
This is the peer reviewed version of this article

NOTICE: this is the author’s version of a work that was accepted for publication in European Journal of Soil Biology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Journal of Soil Biology, [VOL 49 (2012)] DOI: http://dx.doi.org/10.1016/j.ejsobi.2011.08.003
Impact of simulated nitrogen pollution on heathland microfauna, mesofauna and plants.

Richard J. Payne1,2*, Astrid M. Thompson3, Valerie Standen3, Christopher D. Field1, Simon J.M. Caporn1

1School of Science and the Environment, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.

2Geography, School of Environment and Development, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

3School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK.

*To whom correspondence should be addressed, e-mail r.payne@mmu.ac.uk

ABSTRACTS

Deposition of reactive nitrogen derived from intensive agriculture and industrial processes is a major threat to biodiversity and ecosystem services around the world; however our knowledge of the impacts of nitrogen is restricted to a very limited range of organisms. Here we examine the response of groups of microfauna (testate amoebae), mesofauna (enchytraeid worms) and plants to ammonium nitrate application in the Ruabon heathland long-term experiment. Plant data showed significant differences between treatments, particularly characterised by a loss of bryophytes in nitrogen-treated plots, by contrast enchytraeids showed a non-significant increase in abundance in response to treatment. Testate amoebae showed no significant changes in abundance or inferred biomass but significant changes in community structure with a reduced abundance of \textit{Corythion dubium}, interpreted as a response to the loss of bryophytes. Our results suggest that simple indices of plant community may have value for bioindication while the bioindication value of testate amoebae and enchytraeids is not clearly demonstrated.

KEYWORDS: Pollution, Reactive Nitrogen, Enchytraeids, Testate amoebae, Bioindication, Heathlands

1. INTRODUCTION
Since the first commercial application of the Haber-Bosch process in 1913 human production of reactive nitrogen (N\textsubscript{r}) has grown rapidly, with an increase of over 120% since 1970 [1]. N\textsubscript{r} deposition in the absence of human activity is generally less than around 0.5 kg N ha-1 yr-1, while in the United Kingdom some areas currently receive deposition in excess of 40 kg N ha-1 yr-1. These levels of nitrogen deposition are sufficient to lead to a significant reduction in biodiversity [2,3] and damage to ecosystem services. Species-loss from ecosystems is driven by both eutrophication and acidification with the relative contributions of these processes varying by habitat type.

Heathlands are a UK Biodiversity Action Plan priority habitat, covering over 2,000,000 ha of upland Britain but in England and Wales their cover declined by an estimated 27% between 1947 and 1980 [6]. A critical load range of 10-20 kg N ha-1 yr-1 is exceeded in many heathland areas of the British Isles with N deposition shown to reduce plant biodiversity, particularly marked by a loss of lichens and bryophytes [7]. Large-scale ecological surveillance data shows a reduction in plant species richness along the N deposition gradient even when accounting for other drivers [4]. Impacts of nitrogen on groups of heathland organisms other than plants are however poorly documented. Here we examine the response of plants and major groups of eukaryotic microorganisms and mesofauna in the same ecological experiment and consider the possible inter-relations between these groups. Our study aims to provide a broader understanding of the ecosystem-wide consequences of nitrogen pollution in heathlands and to identify possible bioindication approaches.

1.1 The studied groups and their inter-relations

Testate amoebae are a group of eukaryotic microorganisms characterised by a solid shell (test) which can constitute a very large proportion of microbial biomass in organic soils [8] and are likely to have an important role in nutrient cycling [9,10]. Testate amoebae have been shown to respond to soil environmental changes to which other groups are insensitive [11] and have broad feeding preferences making them good synthesisers of overall microbial community change. Previous studies have demonstrated testate amoeba sensitivity to nutrient enrichment [12, 13, 14] and have suggested impacts from NO\textsubsuperscript{2} exposure [15].

