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Abstract

In this paper, we address the challenging task of simultaneously optimizing

(i) the weights of a neural network, (ii) the number of neurons for each hid-

den layer, and (iii) the subset of active input features (i.e., feature selection).

While these problems are traditionally dealt with separately, we propose an

efficient regularized formulation enabling their simultaneous parallel execu-

tion, using standard optimization routines. Specifically, we extend the group

Lasso penalty, originally proposed in the linear regression literature, to im-

pose group-level sparsity on the network’s connections, where each group is

defined as the set of outgoing weights from a unit. Depending on the specific

case, the weights can be related to an input variable, to a hidden neuron, or

to a bias unit, thus performing simultaneously all the aforementioned tasks in

order to obtain a compact network. We carry out an extensive experimental
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evaluation, in comparison with classical weight decay and Lasso penalties,

both on a toy dataset for handwritten digit recognition, and multiple realis-

tic mid-scale classification benchmarks. Comparative results demonstrate the

potential of our proposed sparse group Lasso penalty in producing extremely

compact networks, with a significantly lower number of input features, with

a classification accuracy which is equal or only slightly inferior to standard

regularization terms.

Keywords: Deep networks, Group sparsity, Pruning, Feature selection

1. Introduction

Recent growing interest in deep learning has made it feasible to train

very deep (and large) neural networks, leading to remarkable accuracies in

many high-dimensional problems including image recognition, video tagging,

biomedical diagnosis, and others [1, 2, 3, 4]. While even five hidden layers

were considered challenging until very recently, today simple techniques such

as the inclusion of interlayer connections [5] and dropout [6] allow to train

networks with hundreds (or thousands) of hidden layers, amounting to mil-

lions (or billions) of adaptable parameters. At the same time, it becomes

extremely common to ‘overpower’ the network, by providing it with more

flexibility and complexity than strictly required by the data at hand. Argu-

ments that favor simple models instead of complex models for describing a

phenomenon are quite known in the machine learning literature [7]. However,

this is actually far from being just a philosophical problem of ‘choosing the

simplest model’. Having too many weights in a network can clearly increase

the risk of overfitting; in addition, their exchange is the main bottleneck in
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most parallel implementations of gradient descent, where agents must for-

ward them to a centralized parameter server [8, 9]; and finally, the resulting

models might not work on low-power or embedded devices due to excessive

computational power needed for performing dense, large matrix-matrix mul-

tiplications [10].

In practice, current evidence points to the fact that the majority of

weights in most deep networks are not necessary to its accuracy. As a rep-

resentative example, Denil et al. [11] demonstrated that it is possible to

learn only a small percentage of the weights, while the others can be pre-

dicted using a kernel-based estimator, resulting in most cases in a negligible

drop in terms of classification accuracy. Similarly, in some cases it is pos-

sible to replace the original weight matrix with a low-rank approximation,

and perform gradient descent on the factor matrices [12]. Driven by these

observations, recently the number of works trying to reduce the network’s

weights have increased drastically (some of these works are reviewed more

in depth in Section 5). Most of them either require strong assumptions on

the connectivity (e.g, the low-rank assumption), multiple training steps, e.g.

[13], or entirely separate optimization problems, e.g. [14].

When considering high-dimensional datasets, an additional problem is

that of feature selection, where we search for a small subset of input features

that brings most of the discriminative information [19]. Feature selection and

pruning are related problems: adding a new set of features to a task generally

results in the need of increasing the network’s capacity (in terms of number

of neurons), all the way up to the last hidden layer. Similarly to before, there

are countless techniques for feature selection (or, in alternative, dimensional-
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ity reduction of the input vector via linear or nonlinear mappings), including

principal component analysis, mutual information [20], autoencoders, and

many others. What we obtain, however, is a rather complex workflow of ma-

chine learning primitives: one algorithm to select features; an optimization

criterion for training the network; and possibly another procedure to com-

press the weight matrices. This raises the following question, which is the

main motivation for this paper: is there a principled way of performing all

three tasks simultaneously, by minimizing a properly defined cost function?

This is further motivated by the fact that, in a neural network, pruning a

node and deleting an input feature are almost equivalent problems. In fact, it

is customary to consider the input vector as an additional layer of the neural

network, having no ingoing connections and having outgoing connections to

the first hidden layer. In this sense, pruning a neuron from this initial layer

can be considered the same as deleting the corresponding input feature.

