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abstract: Models used to investigate the relationship between bio-
diversity change and vector-borne disease risk often do not explicitly
include the vector; they instead rely on a frequency-dependent trans-
mission function to represent vector dynamics. However, differences
between classes of vector (e.g., ticks and insects) can cause discrep-
ancies in epidemiological responses to environmental change. Using
a pair of disease models (mosquito- and tick-borne), we simulated
substitutive and additive biodiversity change (where noncompetent
hosts replaced or were added to competent hosts, respectively), while
considering different relationships between vector and host densi-
ties. We found important differences between classes of vector, in-
cluding an increased likelihood of amplified disease risk under addi-
tive biodiversity change in mosquito models, driven by higher vector
biting rates. We also draw attention to more general phenomena,
such as a negative relationship between initial infection prevalence
in vectors and likelihood of dilution, and the potential for a rise in
density of infected vectors to occur simultaneously with a decline
in proportion of infected hosts. This has important implications;
the density of infected vectors is the most valid metric for primarily
zoonotic infections, while the proportion of infected hosts is more
relevant for infections where humans are a primary host.

Keywords: vector-borne disease, tick-borne disease, biodiversity,
dilution effect, disease risk.

Introduction

Vector-borne diseases (VBDs) account for significant pro-
portions of global human mortality and morbidity (Hay
et al. 2010; Bhatt et al. 2013; Campbell-Lendrum et al. 2015).
Concerns have been growing that anthropogenic activities
such as climate change, pollution, human migration, defor-
estation,and encroachment into previously undisturbed hab-
itats are exacerbating VBD risk in certain parts of the world
(Harvell et al. 2002; Semenza and Menne 2009; Kilpatrick
and Randolph 2012; Wesolowski et al. 2012; Parham et al.
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2015). The consequences of changes in the community of
animals acting as hosts for infectious disease, including
VBDs, have received particular attention in recent years
(e.g., Keesing et al. 2006, 2010; Pongsiri et al. 2009; Johnson
et al. 2013; Wood et al. 2014).
The transmission of any vector-borne pathogen involves

at least two other species—a vector and a host—and often
many more (Auld and Tinsley 2015). For example, Borrelia
burgdorferi sensu lato, which causes Lyme disease, is vec-
tored by several different species of tick and is maintained
by systemic infections in an array of hosts from three classes
of vertebrate (Spielman et al. 1985; Matuschka et al. 1992).
Altered abundance of any of these biotic components may
cause changes in vector infection prevalence for a given dis-
ease and, therefore, the risk of exposure for a given host,
such as humans (Matuschka and Spielman 1986; Ostfeld
and Keesing 2000). Links between biodiversity and individ-
ual disease risk are thus inevitable, though the consistency
of the relationship is still debated (Randolph and Dobson
2012; Lafferty and Wood 2013; Ostfeld 2013; Ostfeld and
Keesing 2013; Randolph and Dobson 2013; Wood and
Lafferty 2013).
The dilution effect has become the label for the process

whereby an increase in biodiversity reduces the prevalence
of a given infection. It has been studied in a large variety of
disease systems, both vector-borne and directly transmit-
ted, and in hosts fromplant and animal kingdoms (LoGiudice
et al. 2003, 2008; Allan et al. 2009; Johnson et al. 2009; Haas
et al. 2011; Young et al. 2013; Lacroix et al. 2014). When first
described in the context of zoonotic VBDs, the key metric
was the proportion of infected vectors (PIV; Ostfeld and
Keesing 2000), but the dilution effect literature has since
broadened to include a range of metrics, in part because
PIV is not as important as the density of infected vectors
when considering human risk (Keesing et al. 2006; Ogden
and Tsao 2009). It is, however, important to distinguish
between the prevalence of a particular infection and the
prevalence of disease in general. It is widely accepted, for
example, that the diversity of pathogenic organisms (and,
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000 The American Naturalist
therefore, the overall disease burden in a community) is
spatially correlated with biodiversity (Guernier et al.
2004; Wood et al. 2014). By contrast, the dilution effect
applies specifically to the reduction in the prevalence of a
single, given infection under conditions of host community
diversification and assumes that a diversifying community
acquires at least one host that is poorer at transmitting the
infection. Increased host biodiversity may be associated
with dilution of one particular disease but may also lead
to increased prevalence of other diseases (Ostfeld and
Keesing 2012; Randolph and Dobson 2012).

Nevertheless, some general rules regarding biodiversity-
prevalence relationships for individual VBDs can be identi-
fied. Two fundamental factors are expected to influence ep-
idemiological responses to host community change. The
first factor is the transmission function, that is, the mathe-
matical relationship relating transmission to host density.
The two basic functions are frequency dependent (FD)
and density dependent (DD; though there are important
variants to consider; see Wonham et al. 2006). In FD trans-
mission, the per capita force of infection is determined by
the frequency of infected individuals; for VBDs, this effec-
tively means that an individual host’s chance of becoming
infected is determined by the ratio of infected vectors to
hosts. In DD transmission, the same individual’s risk is sim-
ply a function of the absolute density of infected vectors.
DD transmission is assumed to apply to directly transmit-
This content downloaded from 139.1
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ted diseases such as influenza or measles, whereas FD trans-
mission best describes sexually transmitted infections such
as HIV but is also typically applied to VBDs. Increased host
diversity is held to dilute individual disease risk where
transmission is FD (Rudolf and Antonovics 2005; Ostfeld
and Keesing 2012; Mihaljevic et al. 2014), but when DD
transmission is assumed, the outcome should depend on
the nature of the host change (see below).
The second factor concerns the nature of the host commu-

