Accepted refereed manuscript of:

DOI: 10.1016/j.scitotenv.2014.03.056

© 2015, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Resolution of the mediators of *in vitro* oxidative reactivity in size-segregated fractions that may be masked in the urban PM$_{10}$ cocktail

Heather D. Price\(^a\), *Tim P. Jones*\(^a\), *Kelly A. BéruBé*\(^b\)

Full addresses of where the work was performed:

\(^a\)School of Earth and Ocean Science, Cardiff University, Park Place, Cardiff, CF10 3AT, UK

\(^b\)Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK

Corresponding author (present details):

Name: Heather Price

Address: School of Geography and Environment, University of Southampton, Southampton, UK, SO17 1BJ

Email: h.price@soton.ac.uk

Authors’ email addresses:

Dr Heather Price: h.price@soton.ac.uk

Dr Tim Jones: jonestp@cardiff.ac.uk

Dr Kelly BéruBé: berube@cardiff.ac.uk
Highlights

- The oxidative reactivity (OR) of size segregated PM was tested at a traffic site
- Ultrafine and fine PM size fractions caused more DNA damage than coarse PM
- PM exhibited more OR in comparison to manufactured carbon black particles
- Zn (and Fe) were implicated in the generation of reactive oxygen species in PM
- Size, surface area and metals were important particle characteristics for OR
Abstract

PM\textsubscript{10} (particulate matter 10 microns or less in aerodynamic diameter) has consistently been linked with adverse human health effects, but the physicochemical properties responsible for this effect have not been fully elucidated. The aim of this work was to investigate the potential for carbon black (CB) particles and PM to generate ROS (Reactive Oxygen Species) and to identify the physicochemical properties of the particles responsible for \textit{in vitro} oxidative reactivity (OR). PM\textsubscript{10} was collected in 11 size fractions at a traffic site in Swansea, UK, using an Electrical Low Pressure Impactor (ELPI). The PM physicochemical properties (including size, morphology, type, and transition metals) were tested. The plasmid scission assay (PSA) was used for OR testing of all particles. The ultrafine and fine PM (N\textsubscript{28-2399}; 28 – 2399 nm) caused more DNA damage than coarse PM (N\textsubscript{2400-10,000}), and the increased capacity of the smaller particles to exhibit enhanced (OR) was statistically significant (p<0.05). The most bioreactive fraction of PM was N\textsubscript{94-155} with a toxic dose (TD\textsubscript{50}; mass dose capable of generating 50% plasmid DNA damage) of 69 μg/ml. The mean TD\textsubscript{35} was lower for PM than CB particles, indicating enhanced OR for PM. A difference between CB and PM in this study was the higher transition metal content of PM. Zn was the most abundant transition metal (by weight) in the ultrafine-fine PM fractions, and Fe in the fine-coarse PM. Through this comparison, part of the observed increased PM OR was attributed to Zn (and Fe). In this study PM-derived DNA damage was dependent upon; 1) particle size, 2) surface area, and 2) transition metals. This study supports the view that ROS formation by PM\textsubscript{10} is related to physicochemistry using evidence with an increased particle size resolution.

Key Words: Oxidative reactivity, DNA damage, ELPI, PM\textsubscript{10}, plasmid scission assay (PSA)
1 Introduction

Through respiration, the lung is exposed to a variety of xenobiotics. There is now a well established link between air pollution and associated adverse health impacts (e.g. Stone et al., 2007; Chuang et al., 2013), especially for those in susceptible groups e.g. children, the elderly and those with pre-existing conditions e.g. asthma. Of particular current concern is ambient PM$_{10}$; particulate matter 10 μm and below. These particles are suspended in the atmosphere and can be both naturally, e.g. crustal, volcanic, and biological, and anthropogenically, e.g. traffic and industrially produced (Jones and BéruBé, 2011; Brown et al., 2011). In urban areas PM$_{10}$ is a heterogeneous “cocktail” of particle types, morphologies, chemistries, and sizes, constantly changing in response to factors including meteorological conditions, season, and geographical location (e.g. Gu et al., 2013; Moreno et al., 2013).

The oxidative capacity of inhaled particles is strongly implicated as a cause of PM$_{10}$ mediated harmful health effects (Ayres et al., 2008; Montiel-Dávalos et al., 2010; Mehta et al., 2013). Oxidative stress is initiated when there is imbalance between oxidants and antioxidants, caused either by an increase in oxidants or a decrease in antioxidants (Chuang et al., 2012). It disrupts the normal functioning of cellular macromolecules, such as lipids, proteins and DNA, and has been linked with respiratory and cardiovascular diseases, pancreatitis and cancer (e.g. Stone et al., 2007; Chuang et al., 2013). The Plasmid Scission Assay (PSA) is a well-established technique for assessing the oxidative capacity, i.e. reactive oxygen species (ROS) - generating capabilities of PM (Lingard et al., 2005; Moreno et al., 2004; Miller et al., 2012). The generation of ROS by particles has been proposed to result from Fenton-type reactions (reactions between Fe$^{2+}$ and hydrogen peroxide (H$_2$O$_2$), which forms the highly reactive hydroxyl radical; *OH) catalysed by transition metals, including Fe, V, Cr, Co, Ni, Cu, Zn and Ti. Alternatively ROS may arise from direct generation on the particle surface,
which is particularly significant for the ultrafine particles due to high surface area to mass ratios (Baulig et al., 2009). It has also been proposed that the organic compounds associated with PM$_{10}$ generate ROS, as well as endotoxins from bacterial sources (Bonner, 2007).

