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Abstract. A Local Optima Network represents fitness landscape con-
nectivity within the space of local optima as a mathematical graph. In
certain other complex networks or graphs there have been recent obser-
vations made about inherent self-similarity. An object is said to be self-
similar if it shows the same patterns when measured at different scales;
another word used to convey self-similarity is fractal. The fractal dimen-
sion of an object captures how the detail observed changes with the scale
at which it is measured, with a high fractal dimension being associated
with complexity. We conduct a detailed study on the fractal nature of
the local optima networks of a benchmark combinatorial optimisation
problem (NK Landscapes). The results draw connections between frac-
tal characteristics and performance by three prominent metaheuristics:
Iterated Local Search, Simulated Annealing, and Tabu Search.
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1 Introduction

Weinberger and Stadler [1] noticed that certain fitness landscapes exhibit self-
similarity. They saw that if they increased landscape diameter, they observed
patterns of ruggedness that scaled in a way indicative of fractal geometry. In
particular, the landscapes showed evidence of having a multilevel structure. The
critical question is then whether we can exploit the fractal patterns.

The information used in the aforementioned study was obtained by conduct-
ing random walks on the fitness landscape at the solution level. Considering the
solution level to be the base of the search space, we can then consider fractal
patterns at higher levels of abstraction; to see the extent of fractal geometry in
a model of the local optima space would be desirable.

A local optima network [2] models the local optima level of a fitness landscape.
A network is formed by tracing the search connectivity between optima where
the network nodes are local optima. An edge traced between two nodes means
that the destination (optimum) can be reached from the source (optimum) by



carrying out a perturbation followed by hill-climbing. This measure of distance
captures the notion of neighbourhood in the space of local optima.

Conducting a fractal analysis of a local optima network would give informa-
tion about patterns at a raised level of abstraction in the fitness landscape. Of
particular interest is the fractal dimension [3], hereafter denoted as FD. Here,
a non-integer dimension can be assigned to a shape as a measure of complex-
ity. This creates an index which quantifies how detail in an object is observed
when the scale at which it is measured is changed. Figures 1a and 1b provide
examples of this; both are shapes with FD somewhere between one and two, but
they have markedly different complexities. We can see that the latter displays
a significantly more complex pattern composition, containing much more detail
at different scales than the former and filling much more of the overall space
which it occupies. The shape in Fig. 1a contains a lot of empty space — a lack
of ‘space-filling’ nature — and therefore low fractional dimension. Another per-
spective is to consider how different from the one-dimensional line the two are.
Figure 1a is nearer to one dimension than two, at 1.1292; indeed, we can see
that it is effectively a line with some ruggedness or detail. Figure 1b is almost
two-dimensional, but is missing complicated segments.

(a) Gosper Island: FD
1.1292

(b) Hexaflake: FD
1.7712

Fig. 1. Two fractals with different dimensions.

The study of complex networks as a field in its own right has created a wealth
of measures to understand them, including algorithms for calculating the FD of
a complex network. One of these, termed a ‘box-counting’ algorithm [4], tries to
describe a network with as few boxes as possible, with each box containing nodes
which are within m links of each other. The parameter m corresponds to the
length of measure used in the equation to obtain fractal dimension. The number
of boxes (as a proportion of the size of the network) is taken to be the extent of
detail observed in the shape when using the scale m.

Because this method is agnostic of the semantics of the network, it can also
be used to calculate the FD of a local optima network. However, distance be-
tween nodes is not the only important consideration. Node fitness, as well as
link-distance, is of great significance in a local optima network. Accordingly, a
modification of the box-count algorithm is required. A threshold should be in-
corporated, for the maximum fitness difference allowed between nodes which can
be boxed together. In this way, nodes which satisfy both a distance and fitness
criterion can be grouped, and the FD calculated from the end result.



This study is intended as an introductory investigation into the use of fractal
measures in the space of local optima in a fitness landscape. We compute the FD
and associated metrics for a set of NK Landscape instances. The obtained results
suggest links between the fractal geometry in the networks and the empirical
difficulty for search algorithms.

2 Background

2.1 The Study of Fitness Landscapes

A fitness landscape [5] is a triplet (S,N, f) where S is the set of all possible
solutions, N : S −→ 2S , a neighbourhood structure, is a function that assigns
to every s ∈ S a set of neighbours N(s), and f is a fitness (objective value)
function such that f : S −→ R, where the fitness value is a real number that
can be viewed as the height of a given solution in the landscape.