nity change. The simplestmodel of host community change is
one where a community with a single species of competent
host becomes a community with one competent host and
one noncompetent host, or vice versa. There are many ways
in which this may occur, and we focus on the two scenarios
that could be considered the extremes of a continuum: sub-
stitutive change, where host diversity increases without any
change in overall host density; and additive change, where
the addition of a second host species brings about a commen-
surate increase in overall density. Intuitively, dilution should
occur after a substitutive increase in diversity (fig. 1A). When
a proportion of reservoir-competent hosts is replaced by non-
competent hosts, a similar proportion of vector bites is, in ef-
fect, wasted. This results in a lowered (diluted) prevalence of
infection in the next generation of vectors (Matuschka and
Spielman 1986). By contrast, if change is additive, the out-
come is thought to depend on the transmission function: di-
lution with FD transmission and amplification with DD
a

b

Figure 1: a, Dilution in a vector-borne disease. Substituting noncompetent hosts for competent ones reduces the prevalence of infection in
vectors accordingly. b, A schematic that incorporates multiple vector feeding. The wasted bites on noncompetent hosts will, to an extent, be
nullified by subsequent bites on competent, infected hosts. The actual vector infection prevalence will fall between 50% and 100%.
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Vector Biology in Disease Models 000
transmission (Rudolf and Antonovics 2005; Ostfeld and
Keesing 2012; Mihaljevic et al. 2014).

One can also consider the numerical response of vectors to
changes in host density. If host diversity is associated with
host abundance, and if this subsequently determines vector
population size, then any reduction of infection prevalence
in vectors may be outweighed by increases in their absolute
numbers (Dobson 2004; Ogden and Tsao 2009). There are
four possible vector responses to an increase in host density:
(i) no increase, (ii) a linear relationship between host and vec-
tor abundance, (iii) a less-than-linear relationship, and (iv) a
more-than-linear relationship. The likelihood of a particular
response will depend on the biology of the vector. For exam-
ple, all motile life stages of ticks are parasitic; hence their pop-
ulations are likely to be most strongly influenced by host
abundance. For mosquitoes, the relationship between host
and vector abundance appears to be more variable; survival
of the nonbiting larvae (as opposed to adult feeding success)
often determines the dynamics of mosquito populations
(Rueda et al. 1990; Reiter 2001; Paaijmans et al. 2007), but
there are alsomany examples from the literature of host abun-
dance driving adult mosquito abundance (e.g., McLaughlin
and Vidrine 1988; Brown and Sethi 2002; Minikawa et al.
2002). Furthermore, the mobility of winged insects means
that their probability of feeding within a given time period
will be less limited by host density than that of ticks, because
tick feeding success depends mainly on opportunistic con-
tact with passing hosts (Randolph 2004). These differences
in life cycle and mobility mean that, typically, increases in
host density aremore likely to lead to an equivalent increase
in vector density for ticks than for winged insects. For ticks
in particular, this density increase could theoretically be
more than linear—leading to an exponential increase in tick
numbers—since each individual tick’s chance of encounter-
ing a host increases with host density (Dobson and Randolph
2011). This should continue until high tick densities elicit host
responses (e.g., grooming or immune reactions) that halt tick
population growth (Randolph 1994; Kelly and Thompson
2000; Dobson et al. 2011). The nature of the numerical
response influences the transmission function: an FD trans-
mission function effectively approaches DD transmission if
vectors respond more than linearly to an increase in host
density, because the ratio of vectors to hosts (and, therefore,
the bites per host) increases with host density (Ogden and
Tsao 2009).

The numerical response is not, however, the only area
in which vector biology can influence the epidemiological
impact of changes in host community composition. Most
biting insects take multiple, small blood meals, whereas
most ticks (especially ixodids) will typically take just three,
large meals during their lifetimes (Randolph 1998). This
has important implications for disease transmission: in
the context of dilution, wasted bites matter far more for
This content downloaded from 139.1
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tick-borne than insect-borne pathogens. For these reasons,
models of infectious disease transmission may not be fully
applicable to real-world VBDs if the vector is not explicitly
modeled. Here, we demonstrate the role of vector biology
in mediating the relationship between host biodiversity
and disease prevalence using simple yet biologically realis-
tic models. There is a rapidly growing empirical and the-
oretical literature on the dilution effect and related phe-
nomena, and the interpretation of these studies will be
aided by models that identify both the general and the id-
iosyncratic features of focal disease systems.
The Models

We present a pair of models of VBD transmission under
conditions of vertebrate host community change: one for
a generic mosquito-borne disease (MBD) and one for a ge-
neric tick-borne disease (TBD). These models are time-
structured Leslie matrices that move in steps of 3 days for
the mosquito model and 30 days for the tick model. Each
model comprises a host component and a vector compo-
nent that interact in order to calculate probabilities of mu-
tual infection. For each model, we calculated two metrics:
the change in density of infected vectors (DIV) and the
change in proportion of competent hosts infected (PIH).
Mosquito Model