Currently, the only principled way to achieve this objective is the use of `1

regularization, wherein we penalize the sum of absolute values of the weights

during training. The `1 norm acts as a convex proxy of the non-convex, non-

differentiable `0 norm [21]. Its use originated in the linear regression routine,

where it is called the Lasso estimator, and it has been widely popularized

recently thanks to the interest in compressive sensing [22, 23]. Even if it

has a non differentiable point in 0, in practice this rarely causes problems

to standard first-order optimizers. In fact, it is common to simultaneously

impose both weight-level sparsity with the `1 norm, and weight minimization

using the `2 norm, resulting in the so-called ‘elastic net’ penalization [24].

Despite its popularity, however, the `1 norm is only an indirect way of solving
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the previously mentioned problems: a neuron can be removed if, and only if,

all its ingoing or outgoing connections have been set to 0. In a sense, this is

highly sub-optimal: between two equally sparse networks, we would prefer

one which has a more structured level of sparsity, i.e. with a smaller number

of neurons per layer.

In this paper, we show how a simple modification of the Lasso penalty,

called the ‘group Lasso’ penalty in the linear regression literature [25, 26],

can be used efficiently to this end. A group Lasso formulation can be used

to impose sparsity on a group level, such that all the variables in a group are

either simultaneously set to 0, or none of them are. An additional variation,

called the sparse group Lasso, can also be used to impose further sparsity

on the non-sparse groups [27, 28]. Here, we apply these ideas by considering

all the outgoing weights from a neuron as a single group. In this way, the

optimization algorithm is able to remove entire neurons at a time. Depending

on the specific neuron, we obtain different effects, corresponding to what we

discussed before: feature selection when removing an input neuron; pruning

when removing an internal neuron; and also bias selection when considering

a bias unit (see next section). The idea of group `1 regularization in machine

learning is quite known when considering convex loss functions [29], including

multikernel [30] and multitask problems [31]. However, to the best of our

knowledge, such a general formulation was never considered in the neural

networks literature, except for very specific cases. For example, Zhao et al.

[32] used a group sparse penalty to select groups of features co-occurring in

a robotic control task. Similarly, Zhu et al. [33] have used a group sparse

formulation to select informative groups of features in a multi-modal context.

5



Liu et al. [34] apply a similar formulation to the specific case of convolutional

networks.

On the contrary, in this paper we employ the group Lasso formulation as

a generic tool for enforcing compact networks with a lower subset of selected

features. Our experimental results show that best results are obtained using

the sparse group term, with comparable accuracy to `2-regularized and `1-

regularized networks, while simultaneously reducing, by a large margin, the

number of neurons in every layer. In addition, the regularizer can be readily

implemented in most existing software libraries, and it does not increase

the computational complexity with respect to the traditional weight decay

technique.

Outline of the paper

The paper is organized as follows. Section 2 describes standard techniques

for regularizing a neural network during training, namely `2, `1 and composite

`2/`1 terms. Section 3 describes our novel group Lasso and sparse group

Lasso penalties, introducing the concept of groups in this context. Next, we

evaluate our algorithms in Section 4 on a simple toy dataset of handwritten

digits recognition, followed by multiple realistic experiments with standard

deep learning benchmarks. Section 5 presents a further review of related

pruning techniques, followed by some concluding remarks and future work

proposals in Section 6.

Notation

In the rest of the paper, vectors are denoted by boldface lowercase letters,

e.g. a, while matrices are denoted by boldface uppercase letters, e.g. A. All
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vectors are assumed column vectors. The operator ‖·‖p is the standard `p

norm on an Euclidean space. For p = 2 this is the Euclidean norm, while

for p = 1 we obtain the Manhattan (or taxicab) norm defined for a generic

vector β ∈ RB as ‖β‖1 =
∑B

k=1 |βk|.

2. Weight-level regularization for neural networks: overview of

conventional approaches

Let us denote by y = f(x;w) a generic deep neural network, taking as

input a vector x ∈ Rd, and returning a vector y ∈ Ro after propagating it

through H hidden layers. The vector w ∈ RQ is used as a shorthand for

the column-vector concatenation of all adaptable parameters of the network.

