Star complements and exceptional graphs

D. Cvetković a, P. Rowlinson b,*, S.K. Simić c

a Department of Mathematics, Faculty of Electrical Engineering, University of Belgrade, P.O. Box 35-54, 11120 Belgrade, Serbia
b Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
c Mathematical Institute SANU, Knez Mihailova 35, 11001 Belgrade, Serbia

Received 26 May 2006; accepted 8 January 2007
Available online 20 January 2007
Submitted by W. Haemers

Abstract

Let \(G \) be a finite graph of order \(n \) with an eigenvalue \(\mu \) of multiplicity \(k \). (Thus the \(\mu \)-eigenspace of a \((0, 1)\)-adjacency matrix of \(G \) has dimension \(k \).) A star complement for \(\mu \) in \(G \) is an induced subgraph \(G - X \) of \(G \) such that \(|X| = k \) and \(G - X \) does not have \(\mu \) as an eigenvalue. An exceptional graph is a connected graph, other than a generalized line graph, whose eigenvalues lie in \([-2, \infty)\). We establish some properties of star complements, and of eigenvectors, of exceptional graphs with least eigenvalue \(-2\).

© 2007 Elsevier Inc. All rights reserved.

AMS classification: 05C50

Keywords: Graph; Eigenvalue; Star complement

1. Introduction

Let \(G \) be a finite graph of order \(n \) with an eigenvalue \(\mu \) of multiplicity \(k \). (Thus the corresponding eigenspace of a \((0, 1)\)-adjacency matrix of \(G \) has dimension \(k \).) A star set for \(\mu \) in \(G \) is a set \(X \) of \(k \) vertices in \(G \) such that the induced subgraph \(G - X \) does not have \(\mu \) as an eigenvalue. In this situation, \(G - X \) is called a star complement for \(\mu \) in \(G \) (or in [15] a \(\mu \)-basic subgraph of...
Star sets and star complements exist for any eigenvalue of any graph, and serve to explain the relation between graph structure and a single eigenvalue \(\mu \). When \(\mu \) is not \(-1\) or \(0\), they can be used to determine sharp upper bounds for \(k \) in arbitrary graphs and in regular graphs [2]; to characterize certain graphs (see for example [12]); and to find all the exceptional graphs (i.e. connected graphs with all eigenvalues at least \(-2\) that are not generalized line graphs) [9]. There are also connections with dominating properties [10, Section 7.6] and independent sets [19]. For a recent survey, see [18] and for basic properties, see [13, Chapter 5]. Here we investigate properties of star sets and star complements related to graphs with least eigenvalue \(-2\), and explain some phenomena observed from earlier computer results. Explicitly, we give a simple computer-free proof that each exceptional graph with least eigenvalue greater than \(-2\) is an induced subgraph of an exceptional graph with least eigenvalue equal to \(-2\); we show how extendability graphs [13, Section 5.1] can be used to investigate the regular exceptional graphs; and we establish a property of eigenvectors of exceptional graphs with \(-2\) as a simple eigenvalue.

The following result [13, Theorem 5.1.7] establishes the fundamental property of star complements: if \(X \) is a star set for \(\mu \) in \(G \), and if \(H \) is the star complement \(G - X \), then \(G \) is determined by \(\mu \), \(H \) and the \(H \)-neighbourhoods of vertices in \(X \).

Theorem 1.1. Let \(X \) be a set of \(k \) vertices in the graph \(G \) and suppose that \(G \) has adjacency matrix \(\begin{pmatrix} A_X & B \\ B^T & C \end{pmatrix} \), where \(A_X \) is the adjacency matrix of the subgraph induced by \(X \). Then \(X \) is a star set for \(\mu \) in \(G \) if and only if \(\mu \) is not an eigenvalue of \(C \) and

\[
\mu I - A_X = B^T (\mu I - C)^{-1} B.
\]

In this situation, the eigenspace of \(\mu \) consists of the vectors \(\begin{pmatrix} x \\ (\mu I - C)^{-1} Bx \end{pmatrix} \), where \(x \in \mathbb{R}^k \).

Recall that \(\mu \) is a main eigenvalue of \(G \) if the eigenspace \(\mathcal{E}(\mu) \) is not orthogonal to the all-1 vector \(j \).

