. (2000) Stretch-shortening cycle: a powerful model to study normal and fatigued muscle. J Bio-

mech. 33:1197–1206. PMID: 10899328

18. Dartnall TJ, Rogasch NC, Nordstrom MA, Semmler JG. (2009) Eccentric muscle damage has variable

effects on motor unit recruitment thresholds and discharge patterns in elbow flexor muscles. J Neuro-

physiol. 102(1):413–423. https://doi.org/10.1152/jn.91285.2008 PMID: 19420118

Motor unit firing during muscle damage recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0195051 April 9, 2018 14 / 17

https://doi.org/10.1055/s-2008-1025753
http://www.ncbi.nlm.nih.gov/pubmed/3733311
https://doi.org/10.1007/s004210170002
https://doi.org/10.1007/s004210170002
http://www.ncbi.nlm.nih.gov/pubmed/11320633
https://doi.org/10.1249/01.MSS.0000038895.14935.C8
https://doi.org/10.1249/01.MSS.0000038895.14935.C8
http://www.ncbi.nlm.nih.gov/pubmed/12471293
https://doi.org/10.1007/s00421-007-0604-7
https://doi.org/10.1007/s00421-007-0604-7
http://www.ncbi.nlm.nih.gov/pubmed/17978834
http://www.ncbi.nlm.nih.gov/pubmed/15514506
https://doi.org/10.1016/j.jelekin.2012.01.009
http://www.ncbi.nlm.nih.gov/pubmed/22336641
http://www.ncbi.nlm.nih.gov/pubmed/18489195
https://doi.org/10.3389/fphys.2014.00024
https://doi.org/10.3389/fphys.2014.00024
http://www.ncbi.nlm.nih.gov/pubmed/24550837
https://doi.org/10.3389/fphys.2015.00079
https://doi.org/10.3389/fphys.2015.00079
http://www.ncbi.nlm.nih.gov/pubmed/25852568
https://doi.org/10.1152/ajpcell.00583.2001
http://www.ncbi.nlm.nih.gov/pubmed/12055098
http://dx.doi.org/10.1123/japa.16.1.97
http://www.ncbi.nlm.nih.gov/pubmed/18268815
https://doi.org/10.1007/s00221-004-1838-9
http://www.ncbi.nlm.nih.gov/pubmed/14991214
http://www.ncbi.nlm.nih.gov/pubmed/10899328
https://doi.org/10.1152/jn.91285.2008
http://www.ncbi.nlm.nih.gov/pubmed/19420118
https://doi.org/10.1371/journal.pone.0195051


19. Piitulainen H, Bottas R, Komi P, Linnamo V, Avela J. (2010) Impaired action potential conduction at high

force levels after eccentric exercise. J Electromyogr Kinesiol. 20(5):879–887. https://doi.org/10.1016/j.

jelekin.2009.10.001 PMID: 19880328

20. Dartnall TJ, Nordstrom M, Semmler JG. (2008) Motor unit synchronization is increased in biceps brachii

after exercise-induced damage to elbow flexor muscles. Journal of neurophysiology. 99(2):1008–1019.

https://doi.org/10.1152/jn.00686.2007 PMID: 18171708

21. Clarkson PM, Nosaka K, Braun B. (1992) Muscle function after exercise-induced muscle damage and

rapid adaptation. Med Sci Sports Exerc. 24(5):512–520. PMID: 1569847

22. Clarkson PM. (1997) Eccentric exercise and muscle damage. Int J Sports Med. 18 Suppl 4:S314–317.

23. Jackman SR, Witard OC, Jeukendrup AE, Tipton KD. (2010) Branched-chain amino acid ingestion can

ameliorate soreness from eccentric exercise. Med Sci Sports Exerc. 42(5):962–970. https://doi.org/10.

1249/MSS.0b013e3181c1b798 PMID: 19997002

24. Zwarts MJ, Stegeman DF. (2003) Multichannel surface EMG: basic aspects and clinical utility. Muscle

Nerve. 28(1):1–17. https://doi.org/10.1002/mus.10358 PMID: 12811768

25. Holobar A, Minetto MA, Farina D. (2014) Accurate identification of motor unit discharge patterns from

high-density surface EMG and validation with a novel signal-based performance metric. J Neural Eng.

11(1):016008. PMID: 24654270

26. Adam A, De Luca CJ. (2005) Firing rates of motor units in human vastus lateralis muscle during fatigu-

ing isometric contractions. J Appl Physiol (1985) 99(1):268–280.