The generic kth hidden layer, 1 ≤ k ≤ H + 1, operates on a Lk-dimensional

input vector hk and returns an Lk+1-dimensional output vector hk+1 as:

hk+1 = gk (Wkhk + bk) , (1)

where {Wk,bk} are the adaptable parameters of the layer, while gk(·) is a

properly chosen activation function to be applied element-wise. By conven-

tion we have h1 = x. For training the weights of the network, consider a

generic training set of N examples given by {(x1,d1) , . . . , (xN ,dN)}. The

network is trained by minimizing a standard regularized cost function:

w∗ = arg min
w

{
1

N

N∑
i=1

L(di, f(xi;w)) + λR(w)

}
, (2)

where L(·, ·) is a proper cost function, R(·) is used to impose regularization,

and the scalar coefficient λ ∈ R+ weights the two terms. Standard choices for
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L(·, ·) are the squared error for regression problems, and the cross-entropy

loss for classification problems [35].

By far the most common choice for regularizing the network, thus avoiding

overfitting, is to impose a squared `2 norm constraint on the weights:

R`2(w) , ‖w‖22 . (3)

In the neural networks’ literature, this is commonly denoted as ‘weight decay’

[36], since in a steepest descent approach, its net effect is to reduce the weights

by a factor proportional to their magnitude at every iteration. Sometimes it

is also denoted as Tikhonov regularization. However, the only way to enforce

sparsity with weight decay is to artificially force to zero all weights that are

lower, in absolute terms, than a certain threshold. Even in this way, its

sparsity effect might be negligible.

As we stated in the introduction, the second most common approach to

regularize the network, inspired by the Lasso algorithm, is to penalize the

absolute magnitude of the weights:

R`1(w) , ‖w‖1 =

Q∑
k=1

|wk| . (4)

The `1 formulation is not differentiable at 0, where it is necessary to resort

to a subgradient formulation. Everywhere else, its gradient is constant, and

in a standard minimization procedure it moves each weight by a constant

factor towards zero (in the next section, we also provide a simple geometrical

intuition on its behavior). While there exists customized algorithms to solve

non-convex problems with `1 regularization [37], it is common in the neural
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networks’ literature to apply directly the same first-order procedures (e.g.,

stochastic descent with momentum) as for the weight decay formulation. As

an example, all libraries built on top of the popular Theano framework [38]

assigns a default gradient value of 0 to terms such that wk = 0. Due to this, a

thresholding step after optimization is generally required also in this case to

obtain precisely sparse solutions [39], although the resulting level of sparsity

is quite higher than using weight decay.

One popular variation is to approximate the `1 norm by a convex term,

e.g. ‖w‖1 ≈
∑Q

k=1

√
w2
k + β for a sufficiently small scalar factor β, to obtain

a smooth problem. Another possibility is to consider a mixture of `2 and `1

regularization, which is sometimes denoted as elastic net penalization [24].

The problem in this case, however, is that it is required to select two different

hyper-parameters for weighting differently the two terms.

3. Proposed neuron-level regularization with group sparsity

3.1. Formulation of the algorithm

Both `2 regularization in (3) and `1 regularization in (4) are efficient for

preventing overfitting, but they are not optimal for obtaining compact net-

works. Generally speaking, a neuron can be removed from the architecture

only if all its connections (either ingoing or outgoing) have been zeroed out

during training. However, this objective is not actively pursued while min-

imizing the cost in (2). Between the many local minima, some might be

equivalent (or almost equivalent) in terms of accuracy, while corresponding

to more compact and efficient networks. As there is no principled way to

converge to one instead of the other, when using these kind of regulariza-
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tions the resulting network’s design will simply be a matter of initialization

of the optimization procedure.

The basic idea of this paper is to consider group-level sparsity, in order

to force all outgoing connections from a single neuron (corresponding to a

group) to be either simultaneously zero, or not. More specifically, we consider

three different groups of variables, corresponding to three different effects of

the group-level sparsity:

1. Input groups Gin: a single element gi ∈ Gin, i = 1, . . . , d is the vector

of all outgoing connections from the ith input neuron to the network,

i.e. it corresponds to the first row transposed of the matrix W1.

2. Hidden groups Gh: in this case, a single element g ∈ Gh corresponds

to the vector of all outgoing connections from one of the neurons in

the hidden layers of the network, i.e. one row (transposed) of a matrix

Wk, k > 1. There are
∑H+1

k=2 Nk such groups, corresponding to neurons

in the internal layers up to the final output one.

3. Bias groups Gb: these are one-dimensional groups (scalars) corre-

sponding to the biases on the network, of which there are
∑H+1

k=1 Nk.

They correspond to a single element of the vectors {b1, . . . ,bH+1}.