The particle properties which are responsible for ROS generation remain unclear (Scapellato and Lotti, 2007). Particle size/surface area and transition metal content are two properties which have previously been implicated in particle toxicity (Oberdörster et al., 2005; Koshy et al., 2009; Chuang et al., 2013). Developing our understanding of the particle properties responsible for the observed health impacts from PM$_{10}$ is vital for developing more source-specific air quality policy and for PM reduction targeting (Gil et al., 2010). PM from a specific source generally has a set of characteristics associated with it, e.g. non-exhaust traffic particles in PM$_{10}$ are generally coarse with constituent metals including Ba, Cu, Fe, Zn and Cr (Kwak et al., 2013). If we learn that these types of particles are especially harmful to human health for example, air pollution reductions could be targeted to that source, e.g. funds directed towards improvements in tyre/brake manufacturing and trialling of road wetting in the case of non-exhaust traffic.

The aim of this work was to investigate the potential for CB particles and size-segregated PM$_{10}$ to generate ROS. PM$_{10}$ from an urban traffic hotspot was size-segregated using an ELPI and the oxidative capacity of the 11 different size fractions was assessed. The enhanced size-segregation of the PM in this study in comparison to previous studies allowed separation of the complex PM-mixture into parts, thus allowing a clearer understanding of the role of size, surface area and other factors e.g. metal content to be derived. The objective was to resolve the particle constituent(s) responsible for ROS generation that may be masked in the urban PM$_{10}$ cocktail using high resolution size segregation and comparison with CB.
2 Materials and Methods

2.1 Sampling

Particles were collected into 11 size fractions between 28 nm and 10 μm, as previously described (Price et al., 2010). In brief, particles were collected onto aluminium substrates using an Electrical Low Pressure Impactor (ELPI; Dekati, Finland) at a UK Air Quality Management traffic site in the coastal city of Swansea, south Wales, UK. The site is a major thoroughfare for commuting vehicles into the city, and 16,000 vehicles pass the sampling point every day. Local industry, biological, sea salt particles and others also contribute to the “urban cocktail”. Sampling took place during a ten month semi-continuous campaign (January – October 2008). Prior to testing using the PSA, particles were stored in a freezer. Particles were removed from substrates using a novel freeze-dry protocol (Price et al., 2010). Due to the particle yields on individual substrates being below the required mass for the in vitro assays, samples across the entire sampling period were combined for each size fraction. The particle sizes in this study are dry particle sizes as determined by the ELPI impactor separation. Size classifications are given as Nxy, where x is the D50% cut off for the impactor stage and y is the D50% cut off diameter for the stage above. All sizes are given in nm unless otherwise stated.

2.2 Field Emission Scanning Electron Microscopy (FESEM)

FESEM was used for particle imaging following standard procedures (Jones et al., 2006). Aluminium substrates onto which PM had been collected were dissected and adhered to 12.5 mm aluminium stubs using Epoxy resin (Araldite™). Stubs were coated to improve imaging with evaporated gold-palladium (Au-Pd 60: 40), using a Bio-Rad SC500 sputter coater in an inert argon atmosphere, to a thickness of 20 nm. A Veeco FEI Philips XL30 environmental scanning electron microscope with a field emission gun was used for specimen imaging.
(accelerating voltage 5 kV – 20 kV, working distance 5 mm-10 mm, 50 x to 200,000 x magnification).

2.3 Energy Dispersive X-ray (EDX)

For EDX, particles adhered to aluminium stubs using epoxy resin (Araldite™) were carbon coated using a K450 sputter coater (Quorum, UK). Each of the eleven size fractions collected at the traffic site were analysed using an INCA EDX (Cambridge Instruments). Two hundred and fifty individual analyses were carried out for each size fraction of PM$_{10}$ as recommended by previous investigations (Tasić et al., 2006) using a grid system (40s, detection limit of 1 weight percent). Due to their homogeneity 100 spectra were analysed for the CB particles.