27. De Luca CJ, Adam A, Wotiz R, Gilmore LD, Nawab SH. (2006) Decomposition of surface EMG signals.

J Neurophysiol. 96(3):1646–1657. https://doi.org/10.1152/jn.00009.2006 PMID: 16899649

28. Nawab SH, Chang SS, De Luca CJ. (2010) High-yield decomposition of surface EMG signals. Clin Neu-

rophysiol. 121(10):1602–1615. https://doi.org/10.1016/j.clinph.2009.11.092 PMID: 20430694

29. Kline JC, De Luca CJ. (2014) Error reduction in EMG signal decomposition. J Neurophysiol. 112

(11):2718–2728. https://doi.org/10.1152/jn.00724.2013 PMID: 25210159

30. De Luca CJ, Erim Z. (1994) Common drive of motor units in regulation of muscle force. Trends Neu-

rosci. 17(7):299–305. PMID: 7524216

31. De Luca CJ, Contessa P. (2012) Hierarchical control of motor units in voluntary contractions. J Neuro-

physiol. 107(1):178–195. https://doi.org/10.1152/jn.00961.2010 PMID: 21975447

32. Contessa P, De Luca CJ, (2012) Neural control of muscle force: indications from a simulation model. J

Neurophysiol. 109(6):1548–1570. https://doi.org/10.1152/jn.00237.2012 PMID: 23236008

33. DeFreitas JM, Beck TW, Ye X, Stock MS. (2014) Synchronization of low- and high-threshold motor

units. Muscle Nerve. 49(4):575–583. https://doi.org/10.1002/mus.23978 PMID: 23893653

34. Vijayan K, Thompson JL, Norenberg KM, Fitts RH, Riley DA. (2001) Fiber-type susceptibility to eccen-

tric contraction- induced damage of hindlimb-unloaded rat AL muscles. J Appl Physiol (1985). 90

(3):770–776.

35. Macaluso F, Isaacs AW, Myburgh KH. (2012) Preferential type II muscle fibre damage from plyometric

exercise. J Athl Train. 47(4):414–420. https://doi.org/10.4085/1062-6050-47.4.13 PMID: 22889657

36. Henneman E. (1985) The size-principle: a deterministic output emerges from a set of probabilistic con-

nections. J Exp Biol. 112:105–112.

37. Ye X, Beck TW, Wages NP. (2014) Influences of dynamic exercise on force steadiness and common

drive. J Musculoskelet Neuronal Interact. 14(3):377–386. PMID: 25198234

38. Dartnall TJ, Nordstrom MA, Semmler JG. (2011) Adaptations in biceps brachii motor unit activity after

repeated bouts of eccentric exercise in elbow flexor muscles. J Neurophysiol. 105(3):1225–1235.

https://doi.org/10.1152/jn.00854.2010 PMID: 21248060

39. Beck TW, Kasishke PR, Stock MS, DeFreitas JM. (2012) Eccentric exercise does not affect common

drive in the biceps brachii. Muscle Nerve. 46(5):759–766. https://doi.org/10.1002/mus.23386 PMID:

22941727

40. Balshaw TG, Pahar M, Chesham R, Macgregor LJ, Hunter AM. (2017) Reduced firing rates of high

threshold motor units in response to eccentric overload. Physiol Rep. 5(2):e13111. https://doi.org/10.

14814/phy2.13111 PMID: 28108648

41. Howatson G, van Someren KA. (2007) Evidence of a contralateral repeated bout effect after maximal

eccentric contractions. Eur J Appl Physiol. 101(2):207–214. https://doi.org/10.1007/s00421-007-0489-5

PMID: 17534644

42. Gleeson NP, Mercer TH. (1996) The utility of isokinetic dynamometry in the assessment of human mus-

cle function. Sports Medicine. 21(1):18–34. PMID: 8771283

Motor unit firing during muscle damage recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0195051 April 9, 2018 15 / 17

