Co-feeding of live feed and inert diet from first-feeding affects Artemia lipid digestibility and retention in Senegalese sole (Solea senegalensis) larvae

Mônica Giacometti Mai*a,b, Sofia Engrola*a, Sofia Morais*c, Maria Célia Portella*d, José Roberto Verani*b, Maria Teresa Dinis*a, Luís E.C. Conceição*a

a CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
b UFSCar - Federal University of São Carlos, 13565-905 São Carlos, Brazil
c Institute of Aquaculture - University of Stirling. Stirling FK9 4LA, Scotland, UK
d São Paulo State University - Aquaculture Center, 14.884-900 Jaboticabal, Brazil

Corresponding author: M. G. Mai, UFSCar - Federal University of São Carlos, 13565-905 São Carlos, Brazil. E-mail address: monica_mai@hotmail.com. Phone and fax number 55 16 3351 8310

Abstract

The present study intended to evaluate the effects of early introduction of inert diet in lipid digestibility and metabolism of sole, while larval feed intake, growth and survival were also monitored. Solea senegalensis larvae were reared on a standard live feed regime (ST) and co-feeding regime with inert diet (Art R). Trials using sole larvae fed with Artemia enriched with two different lipid emulsions, containing glycerol tri-[14C]oleate (TAG) and L-3-phosphatidylcholine-1,2-di-[14C] oleoyl (PL), were performed at 9 and 17 days after hatching (DAH) to study lipid utilization. Co-feeding did not affect sole survival rates (ST 59.1 ± 15.9 %; Art R 69.56 ± 9.3 %), but was reflected in significantly smaller final weight at 16 DAH (ST 0.71 ± 0.20; Art R 0.48 ± 0.14 mg). Higher feed intake was observed in sole larvae fed on Artemia enriched with labeled PL at 9 DAH but not at 17 DAH. At 17 DAH, the smaller larvae (Art R treatment) ingested
proportionally more *Artemia* in weight percentage, independently of enrichment. At 9
DAH lipid digestibility was equal among treatments and higher than 90%, while at 17
DAH it was higher in ST treatment (around 73 %) compared to the Art R group (around
66 %). Lipid retention efficiency at 9 DAH was higher in the Art R treatment, reaching
values of 50 %, while these values almost duplicated at 17 DAH, ranging up to 80 % in
both treatments without significant differences. These results show that co-feeding of
live feed and inert diet from first-feeding in Senegalese sole has a toll in terms of
growth and lipid digestibility but does not seem to compromise lipid metabolic
utilization.

Keywords: *Solea senegalensis*; Weaning; Lipid metabolism; Digestibility; Feed Intake;
Metamorphosis.

1. **Introduction**

In order to successfully achieve the objective of a significant partial replacement of live
feed by inert diets from first feeding, a detailed understanding of the larval digestive
physiology and how it may be influenced by the dietary components is indispensable
(e.g., Cahu and Zambonino Infante, 2001; Morais, 2005; Engrola, 2008).

The Senegalese sole (*Solea senegalensis*, Kaup 1858) is a flatfish found along
the Mediterranean and Atlantic coasts, and is a promising candidate for aquaculture in
Europe since the nineties due to good market prices (Howell, 1997; Dinis et al., 1999;
Imsland et al., 2003). Despite its high potential as an aquaculture species, only a few
studies looking at sole larvae rearing conditions (Esteban et al., 1995; Dinis et al., 1999)
and weaning strategies (Marin-Magan et al., 1995; Canavate and Fernandez-Diaz, 1999;
Ribeiro et al., 2002; Engrola et al., 2005, 2007, 2009a) are available. Moreover,
weaning success of Senegalese sole is still a critical step, with two strategies being possible: sudden weaning and weaning in co-feeding with Artemia metanauplii (Engrola et al., 2007). In spite of recent progress in sole larvae nutritional requirements and understanding of larval digestive physiology, weaning results obtained so far are variable and difficult to reproduce (Conceição et al., 2007b). Therefore, hatchery protocols for Senegalese sole still rely on live preys during the period before the metamorphosis, which occurs between 12 and 20 DAH, when they can be gradually substituted by frozen Artemia metanauplii. Recently it has been demonstrated that protein digestibility and retention are depressed by co-feeding with high levels of Artemia replacement by inert diet, and thereby lead to lower growth (Engrola, 2008). However, when a moderate level of Artemia replacement is used, sole are able to adapt their protein metabolism and enhance protein utilization in the long term, with a growth promoting effect at complete weaning (Engrola et al., 2009b).