Both competent and noncompetent hosts have two life
stages: immature, lasting 1 year, and adult (fig. 2; table 1).
Adults reproduce once per year, and each has four offspring
per reproductive event. Host life span is not fixed but in-
stead follows an exponential distribution, with a mean life
span of approximately 12.8 months. Hosts move between
“susceptible,” “infected,” and “recovered” classes, and in
initial simulations, recovered individuals cannot become
reinfected (see “Transmission Success and Host Recov-
ery”). The number of bites received by each host depends
on the vector biting probability and the number of vectors
per host. Infected hosts recover with probability R. The
baseline adult vector-host ratio is set at 2.5∶1; this corre-
sponds to a daily per-host bite probability of ∼0.83 (vectors
are assumed to bite once per 3-day time step), in line with
empirical observations of mosquito biting rates on humans
(Mbogo et al. 2003). In the supplementary materials (avail-
able online), we also present data for model simulations
where the initial ratios are 1.25∶1 and 5∶1.
The mosquito vectors have two discrete life stages: a ju-

venile stage, encompassing the transition from egg to larva
to pupa, lasting 12 days, and an adult stage, lasting 30 days
(fig. 3; table 2). Adults bite a host and produce 50 eggs ev-
ery 3 days, irrespective of host density, and bites are spread
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equally across available hosts. Bites on infective hosts infect
the vector with probability determined by a variable proba-
bility of transmission success, and these vectors remain in-
fected for life. We assume that male vectors do not bite,
so matrix models explicitly follow only females (as a conse-
quence, clutches effectively comprise 25 eggs). The following
equations describe the calculation of numbers of newly in-
fected hosts following an infective vector bite:

bp
iV
H

, (1)

iHt11 p sHt � [1 2 (1 2 r)b], (2)

where b is the total number of infective bites received by
each host per time step, iV is the number of infective
vectors, iH, sH, and H are the numbers of infected, suscep-
tible, and all hosts, respectively, and r is the probability of
transmission success. The following equation describes the
equivalent process of calculating the number of infective
vectors that result from bites by susceptible vectors on in-
fected hosts:

iVt11 p Vt � r � iH
H

, (3)
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where iV and V are the number of infected vectors and all
vectors, respectively. Note that, in these models, vector-to-
host and host-to-vector transmission success probabilities
are equal (table 2).
Tick Model

Host biology is identical to that in the mosquito model. The
maximal value of nymphal ticks per host (during the sea-
sonal peak of tick activity) is 50. This is the number of
nymphs engorging per month. If it is assumed that the av-
erage nymph feeding event takes 3 days to complete, then
this is equivalent to each host feeding a maximum of five
nymphs at any given time, in line with empirical observa-
tions undertaken during peak tick activity periods (Duncan
et al. 1978; Matuschka et al. 1991; Carpi et al. 2008). Data on
larval and adult tick burdens are rare and unreliable (due to
detectability and low numbers, respectively). So while we
still model bites from larvae and adults, we calibrate the
vector-host ratio by reference to nymphs only. In the sup-
plementary materials, we also present data for model sim-
ulations where the initial ratios are 2.5∶1 and 10∶1.
The tick vectors have three discrete life stages: larva,

nymph, and adult, each lasting 1 year (Belozerov and Nau-
Figure 2: Flow diagram for competent host model, which is a stage-classified matrix model. In mosquito models, individuals move between
stages every 3 days; in tick models, individuals move monthly. The stages (in circles) sJ, sA, iJ, iA, rJ, and rA correspond to susceptible ju-
venile, susceptible adult, infected juvenile, infected adult, recovered juvenile, and recovered adult, respectively. The noncompetent host model
comprises only the two susceptible age classes. Definitions and values of the coefficients may be found in table 1.
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Vector Biology in Disease Models 000
mov 2002; Randolph et al. 2002; see fig. 4). Larvae, nymphs,
and adults feed once per year, and bites are spread equally
across available hosts. Adult females produce 2,000 eggs
after feeding and then die. We assume that larvae and
nymphs of both sexes bite vertebrates but that adult males
do not (Randolph 1998). Bites on infective hosts infect the
vector with probability determined by a variable probabil-
ity of transmission success, and vectors remain infected
This content downloaded from 139.1
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for life. Vector feeding is seasonal and peaks with juvenile
host production (Randolph et al. 2002). This seasonal feed-
ing profile is achieved by moving a proportion of the free-
living ticks of each stage (larvae, nymphs, adults) into re-
spective separate fed stages (see fig. 4; table 3), according to

FXt11 p Xt � p, (4)
Table 1: Parameters for the host components of models
53.09
s and 
Value
Parameter
 Definition
 Mosquito model
5.163 on March 01, 2016 01:52
Conditions (http://www.journal
Tick model
R
 Probability of recovery
 0–.045
 0–.45

f
 Probability of reinfection
 0, .631
 0, 1

r
 Transmission success probability
 .1–1
 .1–1

N
 No. vectors
 Variable
 Variable

H
 No. hosts
 Variable
 Variable

m
 Ratio of vectors to hosts
 N/H
 N/H

iN
 No. infected vectors
 Time dependent
 Time dependent

a
 Vector infection prevalence
 iN/N
 iN/N

b
 Bites per vector per time step
 1
 Dependent on monthly feeding

proportion, q

c
 Infected bites received per host per time step
 a�m� b
 a�m� q

stiH
 Probability of change from susceptible to

infected host
 1 2 [(1 2 r)c]
 1 2 [(1 2 r)c]