2.4 High Resolution-Transmission Electron Microscopy (HR-TEM)

To investigate the insoluble particles collected during the measurement campaign, and to supplement the FESEM investigations, sampled particles were visualised using HR-TEM. Particles were suspended in molecular biology (MB) grade water (Sigma-Aldrich, UK; 2 μg PM/1 μl H$_2$O) and 40 μl of this suspension was pipetted onto the surface of a 200 mesh Au grid with carbon film (Agar Scientific). Samples were imaged using a Philips CM12 HR-TEM at 80 kV accelerating voltage. Images were taken with a SIS MegaView III digital camera.

2.5 Plasmid Scission Assay (PSA)

Cell-free in vitro techniques are useful initial indicators for the OR of different substances. The PSA was chosen for use in this study due to the large number of tests required; it allowed comparison of eleven size fractions of PM (n = 5), while providing results which have been generally shown to correlate with other cell-free in vitro techniques (Chuang et al., 2011).
The plasmid ΦX174 RF (Promega, London, UK) was used in this study to assess ROS and/or metal-based damage caused to DNA by both CB particles and PM$_{10}$. The assay uses purified bacterial DNA (without a cell wall or other cellular components) and therefore can be used to investigate the ROS-sensitivity of different samples, rather than replicate conditions in vivo. It is an extremely useful comparative technique and has previously been used to investigate the potential for PM$_{10}$ to damage bacterial DNA (Moreno et al., 2004; Lingard et al., 2005; Chuang et al., 2011; Chuang et al., 2012; Reche et al., 2012).

Particles were suspended in MB H$_2$O at concentrations between 10 µg/ml and 1 mg/ml. The wide dose range simulated environmental exposure to acute exposure conditions for comparison. Increased resolution of the lower dose range (up to 200 µg/ml) was used to investigate the more “biologically-relevant” concentrations, i.e. lower concentrations which the public is more likely to be exposed to. Nineteen microlitres of the suspensions were then incubated with 200 ng ΦX174 RF DNA for 6 hours at room temperature and gently agitated (Vortex Genie 2; Jencons). Replicates (n=5) were used to assess the precision of the assay. A negative control was run with each batch. The negative control consisted of 19 µl MB grade H$_2$O incubated with the DNA, with damage levels <10% accepted. The enzyme PST-I (Phenol-Sulfotransferase; Promega, London, UK) was used as a positive control, achieving 100% damage during the 6 hour incubation. Following incubation, 3.33 µl loading dye (Promega, London, UK) was added to each sample. Samples were electrophoresed on a gel consisting of 0.6% agarose (for separation of large DNA fragments) and 0.25% ethidium bromide (for visualisation under UV light when intercalated into DNA). The gel was run for 16 hours at 30 V in a 1 x Tris-Borate-EDTA buffer. Gels were imaged (Visionworks® software, Ultraviolet Products Ltd., UK) to produce an image that could be semi-quantified using Genetools® (Syngene® Systems, UK) via densitometric analysis. Damage levels were derived from the proportion of damaged DNA relative to the proportion of undamaged DNA,
and this was given as a percentage damage value. The negative control (MB H₂O) averaged 0.1 damage percentage was subtracted from all samples. At even the lowest concentration (10 μg/ml), approximately 25% DNA damage was achieved by both CB particles and PM₁₀. This is either due to intrinsic OR, or represents a baseline to the measurement technique. This was not removed for the calculation of TD₅₀ as it has also been identified in other studies (e.g. Reche et al., 2012). In that study, this baseline was not accounted for and therefore for comparison with previous work this was also not accounted for in our calculations.

2.6 Carbon black (CB) particles

CB particles were used for comparison with PM₁₀ to help to elucidate the importance of transition metals in the generation of observed OR. Tested particles were two commercially available CBs (CB-1 and CB-2). CB particles were chosen to mimic the carbon particles which predominate in the nano and fine fractions of PM₁₀; single particles, chains and agglomerates of spherical/sub-spherical carbon.

2.7 Data analysis

Microsoft Excel and SPSS (version 21; SPSS Inc., USA) were used for basic statistical analyses and data plotting. Toxic Dose 50% (TD₅₀) values generated from the PSA were calculated for each size fraction by applying a non-linear regression model (R² value, >0.84 for each size fraction) as used in previous studies (Chuang et al., 2012). The independent t-test (SPSS version 21; SPSS Inc., USA) was used to compare the mean TD₅₀ for size-fractionated PM₁₀ in three size fractions; UF (ultrafine, defined here as 28 nm – 262 nm), fine (263 nm – 2399 nm) and coarse (2400 nm – 10,000 nm). The level of significance for all statistical analyses was chosen as p < 0.05.