Fish larvae diets, and particularly enriched Artemia, tend to be rich in triacylglycerols (TAG) as lipid source (Morais et al., 2006), in an attempt to meet essential fatty acids (EFA) requirements, namely in terms of n-3 polyunsaturated fatty acids (PUFA) (Sargent et al., 1989). This can be a problem since the high levels of lipids as well as the unbalances in lipid class composition found occasionally in enriched live preys have been suggested to affect fatty acid (FA) digestion and absorption (Salhi et al., 1995, 1997, 1999; Díaz et al., 1997; Morais et al., 2007). In the marine environment, high levels of phospholipids (PL) are normally found in the total lipid fraction of phytoplankton and zooplankton ingested by fish larvae (Sargent et al., 1989). A beneficial effect of dietary PL supplementation in purified diets in terms of survival, growth, resistance to stress, and lower occurrence of deformities has been demonstrated in larval and juvenile stages of various species of fish and crustaceans
The present work intended to evaluate the effects of co-feeding live feed with inert diet from mouth opening on lipid digestive capacity and metabolism of sole larvae, compared to a standard feeding regime using only live feed. To achieve this, two metabolic trials using radiolabeled Artemia enriched with lipid emulsions containing either glycerol tri [1-14C] oleate (TAG) or L-3-phosphatidylcholine-1,2-di-[1-14C] oleoyl (PL) were performed with sole larvae before (9 days after hatching, DAH) and during the metamorphosis climax (17 DAH). The digestibility, retention and catabolism of the radiolabel incorporated in Artemia, as well as larval Artemia intake, were measured. In addition, the use of different sources of radiolabeled lipid (TAG or PL) enabled to verify whether these effects depend also on the molecular moiety in which the FA were supplied to Artemia.

2. Materials and Methods

2.1 Larval rearing

Senegalese sole eggs used in the experiment were obtained from natural spawning of captive breeders maintained in IPIMAR-CRIPSul, Olhão, Portugal. The larvae were stocked in 100 L cylindro-conical tanks at a density of 100 larvae L⁻¹. The green water technique was used in the rearing tanks with a 1:1 mixture of Tetraselmis chuii and Isochrysis galbana in a recirculation system, at a temperature of 19.8 ± 0.4 °C and a salinity of 37.8 ± 1.5 ‰. Oxygen saturation was 96.4 ± 9.6% and a 12/12-h light/dark cycle was adopted. Water renewal was increased from 4 times/day from 0 DAH to 8 times/day from 13 DAH until the end of the experiment, which lasted 19 days.
2.2 Feeding regimes

Two different feeding regimes were randomly assigned in triplicate during the pelagic phase: standard live feed (Standard, ST) and live feed co-fed with inert diet from mouth opening (Artemia Replacement, Art R). The feeding was based on rotifers (Brachionus rotundiformis) enriched with Red Pepper (BernAqua, Olen, Belgium) from 2 to 4 DAH for both treatments; Artemia nauplii (INVE Aquaculture NV) from 4 to 9 DAH for both treatments; and Artemia metanauplii enriched for 12 hours, at 250 nauplii mL\(^{-1}\), with 0.4 g L\(^{-1}\) in two doses (at 3 and 6h, following the manufacturer's instructions) of a 1:1 mixture (weight basis) of Easy DHA Selco\(^{®}\) (INVE Aquaculture NV) and Micronised Fishmeal\(^{®}\) (Ewos, Scotland) for both treatments until the end of experiment. The amount of Artemia supplied to the Art R treatments was gradually reduced during the experiment (see Table 1). At the end of the experiment Art R sole were being offered 45 % frozen Artemia metanauplii and 55 % inert diet (Proton 100-200 µm; INVE Aquaculture NV, Dendermonde, Belgium) in proportion (weight basis) to total daily ration. Between days 13 and 16, the Artemia metanauplii supply to both treatments was gradually changed from live to frozen Artemia. Artemia metanauplii were harvested, washed in seawater, counted, and frozen at -20 °C. Fifteen minutes before feeding, Artemia was thawed in seawater. Table 1 shows the feeding regimes in detail.

Table 1

The larvae were fed daily at 11:00 am, 14:00 pm and 17:00 pm. The first meal was composed by 50 % of the daily feeding dose, and the remaining 50 % was shared between the two following meals.
2.3 Sampling

Samples were taken for the determination of individual dry weight (DW) at: 2 DAH, at mouth opening \((n=30 \text{ per treatment})\), 8 DAH \((n=30 \text{ for each replicate})\) and 16 DAH \((n=15 \text{ for each replicate})\). The larvae were stored at -20 °C and afterwards freeze-dried for 48 h in a Savant SS31 (Savant Instruments Inc., Hokbrook, NY, USA). The DW of the larvae was determined in a Sartorius type M5P scale (precision of 0.001mg; Sartorius micro, Göttingen, Germany). Survival was determined at the end of the experiment, by counting the larvae remaining in the rearing tanks.

