The Ebbinghaus illusion deceives adults but not young children

M. J. Doherty a, N. M. Campbell a, H. Tsuji b, W. A. Phillips a, c

a Department of Psychology, University of Stirling, Stirling FK9 4LA, UK

b Department of Psychology, Faculty of Human Science, Osaka Shoin Women's University, 958 Sekiya, Kashiba, Nara, 639-0298 Japan

c Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universitat, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
The Ebbinghaus illusion deceives adults but not young children

ABSTRACT

The sensitivity of size perception to context has been used to distinguish between ‘vision for action’ and ‘vision for perception’, and to study cultural, psychopathological, and developmental differences in perception. The status of that evidence is much debated, however. Here we use a rigorous double dissociation paradigm based on the Ebbinghaus illusion, and find that for children below 7 years of age size discrimination is much less affected by surround size. Young children are less accurate than adults when context is helpful, but more accurate when context is misleading. Even by the age of 10 years context-sensitivity is still not at adult levels. Therefore, size-contrast as shown by the Ebbinghaus illusion is not a built-in property of the ventral pathway subserving vision for perception but a late development of it, and low sensitivity to the Ebbinghaus illusion in autism is not primary to the pathology. Our findings also show that, although adults in Western cultures have low context-sensitivity relative to East-Asians, they have high context-sensitivity relative to children. Overall, these findings reveal a gradual developmental trend toward ever broader contextual syntheses. Such developments are advantageous, but the price paid for them is that, when context is misleading, adults literally see the world less accurately than they did as children.

Keywords: Perceptual development; vision; visual size perception; size constancy; size contrast; ventral visual pathways; dorsal visual pathways; Ebbinghaus illusion.
Introduction

Sensitivity to context is a hallmark of cognitive systems (Phillips & Singer, 1997). In perception, this helps disambiguate local signals which, if considered independently of the broader context, would be open to alternative interpretations. Well-known examples are provided by visual size perception. Though experienced as being direct, rapid and without conscious effort, this uses context to deal with some major ambiguities. The effects of surrounding context on visual size perception have been used to study an exceptionally wide range of issues, including: the proposed distinction between a dorsal action pathway and a ventral conscious perception pathway (Aglioti, DeSouza, & Goodale, 1995; Milner & Goodale, 2008); differences between the sexes (Phillips, Chapman & Berry, 2004); cultural differences in the balance between analytic and holistic cognitive styles (Doherty, Tsuji, & Phillips, 2008; Kitayama, Duffy, Kawamura & Larsen, 2003; Nisbett & Miyamoto, 2005); the neural substrates of attentional control (Hedden, Ketay, Aron, Markus, & Gabrieli, 2008); and the cognitive styles associated with autism (Happé, 1999) and schizophrenia (Phillips & Silverstein, 2003; Uhlhaas & Silverstein, 2005).

Many previous studies support the view that the ventral and dorsal visual pathways have distinct functional roles (Milner & Goodale, 2008). The ventral pathway receives input mainly from parvocellular streams at lower visual levels, and is concerned predominantly with conscious perception of the distal scene and objects as represented within exocentric coordinates. The dorsal pathway receives input mainly from magnocellular streams at lower visual levels, and is predominantly concerned with guiding attention to and action upon specific objects represented within egocentric coordinates. These specialisations occur because the two groups of functions require incompatible computations. Object recognition and scene perception
require the ability to recognise things independently of their temporary orientation and location relative to the viewer, whereas those are the variables most crucial to the detailed guidance of action (Johnson, Mareschal and Csibra, 2001). Much remains to be discovered concerning the development of these visual capabilities. There is evidence that, in infant development, some functions attributed to the ventral pathway mature earlier than some attributed to the dorsal pathway (Dannemiller, 2001). In contrast to this, however, Kovács (2000) presents psychophysical, anatomical, and computational grounds for supposing that during later perceptual development several functions attributed to the ventral pathway have a much more protracted developmental course than many putative dorsal functions. Her arguments are of particular relevance here as we report developmental studies of aspects of size perception that depend predominantly upon the ventral pathways and show a long developmental time-course.