Overall, we have a total of G = 2
∑H+1

k=1 Nk groups, corresponding to three

specific effects on the resulting network. If the variables of an input group

are set to zero, the corresponding feature can be neglected during the predic-

tion phase, effectively corresponding to a feature selection procedure. Then,

if the variables in a hidden group are set to zero, we can remove the corre-

sponding neuron, thereby obtaining a pruning effect and a thinner hidden

layer. Finally, if a variable in a bias group is set to zero, we can remove the
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Figure 1: Schematic representation of a group Lasso regularization with two inputs (top),
two hidden neurons with biases (middle), and one output (bottom). We have three groups
of connections. Green: input groups; blue: hidden groups; red: bias groups.

corresponding bias from the neuron. We note that having a separate group

for every bias is not the unique choice. We can consider having a single bias

unit for every layer feeding every neuron in that layer. In this case, we would

have a single bias group per layer, corresponding to keeping or deleting every

bias in it. Generally speaking, we have not found significant improvements

in one way or the other.

A visual representation of this weight grouping strategy is shown in Fig.

1 for a simple network with two inputs (top of the figure), one hidden layer

with two units (middle of the figure), and a single output unit (bottom of

the figure). In the figure, input groups are shown with a green background;

hidden groups (which in this case have a single element per group) are shown

with a blue background; while the 3 bias groups are surrounded in a light

red background.

Let us define for simplicity the total set of groups as

G = Gin ∪ Gh ∪ Gb .
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Group sparse regularization can be written as [25]:

R`2,1(w) ,
∑
g∈G

√
|g| ‖g‖2 , (5)

where |g| denotes the dimensionality of the vector g, and it ensures that each

group gets weighted uniformly. Note that, for one-dimensional groups, the

expression in (5) simplifies to the standard Lasso. Similarly to the `1 norm,

the term in (5) is convex but non-smooth, since its gradient is not defined if

‖g‖2 = 0. The sub-gradient of a single term in (5) is given by:

∂
{√
|g| ‖g‖2

}
∂g

=


√
|g| g

‖g‖2
if g 6= 0{√

|g|t : ‖t‖2 ≤ 1
}

otherwise

. (6)

As for the `1 norm, we have found very good convergence behaviors using

standard first-order optimizers, with a default choice of 0 as sub-gradient in

the second case. Also here, a final thresholding step is required to obtain

precisely sparse solutions. Note that we have used the `2,1 symbol in (5) as

the formulation is closely related to the `2,1 norm defined for matrices.

The formulation in (5) might still be sub-optimal, however, since we lose

guarantees of sparsity at the level of single connections among those remain-

ing after removing some of the groups. To force this, we also consider the

following composite ‘sparse group Lasso’ (SGL) penalty [27, 28]:

RSGL(w) , R`2,1(w) +R`1(w) . (7)

The SGL penalty has the same properties as its constituting norms, namely, it
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Figure 2: Comparison between Lasso, group Lasso, and sparse group Lasso applied to a
single weight matrix. In gray we represent the removed connections.

is convex but non-differentiable. Differently from an elastic net penalization,

we have found that optimal results can be achieved by considering a single

regularization factor for both terms in (7). It is interesting to note that the

computational complexity of the different regularization terms (i.e., `2, `1, `2,1

and SGL) is equivalent and it is given by O(Q), where Q is the number of

NN’s parameters.

A visual comparison between `1, `2,1, and SGL penalizations is given

in Fig. 2. The dashed box represents one weight matrix connecting a 2-

dimensional input layer to a 5-dimensional output layer. In gray, we show

a possible combination of matrix elements that are zeroed out by the corre-

sponding penalization. The Lasso penalty removes elements without optimiz-

ing neuron-level considerations. In this example, we remove 4 connections

(thus obtaining a 40% level of sparsity), and we might remove the second
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(a) `2 norm (b) `1 norm (c) `2,1 norm

Figure 3: Isosurface for three different regularization terms, with µλ = 1. (a) Standard
squared `2 norm. (b) `1 norm enforcing sparsity. (c) `2,1 norm applied to the groups {1, 2}
and {3} (without considering the scaling factors).

neuron from the second layer (only if the bias unit to the neuron has also

been deleted). The group Lasso penalization removes all connections exiting

from the second neuron, which can now be safely removed from the network.