https://doi.org/10.1016/j.jelekin.2009.10.001
https://doi.org/10.1016/j.jelekin.2009.10.001
http://www.ncbi.nlm.nih.gov/pubmed/19880328
https://doi.org/10.1152/jn.00686.2007
http://www.ncbi.nlm.nih.gov/pubmed/18171708
http://www.ncbi.nlm.nih.gov/pubmed/1569847
https://doi.org/10.1249/MSS.0b013e3181c1b798
https://doi.org/10.1249/MSS.0b013e3181c1b798
http://www.ncbi.nlm.nih.gov/pubmed/19997002
https://doi.org/10.1002/mus.10358
http://www.ncbi.nlm.nih.gov/pubmed/12811768
http://www.ncbi.nlm.nih.gov/pubmed/24654270
https://doi.org/10.1152/jn.00009.2006
http://www.ncbi.nlm.nih.gov/pubmed/16899649
https://doi.org/10.1016/j.clinph.2009.11.092
http://www.ncbi.nlm.nih.gov/pubmed/20430694
https://doi.org/10.1152/jn.00724.2013
http://www.ncbi.nlm.nih.gov/pubmed/25210159
http://www.ncbi.nlm.nih.gov/pubmed/7524216
https://doi.org/10.1152/jn.00961.2010
http://www.ncbi.nlm.nih.gov/pubmed/21975447
https://doi.org/10.1152/jn.00237.2012
http://www.ncbi.nlm.nih.gov/pubmed/23236008
https://doi.org/10.1002/mus.23978
http://www.ncbi.nlm.nih.gov/pubmed/23893653
https://doi.org/10.4085/1062-6050-47.4.13
http://www.ncbi.nlm.nih.gov/pubmed/22889657
http://www.ncbi.nlm.nih.gov/pubmed/25198234
https://doi.org/10.1152/jn.00854.2010
http://www.ncbi.nlm.nih.gov/pubmed/21248060
https://doi.org/10.1002/mus.23386
http://www.ncbi.nlm.nih.gov/pubmed/22941727
https://doi.org/10.14814/phy2.13111
https://doi.org/10.14814/phy2.13111
http://www.ncbi.nlm.nih.gov/pubmed/28108648
https://doi.org/10.1007/s00421-007-0489-5
http://www.ncbi.nlm.nih.gov/pubmed/17534644
http://www.ncbi.nlm.nih.gov/pubmed/8771283
https://doi.org/10.1371/journal.pone.0195051


43. Knapik JJ, Mawdsley RH, Ramos MU. (1983) Angular specificity and test mode specificity of isometric

and isokinetic strength training. J Orthop Sports Phys Ther. 5(2):58–65. https://doi.org/10.2519/jospt.

1983.5.2.58 PMID: 18806429

44. Balshaw TG, Hunter AM. (2012) Evaluation of electromyography normalisation methods for the back

squat. J Electromyogr Kinesiol. 22(2):308–319. https://doi.org/10.1016/j.jelekin.2011.11.009 PMID:

22155060

45. Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. (2016) Rate of force develop-

ment: physiological and methodological considerations. Eur J Appl Physiol. 116(6):1091–1116. https://

doi.org/10.1007/s00421-016-3346-6 PMID: 26941023

46. Warren JD, Blumbergs PC, Thompson PD. (2002) Rhabdomyolysis: a review. Muscle Nerve. 25

(3):332–347. PMID: 11870710

47. Fling BW, Christie A, Kamen G. (2009) Motor unit synchronization in FDI and biceps brachii muscles of

strength-trained males. J Electromyogr Kinesiol. 19(5):800–809. https://doi.org/10.1016/j.jelekin.2008.

06.003 PMID: 18691906

48. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. (2000) Development of recommendations for

SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 10:361–374. PMID:

11018445

49. Blanc Y, Dimanico U. (2010) Electrode placement in surface electromyography (sEMG) “Minimal

Crosstalk Area” (MCA). Open Rehabil J. 3:110–126.

50. Hu X, Rymer WZ, Suresh NL. (2014) Accuracy assessment of a surface electromyogram decomposi-

tion system in human first dorsal interosseus muscle. J Neural Eng. 11(2):026007. https://doi.org/10.

1088/1741-2560/11/2/026007 PMID: 24556614

51. De Luca CJ, Hostage EC. (2010) Relationship between firing rate and recruitment threshold of moto-

neurons in voluntary isometric contractions. J Neurophysiol. 104(2):1034–1046. https://doi.org/10.

1152/jn.01018.2009 PMID: 20554838

52. Hu X, Rymer WZ, Suresh NL. (2013) Assessment of validity of a high-yield surface electromyogram

decomposition. J Neuroeng Rehabil. 10:99. https://doi.org/10.1186/1743-0003-10-99 PMID: 24059856

53. Pope ZK, Hester GM, Benik FM, DeFreitas JM. (2016) Action potential amplitude as a noninvasive indi-

cator of motor unit-specific hypertrophy. J Neurophysiol. 115(5):2608–2614. https://doi.org/10.1152/jn.