Unlike most studies of the distinctions between dorsal and ventral pathways, here we do not compare perceptual judgements with actions. However, our findings are relevant to the debate about the functions of the two pathways because sensitivity to context in the Ebbinghaus illusion has played such a major role in that debate.

Studies of the effects of context on size perception have contributed to a wide range of issues. They have also given rise to extensive debates concerning the conditions under which the effects occur and how they are to be interpreted (e.g. Franz et al., 2000; Milner & Goodale, 2008; Ropar & Mitchell, 2001). Resolution of these debates requires distinction between three underlying components of the effects of context on size perception. Two of them are well-known: size contrast, which depends on relative size, and size constancy, which depends on pictorial depth cues. However, there is also a third component, which is not. This third component involves local
contour interactions, and it depends on the separation between targets and surrounds. Targets are perceived as being enlarged when this separation is small, and as being reduced when it is large (Roberts, Harris & Yates, 2005). Haffenden, Schiff & Goodale (2001) show that the separation between targets and surrounds affects grasp scaling. They present evidence that when that separation is kept constant then grasp scaling is unaffected by the size of surrounds. Therefore, to specifically study effects of the size of surrounds, the separation between targets and surrounds should be controlled, but it rarely is. It is particularly important to distinguish local contour interactions from interactions that depend upon size relations, because it is likely that local interactions operate at lower levels of the visual pathways, and develop earlier than interactions that depend upon relative sizes. Here we show that, when this size-separation confound and other methodological difficulties are overcome, a clear developmental time-course for size illusions is seen, with major implications for our understanding of differences between vision for perception and vision for action, and of normal and pathological differences in perceptual style.

Developmental studies of size perception

Many of the capabilities underlying size perception develop during infancy. At four months infants show size constancy by habituating to real object size rather than to retinal image size (Granrud, 2006), and by seven months they are sensitive to interposition cues (Granrud & Yonas, 1984). This evidence concerns only near space, however. The perception of size in far space continues to develop until at least 9 years of age (Zeigler & Leibowitz, 1957), as it also does in pictured spaces, where there is conflict between cues to depth of the picture surface and to depth within the picture.
(Wilcox & Teghtsoonian 1971; Yonas & Hagen 1973). The general developmental trend seems to be toward ever broader contextual syntheses, and usually to more veridical perception. The extent to which these later developments involve perceptual rather than higher cognitive enhancements is still debated, however (e.g. Granrud & Schmechel, 2006). Therefore, we focus on context effects in the Ebbinghaus illusion because they are predominantly pre-attentive, with little or no dependence on higher cognition.

Developmental studies of susceptibility to the Ebbinghaus illusion have had inconsistent outcomes. In a study of the development of distinct pathways to action and to conscious perception, Hanisch, Konzak and Dohle (2001) report that children as young as five years of age are deceived by the illusion to the same extent as adults. A more recent study of the same issue also reports the classical illusion at five years of age, but together with other findings this is interpreted as casting doubt on the hypothesized separation between two visual systems (Duemmler et al, 2008). Happé (1999) concludes that typically developing 7- to 8-year-olds succumb to the illusion, but adolescents with autism do not. More recent studies found no differences between typically developing and autistic subjects, however (Ropar & Mitchell, 2001). Long-range horizontal collaterals in visual cortex and psychophysically measured spatial integration both continue to develop for many years (Kovács, Kozma, Fehér, & Benedek, 1999), and this suggests that contextual modulation may also have a long period of development (Kovács, 2000). To test this Káldy and Kovács (2003) compared sensitivity to context in the Ebbinghaus illusion using young children and adults, and report that at four years of age sensitivity is present, but not fully developed. In the only developmental study designed to distinguish different ways in which context affects size perception, Weintraub (1979) tested 384 subjects ranging in
age from 6 to 21 years. He concluded that local contour interactions that depend on the
separation between targets and surrounds operate fully at all ages tested, but that size
contrast effects do not occur before seven years of age. He used complex and
idiosyncratic methods, however, and others have interpreted his results as showing
that children as young as five years of age are deceived by the illusion (Hanisch,
Konczak & Dohle, 2001), and even as showing that the effects of the illusion decrease
with age (Rival, Olivier, Ceyte & Bard, 2004).