The enchytraeidae are a group of detritovorous, bacterivorous and fungivorous annelid worms, typically 3-30mm in length. Enchytraeids constitute a large proportion of mesofaunal biomass in many temperate soils (c. 75%: [16]) and may fill a keystone role in heathlands [17]. Enchytraeid abundance has been shown to respond to application of nitrogen fertilizer [18]. It seems possible that enchytraeids
might predate testate amoebae given their size and observations of predation by other groups of worms [19 cited in 10]. Bacteria feeding on enchytraeid faeces are likely to provide a food supply for some testate amoebae and enchytraeid burrowing may aerate soil, modifying the amoeba’s habitat and translocating individuals [cf. 20]. Enchytraeids may compete with testate amoeba species for food, for instance with members of the Centropyxidae for fungi [21, 22, 23].

Testate amoeba and enchytraeid communities are both intricately linked to plant communities with plants shaping the organism’s physical, chemical and biotic environment. Precise mechanisms are difficult to pin-down but it is probable that for instance amoebae are affected by the chemical quality of plant litter [24], are closely linked to mycorrhizas [25] and are affected by changes in root exudation [e.g. 26]. As decomposers enchytraeids are highly sensitive to the quality of plant litter and experimental removal of different plant species has been shown to differentially modify enchytraeid abundance [27]. Both enchytraeids and testate amoebae are likely to be involved in nutrient mineralisation and thereby influence plant nutrition [28].

2. SITE and METHODS

Experiments were first established on wet upland heath near Ruabon, Clwyd, North Wales (53° 02’N, 3°08’W; 470m asl) in 1989 and have been extensively discussed in previous publications [29, 30, 31, 32, 33]. The climate of the site is cool and oceanic: average annual air temperature is 9.8°C (2008-9 data), average annual soil temperature 6.9°C (2008-9 data) and average annual precipitation 1053mm (2007-2009 data). Vegetation of the site is dominated by Calluna vulgaris with subordinate bryophytes and scattered Vaccinium myrtillus. The site is representative of the Calluna-dominated heaths (NVC type H12: C. vulgaris-V. myrtillus heath [34]) which cover large areas of upland Britain. Soil is silty clay loam with pH around 4.4 and depth of around 50cm. Ambient nitrogen deposition is around 19.9 kg N ha⁻¹ yr⁻¹ (UK Air Pollution Information System (APIS) www.apis.ac.uk), at the upper limit of the critical load range (10-20 kg N ha⁻¹ yr⁻¹). The original experiments consisted of 1x1m plots which were established in May 1989, subsequent experiments with 2x2m plots were established in 1998. Nitrogen as ammonium nitrate is applied ten times a year to plots at concentrations of 0, 40, 80 and 120 kg N, ha⁻¹ yr⁻¹ in the 1989- ('old') plots and 0, 10, 20, 40 and 120 kg N, ha⁻¹ yr⁻¹ in the 1998- ('new') plots with four replicates for each concentration. The old plots were burned in 2000 in keeping with normal management practise [35].
For testate amoeba analysis samples were extracted from the control and heaviest treated (120 kg N ha\(^{-1}\) yr\(^{-1}\), hereafter termed 120N) of the older (1989) plots in November 2009, more than 20 years after the onset of the treatment. Approximately 5 cm\(^3\) of surface soil with any overlying litter and bryophytes were removed with a knife, sealed in plastic bags and refrigerated. In the laboratory testate amoebae were extracted using a method based on the standard methodology [36]. Sub-sample volume was measured by displacement in deionised water, samples were soaked for c.2 hours and stirred to disaggregate. The majority of recent testate amoeba studies have been based on relative abundance (for ease of application to the palaeoecological record) however this approach may lead to loss of information [37]. Here we analyse both percentage and concentration data; an exotic Lycopodium clavatum inoculum of counted spores was added to samples to allow calculation of concentrations [38]. Suspensions were sieved at 300μm but were not back-sieved to avoid loss of small taxa [39]. Samples were mounted in glycerol and a count of 100 individuals aimed for [40]. A variety of taxonomic guides were used [41, 42, 43]; the Euglypha rotunda, Centropyxis aerophila (=Centropyxis cassis) and Difflugis pristis types follow [41]. Tests with visible cytoplasm (termed ‘live individuals’) were recorded separately from empty shells (although it was not possible to distinguish living from simply undecayed individuals). Taxon-specific biovolumes were calculated based on assumed geometric shapes and published biometric data and converted to estimated biomass [8, 14].