JS
 Juvenile survival per time step
 .99217
 .92224

AS
 Adult survival per time step
 .99217
 .92224

vt
 Probability of vertical transmission
 Variable
 Variable
Both models
On annual time steps
 All other time steps
sJS
 Susceptible juvenile survival
 0
 JS� (1 2 stiH)

iJS
 Infected juvenile survival
 0
 JS� (1 2 R)

rJS
 Recovered juvenile survival
 0
 JS� (1 2 f )

sAS
 Susceptible adult survival
 0
 AS� (1 2 stiH)

iAS
 Infected adult survival
 0
 AS� (1 2 R)

rAS
 Recovered adult survival
 AS
 AS� (1 2 f )

sJtA
 Susceptible juvenile to susceptible adult
 JS� (1 2 stiH)
 0

iJtA
 Infected juvenile to infected adult
 JS� (1 2 R)
 0

rJtA
 Recovered juvenile to recovered adult
 JS
 0

sJiJ
 Susceptible juvenile to infected juvenile
 0
 JS� stiH

sJiA
 Susceptible juvenile to infected adult
 JS� stiH
 0

sAiA
 Susceptible adults to infected adults
 0
 AS� stiH

iArA
 Infected adults to recovered adults
 0
 AS� R

iJrJ
 Infected juvenile to recovered juvenile
 0
 JS� R

iJrA
 Infected juvenile to recovered adult
 JS� R
 0

rJsJ
 Recovered juvenile to susceptible juvenile
 0
 JS� f

rJsA
 Recovered juvenile to susceptible adult
 JS� f
 0

rAsA
 Recovered adult to susceptible adult
 AS� f
 AS� f

HP
 Offspring per host per year
 4
 0

iHPs
 Susceptible offspring per infected host per year
 4� (1 2 vt)
 0

iHPi
 Infected offspring per infected host per year
 4� vt
 0

ncJS
 Juvenile survival, noncompetent host
 0
 JS

ncJtA
 Juvenile to adult, noncompetent host
 JS
 0

ncAS
 Adult survival, noncompetent host
 AS
 AS
:17 AM
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where X is either larvae, nymphs, or adults, and FX is the fed
individuals of the respective stage. The coefficient p varies by
month: in months 1–8, pp 0:5; in month 9, pp 1; and in
months 10–12, pp 0. This gradual release of unfed ticks
into the fed stages is such that 99.6% are fed by month 8,
This content downloaded from 139.1
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and the peak is in month 1, which is the month when the
hosts reproduce. The infection of hosts in the tick model
follows that of themosquitomodel (eqq. [1]–[2]). The infec-
tion of ticks by hosts is similar to equation (3), with the ex-
ception that the right-hand side is multiplied by p. Equation
Table 2: Vector parameters for the mosquito model
Parameter
 Definition
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Value
r
 Transmission success probability
 .1–1

iH
 No. infected hosts
 Time dependent

H
 No. hosts
 Variable

b
 Bites per vector per time step
 1

stiv
 Probability of change from susceptible to infected vector
 b� r(iH=H)

vt
 Probability of vertical transmission
 0, .1

VS
 Stage survival per time step
 .39450503

StoSI
 Susceptible adults to infected adults
 stiv � VS

StoSA
 Stage survival (susceptible adults)
 (1 2 stiv)� VS

VP
 Offspring per vector per blood meal
 50

iVPi
 Infected offspring per infected vector per blood meal
 VP� vt

iVPs
 Susceptible offspring per infected vector per blood meal
 VP� (1 2 vt)
VS VS VS VS StoSA 

StoIA StoIA StoIA 

StoSA 

IAStoI

StoSA

StoIA

StoSA

StoIA

VS VS VS VS

VP VP VP VP 

iVPi 
iVPi 

iVPi 
iVPi 

iVPs iVPs iVPs iVPs 

SUSCEPTIBLE 

INFECTED 

iA9 iA10 

sL1 sL2 sL3 sL4 sA1 sA10 sA2 sA9 

VS VS VS VS VS VS iL1 iL2 iL3 iL4 iA1 iA2 

Figure 3: Flow diagram for the mosquito model. Individuals move between stages every 3 days. The stages (in circles) beginning with iL, iA,
sL, and sA correspond to infected larvae, infected adults, susceptible larvae, and susceptible adults, respectively. The numbers denote the age
class (each age class lasts 3 days); mosquitoes in this model, therefore, survive for (4� 3) 12 days as larvae and (10� 3) 30 days as adults.
Definitions and values of the coefficients may be found in table 2.
ago.edu/t-and-c).
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(4), therefore, denotes the sum of fed ticks of each stage—
both infected and uninfected.

In both models, the probability of mortality of all hosts
and vectors is set to maintain population stability (Ogden
and Tsao 2009). Results are insensitive to seeding condi-
tions of infection prevalence in hosts and vectors; we start
with an infection prevalence of 0.5 in both. Leslie matrices
for all models are provided in the supplementary materials.
Full R code for models, including graphics, is deposited
in the Dryad Digital Repository: http://dx.doi.org/10.5061
/dryad.t24pq (Dobson and Auld 2016).
Changes in Host Community Composition