3 Results and discussion
3.1 Carbon black (CB) physicochemistry

CB particles were used in this study for comparison with heterogeneous airborne PM$_{10}$ mixtures. The physicochemistry of the CB particles (Table 1) highlights similarities with sub-fractions of PM$_{10}$, particularly the ultrafine-fine PM fractions which are dominated by spherical to sub-spherical carbon particles generated by moving and stationary exhausts (Chuang et al., 2011). For both CB-1 and CB-2, the main constituents (by weight %) were carbon and oxygen. Contamination of CB-1 was below 1% (S, Cu, Si) and for CB-2 below 5% (Cu, Fe, Pb, S, Si).

<table>
<thead>
<tr>
<th>Particle</th>
<th>Particle size (nm)</th>
<th>Morphology</th>
<th>Contamination (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon black (CB-1)</td>
<td>100 - 250</td>
<td>Sub-spherical</td>
<td>< 1 (S, Cu, Si)</td>
</tr>
<tr>
<td>Carbon black (CB-2)</td>
<td>50 - 200</td>
<td>Sub-spherical</td>
<td>< 5 (Cu, Fe, Pb, S, Si)</td>
</tr>
</tbody>
</table>

Table 1 Summary of carbon black physicochemistry. Particle size and morphology obtained from FESEM analysis, and contamination percentage from EDX analysis. Contaminant defined as any unexpected element.

3.2 PM$_{10}$ physicochemistry

Particles from a number of different sources were identified at the urban traffic site (Figure 1).

Combustion particles were the most abundant particle type collected at the site by number. Individual soot particles were resolved in size fractions below 100 nm (Figures 1a and 1b), while agglomerates and clusters (Figure 1c) were also found in the fine fractions. These were predominantly carbon particles, but due to the combustion formation process, they were often also associated with surface-bound transition metals (Table 2; Donaldson et al., 2003).
Table 2 Transition metal content of size-segregated PM at the traffic site

<table>
<thead>
<tr>
<th>Size fraction (nm)</th>
<th>Transition metal content (%)</th>
<th>Specific contributors (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N28 – 55</td>
<td>4.7</td>
<td>Zn (3.6%), Fe (1.0%)</td>
</tr>
<tr>
<td>N56-93</td>
<td>4.5</td>
<td>Zn (3.2%), Fe (1.1%), Mn (0.2%)</td>
</tr>
<tr>
<td>N94-155</td>
<td>15.4</td>
<td>Zn (14.7%), Fe (0.6%)</td>
</tr>
<tr>
<td>N156-262</td>
<td>23.6</td>
<td>Zn (23.1%), Fe (0.5%)</td>
</tr>
<tr>
<td>N263-383</td>
<td>14.1</td>
<td>Zn (11.0%), Fe (2.9%), Mn (0.3%)</td>
</tr>
<tr>
<td>N384-615</td>
<td>23.2</td>
<td>Zn (22.6%), Fe (0.5%)</td>
</tr>
<tr>
<td>N616-952</td>
<td>9.4</td>
<td>Fe (7.4%), Zn (1.0%), Mn (1.0%)</td>
</tr>
<tr>
<td>N953-1609</td>
<td>12.3</td>
<td>Fe (10.5%), Mn (1.3%), Zn (0.4%)</td>
</tr>
<tr>
<td>N1610-2399</td>
<td>13.7</td>
<td>Fe (11.2%), Zn (1.0%), Mn (1.4%)</td>
</tr>
<tr>
<td>N2400-4009</td>
<td>11.5</td>
<td>Fe (8.0%), Zn (2.6%), Mn (0.7%), Cu (0.1%)</td>
</tr>
<tr>
<td>N4010-10,000</td>
<td>10.5</td>
<td>Fe (9.2%), Mn (0.5%), Cu (0.3%), Ti (0.2%)</td>
</tr>
</tbody>
</table>

In urban air these are generally the most numerous particles in PM\textsubscript{10}, especially in the fine and nano-size fractions. Combustion-derived nanoparticles are emitted from sources including mobile and stationary engines, and traffic combustion particles are considered to be the most harmful common particles to human health (Reche et al., 2012). Industrial particles were discovered in the fine and coarse size fractions (Figure 2), and were of respirable size.

Industrial particles have previously been linked with bioreactivity (Brown et al., 2011). The chemical composition of these particles varied but included transition metals identified in the EDX analysis (Table 2). They were distinct from naturally derived or soot particles due to their larger size and often spherical morphologies from high temperature formation processes.
and non-carbon chemical signatures. Mineral particles dominated the coarse fractions of \(\text{PM}_{10} \) and were considered to be fugitive dust. These particles are generally derived from wind-driven erosion of soil components, resuspension of road dust, and/or construction activities. Fugitive dust components would have contributed to the higher levels of Fe, Mg, and Mn in the fine–coarse particles (Table 2). Marine particles were also found in the coarse fractions of PM (Figure 1e). These can be either directly sourced from the sea or resuspended from road salt during the winter months. Biological particles were identified in some samples, and generally resided in the coarse fractions. Biogenic particles included spores (Figure 1d) which have been linked to allergenic reactions (Donaldson et al., 2003).