2.4 Lipid metabolism trials

Two trials were performed using Artemia labeled with different \(^{14}\text{C}\)-lipid sources to analyze the effects of the feeding regimes on the digestive capacity and metabolism of sole larvae: the first at 9 DAH, in the pelagic phase, and the second at 17 DAH, during the metamorphosis climax.

2.4.1 Artemia \([1-^{14}\text{C}]\) labeling

Two lipid emulsions were prepared using 0.09 g of Easy DHA Selco plus either 50 µL (50 µCi) of glycerol tri \([1-^{14}\text{C}]\) oleate (TAG; 3-7MBq/mL) or 100 µL (10 µCi) of L-3-phosphatidylcholine-1,2-di-[1-^{14}\text{C}] oleoyl (PL; 0-925MBq/mL) (Amersham Pharmacia Biotech Ltd., UK). After mixing the radiolabeled lipids, the solvent in which the radiolabel came dissolved was evaporated by flushing N\(_2\). The eppendorfs with the emulsions were covered with parafilm and submitted to 5 min of ultra-sound bath at 30 °C, vigorously shaken for 2 minutes and then stored at -20 °C. The enrichment was made by adding and mixing the TAG or PL emulsions to 150 mL of seawater before introducing Artemia (200 metanauplii/mL). The incubation lasted 14 h to allow for
complete lipid incorporation (Morais et al., 2004b), being also a common enrichment period used with several commercial products. After incubation, *Artemia* metanauplii was washed thoroughly, counted and samples were taken to measure the incorporated radiolabel.

2.4.2 Cold chase - set up

In both trials, approximately 14 h prior to the start of radiolabeled *Artemia* feeding and 30 min following their last meal, 10 larvae from each triplicate larval rearing tank were transferred to smaller trays in the experimental radioisotope room and acclimatized. Each of the four trays (two trays per treatment; one for each type of radiolabel tested) contained thus 30 larvae pooled from the triplicate larval rearing tanks. An excess of larvae was sampled from the rearing tanks, in relation to the requirements of the cold chase trial, in case there were any mortalities during overnight acclimation or in case some of the larvae would not ingest the radiolabeled *Artemia* Each tray received approximately 10,000 *Artemia* metanauplii incubated with one of the lipid radiolabels, resulting in the following treatments: ST – TAG (Standard + *Artemia* incubated with 14C-glycerol trioleate); ST – PL (Standard + *Artemia* incubated with 14C-phosphatidylcholine); Art R – TAG (*Artemia* Replacement + *Artemia* incubated with 14C-glycerol trioleate) and Art R - PL (*Artemia* Replacement + *Artemia* incubated with 14C-phosphatidylcholine). Sole larvae were allowed to feed on the radiolabeled *Artemia* during 30 min. This period is a trade-off between the time necessary for a complete meal size and to avoid significant losses by larvae catabolism. After that time, 15 larvae from each treatment presenting food in their stomachs (assessed visually) were carefully transferred, one by one with an inverted Pasteur pipette, through two tanks with clean seawater (to eliminate any 14C-lipid that could be present in the surface of the fish), and
subsequently transferred to individual incubation vials. After 2 h, each larva in the
incubation vial was fed non labeled *Artemia* in the same concentration normally offered
in the rearing tanks. This feeding of radiolabeled *Artemia* followed by feeding with non
labeled *Artemia* characterizes a cold chase-type trial (Conceição et al., 2007a). During
the course of the trials, mortality was negligible - 2 dead larvae in ST PL; 1 dead larvae
in ArtR TG and 1 dead in ArtR PL treatments, in the first trial (9 DAH), and no
mortality was recorded during the second trial (16 DAH).

2.4.3 Determination of radiolabeling

The method employed allows following the metabolic fate of a tracer nutrient into
different compartments of individual larvae: retention in body (larvae), catabolism (CO$_2$
trap) and evacuation (incubation water) (Rønnestad et al., 2001). The metabolic
chambers (7.5 mL of seawater) were connected to a metabolic trap (5.0 mL of KOH 0.5
M), to capture the 14CO$_2$ eliminated by larvae. After 24 h, each larva was sampled and
placed in a 6 mL scintillation vial (Sarstedt, Rio de Mouro, Portugal). Hydrochloric acid
(HCl 0.1 M) was gradually added to the remaining water, resulting in a progressive
decrease of pH causing the diffusion of any remaining CO$_2$ in the incubation water
(Rønnestad et al., 2001). As a result, the radioactivity found in the water of the
incubation chambers corresponds to the evacuated, i.e., non absorbed, labeled *Artemia.*
Tissue solubilizer (Solvable, Packard Bioscience, Groningen, Netherlands) was added
to the vials containing the sampled larvae and the labeled *Artemia.* The vials were then
placed overnight in an oven to allow tissue solubilisation. After cooling, 5 mL of Ultima
Gold XR (Packard Bioscience) was added. To the vials containing the larva’s
incubation water and the KOH (metabolic trap), 5 mL of Ultima Gold XR was also
added. The samples were counted on a Beckman LS 6000IC liquid scintillation counter
(Beckman Instruments Inc., Fullerton, CA, USA) and the results are presented as a percentage of disintegrations per minute (DPM) in each compartment in relation to total counts. Feed intake (FI) and feed utilization of larvae on each dietary treatment fed Artemia enriched with either one of the emulsions (4 combinations; n=15 per combination) were determined at 9 DAH and 17 DAH. Feed intake (% BDW) during the cold chase was determined as:

\[\text{FI} = \left(\frac{R_{\text{total}}}{SR_{\text{Artemia}}} \right) \times 100 \]

as described by Conceição et al. (1998), where \(R_{\text{total}} \) is the sum of the radioactivity in the incubation seawater, in the \(\text{CO}_2 \) trap and in fish (DPM), \(SR_{\text{Artemia}} \) is the specific radioactivity in Artemia samples (DPM/mg Artemia DW), and \(DW_{\text{fish}} \) is the fish dry weight (mg).

Different Artemia utilization parameters were determined: digestibility (D, %), retention (R, %) and catabolism (C, %). These were calculated as:

\[D = \left[\frac{R_{\text{body}} + R_{\text{CO}_2\text{ trap}}}{R_{\text{body}} + R_{\text{CO}_2\text{ trap}} + R_{\text{water}}} \right] \times 100; \]
\[R = \left[\frac{R_{\text{body}}}{R_{\text{body}} + R_{\text{CO}_2\text{ trap}}} \right] \times 100; \]
\[C = \left[\frac{R_{\text{CO}_2\text{ trap}}}{R_{\text{body}} + R_{\text{CO}_2\text{ trap}}} \right] \times 100; \]

where \(R_{\text{body}} \) is the total radioactivity in fish body (DPM), \(R_{\text{CO}_2\text{ trap}} \) is the total radioactivity per \(\text{CO}_2 \) trap (DPM), and \(R_{\text{water}} \) is the total radioactivity in the incubation seawater (DPM).

2.5 Statistical analysis

The data obtained for each treatment were compared through one-way (growth and survival) or two-way (distribution of label in each compartment in metabolic trials) analysis of variance (ANOVA), using the software Statistica 6 (StatSoft Inc., Tulsa, USA). For two-way ANOVA, the combined effects of the factors “feeding regime” (ST
or Art R) and “lipid source” (TAG or PL) were tested. The assumption of homogeneity of variance was checked using the Bartlett’s test and a significance level of 0.05 was employed (Zar, 1996). Data from the labeled *Artemia* feeding trial (percentage of counts found in each compartment) and all other percentage data were arcsin($x^{1/2}$) transformed. When significant differences were found in one way and two way ANOVA, the Tukey’s test and Newman Keuls test was performed, respectively. All data are given as mean values with standard deviations (SD).

3. Results

3.1 Larval growth and survival

The initial DW of sole larvae was 42.68 ± 13.91 µg for all treatments. No significant differences were observed in sole survival between the two feeding regimes (ST 59.1 ± 15.9 %; Art R 69.6 ± 9.3 %) at 16 DAH, but the final mean DW was significantly higher in larvae fed live feed alone (ST treatment) at this time (Fig. 1b). However, this difference in DW was still not significant at 8 DAH (Fig. 1a).

Figure 1

3.2 Feed Intake

The handling to transfer the larvae with the Pasteur pipette was a methodology that has been previously used in other study (Engrola et al., 2009b), in which it was observed that the larvae were actively feeding on *Artemia* in the incubation vials and, therefore, it is believed that this factor did not affect the results, regarding the stress caused to larvae.

Artemia labeling with emulsions containing either 14C-TAG or 14C-PL resulted in average DPM values of 78.6 ± 7.5 DPM/*Artemia* and 37.9 ± 2.9 DPM/*Artemia* for TAG
and PL labeling, respectively, at the 9 DAH metabolic trial; and 65.8 ± 1.8 and 54.8 ± 4.9 DPM/Artemia for TAG and PL labeling, respectively, at 17 DAH.

At 9 DAH, sole fed Artemia enriched with PL (standard - ST - and co-feeding -Art R) presented a significantly higher feed intake compared to those fed TAG-enriched Artemia (P <0.001), while no significant differences were observed between the two feeding regimes. The number of Artemia consumed per sole larvae at 9 DAH was ST - TAG 9.1 ± 2.3; ST – PL 23.8 ± 6.7; Art R – TAG 11.6 ± 4.1; Art R - PL 19.2 ± 6.9. Considering that there were no differences in the DW of the larva at this age, the percentage of ingested Artemia weight in relation to the sole larva weight was significantly higher in the treatments fed 14C - PL labeled Artemia (Fig. 2a).