We investigated two types of biodiversity change in the
host community: substitutive change, where half the com-
petent hosts are replaced by noncompetent individuals
while host population size remains constant; and additive
change, where noncompetent hosts are added such that
the host population doubles. We considered each of these
changes under three different numerical relationships
This content downloaded from 139.1
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(NR) between vectors and hosts: NR1, where vector abun-
dance is independent of that of hosts and remains con-
stant; NR2, where vector abundance increases linearly
with that of hosts; and NR3, where vector abundance in-
creases more than linearly with that of hosts, such that
an eventual doubling of the host population results in a
quadrupling of the vector population. (The level of vector
increase in NR3 was chosen to provide symmetry with the
scenario of additive change with NR1, where host popula-
tion size doubles as vector numbers remain constant).
Transmission Success and Host Recovery

Transmission success probability varies between 0.1 and
1.0, and host recovery probability varies between 0 and
0.045 (mosquito models) and 0 and 0.45 (tick models).
The differing scales are due to the different time steps used
in the two models; for comparison, the approximate mid-
points 0.02 (mosquitoes) and 0.2 (ticks) result in 73.8%
and 70.2%, respectively, of hosts recovering from infection
iEiL 

sEsL 

sLS 

SUSCEPTIBLE 

INFECTED 

iVPs 

iEiL

iFLS 

sES 

sVP 

sNS sAS 

sFLS 
sLiF 

sLsF 
sFsN 

iFiN 

iFNS 

sFNS 
sNiF 

sNsF 
sFsA 

iFiA 

iFAS 

sFAS 
sAiF 

sAsF 

iVPi 

iLiF iNiF iAiF 

Fed ticks 

sEsL

sLS

iVPs

S

sVP

sNS sAS

sLsF
sFsN

sNsF
sFsA

sAsF

iE iL iN iA 

iFL iFN iFA 

sFL sFN sFA 

iES iLS iNS iAS 

sE sL sN sA 

Figure 4: Flow diagram for the tick model. Individuals move between stages every month. The stages (in circles) iE, iL, iN, iA, sE, sL, sN, and
sA correspond to infected eggs, larvae, nymphs, and adults and susceptible eggs, larvae, nymphs, and adults, respectively. Definitions and
values of the coefficients may be found in table 3.
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within 6 months. Empirical recovery rates vary between
combinations of pathogen and host (Gitau et al. 1999;
Hofmeister et al. 1999; Gu et al. 2003). We chose a realistic
spread of values but acknowledge that certain hosts could
clear infections at rates faster than we simulate. Within
This content downloaded from 139.1
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each model, the two community changes and three demo-
graphic relationships produce six possible scenarios. We
present results for the 100 combinations of the 10 host re-
covery probabilities and 10 transmission success probabil-
ities. As a default setting, we assumed no vertical transmis-
Table 3: Vector parameters for the tick model
Parameter
 Definition
53
s an
Value
p
 Monthly feeding proportion
 Months 1–8: .5; month 9: 1; months 10–12: 0

r
 Transmission success probability
 .1–1

H
 No. hosts
 Variable

iH
 No. infected hosts
 Variable

E
 Eggs per adult female per year
 2,000

ES
 Egg survival per month
 [1=1;0001=3]

1=12
LS
 Larva survival per month
 [1=1;0001=3]
1=12
NS
 Nymph survival per month
 [1=1;0001=3]
1=12
AS
 Adult survival per month
 [1=1;0001=3]
1=12
stiv
 Probability of change from susceptible to fed
infected vector
 r � (iH=H)� p
stnv
 Probability of change from susceptible to fed
uninfected vector
 f1 2 [r � (iH=H)]g � p
vt
 Probability of vertical transmission
 0, .1
On annual time steps [time steps]
.095.163 on March 01, 2016 01:52:17 AM
d Conditions (http://www.journals.uchicago.ed
All other time steps
iES
 Infected egg survival
 0 [12]
 ES

sES
 Susceptible egg survival
 0 [12]
 ES

iLS
 Infected larva survival
 LS� (1 2 p)
 LS� (1 2 p)

sLS
 Susceptible larva survival
 LS� (1 2 p)
 LS� (1 2 p)

iNS
 Infected nymph survival
 NS� (1 2 p)
 NS� (1 2 p)

sNS
 Susceptible nymph survival
 NS� (1 2 p)
 NS� (1 2 p)

iAS
 Infected adult survival
 AS� (1 2 p)
 AS� (1 2 p)

sAS
 Susceptible adult survival
 AS� (1 2 p)
 AS� (1 2 p)

iFLS
 Fed, infected larva survival
 0 [12]
 LS

sFLS
 Fed, uninfected larva survival
 0 [12]
 LS

iFNS
 Fed, infected nymph survival
 0 [12]
 NS

sFNS
 Fed, uninfected nymph survival
 0 [12]
 NS

iFAS
 Fed, infected adult survival
 0 [10,11,12]
 AS

sFAS
 Fed, uninfected adult survival
 0 [10,11,12]
 AS

iEiL
 Infected egg to infected larva
 ES [12]
 0

sEsL
 Susceptible egg to susceptible larva
 ES [12]
 0

sLiF
 Susceptible larva to fed, infected larva
 0 [12]
 LS� stiv

sLsF
 Susceptible larva to fed, uninfected larva
 0 [12]
 LS� stnv
iLiF
 Infected larva to fed, infected larva
 0 [12]
 LS� p

iFiN
 Fed, infected larva to infected nymph
 LS [12]
 0

sFsN
 Fed, uninfected larva to susceptible nymph
 LS [12]
 0

sNiF
 Susceptible nymph to fed, infected nymph
 0 [12]
 NS� stiv

sNsF
 Susceptible nymph to fed, uninfected nymph
 0 [12]
 NS� stnv
iNiF
 Infected nymph to fed, infected nymph
 0 [12]
 NS� p