The evidence on development of susceptibility to the Ebbinghaus illusion is
therefore far from clear. This is, at least in part, because most prior studies suffer from
one or more weaknesses. First, following Aglioti et al (1995), several of the
developmental studies used small surrounds arranged as a tight ring close to the target
figure, whereas large surrounds were placed further away. Therefore, in such displays
surround-size is confounded with the separation between targets and surrounds.
Second, same-different judgements were often used, and this confounds discrimination
with response bias. Third, in many studies the target circles to be compared were of
the same size, which provides no measure of the strength of the contextual effects.
Fourth, less accurate performance by young children may be a secondary consequence
of the immaturity of more general cognitive capacities, rather than being specifically
due to differences in the effects of context on size perception.

To overcome these difficulties, we used a rigorous double dissociation
paradigm (Phillips, et al., 2004). This can provide clear evidence on these issues, and
is analogous to a paradigm more recently developed by Ganel, Tanzer & Goodale
(2008). In our paradigm some contextual conditions are designed to enhance
discrimination and others to impair it. If younger children are genuinely less context-
sensitive than adults then they will be more accurate when context is misleading, but
less accurate when it is helpful. To obtain sensitive measures of the strength of context effects, uncontaminated by response-bias, we studied two-alternative forced choice discrimination between comparison circles across a range of different real-sizes. To avoid confounding target-surround separation with size relations we placed all surround stimuli at the centers of a 3 x 3 array such that the separation between the middle of each central circle and its nearest surround was constant.

Method

The two-alternative forced choice paradigm that we used has been described in detail elsewhere (Phillips, et al., 2004; Doherty, et al., 2008). The task was to point to the larger of two circles. The two circles to be compared always differed in actual size, and this difference varied in magnitude across trials. In the experimental condition they were presented with surrounding circles arranged so that this context would either support or oppose accurate discrimination (Fig 1.) In the control condition they were presented without surrounds.

Participants

Children were recruited from a single primary school with an attached nursery school in a predominantly working-class neighborhood. All available children were included, in order to have a representative sample. All had normal or corrected to normal vision. Twenty-four young adults were also recruited at the University of Stirling.
Participant details are presented in Table 1.

Stimuli, experimental design and apparatus

The circles whose size was to be compared were orange and surrounds were grey, which makes it easier for children to understand the task. On each of the experimental trials two 3 x 3 arrays of circles were presented, side by side, on a computer screen. The centre circle of one array was 100 pixels in diameter, which subtended approximately 3.3 degrees at the viewing distance of 18 inches. The centre circle of the other was 2, 6, 10, 14, or 18 pixels larger or smaller. Each of these 10 size differences was presented twice, with the larger central circle surrounded by larger circles (125 pixels diameter) and the smaller central circle surrounded by smaller circles (50 pixels diameter). In these conditions size contrast impairs discrimination. Additionally, the 98 and 102 pixel circles were presented twice each with the smaller centre circle surrounded by larger surround circles and the larger central circle surrounded by smaller surround circles. Size contrast then increases accuracy if participants compare the apparent sizes of the centre circles. However, if they simply choose the array with larger surrounds then they will be wrong on every trial in this condition. The 24 trials \([(10 \times 2) + (2 \times 2)]\) were presented in random order. In the no-context control condition each of the 10 size differences was presented twice for each child.

A C++ program was developed to present stimuli and record and analyse responses. Stimuli were presented on an Acer 4050 laptop computer with a 15 inch monitor.
Procedure

Participants were tested individually in a quiet familiar area of their classroom. They were shown an example of the stimulus arrays to be used and the task was explained. They were asked to point to the central orange circle that "looks bigger". The experimenter pressed the left or right cursor key to record the answer and present the next stimulus. Each participant performed one block of 24 trials with context, and one block of 20 trials without context. Block-order was counterbalanced across participants. No feedback was given during the procedure, which took about 2 minutes. To estimate nonverbal IQ, Raven’s Coloured Progressive Matrices were then administered according to the manual.