Towards the end of the experiment (17 DAH), larvae from the ST and Art R treatments consumed the same amount of labeled Artemia, independently of the type of lipid emulsion used to label them: ST - TAG 40.9 ± 16.2; ST - PL 41.8 ± 10.5; Art R - TAG 43.7 ± 10.8; Art R - PL 42.1 ± 7.5 Artemia/sole larvae. Nevertheless, at 17 DAH the DW of larvae reared on the standard live feed regime (ST) was higher than that on Art R (Fig.1b), which means that the smallest larva (Art R) ingested proportionally more Artemia in weight percentage (P < 0.001) than the sole fed live feed alone (ST group) (Fig. 2b). At this time, no significant different were observed between treatments fed Artemia enriched with either PL or TAG.

3.3 Digestibility and larval metabolism

There were no significant differences in Artemia digestibility among treatments at 9 DAH (Fig. 3a). At 17 DAH, however, sole from ST treatment fed with Artemia enriched with TAG had significantly higher lipid digestibility (88.7%) (P < 0.001
“feeding regime” and P < 0.05 for “lipid source”). Sole from Art R treatment fed PL
Artemia had the lowest lipid digestibility, 66.0% (Fig. 3b).

Sole larvae at 9 DAH presented significantly higher label retention (% of label
absorbed) in the co-feeding treatments (Art R) (P < 0.05) and no statistical differences
were found for “lipid source” (P > 0.07; Fig. 4a). Lipid retention values were 48.8 ±
11.2 % in Art R – TAG; 40.4 ± 17.2 % in Art R – PL; 32.3 ± 10.6 % in ST – TAG and
40.0 ± 11.0 % in ST - PL. Concomitantly, the larvae submitted to the ST feeding regime
presented a significantly higher catabolism, when analyzed by two-way ANOVA, i.e,
disregarding the lipid source utilized for Artemia enrichment (67.6 ± 10.6% in ST –
TAG and 59.9 ± 12.7% in ST – PL; 51.1 ± 11.2% in Art R – TAG; 59.5 ± 17.2% in Art
R – PL). Similar results were observed when analyzing retention, catabolism and
evacuation expressed as DPM/ mg of sole larva DW at 9 DAH (results not shown).

At 17 DAH, there were no longer statistical differences in label retention or
catabolism (Fig. 4b) between dietary treatments and also between sole fed Artemia
enriched with either PL or TAG. The same was observed when data were expressed in
DPM/mg of DW (results not shown) instead of been expressed in % of DPM, even
when corrected for the different Artemia labeling (DPM/Artemia) in Artemia enriched
with TAG or PL.

4. Discussion

4.1 Co-feeding inert diet from the first feeding affects larval growth but not survival
The survival rates observed in the present study are in the upper range of values
observed in previous studies with Senegalese sole larvae (Dinis et al., 1999; Cañavate
and Fernández-Díaz, 1999). Furthermore, early introduction of an inert diet since mouth opening (treatment Art R), did not affect the survival rate of Senegalese sole, compared to the standard feeding regime until 19 DAH. Similar results were found for other species (Kolkovski et al., 1997; Roselund et al., 1997), when an early co-feeding was attempted. Curnow et al. (2006) co-fed Asian sea bass *Lates calcarifer* on two different inert diets, and verified lower or higher survivals depending on fish size and diet type. It has also been suggested that co-feeding larval sole from 1 mg of larval weight may even improve survival rates at weaning, since it might enhance digestive maturation and/or stimulate digestive secretion (Engrola et al., 2007), even though a higher size dispersion could be observed.

Growth was significantly lower in the *Artemia* replacement treatment, compared to sole larvae fed only on live feed until the end of the pelagic phase. However, long-term effects of early co-feeding strategies in different species have been shown: enhanced growth and survival after weaning in Senegalese sole (Cañavate and Fernández-Díaz, 1999; Engrola et al., 2009a); increased survival rates and equivalent growth in length and weight in dourado *Salminus brasilienses* (Vega-Orellana et al., 2005); and improved growth and survival of tongue sole *Cynoglossus semilaevis* (Chang et al., 2006). Additionally, Yúfera et al. (2003) have demonstrated that Senegalese sole grew at a lower rate when fed exclusively with inert diet from 13 DAH onwards, than when fed on live feed.

Still, even if the growth rates observed in the *Artemia* replacement treatment were lower compared to the control group, they are within normal values for the Senegalese sole larval rearing (Cañavate and Fernández-Díaz, 1999; Engrola et al., 2007).