iFiA
 Fed, infected nymph to infected adult
 NS [12]
 0

sFsA
 Fed, uninfected nymph to susceptible adult
 NS [12]
 0

sAiF
 Susceptible adult to fed, infected adult
 0 [10,11,12]
 AS� stiv

sAsF
 Susceptible adult to fed, uninfected adult
 0 [10,11,12]
 AS� stnv
iAiF
 Infected adult to fed, infected adult
 0 [10,11,12]
 AS� p

iVPi
 Infected eggs per infected vector
 AS� E � vt [10]
 0

iVPs
 Susceptible eggs per infected vector
 AS� E � (1 2 vt) [10]
 0

sVP
 Susceptible eggs per susceptible vector
 AS� E [10]
 0
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sion (VT) in vectors or hosts, but we also present results
showing effects of VT with a probability of 0.1 in hosts,
vectors, or both. In our basic host model, recovered hosts
cannot be reinfected (susceptible-infected-removed [SIR]
model). However, we also performed simulations with
an SIRS host infection cycle. In the SIRS models, recov-
ered hosts returned to the susceptible state 1 month after
recovery. For mosquito models, which move in three daily
time steps, we adjusted the probability of moving from re-
covered to susceptible such that 99% of recovered hosts
were susceptible within 1 month.
Simulations

All model runs were initiated with 10 years of no host
change to ensure infection equilibria had been reached,
after which the host community change was introduced.
Models were run for a further 20 years to ensure postchange
equilibria were reached. Transmission success and host re-
covery probabilities were set at the start of each simulation.
Infection parameters were taken as annual means from the
final year of simulation (equilibrium always having been
reached before this point).
Model Assumptions

Some of the assumptions in these models reflect the general
nature of the study, which is not designed to investigate the
dynamics of any specific disease system. First, we do not as-
sume any host preference among vectors. This may be un-
realistic for most mosquitoes, meaning that our models
may predict transmission interference—and, hence, dilu-
tion—too readily (but see Smith et al. 2007). For ticks,
the assumption is more robust, since contact with hosts is
often largely opportunistic; free-living ticks (as opposed
to those that live in host burrows), in particular, feed on a
wide variety of host species (Gray 1998). Even among
vectors that are able to choose their hosts, host preference
will not necessarily increase transmission to the most com-
petent hosts, so the epidemiological consequences will
not be universally consistent (but see Smallegange et al.
2013). Further simplifying assumptions are as follows:
(i) Infection does not reduce host or vector fitness.
(ii) There is no superinfection; that is, the recovery of in-
fected hosts is not delayed by subsequent infectious bites.
(iii) Infection does not alter vector behavior, although this
does occur for some pathogen/vector combinations (Auld
and Tinsley 2015; but see Cator et al. 2013). (iv) There are
no density-dependent thresholds of vector-host ratio, though
this can occur if hosts respond to high vector densities by
increased grooming behavior and/or immune response to
bites (Levin and Fish 1998; Darbro and Harrington 2007;
but see also Charlwood et al. 1995). Removal of this as-
This content downloaded from 139.1
All use subject to University of Chicago Press Term
sumption would require knowledge of thresholds. Given
the absence of supporting data, we assume no thresholds,
and we do not simulate high numbers of vectors per host
(see references above for empirical figures). If such re-
sponses were to occur, the result would be to cause a level-
ing off in the relationship between vector density and strength
of amplification at high vector densities. For our models, this
would affect only the NR3 scenarios. (v) Per-vector biting
probabilities are not limited at high or low host densities
(the main characteristic of reservoir frequency dependence,
a specific variant of FD transmission; see Wonham et al.
2006 for implications and further definitions). (vi) Host-to-
vector and vector-to-host transmission success probabilities
(the probability that contact between one infected individ-
ual and one noninfected individual results in infection of the
latter) are equal.
Results

Change in Density of Infected Vectors

For both types of vector, epidemiological outcomes result-
ing from changes in host community composition de-
pended strongly on an interaction between the nature of
host community change (additive or substitutive) and the
numerical relationship between vector and host. When the
host change was substitutive, DIV was always diluted. Under
additive host change, dilution was most likely where vector
numbers were independent of host numbers (NR1) and
where initial infection prevalence in vectors was lowest. Am-
plification was most likely where vector density increased
at a greater rate than host density (NR3) and where infec-
tion prevalence was initially highest (figs. 5, 6). Amplification
was also a more frequent outcome in mosquito models than
tick models. This difference was maintained across all vector-
host ratios tested (see figs. S5–S7, S11–S13; figs. S1–S28 avail-
able in the supplementary material).
Change in the Proportion of Infected Hosts

Dilution was more likely when measured as PIH as op-
posed to DIV, although at very high transmission success
probabilities, dilution was either absent or negligible in all
scenarios (fig. 7). Differences between vectors followed the
pattern seen in DIV plots and were maintained across all
vector-host ratios tested (see figs. S8–S10, S14–S16).
Vertical Transmission, Reinfection, and Altered
Vector-Host Ratios