Results

Here we report our analysis of the accuracy of the two-alternative forced choice responses. This is simpler and more direct than fitting psychometric functions, and leads to similar conclusions.

Discrimination accuracy over all real size differences combined

In the control condition, the ability to discriminate the sizes of two circles presented with no context was already good at 4 years, at 79% correct, and increased to between
87% and 95% for the older age groups. In striking contrast, in the experimental condition, discrimination with misleading context remained high for the 4- and 5-year-olds, at 76% and 80% correct respectively, but declined with increasing age, being 62% for the 10-year-olds, and only 46% for the adults. The difference between these two contextual conditions was confirmed by an ANOVA, showing a main effect of task (misleading context vs. no-context: F (1, 167) = 232.1, p < 0.001, $\eta^2 = 0.582$), a main effect of age group [F (7, 167) = 5.06, p < 0.001, $\eta^2 = 0.175$], and an interaction [F (7, 167 = 17.8, p < 0.001, $\eta^2 = 0.427$]. Planned t-tests indicate that performance in the no-context condition was superior to performance on the misleading context condition for each age group from 6-years onwards (all p values \leq 0.006, d values between 1.08 and 2.62 for child participants, d = 6.02 for the adult group), but not for the 4- or 5-year-olds [t(28) = 1.25, p = 0.227, d= 0.47; t(20) = 1.82, p = 0.084, d = 0.81, respectively]. Thus, the younger children were not deceived by the misleading context.

The difference in discrimination accuracy between adults and 10-year-olds was significant [t (42) = 3.34, p = 0.002, d = 1.01], but they did not differ on the no-context condition. Thus, sensitivity of size perception to context continues to develop beyond 10 years of age, but size discrimination without context does not.

Accuracy as a function of real-size difference, age, and context

We now analyse discrimination accuracy as a function of real-size difference to show in more detail how the effects of context change with age (Fig. 2). For adults, the effects of context and real-size difference were as reported in earlier studies (Phillips, et al., 2004; Doherty, et al., 2008), i.e., at 2% real-size difference, discrimination...
accuracy was near to 100% with helpful context, but near to 0% with misleading context. More than 10% real size difference was needed to overcome the effects of misleading context. For 4- to 6-year-old children, accuracy was little affected by context, however, being similar at 2% real-size difference for all three contextual conditions, and at all other real-size differences in the misleading context and no-context conditions. The decline in accuracy with increasing age in the misleading context condition was particularly strong for the smaller real-size differences. Thus, Fig 2 shows clearly that, for older children and adults, misleading and helpful context have the large effects expected, but for younger children they have little or no effect. This produces worse discrimination by the younger children when context is helpful, but better discrimination when it is misleading.

To assess these differences we carried out an ANOVA on accuracy at 2% real-size difference with the helpful and misleading context conditions as a within-subjects factor and age group as a between-subjects factor. There was a large effect of context [F (1, 167) = 93.8, p < 0.001, ηp² = 0.36]. There was no overall effect of age group [F (7, 167) = 0.97, ηp² = 0.039], but a large interaction between condition and age group [F (7, 167) = 18.18, p < 0.001, ηp² = 0.433]. Improving accuracy with age on the helpful trials was inversely proportional to accuracy on the misleading context trials; these two conditions being highly negatively correlated, r = - 0.65, p < 0.001. For 2% size difference misleading context trials, four-year-olds’ performance was significantly better than chance (t(28) = 3.66, p = 0.001, d = 1.38); 9-year-olds, 10-year-olds’ and adults’ performances were significantly lower than chance [t(18) = - 4.73, p < 0.001, d = 2.23; t(19) = -4.82, p < 0.001, d = 2.21; t(23) = -12.31, p < .001, d = 5.13] respectively; 5- to 8- year-olds’ performances did not differ from chance.

The decline in accuracy with age in the misleading context condition continues
for many years as the 10-year-olds discriminated significantly better than adults at each of the size differences from 2 to 14% (all probabilities < 0.05, d values between 0.61 and 0.91).