For enchytraeid analysis soil cores (50mm diameter, 50mm depth) were extracted from the 0, 20, 40 and 120 N, treatments of the newer (1998) plots between May 2002 and September 2003. Three replicate cores were taken from each plot at six intervals over this period (May, July and September in 2002 and 2003) giving a total of 216 samples. Enchytraeids were extracted using the wet funnel technique [44] and identified following Nielsen and Christensen [45].

Changes in plant communities of these plots have been extensively considered over more than 20 years (Table 1). Here we focus solely on vascular plant species with bryophytes and lichens identified to functional types, a simple approach which may have considerable potential as a quick and effective bioindication strategy [cf. 46]. Our analysis updates the previous results of Carroll et al. [30] more than a decade after that study. A 15-point pin quadrat was placed in the centre of each of the old plots (4 replicates of 3 treatments + control) in summer 2005, recording all touches in four categories (Calluna vulgaris, Vaccinium myrtillus, bryophytes and lichens). Lichens were too rare for meaningful data analysis. Calluna canopy height was also measured at each pin point.
2.1 Data analysis

For the testate amoeba data Shannon (H) and Simpson (D) diversity indices, and related equitability measures (E_n, E_d) were calculated. A sequence of nested-ANOVAs were used to identify significant differences between treated and untreated plots for species richness, diversity and equitability, proportion of occupied tests (a measure of general community health) and amoeba concentration and biomass based on both all tests and only live individuals. For the enchytraeid count data a repeated measures ANOVA (RM-ANOVA) was used to compare plot mean data over the experimental period. For the plant data separate nested-ANOVAs were conducted for total pin touches and covers (a 1-15 scale counting each pin as one point) of each plant type and for Calluna canopy height. All data satisfied the requirements of ANOVA.

To examine nitrogen-induced differences in testate amoeba community structure we use a non-parametric approach based on Bray-Curtis dissimilarity [47], which has been shown to be a useful and robust similarity coefficient for many ecological datasets [48, 49]. We use a non-metric multidimensional scaling (NMDS) ordination to visualise the data and then apply a sequence of one-way analyses of similarity (ANOSIM [50]) to test for similarity between treated and untreated samples. Significance testing used permutation tests with 10,000 permutations. To identify the taxa principally responsible for the differences between groups we follow ANOSIM with a Similarity Percentage (SIMPER) analysis, a simple Bray-Curtis based approach to identify the taxa contributing to observed community difference [50]. Six sets of multivariate data analyses were conducted using: 1) Percentages of all tests, 2) Concentrations of all tests, 3) Estimated biomass based on all tests, 4) Percentages of live amoebae, 5) Concentrations of live amoebae, and 6) Estimated biomass based on only living individuals. Multivariate data analyses were carried out using PAST ver. 1.84 [51] and univariate analyses with SPSS ver. 18.

3. RESULTS

The amoeba community of these plots was predominantly composed of generalist taxa which are very abundant in soils with heavy dominance by Corythion dubium (36% all tests); other major taxa included Assulina muscorum (12%), Cryptodifflugia oviformis (8%) and Nebela tincta type (8%)(Table 2). While most common genera were represented to some extent there was a particular predominance of small taxa with filopodia. There was a significant difference in both Shannon (H) and Simpson (D) diversity between samples from treated and untreated plots (nested-ANOVA $F_{1,32}=9.1$, $P=0.02$ for H;
F, 1, 32 = 13.8, P = 0.01 for D), driven by increased equitability in treated plots (F, 1, 32 = 11.5, P = 0.02 for E), rather than species richness, which did not significantly differ between plots (P > 0.05). This increased equitability is driven by a higher relative abundance of Corythion dubium (Fig. 1) in the control plots; if this taxon is removed there is no significant difference between treatments (P > 0.05 for H, D, E, & E). There was no difference between treatment and control in concentration of total tests, concentration of live amoebae, proportion of occupied tests, estimated biomass based on all tests or estimated biomass based only on living amoebae (P > 0.05).