The sparsity level is just slightly higher than in the first case, but the result-

ing connectivity is more structured. Finally, the SGL formulation combines

the advantages of both formulation: we remove all connections from the sec-

ond neuron in the first layer and two of the remaining connections, thus

achieving a 70% level of sparsity in the layer and an extremely compact (and

power-efficient) network.

3.2. Graphical interpretation of group sparsity

The group Lasso penalty admits a very interesting geometrical interpreta-

tion whenever the first term in (2) is convex (see for example [23, Section 1]).

Although this is not the case of neural networks, whose model is highly non-

convex due to the presence of the hidden layers, this interpretation does help

in visualizing why the resulting formulation provides a group sparse solution.

For this reason, we briefly describe it here for the sake of understanding.
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For a convex loss in (2), standard arguments from duality theory show

that the problem can be reformulated as follows [40]:

arg min
w

L(w) =
1

N

N∑
i=1

L(di, f(xi;w))

subject to R(w) ≤ µλ (8)

where µλ is a scalar whose precise value depends on λ, and whose existence is

guaranteed thanks to the absence of duality gap. In machine learning, this is

sometimes called Ivanov regularization, in honor of the Russian mathemati-

cian Nikolai V. Ivanov [41]. For a small value of µλ, such that the constraint

in (8) is active at the optimum w∗, it can be shown that the set of points for

which L(w) is equal to L(w∗) is tangent to B = {w : R(w) ≤ µλ}. Due to

this, an empirical way to visualize the behavior of the different penalties is

to consider the shape of B corresponding to them. The shapes corresponding

to `2 regularization, Lasso, and group Lasso are shown in Fig. 3 for a simple

problem with three variables. The shape of B for a weight decay penalty is

a sphere (shown in Fig. 3a), which does not favor any of the solutions. On

the contrary, the Lasso penalty imposes a three-dimensional diamond-shaped

surface (shown in Fig. 3b), whose vertices lie on the axes and correspond to

all the possible combinations of sparse solutions. Finally, consider the shape

imposed by the group Lasso penalty (shown in Fig. 3c), where we set one

group composed of the first two variables, and another group composed of

the third variable. The shape now has infinitely many singular points, corre-

sponding to solutions having zeroes either on the first and second variables

simultaneously, or in the third variable.
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4. Experimental results

4.1. Experimental setup

In this section, we evaluate our proposal on different classification bench-

marks. Particularly, we begin with a simple toy dataset to illustrate its

general behavior, and then move on to more elaborate, real-world datasets.

In all cases, we use ReLu activation functions [42] for the hidden layers of

the network:

gk(s) = max (0, s) , 1 ≤ k ≤ H , (9)

while we use the standard one-hot encoding for the different classes, and a

softmax activation function for the output layer. Denoting as s the values in

input to the softmax, its ith output is computed as:

gH+1(si) =
exp {si}∑o
j=1 exp {sj}

. (10)

The weights of the network are initialized according to the method described

in [43], and the networks are trained using the popular Adam algorithm [44],

a derivation of stochastic gradient descent with both adaptive step sizes and

momentum. In all cases, parameters of the Adam procedure are kept as the

default values described in [44], while the size of the mini-batches is varied

depending on the dimensionality of the problem. Specifically, we minimize

the loss function in (2) with the standard cross-entropy loss given by:

L(d, f(x;w)) = −
o∑
i=1

di log (fi(x;w)) , (11)
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and multiple choices for the regularization penalty. Dataset loading, prepro-

cessing and splitting is made with the sklearn library [45]. First, every input

column is normalized in the range [0, 1] with an affine transformation. Then

for every run we randomly keep 25% of the dataset for testing, and we re-

peat each experiment 25 times in order to average out statistical variations.

For training, we exploit the Lasagne framework,1 which is built on top of

the Theano library [38]. Open source code to replicate the experiments is

available on the web under BSD-2 license.2

4.2. Comparisons with the DIGITS dataset

To begin with, we evaluate our algorithm on a toy dataset of handwritten

digit recognition, namely the DIGITS dataset [46]. It is composed of 1797

8×8 grey images of handwritten digits collected from several dozens different

people. We compare four neural networks, trained respectively with the

weight decay in (3) (denoted as L2-NN), the Lasso penalty in (4) (denoted

as L1-NN), the proposed group Lasso penalty in (5) (denoted as G-L1-NN),

and finally its sparse variation in (7) (denoted as SG-L1-NN). In all cases,

we use a simple network with two hidden layers having, respectively, 40 and

20 neurons. We run the optimization algorithm for 200 epochs, with mini-

batches of 300 elements. After training, all weights under 10−3 in absolute

value are set to 0.