Relation of context-sensitivity to sex and Raven’s Matrix score

There were no significant differences between males and females at any age. Overall, boys were correct on 71% and girls on 75% of misleading context trials (t (149) = 1.25, p = 0.215, d = 0.20. The largest difference in performance for any age group was between the 9-year-olds: girls were correct on 71% and boys on 60% of trials (t (17) = 1.216, p = 0.241, d = 0.57). The male adult participants were correct on 47.5% of trials, female participants on 44.6% of trials (t (22) = 0.421, p = 0.678, d = 0.18).

Performance of individual children on Raven’s Matrices varied from 10 out of 36 correct to 35 out of 36 correct (chance performance = 6 out of 36). Mean performance improved with age from 14/36 for the 4-year-olds to 29/36 for the 10-year-olds. The overall correlation between matrices score and overall accuracy on the size discrimination task was r = -0.34, p < .001. Thus, accuracy of size perception is negatively correlated to non-verbal intelligence over this age range as a whole. This relationship remained significant when age and performance on the no-context condition were partialled out: r = -0.19, p < 0.05. Moreover, the correlation varied with age in a very clear way, as shown in Fig.3. For the youngest group, the relationship was significantly positive, indicating that, for them, accurate size discrimination was associated with high scores on the Raven’s matrices. With increasing age the correlation becomes increasingly negative. The negative correlation
approaches significance for each of the 7- and 8-year-old groups, and for the 2% size
difference trials is significant at these ages: for 7-year-olds, \(r = -0.48, p < .05 \); for 8-
year-olds, \(r = -0.45, p < 0.05 \). Thereafter the correlation declines towards zero at
around 10 years of age. As context-sensitivity impairs size discrimination in this
paradigm, these results imply that between 6 and 9 years of age context-sensitivity is
positively correlated with Raven’s Matrices score.

Discussion

These findings show that young children discriminate sizes more accurately than
adults when context is misleading. More accurate performance by young children in
experimental tasks is uncommon because while many factors can produce worse
performance, such as failure to understand instructions or lower attention span, few
can produce genuinely better performance. The double-dissociation in our data shows
that the differences observed here are specific to the effects of context because young
children discriminated better than adults when context was misleading, but
discriminated less well than adults when it was helpful. Note that our findings are
specific to sensitivity to context in the Ebbinghaus illusion. The development of other
forms of context sensitivity may well be different.

Our results clearly show that size-contrast effects as found in adults are not
found in children younger than 7 years of age. Because we controlled the separation
between targets and surrounds, present findings cannot be attributed to the effects of
local contour interactions. As discussed in the Introduction, most previous studies of
the development of the Ebbinghaus illusion have not controlled for this factor. Thus
studies finding evidence for size-contrast in young children may do so because they
reflect local contour interactions, rather than size constancy or size contrast. This hypothesis awaits empirical test.

Furthermore, development toward the adult form of context-sensitivity in the Ebbinghaus illusion is gradual, and continues until at least 10 years of age. This fits our assumption that a trend toward ever broader contextual syntheses is common to cognitive development in general. Nevertheless, it was a surprise to us to find that such an apparently low-level pre-attentive process takes longer to develop than many higher-level cognitive capabilities. We were also surprised because over the past 10 years we have tested hundreds of adults using this paradigm, and all have shown size-contrast to some extent. Adults tested include people with disorganised schizophrenia and people with autism as well as their first degree relatives, and, though we have usually found the normal adult form of context-sensitivity to be reduced in those cases, we have never yet found it to be absent.