2.2 The Local Optima Network

A local optima network is a representation of the fitness landscape at the level
of local optima. We now formally define the constituent parts of a local optima
network, before proceeding to describe the object as a whole.

Nodes. The set of nodes, LO, is comprised of local optima, i.e. a solution loi
satisfies the condition that it has superior fitness to all other solutions in its
neighbourhood: ∀n ∈ N(loi) : f(loi) ≥ f(n), where N(loi) is the neighbourhood
and n is a single neighbour.

Edges. The set of edges, E, consists of directed and weighted links. An edge is
traced if the probability of ‘escape’ — using perturbation and then hill-climbing
— from the source node to the destination is greater than zero, and is weighted
with the probability. Formally, local optima loi and loj form the source and
destination of an edge iff wij > 0.

Local optima network (LON). The weighted local optima network LON =
(LO,E) is a graph where the nodes loi ∈ LO are the local optima, and there
exists an edge eij ∈ E, with weight wij , between two nodes loi and loj if wij > 0.
Note that wij may be different than wji. Thus, two weights are needed in general,
and so a local optima network is an oriented transition graph.

2.3 The Fractal Dimension

This study aims to draw links between the fractal detail in local optima net-
works and search success on the underlying problem instances. Specifically, the
fractal dimension [3] (FD) is used to characterise the dimensional complexity
of the networks. To understand FD we start with the more familiar notion of



typical geometric dimensions; the one-dimensional line, for example, or the two-
dimensional square. A line is one-dimensional, as if we try to measure it with a
scale half the length of the line (we zoom in by a factor of two), we measure or
obtain exactly two copies of the original shape. In general, to calculate dimen-
sion for a given object, we need the scaling factor (two in this example), and the
extent of detail observed using that scale (here, the two copies). The result is
found by solving for x the equation

scalex = detail (1)

which in this example is 2x=2. The value for x is one, meaning it is a one-
dimensional object.

It follows that a shape containing fractal geometry does not have an integer
dimension. Instead it has a fractal dimension, which lies somewhere on the real
number line. An object with dimension just above an integer (for example 2.12)
is only slightly more complex or detailed than the dimension below. Conversely,
a dimension just below an integer (e.g. 2.89) indicates a shape with that di-
mension but with complicated patterns removed. In essence, fractal dimension
is a complexity index and captures how detail in an object relates to a scaling
factor. Another way to approach this notion is to consider how well a pattern
fills the geometric space where it resides. For example, recall Fig. 1b, where the
patterns fill much of the possible space. This shape has a high FD; the way it fills
space is much more complicated than a shape with a smaller integer dimension.
Rearranging Equation 1, we obtain the fractal dimension:

FD =
log(detail)

log(scale)
(2)

2.4 Fractals and Fitness Landscapes

Weinberger and Stadler [1] noticed self-similar behaviour in certain fitness land-
scapes. They used the well-known autocorrelation metric [6] in their analysis.
The way autocorrelation scaled with landscape diameter was indicative, in some
cases, of fractal geometry.

Several years later, Locatelli conducted a detailed study [7] on the phe-
nomenon of patterns re-appearing at different levels of abstraction in fitness
landscapes. They termed this the ‘multilevel’ structure of optimisation prob-
lems, and noted that it could be exploited.

Zelinka et al. [8] also demonstrated the potential of using fractal analy-
sis for learning more about the nature of fitness landscapes, focusing on low-
dimensional, continuous spaces.

Until now, there has been a lack of study regarding fractal patterns within
a local optima network. One consideration is how precisely to define the dimen-
sionality: a complex network is quite different to the typical two-dimensional
pictures used in fractal analysis. Methods have been proposed for calculating
dimension in the specific case of a network. In this study, a ‘box-counting’ algo-
rithm is used and extended to cater for the local optima network case.



2.5 Fractals and Complex Networks

We use a state-of-the-art ‘box-counting’ methodology to define the FD of a com-
plex network, proposed in Song et al. [4]. The process iteratively boxes together
nodes which are within m links of each other, with the aim of describing the
network in as few boxes as possible. The parameter m is an integral part of
computing the FD: it is one of the two values needed for the relation between
detail and scale, corresponding to the scale parameter introduced in Section 3.
For detail, we calculate the number of boxes (when the algorithm has converged)
as a proportion of total network size, P .