The inclusion of vertical transmission and host reinfection
resulted in different disease outcomes in mosquito and tick
models. Most differences between our sets of simulations
53.095.163 on March 01, 2016 01:52:17 AM
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Vector Biology in Disease Models 000
are found in the plots showing the additive NR2 scenario, so
for simplicity, we focus on these plots (see supplementary
material for figures for all VT and reinfection simulations,
figs. S21–S28). Table 4 shows the number of cells in center-
bottom DIV and PIH plots that switched between dilution
and amplification. Switches caused by VT were recorded
only in DIV and almost entirely found in the tick plots
(44/45). All were of dilution switching to amplification
(fig. 8). VT in hosts caused no switches. Host reinfection
had a smaller impact, triggering only five switches among
the four pairs of plots (table 4). Altering the vector-host ra-
tio had predictable effects on epidemiological parameters:
rather than changing the character of the overall result, it
instead shifted the threshold values of transmission success
and recovery probabilities that determined the switch be-
tween amplification and dilution. The vector-host ratio
was broadly proportional to the likelihood of amplification
(see figs. S5–S16).
Discussion

Vector biology necessarily underpins VBD transmission
(Randolph 1998), and yet it is given scant consideration
in many disease models. Our simple yet general models
incorporate important differences between ticks and mos-
quitoes in terms of their biting rates, reproductive biology,
and responses to numeric changes in the host community.
These differences confirm the importance of explicitly con-
sidering vectors in models of VBD and provide more nu-
anced insights into the possible outcomes of environmen-
tal change.

VBD transmission is usually assumed to be frequency de-
pendent (e.g., Wonham et al. 2004; Joseph et al. 2013; Roche
et al. 2013). However, some of the predictions that follow
from the assumption of FD transmission may hold only
for directly transmitted diseases and not VBDs (Dobson
2004). For example, while our NR3 scenario is underpinned
by the same FD transmission term as the others, the func-
This content downloaded from 139.1
All use subject to University of Chicago Press Term
tion is essentially DD, since the ratio of vectors to hosts
(and, therefore, the bites per host) increases with host den-
sity (Ogden and Tsao 2009).
The term vector amplification is used to describe the sit-

uation whereby an increase in host abundance triggers a
related rise in vector numbers (regardless of infection prev-
alence). Vector amplification can cause increases in overall
vector density that balance—or, in some cases, outweigh—
any reductions in vector infection prevalence following bio-
diversity increase. Wood et al. (2014) use the term “spurious
dilution” to describe such reductions in infection prevalence
that nonetheless do not reduce overall disease risk. The me-
chanics and implications of this phenomenon have been
much discussed elsewhere (e.g., Norman et al. 1999; Dobson
2004; Ostfeld and Keesing 2012; Randolph and Dobson
2012), and we do not dwell on it here. However, we empha-
size the more subtle difference between vector amplification
and the situation whereby vector abundance increases more
than linearly with that of hosts (i.e., NR3; Randolph and
Dobson 2012), shifting the transmission function from FD
to DD.
Many authors have recognized that under additive host

change, DD transmission should cause increased disease
risk (e.g., Dobson 2004; Ostfeld and Keesing 2012). Our
models highlight situations where amplification follows
from more strictly FD transmission. In our pair of models,
additive host change and FD transmission causes amplifica-
tion of DIV (under certain combinations of transmission
success and host recovery probabilities). Previous models
have suggested that amplification ought not to occur when
transmission is FD, even when the host change is additive
(Rudolf and Antonovics 2005; Mihaljevic et al. 2014). In-
deed, if one considers only PIH (the prevalence of infection
in hosts), it does not (note that the NR3 scenario is not
strictly FD). However, an increase in DIV can occur because
individual vectors bite both types of host. Bites on non-
competent hosts are wasted, but the vector may still become
infected later if it subsequently feeds on an infected host, in
Table 4: Impacts of the addition of vertical transmission in vectors and reinfection of recovered hosts for plots of
density of infected vectors (DIV) and proportion of competent infected hosts
(PIH) in mosquito and tick models
Cells switching in DIV plot
53.095.163 on March 01, 2
s and Conditions (http://ww
Cells switching in PIH plot
Impact, model

Dilution to
amplification
Amplification
to dilution
Dilution to
amplification
016 01:52:17 AM
w.journals.uchicag
Amplification
to dilution
Impact of vertical (vectorial) transmission:

Mosquito
 1
 0
 0
 0

Tick
 44
 0
 0
 0
Impact of host reinfection:

Mosquito
 2
 0
 0
 0

Tick
 2
 1
 0
 0
o.edu/t-and-c).



000 The American Naturalist
which case the earlier wasted bite is largely irrelevant. Con-
sider, for simplicity, a vector that bites b hosts in its lifetime
and bites hosts at random in a population where there is a
static host infection prevalence of x. The chance of the vec-
tor acquiring an infection during its lifetime is not x but

1 2 (x 2 1)b: (5)