3.3 Particle oxidative reactivity (OR)

3.3.1 Carbon black (CB) particles

As the mass-based concentration of CB to which the DNA was exposed to increased, the percentage of DNA damaged during the incubation increased (Figure 3). Neither of the CBs were bioreactive enough to generate a TD\(_{50}\); samples unable to generate 50% plasmid DNA damage are considered to be non-bioreactive (Koshy, 2010). The CBs showed very similar changes in OR with increasing concentration; probably related to their nearly identical sizes and compositions. CB-1 had a TD\(_{35}\) of 132 \(\mu \text{g} \)/ml while CB-2 was not reactive enough to generate a TD\(_{35}\).

3.3.2 PM\(_{10}\)

Concentration-response curves were identified for all PM\(_{10}\) size fractions (Figure 4) with the associated TD\(_{20}\), TD\(_{35}\)s, and TD\(_{50}\)s given in Table 3 for comparison with previous studies using the PSA. As the concentration of particles to which the DNA was exposed to increased, the percentage of DNA damaged during the incubation increased. This was identified for all size fractions. The shape of the concentration-response curve was similar for particles below
2400 nm. In the coarse range (>2400 nm) a flattened response was found. This suggests that increasing the concentration higher than 100 μg/ml had a limited effect on the OR for coarse PM.

The most bioreactive fractions of PM in Swansea were dominated by combustion-derived nanoparticles (CDNP) from the street canyon (Figure 1). CDNP were likely to have originated from vehicle exhausts. Soot particles with nano-powder carbon cores have previously been linked with ROS production (Rouse et al., 2008; Chuang et al., 2011). The least bioreactive fractions of PM were dominated by mineral and sea salt particles. Therefore, the differential chemistry of the coarse, fine and nano-fractions in this study (Table 2) may be linked to source-specific ROS profiles.

Table 3 Comparison of TDₙ for this study compared to previous studies. TDₙ in μg/ml. TSP = Total suspended particulate. WS = Water soluble.

<table>
<thead>
<tr>
<th>Particle size (nm)</th>
<th>TD₂₀</th>
<th>TD₃₅</th>
<th>TD₅ₐ</th>
<th>Study description</th>
<th>Reference</th>
<th>Proposed biological driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>N₂₈-₅₅</td>
<td>13</td>
<td>34</td>
<td>93</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td>Particle size/surface area, Zn, (Fe)</td>
</tr>
<tr>
<td>N₃₆-₉₃</td>
<td>11</td>
<td>30</td>
<td>80</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₉₄-₁₅₅</td>
<td>11</td>
<td>27</td>
<td>69</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₁₅₆-₂₆₂</td>
<td>15</td>
<td>53</td>
<td>192</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₂₆₃-₃₈₃</td>
<td>11</td>
<td>38</td>
<td>126</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₃₈₄-₆₁₅</td>
<td>10</td>
<td>34</td>
<td>120</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₆₁₆-₉₅₂</td>
<td>20</td>
<td>30</td>
<td>116</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₉₅₃-₁₆₉₉</td>
<td>17</td>
<td>49</td>
<td>145</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₁₆₁₀-₂₃₉₉</td>
<td>18</td>
<td>54</td>
<td>162</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>N₂₄₀₀-₄₀₀₉</td>
<td>12</td>
<td>91</td>
<td>677</td>
<td>Street, Wales, UK</td>
<td>This study</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: PM Size, Surface Area, and Composition