In the specific case of a local optima network, link-distance is not the only
consideration when boxing together nodes. Crucial information about landscape
structure is encoded in the fitness values of the local optima. The process of
boxing identifies how much detail is observed measuring the object at a certain
scale. Omitting the fitness values would ignore fitness detail (for example, a large
fitness difference between two optima near each other in the space). Therefore,
an extension of the algorithm is required. Two nodes should be boxed together
only if they satisfy both a distance and a fitness condition. More specifically,
two nodes, loi and loj , can be boxed together in the algorithm if the distance
between them is less than m, where m is the maximum links allowed between
nodes boxed together, and |f(loi)−f(loj)| < ε, where ε is the maximum allowed
fitness disparity. In subsequent text, we denote the link distance between two
nodes in the network as d(loi, loj).

Pseudo-code for iterative box-counting of a local optima network is shown
in Algorithm 1. The notation mass(v) is used to represent the ‘mass’ of the
network which can be covered using the vertex v as a reference point. Upon
convergence of the algorithm, we need to examine the relation between detail
and scaling to obtain the FD. We have the number of boxes needed, b, which we
can take as a proportion of the network as P . For the scaling factor, we use the
link-distance parameter m. This corresponds to the level of abstraction being
applied to measure the shape. We insert P and m into Equation 2 to derive the
FD of the local optima network.

3 Experimental Setting

3.1 Test Problem

We consider instances from a benchmark combinatorial optimisation domain
in this work: the NK Landscape model. The instances are from the work by
Ochoa et al. [2]. The problems are deliberately small in size, such that a full
enumeration of the local optima is possible. This is particularly necessary due
to the introductory nature of this study into whether fractal analysis of local
optima networks is helpful.

NK Landscapes are a family of synthetic fitness functions. They give rise to
fitness landscapes which can be tuned from completely smooth to completely
random. There are two parameters: N and K. Solutions are binary-encoded and



of length N. The parameter K dictates how many of the binary variables are
dependent on each other — epistasis. Each bit has a numeric value assigned from
a uniform distribution of floating-point numbers. The fitness of a given solution,

Algorithm 1 Box-counting a Local Optima Network
Initialisation:
V,CV,NCV = nodes in network, center nodes, non-center nodes
CV = [ ], NCV = V
Cov,NCov = covered nodes, non covered nodes
NCov = V,Cov = [ ]
Stage 1:
repeat

for v in NCV do
mass(v) = count(v′in NCov where d(v, v′) < mb and diff(fv, fv′) < ε)

end for
next.center = v where mass(v) == max(mass(v ∈ NCV ))
for v in NCov do

distance = d(next.center, v)
e = diff(f(next.center), f(v))
if e < ε and distance < mB then:

NCov = NCov − v
end if

end for
until ∀v ∈ V , v ∈ Cov or v ∈ CV
Stage 2:
for c in CV do

id(c) = generate(distinct id)
for v in V do

lowest = lowest combined fitness-distance and link-distance seen so far
closest = centre node which is closest
for c in CV do

distance = d(v,c), e = diff(fv, fc)
if distance+ e < lowest and distance < mB then:

closest = c
lowest = distance+ e

end if
end for
closest.centers[v] = lowest

end for
end for
NCov = NCov according to closest.centers values (ascending)
for for v in NCV do

v′ = neighbour of v with lower value in closest.centers array
id(v) = id(v′)
remove v from NCV

end for



S, is the average of the fitness contributions of the N bits:

F (S) =

i∑
f(si) (3)

when calculating the contribution of a bit, si, the values of K other bits are
considered:

f(s(i)) = f(si, s
i
1, ..., s

i
k) (4)

Here we use N=18, and K={2,4,6,8}, with 30 instances for each K, for a total of
120. NK Landscapes are often used as a test-bed for new fitness landscape tech-
niques because ruggedness can be introduced in a controlled way, by increasing
the value for K.

3.2 Metaheuristics

For the fractal analysis to be useful, a view of the relationship between FD and
search difficulty in the underlying problem instances should be sought. However,
the notion of difficulty is subjective to the algorithm used. We deploy common
trajectory-based metaheuristics: iterated local search (ILS), simulated annealing
(SA) and tabu search (TS). For the local search element of all three algorithms, a
bit-flip is deployed. For the perturbation in the case of the ILS, this mechanism is
doubled. The SA parameters are those suggested in Thomson et al. [9] in a study
on NK Landscapes. The start and end temperatures are 1.4 and 0.0, respectively;
α is set at 0.8; and the maximum iterations at the same temperature is 262. The
length of the tail in the tabu search is set at n, i.e. 18, the length of the solutions.