The aim of this preliminary test is to evaluate what we obtain from the

different penalties when varying the regularization factor λ. To this end,

we run each algorithm by choosing λ in the exponential range 10−j, with j

1https://github.com/Lasagne/Lasagne
2https://bitbucket.org/ispamm/group-lasso-deep-networks

17

https://github.com/Lasagne/Lasagne
https://bitbucket.org/ispamm/group-lasso-deep-networks


Regularization factor

10
-5

10
-4

10
-3

10
-2

T
es

t 
ac

cu
ra

cy

0

0.2

0.4

0.6

0.8

1

L2-NN

L1-NN

G-L1-NN

SG-L1-NN

(a) Test accuracy

Regularization factor

10
-5

10
-4

10
-3

10
-2

S
p
ar

si
ty

 [
%

]

0

0.2

0.4

0.6

0.8

1

L2-NN

L1-NN

G-L1-NN

SG-L1-NN

(b) Sparsity

Regularization factor

10
-5

10
-4

10
-3

10
-2

F
ea

tu
re

s 
se

le
ct

ed

0

10

20

30

40

50

60

70

L2-NN

L1-NN

G-L1-NN

SG-L1-NN

(c) Features selected

Regularization factor

10
-5

10
-4

10
-3

10
-2

N
eu

ro
n
s 

(h
id

d
en

 l
ay

er
s)

0

10

20

30

40

50

60

L2-NN

L1-NN

G-L1-NN

SG-L1-NN

(d) Neurons (hidden layers)

Figure 4: Results for the digits dataset, when varying the regularization coefficient in 10−j ,
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Figure 5: Visualization of the selected features for the digits dataset. (a) Example of
input pattern to the network (number 8). (b) Overall strength of outgoing weights from
the respective input pixel (white are lowest, black are highest).

going from 1 to 5. Results of this set of experiments are shown in Fig. 4.

There are several key observations to be made from the results. To begin

with, the overall behavior in terms of test accuracy with respect to the four

penalties, shown in Fig. 4a, is similar among the algorithms, as they rapidly

converge to the optimal accuracy (slightly lower than 100%) for sufficiently

small regularization factors. In particular, from 10−3 onwards, their results

are basically indistinguishable. Fig. 4b shows the level of sparsity that we

obtain, which is evaluated as the percentage of zero weights with respect to

the total number of connections. The sparsity of L2-NN is clearly unsatis-

factory, oscillating from 20% in the best case to 0% in average. The sparsity

of G-L1-NN is lower than the corresponding sparsity of L1-NN, while the

results of SG-L1-NN (shown with a dashed blue line) are equal or superior

than all alternatives. In particular, for λ = 10−3 both L1-NN and SG-L1-NN

are able to remove four fifths of the connections. At the same time, the re-

sulting sparsity is significantly more structured for the proposed algorithm,

which is able to consistently remove more features, as shown in Fig. 4c, and
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Table 1: Schematic description of the datasets.

Origin Name Features Size N. Classes Desired output Ref.

UCI Sensorless Drive Diagnosis (SDD) 48 58508 11 Motor condition [47]

MLData MNIST Handwritten Digits 784 70000 10 Digit (0-9) [48]

MLData Forest Covertypes (COVER) 54 581012 7 Cover type [49]

neurons in the hidden layers, as shown in Fig. 4d.

Since the input to the classifier is an image, it is quite interesting to

visualize which features (corresponding to pixels of the original image) are

neglected in the proposed approaches, in order to further validate empirically

the proposal. This is shown for one representative run in Fig. 5. In Fig. 5a

we see a characteristic image in input to the system, representing in this

case the number 8. We see that the digit covers all the image with respect

to its height, while there is some white space to its left and right, which is

not interesting from a discriminative point of view. In Fig. 5b we visualize

the results of G-L1-NN (which is very similar to SG-L1-NN), by plotting

the cumulative intensity of the weights connecting the input layer to the

first hidden layer (where white color represents an input with all outgoing

connections set to 0). We see that the algorithm does what we would have

expected in this case, by ignoring all pixels corresponding to the outermost

left and right regions of the image.

4.3. Comparisons with mid-scale datasets

We now evaluate our algorithm on three more realistic datasets, which

require the use of deeper, larger networks. A schematic description of them

is given in Table 1 in terms of features, number of patterns, and number of
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Table 2: Parameters for the neural networks used in the experiments.