In Section 2, we discuss the addition of a vertex to an exceptional star complement for \(-2\) to obtain \(-2\) as a main eigenvalue, and the addition of a star set to obtain \(-2\) as a non-main eigenvalue. In Section 3 we discuss integral eigenvectors of exceptional graphs having \(-2\) as a simple eigenvalue.

2. Eigenvalues of exceptional graphs

We denote the least eigenvalue of a graph \(G \) by \(\lambda(G) \). Let \(\mathcal{H} \) denote the family of 443 exceptional graphs of order 8 with \(\lambda(G) > -2 \). These graphs were found by Doob and Cvetković [14] in 1979, and are listed as \(H001, \ldots, H443 \) in [13, Table A2]. The 473 maximal exceptional graphs were found by computer in 1999, as described in [9], and from these calculations we know that each graph in \(\mathcal{H} \) arises as a star complement for \(-2\). We begin by verifying this observation theoretically; the desirability of a computer-free proof was noted in [1, p. 17]. Since any exceptional graph \(G \) with \(\lambda(G) > -2 \) is an induced subgraph of a graph in \(\mathcal{H} \), one consequence of the result is that no exceptional graph \(G \) with \(\lambda(G) > -2 \) is a maximal exceptional graph.

Proposition 2.1. If \(H \in \mathcal{H} \) then \(H \) has a one-vertex extension \(H' \) with \(\lambda(H') = -2 \).

Proof. By [13, Theorem 2.3.19], \(H \) has an exceptional induced subgraph of order 6, and so there exists a vertex \(u \) of \(H \) such that \(H - u \) is exceptional. In the terminology of [13, Section 3.7], \(H \) generates the root system \(E_8 \), while \(H - u \) generates \(E_7 \). If the graph \(G \) generates \(E_k (k \in \{6, 7, 8\}) \)
then its adjacency matrix has the form \(Q^T Q - 2I \), where \(Q^T Q \) is the Gram matrix of an integral basis for the integral lattice \(L(E_k) \) generated by \(E_k \). Now the determinant of such a Gram matrix is a lattice invariant called the \textit{discriminant} of \(L(E_k) \), shown in [3, Section 3.10] to be 1 when \(k = 8, 2 \) when \(k = 7 \), and 3 when \(k = 6 \). Thus \(P_G(-2) = \det(-Q^T Q) = (-1)^k(9 - k) \) (cf. [7, Theorem 3], [13, Lemma 7.5.2]).

Now let \(H' \) be the graph obtained from \(H \) by attaching a pendant vertex at \(u \). From [6, Theorem 2.11], the characteristic polynomial of \(H' \) is given by

\[
P_{H'}(x) = x P_H(x) - P_{H-u}(x).
\]

In view of the preceding remarks, we have \(P_H(-2) = 1 \) and \(P_{H-u}(-2) = -2 \), and so from (2) we obtain \(P_{H'}(-2) = 0 \). By the Interlacing Theorem [13, Theorem 1.2.21], \(\lambda(H') = -2 \). □

In the foregoing proof, the appeal to the theory of lattices can be avoided by arguing as follows. If \(A \) is the adjacency matrix of \(H \) then \(A + 2I = Q^T Q \), where each column of the invertible \(8 \times 8 \) matrix \(Q \) lies in \(E_8 \). The seven columns of \(Q \) corresponding to \(H - u \) lie in a subsystem \(E_7 \) which consists of the vectors in \(E_8 \) orthogonal to a fixed vector \(b \) of \(E_8 \). Since \(E_8^\perp = \{0\} \), \(b \) is not orthogonal to the remaining column \(q \) of \(Q \). Replacing \(b \) with \(-b\) if necessary, we may assume that \(b \cdot q = 1 \). Now let \(R = [Q|b] \). Then \(R^T R = A' + 2I \), where \(A' \) is the adjacency matrix of \(H' \). Since \(R^T R \) has rank 8, \(-2\) is an eigenvalue of \(H' \), and by the Interlacing Theorem, \(\lambda(H') = -2 \) as required.

Given a representation of \(H' \) in \(E_8 \), it can be shown by the methods of [11, Section 2] that \(H' \) has a one-vertex extension for which \(-2\) is an eigenvalue of multiplicity 2.