All three metaheuristics were implemented with Paradiseo [10], an open-
source package in C++, and were run 1000 times each per problem instance.

3.3 Fractal Analysis

To calculate the FD of our networks, we employ Algorithm 1: a box-counting
algorithm specialised to the local optima network case. An implementation for
box-counting a network in C was obtained from the work in Song et al. [4].

As we stated in Section 2.5, two important parameters exist in our consid-
eration of FD in the specific case of a local optima network. The parameter m,
used in the general box-count algorithm, controls edge-distance between boxed
nodes; we also have the parameter ε, which is the maximum fitness difference
allowed between boxed nodes. This should operate on normalised fitness ranges,
such that a single ε value can be applied to all networks. A fitness value can be
normalised as f = f−E(f)

sd(f) , where E(f) is the expected fitness value and sd(f)
is the standard deviation. With this, the mean becomes zero while the standard
deviation is one.



4 Results

We compute the FD of the local optima networks for each of the 120 problem
instances considered. This is done using the modified box-counting algorithm
outlined in Section 3.3, and represented in Algorithm 1. For each network, we
compute 20 FDs, differentiated by setting the fitness-mandate parameter ε, which
is in the range [0.0, 1.0] in step sizes of 0.05.

The three metaheuristics described in Section 3.2 are applied to each prob-
lem instance. Then, with the fractal information, the feature information and
the performance data from the metaheuristics we can proceed to examine the
relationships between these measures. The ultimate aim of the experiments in
this study was to assess whether fractal analysis of a local optima network could
be helpful.

4.1 Fractals and Epistasis

Firstly, we examine the distribution of FD in the local optima networks. The
instances can be split by their epistasis level, i.e. how many variables are in-
terdependent in a solution. Figure 2 shows box-plots for each of the four levels
used.

We can see from the Fig. 2 that the FDs of the local optima networks increase
with the epistatic parameter K, which is known to increase ruggedness and
randomness in NK Landscapes. We can see this by, for example, comparing
the interquartile range in category K2 with category K4. This would suggest
that more ordered, predictable problem instances give rise to lower dimension
objects. The interquartile range for the K=2 instances spans ∼1.008 to ∼1.379.
The median of the K2 LON dimension is 1.260. These are objects between one
and two-dimensional; somewhere between a line and a 2-d shape. The dimension
is closer to one, implying a structure akin to a 2d shape but with lots of parts
removed from it, bringing it closer to resembling a line. In our context, the
shapes we are dealing with are local optima networks, which represent search
connectivity between local optima. A dimension such as this might imply these
networks form somewhat linear sequences, with some deviation.

The instances with K=4 generally have higher fractional dimension, with
the interquartile range spanning ∼1.363 to ∼1.878. Again this implies that the
networks are located between one and two dimensions. This time they are closer
to two, with a median of 1.623. The fractal in Fig. 3 has dimension ∼1.585. We
can view it as a 2-d triangle which has complicated portions cut out of it. Of
course, the structure of a local optima network with this dimension is unlikely
to look like this; however, the way the detail in local optima network scales is
similar to this fractal. Having a dimension of around 1.585 implies that when we
reduce our scale to measure the shape in Fig. 3 to one fourth (a scaling factor of
four), we obtain nine copies of our original shape. Using Equation 1, i.e. solving
4x = 9 for x, does not result in an integer dimension, but instead ∼1.585, a
fractional dimension.



Fig. 2. Boxplots showing the FD of the local optima networks, grouped by epistasis
level; 30 instances of each group are considered for each ofK={2,4,6,8}, all with N=18.

Fig. 3. A shape with dimension between one and two. Sierpinski triangle — FD ∼1.585.

Consider again Fig. 2, this time for the K=6 instances. Here the interquartile
range spans ∼1.779 to ∼2.126, with a median value of ∼1.893. This tells us that
the networks of local optima are either highly complex in being just below two-
dimensional (see Fig. 1b for a fractal like this), or three-dimensional with a lot
of the shape absent, leaning towards a 2d shape.

Notice that the increase in dimension is stark between the K6 and K8 groups.
While the majority of dimensions in the lower-epsistasis LONs were somewhere
between one and two, these highly rugged fitness landscapes appear to give rise
to local optima networks with dimension mostly between three and four. Of
course, this situation is virtually impossible to visualise or conceptualise.