00039.2016 PMID: 26936975

54. Hu X, Suresh AK, Li X, Rymer WZ, Suresh NL. (2012) Impaired motor unit control in paretic muscle

post stroke assessed using surface electromyography: a preliminary report. Conf Proc IEEE Eng Med

Biol Soc. 2012. 2012:4116–4119. https://doi.org/10.1109/EMBC.2012.6346872 PMID: 23366833

55. Hu X, Suresh AK, Rymer WZ, Suresh NL. (2015) Assessing altered motor unit recruitment patterns in

paretic muscles of stroke survivors using surface electromyography. J Neural Eng. 12(6).

56. Suresh N, Li X, Zhou P, Rymer WZ. (2011) Examination of motor unit control properties in stroke survi-

vors using surface EMG decomposition: a preliminary report. Conf Proc IEEE Eng Med Biol Soc.2011.

2011:8243–8246. https://doi.org/10.1109/IEMBS.2011.6092032 PMID: 22256256

57. Trevino MA, Herda TJ, Cooper MA. (2014) The effects of poliomyelitis on motor unit behavior during

repetitive muscle actions: a case report. BMC Res Notes. 7:611. https://doi.org/10.1186/1756-0500-7-

611 PMID: 25194883

58. De Luca CJ, Nawab SH. (2011) Reply to Farina and Enoka: the reconstruct-and-test approach is the

most appropriate validation for surface EMG signal decomposition to date. J Neurophysiol. 105:983–

984.

59. De Luca CJ, Nawab SH, Kline JC. (2015) Clarification of methods used to validate surface EMG decom-

position algorithms as described by Farina et al. (2014). J Appl Physiol (1985). 118(8):1084.

60. Ye X, Beck TW, DeFreitas JM, Wages NP. (2015) Acute effects of dynamic exercises on the relation-

ship between the motor unit firing rate and the recruitment threshold. Human Mov Sci. 40:24–37.

61. Carpentier A, Duchateau J, Hainaut K. (2001) Motor unit behaviour and contractile changes during

fatigue in the human first dorsal interosseus. J Physiol. 534(3):903–912.

62. De Luca CJ, LeFever RS, McCue MP, Xenakis AP. (1982) Control scheme governing concurrently

active human motor units during voluntary contractions. J Physiol. 329:129–142. PMID: 7143247

63. Paschalis V, Koutedakis Y, Baltzopoulos V, Mougios V, Jamurtas AZ, Giakas G. (2005) Short vs. long

length of rectus femoris during eccentric exercise in relation to muscle damage in healthy males. Clinical

biomechanics (Bristol, Avon). 20(6):617–622.

64. Molina R, Denadai BS. (2012) Dissociated time course recovery between rate of force development

and peak torque after eccentric exercise. Clin Physiol Funct Imaging. 32(3):179–184. https://doi.org/10.

1111/j.1475-097X.2011.01074.x PMID: 22487151

Motor unit firing during muscle damage recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0195051 April 9, 2018 16 / 17

https://doi.org/10.2519/jospt.1983.5.2.58
https://doi.org/10.2519/jospt.1983.5.2.58
http://www.ncbi.nlm.nih.gov/pubmed/18806429
https://doi.org/10.1016/j.jelekin.2011.11.009
http://www.ncbi.nlm.nih.gov/pubmed/22155060
https://doi.org/10.1007/s00421-016-3346-6
https://doi.org/10.1007/s00421-016-3346-6
http://www.ncbi.nlm.nih.gov/pubmed/26941023
http://www.ncbi.nlm.nih.gov/pubmed/11870710
https://doi.org/10.1016/j.jelekin.2008.06.003
https://doi.org/10.1016/j.jelekin.2008.06.003
http://www.ncbi.nlm.nih.gov/pubmed/18691906
http://www.ncbi.nlm.nih.gov/pubmed/11018445
https://doi.org/10.1088/1741-2560/11/2/026007
https://doi.org/10.1088/1741-2560/11/2/026007
http://www.ncbi.nlm.nih.gov/pubmed/24556614
https://doi.org/10.1152/jn.01018.2009
https://doi.org/10.1152/jn.01018.2009
http://www.ncbi.nlm.nih.gov/pubmed/20554838
https://doi.org/10.1186/1743-0003-10-99
http://www.ncbi.nlm.nih.gov/pubmed/24059856
https://doi.org/10.1152/jn.00039.2016
https://doi.org/10.1152/jn.00039.2016
http://www.ncbi.nlm.nih.gov/pubmed/26936975
https://doi.org/10.1109/EMBC.2012.6346872
http://www.ncbi.nlm.nih.gov/pubmed/23366833
https://doi.org/10.1109/IEMBS.2011.6092032
http://www.ncbi.nlm.nih.gov/pubmed/22256256
https://doi.org/10.1186/1756-0500-7-611
https://doi.org/10.1186/1756-0500-7-611
http://www.ncbi.nlm.nih.gov/pubmed/25194883
http://www.ncbi.nlm.nih.gov/pubmed/7143247
https://doi.org/10.1111/j.1475-097X.2011.01074.x
https://doi.org/10.1111/j.1475-097X.2011.01074.x
http://www.ncbi.nlm.nih.gov/pubmed/22487151
https://doi.org/10.1371/journal.pone.0195051