The graph \(H' \) has \(H \) as a star complement for \(-2\), but the eigenvalue \(-2\) of \(H' \) may or may not be a main eigenvalue. If \(v \) is an eigenvector of \(H' \) corresponding to \(-2\) then \(Rv = 0 \), while \(-2\) is a main eigenvalue if and only if \(v \cdot j_9 \neq 0 \). Let \(R' \) be the matrix obtained from \(R \) by adding \(j_9^* \) as a ninth row. Then \(-2\) is a non-main eigenvalue if and only if \(R'v = 0 \), equivalently \(j_9 \) lies in the column space of \(R^T \).

For an investigation of main and non-main eigenvalues, we use the notation of Section 1 with \(t = n - k \) and \(j = j_1. \) Let \(\{e_1, \ldots, e_k\} \) be the standard orthonormal basis of \(\mathbb{R}^k \), and define a bilinear form on \(\mathbb{R}^t \) by

\[
\langle x, y \rangle = x^T (\mu I - C)^{-1} y \quad (x, y \in \mathbb{R}^t).
\]

By Theorem 1.1, \(\mu \) is a non-main eigenvalue of \(G \) if and only if \(j_n \) is orthogonal to the vectors \((\mu I - C)^{-1} e_i \) \((i = 1, \ldots, k) \). Since \(Be_i \) is the \(i \)-th column of \(B \), \(\mu \) is a non-main eigenvalue of \(G \) if and only if \(\langle b, j \rangle = -1 \) for each column \(b \) of \(B \). The computer calculations described in [9] show that each graph \(H \) in \(\mathcal{H} \) arises as a star complement for \(-2\) in a graph for which \(-2\) is a main eigenvalue [5, Theorem 11]. It follows from the foregoing remarks that each such graph \(H \) has a one-vertex extension for which \(-2\) is a main eigenvalue; in other words, there exists a column \(b \) such that \(\langle b, b \rangle = -2 \) and \(\langle b, j \rangle \neq -1 \). This fact has not yet been established theoretically.

The \textit{extendability graph} \(\Gamma(H; \mu) \) [13, p. 121] has as vertices the \((0,1)\)-vectors \(b \in \mathbb{R}^t \) such that \(\langle b, b \rangle = \mu \), with an edge between \(b \) and \(b' \) if and only if \(\langle b, b' \rangle \in (-1, 0] \). A clique on \(b_1, b_2, \ldots, b_k \) in \(\Gamma(H; \mu) \) determines a graph \(G \) with \(H \) as a star complement for \(\mu \); in the notation of Theorem 1.1, \(H = G - X \) where \(X = \{1, 2, \ldots, k\} \), \(B = [b_1 | b_2 | \cdots | b_k] \), and vertices \(i, j \) of \(X \) are adjacent if and only if \(\langle b_i, j \rangle = -1 \). We may define the \textit{non-main extendability graph} \(\Gamma^*(H; \mu) \) as the subgraph of \(\Gamma(H; \mu) \) induced by those \((0,1)\)-vectors \(b \) for which \(\langle b, j \rangle = -1 \).
Proposition 2.2. Let $H \in \mathcal{H}$ and suppose that the cone $K_1 \nabla H$ has -2 as an eigenvalue. Then $\Gamma^*(H; -2)$ has a perfect matching, say b_1c_1, \ldots, b_mc_m, with $b_i + c_i = j$ ($i = 1, \ldots, m$). Moreover the following hold.

(i) If $\Gamma^*(H; -2)$ has a clique of order m then $\Gamma^*(H; -2)$ is a cocktail-party graph $CP(2m) = mK_2$. In this situation every maximal clique has order m, there are 2^m maximal cliques, and the 2^m corresponding graphs with H as a star complement for -2 are switching-equivalent.

(ii) $m \leq 20$ and if G has H as a star complement for -2 as a non-main eigenvalue then G is switching-equivalent to an induced subgraph of $L(K_8)$.

Proof. Since $K_1 \nabla H$ has -2 as an eigenvalue, we have $(j, j) = -2$. Hence, for any vertex b of $\Gamma^*(H; -2)$ we have $(j - b, j - b) = -2$, so that $j - b$ is a vertex of $\Gamma(H; -2)$. In addition we have $(j - b, j) = -1$, and so $j - b$ is a vertex of $\Gamma^*(H; -2)$. Since $(j - b, b) = 1$, it follows that b and $j - b$ are non-adjacent vertices of $\Gamma^*(H; -2)$, and hence that $\Gamma^*(H; -2)$ has a perfect matching with the property claimed.