An NMDS ordination shows the relation of the two sets of samples with a tendency for treated samples to have higher x-coordinates than untreated samples but considerable overlap (Fig. 2, it should be noted that the stress value is relatively high so it would be unwise to read too much into the fine details of sample positioning). Initial analyses of similarity found no evidence for differences between plots with the same treatment so simple one-way analyses of similarity were used in subsequent tests. There was a significant difference between treated and control samples for amoeba community based on the relative abundance of all tests but not for data based on concentrations, biomass or live individuals only (P > 0.05). Differences were relatively small but highly significant (R anosim = 0.12, P = 0.002).

SIMPER identifies the greatest contributors as Corythion dubium, Cryptodifflugia oviformis and Assulina muscorum. If Corythion dubium is removed from the relative abundance data the analysis loses significance. If differences in abundance of the major taxa are tested individually there are significant differences in relative abundance for only two taxa: C. dubium and A. muscorum, and no significant differences in concentration for any taxa (Table 2).

The community composition of enchytraeids showed little diversity; over 90% of the individuals identified to species level were Cognettia sphagnetorum, with Mesenchytraeus sanguineous the most abundant subordinate species. Given this heavy dominance by a single species only abundance of C. sphagnetorum was used in data analysis. Number of individuals per core varied from 1 to 191 (mean = 59). Numbers were highly variable both within cores from the same plots and between plots with the same treatment. There was considerable change over time with populations of all plots crashing in the summer of 2003. While there was a general trend of higher enchytraeid numbers in the most heavily N-treated plots (Fig. 3), there was no significant treatment, or time*treatment effect (P > 0.05), although the difference between control and 120N treatment (as considered by the testate amoeba analyses) approached significance in post-hoc testing (Fishers LSD, P = 0.06).
The plant data show significant differences between treatments for bryophyte total touches (nested-ANOVA \(F_{3,280}=7.0\) \(P=0.003\)) and cover (\(F_{3,280}=11.5\) \(P<0.001\)). In all treated plots bryophytes were significantly less abundant than in control plots (\(P<0.001\) in post-hoc testing with Tukey’s HSD; Fig. 4), individual treatments were significantly different from each other (\(P<0.01\)) with the exception of the 40N and 120N treatments which could not be distinguished (\(P>0.05\)). There were significant differences between treatments for Calluna touches (\(F_{3,280}=4.2\) \(P=0.02\)) with more touches in the 20N and 120N plots (\(P<0.01\)) than the controls, but no difference between controls and 40N plots (\(P>0.05\)) and no overall trend within the treated plots. There were no differences between treatments for Calluna cover or for Vaccinium cover and touches (\(P>0.05\)). There were differences between treatments for Calluna height (\(F_{3,280}=5.4\) \(P=0.009\)), with taller Calluna in all treated plots (Tukey’s HSD \(P<0.001\); Fig. 5) than controls.

4. DISCUSSION

4.1 Testate amoeba response

The testate amoeba results from plots treated with high levels of nitrogen for 20 years show evidence for changed community structure but not for changed abundance or biomass, in contrast to the combined effects of N and P [14]. That significant differences are only found when using relative abundance data may reflect the inter-dependence of taxon values amplifying real abundance differences. The low counts of live individuals, exotic marker technique used to derive concentrations, and the biovolume and carbon content conversions used to estimate biomass will inevitably introduce some errors into these data. Biovolumes estimated using the geometric shapes approach have been shown to deviate substantially from direct instrumental measurements [52] and given that an amoeba may not occupy the full shell volume are likely to over-estimate values. The Lycopodium inoculum technique has not been formally tested for testate amoebae and differential loss in sample preparation is not unlikely given the potentially large differences in morphology and density.