4.2 Fractal Dimension and Search Performance

We now consider how the FD of local optima networks is connected to empirical
search difficulty. To gain insight into this, we must select appropriate measures
of hardness.



For search algorithms, two things matter: efficiency and effectiveness. To
quantify these, we should have a measure of success (or lack thereof) and a
measure of speed. Here we use a proportional measure to represent success: the
number of runs which reached the global optimum divided by the total runs.
To measure efficiency, we consider the number of function evaluations used in
successful runs.

Correlation Study. A logical place to start when contrasting problem features
with performance is by correlation study. We compute the Spearman correlation
coefficient and corresponding p-value for the observed fractal features and the
performance measures.

In the interest of space, Fig. 4 shows the correlation matrix for a selected
sample of features of the 120 considered problems. We show the correlation coef-
ficient between variables (upper triangle of plot) density plots (middle diagonal),
and scatter-plots (lower triangle). In the case of the density and scatter-plots,
difference in colour indicates a split into epistasis level, as outlined in the caption.
The size of the text is proportional to the strength of the absolute value of the
correlation. An indication of p-value level is given by the asterisk, as described
in the caption.

We include all measures of metaheuristic performance in the variable set.
There are two metrics for each algorithm, giving six in total; one each for ef-
ficiency, and one for effectiveness. Indication of the measure is given after the
abbreviation for the algorithm name; for example, ILS.s is the success rate of
the ILS, while ILS.t is the run-time.

The remaining variables included are fitness landscape features. We are par-
ticularly interested in those relating to fractal geometry in the local optima
networks. In our experiments, we computed correlations between performance
and dimension at four different values for ε, namely {0.25,0.50,0.75,1.00}, oper-
ating on normalised fitness ranges. The lower the value of this parameter, the
more strict the fractal analysis algorithm is when boxing together nodes: recall
that they are considered neighbours iff d(loi, loj) <d and |f(loi)− f(loj)| <ε. If
ε is nearer to 1.0, the condition for grouped nodes is more lenient.

In the Figure, we show FD correlations with this parameter set at 0.5 (FD1 )
and 1.0 (FD2 ), but 0.25 and 0.75 showed similar trends.

In addition to the fractal dimension relationships, we show those of the
number of local optima (num.optima) and of the number of landscape funnels
(num.funnels). A funnel is a basin of attraction at the level of local optima and
has been linked to search complications in NK Landscape problems [9].

Surveying the correlation matrix, the drastic effect of the parameter ε — the
local optima network-specific detail parameter — on the resultant FD can be seen
as quite apparent when comparing the two FD columns. We can check against
the intersections with the performance metric rows. When set at 0.50 (FD1 ),
dimension is positively associated with success rate for all three algorithms. In
all cases, there appears to be statistical validity. Looking at the runtime rows, we
can see that there is a positive connection with SA runtime, but negative ones
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Fig. 4. Correlation matrices of performance metrics and landscape features (see facet
titles). Lower triangle: pairwise scatter plots. Diagonal: density plots. Upper triangle:
pairwise Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05. Colour
represents instances split into different levels of epistasis (K ∈ {2, 4, 6, 8}).

with ILS and TS. All relationships between this particular FD and performance
have ∗∗p < 0.01.

If we now consider the other FD, where ε is set leniently at 1.0 (column FD2 ),
there are quite different results. For the two algorithms based on single-strength
mutation (SA; TS), there appears to be a statistically significant connection
with success rate. For all algorithms, the correlation with runtime is positive;
however, of these, only that of SA is significant, and indeed this is one of the
strongest relationships on the matrix.



Regression Models. Using linear models which include the FD as a predictor
and a performance metric as the dependent variable allows us to further examine
connections with search difficulty. We can normalise the predictors used as p =
p−E(p)
sd(p) , where E(p) is the expected predictor value and sd(p) is the standard de-

viation. In this way, we can examine the strengths of contribution from problem
features and gain a view of how much variance seen in the response variable is
attributable to those we are interested in — the fractal measures.

Table 1. Predictor variables used in the regression models.