For (i), note first that a clique of order m in $\Gamma^*(H; -2)$ has precisely one vertex from each pair (b_i, c_i); without loss of generality, b_1, \ldots, b_m induce a clique K. Secondly, note that the map $b \leftrightarrow j - b$ is an isomorphism from the graph on b_1, \ldots, b_m to the graph on c_1, \ldots, c_m, and so c_1, \ldots, c_m also induce a clique. Thirdly, if $\langle b_i, b_j \rangle = 0$ then $\langle b_i, c_j \rangle = -1$, while if $\langle b_i, b_j \rangle = -1$ then $\langle b_i, c_j \rangle = 0$. Thus $\Gamma^*(H; -2) \cong CP(2m)$. Hence there are 2^m cliques of order m, each obtained from K by replacing b_i with c_i for all i in some subset of $\{1, \ldots, m\}$. As noted in [13, Section 5.5], the corresponding graphs with H as a star complement for -2 are switching-equivalent.

For (ii), note that we may add to G a vertex v adjacent to every vertex of G to obtain a cone $K_1 \nabla G$ which has H as a star complement for -2. Now we argue as in [13, Proposition 6.2.1]: by choosing a suitable representation of $K_1 \nabla G$ in the root system E_8, we see that G is switching-equivalent to an induced subgraph of $L(K_8)$. In particular, v can have at most 28 neighbours and so $m \leq 20$. □

Example 2.3. Let H consist of disjoint cycles of lengths 3 and 5 together with a bridge between them, i.e. H is the exceptional graph $H010$. It is straightforward to verify that $K_1 \nabla H$ has -2 as an eigenvalue. Moreover, H is an induced subgraph of a Chang graph G; and since G is regular of order 28, $\Gamma^*(H; -2)$ has a clique of order 20 (necessarily maximal by Proposition 2.2(ii)). By Proposition 2.2(ii), $\Gamma^*(H; -2) \cong CP(40)$ and any maximal graph having H as a star complement for -2 as a non-main eigenvalue is switching-equivalent to G, hence to $L(K_8)$.

The arguments of Example 2.3 apply whenever (i) $(j, j) = -2$, and (ii) H is a star complement for -2 in a graph of order 28 with -2 as a non-main eigenvalue. M. Lepović (private communication) has verified by computer that exactly 198 of the 443 graphs $H \in \mathcal{H}$ satisfy condition (i), i.e. are such that the cone $K_1 \nabla H$ has -2 as an eigenvalue. The computer investigations reported in [8] show that all but one ($H434$) are star complements for -2 in some $K_1 \nabla G$, where G is a Chang graph. Moreover 172 of the remaining 197 graphs have maximal degree less than 7, hence are induced subgraphs of a Chang graph G. Thus for each of these 172 graphs H we have $\Gamma^*(H; -2) \cong CP(40)$. The same holds when H is the graph $H440$ (with maximal degree 7): in this case, there are many non-isomorphic graphs among the corresponding 2^{20} graphs of order 28 that have -2 as a non-main eigenvalue. (In [5, Section 6] it was asserted wrongly that only one such graph of order 28 exists; however Theorem 11 of [5] remains valid.)
In the next example, we construct \(\Gamma^*(H; -2) \) explicitly when \(H \) is \(H443 \), another graph in \(\mathcal{H} \) with maximal degree 7. In this case we do not have prior knowledge of a graph of order 28 with \(-2\) as a non-main eigenvalue. The calculations show that there is no regular graph with \(H443 \) as a star complement for \(-2\).

Example 2.4. Let \(H \) be the complement of \(K_{1,2} \cup 5K_1 \), i.e. \(H \) is the exceptional graph \(H443 \) which features as a versatile star complement for \(-2\) in [13, Section 6.3]. A vertex \(u \) in \(X \) is said to be of type \(abc \) if its \(H \)-neighbourhood \(\Delta_H(u) \) consists of \(a, b, c \) vertices of degree 5, 6, 7 respectively. Let \(C \) be the adjacency matrix of \(H \), with vertices labelled so that their degrees are in non-decreasing order. To use Theorem 1.1 with \(\mu = -2 \), note that

\[
(2I_8 + C)^{-1} = \begin{pmatrix} 8 & 5J_2^T & -3J_3^T \\ 5J_2 & 3J_{2,2} + I_2 & 2J_{2,5} \\ -3J_3 & -2J_{3,2} & J_{5,5} + I_5 \end{pmatrix},
\]

where \(I_m \) denotes the \(m \times m \) identity matrix and \(J_{m,n} \) denotes the all-1 matrix of size \(m \times n \). If we now equate diagonal entries in Eq. (1), we obtain

\[
2 = a + b + c + 7a^2 + 10ab - 6ac - 4bc + 3b^2 + c^2. \tag{3}
\]