The most distinct change in community composition is a reduced abundance of Corythion dubium in the control plots. C. dubium is a widely dispersed and locally highly-abundant taxon which predates bacteria and heterotrophic flagellates [22] and is particularly abundant in mosses [53]. Three explanations for the decline of C. dubium can be proposed. Firstly that C. dubium is directly affected by chemical changes due to the nitrogen additions. Previous studies have demonstrated increased concentrations of ammonium and nitrate in leachate, and modest increases in soil acidity and
Aluminium concentrations in treated plots [32]. It is possible that *C. dubium* is being affected by these changes, however there is no particular reason to suspect greater sensitivity in this taxon and there is no evidence for change towards a more acidophilic community composition. A second hypothesis is that *C. dubium* declines because of a reduced food supply due to a decline in abundance in lower microbial groups. While microbial biomass has been shown to decline following N addition in some ecosystems, in this heathland the available evidence suggests an increased bacterial and overall microbial biomass [54]. While *C. dubium* might exhibit selective predation among prokaryotes and small protists it seems more probable that the decline of *C. dubium* is not directly mediated by availability of prey organisms. A final possibility is that the decline of this species is related to changes in the amoeba’s environment through changed plant communities (discussed below). Given how intimately linked plant and testate amoeba communities are (section 1.1) it can be expected that significant plant community change would be manifested in changed testate amoeba communities [14]. The known preference of *C. dubium* for bryophytes and the demonstrable decline in bryophytes in these plots therefore strongly suggests that testate amoebae are responding to the changed plant communities. Although the testate amoeba samples were extracted four years after the plant data discussed below the changes demonstrated were still highly apparent in 2009 with little bryophytes in any of the treated plots.

As significant changes in testate amoebae communities are shown by our results it is possible that testate amoebae may have value for bioindication of nitrogen deposition in heathlands. Such an approach would have some advantages. Generation times of testate amoebae can be very short (several generations per week in laboratory conditions [21]) so testate amoebae could potentially be a highly responsive bioindicator group allowing real-time monitoring of changing impacts. Furthermore, the analysis of empty tests alongside live amoebae allows simultaneous determination of the amoeba community at both a single moment in time and integrated over a period of perhaps several years. This multiple time-period approach would be a rather unique advantage of testate amoebae for bioindication. However our results also point to two important potential drawbacks in the use of testate amoebae as bioindicators of nitrogen. Firstly, the response is characterised by a reduced abundance of *Corythion dubium*, a change which could conceivably be caused by independent environmental changes such as climatic warming/drying [e.g. 55]. Secondly, it appears probable that the testate amoeba response is mediated by plant community change, specifically the loss of bryophytes. If this deduction is correct then it implies that the testate amoeba response to nitrogen is likely to be indirect and therefore their use as indicators may add little to the direct use of plant communities for bioindication which would be vastly quicker and simpler.
4.2 Enchytraeid response

The enchytraeid data from plots treated for four years showed a general trend towards higher abundance in treated plots but this was not statistically significant. The lack of a significant difference between treatments may be largely explained by the very high spatial and temporal variability in numbers (Fig. 3). Particularly low numbers were found in the summer of 2003, probably due to the severe drought of that year perhaps with vertical migration of enchytraeids to below the sampling zone [56]. It is possible that with more replication a significant effect might have been identified but this was not feasible without undue disturbance to the plots. The non-significant trend towards higher enchytraeid abundance in N-treated plots contrasts with severe reductions in some N-addition experiments in other ecosystems [18, 57, 58]. The lack of a significant change in enchytraeid abundance here does however parallel that of Prendergast-Miller et al. [59] who found no significant change in enchytraeids in response to ammonia fumigation. Although we find no strong evidence for impacts of nitrogen deposition on enchytraeids our results do not rule out such impacts, it is possible that with longer treatment periods chemical changes in above-ground plant material would increasingly manifest themselves in changed enchytraeid food quality and therefore changed enchytraeid abundance [59]. Our results do however add to other recent studies in questioning whether enchytraeids could provide a viable bioindication approach given their primary control by soil moisture conditions and extremely patchy distribution [59].