<table>
<thead>
<tr>
<th>PM Size</th>
<th>Location</th>
<th>Study Authors</th>
<th>Year</th>
<th>Size/Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM_{10%} \text{-} 0.001</td>
<td>10</td>
<td>79</td>
<td>625</td>
<td>Street, Wales, UK</td>
</tr>
<tr>
<td>PM_{10%} \text{-} 2.5</td>
<td>128-147</td>
<td>Barcelona, Spain</td>
<td>Reche et al.,</td>
<td>2012</td>
</tr>
<tr>
<td>PM_{2.5%} \text{-} 0.1</td>
<td>28-44</td>
<td>Barcelona, Spain</td>
<td>2012</td>
<td>Size, surface area</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>37-102</td>
<td>Incense PM, 3 types tested</td>
<td>Chuang et al., 2011</td>
<td>Size, Cu</td>
</tr>
<tr>
<td>PM_{2.5%} \text{-} 0.1</td>
<td>185</td>
<td>Urban, Cardiff, UK</td>
<td>Koshy et al., 2009</td>
<td>Size</td>
</tr>
<tr>
<td>PM_{10%} \text{-} 2.5</td>
<td>493</td>
<td>Urban, Cardiff, UK</td>
<td>2009</td>
<td>Size</td>
</tr>
<tr>
<td>PM_{2.5%} \text{-} 0.1</td>
<td>28</td>
<td>Urban-landfill, Cardiff, UK</td>
<td>2009</td>
<td>Size</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>53-260</td>
<td>Satellite city, suburban Beijing, China</td>
<td>Zhou and Song, 2009</td>
<td>Size, WS Zn</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>28-480</td>
<td>Clean air site, Beijing, China</td>
<td>2009</td>
<td>Size, WS Zn</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>10-51</td>
<td>Urban, Shanghai, China</td>
<td>Senlin et al., 2008</td>
<td>Size/metals</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>100</td>
<td>Indoor smoker, Beijing, China</td>
<td>Shao et al., 2007</td>
<td>WS metals (Zn)</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>116</td>
<td>Urban, Beijing, China</td>
<td>Shao et al., 2006</td>
<td>WS Zn</td>
</tr>
<tr>
<td>TSP</td>
<td>163</td>
<td>1950s black smoke, London, UK</td>
<td>Whittaker et al., 2004</td>
<td>Chemical composition</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>85-106</td>
<td>Industrial area, Wales, UK</td>
<td>Moreno et al., 2004</td>
<td>Chemical composition</td>
</tr>
<tr>
<td>PM_{10%} \text{-} 2.5</td>
<td>13</td>
<td>Urban, Cardiff, UK</td>
<td>Greenwell et al., 2002</td>
<td>Chemical composition</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>20</td>
<td>Urban, Cardiff, UK</td>
<td>2002</td>
<td>Chemical composition</td>
</tr>
</tbody>
</table>

3.3.3. Comparison to previous studies

Calculated TD_{50} values were within the range of previous studies for different particle size fractions collected in locations worldwide (Table 3), including an industrial area in South Wales (Moreno et al., 2004; TD_{50} = 85 - 106 µg/ml), indoor particles from a smoker’s home.
in Beijing (Shao et al., 2007; TD$_{50} = 100$ µg/ml), and London 1950s black smoke (Whittaker et al., 2004; TD$_{50} = 163$ µg/ml). In a study by Koshy et al. (2009), particles collected in Cardiff, south Wales were divided into two size fractions; PM$_{2.5-0.1}$ and PM$_{10-2.5}$. Both Cardiff and Swansea can be considered “large” UK cities by population and are located 50 km apart.

In the Koshy study (Cardiff) and this study (Swansea), sampling was undertaken centrally to the city. Both sampling sites were located at the edge of busy routes bisecting the cities. By averaging the size fractions, the TD$_{50}$ for fine (N$_{28-2399}$) particles in Swansea was 123 µg/ml. This is very similar to the TD$_{50}$ identified for Cardiff in the Koshy study for PM$_{2.5-0.1}$ (185 µg/ml). At both sites traffic particles (particularly exhaust-derived) would have dominated the collected particles in this size fraction, and due to the proximity of the sampling locations (and hence similarities between the two vehicle fleets) this similarity was expected. The increased OR for fine particles in Swansea is probably related to the lower cut off diameter in Swansea (28 nm) than in Cardiff (100 nm). In the coarse size range, the TD$_{50}$ for PM$_{10-2.5}$ in Cardiff was 493 µg/ml, which was slightly lower than in Swansea (651 µg/ml) for N$_{2400-10,000}$.

For similar sampling settings in two geographically close cities the ROS generation potential of the PM was similar. This comparability suggests that OR could be generalised more widely than a singular sampling site as long as the site types were the same.

The results from Swansea suggested lower oxidative activity for fine and coarse particles in comparison to “mega cities” and southern European cities. Senlin et al. (2008) collected PM$_{2.5}$ in an urban area in Shanghai, China. Calculated TD$_{50}$s were between 10-51 µg/ml, which was lower than the equivalent size fraction in Swansea (123 µg/ml). At an urban site in Beijing, China, for PM$_{10}$ a TD$_{50}$ of 116 µg/ml was calculated (Shao et al., 2006). Reche et al. (2012) collected PM in two size fractions (PM$_{10-2.5}$ and PM$_{2.5-0.1}$) at an urban site in SW Barcelona. The particles were collected 150m away from one of the busiest roads in the city with a traffic flow of 132,000 vehicles day$^{-1}$. The TD$_{50}$ for PM$_{2.5-0.1}$ was between 28-44
μg/ml, which was much lower than in Swansea (123 μg/ml for N_{28-2399}). This shows that for a similar size fraction, the Barcelona PM exhibited greater bioreactivity than Swansea PM. The same was true for coarse particles (128 – 147 μg/ml in Barcelona and 651 μg/ml in Swansea). Barcelona is situated between the mountains and the sea and therefore has one of the highest traffic densities in Europe (6100 cars km^{-2} in comparison to the European average of 1000–1500 cars km^{-2}; Reche et al., 2012). This could account for the increased oxidative activity of the Barcelona PM. In addition, vehicle factors such as fuel composition, vehicle age and type are likely to contribute to differences in the bioreactivity between the two cities.