In reality, the value of x is not static and instead will change
as hosts recover or become infected, but it is nonetheless
clear that the chance of any individual vector acquiring an
This content downloaded from 139.1
All use subject to University of Chicago Press Term
infection must increase with the total number of hosts, b.
A halving of the proportion of competent hosts does not,
therefore, lead to a halving of infection prevalence in vectors
(fig. 1B). In our models with FD transmission and additive
change, dilution occurs only when transmission success falls
below a certain threshold, because the probability that a
wasted bite will prevent a vector from ever being infected
declines as transmission success increases.
A consistent result to emerge from our models is that the

higher the initial infection prevalence—correlated in these
models with the product of transmission success probability
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Figure 8: Impact of vertical (within vectors) transmission on change in density of infected vectors. Upper plots, mosquitoes: comparison of
figure 5e (left) with the same output from a model with vertical transmission in vectors with a probability of 0.1 (right). Lower plots, as pre-
vious but for ticks (fig. 6e).
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Vector Biology in Disease Models 000
and 1/(host recovery probability)—the less likely dilution of
DIV is to result from either sort of biodiversity increase (ad-
ditive or substitutive).When vectors bite several times, many
bites will be from infected vectors on infected hosts. From an
epidemiological perspective, these bites are equally wasted as
when infected vectors bite nonsusceptible hosts (Smith et al.
2007). It follows, therefore, that the proportion of disease-
carrying vectors may decline without affecting the rate at
which susceptible hosts become infected. Susceptible hosts
receive fewer bites, but as long as this number is above the
threshold required to transmit an infectious dose of the path-
ogen, it is of little consequence. Similarly, if hosts rarely re-
cover from infection, any genuinely wasted bites (infective
bites on noncompetent hosts) are less critical for mainte-
nance of disease prevalence, because the total number of in-
fective bites required to retain a reservoir of infectious hosts
remains low. This finding is important because it implies that
dilution occurs most readily where infection risk is low (i.e.,
low transmission success and rapid host recovery). Further,
these results were robust to changes in the ability of recov-
ered hosts to become reinfected.

Vertical transmission can provide an additional mecha-
nism through which the effects of biodiversity change dif-
fer between MBDs and TBDs. The epidemiological conse-
quences of vertical transmission were greater for tick-borne
infections than for mosquito-borne infections. The mecha-
nism underlying this is related to the differing rates of feed-
ing: mosquitoes (in these models) will feed up to 10 times,
whereas the ticks can feed only three times (in line with real
biological differences between the vectors; Randolph 1998).
The mosquito, therefore, has more opportunities to acquire
infection (see eq. [1]), meaning that the potential for DIV
and/or PIV to be increased by one extra infection opportu-
nity (i.e., through maternal inheritance of the pathogen) is
lower for mosquitoes than for ticks.

It follows that, all other factors being equal, the likelihood
of dilution declines as the number of vectors per host de-
creases. From this observation, one might assume dilution
to be less likely in MBDs than in TBDs, since individual
ticks typically bite fewer hosts than do individual mosqui-
toes (Randolph 1998). However, ticks may consistently dif-
fer in the way that they respond numerically to increases in
host density. As discussed above, if a vector increases more
than linearly with increases in host density, disease ampli-
fication becomes more likely. This scenario (NR3, in our
models) is probably uncommon for mosquitoes, since their
greater mobility (relative to ticks) means that their proba-
bility of encountering a host is less determined by host den-
sity, but is theoretically almost inevitable for ticks, at least
below any thresholds of per-host tick loads that might cause
a density-dependent response to parasitism in hosts
(Ogden and Tsao 2009; Dobson 2014). Mosquitoes and re-
lated vectors are more likely to fit into the NR1 or NR2 sce-
This content downloaded from 139.1
All use subject to University of Chicago Press Term
nario. However, while the NR1 response may be common
among mosquitoes, dilution may not be as prevalent as
our models suggest; the dilution predicted here is via trans-
mission interference, which relies on the assumption that
vectors have no preference between competent and non-
competent hosts. As already mentioned, mosquitoes may
preferentially bite competent hosts, thereby reducing trans-
mission interference and, hence, the potential strength of
dilution.
Different metrics are used to describe disease outcomes

in the literature, for example, PIV, DIV, and PIH (Salkeld
et al. 2013). Our results demonstrate that these metrics are
not interchangeable. The different implications of changes
in PIV and DIV are frequently discussed, but we also re-
veal here the subtly divergent behavior of DIV and PIH:
it is possible for a rise in DIV to occur simultaneously with
a decline in PIH, even without exponential vector popula-
tion increase (cf. figs. 5e and 7e). Note that this is quite
separate from what Wood et al. (2014) describe as “spuri-
ous dilution”—the situation of declining PIV (not PIH)
with increasing DIV, which is already well recognized
(e.g., van Buskirk and Ostfeld 1995). The nature of the dis-
ease system will determine which metric is most relevant:
where humans are one of the main hosts (e.g., malaria or
dengue), a drop in PIH might be as important as a drop in
DIV, but for zoonoses, where humans are only occasional,
spillover hosts (e.g., Lyme borreliosis or West Nile virus),
PIH is only indirectly relevant. Our finding that FD trans-
mission need not prevent DIV amplification from occur-
ring is particularly pertinent in this context.
Our modeling approach provides a generic framework

for characterizing the consequences of vector biology on
the biodiversity-prevalence relationship. We did not aim
to produce a set of specific predictions for combinations
of disease systems and conditions under which dilution
or amplification ought to occur—our aim was to instead
build a foundation on which more tailored models can
be built to explore individual VBD systems. To this end,
we have deliberately avoided providing quantitative re-
sults, as doing so would be claiming a false accuracy.
We also remind readers that additive and substitutive host
changes lie at extremes of a continuum and that disease
outcomes in complex communities are unlikely to follow
simple rules (e.g., Roche et al. 2013; Mihaljevic et al. 2014).
Our results have, however, clearly demonstrated that mod-
eling FD transmission without explicitly considering the vec-
tor can limit model applicability to real-world VBD systems.
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