4.2 Lipid source and *Artemia* labeling
In this study *Artemia* was labeled by including a 14C-oleic acid tracer in the enrichment emulsion, supplied esterified either to TAG or to PL. However, *Artemia* lipid digestibility and metabolism results cannot be completely and directly related to lipid class effect since it is well known that *Artemia* meta nauplii cannot be considered a passive carrier of FA, and both labeled TAG and PL may have been transformed into other lipids by *Artemia*. In fact, an important fraction of the filtered lipids is digested, assimilated into the *Artemia* body and metabolized, and not just simply accumulated in the gut (Ando et al., 2004).

In addition to the differential metabolism of certain fatty acids, incorporated fatty acids redistribute themselves among lipid classes with high unpredictability, both during enrichment and particularly in starving conditions, after being added to the larval rearing tanks (Watanabe et al., 1982; Léger et al., 1986, 1987; Takeuchi et al., 1992; McEvoy et al., 1995, 1996; Navarro et al., 1999). In the present study, the lipid composition of the radiolabeled *Artemia* at the end of the enrichment period was not analyzed. Still, it is believed that the methodology used is valid to study the effect of enriching *Artemia* with PL or TAG, on lipid utilization by fish larvae.

This is the first time that *Artemia* enriched with 14C-labeled lipids is used to study diet utilization in fish larvae. Previous metabolic studies have been carried out using a 14C–protein hydrolysate where the label was incorporated in *Artemia* protein, in order to study the ontogeny of protein digestive capacity (Morais et al., 2004a) and the effect of feeding regime on protein utilization (Engrola et al., 2009b).

4.3 Artemia enrichment with phospholipids stimulates feed intake in young sole larvae

At 9 DAH sole larvae fed *Artemia* enriched with radiolabeled PL presented a 2.6-fold (ST) and 1.6-fold (Art R) higher feed intake when compared to the treatments fed
Artemia enriched with radiolabeled TAG. Furthermore, when the additional quantity of
PL supplied by the radiolabeled lipid emulsion was calculated, a very low value (0.111
x 10\(^{-9}\) µg of L-3-phosphatidylcholine-1,2-di-oleoyl per Artemia) was found. This value
is further reduced if it is considered that only a proportion would be found intact (i.e.,
non assimilated and metabolized) in the Artemia digestive tract at the time of larval
ingestion. Artemia enriched with labeled L-3-phosphatidylcholine-1,2-di-[1\(^{14}\)C] oleoyl
(PL) seem to have a feeding stimulation effect in sole larvae at 9 DAH. However, the
content of PL in the Artemia was not verified in the present study. Nevertheless, in
postlarval penaeid shrimp it was demonstrated that dietary enrichment of Artemia with
phosphatidylcholine did not enhance the Artemia’s PC content (Tackaert et al., 1991).
In gilthead seabream larvae an increased ingestion of microdiets with a higher level of
PC was observed (Koven et al., 1994, 1998; Izquierdo et al., 2001). The dietary PC was
found to be a feeding stimulant/attractant and significantly increased ingestion rates in
15-26 DAH gilthead seabream larvae; however it was no longer effective in 28 DAH
and older larvae (Koven et al., 1998). The efficacy of dietary PL thus appears to reduce
with age and may reflect the immature nature of the digestive system in marine fish
larvae which lack a fully functional digestive tract until completion of metamorphosis
(Munilla-Moran and Stark, 1989; Bisbal and Bengtson, 1995; Ribeiro et al., 1999; Bell
et al., 2003). Iritani et al. (1984) have also shown that fish larvae have limited capacity
for endogenous “de novo” PL biosynthesis, which may be insufficient to maintain an
optimal rate of lipoprotein synthesis. This is in line with Morais (2005), who suggested
that higher dietary requirement for PL is also probable in the earlier larval stages to
sustain the fast growth and organogenesis, which likely require a high rate of membrane
synthesis and turnover.
In Senegalese sole, at 17 DAH the level of ingestion of *Artemia* per sole larvae was independent of the type of *Artemia* enrichment. On the other hand, the smaller larvae from the Art R treatment ingested significantly more *Artemia* as percentage of DW compared to sole larvae fed live feed alone. This may eventually be explained by an attempt to compensate for the energy expended in metamorphosis in the *Artemia* replacement larvae, together with its delay in weight gain at this stage. Similar results were obtained by Engrola et al. (2009b) in similar ages.

4.4 Early co-feeding strategy affects lipid digestive capacity of larval sole

The higher *Artemia* intake when the enrichment with PL was used at 9 DAH in both ST and Art R treatments was not translated into statistical differences in digestibility. At this age, sole larvae seem to have a high digestive capacity to deal with lipid in live preys (up to 90% digestibility), independently of their feeding regime and of the source of lipid used to enrich *Artemia*. Therefore, sole early larvae seem to have better digestive capacity for lipids compared to protein since protein digestibility in 8 DAH sole was found to be 72.4% on a standard feeding regime and 70.4% on a co-feeding regime (Engrola et al., 2009b), and 83% at 12 DAH (Morais et al., 2004a).