Why does the sensitivity to context in the Ebbinghaus illusion studied here have such a late onset and such a long developmental time-course? One plausible hypothesis concerns the use of pictorial cues to depth and size in pre-attentive vision. Given adequate exposure to pictures the mature visual system can compute the depth and size of objects in pictured scenes, while at the same time computing the depth and size of the markings on the picture surface. Acquisition of this ability may require much time spent looking at, and correctly interpreting, pictured spaces, because pictorial cues to depth and size within a pictured scene conflict with primary cues to the depth and size of the picture surface itself. These primary depth cues, which include motion parallax and stereo, are so strong that learning to use the full range of pictorial depth cues may take a long time. There is evidence that this is so (e.g. Wilcox & Teghtsoonian, 1971; Yonas & Hagen, 1973). This hypothesis involves three
assumptions. The first is that pictorial depth cues affect the perception of the size of markings on the picture surface. This is easily shown to be so, as in Figure 4(a), for example. The second is that the Ebbinghaus illusion is in part due to effects of pictorial cues to depth. As far as we know this is a novel hypothesis, but some support for it may be seen in the demonstrations of Figures 4(b) and 4(c). Finally, as there is little or no conscious experience of differential depths in the Ebbinghaus displays we must also assume that surround size cues alone are not strong enough to evoke the explicit experience of depth, but are strong enough to exert some influence on size perception. This hypothesis suggests that the perception of 3D scenes in 2D displays is a ventral pathway function, because we can act on the surface markings but not within the pictured space. Another advantage of this hypothesis is that it provides a simple explanation for the observation of a weaker Ebbinghaus illusion in a remote sub-Saharan culture (de Fockert, Davidoff, Fagot, Parron & Goldstein, 2007); i.e. they spend less time looking at pictures. Clearly, further tests of this hypothesis are needed.

Better performance at any task by children with lower mental age scores is rare. Its occurrence here between the ages of 6 and 9 years when context is misleading implies that the age at which context-sensitivity in the Ebbinghaus illusion is acquired is positively correlated with mental age. One possible reason for this is that either intellectual functions in general or fluid intelligence in particular require sensitivity to context. An additional possibility is that the time spent looking at pictorial spaces is positively correlated with intellectual capabilities reflected in the Raven’s Matrices score.

Absence or weakness of surround-size effects in the Ebbinghaus illusion has been related to the distinction between vision for action and vision for perception, to cultural differences in perceptual style, and to autistic and schizophrenic
psychopathology. These issues now need to be related to the new evidence presented here. First, the presence of surround-size effects in perceptual judgement but not in manual action has been taken as primary evidence for the distinction between vision for action and vision for perception (e.g. Milner & Goodale, 2008). However, as we show here, children younger than seven years of age do not show the adult effects of surround size in their perceptual judgements. Most of the arguments for distinguishing between the two pathways apply to young children as well as to adults. As the two pathways are functionally distinct before sensitivity to surround size in the Ebbinghaus illusion has been acquired, differences in that form of context-sensitivity cannot be necessary to the distinction between the two pathways.

Our results do not imply that vision is insensitive to context in general before seven years of age, and we do not believe that it is. Our hypothesis is that sensitivity to surround size in the Ebbinghaus illusion matures slowly because it depends upon much time spent looking at, and correctly interpreting 2-D representations of 3-D scenes. We assume that this learning predominantly affects the ventral stream.

This clearly implies that different ventral and dorsal pathway functions develop at different rates. Some ventral pathway functions develop early in infancy (Dannemiller, 2001), but, like those concerned with face and place processing (Grill-Spector, Golarai & Gabrieli, 2008), those studied here continue to develop well into adolescence. Therefore, although some ventral pathway functions develop earlier than some dorsal pathway functions (e.g. Dilks, Hoffman, & Landau, 2008), it cannot be the case that in general ventral pathway functions mature either earlier or later than dorsal pathway functions. Both pathways have a long and complex developmental trajectory, with different aspects emerging at different ages within each pathway (Johnson, Mareschal & Csibra, 2001).
Second, in relation to the evidence for cultural differences in context-sensitivity in the Ebbinghaus illusion (e.g. Doherty, Tsuji & Phillips, 2008), our findings show that there is plenty of time for them to develop as a result of differences in the cultural environment. The paradigm used here has also been used to study children and adults in Japan. The results of that work will be reported elsewhere, but it clearly shows that the findings reported here for children and adults living in Scotland apply equally well to Japanese participants, with little or no difference in absolute levels of performance between children of the two cultures. There are cultural differences in context-sensitivity, but descriptions of some cultures as being field or context independent must be moderated (e.g. Kitayama et al, 2003). Adults cannot choose to ignore misleading perceptual context, even those in individualistic western cultures.