4.3 Plant response

Our data show a very marked nitrogen-induced decline in the bryophytes of these plots. This decline is particularly apparent in the heaviest treated 120N plots where no bryophyte pin-touches were recorded. The 120N treatment is very high; however even in the 20N plots, representing a more-frequently encountered pollution level, a decline in bryophyte cover is apparent and statistically significant and Calluna height is increased.

Our results largely match those of a number of earlier studies from these plots (Table 1) showing increased vigour of Calluna and decreased vigour of bryophytes, although a more complex picture emerges when considering low N doses and interactions with P [60]. Loss of bryophytes has been widely
found in experimental and gradient studies of nitrogen in a number of habitats [7, 31], including a

decline in *Hypnum jutlandicum*, the overwhelmingly dominant bryophyte of these plots in response to

ammonia exposure [61].

That distinct changes can be identified at relatively realistic doses supports previous research in

suggesting the potential of plant community-based indices for bioindication of nitrogen pollution. On

the basis of our experiments it seems that even a taxonomically-crude *Calluna* : bryophyte ratio might

perform well for bioindication. Furthermore the fact that testate amoebae may respond to the plant

community changes suggests that using plants as bioindicators may also reveal indirect impacts of

nitrogen on other components of the ecosystem. A complicating factor is the extent to which

heathlands are an anthropogenic ecosystem with their form and composition heavily dependent on

human management. It is possible that the developmental stage of the *Calluna*

(pioneer/building/mature/degenerate) will be a serious impediment to the use of plant community

based indicators of nitrogen pollution. Addressing such issues will require larger-scale field data and will

be discussed more in future publications.

5. CONCLUSIONS

Our results illustrate some of the less-considered consequences of nitrogen deposition in semi-
natural ecosystems. For the first time we demonstrate that application of nitrogen alone has the

potential to modify community structure in an abundant but little studied group of soil protists, the

testate amoebae. By contrast our data do not provide evidence for the sensitivity of enchytraeid

abundance to nitrogen. While this negative result may partly be explained by the sampling intensity and

treatment period of this study it seems probable that other environmental controls are more important

than nitrogen. Plant communities respond strongly to nitrogen deposition and these changes may be

the cause of the testate amoebae changes. Plant community-based bioindication may therefore be both

sensitive to nitrogen deposition and represent changes in the broader ecosystem. Future work could

usefully examine the response of different groups of organisms and their bioindication potential in the

same experimental setting, this is difficult in our study as samples represent differing treatment periods

for different groups.
ACKNOWLEDGEMENTS

Funding for set-up and monitoring of the Ruabon experiment has been provided by the UK Natural Environment Research Council, the Department for Food, Environment and Rural Affairs (DEFRA) and Manchester Metropolitan University. RJP and SJMC were supported by NERC through the FP6 BiodivERsA Eranet project PEATBOG. VS and AMT were supported by NERC as part of the Global Atmospheric Nitrogen Enrichment (GANE) programme. Thanks to David Wilkinson and two anonymous reviewers for comments on a previous version of the paper.
REFERENCES

[38] J. Stockmarr Tablets with spores used in absolute pollen analysis, Pollen et Spores 13 (1971) 615-621.

Fig. 1. Box plot showing relative abundance of *Corythion dubium* in 120N (120 kg N ha\(^{-1}\) yr\(^{-1}\)) treated and control plots of Ruabon experiment. Box-plots show median (central line), first and third quartiles (grey box), tenth and ninetieth percentiles (‘whiskers’) and fifth and ninety-fifth percentiles (dots).

![Box plot showing relative abundance of *Corythion dubium* in 120N treated and control plots.](image)

Fig. 2. NMDS ordination plot based on Bray-Curtis dissimilarity (stress=0.2) for testate amoeba relative abundance data from 120N (120 kg N ha\(^{-1}\) yr\(^{-1}\)) treated and control plots is autumn 2009.