If \(u, v \) are distinct vertices of types \(a_1b_1c_1, a_2b_2c_2 \) then, equating off-diagonal entries in Eq. (1), we have

\[
a_{uv} = |\Delta_H(u) \cap \Delta_H(v)| + 7a_1a_2 + 3b_1b_2 + c_1c_2 + 5(a_1b_2 + a_2b_1) - 3(a_1c_2 + a_2c_1) - 2(b_1c_2 + b_2c_1). \tag{4}
\]

The 10 solutions of Eq. (3) are given in [13, Table 1, p. 148] along with information from Eq. (4) sufficient to construct \(\Gamma(H; -2) \). Since \((a, b, c) = (1, 2, 5) \) is one solution of (3), \(j \) arises as a vertex and its neighbours include the vertices of \(\Gamma^*(H; -2) \). The neighbours \(b \) of \(j \) for which \((b, j) = -1 \) can be identified from Eq. (4). They correspond to ten vertices in \(X \) of type 011, ten of type 114, ten of type 023 and ten of type 102. (Note that if \(b \) is of type 011 or 023 then \(j - b \) is of type 114 or 102, respectively.) We deduce that again \(\Gamma^*(H; -2) \cong CP(40) \), and so we obtain 2\(^{20} \) maximal graphs with \(H \) as a star complement for \(-2\) as a non-main eigenvalue. M. Lepočić (private communication) has shown by computer that 356 non-isomorphic graphs arise in this way. We note in passing that the cones over \(H \) and any of these graphs of order 28 not only have \(-2\) as a main eigenvalue but also have \(K_8 \) (a subgraph of \(K_1 \) as a star complement for \(-2\)).

None of the graphs of order 28 here is regular; indeed we can show as follows that there is no regular graph \(G \) with \(H \) as a star complement for \(-2\). For suppose that \(H = G - X \) where \(G \) is \(r \)-regular and the star set \(X \) consists of \(e, f, g, h \) vertices of type 102, 114, 023, 011 respectively. Let \(e + g = p, f + h = q \) and note that \(0 \leq p \leq 10, 0 \leq q \leq 10 \). Counting edges between \(X \) and vertices in \(H \) of degree 5, 6, 7 in turn, we have:

\[
r = 5 + e + f, \quad 2r = 12 + f + 2g + h, \quad 5r = 35 + 2e + 4f + 3g + h.
\]

We can now write \(e = p - g, h = q - f \) and solve these equations for \(r, f, g \) in terms of \(p \) and \(q \). We find that \(f = \frac{1}{2}(q - 14) \), a contradiction.

We know that every exceptional graph \(G \) with least eigenvalue \(-2\) has an exceptional star complement \(H \) for \(-2 \) [13, Theorem 5.31]. We shall see that if \(G \) is regular and \(H \) has order 8 then \(H \) satisfies the hypotheses of Proposition 2.2.
Lemma 2.5. Let G be an r-regular graph of order n, and let μ be an eigenvalue of G other than r. If C is an adjacency matrix of any star complement for μ, then

$$j^T(\mu I - C)^{-1}j = \frac{n}{\mu - r}.$$

Proof. In the notation of Theorem 1.1, let $S = (B|C - \mu I)$. Then Eq. (1) may be written

$$\mu I - A = S^T(\mu I - C)^{-1}S.$$

Now $S_jn = (r - \mu)j$ and so $j^T_n(\mu I - A)j_n = (r - \mu)^2j^T(\mu I - C)^{-1}j$. The result follows since $j^T_n(\mu I - A)j_n = \mu n - rn$. \qed