65. Aminian-Far A, Hadian MR, Olyaei G, Talebian S, Bakhtiary AH. (2011) Whole-body vibration and the

prevention and treatment of delayed-onset muscle soreness. J Athl Train. 46(1):43–49. https://doi.org/

10.4085/1062-6050-46.1.43 PMID: 21214349

66. Howatson G, Hoad M, Goodall S, Tallent J, Bell PG, French DN. (2012) Exercise-induced muscle dam-

age is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind,

placebo controlled study. J Int Soc Sports Nutr. 9(20):1–7.

67. Cohen J. (1988) Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, NJ: 372

Lawrence Erlbaum Associates.

68. Peñailillo L, Blazevich A, Numazawa H, Nosaka K. (2015) Rate of force development as a measure of

muscle damage. Scand J Med Sci Sports. 25(3):417–427. https://doi.org/10.1111/sms.12241 PMID:

24798498

69. Gandevia SC. (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev. 81

(4):1725–1789. https://doi.org/10.1152/physrev.2001.81.4.1725 PMID: 11581501

70. Amann M. (2012) Significance of group III and IV muscle afferents for the endurance exercising human.

Clin Exp Pharmacol Physiol. 39(9):831–835. https://doi.org/10.1111/j.1440-1681.2012.05681.x PMID:

22300329

71. Semmler JG, Nordstrom MA. (1998) Motor unit discharge and force tremor in skill- and strength-trained

individuals. Exp Brain Res. 119(1):27–38. PMID: 9521533

72. Contessa P, Adam A, De Luca CJ. (2009) Motor unit control and force fluctuation during fatigue. J Appl

Physiol (1985). 107(1):235–243.

73. Torres R, Vasques J, Duarte JA, Cabri JM. (2010) Knee proprioception after exercise-induced muscle

damage. Int J Sports Med. 31(6):410–415. https://doi.org/10.1055/s-0030-1248285 PMID: 20301043

74. Murayama M, Nosaka K, Yoneda T, Minamitani K. (2000) Changes in hardness of the human elbow

flexor muscles after eccentric exercise. Eur J Appl Physiol. 82(5–6):361–367. https://doi.org/10.1007/

s004210000242 PMID: 10985588

75. De Luca CJ, Gonzalez-Cueto JA, Bonato P, Adam A. (2009) Motor unit recruitment and proprioceptive

feedback decrease the common drive. J Neurophysiol. 101(3):1620–1628. https://doi.org/10.1152/jn.

90245.2008 PMID: 18562556

Motor unit firing during muscle damage recovery

PLOS ONE | https://doi.org/10.1371/journal.pone.0195051 April 9, 2018 17 / 17

https://doi.org/10.4085/1062-6050-46.1.43
https://doi.org/10.4085/1062-6050-46.1.43
http://www.ncbi.nlm.nih.gov/pubmed/21214349
https://doi.org/10.1111/sms.12241
http://www.ncbi.nlm.nih.gov/pubmed/24798498
https://doi.org/10.1152/physrev.2001.81.4.1725
http://www.ncbi.nlm.nih.gov/pubmed/11581501
https://doi.org/10.1111/j.1440-1681.2012.05681.x
http://www.ncbi.nlm.nih.gov/pubmed/22300329
http://www.ncbi.nlm.nih.gov/pubmed/9521533
https://doi.org/10.1055/s-0030-1248285
http://www.ncbi.nlm.nih.gov/pubmed/20301043
https://doi.org/10.1007/s004210000242
https://doi.org/10.1007/s004210000242
http://www.ncbi.nlm.nih.gov/pubmed/10985588
https://doi.org/10.1152/jn.90245.2008
https://doi.org/10.1152/jn.90245.2008
http://www.ncbi.nlm.nih.gov/pubmed/18562556
https://doi.org/10.1371/journal.pone.0195051