At 17 DAH a significantly lower lipid digestibility was measured in the Art R treatment compared to the ST treatment and also in relation to 9 DAH. Sole larvae co-fed with inert diet from mouth opening have also a reduced protein digestibility during metamorphosis climax (16 DAH), compared to younger and older ages (Engrola et al. 2008). In fact, the metamorphosis climax is a critical developmental stage for sole larvae, and early adaptation to inert diets, in particular, seems to have a toll in terms of digestive efficiency. At this stage, growth, ingestion rates and oxygen consumption have been shown to decrease (Parra, 1998). The higher *Artemia* lipid digestibility in
larvae fed the ST dietary treatment when compared with the larvae co-fed with inert diet at 17 DAH, independently of the label used, may be explained by a faster development of the digestive system of these larvae, related to the higher larval DW in these treatments (ST). Cahu and Zambonino Infante (2001) observed that intestinal maturation might be stimulated but also irreversible impaired, depending on how co-feeding of live prey and inert diets is performed. In addition, Fernández-Díaz et al. (2006) observed that sole exclusively fed with microencapsulated diets had altered hepatic and gastrointestinal structures when compared to live feed-fed sole.

At 17 DAH a significantly higher digestibility was also observed in TAG-labeled compared to PL-labeled Artemia. As already mentioned, the fatty acid and lipid class composition of the radiolabeled Artemia was not determined and therefore the higher digestibility of TAG-labeled Artemia has to be discussed with caution. Earlier studies have showed that phospholipids have higher digestibility compared to TAG (Morais et al., 2007). Still, the present study suggests that enrichment of Artemia with PL may be less efficient to deliver oleic acid, and eventually other fatty acids, compared to TAG during metamorphosis climax of sole. These findings clearly deserve further study.

4.5 Co-feeding affects lipid retention and catabolism in sole larva

At 9 DAH lipid catabolism was significantly reduced and, concomitantly, body retention was significantly increased, when larvae were co-fed an inert diet since first feeding (Art R treatment). It has been suggested that young larvae may have the ability to compensate for an eventual lower digestibility with a higher retention of absorbed amino acids (Morais et al., 2004a). The same idea could be used to explain the present results in relation to lipids, if it is assumed that the inert diet is less digestible than live
prey during the initial stages of development. In that case, larvae co-fed simultaneously with live prey and inert diet might have a lower overall digestive efficiency.

At 17 DAH both lipid catabolism and retention presented no statistical differences between treatments which, comparing with data at 9 DAH, suggests metabolic changes as metamorphosis proceeds. In fact, lipid catabolism was 2-fold higher (ca. 50% compared to ca. 20% of total absorbed lipid) at 9 DAH compared to 17 DAH. This suggests that lipid may be less important as an energy fuel during metamorphosis climax. Alternatively, this may be a result of a selective pressure towards an increase in body lipid as energy reserves in the stages prior to metamorphosis (hence higher lipid retention), to compensate for the reduction in prey consumption during this period (Youson, 1988; Parra, 1998). Then, an eventual high mobilization of endogenous lipid reserves during metamorphosis climax may explain the present results. Still, the present study demonstrates that lipid retention efficiency remains constant independently of feeding regime and lipid source used in Artemia enrichment during metamorphosis climax. Therefore, it seems that partial replacement of Artemia by an inert diet does not seem to compromise larval lipid metabolism.

5. Conclusion

Co-feeding sole larvae with inert diet since mouth opening did not affect survival rate but resulted in smaller size of sole larvae. Although the lipid tracer used to radiolabel the Artemia was most likely at least partly assimilated and metabolized by the Artemia in an unpredictable way, a fraction of the PL label remaining in the Artemia digestive tract might have had a stimulant effect in feed intake at 9 DAH, but no longer at 17 DAH. In addition, while no difference was noticed at 9 DAH in lipid digestibility, the ST-TAG treatment showed the highest lipid digestibility at 17 DAH, most probably as a
result of a more advanced maturation of the digestive system. Furthermore, at 9 DAH the co-feeding regime reduced lipid catabolism and concomitantly increased lipid retention in larval sole, which may be an adaptation to a feeding regime with lower digestibility. However, lipid retention was high in all treatments at 17 DAH, most likely as a response to morphological and physiological changes that takes place in the larval body during the metamorphosis climax.

In short, co-feeding of live fed and inert diet from first-feeding in Senegalese sole (*Solea senegalensis*) has a toll in terms of growth and lipid digestibility but does not seem to compromise lipid metabolic utilization.