Dataset Neurons Regularization Mini-batch size

SSD 40/40/30/11 10−4 500

MNIST 400/300/100/10 10−4 400

COVER 50/50/20/7 10−4 1000

output classes. The first is downloaded from the UCI repository,3 while the

second and third ones are downloaded from the MLData repository.4 In the

SSD dataset, we wish to predict whether a motor has one or more defective

components, starting from a set of 48 features obtained from the motor’s

electric drive signals (see [47] for details on the feature extraction process).

The dataset is composed of 58508 examples obtained under 11 different oper-

ating conditions. The MNIST database is an extremely well-known database

of handwritten digit recognition [48], composed of 70 thousands 28×28 gray

images of the digits 0-9. Finally, the COVER dataset is the task of predict-

ing the actual cover type of a forest (e.g. ponderosa pine) from a set of 52

features extracted from cartographic data (see [49, Table 1] for a complete

list of cover types). This dataset has roughly a half million training exam-

ples, but only 7 possible classes compared to 11 and 10 classes for SSD and

MNIST, respectively.

Details on the network’s architecture, regularization factor and mini-

batch size for the three datasets are given in Table 2. Generally speaking,

3http://archive.ics.uci.edu/ml/
4http://mldata.org/

21

http://archive.ics.uci.edu/ml/
http://mldata.org/


we use the same regularization factor for all algorithms, as it was shown to

provide the best results in terms of classification accuracy and sparsity of the

network. The network architecture is selected based on an analysis of previ-

ous works and is given in the second column of Table 2, where x/y/z means a

network with one x-dimensional hidden layer, a second y-dimensional hidden

layer, and a z-dimensional output layer. We stress that our focus is on com-

paring the different penalties, and very similar results can be obtained for

different choices of the network’s architecture and the regularization factors.

Additionally, we only consider SG-L1-NN as the previous section has shown

that it can consistently outperform the simpler G-L1-NN.

The results for these experiments are given in Table 3, where we show

the average training and test accuracy, training time, sparsity of the net-

work, and final size of each hidden layer (which is highlighted with a light

blue background, and it is averaged throughout the different repetitions). As

a note on training times, results for the smaller SSD dataset are obtained on

an Intel Core i3 @ 3.07 GHz with 4 GB of RAM, while results for MNIST

and COVER are obtained on an Intel Xeon E5-2620 @ 2.10 GHz, with 8 GB

of RAM and a CUDA back-end employing an Nvidia Tesla K20c. For the

number of neurons, we do not show the size of the final softmax as this is not

influenced by our technique. We see that the results in terms of test accu-

racy are comparable between the three algorithms, with a negligible loss on

the MNIST dataset for SG-L1-NN. However, SG-L1-NN results in networks

which are extremely sparse and more compact than its two competitors. Let

us consider as an example the MNIST dataset. In this case, the algorithm

removes more than 200 features in average from the input vector (compared
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(b) Selected features

Figure 6: Visualization of the selected features for the MNIST dataset. (a) Example of
input pattern to the network (number 0). (b) Overall strength of outgoing weights from
the respective input pixel (white are lowest, black are highest).

to approximately 126 for L1-NN). Also, the resulting network only has 146

neurons in the hidden layers compared to 243 for L1-NN and 654 for L2-NN.

Also in this case, we can visually inspect the resulting features selected by

the algorithm, which are shown in Fig. 6. In Fig. 6a we see an example of

input pattern (corresponding to the digit 0), while in Fig. 6b we plot the

cumulative intensity of the outgoing weights from the input layer. Differently

from the DIGITS dataset, the images in this case have a large white margin

on all sides, which is efficiently neglected by the proposed formulation, as

shown by the white portions of Fig. 6b.

One last observation can be made regarding the required training time.

The SGL penalty is actually faster to compute than both the `2 and `1 norms

when the code is run on the CPU, while we obtain a slower training time

(albeit by a small margin) when it is executed on the CUDA back-end. The

reason for this is the need to compute two square root operations per group

in (7). This gap can be removed by exploiting several options for faster

mathematical computations (at the cost of precision) on the GPU, e.g. by
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using the ‘–prec-sqrt’ flag on the Nvidia CUDA compiler.

Overall, the results presented in this section show how the sparse group

Lasso penalty can easily allow to obtain networks with a high level of sparsity,

a low number of neurons (both on the input layer and on the hidden layers),

while incurring no or negligible losses in accuracy.