3.4 Effect of particle size

The nano-size fractions were capable of generating the greatest bioreactive response, as shown by the TD_{50} values (Table 3). The N_{94-155} fraction with a TD_{50} of 69 μg/ml constituted the most bioreactive fraction, but all the sub-100 nm size fractions exhibited TD_{50}s below 100 μg/ml. This supported the results of previous PSA studies with similar size-dependent results (Lingard et al., 2005; Koshy et al., 2009; Brown et al., 2011), but improved the size resolution. The mean TD_{50}s calculated for different size fractions were compared statistically using the independent t-test. For the comparison, particle data were divided into UF (ultrafine 28 nm – 262 nm), fine (263 nm – 2399 nm) and coarse (2400 nm – 10,000 nm). The TD_{50}s for UF and fine size ranges were not found to be statistically significantly different \((t = -.957, p>0.05)\), however the TD_{50}s for coarse particles \((M = 651 \mu g/ml, SE = 26.0)\) were found to be higher than UF \((M = 108 \mu g/ml, SE = 28.3)\) and fine \((M = 134 \mu g/ml, SE = 8.6)\) particles, and this difference was significant \((t = -11.982, p<0.05 \text{ and } t = 26.007, p<0.05 \text{ respectively})\). This shows that there was a statistically significant higher oxidative activity capacity for UF and fine particles in comparison to coarse particles. Classically, low toxicity particles (e.g. CB), below 100 nm, have been shown to induce an increased inflammatory response in comparison to their larger counterparts, and as such particle size is now considered to be a
dominant parameter in influencing lung toxicity (Bonner, 2007). In this study, the enhanced
size fractionation achieved by using the ELPI has elucidated the variability in TD$_{50}$ values by
size, in comparison to the complex non-fractionated mixtures analysed in previous studies. It
has shown for the first time the variability in ROS-generating potential between PM
segregated with such high resolution.

3.5 Effect of particle surface area

Particle surface area has been proposed as a driving factor for the enhanced OR of
nanoparticles compared to larger particles. Ultrafine particles feature a higher surface area to
mass ratio, and therefore, increased surface area per µg in contact with cellular macromoles
(i.e. DNA) from which to exert their toxic effects. The surface area per microgram of
particles was calculated for all size fractions using a combination of averaged mass and
number data acquired by the ELPI during the measurements (Figure 5). This was plotted
against the TD$_{50}$ for the corresponding size fraction to illustrate the quantitative relationship
between particle surface area and the TD$_{50}$ with high size resolution. An increase in particle
surface area was associated with a lower TD$_{50}$, i.e. greater OR, in comparison to the size
fractions with lower surface areas per mass (µg) of particles. It should be noted that the ELPI
size fractionates particles using the aerodynamic diameter which assumes a spherical particle
shape. While some urban air particles are spherical (e.g. exhaust PM), there are numerous
other morphologies observed, e.g. cubic sea salt and elongate flaky mineral particles. The
surface area determinations calculated in this study are therefore considered minimum values,
and in reality are probably much higher. The trend noted relies on the high TD$_{50}$s of the two
most coarse particle fractions and suggests a two-tiered effect for nano/fine and coarse
particles as statistically determined previously.

3.6 Effect of particle-bound transition metals
Surface-bound transition metals are considered to be a further source of OR in PM$_{10}$ (e.g. Lingard et al., 2005). Below 200 nm, PM is generally considered to consist of a carbon core with surface metals. A comparison was made between the TD$_{35}$s of the urban PM between 100 and 400 nm, and CB-1 (Figure 6), which was found to consist of 100-250 nm diameter carbon particles with <1% transition metal content (Table 1). Only CB-1 was compared since CB-2 was not capable of generating either a TD$_{50}$ or TD$_{35}$ using non-linear modelling. The TD$_{35}$ values for the urban PM were up to four times lower than for the CB. In contrast to the <1% transition metal content of the CB particles, the urban PM was comprised of between 14 and 24% transition metals (by weight). At this site Zn and Fe were important metals in the PM; Zn was the dominant transition metal below 615 nm and Fe was the dominant transition metal above 616 nm. The enhanced OR of UF and fine particles in comparison to CB suggests a driving role for Zn in this study, though this could not be proven statistically.