Now we apply Lemma 2.5 in the case that G is an exceptional regular graph, $\mu = -2$, and C is the adjacency matrix of an exceptional star complement H for -2. Then H has order $k \in \{6, 7, 8\}$ and $A + 2I = M^TM$ for some $k \times n$ matrix M of rank k: the columns of M are a representation of G in the root system E_t (cf. [13, Chapter 3]). Let $u = \frac{1}{\nu_{n+2}}Mj$, so that $u^Tu = \frac{n}{\nu_{n+2}}$. From the proof of [13, Theorem 4.1.5] we know that $u^Tu \in \{2, \frac{4}{3}\}$ if $t = 6$, $u^Tu \in \{2, \frac{3}{2}\}$ if $t = 7$ and $u^Tu = 2$ if $t = 8$. Thus necessarily $n = 2(r + 2)$ when $k = 8$; in this case we have $(j, j) = -2$ by Lemma 2.5, and so H satisfies the hypotheses of Proposition 2.2. Accordingly, we have the following result.

Theorem 2.6. Let G be an exceptional regular graph with least eigenvalue -2, having H as an exceptional star complement for -2. If H has order 8, then

(i) H is one of 198 graphs in \mathcal{H},

(ii) both $K_1 \nabla H$ and $K_1 \nabla G$ have -2 as a main eigenvalue,

(iii) G is switching-equivalent to an induced subgraph of $L(K_8)$.

Example 2.7. Consider a cone $K_1 \nabla G$ such that some star complement H for -2 in G is also a star complement for -2 in $K_1 \nabla G$; for example, 430 of the 432 maximal exceptional graphs of order 29 have this property (see [13, Section 6.1]. By [10, Eq. (4.3.7)], -2 is a non-main eigenvalue of G, a fact we can also establish as follows. The extendability graph $\Gamma(H; -2)$ has j as a vertex such that $(b, j) = -1$ for all other vertices b; thus deletion of the vertex of the cone leaves G as a graph in which -2 is a non-main eigenvalue. Moreover (cf. [13, Section 5.5]) all vertices of G outside H are amenable to switching, and any switching yields another graph G' with -2 as a non-main eigenvalue. If $K_1 \nabla G'$ is a maximal exceptional graph, then G' is a maximal graph with H as a star complement for -2 as a non-main eigenvalue.

Further remarks and examples may be found in [5, Section 6].

3. Eigenvectors of exceptional graphs

In this section we discuss exceptional graphs with -2 as a simple eigenvalue. Such graphs have a star complement for -2 of order 6, 7 or 8, and the eigenvectors corresponding to -2 are all scalar multiples of an eigenvector v whose entries are integers. If v is chosen with minimal norm, then v is called a minimal integral eigenvector, and its height is the maximum modulus of its coordinates. We establish theoretically a property of heights noted from computer results given in [5].
First we give a short proof of the following theorem, established in [17] in a chemical context, and generalized in [16].

Theorem 3.1. Let λ be a simple eigenvalue of the graph G. Then there exists an eigenvector $x = (x_1, \ldots, x_n)^T$ corresponding to λ such that

$$x_j^2 = |P_{G-j}(\lambda)| \quad (j = 1, \ldots, n).$$

Proof. Let μ_1, \ldots, μ_m be the distinct eigenvalues of G, so that [10, Section 4.2]

$$P_{G-j}(x) = P_G(x) \sum_{i=1}^m \frac{\|P_i e_j\|^2}{x - \mu_i} \quad (j = 1, \ldots, n),$$

where P_i is the orthogonal projection of \mathbb{R}^n onto $\mathcal{E}(\mu_i)$ and $\{e_1, \ldots, e_n\}$ is the standard orthonormal basis of \mathbb{R}^n. Now suppose that $\lambda = \mu_h$, so that

$$\|P_h e_j\|^2 = \frac{P_{G-j}(\lambda)}{P_G(\lambda)} \quad (j = 1, \ldots, n).$$

On the other hand, $\|P_h e_j\|^2 = e_j^T P_h e_j$, the (j, j)-entry of P_h; and if $u = (u_1, \ldots, u_n)^T$ is a unit eigenvector which spans $\mathcal{E}(\lambda)$ then $P_h = uu^T$, with (j, j)-entry u_j^2. The result follows by defining

$$x_j = \sqrt{|P_{G-j}(\lambda)| u_j} \quad (j = 1, \ldots, n). \quad \square$$

Following [7], we define the discriminant d_G of a graph G with $\lambda(G) \geq -2$ as $(-1)^n P_G(-2)$; and for $k = 6, 7, 8$, we define \mathcal{G}_k as the set of exceptional graphs on k vertices with $\lambda(G) > -2$. (Thus $\mathcal{G}_8 = \emptyset$.) As we saw in the proof of Proposition 2.1, if G belongs to \mathcal{G}_k then $d_G = 9 - k$.