Notation Description

Optima Number of local optima
Funnels Number of basins of attraction occuring in the space of local optima
Fractal1 FD with fitness difference threshold ε set at 0.25 (strictest)
Fractal2 FD with fitness difference threshold ε set at 0.50
Fractal3 FD with fitness difference threshold ε set at 0.75
Fractal4 FD with fitness difference threshold ε set at 1.00 (most lenient)

Table 2. Linear mixed models. The dependent variables are respective metaheuristic
success rates. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

ILS SA TS

Predictor Estimate Estimate Estimate

Fractal Dim1 0.605(0.271)∗ 0.483(0.169)∗∗ 0.298(0.202)
Fractal Dim2 -0.313(0.202) −0.531(0.126)∗∗∗ 0.575(0.151)∗∗∗

Fractal Dim3 -0.098(0.145) -0.122(0.090) 0.164(0.108)
Fractal Dim4 0.023(0.083) 0.174(0.052)∗∗∗ 0.306(0.062)∗∗∗

Optima 0.000(0.000) 0.000(0.000) 0.000(0.000)∗

Funnels -0.003(0.001)∗∗∗ -0.004(0.000)∗∗∗ -0.004(0.001)∗∗∗

R2 0.380 0.709 0.685

Table 2 summarises three linear models: one for the success rate of each
metaheuristic considered. The predictors used are introduced in Table 1.

The model summaries include coefficent estimates, standard errors (shown
in parentheses), indication of p-value (see caption), and the adjusted R2 value
for the model.

Noteable results are shown in boldened text. Looking at the R2 values, we
can see that the ILS model is considerably weaker than those of the SA and TS.



Table 3. Linear mixed models. The dependent variables are respective metaheuristic
run-times. ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.

ILS SA TS

Predictor Estimate Estimate Estimate

Fractal Dim1 -0.183(0.481) -0.281(0.549) -0.409(0.504)
Fractal Dim2 -0.228(0.358) −1.994(0.409)∗∗∗ −0.854(0.376)∗
Fractal Dim3 -0.025(0.257) -0.055(0.293) -0.133(0.269)
Fractal Dim4 0.402(0.147)∗∗ 1.512(0.168)∗∗∗ 0.538(0.154)∗∗∗

Optima 0.000( 0.000)∗∗ -0.001(0.000)∗∗∗ 0.001(0.000)∗∗∗

Funnels 0.049(0.001)∗∗∗ 0.000(0.001) 0.056(0.001)∗∗∗

R2 0.9743 0.918 0.979

Nonetheless, there is one fractal metric which appears to have statistical signifi-
cance as a predictor in this model: Fractal Dim1, which is the FD when using the
‘strictest’ of the four values for ε. This predictor represents the dimensionality
of the network object if box-counting — the method for calculating FD — can
only box together nodes which are both sufficiently close in links and within 0.25
of each other in (normalised) fitness. In this model, the coefficient is positive;
this implies a higher value should be associated with a raised success rate by the
ILS.

The SA model, in the middle column, is the strongest of the three, with over
70% of variance in the success rate explained. Here, three of the four FDs have
statistical significance. Two are positive: the strictest value for ε, and the most
lenient. The dimension with ε set at 0.5, however, has a negative coefficient —
which is larger (in absolute value) than the other two.

If we now look at the TS summary, we can see from the R2 that this is a very
strong model. The fractal coefficients are positive without exception here. Two
are noteworthy: the dimension at the most lenient value for ε, and the dimension
with the value set at 0.5.

Table 3 summarises mixed models similar to those in Table 2, but this time
with run-time as the dependent, instead of success rate. Again the predictors
are described in Table 1. We can see from the R2 that these are better models
than when considering success rate, with over 90% of variance explained in all
three cases.

The ILS model is of particular interest, with an R2 of over 97%. The coeffi-
cients for the fractal predictors show the critical effect of the parameter ε. The
coefficients are all negative, except for the most lenient value, which is also the
only one with statistical significance. This implies a slower search in the case of
a LON with high FD if considering mostly link-distance.

If we now look to the middle column in Table 3, we can see that the SA model
is of very good fit. A similar trend to the ILS is seen: the fractal coefficients are



negative, except for the one with largest value for ε, which is significant, alongside
the dimension with it set at 0.5.

The final summary in the Table shows that the TS model is a extremely
strong, with∼98% of variance explained. Similarly to ILS and SA, the coefficients
for the fractal predictors are negative in the case of three out of four. Again, the
only exception is the dimension when using the largest value for ε. This predictor
has a p-value which indicates significance; as does the dimension when using 0.5,
which is larger in absolute value.