Finally, there is evidence that children with autism do not succumb to visual size illusions, and this has been interpreted as supporting the view that they have a detail focussed cognitive style, or one with weak central coherence (e.g. Happé, 1999). Our findings clearly show that, for young children, low sensitivity to context in the Ebbinghaus illusion cannot be interpreted as implying that they have an autistic perceptual style. Instead, our findings suggest that the abnormally low sensitivity to context in the Ebbinghaus illusion that has been observed in children with autism (Happé, 1999) is not a fundamental component of their pathology.
REFERENCES

Table 1. Details of participant numbers, gender and age for each age group.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>male:female</th>
<th>mean age</th>
<th>range</th>
<th>SD (mo.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 years</td>
<td>29</td>
<td>14:15</td>
<td>4;4</td>
<td>3;9-4;11</td>
<td>4.1</td>
</tr>
<tr>
<td>5 years</td>
<td>21</td>
<td>9:12</td>
<td>5;6</td>
<td>5;1-5;11</td>
<td>3.2</td>
</tr>
<tr>
<td>6 years</td>
<td>20</td>
<td>10:10</td>
<td>6;5</td>
<td>6;1-6;11</td>
<td>3.5</td>
</tr>
<tr>
<td>7 years</td>
<td>20</td>
<td>10:10</td>
<td>7;6</td>
<td>7;1-7;11</td>
<td>3.3</td>
</tr>
<tr>
<td>8 years</td>
<td>21</td>
<td>12:9</td>
<td>8;7</td>
<td>8;1-8;11</td>
<td>3.2</td>
</tr>
<tr>
<td>9 years</td>
<td>19</td>
<td>10:9</td>
<td>9;5</td>
<td>9;1-9;11</td>
<td>3.2</td>
</tr>
<tr>
<td>10 years</td>
<td>21</td>
<td>12:8</td>
<td>10;5</td>
<td>10;1-10;11</td>
<td>2.7</td>
</tr>
<tr>
<td>Adult</td>
<td>24</td>
<td>12:12</td>
<td>19;11</td>
<td>18;3-25;6</td>
<td>19.8</td>
</tr>
</tbody>
</table>
Figure Legends

Figure 1. Examples of the stimuli shown in each of the three contextual conditions (the test was not present in the displays, only the circles). The central circles were coloured orange, the surround circles grey. On each trial participants were presented with one of the displays, and were asked to point to the biggest orange circle. In each case shown here the orange circle on the right is 2% larger than that on the left.

Figure 2. Discrimination accuracy as a function of real size difference and context for four age groups. Chance level is 50%. Helpful context was tested at 2% real difference only. For adults it was then already at ceiling, but for 4 to 6 year olds it was near chance. At 6% real difference with misleading context accuracy was far below chance for adults, but was significantly greater than chance for 4 to 6 year olds.

Figure 3. Correlations between accuracy over the 20 trials with misleading context and score on the Raven’s Matrices for each age group from 4 to 10 years.

Figure 4.
(a) Most people see the further circle as being larger than the nearer one, though they are equal. They would also judge the ‘real’ size of the further circle within the pictured space to be much larger than the nearer circle. This shows that pictorial cues to depth and size influence perception of the markings on the picture surface.
(b) Adding surrounds, as in the Ebbinghaus illusion, increases the perceived size difference between the two circles. This suggests that surround size adds to the other pictorial depth cues.
(c) In texture gradients the mean size and separation of elements decreases with depth. The size of the elements on the picture surface is seen as decreasing with depth, but their ‘real’ size within the pictured space would be judged to be approximately constant. The large element in the centre of the second row from the top may be seen as being larger than that arrowed below, but they are equal. Its ‘real’ size within the pictured space would be judged to be much larger. The bottom and top three rows are versions of the Ebbinghaus illusion. Therefore, this suggests that the illusion may in part be due to the visual system learning to use such pictorial cues.
Pearson's correlation coefficient

Note: * = p < 0.05
† = p < 0.10