Let \mathcal{G}_k^* be the set of graphs which have -2 as a simple eigenvalue and a graph in \mathcal{G}_k as a star complement for -2. (It is noted in [5] that $|\mathcal{G}_8^*| = 51$, $|\mathcal{G}_7^*| = 512$ and $|\mathcal{G}_6^*| = 4206$.)

Corollary 3.2. If G belongs to \mathcal{G}_k^*, then G has an integral minimal eigenvector corresponding to -2 with a coordinate equal to 1.

Proof. By Theorem 3.1, the simple eigenvalue -2 of G has an eigenvector x such that $|x_i| = \sqrt{d_{G-i}}(i = 1, \ldots, n)$. For some i the subgraph $G - i$ is an exceptional star complement for -2, so that (replacing x with $-x$ if necessary) we have $x_i = \sqrt{9 - k}$. Hence $x = \sqrt{9 - k}x'$, where $x' = (x'_1, \ldots, x'_{k+1})^T$, and each x'_j is rational. Now $\sqrt{9 - k} \in \{1, \sqrt{2}, \sqrt{3}\}$, while each x'_j is an integer, and so each x'_j is an integer. Since also $x'_1 = 1$, x' is an eigenvector satisfying the conclusions of the Corollary. \(\square\)

Corollary 3.2 confirms an empirical observation from computer calculations of eigenvectors reported in [4]. We saw in the proof that $x_j = \sqrt{9 - k}x'_j$ where x'_j is an integer $(j = 1, \ldots, k + 1)$, and so we can also deduce the following result from Theorem 3.1.

Corollary 3.3. If G belongs to \mathcal{G}_k^*, then each $|P_{G-j}(-2)| (j = 1, \ldots, k + 1)$ is of the form $(9 - k)s^2$ where s is an integer.

Proposition 3.4. If G belongs to \mathcal{G}_k^* then the height of an integral minimal eigenvector is less than or equal to 3, 4, 6 for $k = 6, 7, 8$ respectively.
Proof. If \(G \) has an induced subgraph \(K \) isomorphic to \(K_{1,4} \) then for each vertex \(j \) outside \(K \), \(G - j \) has \(-2\) as an eigenvalue (by interlacing) and so the \(j \)th entry of an integral minimal eigenvector \(x = (x_1, \ldots, x_{k+1})^T \) is zero. Since \(1 \) and \(-2\), or \(-1 \) and \(2 \), are the components of an integral minimal eigenvector of \(K_{1,4} \), it follows that \(x \) has coordinates \(0, 1, -2 \) or \(0, -1, 2 \). Accordingly suppose that \(G \) has no induced \(K_{1,4} \). Then each \(G - i \) has at most three components. When \(x_i \neq 0 \) we find an upper bound for \(d_{G - i} \) as the product of the discriminants of the possible components. The possible values of the discriminant of a component of order \(t \) here are: \(9 - t \) (\(t = 6, 7, 8 \)) for an exceptional graph, \(4 \) for the line graphs of odd unicyclic graphs or line graphs of trees with one petal, and \(t + 1 \) for the line graphs of trees (cf. [7, Theorem 3]). By considering all distributions of the vertices of \(G - i \) among at most three components we find easily that \(d_{G - i} \) is at most \(27, 36 \) or \(48 \) depending on whether the order of \(G \) is \(7, 8 \) or \(9 \). (For example, 48 is the product of discriminants of line graphs of orders 2, 3 and 3.) In the notation of Corollary 3.3, we have \(3s^2 \leq 27 \) when \(k = 6 \), \(2s^2 \leq 36 \) when \(k = 7 \), and \(s^2 \leq 48 \) when \(k = 8 \). Thus the height of \(x \) is at most 3, 4 or 6 respectively. □

The bounds in Proposition 3.4 are attained by the exceptional Smith graphs (cf. [13, Section 3.4]). See [5, Table 1] for additional data (obtained by computer) on the heights of eigenvectors.

Acknowledgments

The authors are indebted to M. Lepović for data obtained from his computer calculations.

References