6. Acknowledgements

The authors wish to thank Helena Teixeira for practical assistance. Grant to Mônica Mai (SWE 201887/2007-0) from “Conselho Nacional de Desenvolvimento Científico e Tecnológico” - CNPq (Brasil) supported this work. This study benefited from funding by Project PROMAR/SP5.P117/03 (program INTERREG III A, co-funded by FEDER, European Commission).

7. References

Koven, W.M., Parra, G., Kolkovski, S., Tandler, A. 1998. The effect of dietary phosphatidylcholine and its constituent fatty acids on microdiet ingestion and...

Salhi, M., Hernández-Cruz, C.M., Bessonart, M., Izquierdo, M.S., Fernández-Palacios, H. 1999. Effect of different dietary polar lipid levels and different n-3 HUFA content in polar lipids on gut and liver histological structure of gilthead seabream (Sparus aurata) larvae. Aquaculture 179, 253-263.

Figure 1 – Senegalese sole dry weight (mg) at 9 days after hatching (DAH) (1a, n = 30 pooled larvae) and 16 DAH (1b, n = 15). ST: Standard feeding regime; Art R: Partial Artemia replacement by inert diet from mouth opening. Values are means ± SD. Different letters for the same age indicate statistical differences between treatments (P < 0.05, ANOVA).

Figure 2 – Artemia intake of sole larvae at 9 (2a) and 17 days after hatching (DAH) (2b). Values are means ± SD (2a: n=13 to ST PL; n=15 to ST TAG; n=14 to ArtR TAG; n=14 to ArtR PL. 2b: n=15 for all treatments). ST – TAG (Standard feeding regime + Artemia enriched with glycerol tri [1-14C] oleate - TAG); ST – PL (Standard feeding regime + Artemia enriched with L-3-phosphatidylcholine-1,2-di-[1-14C] oleoyl - PL); Art R – TAG (Artemia replacement feeding regime + Artemia enriched with TAG) and Art R - PL (Artemia replacement feeding regime + Artemia enriched with PL). Different letters at the same age indicates statistical differences (P < 0.05, two way ANOVA) between feeding regimes (a, b) or lipid sources (x, y).

Figure 3 – Artemia lipid digestibility in sole at 9 (3a) and 17 days after hatching DAH (3b). Values are means ± SD (3a: n=13 to ST PL; n=15 to ST TAG; n=14 to ArtR TAG; n=14 to ArtR PL. 3b: n=15 for all treatments). ST – TAG (Standard feeding regime + Artemia enriched with glycerol tri [1-14C] oleate - TAG); ST – PL (Standard feeding regime + Artemia enriched with L-3-phosphatidylcholine-1,2-di-[1-14C] oleoyl - PL); Art R – TAG (Artemia replacement feeding regime + Artemia enriched with TAG) and Art R - PL (Artemia replacement feeding regime + Artemia enriched with PL). Different letters at the same age indicates statistical differences (P < 0.05, two way ANOVA) between feeding regimes (a, b) or lipid sources (x, y).
Figure 4 – Lipid retention efficiency and catabolism determined in sole at 9 (4a) and 17 days after hatching DAH (4b). Retention (R, %) and Catabolism (C, %) were calculated as:

\[R = \frac{R_{\text{body}}}{(R_{\text{body}} + R_{\text{CO}_2\text{ trap}})} \times 100; \]

\[C = \frac{R_{\text{CO}_2\text{ trap}}}{(R_{\text{body}} + R_{\text{CO}_2\text{ trap}})} \times 100; \]

respectively, where \(R_{\text{body}} \) is the total radioactivity in fish body (DPM) and \(R_{\text{CO}_2\text{ trap}} \) is the total radioactivity per CO\(_2\) trap (DPM).

Values are means ± SD (4a: n=13 to ST PL; n=15 to ST TAG; n=14 to ArtR TAG; n=14 to ArtR PL. 4b: n=15 for all treatments). ST – TAG (Standard feeding regime + Artemia enriched with glycerol tri [1-\(^{14}\)C] oleate - TAG); ST – PL (Standard feeding regime + Artemia enriched with L-3-phosphatidylcholine-1,2-di-[1-\(^{14}\)C] oleoyl - PL); Art R – TAG (Artemia replacement feeding regime + Artemia enriched with TAG) and Art R - PL (Artemia replacement feeding regime + Artemia enriched with PL). Different letters at the same age indicate statistical differences (P < 0.05, two way ANOVA) between feeding regimes (a, b).
Fig 1

Diagram showing dry weight (mg) at 8 DAH and 16 DAH for ST and Art R with statistical notes a and b.
Fig 2
Fig 3
Fig 4

Retention and Catabolism (% of Absorption)

9 DAH

17 DAH

ST TAG, ST PL, Art R TAG, Art R PL