An important point in Tables 2 and 3 is that whenever fractal predictors
had p-values indicating significance, their coefficients were orders of magnitude
larger than those of the number of optima, or the number of funnels, even when
these also had acceptable p-values.

5 Discussion

5.1 The Fractal Shape of Local Optima Networks

In Section 4.1, we saw that the instances under study have a varied dimension
in their local optima networks.

The local optima networks which were extracted from instances with the
lowest level of epistasis (and therefore ruggedness) had a FD interquartile range
of ∼1.008 to ∼1.379. Clearly, most of these local optima networks are between
one and two dimensional in the way they fill space. Having a dimension just
above one implies a linear sort of structure, but with some extra pattern, such
that it cannot be classified as a one-dimensional line. An interpretation of this for
local optima networks is that the networks comprise a somewhat linear sequence
of local optima, with a little bit of deviation or detail.

The networks from theK=4 and 6 problems generally had higher dimensions.
Some of these were complex shapes between one and two dimensions (for exam-
ple, FD=1.89), implying a line with a substantial amount of extra detail. This
could mean that the networks are winding convoluted sequences, with spokes
leading off the main path. Some networks from these categories had dimensions
which were just above two. A fractional dimension just above an integer signi-
fies a low-complexity object. For our local optima networks, this could possibly
mean a low number of paths of local optima, with a bit of detail over and above
2d scaling.

The local optima networks which were extracted from the most rugged prob-
lems (K=8) are virtually impossible to properly envision, as the majority of
them had a FD greater than three. This being said, most were just above three,
indicating the detail in the objects scales mostly in the manner of a three-
dimensional object. It is possible that the three dimensions represent connecting
or intersecting paths of local optima.

5.2 Connections with Search Difficulty

In Section 4.2 we saw that there are connections between dimension in a local
optima network and search difficulty. When using ε=1.0, the calculated dimen-



sions were linked to a raised success rate and a prolonged search time in meta-
heuristics. Both phenomena could be explained if we recall that many of the
easier-instance LONs had dimension between one or two; in other words, the
dimension implies a linear, sequence-like structure, with some degree of extra
detail or pattern. The labyrinthine nature of the detail would explain the speed,
and the one-dimensional base could mean that search algorithms on the under-
lying instance manage to get through the sequence of local optima to the global
best.

Changing the value of the parameter ε changes the way the FDs are calcu-
lated and the results are markedly different. We saw in Table 3 that when values
{0.25,0.50,0.75} were used during the calculations, instead of 1.00, the corre-
sponding network dimensions were associated with a quicker runtime in search
algorithms. This is the opposite result to that obtained using ε=1.00. The dif-
ference lies in the boxing of nodes in the box-counting algorithm. With stricter
criteria for nodes being boxed together, the network is partitioned in a different
way. A high fractional dimension, therefore, might be associated with ‘nearby’
nodes (in edge-distance) not satisfying the fitness condition. Nearby nodes such
as these might form paths with big fitness ‘jumps’ which might explain the
quicker behaviour of search algorithms.

6 Conclusions and Future Work

We have conducted an empirical and introductory study on the potential for
use of fractal analysis in local optima networks. A benchmark combinatorial
problem, the NK Landscape Model, was used as a case study. Various extents
of ruggedness were used.

The results indicate that when we consider our local optima networks to be
general complex networks, a high FD relates to increased run-time for prominent
metaheuristics, but also an enhanced rate of hitting the optimum. Accordingly,
fractal analysis seems to capture a unique phenomenon in a local optima network:
previously-proposed metrics have been linked to lowered performance only.

Another important result is the critical effect of the parameter specific to the
case of a network composed of local optima, denoted here as ε. In particular,
networks with high dimension when considering fitness as part of the scale used,
were shown to be associated with increased efficiency in ILS and TS. We argue
that this may be due to ‘close’ local optima being associated with large fitness
jumps.

While the focus was on small problems here, there is no reason that fractal
analysis could not be deployed on sampled local optima networks, given a ro-
bust sampling algorithm. With this new insight into the ‘middle level’ in a search
space — the space of local optima — we can proceed further down this avenue
of possibility. The more traditional (agnostic of the semantics of the network)
fractal analysis captures a unique element of the local optima network: a phe-
nomenon which is linked to lowered efficiency but raised effectiveness, and which
we argue merits further investigation. Furthermore, the addition of the fitness-



mandate condition for the special case of a local optima network gives valuable
insight into the importance of optima connectivity and fitness distribution.
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