![NMDS ordination plot based on Bray-Curtis dissimilarity.](image)

Fig. 3. Numbers of the enchytraeid *Cognettia sphagnetorum* from Ruabon experimental plots over a 16 month period between May 2002 and September 2003. Results shown as mean numbers per core (0.001m\(^2\)) and standard deviations.

![Graph showing numbers of *Cognettia sphagnetorum*.](image)
Fig. 4. Average pin touches and total cover values (1-15 scale) for *Calluna vulgaris* (black bar), bryophytes (light grey bar) and *Vaccinium myrtillus* (dark grey bar) in Ruabon plots in summer 2005. Results shown as plot means and standard deviations. Significant differences between treatments for bryophyte touches (P=0.003) and cover (P<0.001), and *Calluna* touches (P=0.02) but not for *Calluna* cover and *Vaccinium* cover or touches (P>0.05). Bars marked ‘*’ show significant difference from controls in post-hoc testing.

Fig. 5. Mean *Calluna* height for experimental plots in summer 2005 showing ±1σ error bars of plot means. Significant difference between treatments (P=0.009), bars marked ‘**’ show significant difference from controls in post-hoc testing.
Table 1. Previous studies of plant response in Ruabon experiments. Showing only properties considered to have value for ecological indication with minimal resources (i.e. excluding properties requiring repeated site visits and chemical and physiological parameters).

<table>
<thead>
<tr>
<th>Reference</th>
<th>Period</th>
<th>Plots</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>[63]</td>
<td>1995</td>
<td>Old</td>
<td>Increased canopy height.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased C. vulgaris cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced bryophyte and lichen cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased C. vulgaris cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduced bryophyte and lichen cover.</td>
</tr>
<tr>
<td>[60]</td>
<td>1998-2002</td>
<td>New</td>
<td>Increased bryophyte cover, non-significant decrease in lichen cover (with 20 kg N ha(^{-1}) yr(^{-1})).</td>
</tr>
<tr>
<td>[64]</td>
<td>2005</td>
<td>New</td>
<td>Decreased bryophyte cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decreased bryophyte diversity (Shannon ‘H’).</td>
</tr>
<tr>
<td>This study</td>
<td>2005</td>
<td>Old</td>
<td>Decreased bryophyte cover.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increased canopy height.</td>
</tr>
</tbody>
</table>
Table 2. Testate amoeba community composition in control and ammonium nitrate treated plots from Ruabon, North Wales. Showing, mean concentration and relative abundance of all tests of major taxa (>5% total tests) in four replicates of treated and control plots. Standard deviations shown in parentheses. Differences between the treated and control plots tested using nested-ANOVA *P<0.05, **P<0.01.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Control</th>
<th>Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean concentration total tests (tests cm$^{-3}$)</td>
<td>Relative abundance total tests (%)</td>
</tr>
<tr>
<td>Assulina muscorum</td>
<td>2462 (2202)</td>
<td>9.9 (5.7)</td>
</tr>
<tr>
<td>Corythion dubium</td>
<td>11085 (8390)</td>
<td>41.8 (10.4)</td>
</tr>
<tr>
<td>Cryptodiffugia oviformis</td>
<td>4057 (5680)</td>
<td>9.8 (8.7)</td>
</tr>
<tr>
<td>Cyclopyxis eurystoma</td>
<td>2188 (3350)</td>
<td>5.3 (4.6)</td>
</tr>
<tr>
<td>Euglypha rotunda type</td>
<td>1372 (1056)</td>
<td>5.9 (3.7)</td>
</tr>
<tr>
<td>Nebela tincta</td>
<td>2313 (1955)</td>
<td>8.0 (4.0)</td>
</tr>
<tr>
<td>Trinema lineare</td>
<td>1910 (2783)</td>
<td>4.8 (4.4)</td>
</tr>
</tbody>
</table>