In a previous study, a similar comparison was made, and the greater inflammatory response from fine PM in comparison to CB was attributed to the surface coating of the fine particles (Pozzi et al., 2003). Transition metals are hypothesised to cause oxidative damage by the generation of ROS through Fenton type reactions and act as catalysts for Haber-Weiss reactions (Könczöl et al., 2013). In a previous study in south Wales, UK, lower TD$_{50}$ levels were associated with Fe, Mn, Ni, Molybdenum (Mo), and especially Zn (Moreno et al., 2004). A study in Beijing found a negative relationship between the TD$_{20}$ and Zn levels (Zhou and Song, 2009), and a study in Xuan Wei, China also found a link between high PM Zn levels and low TD$_{50}$s (Shao et al., 2013). Fe in PM$_{10}$ has also been implicated in mediating oxidative damage by driving a modified Haber-Weiss or Fenton reaction (Mossman et al., 2007), resulting in the generation of the hydroxyl radical (·OH). It is also important to note that in addition to particle size/surface area and transition metals, there may also be other
particle properties which drive the oxidative response which were not analysed in this study (e.g. particle charge and organic constituents).

4. Conclusion

The PSA is an early stage assay for testing the OR of particles and can be considered an initial step towards investigating more holistic health effects of inhalation exposure to PM$_{10}$. In this study, the oxidative potential of PM$_{10}$ was linked with particle size and surface area; particles within the ultrafine and fine fractions were capable of generating higher levels of oxidative activity than coarse particles. Despite similar particle sizes, the CB particles were less bioreactive than PM$_{10}$ (by TD$_{35}$), suggesting the generation of oxidative stress by surface reactions on the PM$_{10}$. An investigation of the transition metal content of the PM implicated Zn (and Fe) in the generation of oxidative activity, though this was not proven directly.

This study has added to previous work by using an enhanced particle size resolution; this allowed the most in-depth analysis of the effect of particle size on OR using the PSA that has been completed to date. A comparison between PM and a surrogate particle type, CB, provided a method to test the contribution to OR of the non-size related physicochemical characteristics. Working with ‘cocktails’ of PM$_{10}$ from different sources has many confounding factors which complicate the identification of the driver of any biological effect. In this study size segregating the particles was a useful step towards disentangling particles from different sources and with different properties. Future work should continue analysing the OR of particles subdivided into as many size fractions as possible, while moving towards more comprehensive assessment systems, e.g. further in vitro assays, testing on cell lines and in vivo work. In addition, the use of interventions, e.g. chelators could be used to provide information on the specific chemical constituents which caused OR. Developing our understanding of the particle properties responsible for the observed health impacts from
PM$_{10}$ is important as it has the potential to allow the development of source-specific air quality policy and for PM reduction targeting.

Acknowledgements

Financial support for this work was provided by NERC RCUK.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions.

HP carried out the fieldwork, chemical analyses, oxidative reactivity assay and wrote the first draft of the manuscript. TJ was involved in the design of the study and helped with fieldwork. KB was involved in the design of the study, oxidative reactivity assays and revisions of the manuscript. All authors read and approved the final manuscript.
References

Pozzi R, DeBerardis B, Paoletti L, Guastadisegni C: Inflammatory mediators induced by coarse (PM_{2.5-10}) and fine (PM_{2.5}) urban air particles in RAW 264.7 cells. *Toxicol* 2003, 1(183):243-254.

Figures

Figure 1: Morphology of typical particles identified during sampling at an urban street canyon; a) and b) combustion derived particles, c) agglomerate of combustion derived particles, d) spherical particle with nodular surface and C-signature suggesting a biogenic particle, e) aged NaCl particle, and f) mineral particle.
Figure 2: Industrial particles were generally identified in the fine size range; a) aluminium silicate glass particle of 1 μm diameter, and b) spherical carbon-dominated particle of 2.5 μm diameter, both identified using HR-TEM/EPXMA.
Figure 3: Concentration-response profiles for the carbon black particles; CB-1 and CB-2.

Error bars represent 1 SD ± mean, based on n=5.
Figure 4: Concentration-response profiles for street canyon PM$_{10}$ (N$_{28}$-N$_{10,000}$, a-k). Graphs depict mean ± 1 SD, n = 5. Profiles (a) and (b) represent size fractions below 100nm. Profiles (c) to (i) illustrate results for fine particulate matter. Profiles (j) and (k) are the coarse PM fraction. TD$_{50}$ values were calculated using a non-linear regression model.
Figure 5: An increase in surface area (SA) is linked with an increase in oxidative reactivity; comparison of TD$_{50}$ and SA for the different PM$_{10}$ fractions; (a) increase in SA with particle size, (b) change in particle mass and particle number in the different particle size fractions. Mass = 1 week average. PNC is depicted by triangles and mass is depicted by squares, (c) scatter plot comparing the calculated SA per microgram of sample with the TD$_{50}$ for each ELPI size fraction.
Figure 6: Comparison of carbon black particles (CB-1; 100 - 250 nm) and street canyon particles of an equivalent size; N_{94-155}, N_{156-262} and N_{263-383}, with their TD_{35} values in µg/ml. Above the graph is shown in diagrammatic form the differential composition of the CB particles and street canyon particles; the CB particles consisted of a carbon core only, whilst the urban air PM was comprised of a carbon core with surface-bound species.