5. Related works

Before concluding our paper, we describe a few related works that we

briefly mentioned in the introduction, in order to highlight some common

points and differences. Recently, there has been a sustained interest in meth-

ods that randomly decrease the complexity of the network during training.

For example, dropout [6] randomly removes a set of connections; stochastic

depth skips entire layers [50]; while [42] introduced the possibility of applying

the `1 penalty to the activations of the neurons in order to further sparsify

its firing patterns. However, these methods are only used to simplify the

training phase, while the entire network is needed at the prediction stage.

Thus, they are only tangentially related to what we discuss here.

A second class of related works group all the so-called pruning methods,

which can be used to simplify the network’s structure after training is com-

pleted. Historically, the most common method to achieve this is the optimal

brain damage algorithm introduced by LeCun [16], which removes connec-

tions by measuring a ‘saliency’ quantity related to the second-order deriva-

tives of the cost function at the optimum. Other methods require instead to

compute the sensitivity of the error to the removal of each neuron, in order

to choose an optimal subset of neurons to be deleted [51]. More recently, a
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two-step learning process introduced by Han et al. [13] has also gained a lot

of popularity. In this method, the network is originally trained considering

an `2 penalty, in order to learn which connections are ‘important’. Then,

the non-important connections, namely all weights under a given threshold,

are set to zero, and the network is retrained by keeping fixed the zeroed out

weights. This procedure can also be iteratively repeated to further reduce

the size of the network. None of these methods, however, satisfy what we

considered in the introduction, i.e. they either require a separate pruning

process, they do not act directly at the neuron-level, and they might make

some heuristic assumptions that should hold at the pruning phase. As an ex-

ample, the optimal brain damage algorithm is built on the so-called diagonal

approximation, stating that the error modification resulting from modifying

many weights can be computed by summing the individual contributions

from each weight perturbation.

A third class of methods is not interested in learning an optimal topology,

insofar as to reduce the actual number of parameters and/or the storage

requirements of the network. The most common method in this class is the

low-rank approximation method [12], where a weight matrix Wk ∈ RLk×Lk+1

is replaced by a low-rank factorization Wk = AB, A ∈ RLk×r,B ∈ Rr×Lk+1 ,

where the rank r must be chosen by the user. Optimization is then performed

directly on the two factors instead of the original matrix. The choice of the

rank allows to balance between compression and accuracy. As an example,

if we wish to compress the network by a factor p, we can choose [12]:

r <
pLkLk+1

Lk + Lk+1

. (12)
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However, this approximation is not guaranteed to work efficiently, and may

result in highly worse results for a poor choice of r.

There are endless other possibilities, e.g. (i) we can use ‘distillation’ to

train a separate, smaller network that imitates the original one, as popular-

ized by Hinton et al. [15]; (ii) we can work with limited numerical precision

to reduce storage [17] (up to the extreme of a single bit per weight [10]); (iii)

we can use hash functions to force weight sharing [18]; and so on.

6. Conclusions

In this paper, we have introduced a new simple and efficient approach for

simultaneously carrying out pruning and feature selection whilst optimizing

the weights of a neural network. Our proposed sparse group Lasso penalty

can be implemented efficiently and easily in most software libraries, with an

equivalent overhead with respect to standard `2 or `1 formulations. Com-

parative experimental results also demonstrate its superior performance for

producing highly compact networks, with definite savings in terms of storage

requirements and power consumption in embedded devices.

Future research will explore a number of interesting areas. First, there is

the open problem in the optimization literature, of studying the interaction

between a sparse `1 formulation (originally proposed for the case of convex

costs), with a non-convex cost as in (2). It would be interesting to investigate

possible improvements with the use of a non-convex sparse regularizer, such

as the `p norm with fractional p. Alternatively, one may attempt to improve

the sparse behavior of (4) and (5) by iteratively solving a convex approx-

imation to the original non-convex problem, e.g. by exploiting techniques
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presented in [52], following our previous work on semi-supervised support

vector machines [53]. Secondly, we are interested in exploring group Lasso

formulations for other types of neural networks, such as deep convolutional

neural networks and recurrent neural networks.

Finally, we are aiming to extend our previous work on `1 sparse regular-

ization in reservoir computing architectures [54], which showed that sparse

connectivity can help in creating clusters of neurons resulting in heteroge-

neous features extracted from the recurrent layer.
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